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Expertise retrieval has attracted significant interest in
the field of information retrieval. Expert finding has been
studied extensively, with less attention going to the
complementary task of expert profiling, that is, automati-
cally identifying topics about which a person is knowl-
edgeable. We describe a test collection for expert
profiling in which expert users have self-selected their
knowledge areas. Motivated by the sparseness of this
set of knowledge areas, we report on an assessment
experiment in which academic experts judge a profile
that has been automatically generated by state-of-the-art
expert-profiling algorithms; optionally, experts can indi-
cate a level of expertise for relevant areas. Experts
may also give feedback on the quality of the system-
generated knowledge areas. We report on a content
analysis of these comments and gain insights into what
aspects of profiles matter to experts. We provide an
error analysis of the system-generated profiles, identify-
ing factors that help explain why certain experts may be
harder to profile than others. We also analyze the impact
on evaluating expert-profiling systems of using self-
selected versus judged system-generated knowledge
areas as ground truth; they rank systems somewhat
differently but detect about the same amount of pairwise
significant differences despite the fact that the judged
system-generated assessments are more sparse.

Introduction

An organization’s intranet provides a means for exchang-
ing information and facilitating collaborations among
employees. To efficiently and effectively achieve collabora-
tion, it is necessary to provide search facilities that enable
employees not only to access documents but also to identify
expert colleagues (Hertzum & Pejtersen, 2006). At the Text
REtrieval Conference Enterprise Track (Bailey, Craswell, de
Vries, & Soboroff, 2008; Balog, Soboroff, et al., 2009;
Craswell, de Vries, & Soboroff, 2006; Soboroff, de Vries, &
Craswell, 2007), the need to study and understand expertise
retrieval has been recognized through the introduction of the
expert-finding task. The goal of expert finding is to identify
a list of people who are knowledgeable about a given topic:
Who are the experts on topic X? This task is usually
addressed by uncovering associations between people and
topics (Balog, Fang, de Rijke, Serdyukov, & Si, 2012); com-
monly, a co-occurrence of the name of a person with topics
in the same context is assumed to be evidence of expertise.
An alternative task, building on the same underlying prin-
ciple of computing people–topic associations, is expert pro-
filing, in which systems have to return a list of topics that a
person is knowledgeable about (Balog, Bogers, Azzopardi,
de Rijke, & van den Bosch, 2007; Balog & de Rijke, 2007).
Essentially, (topical) expert profiling turns the expert-
finding task around and asks the following: What topic(s)
does a person know about?

Expert profiling is useful in its own right for users who
want to profile experts they already know. It is also a key
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task to address in any expert-finding system; such systems
rank experts, and users will want to navigate to profiles of
these experts. Complete and accurate expert profiles enable
people and search engines to effectively and efficiently
locate the most appropriate experts for an information need.
In addition to a topical profile, it is recognized that social
factors play a large role in decisions about which experts to
approach (Balog & de Rijke, 2007; Cross, Parker, &
Borgatti, 2002; Hofmann, Balog, Bogers, & de Rijke, 2010;
Smirnova & Balog, 2011).

We focus on the topical expert-profiling task in a
knowledge-intensive organization, that is, a university, and
release an updated version of the Universiteit van Tilburg
(UvT; Tilburg University [TU]) expert collection (Bogers &
Balog, 2006), which was created with data from the UvT.
Because the university no longer uses the acronym UvT and
has switched to TU instead, we call the updated collection
the TU expert collection.1 The TU expert collection is based
on the Webwijs (“Webwise”) system2 developed at TU.
Webwijs is a publicly accessible database of TU employees
who are involved in research or teaching, where each expert
can indicate his or her skills by selecting expertise areas
from a list of knowledge areas. Prior work has used these
self-selected areas as ground truth for both expert-finding
and expert-profiling tasks (Balog, 2008; Balog et al., 2007).
With the TU expert collection come updated profiles con-
sisting of these self-selected knowledge areas; we refer to
this set of areas as self-selected knowledge areas.

One problem with self-selected knowledge areas is that
they may be sparse. There is a large number of possible
expertise areas to choose from (more than 2,000). When
choosing their knowledge areas, experts may not necessarily
browse the set of knowledge areas very thoroughly, espe-
cially because the interface in which they select the areas
lists them in alphabetical order without providing links
between related areas. This might result in sparse data with
a limited number of knowledge areas assigned to each
expert. Using these self-selected knowledge areas as ground
truth for assessing automatic profiling systems may there-
fore not reflect the true predictive power of these systems. To
find out more about how well these systems perform under
real-world circumstances, we have asked TU employees to
judge and comment on the profiles that have been automati-
cally generated for them. Specifically, we have used state-
of-the-art expertise retrieval methods to construct topical
expertise profiles. TU employees were then asked to reas-
sess their self-selected knowledge areas based on our rec-
ommendations; in addition, they were given the option to
indicate the level of expertise for each selected area. More-
over, they could give free text comments on the quality of
the expert profiles. We refer to this whole process as the
assessment experiment in this article.

We group the research questions in this article in two
parts. In the first part, we perform a detailed analysis
of the outcomes of the assessment experiment. One impor-
tant outcome is a new set of graded relevance assessments,
which we call the judged system-generated knowledge
areas. We examine the completeness of these new assess-
ments. The knowledge areas experts selected and the
textual feedback they gave provide us with a unique
opportunity to answer the following question: “How well
are we doing at the expert-profiling task?” We perform a
detailed error analysis of the generated profiles and a
content analysis of experts’ feedback, leading to new
insights on what aspects make expertise retrieval difficult
for current systems.

In the second part, we take a step back and ask: “Does
benchmarking a set of expertise retrieval systems with the
judged system-generated profiles lead to different conclu-
sions compared with benchmarking with the self-selected
profiles?” We benchmark eight state-of-the-art expertise
retrieval systems with both sets of ground truth and investi-
gate changes in absolute system scores, system ranking, and
the number of significant differences detected between
systems. We find that there are differences in evaluation
outcomes, and we are able to isolate factors that contribute
to these differences. Based on our findings, we provide
recommendations for researchers and practitioners who
want to evaluate their own systems.

The main contributions of this article are as follows:

• The release of a test collection for assessing expert
profiling—the TU expert collection—plus a critical assess-
ment and analysis of this test collection. Test collections
support the continuous evaluation and improvement of
retrieval models by researchers and practitioners, in this case,
in the field of expertise retrieval.

• Insights into the performance of current expert-profiling
systems through an extensive error analysis, plus a content
analysis of feedback of experts on the generated profiles.
These insights lead to recommendations for improving exper-
tise profiling systems.

• Insights into the differences in evaluation outcomes between
evaluating the two sets of ground truth released with this
article. This will allow researchers and practitioners in the
field of expertise retrieval to understand the performance of
their own systems better.

Before we delve in, we give a small recap of some ter-
minology. Expert profiles, or topical profiles, in this article
consist of a set of knowledge areas from a thesaurus.
Throughout the article, we focus on two kinds of expert
profiles that we use as ground truth.

Self-selected: These profiles consist of knowledge areas
that experts originally selected from an alphabetical list of
knowledge areas.

Judged system generated: These profiles consist of those
knowledge areas that experts judged relevant from system-
generated profiles: a ranked list of (up to) 100 knowledge
areas that we generated for them.

1The TU expert collection is publicly available at http://
ilps.science.uva.nl/tu-expert-collection. For a description of the items con-
tained in the collection, please see the Appendix to this article.

2http://www.tilburguniversity.edu/webwijs/
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The rest of this article is structured as follows: We start by
reviewing related work on test collection–based evaluation
methodology in the Related Work section. In the Topical
Profiling Task section, we define the topical profiling task.
Next, we describe the assessment experiment: the profiling
models used to generate the profiles and the assessment
interface experts used to judge these profiles. In the
Research Questions and Methodology section, we state our
research questions and the methods used to answer them. We
present and analyze the results of our assessment experiment
in the Results and Analysis of the Assessment Experiment
section, followed by an analysis of benchmarking differ-
ences between two sets of relevance assessments in the
Self-Selected Versus Judged System-Generated Knowledge
Areas: Impact on Evaluation Outcomes section. In the Dis-
cussion and Conclusion section, we wrap up with a discus-
sion, conclusion, and look ahead.

Related Work

We start with a brief discussion on benchmarking and on
how it has been analyzed in the literature. Then, we zoom in
on the ingredients that constitute a test collection. Next, we
consider related work on error analysis. We end with an
overview of other test collections for expert profiling and
expert finding.

Benchmarking

A recent overview on test collection–based evaluation of
information retrieval systems can be found in Sanderson
(2010). Today’s dominant way of performing test
collection–based evaluation in information retrieval was first
carried out in the Cranfield experiments and later in numer-
ous Text REtrieval Conference (TREC) campaigns. Our
work falls into this tradition. To be able to create a yardstick
for benchmarking, simplified assumptions have to be made
about users, their tasks, and their notion of relevance. For
example, in the TREC ad hoc collections, a user is assumed
to have an information need that is informational (Broder,
2002), and a document is relevant if it contains a relevant
piece of information, even if it is duplicate information. By
framing the topical profiling task as a ranking task, we also
make some simplifying assumptions. For example, users are
satisfied with a ranking of expertise areas for an expert, and
an area is relevant if experts have judged it so themselves.

Typically, evaluation methodologies are assessed by com-
paring them with each other, performing detailed analyses in
terms of sensitivity, stability, and robustness. Sensitivity of an
evaluation methodology has been tested by comparing it with
a hypothesized correct ranking of systems (Hofmann,
Whiteson, & de Rijke, 2011; Radlinski & Craswell, 2010).
Stability and robustness are closely related concepts. An
evaluation methodology can be said to be stable with respect
to some changing variable, or robust to changes in that
variable. For example, Radlinski and Craswell (2010)
examine how evaluation changes when queries are sub-

sampled. Buckley and Voorhees (2004) examine changes
when relevance assessments are subsampled. In this study,
we are interested in comparing and analyzing the outcomes of
evaluating with two sets of relevance assessments—self-
selected versus judged system-generated knowledge areas—
and we consider two criteria: stability and sensitivity. To
analyze stability, we identify four differences between our
two sets of ground truth and ask how evaluation outcomes
vary with respect to these differences. For analyzing sensi-
tivity, we do not have a hypothesized correct or preferred
ranking. Instead, we investigate how many significant differ-
ences can be detected with each set of ground truth.

When two evaluation approaches generate quantitative
output for multiple systems, they can be correlated to each
other. Often this is done by comparing the ordering of all pairs
of systems in one ranking with the ordering of the corre-
sponding pair in the other ranking. One often used measure is
accuracy: the ratio of pairs for which both rankings agree
(see, e.g., Hofmann, Whiteson, & de Rijke, 2011; Radlinski
& Craswell, 2010; Sanderson & Zobel, 2005; Voorhees &
Buckley, 2002). Another commonly used measure (Buckley
& Voorhees, 2004; Voorhees, 2000) that we use in this article
is Kendall tau (Kendall, 1938), a rank correlation coefficient
that can be used to establish whether there is a monotonic
relationship between two variables (Sheskin, 2011).

There are several ways to assess (relative) system perfor-
mance besides benchmarking. Su (1992, 1994) directly
interviews end users. Allan, Carterette, and Lewis (2005),
Turpin and Scholer (2006), and Smith and Kantor (2008)
give users a task and measure variables such as task accu-
racy, task completion time, or number of relevant documents
retrieved in a fixed amount of time. Sometimes there are
strong hypotheses about relative quality of systems by con-
struction. Usage data such as clicks may also be used to
estimate user preferences, for example, by interleaving the
ranked lists of two rankers and recording clicks on the inter-
leaved list (Hofmann et al., 2011; Joachims, 2002; Radlinski
et al., 2008). In our study, we offer experts the opportunity to
comment on the quality of system-generated profiles, which
we analyze through a content analysis, as in Lazar, Feng,
and Hochheiser (2010).

Ingredients of a Test Collection

A test collection–based evaluation methodology consists
of a document collection, a set of test queries, a set of
relevance assessments, an evaluation metric, and possibly a
significance test to be able to claim that the differences
found would generalize to a larger population of test queries.

Test queries. Test query creation in the TREC ad hoc tracks
is typically done by assessors and, hence, test queries reflect
assessors’ interests. When test queries were created for the
web track, they were retrofitted around queries sampled
from web query logs so as to more closely reflect end-user
interests (Voorhees & Harman, 2000). In our study on expert
profiling, test queries (i.e., “information needs”) are readily
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available: They are potentially all experts from the
knowledge-intensive organization being considered.

At the TREC ad hoc tracks, test queries with too few or
too many relevant documents are sometimes rejected
(Harman, 1995; Voorhees & Harman, 2000). Harman (1995)
reports that for all created queries, a trial run on a sample of
documents from the complete collection yielded between 25
(narrow query) and 100 (broad query) relevant documents.
Zobel (1998) notes that selecting queries based on the
number of relevant documents may introduce a bias. In our
experiments, we retain all test queries (i.e., all experts) that
have at least one relevant knowledge area.

Relevance assessments. Relevance assessments are typi-
cally created by assessors. For the UvT collection used by
Balog et al. (2007) and for the two new sets of relevance
assessments we release with the TU collection, they are
created by the experts themselves. Other test collections for
expert-finding assessments have been provided by an exter-
nal person (for the W3C collection [W3C, 2005]),
or by colleagues (for the CERC [Bailey, Craswell, Soboroff,
& de Vries, 2007] and UvT [Liebregts & Bogers, 2009]
collections).

Voorhees (2000) studies the impact of obtaining rel-
evance assessments from different assessors on system
ranking using Kendall tau. Although different assessors may
judge different documents relevant, system ranking is highly
stable no matter from which assessor the assessments are
taken. In our situation, the different sets of relevance assess-
ments for each expert are created by the same expert but
through different means: In one case, the assessor had to
manually go through a list; in the other, the assessor was
offered suggestions. We find that system ranking may be
affected by these differences.

An important aspect is the completeness of relevance
assessments. When test collections were still small, all items
in it were judged for every test query (Sanderson, 2010). The
experts who participated in our experiments have little time,
however, and were simply not available to do this. A
well-known method to evaluate systems without complete
assessments is pooling. It was proposed by Jones and van
Rijsbergen (1975) as a method for building larger test col-
lections. The idea is to pool independent searches using any
available information and device (Sanderson, 2010). In our
study, we also perform a specific kind of pooling. We use
eight systems to generate expertise profiles, that is, lists of
knowledge areas characterizing the expertise of a person.
The eight systems are not independent, but are all possible
combinations of one of two retrieval models, one of two
languages, and one of two strategies concerning the utiliza-
tion of a thesaurus of knowledge areas. Unlike the method-
ology used at TREC (Voorhees & Harman, 2000), we do not
take a fixed pooling depth for each run, perform a merge,
and order results randomly for the assessor. Instead, to mini-
mize the time required for experts to find relevant knowl-
edge areas, we aim to produce the best possible ranking by
using a combination algorithm. We also have something

akin to a manual run: It consists of the knowledge areas
selected by experts in the TU-Webwijs system. We confirm
in this study that this manual run contributes many unique
relevant results; that is, the automatic systems fail to find a
significant amount of these knowledge areas.

Zobel (1998) performs a study on pooling bias. The
concern here is that assessments are biased toward contrib-
uting runs and very different systems would receive a score
that is too low. In particular, systems that are good at finding
difficult documents would be penalized. For several TREC
collections, Zobel found that when relevant documents con-
tributed by any particular run were taken out, performance
of that run would only slightly decrease. In our study,
experts only judged those knowledge areas that the auto-
matic systems found. We study the effect of regarding
unpooled areas as nonrelevant on system ranking and find
that it has hardly any impact. For this, like Buckley and
Voorhees (2004), we use Kendall tau.

Significance tests. Significance tests are mostly used to
estimate which findings about average system performance
on a set of test queries will generalize to other queries from
the same assumed underlying population of queries. A
simple rule of thumb is that an absolute performance differ-
ence of less than 5% is not notable (Spärck Jones, 1974).
Pairwise significance tests are common in cases when dif-
ferent systems can be evaluated on the same set of test
queries. Voorhees and Buckley (2002) test the 5% rule of
thumb with a fixed set of systems and a fixed document
collection. Sanderson and Zobel (2005) extend this research
and consider relative rather than absolute performance dif-
ferences; they prefer a pairwise t test over the sign test and
the Wilcoxon test. Smucker, Allan, and Carterette (2007)
compared p values (for the null hypothesis that pairs of
TREC runs do not differ) computed with five significance
tests. They find that the Fisher pairwise randomization test,
matched pairs Student’s t test, and bootstrap test all agree
with each other, whereas the Wilcoxon and sign tests
disagree with these three and with each other. They recom-
mend Fisher’s pairwise randomization test, which is what
we use.

In our work, we vary query sets and sets of relevance
assessments. Then, keeping the significance test used fixed,
we measure the average number of systems each system
differs significantly from. We view this as a rough indica-
tion of the ability of each set of assessments to distinguish
between systems. The difference in this number between
sets of relevance assessments is a rough heuristic for the
difference in sensitivity of the sets. Cohen (1995), who was
interested in repeating a benchmarking experiment using a
more stringent alpha value in the significance test, com-
puted the average number of systems each system differs
from for both values of alpha. He called the difference
between these numbers the criterion differential, saying it
is a rough heuristic for the difference in sensitivity of both
alpha values.
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Error Analysis

Although test collections enable us to discriminate
systems in their average performance over a set of queries
with a certain reliability and sensitivity, Harman and
Buckley (2009) stress that it is important to understand
variance in performance over queries. Often, performance of
single systems varies more over queries than performance
on one query varies over systems. Variation in performance
over queries does not simply correlate with the number of
relevant documents; there is an interaction between query,
system, and document collection (Voorhees & Harman,
1996). In the error analysis of our best performing system—
the combining algorithm that was used to arrive at the set of
judged system-generated knowledge areas—on the expert
level, we find the same lack of correlation between number
of relevant knowledge areas and system score. We are able to
explain some of the performance differences between
systems based on other properties of experts, however, such
as their profession and the kinds of documents they are
associated with in the collection. In addition to providing an
analysis at the expert level, we provide one at the level of
knowledge areas. We distinguish two categories: knowledge
areas that are difficult to find and knowledge areas that are
too often retrieved at high ranks (“false positives”). Related
work in this area was done by Azzopardi and Vinay (2008),
who define evaluation metrics that capture how well systems
make individual documents accessible and point to interest-
ing evaluation scenarios in which these metrics may be
applied.

Other Test Collections for Expert Profiling and
Expert Finding

The TU expert collection that we release is an update and
extension of the collection released by Balog et al. (2007),
which has previously been used for expert profiling and
expert finding. To the best of our knowledge, no other test
collections have been used for the expert-profiling task.
Other test collections for expert finding include the W3C
collection (W3C, 2005) and the CERC collection (Bailey
et al., 2007). For these collections, relevance assessments
were obtained manually, in different ways (cf. Ingredients of
a Test Collection section). Automatic generation of test col-
lections has also been done. Seo and Croft (2009) use Apple
Discussions3 forums as expertise areas and use the top 10
rated answerers for each forum as experts in the ground
truth. Jurczyk and Agichtein (2007) consider the author
ranking task, in which authors have to be ranked according
to the quality of their contributions. This task is related
to expert finding except that authors are not ranked by the
quality of contributions on a specific query. They use
Yahoo!Answers’4 thumbs-up/thumbs-down votes and

average number of stars received for best answers as ground
truth for the author-ranking task.

Topical Profiling Task

The TU expert collection is meant to help assess topical
profiling systems in the setting of a multilingual intranet of
a knowledge intensive organization. One can answer the
question “What topics does an expert know about?” by
returning a topical profile of that expert: a record of the types
of areas of skills and knowledge of that individual and a
level of proficiency in each (Balog et al., 2012). The task
consists of the following two steps: (a) identifying possible
knowledge areas and (b) assigning a score to each knowl-
edge area (Balog & de Rijke, 2007). In an enterprise search
environment, there often exists a list of knowledge areas in
which an organization has expertise. In our test collection,
this is indeed the case; therefore, we focus on the second
step. We assume that a list of knowledge areas {a1, . . ., an}
is given and state the problem of assigning a score to each
knowledge area (given an expert) as follows: What is the
probability of a knowledge area (a) being part of the expert’s
(e) topical profile? We approach this task as one where we
have to rank knowledge areas by this probability P(a | e).

In the TU expert collection, for this task, systems receive
the following ingredients as input:

• A query consisting of an expert ID (i.e., an organization-wide
unique identifier for the person)

• A collection consisting of publications, supervised student
theses, course descriptions, and research descriptions crawled
from the Webwijs system of TU (All documents are either
Dutch or English. The language is known for research and
course descriptions, and is unknown for publications and
student theses.)

• Explicit associations between the expert ID and documents in
the corpus

• A thesaurus of knowledge areas (Knowledge areas are avail-
able in two languages: Dutch and English. All areas have a
Dutch representation, for most of them an English translation
is available as well.)

Given this input, the requested system output is a ranked
list of knowledge areas from the thesaurus.

We note a small subtlety concerning the language of
documents in the collection. In previous work (Balog,
2008), systems were evaluated on the subset of knowledge
areas for which both a Dutch and an English translation were
available; if an expert had selected a knowledge area without
an English translation, for evaluation purposes, this knowl-
edge area would be considered as nonrelevant. In this work,
if an expert selects a knowledge area, we consider it as
relevant, regardless of whether it has an English translation.

Assessment Experiment

We first describe the models we used to produce the
system-generated profiles. Then we describe the assessment
interface that experts used to judge these profiles.

3http://discussions.apple.com
4http://answers.yahoo.com
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Automatically Generating Profiles

The system-generated profiles are created by combining
the results of eight state-of-the-art expert-profiling systems in
a straightforward way. In this subsection, we describe the
eight systems and the combination method, and we list the
parameter settings we use in this article. The eight expertise
profiling systems that we use differ in three dimensions: First,
two different retrieval models are used. Second, systems use
either the Dutch or the English translations of the knowledge
areas. Third, half of the systems treat knowledge areas as
independent of each other, whereas the other half use a
thesaurus of knowledge areas to capture the similarity
between them. We briefly describe the models here.

The two retrieval models considered below take a gen-
erative probabilistic approach and rank knowledge areas a
by the probability that they are generated by expert e:
P(a | e). In the first model, called Model 1 in Balog,
Azzopardi, and de Rijke (2009), we construct a multinomial
language model qe for each expert e over the vocabulary of
terms from the documents associated with the expert. We
model knowledge areas as bags of words, created from their
textual labels (either Dutch or English). It is assumed that
knowledge area terms t are sampled independently from this
multinomial distribution, with replacement. Then, for Model
1, we have:

P a e P a P te e
n t a

t a

( | ) ( | ) ( | ) ( , )= =
∈

∏θ θ (1)

where n(t,a) is the number of times term t occurs in a. In
estimating P(t | qe), we apply smoothing using collection
term probabilities, with unsupervised estimation of smooth-
ing parameters. Specifically, we use Dirichlet smoothing and
use the average representation length (i.e., the average
number of terms associated with experts) as the smoothing
parameter. In the second model, called Model 2 in Balog,
Azzopardi, and de Rijke (2009), we estimate a language
model qd for each document associated with an expert. Let
this set of documents be De. We sum the probabilities of each
of these documents generating the knowledge area. The
terms in a are sampled independently from each document.
Then, for Model 2, we have:

P a e P a P td
d D

d
n t a

t ad De e

( | ) ( | ) ( | ) ( , )= =
∈ ∈∈
∑ ∏∑θ θ (2)

To estimate P(t | qd), we smooth using collection term prob-
abilities as before, estimating smoothing parameters in an
unsupervised way. As before, we use Dirichlet smoothing,
but here we set the smoothing parameter to the average
document length in the collection.

As for the language dimension, recall that knowledge
areas come in two languages: a = {aDutch, aEngligh}. The Dutch
retrieval models estimate P(aDutch | e); the English systems
estimate P(aEnglish | e).

Systems that use the thesaurus rely on a similarity metric
between a pair of knowledge areas, sim (a, a′). This

similarity is taken to be the reciprocal of the length of the
shortest path SP(a, a′) between a and a′ in the thesaurus. If
two knowledge areas are not connected, their similarity is
set to zero. In addition, we use a parameter m for the
maximal length of the shortest path for which we allow
knowledge areas to have a nonzero probability. Formally,

sim
SP SP

( , )
( , ), ( , )

,
a a

a a a a m

otherwise
′ =

′ < ′ ≤⎧
⎨
⎩

1 0

0
(3)

We describe the thesaurus graph in detail in the A Thesaurus
of Expertise Areas section. Note that we do not distinguish
between different types of relation in the graph and use all of
them when searching for the shortest path. Next, we use
sim(a, a′) to measure the likelihood of seeing knowledge
area a given the presence of another knowledge area a′:

P a a
a a

a a
a

( | )
( , )

( , )
′ = ′

′′ ′
′′

∑
sim

sim (4)

The idea is that a knowledge area is more likely to be
included in a person’s expertise profile if the person is
knowledgeable on related knowledge areas. This support
from other knowledge areas is linearly interpolated with
P(a | e) using a parameter l to obtain an updated probability
estimate P′(a | e):

P a e P a e P a a P a e
a

( | ) ( | ) ( ) ( | ) ( | )= + − ′ ′⎛
⎝⎜

⎞
⎠⎟′

∑λ λ1 (5)

For all systems, once P(a | e) has been estimated, we rank
knowledge areas according to this probability and return the
top 100 knowledge areas for a given user; because we only
retrieve knowledge areas a where P(a | e) > 0, the result list
may contain fewer than 100 items.

Merging systems’ outputs. To arrive at the set of judged
system-generated knowledge areas, we proceed as follows.
We use the eight profiling systems just described (i.e.,
{Model 1, Model 2} ¥ {Dutch, English} ¥ {with thesaurus,
without thesaurus}) to estimate the probabilities of knowl-
edge areas for each expert. Let us denote this as Pi(a | e)
(i = {1, . . .,8}). These probabilities are then combined lin-
early to obtain a combined score P(a | e):

P a e p a ei i
i

( | ) ( | ).= ∑α (6)

In addition, the top three knowledge areas retrieved by
each profiling system receive an extra boost to ensure that
they get judged. This is done by adding a sufficiently large
constant C to P(a | e).

Parameter settings. For the systems that use the thesaurus,
we let m = 3 (Equation 3) and l = .6 (Equation 5). For the
combination algorithm (Equation 6), we let ai = 1/8 for all i.
Furthermore, we set C = 10 and, again, we only retrieve
knowledge areas for which P(a | e) > 0.
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Judging the Generated Profiles

The assessment interface used in the assessment experiment
is shown in Figure 1. At the top of the page, instructions for
the expert are given. In the middle, the expert can indicate
the knowledge areas (called “Expertise areas” in the inter-
face) regarded as relevant by ticking them. Immediately
below the top 20 knowledge areas listed by default, the
expert has the option to view and assess additional knowl-
edge areas. The expert may or may not have examined all
(up to 100) retrieved knowledge areas in the generated
profile; this information was not recorded. System-
generated knowledge areas that were in the original (self-
selected) profile of the expert are pushed to the top of the list
and are ticked by default in the interface, but the expert may
deselect them, thereby judging them as nonrelevant. For the
ticked knowledge areas, experts have the option to indicate a
level of expertise. If they do not do this, we still include
these knowledge areas in the graded self-assessments, with a
level of expertise of three (“somewhere in the middle”). At
the bottom of the interface, experts can leave any comments
they might have on the generated profile.

Research Questions and Methodology

We organize our research questions into two subsections.
The first subsection is concerned with the results of the
assessment experiment. We study the completeness of the
judgments gathered and the quality of the generated profiles;
we answer these questions in the Results and Analysis of the
Assessment Experiment section. The second subsection
deals with the impact of using two sets of ground truth on
evaluation outcomes; we answer these research questions in
the Self-Selected Versus Judged System-Generated Knowl-
edge Areas: Impact on Evaluation Outcomes section. Next,
we briefly motivate each research question and outline the
methods used to answer them.

Results and Analysis of the Assessment Experiment

The TU expert collection includes two sets of assess-
ments: self-selected knowledge areas and judged system-
generated knowledge areas. Our first research question
concerns these two test sets of relevance assessments:

RQ1. Which of the two sets of ground truth is more complete?
Methods used: We construct the set of all knowledge areas that an
expert judged relevant at some point in time, either by including it
in the self-selected profile or by judging it relevant in the self-
assessment interface. We then look at which of the sets of ground
truth contains more of these knowledge areas.
Remember that the judged profiles were generated by a combina-
tion of state-of-the-art systems. Our next three research questions
answer the following informal question: “How well are we doing?”

RQ2. What are the characteristics of “difficult” experts?
For example, does the number of relevant knowledge areas corre-
late with performance? Does the number of documents associated
with an expert matter? Is there a significant difference between

mean performance over different groups of experts, for example,
PhD students versus professors?
Methods used: We look for correlations by visual inspection. We
group experts by their position (job title) and look for significant
performance differences using the Welch two-sample t test (Welch,
1947). Because we perform a number of comparisons we use an
a value of a = .01 to keep the overall Type I error under control.

RQ3. What are the characteristics of “difficult” knowledge areas?
Methods used: We identify knowledge areas that are often included
in experts’ self-selected profiles but are rarely retrieved in the
system-generated profiles. In addition, we identify knowledge
areas that are often retrieved in the top 10 ranks of system-
generated profiles but never judged relevant by experts.

RQ4. What are important aspects in the feedback that experts gave
on their system-generated profiles?
Methods used: In a content analysis, performed by two researchers,
aspects are identified in a first pass over the data. In a second pass
over the data, occurrences of these aspects are counted.

Self-Selected Versus Judged System-Generated Knowledge
Areas: Impact on Evaluation Outcomes

Next, we analyze the differences in evaluation outcomes
that arise when our two sets of relevance assessments
are applied to assess expert-profiling systems. Our main
research question is the following:

RQ5. Does using the set of judged system-generated knowledge
areas lead to differences in system evaluation outcomes compared
with using the self-selected knowledge areas?
When answering these questions, we consider four differences
between the two sets of relevance assessments: (a) only a subset of
experts has judged the system-generated knowledge areas, (b) self-
selected knowledge areas that were not in the set of system-
generated knowledge areas are considered nonrelevant in the
judged system-generated profiles, (c) experts selected new knowl-
edge areas from the system-generated profile, and (d) experts pro-
vided a level of expertise for most judged system-generated
knowledge areas. We isolate the effect of each difference by con-
structing five sets of ground truth (self-selected profiles, judged
system-generated profiles, and three intermediate ones), which we
will detail later. We consider the effect of each difference on three
dimensions; these are handled as separate subquestions.

RQ5a. How do the differences between the set of self-selected
knowledge areas and the set of judged system-generated knowl-
edge areas affect absolute system scores?
Methods used: We analyze nDCG@100 performance for each of
the five sets of ground truth. nDCG@100 is a metric that rewards
both high precision, high recall, and—in the case of graded rel-
evance assessments—correct ordering of relevant knowledge areas.

RQ5b. How do the differences between the set of self-selected
knowledge areas and the set of judged system-generated knowl-
edge areas affect system ranking?
Methods used: We analyze differences in ranking with the five sets
of ground truth. Following Voorhees (2000), we use Kendall tau.
Like Sanderson and Soboroff (2007), we use the following formula:

τ =
−

+ + + +
P Q

P Q T P Q U( )( )
(7)
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FIG. 1. Screenshot of the interface for judging system-generated knowledge areas. At the top, instructions for the expert are given. In the middle, the expert
can select knowledge areas. For selected knowledge areas, a level of expertise may be indicated. At the bottom, there is a text field for any comments the
expert might have. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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where P is the number of concordant pairs, Q is the number
of discordant pairs, T is the number of ties in the first list,
and U is the number of ties in the second list. If there is a tie
in at least one of the lists for a pair, the pair is neither
correctly nor incorrectly ordered. When there are no ties,
this formula is equivalent to the original formula as pro-
posed by Kendall (1938). We compute Kendall tau for 28
pairs of system rankings. We accept a probability of Type I
error a = .01 for each comparison. Then the probability of
at least one Type I error in all comparisons if they would
be independent equals 1 - (1 - 0.01)28 = 0.25. For eight
systems, Kendall tau has to be greater than or equal to .79 to
reject the null hypothesis. We do this analysis for four stan-
dard information retrieval evaluation metrics: mean average
precision (MAP), mean reciprocal rank (MRR), normalized
discounted cumulative gain calculated at depth 10 (nDCG@
10), and nDCG@100. For MAP and MRR scores, trec_eval
was used for evaluation; for implementing nDCG, we fol-
lowed Clarke et al. (2008). We took all experts for the given
test set into account during evaluation, even if systems did
not retrieve any knowledge areas for them (these experts get
zero score on all evaluation metrics).

RQ5c. How do the differences between the set of self-selected
knowledge areas and the set of judged system-generated knowl-
edge areas affect the average number of systems a system differs
significantly from?
Methods used: We compare the five sets of ground truth on the
basis of the number of significant differences in MAP, nDCG@
100, MRR, and nDCG@10 that they detect between pairs of
systems. A pair of systems differs significantly if their difference is
expected to generalize to unseen queries. We use Fisher pairwise
randomization test, following Smucker et al. (2007), and set
a = .001. We repeat this test for five sets of ground truth, four
evaluation metrics (except that we have no MAP or MRR scores
for the graded relevance assessments), and all possible

( 1

2
8 8 1 28⋅ − =[ ] ) pairs of systems: a total of 504 comparisons.

Assuming that all of these comparisons are independent, this
means accepting a Type I error of 1 - (1 - 0.001)504 = 0.40. It is no
problem for the interpretation of our results if there are a few
spurious rejections of the null hypothesis; we mean to give an
indication of the sensitivity of each set of ground truth, that is, the
average number of systems that a system differs significantly from.

Results and Analysis of the
Assessment Experiment

In this section, we report on the results of the assessment
experiment defined in The Assessment Experiment section.
We start with an examination of the completeness of the
main tangible outcome of this experiment, the so-called
judged system-generated knowledge areas. Then we analyze
the quality of the generated profiles.

Completeness of the Two Sets of Ground Truth for
Expert Profiling

To answer the question how complete each set of ground
truth is (RQ1), we start out with some basic descriptive

statistics. Our first set of ground truth contains 761
self-selected profiles of experts who are associated with at
least one document in the collection. Together, these experts
selected a total of 1,662 unique knowledge areas. On
average, a self-selected profile contains 6.4 knowledge
areas. The second set of ground truth contains 239 judged
system-generated profiles. These experts together selected a
total of 1,266 unique knowledge areas. On average, a judged
system-generated profile contains 8.6 knowledge areas.

In Figure 2, the left two histograms show the distribution
of experts over their number of relevant knowledge areas for
the self-selected profiles (top) and for the judged system-
generated profiles (bottom). The latter distribution is shifted
to the right. The histograms on the right show the distribu-
tion of knowledge areas over the profiles that include them;
the top right represents the self-selected profiles and the
bottom right the judged system-generated profiles. The latter
histogram is more skewed to the left; half of the knowledge
areas have been judged relevant by a single expert only.

As an aside, we now check for how many of the graded
judged system-generated knowledge areas we assigned our
“somewhere in the middle” value of three, because the
expert judged the knowledge area relevant without indicat-
ing a level of expertise. On average, this occurred for 0.6 of
the 8.8 knowledge areas in each expert’s profile. We con-
clude that the effect of this is negligible.

Now, to quantify the completeness of each set of ground
truth in a single number, we proceed as follows. Let the set
of all relevant knowledge areas associated with an expert be
the union of the self-selected profile and the judged system-
generated profile. Then subtract the knowledge areas that the
expert deselected during the assessment interface (on
average, experts removed 2% of the knowledge areas origi-
nally included in their self-selected profiles). We divide the
resulting list of knowledge areas into three categories:

Only found by systems: These knowledge areas were
not in the self-selected profile, but they were in the system-
generated profile and were judged relevant by the experts.

Only found by experts: These knowledge areas were in
the self-selected profile, but not in the system-generated
profile.

Found by both: These knowledge areas were in both the
self-selected and system-generated profiles, and the experts
did not deselect them during the assessment experiment.

Table 1 lists the percentage of relevant knowledge areas
that fall into each category, per profile, averaged over pro-
files. To answer RQ1, we find that the judged system-
generated profiles are more complete. On average, a judged
system-generated profile contains 81% (46% + 35%; see
Table 1), whereas a self-selected profile contains only 65%
(46% + 19%; see Table 1) of all relevant knowledge areas.

This leads to the following recommendation: Because the
judged system-generated profiles are more complete, we
expect this set of ground truth to give a more accurate
picture of system performance, even if fewer assessed expert
profiles are available. We elaborate on this when we answer
RQ5 later in this article.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2013 9
DOI: 10.1002/asi



Difficult Experts and Difficult Knowledge Areas

We investigate the characteristics of “difficult” experts
(RQ2) and knowledge areas (RQ3). Before we begin with
the analysis at the expert and knowledge area level, we
report on the overall quality of the combined profiling algo-
rithm in Table 2. We measure performance against the self-
selected and the judged system-generated knowledge areas,
respectively. All metrics are averaged over all profiles. Note
that MAP and MRR treat relevance as a binary decision and
the level of expertise indicated is not taken into account.
Also note that there are no graded assessments available for

the self-selected profiles; hence, nDCG@10 and nDCG@
100 in the first row of Table 2 are computed using the same
relevance level for all self-selected knowledge areas.

We find that considerably higher absolute scores are
obtained on the judged system-generated profiles than on the
self-selected ones. This finding holds for all metrics. Later,
when we answer RQ5, we identify four factors that contrib-
ute to this large difference. In our detailed error analysis of
the system-generated profiles that follows next, we focus on
nDCG@100 because it is a metric that captures the quality
of the entire system-generated profile.

Difficult experts. In this article, we aim to find properties
of experts that can explain some of the variance in perfor-
mance. We use the self-selected profiles of all 761 experts;
this allows us to incorporate self-selected knowledge areas
that were missing from the system-generated profiles in our
analysis. We investigate a number of characteristics: the
number of relevant knowledge areas for the expert, the
number of documents associated with experts, and the posi-
tion (job title) of an expert.

First, we attempt to find a correlation between these prop-
erties and nDCG@100 performance by visual inspection.
We find no correlation between the number of relevant
knowledge areas selected and nDCG@100, and no correla-
tion between the number of documents associated with
an expert and nDCG@100. Intuitively, the relationship
between the ratio of relevant knowledge areas and number of
documents associated with the expert is also interesting. For
example, achieving high recall may be difficult when one
has to find many knowledge areas in a few documents.
Achieving high precision may be difficult if one has to find

(a) (b)

(c) (d)

FIG. 2. Distribution of experts over their number of relevant knowledge areas (left) and distribution of knowledge areas over the profiles that include them
(right). The top graphs are based on the self-selected profiles; the bottom graphs are based on the judged system-generated knowledge areas.

TABLE 1. Average percentage of the total number of relevant knowledge
areas found for experts only by the automatic expert profilers, only by the
experts when they self-selected knowledge areas, or by both.

Average Sample SD*

Only found by systems 35% 24%
Only found by experts 19% 19%
Found by both 46% 24%

Note. * Sample SD over experts.

TABLE 2. Retrieval performance of the combined profiling algorithm on
the self-selected and on the judged system-generated knowledge areas.

Ground truth MAP MRR nDCG@10 nDCG@100

Self-selected (761) 0.16 0.40 0.21 0.36
Judged system generated

(239)
0.43 0.71 0.44 0.66
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a few knowledge areas in many documents. However, we
also find no correlation between the ratio of relevant knowl-
edge areas and number of documents associated with an
expert.

Next, we investigate a variable that may have different
effects on performance indirectly: the position of an expert.
In Figure 3, we see average nDCG@100 scores for the four
most common positions among the 761 experts who self-
selected a profile: lecturers (210), professors (168), PhD
students (129), and senior lecturers (77); 99% confidence
intervals on the estimated means are shown. These are cal-
culated as X n± ∗2 704. σ , where s is the sample SD and
n is the sample size. The value 2.704 gives a 99% confidence
interval for samples larger than 40. For professors, higher
nDCG scores are achieved than for lecturers and PhD stu-
dents; both of these differences are significant at the a = .01
level (Welch two-sample t test).

An intuitive explanation for the fact that it seems easier to
find relevant knowledge areas for professors than for PhD
students is that professors have more publications. We just
noted, however, that the number of documents associated
with experts does not correlate with nDCG@100 perfor-
mance. However, if we look a bit deeper into the different
kinds of document that can be associated with an expert, we
find that it matters whether an expert has a research descrip-
tion. Experts can have no research description, only a Dutch
one, only an English one, or both a Dutch and an English
one. We find that for the 282 experts without a research
description, we achieve significantly lower average nDCG@
100 performance than for the 479 experts who have at least
one (Welch two-sample t test, p < .001). The difference, in
absolute terms, is also substantial: .39 versus .30 for experts
with and without a research description, respectively. It is
not surprising that these research descriptions are important;
they constitute a concise summary of a person’s qualifica-
tions and expertise, written by the experts themselves. Of the
professors, 73% have a research description against 53% of
the PhD students, so this property explains part of the dif-
ference in performance between these two groups.

Missing knowledge areas. Next, we provide insights into
relevant knowledge areas that we failed to retrieve in the
system-generated profiles. To capture the fact that some
knowledge areas are missing in more system-generated
profiles than other knowledge areas, we define recall
and precision measures for knowledge areas in a very

straightforward and intuitive way. We say that knowledge
areas that are missing in many system-generated profiles are
difficult: They have low recall. Letting Oa be the set of
self-selected profiles that contain knowledge area a and Ga,
the set of system-generated profiles that contain a, we can
define recall as follows:

R a
O G

O
a a

a

( ) =
∩

(8)

We are interested in knowledge areas a with low recall
R(a) here. Given equal recall, the more difficult knowledge
areas are those that have lower precision:

P a
O G

G
a a

a

( ) .=
∩

(9)

We discard knowledge areas from our error analysis for
which we cannot compute reliable recall and precision
values. First, for computing recall, we exclude knowledge
areas that are not in any self-selected profile. Also, we
discard knowledge areas that are present in less than five
self-selected profiles; the reason for doing so is to avoid
large differences in recall for knowledge areas that may
occur only by chance. Second, we cannot compute precision
for knowledge areas that were not retrieved for any expert,
which means only 14 (out of the 2,509) knowledge areas, 8
of which were also not in any self-selected profile. In this
error analysis, therefore, we analyze only 361 of all 2,509
knowledge areas.

Figure 4 displays these 361 knowledge areas on a
precision-recall plot. We added some jitter to the points for
visualization purposes. In the bottom left corner of the
figure, there are 17 knowledge areas with zero recall and
precision. We list these “problematic” knowledge areas in
Table 3, ranked by the number of system-generated profiles
that contain them. This may be seen as an ordering by
difficulty, where we consider knowledge areas that are more
often retrieved incorrectly to be more difficult. In this list,

FIG. 3. Average nDCG@100 on the self-selected profiles for the four
most common positions, with 99% confidence intervals.

FIG. 4. Precision and recall of knowledge areas that were in at least five
self-selected profiles.
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we find some very general knowledge areas such as com-
puter science and language; there are also very specific
knowledge areas such as dutch for foreigners and income
distribution. Looking further down to the knowledge areas
that are retrieved less often, we see many have no English
translation. The English language profiling systems will
never contribute these knowledge areas.

Knowledge areas often retrieved but never selected. We
are interested in finding knowledge areas that are ranked
high (e.g., in the top 10) for many experts and yet are always
judged nonrelevant by these experts. For this analysis, we
limit ourselves to the 239 system-generated profiles that
have been judged in the assessment experiment.

In Figure 5, we show the distribution of knowledge areas
over the number of experts they were retrieved for in the
top 10.

Note that this distribution resembles the distribution of
knowledge areas over the number of experts that judged

them relevant in the assessment experiment (Figure 2b); this
is a good property to have. We see that 1,395 knowledge
areas are retrieved for at least one expert in the top 10; this
is about 60% of all knowledge areas. Of these 1,395 knowl-
edge areas, 773 were not judged relevant by any of the
experts for whom they were retrieved in the top 10. We order
these areas by decreasing number of system-generated pro-
files in which they were incorrectly included in the top 10,
and show the top 20 in Table 4. Most of these knowledge
areas appear to be quite specific.

In summary, the main findings of this subsection are as
follows. With regard to characteristics of difficult experts
(RQ2): (a) Difficulty is not correlated simply with the
number of relevant knowledge areas or with the number of
documents associated with experts; (b) performance is sig-
nificantly higher for experts who have a research description
(in Dutch, English, or both). With regard to characteristics of
difficult knowledge areas (RQ3), we find that knowledge
areas that we often fail to retrieve (see Table 3): (a) often
lack an English translation, making them impossible to find
for our English-language profiling algorithms; and (b) can
be both general and specific knowledge areas. Knowledge
areas that we often retrieve in the top 10, although they were
not judged relevant by experts (see Table 4), appear to be
quite specific knowledge areas and sometimes lack an
English translation.

Content Analysis of Expert Feedback

We now address our research question about important
aspects in the feedback that experts gave by carrying out a
content analysis (RQ4). During the assessment experiment,
91 experts left comments in the text area field at the bottom
of the assessment interface. These comments were coded by
two of the authors, based on a coding scheme developed by

FIG. 5. Knowledge areas over the number of experts for whom they were
retrieved in the top 10.

TABLE 3. Problematic knowledge areas in terms of precision and recall.

Dutch English Missing Retrieved Added

informatica computer science 8 71 0
inkomensverdeling income distribution 5 66 1
taal language 5 61 2
nederlands voor buitenlanders dutch for foreigners 5 55 0
Automatisering automation 5 49 1
culturele verscheidenheid cultural diversity 5 41 2
e-government e-government 6 39 0
evaluatie onderzoek – 8 38 0
bedrijfsbeleid en -strategie corporate policy and strategy 6 38 2
welzijn well-being 6 26 1
ontwikkelingsvraagstukken – 5 23 0
methoden en technieken, sociaal-wetenschappelijke – 8 22 0
programmeren voor internet – 7 20 0
beleidsonderzoek – 8 18 1
cognitieve informatieverwerking – 6 12 0
Kant, Immanuel (1724–1804) Kant, Immanuel (1724–1804) 5 9 0
cultuurparticipatie – 5 9 0

Note. For each knowledge area, we list the number of system-generated profiles where it is missing (“Missing”) and where it is (incorrectly) retrieved
(“Retrieved”). In a small number of cases, experts added these knowledge areas to their profile during the assessment experiment (“Added”).
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a first pass over these data. A statement could be assigned
multiple aspects. After all aspect types were identified, the
participants’ comments were coded in a second pass over
these data. Upon completion, the two annotators resolved
differences through discussion. We report on interannotator
agreement after discussion, reflecting cases where there
remained a difference in opinion. We use two measures of
interannotator agreement:

Micro-averaged interannotator agreement: The number
of times both annotators coded a comment with the same
aspect, divided by the total number of codings: 146/150 ª
0.97.

Macro-averaged interannotator agreement: For each
aspect, interannotator agreement is calculated: the number
of times both annotators coded a comment with this aspect,
divided by the total number of codings with this aspect.
Then the average of these aspect interannotator agreements
is calculated: ª 0.98.

Both measures show very high interannotator agreement.
Table 5 lists all aspects with the count and the percentage

of the comments in which they appeared.
First, we address the most common aspects in the

experts’ comments about the system-generated knowledge
areas. The most common complaint is that a key knowledge
area is missing. These missing knowledge areas were in
Webwijs, and consequently, they were in the input list from
which the retrieval systems select knowledge areas. This
means the profiling algorithm is perceived to have insuffi-
cient recall. The second most frequently mentioned aspect is
a request to add a new knowledge area to Webwijs. These do
not reflect a failure on the part of our profiling algorithms.

Rather, it is a request to the administrators of Webwijs to
expand the thesaurus of knowledge areas. The third most
common aspect is that the profile consists entirely of non-
relevant knowledge areas. This is a complaint about low
precision. If there are relevant knowledge areas for the
expert in the thesaurus, it also implies low recall.

Next, we examine the four categories of aspects in
Table 5. Looking at the aspects relating to the quality of
recommendations, we see that experts tend to be dissatisfied.
We cannot directly relate this to average performance over
all experts because we do not know the reasons why one
expert chooses to leave a comment, whereas another decides
not to. For some, dissatisfaction with the result list may be a
motivation to comment, whereas others might find the
results satisfactory enough and see no reason to add further
feedback.

From comments about the lists as a whole, one of the
main complaints is that there is much overlap in recom-
mended knowledge areas. On one hand, this means that our
algorithm finds “near misses,” that is, knowledge areas that
are not relevant but are very similar to relevant knowledge
areas. On the other hand, it is clear that retrieving multiple
very similar knowledge areas is not appreciated. De Rijke,
Balog, Bogers, and van den Bosch (2010) propose a new
metric that simultaneously rewards near misses and penal-
izes redundancy in a result list; we leave it as future work to
actually implement and use this metric.

TABLE 4. Knowledge areas shown in the top 10 but never selected.

Dutch English In top 10

alfabetisering in nederlands
als tweede taal nt2

– 9

godsdienstpedagogiek pedagogyofreligion 8
optietheorie optionpricing 8
behendigheidsspelen dexteritygames 7
sociolingustiek sociolinguistics 7
asset liability management assetliabilitymanagement 6
productiemanagement productionmanagement 6
dienstenmarketing servicesmarketing 6
werkloosheidsduur – 6
mediarecht – 6
cognitieve lingustiek cognitivelinguistics 6
handelsmerken trademarks 6
organisatiebewustzijn – 6
belastingrecht taxlaw 5
bestuursrecht administrativelaw 5
geldwezen money 5
instructieve teksten instructivetexts 5
oefenrechtbank mootcourt 5
onderwijs- en

opleidingspsychologie
educationalandtrainingpsychology 5

openbaar bestuur publicadministration 5

Note. The list is ordered by the number of times the knowledge area was
retrieved in the top 10.

TABLE 5. Results of a content analysis of expert feedback.

Aspects Count Percentage

Quality of recommendations
Excellent recommendations 7 7.9
Partially correct 10 11.2
All nonsense recommendations 15 16.9
Comments about individual knowledge areas
Too much focused on one knowledge area 3 3.4
Missing key knowledge area (present in Webwijs,

but not recommended)
32 36.0

Mix-up between different fields 2 2.2
One single nonsense recommendation 8 9.0
Comments about list as a whole
Big overlap in recommended knowledge areas 10 11.2
Lack of consistency in recommended knowledge

areas
1 1.1

Knowledge areas are too specific 4 4.5
Knowledge areas are too broad/general 10 11.2
No clear ordering of list 2 2.2
Upper limit of 10 knowledge areas 2 2.2
Knowledge areas taken from only one source (i.e.,

publications vs. theses)
5 5.6

Administrative comments
Request to add expertise term to Webwijs itself 20 22.5
Missing Webwijs terms because of time difference

between dump and survey
1 1.1

Complaint about incorrect or outdated Webwijs
metadata

5 5.6

Rating expertise seen as ineffective 1 1.1
Complaint about spelling or translation of Webwijs

knowledge areas
12 13.5
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A second main complaint about the list as a whole is that
results are too general. Interestingly, the opposite complaint
also occurs: Results are too specific. De Rijke et al. (2010)
suggest that experts higher up in the organization tend to
prefer more specific knowledge areas, whereas teachers and
research assistants prefer broader terms. In our comments,
complaints about a result list being too specific come from a
professor, a lecturer, a researcher, and someone with an
unknown function description. Complaints about the gener-
ated list being too general come from professors (5), senior
lecturers (2), lecturers (2), and someone with no function
description: mostly from senior staff.

In the administrative comments, it is interesting to note
that almost no experts view rating knowledge areas as inef-
fective or unnecessary. Of course, experts were not explic-
itly asked about what they thought of rating knowledge
areas, but still this was a big difference between our assess-
ment interface and the Webwijs interface experts originally
used for selecting knowledge areas.

To answer RQ4, the main aspects in the feedback of
experts are (a) missing a key knowledge area in the generated
profile (36%), (b) only nonrelevant knowledge areas in the
profile (16.9%), (c) redundancy in the generated profiles
(11.2%), and (d) knowledge areas being too general (11.2%).

In summary, it is clear that there is room for improvement
in terms of both precision and recall. Because experts com-
plain about redundancy in their profiles, in future work the
diversity of profiles deserves attention. The desired level of
specificity/generality is to a large extent a matter of personal
preference. There are more complaints, however, about
knowledge areas being too general; this is an indication that
algorithms overall may score better by preferring specific
knowledge areas.

Self-Selected Versus Judged
System-Generated Knowledge Areas:
Impact on Evaluation Outcomes

In this section, we look at another aspect of the TU expert
collection as a measurement device. We study the differ-
ences between evaluating profiling systems with the self-
selected knowledge areas and evaluating them with the
judged system-generated knowledge areas (RQ5). The dif-
ferences between the two types of assessment are isolated
using five sets of ground truth, which we detail in the first
subsection. In the remaining subsections, we study the
changes between evaluating with the two types of assess-
ment along three dimensions: absolute system scores
(RQ5a), system ranking (RQ5b), and the average number of
systems a system performs significantly different from
(RQ5c). All of this is meant to help understand the merits of
the TU expert collection.

Five Sets of Assessments

In the Results and Analysis of the Assessment Experi-
ment section, we have studied the differences between

self-selected and judged system-generated profiles; the cor-
responding ground truth that was used for evaluation (cf.
Table 2) will be referred to as GT1 and GT5, respectively,
throughout this section. These two sets of assessments differ
on a number of dimensions: the number of profiles evaluated,
the knowledge areas considered relevant within the profiles,
and the grades of relevance. To help better understand the
impact these differences might have on system evaluation, we
introduce three more intermediate sets of assessments (GT2,
GT3, GT4). Next, we briefly discuss each of the five sets.

GT1: Self-selected profiles. GT1 includes self-selected profiles of
all experts for whom we generated a profile. Experts had previously
selected these knowledge areas in the Webwijs system of TU; this
set contains 761 experts.

GT2: Self-selected profiles of participants in assessment experi-
ment. GT2 includes the self-selected profiles of only those experts
who completed the assessment experiment. To be able to realize all
subsequent evaluation conditions with the same set of experts, we
limit this set of experts to the following groups:
• Those who completed the assessment experiment, selecting

(or keeping) at least one knowledge area
• Those who had a nonempty self-selected profile
• Those for whom at least one of the knowledge areas in their

self-selected profile was retrieved by the automatic profiling
systems (This condition is required to be able to analyze, for
the same set of experts, what evaluation differences there are
when we evaluate only on the pooled subsets of their self-
selected profiles.)
As noted in the Completeness of the Two Sets of Ground
Truth for Expert Profiling section, this set comprises 239
experts; for ease of reference, we sometimes refer to them as
“our assessors.”

GT3: Pooled subsets of self-selected profiles. For each self-
selected profile of an assessor, we use only knowledge areas that
were in the system-generated profile. This means that knowledge
areas that are not in the system-generated profile are treated as
nonrelevant.

GT4: Judged system-generated profiles (binary). GT4 includes the
knowledge areas judged relevant during the assessment experi-
ment. We consider only binary relevance. If a knowledge area was
selected, it is considered as relevant; otherwise, it is taken to be
nonrelevant.

GT5: Judged system-generated profiles (graded). GT5 is the same
as GT4, but now with graded relevance. Experts could optionally
indicate their level of expertise on each knowledge area they
selected. Recall that when experts have selected a knowledge area
but indicated no level, we assume they would have indicated a level
“somewhere in the middle”: level three out of five.

In the next subsection, we go through these five sets of
ground truth, looking only at nDCG@100. We show how
absolute system scores change from set to set.

Contrasting GT1 Through GT5

Previously, in our error analysis of system-generated pro-
files, we have seen that the combined profiling algorithm
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achieved higher scores on GT5 than on GT1. Here, we
investigate the influence of the four differences between
GT1 and GT5, in a step-by-step fashion, by considering
each of GT1, . . ., GT5 and evaluating our profiling using
those sets of assessments. To remain focused, we evaluate all
systems with nDCG@100; nDCG is a well-understood
metric that can be used with both binary and graded rel-
evance assessments.

In Figure 6a, we show the nDCG@100 scores obtained
with GT1 for all systems.5 Confidence intervals on the
means X are shown. These are based on the assumption that
nDCG@100 scores are normally distributed. We show a
99% confidence interval, calculated as X n± 2.576σ̂ ,
where σ̂ is the sample SD and n is the sample size. The
scores of individual systems are close to each other. Model

2 outperforms Model 1, the English-language systems tend
to perform marginally better than their Dutch counterparts,
and using the thesaurus does not appear to offer any benefits.
The combined algorithm, which generated the profile shown
to our assessors, outperforms all individual systems.

In Figure 6b, we plot the results based on GT2, on the
self-selected profiles of assessors only. Confidence intervals
are larger here; this is because the sample size is smaller.
System scores are also a bit higher across the board.

In Figure 6c, we show the results obtained using GT3,
that is, using only knowledge areas that the assessors may
have seen during the assessment experiment. Recall that
initially, experts see only the top 20 of the generated profile,
but they can see up to 100 knowledge areas if they request
more results. When we see the combined algorithm that
generated the profile as a pooling algorithm, we can study
the effect of pooling here. Absolute scores again increase for
all systems. This is not surprising; unpooled knowledge
areas are hard for all systems and regarding them as

5We use the following convention to name the profiling systems defined
in The Assessment Experiment section: X Y Z, where X ∈ {NL, UK},
Y ∈ {M1, M2}, and Z ∈ { , TH}.

(a) GT1 (b) GT2

(c) GT3

(e) GT5

(d) GT4

FIG. 6. Average nDCG@100 for each profiling system defined in The Assessment Experiment section, with 99% confidence intervals, for the five sets of
assessments (GT1–GT5) examined in this section.
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nonrelevant reduces the problem difficulty. However, we can
also see that relative system ranking hardly changes.

In Figure 6d, we evaluate profiling with GT4, that is,
with the knowledge areas selected during the assessment
experiment. We see a substantial performance increase in
absolute scores for all systems, compared with evaluating
with only the pooled knowledge areas from the original
profiles. This increase is caused by knowledge areas that
experts chose to add to their profiles. It is an indication
that the original self-selected profiles were often incom-
plete, and systems are actually doing a better job than
evaluating with the self-selected profiles would suggest.
We also see changes in system rankings here that are a bit
stronger than between other sets of ground truth. Systems
that use Model 2 clearly outperform the ones that work
with Model 1. Also, systems without the thesaurus are dis-
tinctly better than those with it. No language is preferred
over the other.

For selected knowledge areas, experts could optionally
indicate a level of expertise on a scale of one to five. In cases
where they did not indicate a level of expertise for a selected
knowledge area, we assigned a default level (3). In
Figure 6e, we see how the move from binary to multiple
levels of relevance changes nDCG@100: Absolute scores
slightly decrease for all systems. This means that all systems
retrieve knowledge areas in a suboptimal order. The relative
ordering of systems, however, remains unchanged.

Answering RQ5a, we fine that: (a) Scores obtained on
our assessors only are higher than on all experts. (b) Scores
on only the pooled knowledge areas are higher than on the
complete self-selected profiles; this is because self-selected
knowledge areas that were unpooled are apparently difficult
for these systems, and regarding them as nonrelevant
reduces problem difficulty. (c) Scores on the binary judged
system-generated knowledge areas are substantially higher
than on the self-selected knowledge areas; this is an indica-
tion that the system-generated profiles were better than the
original self-selected knowledge areas would give them
credit for. (d) When we consider multiple relevance levels
for assessment, absolute performance decreases a bit across
the board, showing that to some extent all systems rank
knowledge areas suboptimally.

Changes in System Ranking

We take a closer look at differences between GT1–GT5
and analyze whether and, if so, how they rank profiling
systems differently. In the previous section we observed
changes in system ranking in terms of nDCG@100, because
of knowledge areas experts had added to their self-selected
profile during the assessment experiment. In this section, we
study how system rankings change on each set of GT1, . . .,
GT5 for other metrics as well: MAP, MRR, and nDCG@10.
We exclude the combined algorithm from our analysis here,
because it produced the actual rankings that experts judged
(experts are likely biased by the order in which suggestions
were presented to them).

Tables 6 and 7 report Kendall tau for four evaluation
metrics, computed between all pairs of sets of assessments.
(The last rows of the tables are empty, because the MAP and
MRR measures consider only binary relevance.) Table 6
shows the tau values for MAP and nDCG@100 in the lower
and upper triangles, respectively. Both of these evaluation
metrics capture precision as well as recall. Because all
systems retrieve at most 100 documents, they both consider
the complete list of results retrieved.

Let us consider the five sets of assessments GT1, . . .,
GT5 for MAP and nDCG@10 and walk through Table 6.
First, system ranking correlation between evaluating with
the self-selected profiles of all 761 experts (GT1) and evalu-
ating with the self-selected profiles of only the 239 assessors
(GT2) is reasonable for both MAP and nDCG@100. Com-
pared with GT2, considering unpooled knowledge areas as
nonrelevant (GT3) ranks systems similarly for both metrics
as well. Although we saw in the previous section that abso-
lute scores increased substantially when unpooled knowl-
edge areas are assumed to be nonrelevant, this has little
effect on relative performance. The next step is including

TABLE 6. Kendall tau between system rankings on two sets of
assessments with MAP (lower triangle) and average nDCG@100 (upper
triangle).

GT1 GT2 GT3 GT4 GT5

GT1 Self-selected profiles of
all experts

– 0.86 0.86 0.57 0.57

GT2 Self-selected profiles of
assessors

0.79 – 0.86 0.43 0.43

GT3 Pooled subsets of
self-selected profiles

0.71 0.93 – 0.57 0.57

GT4 Judged
system-generated profiles
(binary)

0.57 0.50 0.57 – 1.00

GT5 Judged
system-generated profiles
(graded)

– – – – –

TABLE 7. Kendall tau between system rankings on two sets of
assessments with MRR (lower triangle) and average nDCG@10 (upper
triangle).

GT1 GT2 GT3 GT4 GT5

GT1 Self-selected profiles of
all experts

– 0.79 0.79 0.93 0.86

GT2 Self-selected profiles of
assessors

0.71 – 1.00 0.71 0.79

GT3 Pooled subsets of
self-selected profiles

0.71 1.00 – 0.71 0.79

GT4 Judged
system-generated profiles
(binary)

0.93 0.79 0.79 – 0.93

GT5 Judged
system-generated profiles
(graded)

– – – – –
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knowledge areas added during the assessment experiment
(GT4). This does change the picture for both MAP and
nDCG@100. For neither of the two metrics can we reject the
null hypothesis, which states that there is no monotone rela-
tionship between the two rankings. Finally, taking into
account the level of expertise (GT5) does not affect system
ranking at all.

Next, we look at Table 7 and two measures that focus on
the top ranks: MRR and nDCG@10. Table 7 shows Kendall
tau values for MRR and nDCG@10 in the lower and upper
triangles, respectively. Again, we step through the four
changes that lead from GT1 to GT5. When evaluating with
self-selected profiles from assessors only (GT2) instead of
from all experts (GT1), rankings change a bit for both
metrics. For MRR, there is no significant correlation. Regard-
ing unpooled knowledge areas as nonrelevant (GT3) does not
affect system ranking at all for these two metrics. Using the
judged system-generated knowledge areas (GT4) instead of
the self-selected knowledge areas changes the ranking a bit,
again; for nDCG@10, there is no significant correlation.
Finally, we find that the level of expertise (GT5) leads to only
minor changes in system ranking for nDCG@10.

In answer to RQ5b, our findings are: (a) Comparing GT1
with GT2, the only difference being that GT2 evaluates with
a subset of experts, we see that system rankings change a bit;
nevertheless, for all metrics but nDCG@10, we can reject the
null hypothesis, which states that system rankings do not
correlate. (b) Regarding unpooled knowledge areas as non-
relevant hardly affects system rankings for the eight systems
that contributed to the pool. Kendall tau values are high,
ranging from 0.86 (nDCG@100) to 0.93 (MAP) to 1.00
(nDCG@10 and MRR) when comparing GT2 with GT3.
(c) The knowledge areas that experts added to their self-
selected profile during the assessment experiment have an
effect on system rankings. When comparing GT1–GT3 with
GT4, in all but two cases, we cannot reject the null hypothesis
stating that there is no monotone relationship between system
rankings obtained when evaluating with the self-selected
versus judged system-generated profiles. (d) Comparing GT4
with GT5, we see that taking into account the level of exper-
tise does not change system ranking for nDCG@10 or
nDCG@100.

Pairwise Significant Differences

The final analysis we conduct concerns a high-level per-
spective: the sensitivity of our evaluation methodology. The

measurement that serves as a rough estimate here is the
average number of systems each system differs from; we
compute this for each of the five sets of assessments and for
four different metrics. We use Fisher’s pairwise randomiza-
tion test with a = .001 to establish the average number of
systems each system differs from in each condition. Table 8
lists these averages for MAP, MRR, nDCG@10, and
nDCG@100. We start out with original profiles of all
experts (GT1). If we limit ourselves to the 239 self-assessors
(GT2), we see that the number of significant differences
detected decreases for all four metrics. This is expected as
the power of significance tests decreases with sample size. If
we disregard nonpooled knowledge areas (GT3), we do not
witness much change in the number of significant differ-
ences. Regarding nonpooled knowledge areas as nonrel-
evant does not change our insights about the relative
performance of the profiling systems being examined. Com-
paring the self-selected profiles with the judged system-
generated profiles (interpreted as binary judgments, GT4),
there is a noticeable difference in the number of significant
pairwise differences detected. For MAP and nDCG@10, we
are roughly at the same level as for the self-selected profiles
of all experts (GT1). If we use graded relevance (GT5), there
is a slight increase for nDCG@10 and nDCG@100.

Answering RQ5c, we find that (a) fewer experts implies
fewer significant differences, (b) regarding unpooled
knowledge areas as nonrelevant does not have much effect
on sensitivity, (c) knowledge areas that experts added to
their profile during the assessment experiment lead to more
detected significant differences, and (d) taking into account
the level of relevance can lead to some further increase in
sensitivity.

The two main findings for RQ5 overall are (a) GT4 (the
judged system-generated knowledge areas, with binary rel-
evance) is different from GT3, with much higher absolute
scores, a different system ranking, and more detected pair-
wise significant differences between systems; and (b) for our
eight systems, regarding the unpooled knowledge areas as
nonrelevant does lead to higher absolute scores, but not to
different system rankings or more detected pairwise signifi-
cance differences.

Our findings lead to the following recommendations for
researchers who would like to evaluate their expert-profiling
systems on the TU expert collection. Because the judged
system-generated profiles are more complete (see Com-
pleteness of the Two Sets of Ground Truth for Expert
Profiling section), they form the preferred ground truth

TABLE 8. Average number of systems each system differs from significantly.

MAP MRR nDCG@10 nDCG@100

Self-selected profiles GT1 all experts 3.75 4.50 4.25 4.75
GT2 assessors 2.75 2.25 2.75 3.00
GT3 pooled subsets 2.75 2.25 3.25 2.75

Judged system-generated GT4 binary 4.00 2.75 4.00 3.50
GT5 graded – – 4.25 4.00
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for expert profiling. Compared with evaluating on the self-
selected profiles, system ranking can change. Taking into
account the level of expertise is useful because it does have
an effect on absolute scores, even if it is not expected to lead
to very different insights into relative system performance. If
researchers are concerned that their methods are not
rewarded for some retrieved knowledge areas that were not
in the system-generated profiles, we recommend to repeat
our analysis contrasting GT2 and GT3; this comparison
allows for studying that factor in isolation.

Discussion and Conclusion

We released, described, and analyzed the TU expert col-
lection for assessing automatic expert-profiling systems. The
collection building process was detailed and we provided a
critical assessment and analysis of this test collection. We
started with an analysis of the completeness of self-selected
versus judged system-generated knowledge areas as ground
truth, an error analysis of system-generated expertise pro-
files, and a content analysis of feedback given by experts on
system-generated expertise profiles. Then we took a step
back and contrasted findings by benchmarking eight state-of-
the-art expert-profiling systems with the two different sets of
ground truth. We do not repeat all the answers to our research
questions, but instead list the main findings for each, and with
these main findings we give recommendations for the devel-
opment and evaluation of expert-profiling systems. Then we
discuss possible directions for future work for which the TU
expert collection could be of use.

Main Findings With Recommendations

In this subsection, we repeat our research questions and
list the main findings and recommendations.

RQ1. Which of the two sets of ground truth is more complete?
Judged system-generated profiles are more complete, on average.
When we regard as relevant for an expert the union of knowledge
areas in the self-selected profile and the judged system-generated
profile (minus those knowledge areas that were judged nonrel-
evant), the average judged system-generated profile contains 81%
and the self-selected profile 65% of all relevant knowledge areas.
Recommendation: It is preferable to use the system-generated pro-
files to evaluate expert-profiling systems because they are more
complete.

RQ2. What are the characteristics of “difficult” experts?
Our main finding here is that experts who do not have a research
description are significantly harder to profile accurately than
experts who do.
Recommendation: Have experts in a knowledge-intensive organi-
zation maintain an up-to-date natural language description of their
own expertise to facilitate better expert profiling.

RQ3. What are the characteristics of “difficult” knowledge areas?
Our main finding here is that knowledge areas that lack an English
translation are more difficult to retrieve, and they are also among
those knowledge areas that are most often retrieved without being
relevant.

Recommendation: In a multilingual setting, maintain a complete
translation of your list of knowledge areas in all languages to
facilitate better expert profiling.

RQ4. What are important aspects in the feedback that experts gave
on their system-generated profiles?
Experts mainly complain about missing a key knowledge area,
generated profiles consisting of all nonsense knowledge areas,
redundancy in the generated profiles, and retrieved knowledge
areas being too general.
Recommendation: An interesting direction for future work is to go
beyond ranking knowledge areas for an expert and to build coher-
ent, complete, concise, diverse expertise profiles at the right level
of specificity.

RQ5. Does using the set of judged system-generated knowledge
areas lead to differences in system evaluation outcomes compared
with using the self-selected knowledge areas?
We found that the knowledge areas experts added to their self-
selected profile by judging them relevant do have an influence on
system ranking, and we observe more significant differences
between systems compared with evaluating with the self-selected
profiles of these experts. Even though in the judged system-
generated profiles some of the knowledge areas that experts had
self-selected before are missing, this hardly affects the relative
ranking of our eight systems.
Recommendation: It is preferable to use the judged system-
generated profiles for benchmarking expert-profiling systems
because these profiles are more complete. The missing knowledge
areas from the self-selected knowledge areas hardly had an effect
on relative performance from our systems, but if researchers wish
to evaluate new and very different systems, we recommend to
repeat our analysis contrasting the sets of ground truth GT2 and
GT3 (we release all sets of ground truth used in this article).

Directions for Future Work

One conclusion that can be drawn from the error analysis
and the content analysis of expert feedback is that there is still
much room for improvement in the area of expertise retrieval.
In addition to improving system performance on the task we
studied in this article, we believe there are interesting possi-
bilities to study tasks that differ subtly from it.

Expert profiling and expert finding. The expert-profiling
task is closely related to the expert-finding task. Very similar
algorithms may be used to approach the expert-finding
and -profiling tasks; in both cases, the extent to which an
expert and a knowledge area are associated have to be esti-
mated (Balog et al., 2012). It has also been shown that
expert-finding algorithms can benefit from the output of
expert-profiling algorithms (Balog & de Rijke, 2007). In
addition to benchmarking expert-profiling systems, the TU
expert collection can also be used for benchmarking expert-
finding systems. In this case, using the self-selected profiles
would suit fine. Because the self-selected profiles are avail-
able for more experts, the number of relevant experts per
knowledge area is somewhat larger in them. In addition, the
graded relevance assessments were collected with the task of
expert profiling in mind. Relevance levels are not guaranteed
to be comparable across experts.
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Diversity, redundancy, and specificity. The evaluation
metrics used in this article treat the relevance of knowledge
areas in the ranked list independent from each other. We
have seen that experts complained about redundancy in their
generated profiles; something our evaluation metrics cannot
capture. de Rijke et al. (2010) propose a metric that would
reward diversity and near misses in a topical profile. Bench-
marking with metrics like this is an interesting direction for
future work. Experts complained about profiles being too
general, and a few about profiles being too specific. One way
to adjust the level of specificity in expertise profiles would
be to require systems to organize knowledge areas in a
hierarchy. A follow-up step could be to develop an assess-
ment interface where experts can judge: (a) whether grouped
knowledge areas are indeed similar, (b) whether hierarchical
orderings are correct, and (c) whether retrieved knowledge
areas are of the right specificity. The curated thesaurus that
comes with the TU expert collection can be of help for work
in this direction.

A learning assessment interface. The retrieval systems we
evaluated in this article did not use knowledge areas that had
already been self-selected by experts as evidence. This
means our findings on their relative performance generalize
to other settings where such self-selected ground truth is not
available. Still, in settings where such ground truth is avail-
able, using it to locate additional relevant items is a powerful
way of expanding a set of relevant items fast, with limited
annotation effort. An assessment interface that would be fed
by a learning retrieval model and would be continuously
available for experts to update their profile is an interesting
direction for future work.
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Appendix

Description of the TU Expert Collection

The TU expert collection consists of a corpus of docu-
ments, a thesaurus of expertise areas, and two sets of rel-
evance assessments. We devote a subsection to each. Before
we start, we briefly introduce the original UvT collection
and highlight the main differences to it.

Differences with the original UvT expert collection. The
original UvT expert collection was harvested from the
Webwijs (“Webwise”) system developed at TU in the Neth-
erlands. As explained in the Introduction of this article,
Webwijs is a publicly accessible database of UvT employees
who are involved in research or teaching. The UvT expert
collection consists of four types of document: research
descriptions, course descriptions, publications, and aca-
demic home pages. The majority of the data set was crawled
in October 2006 (Bogers & Balog, 2006).

The TU expert collection was compiled in December
2008. The main reason necessitating the update is the fact
that the data contained in the original version of the collec-
tion have become outdated; employees have left the organi-
zation, others have possibly changed their areas of interest,
and new documents have been generated. One additional
change we implement is to exclude academic home pages
from the data set, because their usefulness has been found to
be limited (Balog, 2008; Balog et al., 2007). Instead, we add
another document type: student theses; these are bachelor’s
and master’s theses of students supervised by researchers
who are connected to TU.

Documents in the TU expert collection. Table A1 lists the
types of documents available in the TU expert collection
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along with some descriptive statistics. It is important to note
about this new collection that XML files containing research
descriptions include the previously selected expertise areas
in the subject tags; this is ground truth. We did not index the
contents of these tags, so this information is not exploited in
our experiments. Researchers using the TU expert collection
should take care to also disregard the contents of these
subject tags if they want to benchmark expert-profiling
systems.

Expertise areas in the TU expert collection. There is a total
of 2,507 expertise areas. Each area is identified uniquely by
a numeric identifier and has a Dutch textual label; most areas
have an English translation as well. Expertise areas are orga-
nized in a thesaurus (see the following subsection).

A thesaurus of expertise areas. The thesaurus of expertise
areas has broader-term/narrower-term relations between
areas and related-term relations. In addition, it has preferred-
term relations, where one area is the preferred term for
another area. Of the total 2,507 knowledge areas, 2,266 are
actually “approved.”6 When we discard areas that are not
approved, there are 4,155 relations in the thesaurus;
Table A2 lists the number of relations per type.

Using only the “broader term” relation, we can build a
directed graph, with an edge pointing from area x to area y if
x is a broader term than y. Apart from a few erroneous

self-referencing areas, this graph is acyclic. Ignoring the
direction of edges for a moment, we can find the connected
components in this graph. There are no fewer than 635
connected components. One is very big with 718 edges; the
second biggest has only 20 edges.

Two sets of relevance assessments. The TU expert collection
comes with two main sets of relevance assessments, in the
form of two files in standard trec_eval format. In both files,
experts and areas are represented unique numeric identifiers.
The first set of relevance assessments consists of profiles
containing self-selected areas that experts selected from an
alphabetic list of expertise areas. The second consists of
profiles containing judged system-generated areas. Basic
statistics about the number of experts and areas in both sets
of ground truth are listed in Table A3. See also Figure 2 for
the distribution of knowledge areas.

In addition to the two main sets of relevance assessments,
we also release the three intermediate sets of relevance
assessments used in the analysis in the Self-Selected Versus
Judged System-Generated Knowledge Areas: Impact on
Evaluation Outcomes section, so that researchers can repeat
our analysis with their systems.

6New expertise areas can be suggested for inclusion in the thesaurus by
TU employees. These suggested areas need to be reviewed by TU librarians
and properly integrated into the thesaurus before they are fully approved.

TABLE A1. Descriptive statistics of the TU expert collection.

Document type Documents People People per document

Research descriptions (UK) 495 495 1.00
Research descriptions (NL) 524 524 1.00
Course descriptions 543 543 1.00
Publications 25,853 668 1.12
Student theses 5,152 520 1.17

Note. We list the number of documents of each type, the number of
different people associated with documents of that type, and the average
number of people associated with a single document.

TABLE A2. Binary relations between areas x and y in the thesaurus.

Abbreviation Description Count

BT Area x is a broader term than area y 1,075
NT The inverse of BT 1,076
USE Area x is the preferred term for area y 247
UF The inverse of USE 247
RT Area x is related to area y 1,510

TABLE A3. Experts, total number of distinct relevant areas, and average
number of areas per profile in both sets of ground truth.

Experts Areas Average areas per profile

Self-selected profiles 761 1,662 6.4
Judged system-generated

profiles
239 1,266 8.8

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2013 21
DOI: 10.1002/asi


