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ABSTRACT
The task addressed in this paper, finding experts in an
enterprise setting, has gained in importance and inter-
est over the past few years. Commonly, this task is ap-
proached as an association finding exercise between people
and topics. Existing techniques use either documents (as
a whole) or proximity-based techniques to represent candi-
date experts. Proximity-based techniques have shown clear
precision-enhancing benefits. We complement both docu-
ment and proximity-based approaches to expert finding by
importing global evidence of expertise, i.e., evidence ob-
tained using information that is not available in the imme-
diate proximity of a candidate expert’s name occurrence or
even on the same page on which the name occurs. Exam-
ples include candidate priors, query models, as well as other
documents a candidate expert is associated with.

Using the CERC data set created for the TREC 2007 En-
terprise track we identify examples of non-local evidence of
expertise. We then propose modified expert retrieval mod-
els that are capable of incorporating both local (either doc-
ument or snippet-based) evidence and non-local evidence of
expertise. Results show that our refined models significantly
outperform existing state-of-the-art approaches.
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1. INTRODUCTION
Expert finding addresses the task of finding the right per-

son with the appropriate skills and knowledge [5]. Expert
finding systems rank candidate experts with respect to a
given topic. A key ingredient of such systems is to compute
associations between candidates and topics that capture how
strong the two are related. Usually, such associations are de-
termined by considering the documents in which candidates
and topics co-occur and more recently such associations have
been computed not at the document-level but more locally,
using text windows or snippets around occurrences of names
of candidate experts.

On the whole, it has been found that the use of lo-
cal, proximity-based evidence for computing associations be-
tween candidate experts and topics improves precision on
the overall expert finding task. This is not a surprise. How-
ever, there are additional types of evidence of a candidate’s
expertise in a given topical area that are distinctively non-
local in character. By non-local evidence we mean evidence
of expertise that is not available from an individual text
snippet or even from an individual page. To make mat-
ters concrete we provide a number of examples. We take
these examples from the experimental setting provided by
the TREC 2007 Enterprise track [2] and its scenario of sci-
ence communicators in a knowledge intensive organization
(CSIRO, [1]) that have to recommend experts in response
to outside requests for experts; despite this specific choice,
we believe that the phenomenon of non-local indicators of
expertise is completely general and generic.

One type of non-local evidence relates to clickstream data;
if we have seen the topic for which expertise is being sought
before, say in a document retrieval setting, and we have ex-
amples of key documents that are often clicked on, how can
we use this information about the topic to improve the dis-
covery of associations between candidate experts and topics?

Another type of non-local evidence concerns the (relative)
importance of a candidate for a given document ((p(ca|d)).
A candidate expert that is related to many documents may
not have been particularly important for the creation of a
given document d; thus, in turn, d probably should not con-
tribute a lot as evidence in support of associations between
the candidate ca and topics discussed in d. And similarly,
if the documents associated with a candidate are not se-
mantically related to a given document d, then, again, this
particular document probably should not count heavily as
evidence in support of associations between the candidate
ca and topics discussed in d.

A final example suggests that we should consider global
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properties of candidate experts when computing expert-
topic associations: the mere co-occurrence of a person with
a topic need not be an indication of expertise of that person
on the topic. A case in point is provided by the science com-
municators in the CSIRO enterprise search test set: they are
mentioned as a contact person on many pages and, hence,
frequently co-occur with many topics.

Our aim in this paper is to identify, model, and esti-
mate non-local sources of evidence for expert finding and
to integrate such evidence into existing language modeling-
based approaches to expert finding. Concretely, we aim to
find out to which extent rich query modeling with non-local
evidence improves the effectiveness of expert finding. Sec-
ond, we seek to determine how different ways of computing
document-expert associations (with different types of global
statistics) impact expert finding. And, we explore to which
extent priors on candidate experts (based on their global
co-occurrence behavior) impact expert finding effectiveness.

Our main contributions are a comparison of existing ex-
pert search approaches on the TREC 2007 enterprise plat-
form (CERC collection), the identification of a number of
non-local sources of expert finding as well as ways of esti-
mating and modeling these in an effective way, based on ex-
isting document and proximity-based approaches to expert
finding.

The remainder of the paper is organized as follows. We
discuss related work in Section 2. We detail our models and
ways of estimating both local and non-local evidence for
expertise in Section 3. Our experimental setup is detailed
in Section 4 and we report on our experiments in Section 5.
Section 6 contains an analysis of our experimental results
and we conclude in Section 7.

2. RELATED WORK
To reflect the growing interest in entity ranking in general

and expert finding in particular, TREC introduced an expert
finding task at its Enterprise track in 2005 [11]. At this track
it emerged that there are two principal approaches to expert
finding—or rather, to capturing the association between a
candidate expert and an area of expertise [11, 26, 2]. The
two models have been first formalized and extensively com-
pared by Balog et al. [5], and are called candidate and docu-
ment models, or Model 1 and Model 2, respectively. Model
1’s candidate-based approach is also referred to as profile-
based method in [12] or query-independent approach in [19].
These approaches build a textual (usually term-based) rep-
resentation of candidate experts, and rank them based on
query/topic, using traditional ad-hoc retrieval models. Con-
ceptually, these approaches are similar to the P@noptic sys-
tem [10]. The other type of approach, document models, are
also referred to as query-dependent approaches in [19]. Here,
the idea is to first find documents which are relevant to the
topic, and then locate the associated experts. Thus, Model
2 attempts to mimic the process one might undertake to find
experts using a document retrieval system. Nearly all sys-
tems that took part in the 2005–2007 editions of the Expert
Finding task at TREC implemented (variations on) one of
these two approaches. In this paper we focus on (variations
on) Model 1.

Building on either candidate or document models, further
refinements to estimating the association of a candidate with
the topic of expertise have been explored. For example, in-
stead of capturing the associations at the document level,

they may be estimated at the paragraph or snippet level [3].
The generative probabilistic framework naturally lends itself
to such extensions, and to the inclusion of other forms of evi-
dence, such as document and candidate evidence through the
use of priors [12], document structure [28], and of hierarchi-
cal, organizational and topical context and structure [19, 6].
For example, Petkova and Croft [19] propose another ex-
tension to the framework, where they explicitly model the
topic, in a manner similar to relevance models for document
retrieval [13]. The topic model is created using pseudo-
relevance feedback, and is matched against document and
candidate models. Serdyukov and Hiemstra [23] propose a
person-centric method that combines the features of both
document- and profile-centric expert finding approaches.

Fang and Zhai [12] demonstrate how query/topic expan-
sion techniques can be used within the framework; the au-
thors also show how the two families of models (i.e., Model 1
and 2) can be derived from a more general probabilistic
framework. Petkova and Croft [20] introduce effective formal
methods for explicitly modeling the dependency between the
named entities and terms which appear in the document.
They propose candidate-centered document representations
using positional information, and estimate p(t|ca, d) using
proximity kernels. Their approach is similar to the window-
based models that we use below, in particular, their step
function kernel corresponds to our estimate of p(t|ca, d) in
Eq. 10 below. Balog and de Rijke [4] introduce and com-
pare a number of methods for building document-candidate
associations. Empirically, the results produced by such mod-
els have been shown to deliver state of the art performance
(see [5, 19, 20, 12, 6]).

Finally, we highlight two alternative approaches that do
not fall into the categories above (i.e., candidate or doc-
ument models). Macdonald and Ounis [15] propose rank-
ing experts with respect to a topic based on data fusion
techniques, without using collection-specific heuristics; they
find that applying field-based weighting models improves
the ranking of candidates. Macdonald et al. [17] enhance
their voting approach by considering proximity, moreover,
experiment with integrating additional evidence by identify-
ing home pages of candidate experts and clustering relevant
documents. The authors report experimental results on the
TREC 2007 platform (CERC) in [14, 17]. Rode et al. [22]
represent documents, candidates, and associations between
them as an entity containment graph, and propose relevance
propagation models on this graph for ranking experts.

Independent of the basic model adopted, various teams
have worked on improved query modeling in the setting of
expert finding and, more generally, enterprise search. E.g.,
Macdonald and Ounis [16] studied better query modeling
with query expansion for expert finding and Balog et al. [7]
explored query expansion in the setting of enterprise search
using so-called example documents (sample key pages are
provided with the topic description; see the description of
“feedback runs” below). In some of the manual runs pro-
duced at TREC 2007 improved query modeling was obtained
by manually tuning queries derived from the narrative field
of the topic statements [29].

In Table 1 we list the highest scoring results achieved us-
ing the TREC 2007 test set (CERC, [1]) that we have been
able to find in the literature. We distinguish between three
types of runs: automatic, feedback, and manual. Manual
runs involve humans in the loop at any stage, for example
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Method/model MAP P5 P10 MRR
TREC 2007 best .4632 .2280
TREC 2007 best feedback .3660 .2040
TREC 2007 best manual .4787 .2720
Voting model [14] .3406 .1224
Voting model [17] .3519 .4730
Voting model+proximity [17] .4319 .5742
Relevance prop. [24] .4528 .5840
Model 1 [3] .3801 .2000 .1340 .5571
Model 2 [3] .4142 .2400 .1620 .5671
Model 1B [3] .4633 .2600 .1620 .6236
Model 2B [3] .4323 .2560 .1600 .5790

Table 1: Numbers reported so far in the literature
on the TREC 2007 Enterprise platform.

composing queries from the topics, manual term expansion,
relevance feedback, or manual combination of results. Feed-
back runs can be thought of as simulating one type of click-
based system. They involve the use of the title and page
fields of the topics in the TREC 2007 topic set; the page
field contains examples of key reference URLs (on average 4
per topic)—these simulate the situation where we have seen
the query before (in a document retrieval setting) and a few
URLs were often clicked: the URLs in the pages field.

The first group of results in Table 1 are the highest scoring
runs at TREC 2007 [2]. The second group is produced using
Macdonald and Ounis’s fusion techniques. The third group
represents the best scores obtained using the graph-based
approach of [24]. The fourth and fifth group represent the
original candidate and document models and their window-
based refinements, respectively.

It was found, both at TREC 2007 and afterwards, that
performance depends on two critical factors: the ability to
accurately recognize name occurrences in document1 and
the choice of parameters: wherever possible, we use the best
or optimal parameter settings as reported in the literature.

3. MODELING
Within an organization, there may be many possible can-

didates who could be experts on a given topic. For a given
query, the problem is to identify which of these candidates
are likely to be an expert. Following [5] we can state this
problem as follows:

what is the probability of a candidate ca being
an expert given the query topic q?

That is, we wish to determine p(ca|q), and rank candidates
ca according to this probability. The candidates with the
highest probability given the query are deemed to be the
most likely experts for that topic. The challenge, of course,
is how to accurately estimate this probability. Instead of
calculating this probability directly we apply Bayes’ rule and
rewrite it to

p(ca|q) =
p(q|ca) · p(ca)

p(q)
, (1)

where p(ca) is the probability of a candidate and p(q) is the
probability of a query. Since p(q) is a constant (for a given
1To facilitate comparison we release a list of 3,490 names
along with the documents associated with them at http:
//es.csiro.au/cerc/data/balog; the list is available for
registered licensees of the CERC collection.

query), it can be ignored for the purpose of ranking. Thus,
the probability of a candidate ca being an expert given the
query q is proportional to the probability of a query given
the candidate p(q|ca), weighted by the a priori belief that
candidate ca is an expert (p(ca)):

p(ca|q) ∝ p(q|ca) · p(ca). (2)

In most existing work [5, 9] p(ca) is assumed to be uni-
form. However, as was shown in [12], a reasonable prior can
improve retrieval accuracy. In this paper we will use can-
didate priors to distinguish between science communicators
and proper experts; the estimation of this prior is detailed
in Section 3.4.

According to Model 1 of Balog et al. [5], the candidate is
represented by a multinomial probability distribution over
the vocabulary of terms. Therefore, a candidate model θca
is inferred for each candidate ca, such that the probability
of a term given the candidate model is p(t|θca). The model
is then used to predict how likely a candidate would produce
a query q.

Assuming that each query term is sampled identically and
independently, the query likelihood is obtained by taking the
product across all the terms in the query, such that:

p(q|θca) =
Y
t∈q

p(t|θca)n(t,q), (3)

where n(t, q) denotes the number of times term t is present
in query q.

Instead of calculating this probability directly, we move to
the log domain to prevent numerical underflows, as proposed
in [3]. We rewrite Eq. 3 as follows:

log p(q|θca) =
X
t∈q

p(t|θq) · log p(t|θca). (4)

In this alternative formulation we also replaced n(t, q) with
p(t|θq), which can be interpreted as the weight of term t in
query q. We will refer to θq as the query model. Note that
maximizing the query-likelihood in Eq. 4 provides the same
ranking as minimizing the KL-divergence between the query
and candidate models (that is, ranking by −KL(θq||θca)) (as
is pointed out in [7]).

Next, we discuss the estimation of the three components
of our modeling: (i) the candidate model (p(t|θca)) in Sec-
tion 3.1, (ii) the query model (p(t|θq)) in Section 3.3, and
(iii) candidate priors (p(ca)) in Section 3.4. Along the way,
in Section 3.2, we discuss a key ingredient of our candidate
models, viz. document-candidate associations (p(ca|d)).

3.1 Candidate Model
To obtain an estimate of p(t|θca), we must ensure that

there are no zero probabilities due to data sparsity. In doc-
ument language modeling, it is standard to employ smooth-
ing:

p(t|θca) = (1− λca) · p(t|ca) + λca · p(t), (5)

where p(t|ca) is the probability of a term given a candidate,
and p(t) is the probability of a term in the document repos-
itory.

To approximate p(t|ca), we use the documents as a bridge
to connect the term t and candidate ca in the following way:

p(t|ca) =
X
d

p(t, ca|d). (6)
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That is, the probability of selecting a term given a candi-
date is based on the strength of the co-occurrence between a
term and a candidate in a particular document (p(t, ca|d)).
Below, we first discuss two ways of building candidate mod-
els: based on documents associated with them and based on
terms in proximity to candidate name mentions.

3.1.1 Document-based Model: Model 1
Our first approach to estimating candidate models as-

sumes that the document and the candidate are condition-
ally independent. That is

p(t, ca|d) = p(t|d) · p(ca|d), (7)

where p(t|d) is the probability of the term t in document d.
We approximate it with the standard maximum-likelihood
estimate of the term, i.e., the relative frequency of the term
in the document [5].

3.1.2 Proximity-based Model: Model 1B
Model 1 assumes conditional independence between the

document and the candidate. However, this assumption is
quite strong as it suggests that all the evidence within the
document is descriptive of the candidate’s expertise. This
may be the case if the candidate is the author of the doc-
ument, but here we consider an alternative. We can factor
the conditional probability p(t, ca|d) as follows:

p(t, ca|d) = p(t|d, ca) · p(ca|d). (8)

That is, we base p(t, ca|d) on the strength of the co-
occurrence between a term and a candidate in a particular
document; both the document and the candidate determine
the probability of the term.

One natural way in which to estimate the probability of
co-occurrence between a term and a candidate is by consid-
ering the proximity of the term given the candidate in the
document, the idea being that the closer a candidate is to
a term the more likely that term is associated with their
expertise.

Here, we assume that the candidate’s name, email, etc.
have been replaced within the document representation with
a unique candidate identifier, which can be treated much like
a term, referred to as ca. The terms surrounding either side
of ca form the context of the candidate’s expertise and can
be defined by a window of size w within the document. For
any particular distance (window size) w between a term t
and candidate ca, we can define the probability of a term
given the candidate, distance and document:

p(t|ca, w, d) =
n(t, ca, w, d)P
t′ n(t′, ca, w, d)

, (9)

where n(t, ca, w, d) is the number of times the term t co-
occurs with ca at a distance of at most w in document d.
Now, the probability of a term given the candidate and docu-
ment is estimated by taking the sum over all possible window
sizes W :

p(t|d, ca) =
X
w∈W

p(t|ca, w, d) · p(w), (10)

where p(w) is the prior probability that defines the strength
of association between the term and the candidate at dis-
tance w, such that

P
w∈W p(w) = 1. Estimating Model 1B

this way essentially corresponds to the step function kernel
in [20].

When we put together our choices so far, the formula we
use for ranking candidates is the one shown in Eq. 11.

p(ca|q) ∝ p(ca) ·
X
t∈q

p(t|θq)

· log
n

(1− λ)
X
d

p(t, ca|d) + λp(t)
o
. (11)

So far we have discussed the estimation of p(t, ca|d) and p(t).
Next, we discuss three additional components of the model:
(i) document-candidate associations (p(d|ca)) in Section 3.2,
(ii) the query model (p(t|θq)) in Section 3.3, and finally, (iii)
candidate priors (p(ca)) in Section 3.4.

3.2 Document-Candidate Associations
A feature common to both models introduced above, and

shared by many of the models mentioned in Section 2, is
their reliance on associations between people and docu-
ments. E.g., if someone is strongly associated with an impor-
tant document on a given topic, this person is more likely to
be an expert on the topic than someone who is not associated
with any documents on the topic or only with marginally
relevant documents. In our framework this component is re-
ferred to as document-candidate associations, and the like-
lihood of candidate ca being associated with document d is
expressed as a probability (p(ca|d)) in Eq. 7 for Model 1 and
in Eq. 8 for Model 1B.

The probability p(ca|d) can be estimated at the level of
the document d itself, or at the sub-document level, where
associations link people to specific text segments. To remain
focused, we build associations on the document level only
in this section: to date, many open issues remain even at
the document level. We leave a systematic exploration of
candidate-“text snippet” associations for later research.

We assume that the recognition of candidate occurrences
is taken care of by an external extraction component. We
briefly discuss this process in technical terms in Section 4.
The output of this extraction procedure is a preprocessed
document format where candidate occurrences are treated as
terms. The number of times the candidate ca is recognized
in the document d is denoted by n(ca, d).

We take a baseline approach to computing p(ca|d) to-
gether the two best performing approaches as suggested by
Balog and de Rijke [4]. The simplest possible way of set-
ting p(ca|d) is referred as the boolean model (BL). Under
this boolean model, associations are binary decisions; they
exist if the candidate occurs in the document, irrespective
of the number of times the person or other candidates are
mentioned in that document. Formally, it is expressed as:

p(ca|d) =


1, n(ca, d) > 0,
0, otherwise.

(12)

For a better estimate, a lean document representation is used
which consists of only candidate mentions. First the candi-
date’s (local) frequency in the document (TF) and (global)
frequency (IDF) is combined (and referred as TFIDF) (note
that it is computed only for candidates that occur in the
document (n(ca, d) > 0):

p(ca|d) ∝ n(ca, d)P
ca′ n(ca′, d)

· log
|D|

|{d′ : n(ca, d′) > 0}| (13)

Note that this is a clear example of the use of non-local
information (as we need global statistics to determine IDF).
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Finally, we use an alternative way of measuring a candi-
date’s importance given a document. A candidate is repre-
sented by its semantic relatedness to the given document,
instead of its actual frequency. This method will be referred
to as SEM. We use n′(ca, d) instead of n(ca, d) in Eq. 13,
where

n′(ca, d) =


KL(θca||θd), n(ca, d) > 0
0, otherwise.

(14)

Again, we need global statistics to compute this way of de-
termine a candidates importance, as evidenced by Eqs. 5
and 6, where the candidate model θca is being defined.

We will use these three methods (BL, TFIDF, SEM, in
that order) in combination with both Models 1 and 1B in
our experimental evaluation (reported in Section 5).

3.3 Query Model
As to the query model, we consider two flavors. Our base-

line query model (BL) consists of terms from the topic title
only, and assigns the probability mass uniformly across these
terms:

p(t|θq) = p(t|q) =
n(t, q)P
t′ n(t′, q)

. (15)

As before, n(t, q) is the frequency of term t in q.
The baseline query model has two potential issues. Not

all query terms are equally important, hence, we may want
to reweigh some of the original query terms. Also, p(t|q)
is extremely sparse, and, hence, we may want to add new
terms (so that p(t|θq) amounts to query expansion). At this
point, we consider yet another form of non-local evidence.

The TREC 2007 Enterprise track simulates a type of click-
based system, where we have observed a given topic mul-
tiple times and where a small number of documents were
often clicked. We refer to those documents as example doc-
uments. Balog et al. [7] propose an effective method of ex-
ploiting these example documents. Unlike previous work on
relevance modeling [13] and blind relevance feedback mech-
anisms [21], here it is assumed that these expansion terms
are sampled independently from the original query terms.

That is, we use a non-local approach to query expansion.
The original (baseline) query model (p(t|q)) is combined
with the expanded query model (p(t|q̂)) (EX) as follows.

p(t|θq) = (1− µ) · p(t|q̂) + µ · p(t|q). (16)

The expanded query is sampled from a set of example docu-
ments S. First, we estimate a “sampling distribution” p(t|S)
using example documents d ∈ S. Next, the top k terms with
highest probability p(t|S) are taken and used to formulate
the expanded query q̂:

p(t|q̂) =
p(t|S)P
t′∈k p(t

′|s) . (17)

By summing over all example documents, we obtain P (t|S).
Formally, this can be expressed as

p(t|S) =
P
d∈S p(t|d) · p(d|s) (18)

This resembles the way the candidate model is constructed
in Eq. 3. We approximate p(t|d) with the maximum-likeli-
hood estimate and set p(d|s) to be uniform (i.e., all example
documents are equally important).

An example TREC topic, with the corresponding query
models obtained using BL (Eq. 15) and EX (Eq. 16), is

shown in Figure 1. We clearly see the reweighing and ex-
pansion effect of our new query model.

cane

toads

pests

animal

control

csiro

weeds

invasive

pest

management

species

0 0.1 0.2 0.3 0.4 0.5

(EX) Example documents

toads

cane

0 0.1 0.2 0.3 0.4 0.5

(BL) Baseline

Figure 1: Query models generated for topic CE-039:
cane toads

3.4 Candidate Priors
Our goal with introducing candidate priors is to demon-

strate another form of incorporating non-local evidence into
our modeling. Estimating this prior without training or
manually encoding organizational knowledge is difficult (as
was also found in [20]). We explored several approaches, in-
cluding binning people by their document frequency or by
the coherence of the set of documents in which they occur.
While reasonably effective in distinguishing science commu-
nicators (and web masters and others whose names occur in
many documents) from “proper” experts, we decided to use
a simple pattern-based approach. We extracted a list names
and positions within an organization from the contact blocks
of documents (where this block existed). A large portion of
these people are science communicators (SC) (often called
communication officer/manager/advisor or manager public
affairs communication).

We then set the candidate prior as follows:

p(ca) =


1, ca 6∈ SC,
0, ca ∈ SC. (19)

This simply means that we identified science communicators
and filtered them out from the list of names returned.

4. EXPERIMENTAL SETUP

4.1 Evaluation platform
To address our research questions (repeated below) we

ran experiments using the CSIRO Enterprise Research Col-
lection (CERC), a crawl of *.csiro.au (public) websites con-
ducted in March 2007. The crawl contains 370,715 docu-
ments, with a total size 4.2 gigabytes [1].

In the 2007 edition of the TREC Enterprise track, CERC
was used as the document collection [1]. CSIRO’s science
communicators played an important role in topic creation.
They, the envisaged end-users of systems taking part in the
TREC Enterprise track, read and create outward-facing web
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pages of CSIRO to enhance the organization’s public image
and promote its expertise. A total of 50 topics were created
by the science communicators; systems had to return “key
contacts” for these topics, i.e., names that could be listed
on the topic’s overview page. These key contacts are con-
sidered as relevant experts, thus, used as the ground truth.
It was not assessed whether there is evidence present in the
collection to support the person’s expertise.

4.1.1 Evaluation Measures
The measures we will use are (Mean) Average Precision

(MAP), P5, P10 (precision at rank 5 and 10, respectively),
and (Mean) Reciprocal Rank (MRR). MAP is appropriate
since it provides a single measure of quality across recall
levels. MAP is the main measure used for the expert finding
task at the TREC Enterprise Track [11, 26, 2].

As to P5, P10, and MRR, we argue that recall (i.e., find-
ing all experts given a topic or listing all expertise areas of a
given person) may not always be of primary importance to
our target users. Expertise retrieval can be seen as an ap-
plication where achieving high accuracy, i.e., high precision
in the top ranks is paramount. For this purpose P5, P10,
MRR are appropriate measures [25].

4.2 Identifying Candidates
In the 2007 edition of the Expert Search task at TREC,

candidates are identified by their primary e-mail addresses,
which follow the Firstname.Lastname@csiro.au format.
No canonical list of experts has been made available, there-
fore, e-mail addresses have to be extracted from the docu-
ment collection, and then normalized to the primary format.
This presents a number of challenges, including overcoming
various spam protection measures, the use of alternative e-
mail addresses, and of different abbreviations of names.

The list of candidates we use is taken from [3] and com-
prises 3,490 unique names in total. References of these peo-
ple in documents were replaced by a unique identifier. See
[3] for the description of the candidate extraction procedure.

4.3 Query Model Generation
We use the best performing query model from [7], EX-

QM-EM, with k = 30 feedback terms. The original and the
expanded query models are combined with equal weights:
µ = 0.5. All example documents were considered equally
important (p(d|S) is uniform).

4.4 Calculating Proximity
Note that our method for estimating the proximity-based

model (Model 1B) allows for a weighted combination of var-
ious windows sizes (see Eq. 10). To remain focused, here we
restricted ourselves to a single fixed window (W = {w}) and
the size of this window was set to 125 (based best empirical
results after performing a sweep on a set of possible window
sizes from 20 . . . 250); see [3] for details.

4.5 Parameter Estimation
It is well-known that smoothing can have a significant

impact on the overall performance of language modeling-
based retrieval methods [27]. Our candidate models employ
Bayes smoothing with a Dirichlet prior [18] to improve the
estimated language models. Specifically, we set λ = β

β+|ca| ,

where |ca| is the sum of the number of terms associated with
a given candidate.

Based on an empirical investigation of smoothing values
reported in [3] we set β = 90, 000 for Model 1 and β = 100
for Model 1B.

5. EXPERIMENTAL EVALUATION
We repeat our research questions from the introduction

and then present the results of the experiments performed
to answer our questions.

5.1 Research Questions
We aim to find out to which extent rich query modeling

with non-local evidence improves the effectiveness of expert
finding: how do BL and EX compare across multiple experi-
mental conditions. Second, we seek to determine how differ-
ent ways of computing document-expert associations (with
different types of global statistics) impacts expert finding:
how do BOOL, TFIDF and SEM compare across multiple
experimental conditions. And we determine to which ex-
tent priors on candidate experts (based on their global co-
occurrence behavior) impact expert finding effectiveness.

5.2 Experimental Results
Table 2 lists the retrieval scores obtained for the vari-

ous experimental conditions: the top half lists the scores
based on Model 1, the bottom half lists the scores for Model
1B. Superscripts report on the outcome of significance tests
(paired t-test, rows 2–6 vs. row 1, rows 8–12 vs. row 7, row

7 vs. row 1; (1) = .05, (2) = .01, (3) = .001).

Model p(ca|d) θq MAP P5 P10 MRR
1 BOOL BL .3801 .2000 .1340 .5571

BOOL EX .4518(1) .2360(2) .1440 .6481(1)

TFIDF BL .4478(2) .2520(2) .1580(2) .6161

TFIDF EX .4957(2) .2800(3) .1640(2) .6861(1)

SEM BL .4541(2) .2440(1) .1580(3) .6252(1)

SEM EX .5044(3) .2720(3) .1640(2) .6866(2)

1B BOOL BL .4633(2) .2600(3) .1620(2) .6236

BOOL EX .5178(1) .2840(1) .1720 .7009(1)

TFIDF BL .4650 .2720 .1680 .6226

TFIDF EX .5380(1) .2880 .1800(1) .7064(1)

SEM BL .4735 .2760 .1720 .6280

SEM EX .5465(3) .2880(1) .1760 .7119(1)

Table 2: Results overview. Document-candidate as-
sociations: (BOOL) Boolean, (TFIDF) Frequency-
based using TF.IDF weighting, (SEM) Semantic re-
latedness; Query model: (BL) Baseline, (EX) Ex-
panded (using example documents provided with
the topic statement).

5.3 Query Models
How does rich (non-local) query modeling help expert

finding? Moving from the baseline (BL) to more refined
query formulations (EX) always improves and the improve-
ment can be up to 19% in MAP, 18% in P5, 7% in P10, and
16% in MRR (even vs. odd rows of Table 2).

5.4 Document-Candidate Associations
How do (non-local) document-candidate associations

help? Moving from local (BOOL) to more and more non-
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local approaches (TFIDF and SEM) improves across the
board and significantly, irrespective of the candidate and
query models. On the other hand, the improvement gained
by moving to non-local approaches is more substantial for
Model 1 than for Model 1B.

5.5 Candidate Priors
Finally, we implement our candidate priors on top of the

best performing configurations of Model 1 and Model 1B;
see Table 3. Using priors result in significant improvements
over these best performing configurations (MAP and MRR).
Our scores reported in Table 3 outperform any previously
published results that we are aware of.

Model p(ca) MAP P5 P10 MRR
1 – .5044 .2720 .1640 .6866

SC .5506(2) .2760 .1680 .7344(2)

1B – .5465 .2880 .1760 .7119

SC .5747(1) .3080(1) .1780 .7362(1)

Table 3: Results of adding candidate priors on top of
the best performing configurations of Model 1 and
Model 1B. Significance testing is done against these
best forming configurations.

6. ANALYSIS
We start our analysis by contrasting the two extreme ends

of the spectrum described in Table 2: a local approach M1-
BOOL-BL (row 1 in Table 2) and a local approach mixed
with non-local features, M1B-SEM-EX (row 12 in Table 2).
Figure 2 shows a topic-level comparison. We find that in
the majority of topics non-local features improve, and the
improvement can be up to +.9655 Average Precision (AP)
(topic CE-015: life cycle assessment). On the other hand, in
a small number of cases it hurts performance—the rightmost
bar corresponds to topic CE-024: Double Helix Science Club
where AP drops by .4167. See Figure 2.
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Figure 2: M1-BOOL-BL (baseline) vs. M1B-SEM-
EX; row 1 vs row 12 of Table 2.

When we consider the move from Boolean to TFIDF-based
document-candidate associations, we see that some topics
are hurt, but on the whole more are helped by the move to

TFIDF-based associations, independent of the query model
being used (BL or EX); see Figure 3. The gains/losses (in
numbers of topics) for the four pairwise comparisons shown
in Figure 3 are: 30/10, 19/17, 31/8, 21/13, respectively.

Going from TFIDF to SEM we see that some topics are
hurt, but more are helped, and by a bigger margin (Fig-
ure 4). The gains are more modest—both per topic and
averaged—than the gains obtained by moving from BOOL
to TFIDF (Figure 3). This is reflected in the gain/loss num-
bers: 17/15, 22/7, 12/16 (!), 15/9, respectively.

Next, we contrast runs with and without the expanded
query model. Figure 5 shows the contrastive plots. On
the whole, moving to richer query models has a positive
effect, although some topics are hurt. Interestingly, we ob-
serve almost identical gain/loss patterns across Model 1 and
Model 1B (top row vs. bottom row) and independent of the
underlying association. The gain/loss numbers are (for plots
(a)–(f)): 25/8, 24/12, 22/11, 20/12, 24/12, and 23/12, re-
spectively.

Let us zoom in on the candidate models estimated us-
ing our document- and proximity-based models (Model 1
and 1B, respectively); Table 4 displays the terms associated
with candidate Manny Noakes with the highest probability.
Manny Noakes is leader of the research team that developed
the Total Wellbeing Diet, published as a book (together with
Dr Peter Clifton).2 As we move from M1-BOOL to M1-SEM
we can observe new terms emerging, such as weight and nu-
trition. Also, we can observe that several other associated
terms move up in the ranking, e.g., diet and health. Switch-
ing from document-based to proximity-based models (i.e.,
from M1 to M1B) continues the progress in the direction of
nutrition science, by adding terms like protein and exercise,
while general terms, such as industry and technology have
dropped out of the top 20. Finally, as we contrast M1B-
BOOL and M1B-SEM, we observe slight refinements in the
allocation of the probability mass; contrast, for example the
probability of nutrition and australia.

Manny Noakes is an expert on topic CE-013: human
clinical trials (according to the ground truth provided by
CSIRO’s science communicators). The two query models
(BL, EX) for this topic are listed in Table 5. The ranking
of Manny Noakes for this topic (using the different combi-
nations of query model and candidate profile) is as follows:

Query mod. M1-BOOL M1-SEM M1B-BOOL M1B-SEM
BL 8 9 4 4
EX 6 4 3 3

As the query model gets richer, Manny Noakes’ ranking im-
proves, and, similarly, as the degree of non-locality improves.
Given the query models and candidate profiles listed in Ta-
bles 5 and 4, we see why: the best performing models and
profile are simply very similar.

Finally, when investigating the effect of candidate priors
we find that these affect only a handful of topics, but the
effect is always positive; see Figure 6.

According the literature (and our own previous publica-
tions), the document-based approach (“Model 2”) was iden-
tified as a clearly preferred model as it is robust, is only
slightly affected by smoothing and can be implemented effi-
ciently on top of an existing document search engine [5, 8, 3].
However, when we contrast the numbers in Table 1 with the

2http://www.csiro.au/people/Manny.Noakes.html
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Figure 3: Moving from boolean (BOOL) to frequency-based associations (TFIDF), with the baseline query
model (BL) or the expanded query model (EX). (a): Model 1 (BL); (b): Model 1B (BL); (c): Model 1 (EX);
(d): Model 1B (EX). In terms of rows in Table 2: 1 vs. 3, 7 vs. 9, 2 vs. 4, and 8 vs. 10, respectively. Topics
ordered by difference in AP.
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Figure 4: Moving from frequency-based (TFIDF) to semantic associations (SEM). (a): Model 1 (BL); (b)
Model 1B (BL); (c): Model 1 (EX); (d): Model 1B (EX). In terms of rows in Table 2: 3 vs. 5, 9 vs. 11, 4 vs.
6, and 10 vs. 12, respectively. Topics ordered by difference in AP.
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Figure 5: Moving from baseline query model (BL) to expanded query model (EX). Top row concerns Model
1, the bottom row Model 1B. (a): BOOL; (b) and: TFIDF; (c): SEM; (d): BOOL; (e): TFIDF; (f): SEM. In
terms of rows in Table 2: 1 vs. 2, 3 vs. 4, 5 vs. 6, 7 vs. 8, 9 vs. 10 and 11 vs. 12, respectively. Topics ordered
by difference in AP.
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M1-BOOL M1-SEM M1B-BOOL M1B-SEM
t p(t|θca) t p(t|θca) t p(t|θca) t p(t|θca)
csiro .02217 csiro .03608 csiro .03048 csiro .03125
food .01144 diet .01939 diet .02524 diet .02823
industry .01011 wellbeing .01302 wellbeing .01685 wellbeing .01839
diet .00884 food .01217 dr .01630 total .01600
research .00808 total .01078 total .01450 dr .01321
dr .00764 health .01005 research .01002 health .01132
australia .00637 research .00873 health .00998 weight .01028
wellbeing .00608 energy .00797 weight .00871 book .00959
science .00554 industry .00771 book .00846 research .00897
program .00554 dr .00742 australia .00717 nutrition .00833
health .00542 australia .00686 nutrition .00704 high .00666
total .00526 science .00623 food .00619 food .00661
new .00475 weight .00597 high .00615 australia .00653
energy .00462 book .00586 science .00540 science .00539
australian .00425 information .00584 protein .00479 exercise .00505
technology .00387 technology .00533 peterclifton .00419 protein .00490
information .00371 high .00521 loss .00413 fat .00489
2005 .00359 nutrition .00514 new .00407 peterclifton .00466
development .00337 flagship .00479 exercise .00406 information .00431
management .00327 program .00448 team .00402 adelaide .00425

Table 4: Candidate models generated for Manny Noakes.

t p(t|θq) t p(t|θq)
trials .33333 trials .19625
clinical .33333 clinical .18238
human .33333 human .17712

csiro .04328
study .03113
adelaide .02550
participants .02156
health .02020
australia .01988
foods .01871
sheet .01856
information .01856
diet .01669
research .01667
food .01590
site .01424
particpants .01293
prospective .01293
woman .01293
young .01293
page .01293
questions .01293
based .01293
answers .01293
criteria .01293
contact .01143
nutrition .00938
functional .00878
participant .00862
obesity .00860

Table 5: Query models generated for topic CE-013:
human clinical trials (Left) BL, (Right) EX.
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Figure 6: Topic level comparison when using the SC
prior. (Left) M1-SEM-EX. (Right) M1B-SEM-EX.
In terms of rows in Table 3: 1 vs. 2 and 3 vs. 4,
respectively. Topics ordered by difference in AP.

best performing configurations we obtained in this section,
we find that while Model 1 starts from a lower baseline, as
additional non-local features are combined, it outperforms
Model 2 and delivers state-of-the-art performance. We also
added the non-local features discussed in this paper on top
of Model 2, but this had only marginal effects [3].

We briefly summarize the pro and cons of Model 1. The
cons include the need for maintenance of candidate models
(as these have to be calculated offline, to be able to operate
the retrieval system with an acceptable response time), and
finding the optimal smoothing setting needs training mate-
rial. Further, concerning Model 1B, calculating proximity
could be done in more advanced ways (e.g., using proximity
kernels as proposed in [20]). The pros include performance,
and the fact that these models are “readable” for the user
and can even be visualized as simply as tag-clouds.

7. CONCLUSIONS
We explored the use of non-local evidence for the task of

expert finding. On top of existing document and proximity-
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based language modeling approaches to the task, we consid-
ered three types of non-local evidence: obtained from query
models, obtained from people-document associations, and as
candidate priors. Starting from very competitive baselines
we found that non-local evidence from query models helps
improve expert finding effectiveness in all experimental con-
ditions that we considered. Non-local aspects of document-
candidate associations as modeled by the TFIDF approach
improved over a Boolean baseline, while a semantics-based
approach improved even more. On top of the best per-
forming combinations of (non-local) query modeling and
document-candidate associations, a final type of non-local
evidence (candidate priors) leads to further improvements.
Overall, our refined models outperform existing state-of-the-
art approaches to expert finding.

Future work will concern ways of estimating within-
document non-local evidence of expertise; many documents
in the CSIRO test collection have additional (internal) struc-
ture, evidenced (among other things) by the presence of
multiple text blocks—such blocks may be used to improve
precision (just like proximity-based approaches), but at the
same time evidence of associations between a candidate and
a given topic may be scattered across multiple blocks: how
can we identify text blocks that matter for candidate-topic
associations?
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