
Finding People, Papers, and
Posts: Vertical Search

Algorithms and Evaluation

Richard Berendsen





Finding People, Papers, and
Posts: Vertical Search

Algorithms and Evaluation

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
Prof. dr. D.C. van den Boom

ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in

de Agnietenkapel
op donderdag 12 november 2015, te 10:00 uur

door

Richard Willem Berendsen

geboren te Meppel



Promotiecommissie

Promotor: Prof. dr. M. de Rijke Universiteit van Amsterdam
Copromotor: Dr. K. Balog Universitetet i Stavanger

Overige leden: Dr. E. Kanoulas Universiteit van Amsterdam
Dr. C. Monz Universiteit van Amsterdam
Prof. dr. V. Petras Humboldt-Universität zu Berlin
Prof. dr. A. de Vries Technische Universiteit Delft
Prof. dr. M. Worring Universiteit van Amsterdam

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2015-24
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School
for Information and Knowledge Systems.

The research was partially supported by the Eu-
ropean Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement nr 258191
(PROMISE Network of Excellence).

Copyright c© 2015 Richard Berendsen, Amsterdam, The Netherlands
Art on cover and on pages 35, 103, and 121 by Bart Nijstad
Printed by Off Page, Amsterdam

ISBN: 978-94-6182-611-4



Acknowledgements

Maarten de Rijke leads the Information and Language Proccesing Systems group (ILPS).
Over the years, ILPS has been growing into a large information retrieval and natural
language processing research group that operates at the crossroads between academia
and industry. The atmosphere of collaboration in this group, its active interaction with
industry, and the many ties with other researchers in Europe and beyond make it a very
dynamic environment, with many opportunities for interesting research. The research
chapters in this dissertation are five such opportunities, seized.

I joined ILPS in September 2010, with Maarten as my promotor. I would like to
thank Maarten for his respectful and professional weekly supervision, his creativity, his
overview of the field and its current fronts, and his ability to tell a structured story from
any angle, at any level of abstraction.

I am also much indebted to all of my co-authors, among whom my co-promotor
Krisztian Balog, on whose work in expertise retrieval I could build, and whose comments
on a draft of this dissertation helped me to make many improvements. Manos and Wouter,
my paranymphs, had tested the waters with pseudo test collection generation, and I could
count on their help and contributions all along the way to several conference deadlines.
The same is true for Bogomil, with whom I enjoyed many programming sessions in the
early years of my PhD. Edgar was also involved in several of my research chapters, and
his insightful comments and always instantaneous help have been valuable.

The enthousiasm and generosity of all ILPSers that have come and gone in exchang-
ing ideas and feedback over coffee or drinks has been tremendously encouraging, as
was the contact with researchers of neighbouring labs. Beyond work, we shared good
times on the football and volleybal courts, in the city, abroad at conferences and a winter
school, and over the chess board. I would also like to thank the non-scientific staff for
their reliable and enthousiastic support.

The academic community thrives on interactions between researchers of different
universities and institutions. The EU-funded PROMISE Network of Excellence that
funded a large part of my PhD has been a very friendly and inspiring environment for
me. I have learned a lot in our project meetings and research exchanges. The project
goals and ambitions allowed us to recognize and shape the opportunities for the research
that went into this dissertation. I thank the reviewers of my publications for their help-
ful comments and suggestions. And I thank the members of my committee for their
commitment, corrections, and time.

Bart Nijstad, thank you for your beautiful art.
To my family, my friends, and to Marloes, your love and support mean the world to

me.

Richard Berendsen
September 2015





Contents

1 Introduction 1
1.1 Research outline and questions . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Information retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 A very brief history of IR . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Algorithms for document retrieval . . . . . . . . . . . . . . . . 12

2.2 IR evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 On benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Ingredients of a test collection . . . . . . . . . . . . . . . . . . 18
2.2.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Automatic evaluation . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Vertical search applications . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Finding people . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Finding papers . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Finding posts . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Query Classification in People Search 37
3.1 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 High profile versus low profile classification . . . . . . . . . . . 47
3.2.2 Low profile, event-based, and regular high-profile classification 49
3.2.3 Lessons learned in the two experiments . . . . . . . . . . . . . 51

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Result Disambiguation in People Search 53
4.1 Dual strategies for result disambiguation . . . . . . . . . . . . . . . . . 54
4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 On the Evaluation of Expertise Profiles 71
5.1 The topical profiling task . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 The assessment experiment . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Automatically generating profiles . . . . . . . . . . . . . . . . 75
5.2.2 Judging the generated profiles . . . . . . . . . . . . . . . . . . 78

5.3 Research questions and methodology . . . . . . . . . . . . . . . . . . . 78
5.3.1 Results and analysis of the assessment experiment . . . . . . . 78

v



CONTENTS

5.3.2 Self-selected vs. judged system-generated areas . . . . . . . . . 79
5.4 Results and analysis of the assessment experiment . . . . . . . . . . . . 81

5.4.1 Completeness of the two sets of ground truth for expert profiling 81
5.4.2 Difficult experts and difficult knowledge areas . . . . . . . . . . 83
5.4.3 A content analysis of expert feedback . . . . . . . . . . . . . . 89

5.5 Self-selected vs. judged system-generated areas . . . . . . . . . . . . . 91
5.5.1 Five sets of assessments . . . . . . . . . . . . . . . . . . . . . 92
5.5.2 Contrasting GT1–GT5 . . . . . . . . . . . . . . . . . . . . . . 93
5.5.3 Changes in system ranking . . . . . . . . . . . . . . . . . . . . 95
5.5.4 Pairwise significant differences . . . . . . . . . . . . . . . . . 96

5.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1 Main findings with recommendations . . . . . . . . . . . . . . 98
5.6.2 Directions for future work . . . . . . . . . . . . . . . . . . . . 99

6 Pseudo Test Collections for Scientific Literature Search 105
6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Performance of individual features . . . . . . . . . . . . . . . . 115
6.4.2 Using pseudo test collections for evaluation . . . . . . . . . . . 116

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Pseudo Test Collections for Microblog Search 123
7.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 Selecting hashtags and tweets . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 Hashtags: all hashtags, tweets are equal . . . . . . . . . . . . . 125
7.2.2 Hashtags-T: generating timestamps . . . . . . . . . . . . . . . 126
7.2.3 Hashtags-TI: selecting interesting tweets . . . . . . . . . . . . 127

7.3 Generating queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.2 Dataset and preprocessing . . . . . . . . . . . . . . . . . . . . 134
7.4.3 Learning to rank . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.5.1 Parameter tuning results . . . . . . . . . . . . . . . . . . . . . 137
7.5.2 Learning to rank results . . . . . . . . . . . . . . . . . . . . . 141

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusions 147
8.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . 152

vi



CONTENTS

Appendices 155

A Description of the TU expert collection 157
A.1 Differences with the original UvT expert collection . . . . . . . . . . . 157
A.2 Documents in the TU expert collection . . . . . . . . . . . . . . . . . . 157
A.3 Expertise areas in the TU expert collection . . . . . . . . . . . . . . . . 158
A.4 A thesaurus of expertise areas . . . . . . . . . . . . . . . . . . . . . . 158
A.5 Two sets of relevance assessments . . . . . . . . . . . . . . . . . . . . 159

Bibliography 161

Summary 171

Samenvatting 173

vii





1
Introduction

There is a growing diversity of information access applications. While general web
search has been dominant in the past few decades, a wide variety of so-called vertical
search tasks and applications have come to the fore. Vertical search is an often used
term for search that targets specific content. Examples are Youtube video search, Face-
book graph search, Spotify music recommendation, product search [190], expertise re-
trieval [24], and scientific literature search [234]. The heavy usage of such applications is
testimony to the importance of vertical search. Verticals are gaining ground also in gen-
eral web search. This is connected with estimating what kind of content a user is looking
for, i.e., the information need of the user. If a query is entity-oriented, a modern web
search engine will display a box with information from a knowledge base about relevant
entities. Web search engines typically also include videos, images, or scientific articles
to their search result page if deemed appopriate.

In a vertical search application, we typically have some background knowledge about
the context in which search is taking place. We may know something about the user pop-
ulation, about the tasks they wish to perform, about their information needs, and about
the information objects in the collection we make available to them. In this dissertation
we focus mainly on background knowledge related to information needs and information
objects.

In web search, Broder [38] observed that there are three broad classes of information
needs underlying web search queries: informational, navigational and transactional in-
formation needs. People who enter an informational query want to learn more about a
subject, e.g., “gardening.” A navigational query means that a user just wants to reach a
particular webpage, e.g., “facebook.” Transactional queries indicate a desire to do some-
thing, e.g., download software or buy a piece of clothing. In a vertical search application,
there may be classes of queries different from those in web search [153]. For example, in
blog search so-called context and concept queries were observed. Both are informational
queries. Context queries aim to find contexts in which an entitity such as a politician or
a product is mentioned. Concept queries are aimed at finding blogs on an interest area of
the user, such as “stock trading” [153].

Characteristics of information objects have also been studied in web search. Modern
web search engines combine web documents, images, and videos on their search result
page; each type of information object requires a different retrieval approach. Zooming in
on ranking web documents, the similarity of the documents to the query is important. But

1



1. Introduction

query-independent document features are also used. The PageRank score of web pages
is a well-known example [167]. Learning to rank algorithms [138], which represent the
current state of the art in web search, are able to combine many of such features into a
single ranking. In a vertical search application, we may know more about the information
objects in our collection. For example, in product search we may have a complete catalog
of products. This catalog may hold information on the product type, manufacturer, price,
availability, and so on. Therefore, the search engine result page may offer filters to narrow
down the search results. Users can restrict search results to a certain price range, or to a
certain brand, and so on. This kind of search is called faceted search [222].

A particular source of background knowledge are annotations. An example of these
are keywords (e.g., “information retrieval”) added to scientific articles. Sometimes, au-
thors of papers are asked to select these keywords from a thesaurus of research areas.
Sometimes, curators of a collection of articles label articles. Annotations added by peo-
ple are valuable. They enrich items in the collection, making it easier to group, browse
and retrieve these.

Annotations may be of very high quality, created by experts in the domain, as in the
above scientific literature example. In other domains we may have more noisy annota-
tions. Tweets, for example, contain hashtags, which may be used to indicate that a tweet
is part of a larger discussion. Even noisier are clicks on search results, which can be
viewed as user annotations. They often indicate some level of interest in the result being
clicked, but they may also have occured by chance.

In this dissertation, we will study several vertical search applications. For each of
them, we focus on using characteristics of information needs or information objects that
are unique to the domain of the search application. We use such characteristics for query
understanding, for optimizing and evaluating search algorithms, and for error analysis.

1.1 Research outline and questions

The shared theme of the research in this thesis is to explore how domain knowledge can
play a role in understanding, design and evaluation of vertical search applications. We
develop this theme in a number of case studies. We start out with people search. People
search is about searching for people. This happens in web search increasingly [144,
217], on Facebook, and many dedicated people search engines exist, such as pipl.com,
123people.com, and, of course, a range of dating sites.

Motivated by the wish to gain a better understanding of the usage of a dedicated
people search engine, in [231], we perform a query log analysis and distinguish two
types of person name queries: ones that are only occasionally entered and also do not
refer to a famous person (low-profile), and ones that are often entered and/or refer to a
famous person (high-profile). High-profile queries were subdivided further into queries
that were most likely entered in connection with a recent event or a recent hype (event-
based queries), and queries that most likely refer to well-known persons who are known
for more than any single event (regular high-profile queries).

In Chapter 3 we follow up on this observation, with the aim of investigating if this
classification can be automated. If this can be done with reasonable accuracy, it becomes
an option to take the predicted query class into accont to improve search algorithms or

2



1.1. Research outline and questions

result presentation. We also want to understand which features (e.g., news mentions,
Wikipedia mentions, search volume) most strongly influence the decisions of the query
classifier. This gives insight in the strengths and weaknesses of the classifier, and it also
sheds light on the relationship between the context in which person names are mentioned
and the class of the query. Our research question in this first case study is:

RQ1 Is it possible to classify person name queries submitted to a people search engine
as either low-profile, event-based and regular high-profile classes such that reasonable
agreement with human classifying decisions is achieved? Among a set of features cap-
turing online context of person names and interactions of people search engine users,
which features have the largest influence on classification decisions?

A major issue in people search is the high degree of ambiguity of person names [10].
To address this ambiguity, several evaluation campaigns were organized around the task
of grouping or clustering search results around persons being referred to [11–13]. For
that task, person name queries were submitted to a general web search engine. For each
query, a clustering for the top-100 results was required. In Chapter 4 we are interested in
the differences between this setting and the setting of a vertical people search engine. The
latter has a different presentation of search results, and includes much more social media
profiles. In particular, we are interested in how well the lightweight and state-of-the-art
hierarchical agglommerative clustering (HAC) methods do in this setting.

We find that the main problem for the abovementioned HAC approaches is that social
media profiles are textually sparse, and they do contain “boilerplate” elements that makes
profiles from the same platform (e.g., Facebook) look very similar to each other. These
profiles present so difficult a problem that we propose to treat them altogether differently.
First, we set out to cluster social media profiles only. We explore the use of non-textual
features, such as cross-links between profiles, evidence from query log files, and a visual
clue: the user profile picture.

Meanwhile, we cluster the rest of the documents as before. Finally, we merge the so-
cial media clusters with the “regular” clusters. The intuition is that these regular clusters
now contain more evidence, and there is a higher chance that elements in it will match
with elements in social media clusters. Our main research question in this chapter is:

RQ2 State-of-the-art hierarchical aglommerative clustering (HAC) methods for clus-
tering web search results for person name queries break on search results of a people
search engine, which contain many social media profiles. Can we remedy this problem
by treating social media profiles differently from regular web documents, clustering the
two types of documents separately and then merging the clusterings back together?

While in the research outlined above we proposed algorithms, for our next research ques-
tion we shift our attention towards evaluation. And from general people search we move
to expert profiling. Balog et al. [20] define the task of expert profiling as producing a
ranking of a set of known knowledge areas for a given expert. Expert profiling is related
to the task of expert finding, which Balog et al. [20] operationalize as ranking experts
for a knowledge area. To evaluate expert profiling algorithms, they use the UvT expert

3



1. Introduction

collection as a test bed. This test collection contains expert profiles with knowledge ar-
eas that each expert has voluntarily selected for him- or herself from an alphabetical list
(self-selected profiles). The evaluation has been done as in a document retrieval task. To
see how this works, think of the expert as a query, and think of their selected knowledge
areas as relevant items. Thus, standard evaluation metric scores have been reported. A
major concern is that the self-selected profiles may be sparse, resulting in unrealistically
low scores. Therefore, in Chapter 5, we conduct a self-assessment experiment where we
ask experts to judge a profile we generated for them. These judged system-generated
profiles can also be used as a set of ground truth to evaluate expert profiling algorithms.

First, we analyze the quality of the generated profiles. We look into the character-
iscs of difficult experts. We consider the number of knowledge areas an expert has, the
number and types of documents authored by an expert, the job he or she fullfills, and so
on. We also perform a content analysis of free-text feedback supplied by experts during
the self-assessment experiment, to identify issues with the generated profiles that experts
agree on.

Next, we take a step back. Researchers developing expert profiling algorithms benefit
from quick and automatic evaluation using a set of relevance assessments. Recall that
self-selected profiles have so far been used for this. Now, we release the judged system-
generated profiles. If researchers use these for evaluation, what will be the differences
in evaluation outcomes? The judged system-generated profiles are different in a number
of ways, e.g., there are fewer of them (not all experts participated in the assessment
experiment), they contain additional knowledge areas, and for these knowledge areas we
now have a level of expertise on a scale of one to five. We look at how each of these
differences affects evaluation outcomes. Our research question in this expert profiling
study is:

RQ3 We ask experts to judge profiles we generate for them. What is the quality of our
generated profiles? Which experts are hard to generate a profile for and why? Previously,
evaluation of expert profiling algorithms has been done by using profiles of knowledge
areas that experts selected from an alphabetical list. If we use judged system-generated
profiles for evaluation, what are differences in evaluation outcomes?

The above research question is mainly about evaluation. In our next case study, we
explore an idea that can be used for both evaluation and optimization. We stay in an
academic context, but look at a different task: scientific literature search. Given an in-
formation need, a user wants to find all relevant literature. Since the literature is vast and
rapidly growing, this is a hard goal. To support search, there exist fully indexed scientific
literature collections. People well familiar with indexing terms can help others formulate
their information need in the vocabulary of the index, and locate additional relevant doc-
uments. In Chapter 6, we explore methods to re-use the huge annotation effort gone into
such collections for the purposes of evaluation and optimization of search algorithms.
Typically, so-called IR test collections [193] are used for both. The main ingredient for
such test collections is a set of descriptions of information needs. For each information
need, usually a single query is formulated, and a set of relevant documents is obtained.
Especially that last step is costly: it takes a lot of human effort.

4



1.1. Research outline and questions

We turn the process of creating a test collection on its head. We start by locating
relevant documents. We do this through the annotations: the indexing terms. We pro-
pose a number of strategies. In the simplest, we start from a group of documents that is
indexed with a particular topical indexing term, e.g., “information retrieval.” We think of
all these documents as relevant to an information need. In our next strategy, we recog-
nize that perhaps not all indexing terms can represent realistic information needs. Often,
they are overly general: for example, no PhD student ever searches for all papers on “in-
formation retrieval.” Therefore, we experiment with sampling combinations of indexing
terms. Having obtained a set of relevant documents, we consider two approaches to gen-
erate a query. In the first, we simply concatenate all words that constitute the indexing
terms. In the second approach, we sample discriminative words from the indexed group
of documents. The Cartesian product of our strategies for sampling relevant documents
and query terms yields six recipes for generating a test collection. Because they are
generated automatically, we refer to them as pseudo test collections (PTCs).

How do we evaluate the usefulness of a PTC for evaluation and for optimization?
For evaluation, we look at how a set of ten retrieval algorithms is ranked by a traditional
hand-crafted test collection. We compare this to how the same algorithms are ranked
by our PTCs. For optimization, we consider the optimization of a particular algorithm,
as a proof-of-concept. We choose a learning to rank (L2R) algorithm. L2R approaches
are increasingly common in information retrieval, and represent the current state-of-the-
art [138]. We compare two scenarios. In both, we test on a hand-crafted test collection.
In the first scenario, we train on a different hand-crafted test collection. This is the usual
way in empirical machine learning research: we have some human-annotated ground
truth, and we optimize on it. The hope is that the optimized algorithm will perform
well in the real world, on different queries. To gain an estimate of this, we evaluate the
optimized algorithm on an unseen set of test queries. In the second scenario, we test on
the same unseen test queries. But we optimize on a PTC. That way, we gain an estimate
of how well our search algorithm would do in the real world if we do not have any human
ground truth to optimize on. Our research question in this study is:

RQ4 Collections of scientific literature are sometimes indexed with different kinds of
annotations. Can the result of these annotation efforts be used to generate a pseudo test
collection (PTC)? When retrieval algorithms are evaluated using a PTC, are they ranked
as they would be by a hand-crafted test collection? And when we test a L2R algorithm on
a hand-crafted test collection, what is the best way to train it: on a different hand-crafted
test collection, or on a PTC?

After exploring the idea of creating a PTC for scientific literature search—where content
and annotations are of a high quality—we perform a more extensive study of the same
general idea in the much more noisy domain of microblog search [166]. In particular, we
study Twitter, where posts are also called “tweets.” Microblogging platforms are real-
time, in the sense that many posts are about current events. And typically authors of
posts have followers. Followers receive all post of their “followees” in real-time, if they
are logged-in. Some posts are personal in nature, other posts are of interest to a broader
public. If a follower wants to pass on a tweet to his or her own followers, he or she can
“re-tweet” it. It is reasonable to expect that some users of a microblog search engine

5



1. Introduction

are looking for recent updates on a topic of their interest. In an initial benchmarking
task around microblog search, systems had to retrieve tweets in chronological order,
omitting non-relevant tweets. Later editions of the same benchmark required systems
to order tweets by relevance, as in most retrieval settings. This is the task we study.
In our fifth case study (Chapter 7), we focus on the optimization of microblog search
algorithms. As before, we compare this with optimization on hand-crafted microblog
test collections [166, 212]. Testing is always done on hand-crafted collections.

The main idea to the creation of PTCs here is to use hashtags. Hashtags are anno-
tations by the authors of a microblog post. Hashtags may refer to events, recent hypes,
causes or campaigns started anywhere in the world, TV-shows, particular genres of jokes
(#blackparentquotes), emotions shared by many people (#thankgoditsfriday), and so on.
We assume that tweets with the same hashtag share a topic, whatever that topic is. Un-
like in scientific literature collections, there may be many tweets on the same topic, but
without the hashtag. Also, there may be tweets on a different topic, but with the same
hashtag (e.g., spam). In short, hashtags are noisy. Still, we construct PTCs here, taking
the set of tweets that share a hashtag as a starting point.

The next step in the PTC creation process is to generate a query for each hashtag.
We do this by sampling discriminative terms from posts with the hashtag. This is our
first PTC-generation recipe. To give algorithms optimized on a PTC a chance to capture
recency, we propose a simple method to derive a query-timestamp for each hashtag-
derived query, from the publication dates of the tweets with that hashtag. This is our
second PTC-generation recipe. In microblog search, other factors besides recency play
a role. Indeed, quality may be captured in relevance assessments of IR test collections.
Among documents that are on-topic, higher quality documents may receive a higher rel-
evance grade, or may have more chance to be judged relevant at all. In the creation of
the microblog search test collections we use, assessors took ‘interestingness” of tweets
into account. They did not only consider if tweets are on-topic, but also if they contain
additional information [166]. Our third PTC-generation recipe aims to capture interest-
ingness of tweets as well. It takes into account only features that are query-independent,
e.g., does the Tweet contain a link, does it contain a username, etc.

The three generated PTCs are compared in terms of how useful they are as an op-
timization test-bed. We optimize three commonly used L2R methods. All three are
optimized in two steps. First, the query-dependent features are optimized. Most query-
dependent features are retrieval scores of full-blown retrieval algorithms. Consider for
example language modeling with Dirichlet smoothing. It has one free parameter, which
we tune on a PTC. Second, a function is learned that combines all L2R features, both
query-dependent and query-independent. Our research question in this study is:

RQ5 Hashtags are used in microblog search to indicate that a tweet is part of a larger
discussion. We assume that tweets sharing the same hashtag share the same topic, by and
large. Can we build on this assumption to generate a PTC? And when we test an L2R
algorithm on a hand-crafted microblog search collection, what yields better performance:
training on a different hand-crafted collection, or training on a PTC? We consider three
recipes for generating a PTC. What is their relative merit as training material? We con-
sider three strong L2R algorithms. How will our findings vary with a different choice
of L2R algorithms? And, how succesful can free parameters of individual retrieval algo-

6



1.2. Main contributions

rithms such as language modeling be tuned on our PTCs?

We answer the above five questions in our five research chapters (Chapters 3–7), in the
discussion and conclusion sections of each chapter. In Chapter 8, we summarize our
findings.

1.2 Main contributions

The contributions in this thesis are observational and algorithmic in nature. We also
contribute resources, namely test collections. We list our contributions below.

Analyses and algorithms

A feature analysis for person name query classification Weerkamp et al. [231] pro-
pose a query classification scheme for person name queries, and perform a clas-
sification experiment. We repeat this experiment and provide insights in the im-
portance of features that capture online context of person names and interaction of
users with a people search engine.

A two-stage clustering model for people search results We observe that state-of-the-
art algorithms for clustering general web search results for person name queries
break down when applied to results of a people search engine. We recognize a
main problem: the larger fraction of social media profiles in people search engine
results. We obtain a dramatic performance increase with a two-stage clustering
model that clusters social media profiles and other web-documents separately and
then merges the two clusterings.

An analysis of the quality of generated expert profiles We collect and analyze free-
text feedback from employees of a Dutch university on profiles containing knowl-
edge areas we ranked for them using a combination of strong expert profiling al-
gorithms. We also perform a quantitative error analysis using explicit judgments
they provided for knowledge areas.

An analysis of expert profiling evaluation outcomes The judged system-generated pro-
files obtained during the self-assessment experiment described above can be used
for the evaluation of expert finding and expert profiling tasks. This holds true
also for the self-selected profiles, which contain knowledge areas employees had
selected voluntarily from an alphabetical list. We prove an extensive analysis of
the differences in evaluation outcomes for the expert profiling task. We also offer
considerations about the use of both sets of ground truth for the expert finding task.

Methods for generating test collections for scientifc literature search Inspired by the
automatically generated test collections for known-item search in [15], we build
pseudo test collections for the evaluation and optimization of algorithms perform-
ing a more general document retrieval task: scientific literature search.

7



1. Introduction

Methods for generating test collections for microblog search We apply the idea of us-
ing annotations for building pseudo test collections for use in the more noisy do-
main of microblog search. We extend our methods, taking into account recency of
documents and quality indicators in the generation process. We report on extensive
experiments in which pseudo test collections are used for optimization.

Resources
The Dutch People Search Results Dataset Search results of a people search engine for

33 popular queries submitted to a Dutch people search engine were crawled. The
crawl is made available on http://ilps.science.uva.nl/resources/
ecir2012rdwps. Manually created ground truth is included for the task of
clustering search results around the individuals they refer to.

The TU Expert Collection We have crawled the TU Webwijs website, providing an
update of the UvT Expert Collection [20]. We performed a self-assessment exper-
iment and make available the relevance judgments we obtained in it. These judged
system-generated profiles can be used for the evaluation of expert profiling and
expert finding tasks. We also release the self-selected profiles that contain knowl-
edge areas that employees had originally selected from an alphabetical list: these
profiles are an update of the self-selected profiles that have previously been used
for the evaluation of both tasks [20]. The TU expert collection can be found online
at http://ilps.science.uva.nl/tu-expert-collection.

1.3 Thesis overview

This thesis is organized in eight chapters. After a background chapter, we present five
research chapters, each containing a case study of a particular vertical search application.

Chapter 2—Background We place our research in the broader context of information
retrieval. After a brief outline of that field, and of vertical search applications in
particular, we review people search, expertise retrieval, scientific literature search
and microblog search literature.

Chapter 3—Query Classification in People Search We classify person name queries
submitted to a people search engine into low-profile, event-based and regular high-
profile queries. We investigate the importance of, amongst others, news, Wikipedia
and search log features for this task.

Chapter 4—Result Disambiguation in People Search We study the problem of group-
ing people search engine results around the individuals they refer to. We find that
social media profiles and other web documents should be treated altogether differ-
ently and propose a two-stage clustering algorithm that does this.

Chapter 5—On the Assessment of Expertise Profiles We perform an evaluation study
of expert profiling algorithms [20]. We ask experts to judge profiles of knowledge
areas that we generated for them in a self-assessment experiment. We perform an

8

http://ilps.science.uva.nl/resources/ecir2012rdwps
http://ilps.science.uva.nl/resources/ecir2012rdwps
http://ilps.science.uva.nl/tu-expert-collection


1.4. Origins

error analysis of the generated profiles and we analyze evaluation outcomes when
the judgments obtained in the self-assesment experiment are used as ground truth.

Chapter 6—Pseudo Test Collections for Scientific Literature Search We study scien-
tific literature search. In particular, we re-use the annotation effort of professionals
who indexed a collection of scientific articles to generate a pseudo test collection.
This collection can be used for evaluation and optimization and we report on both.

Chapter 7—Pseudo Test Collections for Microblog Search We apply the same gen-
eral idea of generating pseudo test collection in the microblog search domain,
which is more challenging due to the noisy nature of tweets. We extend our gen-
eration methods. We report on extensive optimization experiments in which our
pseudo test collections are used.

Chapter 8—Conclusions We summarize our main findings and point out directions for
future research.

1.4 Origins

For each research chapter we list on which publication it was based, and we discuss
briefly the role of co-authors.

Chapter 3 This chapter is based on Berendsen, Kovachev, Meij, De Rijke, and Weer-
kamp [30] “Classifying Queries Submitted to a Vertical Search Engine.” Proceedings
of the 3rd International Web Science Conference. ACM, 2011. We perform additional
experiments based on the same classification scheme, ground truth annotation interface,
and experimental setup used in [231], to the design of which all authors contributed.
Berendsen and Kovachev performed the classification experiments and analysis, and all
authors contributed to the text.

Chapter 4 This chapter is based on Berendsen, Kovachev, Nastou, De Rijke, and
Weerkamp [31] “Result disambiguation in web people search.” Advances in Informa-
tion Retrieval. Proceedings of the 34th European Conference on IR Research. Springer
Berlin Heidelberg, 2012. We mine popular queries from the query logs of a Dutch peo-
ple search engine, re-issue these queries, crawl all search results, and perform clustering
experiments. All authors contributed to the design of the algorithms and to the text. The
experiments and analysis were carried out mostly by Berendsen and Kovachev.

Chapter 5 This chapter is based on Berendsen, De Rijke, Balog, Bogers, and Van den
Bosch [29] “On the assessment of expertise profiles.” Journal of the American Society
for Information Science and Technology. 2013. We perform a self-assessment experi-
ment, which was designed and carried out by all authors save Berendsen. The free text
feedback of experts was coded by Bogers and Van den Bosch. The scope and the design
of the analyses—the error analysis, the analysis of evaluation outmoces—was mostly de-
veloped by Berendsen, De Rijke and Balog, and carried out and reported on mostly by
Berendsen.

9



1. Introduction

Chapter 6 This chapter is based on Berendsen, Tsagkias, De Rijke, and Meij [32]
“Generating Pseudo Test Collections for Learning to Rank Scientific Articles.” Infor-
mation Access Evaluation. Multilinguality, Multimodality, and Visual Analytics. Pro-
ceedings of the Third International Conference of the CLEF Initiative. Springer Berlin
Heidelberg, 2012. All authors contributed to the design of the algorithms and experi-
ments, and to the text. The experiments were carried out by Berendsen and Tsagkias.

Chapter 7 This chapter is based on Berendsen, Tsagkias, Weerkamp, and De Rijke
[33] “Pseudo test collections for training and tuning microblog rankers.” Proceedings
of the 36th international ACM SIGIR conference on Research and development in infor-
mation retrieval. ACM, 2013. All authors contributed to the design of the algorithms
and experiments. Experiments were carried out mostly by Berendsen, with contributions
from Tsagkias. All authors had substantial contributions to the text.

Work on other publications also contributed to the thesis, albeit indirectly. We mention
five papers: (1) a query log analysis of a Dutch people search engine [231], with con-
tributions in analysis, a classification experiment and writing; (2) an analysis of the logs
of the search engine for The European Library [86], with contributions in analysis and
writing; (3) the editing of chapter four in [1], on challenges in test collection design and
exploitation; (4) work in which an approach to microblog search was proposed that uses
syntactic features [201], with contributions in reproducing results from our L2R exper-
iments [33] and in writing; (5) an analysis of how experts annotate online content with
regards to its impact on the reputation of particular brands [170], with contributions in
writing.

10



2
Background

We first give a brief overview of the field of information retrieval (IR) in Section 2.1,
highlighting algorithms that we will use in our research chapters. Then, in Section 2.2,
we discuss evaluation methodology in IR, with a focus on methods we use or build upon
in this dissertation, i.e., Cranfield style test collection based evaluation and the automatic
generation of test collections. Finally, in Section 2.3, we give background on the domain-
specific search applications that are the subject of Chapters 3–7.

2.1 Information retrieval

Usually, in information retrieval research, there are at least the following key ingredi-
ents: (1) a user with an information need; (2) a collection of information objects; (3) a
notion of relevance, i.e., the information need can be satisfied by certain relevant infor-
mation objects in the collection; and (4) a system, which generates a response to to the
information need, and which defines the set of possible interactions for the user, e.g.,
entering a query in a text-box, and interacting with a search engine result page (SERP).

In this chapter and in this dissertation, we will see many instantiations of each of
these ingredients. In this section, our main focus is a quite general and much studied
instantiation, “ad hoc” document search. There are different kinds of ad hoc search, e.g.,
searching with a general purpose web search engine, searching for scientific articles,
or searching for news. Ad hoc search scenarios have in common that the user has an
information need which is expressed in a query of, typically, a few words. The query
is fired against an index of text documents, and the results that best match the query are
retrieved. We briefly describe the main underlying algorithms in use today, giving only as
much detail as is useful for understanding the experiments we perform in later chapters.

Besides retrieval of documents, text categorization and document clustering are re-
curring tasks in information retrieval. In Chapter 3 we study query classification, and in
Chapter 4 we perform search result clustering. We give background on these algorithms
in Section 2.3, where we discuss the domain-specific search applications from the above-
mentioned chapters. Before we give an overview of retrieval algorithms for the vanilla
ad hoc retrieval scenario, we give a brief history of active research areas in IR.

11



2. Background

2.1.1 A very brief history of IR

In the early decades of information retrieval, from the 1950s until the early 1990s, much
research was done on retrieval of scientific literature. In the article collections, often
only metadata of each article was available, such as its title, authors, keywords, and
abstract [193]. Interestingly, even as recently as 2007 and 2008, this very setting was
studied in the “domain-specific” track of a yearly European evaluation activity, CLEF
(Cross Lingual Evaluation Forum) [173, 174]. This shows that retrieval, even for a nar-
row domain like this, is highly challenging. In Chapter 6, we perform experiments on
data collections from this track. In the 1990s, much attention was devoted to the ad-
hoc search scenario, often with collections of news articles. Document collections were
increasing in size now [193]. From the 2000s onwards, a growing diversity of search
settings was studied, and collections grew even bigger [193]. The dominant application
now is general purpose web search, which has large document collections. The diversity
of tasks studied increased as well, increasing the need for new algorithms and evaluation
methodology. It is easy to expand on the list of domain-specific search settings we listed
in Chapter 1 with more examples that received much attention, e.g., patent retrieval [140],
image retrieval [206], book search [124], and so on. The scenarios from Chapters 3–7 fit
in this general picture.

2.1.2 Algorithms for document retrieval

In document retrieval, documents are compared to queries. To do this, all algorithms
discussed in this section segment text into words first, through tokenization. Then, op-
tionally, stopwords may be ignored for the purposes of retrieval. Typically, very high
frequency words are treated as stopwords. Intuitively, this will prevent a query from
matching too many documents. Next, again optionally, terms may be normalized. This
is typically done by stemming, where inflections of the same stem are treated as the same
term; in this way query terms can potentially match more document terms, reducing the
chance of missing some important information. Once queries and documents are both
segmented into words, or terms, we can think about how to treat matches between query
and document terms. We discuss a selection of influential algorithms proposed in the
literature, guiding the selection by which algorithms we use in Chapter 6 and 7.

Boolean retrieval The first approaches to information retrieval, prominent in the 1950s
and 1960s [145], are based on whether or not exact matches occur; they are boolean
retrieval models. Operators to combine query terms are: AND, OR and NOT. In Chap-
ters 6 and 7 we use two flavours of boolean retrieval. Both use only the AND operator.
In the first approach, all query terms must occur in the document in same order as in the
query. In the second approach, all terms must match as well, but their order does not
matter. Both models allow setting a window size of a particular number of terms. If we
slide a window of that size over the document terms, all terms must occur in that window
at least once for the query to match. We refer to the first model as “BOW” (boolean
ordered window), and to the second as “BUW” (boolean unordered window). Boolean
queries define a set of documents to be retrieved, but no ranking of these results. Adding
terms with the AND operator makes queries restrictive, and yields narrow result sets. OR

12



2.1. Information retrieval

queries can match very large result sets. In larger collections, both soon lead to unsatis-
factory results: we either miss many important documents or match many uninformative
documents, as a result of which a user has to examine many search results.

Tf-idf and the vector space model To make ranking possible, the concept of term
weighting was established. Two basic observations lie at the basis of so called tf-idf
weighting scheme [215]; we can weight term importance for terms occuring in docu-
ments, giving more importance to terms which: (1) occur more frequently in a docu-
ment; and (2) occur in less documents. The first goal is achieved by taking into account
the (relative) term frequency tf(t, d) of a term t in a document d; the second by defining
some variant of inverse document frequency (idf ). In all variants of idf, the fraction 1

df(t)

plays a role, where df(t) is the number of documents a term t occurs in.
One way to use term weighting to compute a score between a query q and a document

d is to represent both query and document as a vector, with one element for each word in
a vocabulary, e.g., all words that occur in the document collection. Each element contains
a weight, e.g., a tf-idf weight. Then, the cosine similarity between query and document
vectors can be used as a score to rank documents.

The probability ranking principle and BM25 It is also possible to approach and
formulate the ranking problem probabilistically. The most direct formulation here strives
to estimate the probability P (R = 1|d, q) that a document d is relevant for query q. The
famous probability ranking principle states that ranking documents by this probability
should be the most useful ranking to the user, assuming that the relevance of a document
to a query does not depend on the relevance of results that the user may have already
seen [187].

The estimation of P (R = 1|d, q), however, is not straightforward if we have seen
no examples of relevant documents for query q. One influential and very successful re-
trieval algorithm, BM25 [186], can be interpreted as a probabilistic model, where several
heuristic choices have been made to estimate unknown probabilities; see [185] for a nice
overview of relations between BM25 and other, probabilistic retrieval methods.

Tuning the parameters of BM25 We treat BM25 in a bit more detail, because of its
wide use even today, and because in Chapter 7, one of the retrieval models we show
detailed parameter tuning results of, is based on BM25 (See Figure 7.2a). To understand
the effect of parameter tuning on retrieval scores, we reproduce the formula that computes
the BM25 retrieval score of a document d for a query q; we base it on Indri1 source code.
In this formulation, d and q are modeled as multisets (bags) of terms t:

BM25 (d, q) =
∑
t∈q

w(t, q)× tfn(t, d)× idf(t), (2.1)

with

w(t, q) =
tf(t, q)(k3 + 1)

tf(t, q) + k3
, (2.2)

1Indri 5.1, available at http://www.lemurproject.org/indri.php

13

http://www.lemurproject.org/indri.php


2. Background

tfn(t, d) =
tf(t, d)(k1 + 1)

tf(t, d) + k1(1− b+ b(
∑

t∈d tf(t,d)

∆ ))
, (2.3)

and

idf(t) = log(
|D|+ 1

df(t) + 0.5
).

Here, w(t, q) is the term weight of term t in query q, tf(t, q) the raw frequency of term t
in the query, tfn(t, d) is the normalized term frequency of term t in document d, tf(t, d)
is the raw frequency count, idf(t) is the inverse document frequency of t in the collection,
D is the document collection, and ∆ is the average document length in the collection.

The free parameters k1, b, and k3 are constants. We give an interpretation of these pa-
rameters based on [183]. Parameter k1 can be used to manipulate the effect that tf(t, d)
has on document score for each term t ∈ q. A k1 of zero has two effects: (i) the influence
of parameter b disappears, and (ii) only term occurrence matters, not the frequency. A
higher value for k1 will increase the importance of term frequency, and also the influ-
ence of parameter b. Parameter b is used to normalize for document length. A b of zero
indicates that the ratio of document length and average document length is not deemed
important, term frequency in longer documents is not discounted, the assumption be-
ing that longer documents are long because they treat multiple topics. Setting b to one
discounts term frequency in longer documents on the assumption that longer documents
are simply more verbose [183]. Parameter k3 is mainly useful for longer queries where
words can appear multiple times. Setting k3 to zero has the effect of not taking into ac-
count the frequency of a term in the query. Setting k3 to a higher value favours terms that
occur more often in the query. In our experiments in Chapters 6 and 7, we set k3 to zero,
because in our setting, we expect little or no repetitions of query terms.

Note that the BM25 formula uses term weighting, both taking the term frequency
and the inverse document frequency into account. Indeed, both the Indri and the Terrier2

implementations of tf-idf weighting that we use in Chapters 6 and 7 are in fact variations
of the above BM25 formula. They have the same parameters k1 and b, and these pa-
rameters play similar roles. The Terrier tf-idf implementation only allows manipulation
of b, the document length normalization parameter: this is the retrieval model of which
performance scores are shown in the abovementioned Figure 7.2a.

Language modeling In the late 1990s, language modeling, a technique originating
from the field of speech recognition, was introduced in IR practice [176]. Instead of
estimating P (R = 1|d, q) directly, for which it would be convenient to have exam-
ples of relevant documents for q, it ranks documents by the query likelihood P (q|d):
the probability of observing the query q given d. A document d is then modeled as an
observation from an underlying distribution; the multinomial distribution is a common
choice [145]. By assuming conditional independence of query terms given the document,
we can rewrite P (q|d) as

∏
t∈q P (t|d). There are many ways to estimate the latter. A

successful approach is to use Dirichlet smoothing:

P (t|d) =
tf(t, d) + µP (t|D)∑
t′∈d tf(t′, d) + µ

, (2.4)

2Terrier 3.5, available at http://terrier.org

14

http://terrier.org


2.1. Information retrieval

where D is the document collection, as before in this chapter, and µ is a free parameter.
The idea here is that a document is generated by a multinomial distribution, the param-
eters of which are influenced by a prior distribution: the Dirichlet distribution. The free
parameter µ governs how much smoothing occurs: higher values give more weight to
P (t|D), the probability that a term occurs in the document collection. For a thorough
study of this and several other smoothing methods, see [242]. The language modeling
(LM) variant we use in Chapters 6 and 7 is the Indri implementation of it, which imple-
ments almost exactly Equation 2.4 above. We treated language modeling in some detail,
because in Chapter 7, Figure 7.2b, we show the impact of varying µ on performance.

Divergence from randomness Another branch of probalistic retrieval models that we
use in our experiments are divergence from randomness (DFR) models, developed in the
early 2000’s. These models take into account how term frequencies differ from what may
be expected from a random process [5]. PL2 is one instantiation of the DFR framework.
The Terrier implementation of it allows setting a parameter c, which represents a multi-
plying factor for the average document length in the collection, and thus allows one to
influence the amount of document length normalization that occurs [3, 4]. Later, param-
eter free hypergeometric DFR models were developed [3], the DFRee model we use in
Chapters 6 and 7 is a variation on these models. Later, a model was proposed that takes
occurence of pairs of query terms in documents into account [171]. This model allows
setting a window size within which the terms must occur. We use it in our experiments,
referring to it as DFR-FD, and we opt for the full dependence model, in which the order
in which both terms occur does not matter.

Pseudo relevance feedback All models discussed so far can be used without informa-
tion about the relevance of any documents to a query. If a user of a search engine would
provide some feedback on the relevance or non-relevance of some documents, a better
query may be constructed, weighting query terms using the provided feedback [145]. An
early approach allowing this is the Rocchio algorithm [188]. In the abscence of explicit
relevance feedback, a popular technique is to treat a fixed number of retrieved documents
from the top of an initial retrieval ranking as pseudo relevant documents; this is called
pseudo relevance feedback (PRF). Lavrenko and Croft [130] propose a way to estimate
P (t|R), the probability of observing a term given observing a (pseudo) relevant docu-
ment, which has become popular in PRF approaches. The Indri PRF implementation
used in Chapter 6, for example, uses these term probabilities for query expansion. It
ranks candidate terms by P (t|R), selects a fixed number of terms from the top of this
ranking, and weights the expanded query terms by P (t|R) as well. The PRF implemen-
tation of Terrier uses a DFR model to rank candidate expansion terms occuring in the top
retrieved documents [165].

Fielded retrieval models One step further than treating each document as a bag of
words is to consider structure in documents. If term matches occur in the title of a
document, it may be beneficial to give more importance to it than a match in the body
of a document. The inference network retrieval model proposed in Metzler and Croft
[152] allows matching terms in specific fields, as do the fielded extension to BM25:

15



2. Background

BM25F [241], and the mixture of language models described in [163].

Other query and document features There are many other factors besides content
based ranking that affect the usefulness of a document to a user at a given time in a
certain context. A famous example is the “PageRank” of a web page [167], which is
motivated by the interpretation of a link to web page as a recommendation of that page.
The publication date of a document can also be an important factor, e.g., in microblog
search, the topic of Chapter 7, where users are often looking for recent results [221]. The
experience and status of the author of a scientific paper may affect the potential relevance
of that paper, cf. Chapter 6. Document representations and query representations can
be enriched by detecting and linking entities in them to a knowledge base [150]. If
interaction data with search results is available, from user clicks useful signals can be
obtained [53, 112].

Learning to rank To combine all these different aspects into a single ranking of doc-
uments for a query is a difficult challenge. Learning to rank (L2R) [138] algorithms
have become the weapons of choice for this. They are supervised machine learning al-
gorithms that can learn from labeled data about the relevance of documents. They fit
the parameters of a function of a set of features in such a way that a performance score
is optimized on a training set of labeled data. Then, the fit function can be applied to
new, unseen queries (a test set). We will say a bit more about the features, the kinds of
functions L2R models learn, and the performance scores they optimize now. Features
are usually numerical representations of the aspects we discussed above, e.g., PageR-
ank, recency, number of publications of the author of a paper, and so on. In modern
web search systems, typically hundreds of features are used. Retrieval algorithms such
as BM25 and language modeling are almost always amongst the features used. Because
domain-specific features can easily be incorporated, L2R algorithms are ideally suited for
domain-specific applications also. L2R algorithms differ in the kinds of functions they
can learn. Linear algorithms learn linear combinations of the input features. Other mod-
els learn non-linear functions, e.g., gradient boosted decision trees [85] learn a sequence
of decision trees, the predictions of which are combined in a final ranking score. The
kind of labeled data and the performance score that is optimized also varies. Pointwise
L2R algorithmns learn to predict as for each query-document pair the degree to which the
document is relevant to the query. Pairwise algorithms learn to predict the correct order-
ing for pairs of documents given a query. Listwise algorithms learn to produce for each
query a ranking such that a retrieval evaluation metric for the whole list is optimized;
we will discuss evaluation metrics in the next section. The L2R models we apply in
Chapters 6 and 7 are linear. Pegasos SVM [197, 202] and RankSVM [111] are pairwise
models, while Coordinate ascent [151] is a listwise method. L2R technology is actively
developed into many directions, e.g., online L2R [99], diversifying search results [196],
multi-task learning [49], semi-supervised L2R [219], but at this point we have covered
enough ground to facilitate understanding of forthcoming chapters.

In the next section, we discuss evaluation of IR algorithms, devoting quite some
attention to automatic evaluation. One theme in Chapters 6 and 7 is that evaluation and
optimization are related. In those chapters, we generate ground truth that can be used

16



2.2. IR evaluation

for both optimization and evaluation. When evaluation is performed automatically, the
distinction between the two becomes smaller, and when we discuss automatic evaluation,
we will see again a L2R approach [14].

2.2 IR evaluation

In this section on IR evaluation methodology, we focus on Cranfield style, test collection
based evaluation, which has become dominant over the decades; see [193] for a compre-
hensive and thorough overview of the history of this tradition, ranging from the earliest
Cranfield experiments to today’s TREC campaigns. This methodology is characterized
by static sets of test queries, documents and relevance assessments, with which a col-
lection of systems can be benchmarked in an offline fashion. Of course, there are other
important and popular methods, such as user studies [235], A/B testing [123], or inter-
leaving [180], but the work in this dissertation is primarily centered around the evaluation
using IR test collections (although in Chapter 5, we perform a content analysis [131] of
assessor comments on the quality of the ranking of their expertise areas). We start with
a brief discussion on benchmarking and on how it has been analyzed in the literature.
This will help us understand how we assess the quality of our test test collection for
expert profiling in Chapter 5 (we will point forward to Chapter 5 repeatedly). It will
also give some background to understand the automatically generated test collections in
Chapters 6 and 7. After discussing benchmarking, we zoom in on the ingredients that
constitute a test collection. Next, we consider some related work on error analysis: error
analysis is key to gaining insight into why systems perform as they do. Finally, we devote
a section to automatic evaluation, with the focus on approaches that generate “pseudo test
collections” (PTCs) for subsequent benchmarking or optimization.

2.2.1 On benchmarking

To be able to create a yardstick for benchmarking, simplifying assumptions have to be
made about users, their tasks, and their notion of relevance. For example, in the TREC
ad hoc collections, a user is assumed to have an information need that is often assumed
to be informational [38], and a document is relevant if it contains a relevant piece of in-
formation, even if it is duplicate information. By framing the expert profiling task from
Chapter 5 as a ranking task, we also make some simplifying assumptions. For example,
users are satisfied with a ranking of expertise areas for an expert, and an area is rele-
vant if the expert has judged it so him- or herself. Typically, evaluation methodologies
are assessed by comparing them to each other, performing detailed analyses in terms of
sensitivity, stability, and robustness. Sensitivity of an evaluation methodology has been
tested by comparing it to a hypothesized correct ranking of systems [101, 179]. Stabil-
ity and robustness are closely related concepts. An evaluation methodology can be said
to be stable with respect to some changing variable, or robust to changes in that vari-
able. For example, Radlinski and Craswell [179] examine how evaluation changes when
queries are subsampled. Buckley and Voorhees [41] examine changes when relevance
assessments are subsampled. In the study in Chapter 5, we are interested in comparing
and analyzing the outcomes of evaluating with two sets of relevance assessments—self-

17



2. Background

selected vs. judged system-generated knowledge areas—and we consider two criteria:
stability and sensitivity. To analyze stability, we identify four differences between our
two sets of ground truth and ask how evaluation outcomes vary with respect to these dif-
ferences. For analyzing sensitivity, we do not have a hypothesized correct or preferred
ranking. Instead, we investigate how many significant differences can be detected with
each set of ground truth.

When two evaluation approaches generate quantitative output for multiple systems,
they can be correlated to each other. Often this is done by comparing the ordering of
all pairs of systems in one ranking to the ordering of the corresponding pair in the other
ranking. One often used measure is accuracy, the ratio of pairs for which both rankings
agree, see e.g., [101, 179, 195, 225]. Another commonly used measure [41, 224] that we
use in Chapters 5 and 6 is Kendall’s tau [119], a rank correlation coefficient that can be
used to establish if there is a monotonic relationship between two variables [204].

2.2.2 Ingredients of a test collection
A test collection based evaluation methodology consists of a document collection, a set of
information needs (or test queries), a set of relevance assessments, an evaluation metric,
and possibly a significance test to be able to claim that the differences found would
generalize to a larger population of test queries.

Information needs Information need creation in the TREC ad hoc tracks is typically
done by assessors, who aim to construct information needs that users of the search ap-
plication at hand may have. Information needs for document retrieval often consist of a
natural language description of the information need, a short formulation of that informa-
tion need, sometimes called title (the actual query a user supposedly submits to the search
engine), and, sometimes, a narrative, which may give further details on relevance crite-
ria for documents. To help make sure information needs reflect user interests, query logs
are a helpful source of information, e.g., when information needs were created for the
TREC 2000 Web Track, they were retro-fitted around queries sampled from web query
logs [227]. In vertical search applications, information needs can take on very different
forms. For example, in our study on expert profiling in Chapter 5, information needs are
about the knowledge a given expert has. Experts for these information needs are readily
available: they are potentially all experts from the knowledge intensive organization be-
ing considered. For convenience, we also refer to information needs simply as queries,
or test queries.

At the TREC ad hoc tracks, test queries with too few or too many relevant docu-
ments are sometimes rejected [94, 227]. Harman [94] reports that for all created queries
a trial run on a sample of documents from the complete collection yielded between 25
(narrow query) and 100 (broad query) relevant documents. Zobel [247] notes that se-
lecting queries based on the number of relevant documents may introduce a bias. In our
experiments in Chapter 5, we retain all test queries (i.e., all experts) that have at least one
relevant knowledge area.

Relevance assessments Relevance assessments are typically created by assessors. As-
sessors try to estimate which documents an actual user of a search engine might find

18



2.2. IR evaluation

relevant or useful given an information need. Assessor agreement is one way to esti-
mate the difficulty of this task. Voorhees [224] studies the impact of obtaining relevance
assessments from different assessors on system ranking using Kendall’s tau. Although
different assessors may judge different documents relevant, system ranking is highly sta-
ble no matter from which assessor the assessments are taken. In Chapter 5, the different
sets of relevance assessments for each expert are created by the same expert but through
different means: in one case the assessor had to manually go through a list, in the other
the assessor was offered suggestions. We find that system ranking may be affected by
these differences.

An important aspect is the completeness of relevance assessments. When test col-
lections were still small, all items in them were judged for every test query [193]. The
experts who participated in our experiments have little time, however, and were simply
not available to do this. A well-known method to evaluate systems without complete
assessments is pooling. It was proposed in [114] as a method for building larger test
collections. The idea is to pool independent searches using any available information
and device [193]. In our study in Chapter 5, we also perform a specific kind of pooling.
We use eight systems to generate expertise profiles, i.e., lists of knowledge areas char-
acterizing the expertise of a person. The eight systems are not independent, but are all
possible combinations of one of two retrieval models, one of two languages, and one of
two strategies concerning the utilization of a thesaurus of knowledge areas. Unlike the
methodology used at TREC [227], we do not take a fixed pooling depth for each run,
perform a merge, and order results randomly for the assessor. Instead, to minimize the
time required for experts to find relevant knowledge areas, we aim to produce the best
possible ranking by using a combination algorithm. We also have something akin to a
manual run: it consists of the knowledge areas selected by experts in the TU-Webwijs
system before we presented them with a generated profile. We confirm in this study that
this manual run contributes many unique relevant results, that is, the automatic systems
fail to find a significant amount of these knowledge areas.

Zobel [247] performs a study on pooling bias. The concern here is that assessments
are biased towards contributing runs and very different systems would receive a score
that is too low. In particular, systems that are good at finding difficult documents would
be penalized. For several TREC collections, he found that when relevant documents
contributed by any particular run were taken out, performance of that run would only
slightly decrease. In our study in Chapter 5, experts only judged those knowledge areas
that the automatic systems found. We study the effect of regarding unpooled areas as
non-relevant on system ranking, and find that it has hardly any impact. For this, like
Buckley and Voorhees [41], we use Kendall’s tau.

Evaluation metrics Given a set of relevance assessments for a query, evaluation met-
rics can be computed for a system ranking. Early metrics include precision and re-
call, and so-called precision-recall curves. Later, mean average precision (MAP) was
proposed, a metric that computes at each rank where a relevant document occurs the
precision, sums these precision values, and then divides by the total number of known
relevant documents for this query. Hence, the metric takes both precision and recall into
account. It is a well-understood and popular metric [193], and we use it in Chapters 5–
7. One drawback of MAP is that it treats documents as either relevant or non-relevant.

19



2. Background

Another popular metric, normalized discounted cumulative gain (nDCG) [109], can dif-
ferentiate between different levels of relevance. We report on this metric, too, in Chap-
ter 5. The development of evaluation metrics for information retrieval is a very active
research area, and a great many evaluation metrics have been developed over the years,
see e.g., [48, 156]

Significance tests In IR, significance tests are mostly used to estimate which findings
about average system performance on a set of test queries will generalize to other queries
from the same assumed underlying population of queries. A simple rule of thumb is that
an absolute performance difference of less than five percent is not notable [216]. Pair-
wise significance tests are common in cases where different systems can be evaluated
on the same set of test queries. Voorhees and Buckley [225] test the five percent rule of
thumb with a fixed set of systems and a fixed document collection. Sanderson and Zobel
[195] extend this research and consider relative rather than absolute performance differ-
ences; they prefer a pairwise t-test over the sign test and the Wilcoxon test. Smucker et al.
[209] compared p-values (for the null hypothesis that pairs of TREC runs do not differ)
computed with five significance tests. They find that the Fisher’s pairwise randomization
test, matched pairs Student’s t-test, and bootstrap test all agree with each other, while
the Wilcoxon and sign tests disagree with these three and with each other. They prefer
Fisher’s pairwise randomization test, which is what we use in Chapters 3, 4, 5, and 6. In
Chapter 7, we use the ubiquitous matched pairs Student’s t-test.

In our work in Chapter 5, we vary query sets and sets of relevance assessments. Then,
keeping the significance test used fixed, we measure the average number of systems each
system differs significantly from. We view this as a rough indication of the ability of each
set of assessments to distinguish between systems. The difference in this number between
sets of relevance assessments is a rough heuristic for the difference in sensitivity of the
sets. Cohen [56], who is interested in repeating a benchmarking experiment using a more
stringent alpha value in the significance test, computed the average number of systems
each system differs from for both values of alpha. He calls the difference between these
numbers the criterion differential, saying it is a rough heuristic for the difference in
sensitivity of both alpha values.

2.2.3 Error analysis

While test collections enable us to discriminate between systems based on their aver-
age performance over a set of queries with a certain reliability and sensitivity, Harman
and Buckley [95] stress that it is important to understand variance in performance over
queries. Often, performance of single systems varies more over queries then performance
on one query varies over systems. Variation in performance over queries does not simply
correlate with the number of relevant documents; there is an interaction between query,
system, and document collection [226]. Amongst other chapters, in Chapter 5, in Sec-
tion 5.4.2, we perform an error analysis of expert profiling algorithms. We also find no
immediate correlations at first (e.g., between query performance and number of relevant
items). But when we dig a bit deeper and look at query (expert) characteristics, such
as the number of documents associated with an expert, and, in particular, the kinds of
documents, we can explain some of the variance of performance over queries (experts).

20



2.2. IR evaluation

Summarizing, we have elaborated on the Cranfield evaluation methodology for IR,
upon which much of our work builds. We now have the tools in hand to analyze and
reason about the test collections in this dissertation, be they hand-crafted or generated
automatically. The latter kind are the subject of the next section.

2.2.4 Automatic evaluation

There is a large body of literature regarding the use of interaction data, for online IR
evaluation, as we mentioned before. We focus on complementary approaches, which aim
to construct Cranfield style IR test collections with queries and relevance assessments,
for offline evaluation and optimization. Some approaches automate only some aspect of
the normal test collection creation; we will start with these. Other approaches are fully
automatic. We refer to the resulting test collections as pseudo test collections (PTCs).
Often in this line of work, system ranking produced by PTCs are compared to system
rankings produced by hand-crafted test collections, like we do in Chapter 6.

As we have discussed before this section, the usual test collection creation process al-
ready involves automatic components, e.g., probing a document collection with a search
engine to see if relevant documents for a candidate query exist, and pooling results of
several algorithms before judging these results. Some research aims to enhance test col-
lections with automated methods, while still requiring the same annotator effort. Büttcher
et al. [42] counter pooling bias—i.e., the problem that new, previously unpooled search
results from a new system will never be rewarded—by training a classifier on known rel-
evant documents, and adding documents which are predicted to be relevant to the pool.

Other research focuses on reducing annotator effort, for example by sampling doc-
uments from the pool for which it would be valuable to obtain judgments: an active
learning setup. For example, Carterette et al. [45] sample a document from the pool
that would make the difference between MAP performance of systems large, if its rele-
vance label would be known. The document is presented to an assesor, and the process
is repeated until confidence in the estimated MAP value is high enough. This reduces
the number of assessments needed for a topic. Carterette et al. [46] find that using the
method a much larger set of topics can be created than in typical IR test collections, with
less annotator effort, and with similar reliability of evaluation results. Quite differently,
Rajput et al. [181] extract so called “information nuggets” from currently considered rel-
evant documents. Then, these nuggets are used to locate and score additional potentially
relevant documents, which are shown to the assessor. They show that many relevant doc-
uments are located with this method, compared to typical pooling based test collections.
Instead of requiring human assessments of document relevance, Amitay et al. [8] propose
to let assesors create term relevance sets for each query to benchmark systems with.

Work has been done also on eliminating the need for human assessments altogether.
Soboroff et al. [210] select random documents from the pool of documents for a query
and treats these documents as relevant. They rank systems with these pseudo judgments
and compare system ranking with a ranking based on editorial judgments. Correlations
are positive and significant, but much lower than correlations observed between differ-
ent human assessors. Leaving duplicates in the pool, giving popular documents a higher
chance of being sampled, improves the correlations a bit. This finding has prompted re-
search that tried to select good documents from the pool and treat these as relevant. Wu

21



2. Background

and Crestani [236] rank systems according to how well they agree with other rankers. Nu-
ray and Can [162] first select systems with different strategies, then perform pooling, and
finally compute a ranking of documents using several voting strategies. A top percentage
of this document ranking is then used as pseudo-judgments. Spoerri [218] assume that
different systems retrieve different sets of non-relevant documents. By randomly group-
ing systems they estimate for each system how many documents it found that no other
systems found. If this number is high, the intuition is that these documents are likely
non-relevant. Indeed, they find a negative correlation with retrieval performance. Diaz
[71] predict performance of a run without using pooled results from other runs. He ob-
serves that if similar documents do not have similar retrieval scores, this correlates with
poor retrieval performance. This can be interpreted as an application of the clustering
hypothesis [108], which states that “associations between documents convey information
about the relevance of documents to requests” [145]. Hauff et al. [97] apply the methods
in [71, 162, 210, 218, 236] to correlate system rankings with those observed on variety of
TREC test collections, and find that, surprisingly, random sampling of documents from
the pool [210], leaving duplicates in the pool, performs best overall.

Most of the above approaches assume a set of information needs is available, pro-
duced by human assessors. There is also work that aims to generate information needs
automatically. This reduces annotator effort still more, and much more queries may be
generated in this way. That may be beneficial for estimating the generalization of system
performance to new, unseen queries, if the queries are representative of the population
of real queries. It may similarly improve generalization performance of L2R methods.
To generate information needs, researchers often turn to the document collections over
which search is being performed. The test collection creating process is turned on its
head: groups of documents are the starting point to represent an information need, and
these documents are treated as relevant. Query terms are obtained from text associated
with these documents.

An example that illustrates nicely that domain-specific collections may have inter-
pretable structure which can be used to create PTCs comes from patent search [140].
Here, the information need is to find prior art related to a patent application. One can
now turn to granted, older patent applications, and consider the group of documents it
cites. These documents would have been relevant to the patent application when it was
submitted. The associated query is simply the patent application itself, with the doc-
uments it cites removed from it [88, 164]. Related work in this area is [238]. Another
domain where the approach outlined above could be applied is scientific literature search,
the subject of Chapter 6.

In the realm of web search, Beitzel et al. [27, 28] use the Open Directory Project
(ODP), which categorized web pages, to create a PTC. They propose two kinds. The
first kind constructs a PTC for known-item search. It samples a document from the ODP
and assumes it is relevant to a query (obtained from the logs of a web search engine)
if that query matches the title of the document exactly. The second kind targets more
informational queries. It samples documents listed under a category, and assumes these
documents are relevant to a query that exactly matches the title of the category. Azzopardi
et al. [15] build a PTC for known-item search by first sampling a document, and then sam-
pling query terms from that document using several term-weighting strategies: sampling
terms uniformly, sampling popular terms, or sampling discriminative terms. For doc-

22



2.3. Vertical search applications

ument sampling their results show that sampling proportional to the number of inlinks
of documents yields PTCs that better mirror evaluation outcomes obtained using hand-
crafted test collections. Huurnink et al. [102] develop similar document and term sam-
pling strategies in a cultural heritage setting, where documents consist of metadata orga-
nized in different fields. Different strategies for building PTCs are developed based on in-
sights from how media professionals search in relation to these fields. Similar document
and query sampling techniques have also been adapted for desktop search [120, 121],
cultural heritage search [102]. The document and query term sampling techniques we
propose in Chapters 6 and 7 are closely related to the above techniques; in particular to
the idea of sampling discriminative, over-represented terms from documents.

Asadi et al. [14] create pseudo test collections for web search. They use anchor
texts as candidate pseudo-queries based on previous research in which it was shown that
anchor texts can be used for query reformulation [66]. The group of documents that have
inlinks with a particular anchor text are treated as relevant documents for the anchor text
query. Several techniques to decide which anchor texts to sample as pseudo-queries are
propesed, based on the number of documents they link to and the quality of documents
they link to. The quality of documents is estimated using features such as spamminess
and Pagerank. The main goal of their work is to use the generated PTCs as training
data for a simple learning to rank algorithm, just like we do in Chapters 6 and 7, where
we create PTCs for scientific literature search and microblog search, respectively. The
idea of using anchor texts for PTC generation may be applicable in scientific literature
search, using texts associated with references to cited papers. However, in Chapter 6,
we propose another idea that makes use of the rich metadata, e.g., keywords, present in
scientific articles. In microblog search, posts are hardly linked to. To create PTCs for
microblog search, we make use of hashtags, which label tweets with a topic, and we rely
on a query term sampling technique to generate queries.

So far, the approaches we have always used a particular document collection as a
starting point for PTC creation, although queries and relevance judgments were generated
automatically. Interestingly, it is one of the earliest PTC creation efforts where a more
radical approach was take. Tague [220] propose a probabilistic framework to model
document collections as well as queries, retrieval algorithms, and evaluation metrics,
with the purpose of better understanding the behaviour of IR algorithms.

In the previous section and this section, we have discussed general IR algorithms
and evaluation, and we have already seen some examples of how such methods were
adapted for domain-specific settings. In the next section we provide some background
information about the domain-specific search applications we study in this dissertation.

2.3 Vertical search applications

In web search, results from different verticals are typically combined nowadays, e.g.,
text, images, video, and news [125]. In that setting, research into aggregated search
deals with which verticals to show results from in response to a query, and where to
present these results [9, 125, 159]. In this dissertation, instead, we study several vertical
search applications in isolation. In the design of search technology for domain-specific
search applications, it is useful to start from the ingredients shared by most IR settings

23



2. Background

share, and see how each is instantiated in a particular domain. How are information
needs represented? What are information objects? How do we think about the notion
of relevance? What are the affordances of the system we are considering, and how do
systems approach this task? In the following subsections we will provide background on
people search (including expert search and expert profiling), scientific literature search,
and microblog search.

2.3.1 Finding people

Searching for people has received a lot of attention in the 2000s. Spink et al, 2004 ob-
serve that about 4% of web search queries contains person names. About one in four of
those queries contained the name of a celebrity. A 2010 report by Pew Research Cen-
ter on reputation management in social media questionnaired adult American internet
users and found that people search for themselves, people from their past, friends, col-
leagues, business associates, and so on.3 In recent years, various services offering dedi-
cated people search facilities have emerged, e.g., intelius.com, 123people.com,
spokeo.com, peoplesmart.com. In [231], we study the logs of a Dutch dedicated
people search engine, and observe that about seven percent of queries contains the name
of a high-profile person (e.g., a celebrity, politician, or somebody who was recently in the
news). In Chapter 3, we automatically classify queries into high- and low-profile queries.
Whether or not the query targets a celebrity, the query intent is a particular individual,
and returning relevant results is complicated by the high ambiguity of person names.
One approach to tackle this problem is to group search results around the individuals
mentioned in these results. Three benchmarking activities have been organized around
this task [11–13, 22], and Chapter 4 revisits it in the context of a dedicated people search
engine. People search is also happening in knowledge intensive organizations, where the
search is mainly driven by a need for expertise [18]. Expertise retrieval is the umbrella
term for this research area. Two main tasks in expertise retrieval are expert finding and
expert profiling. In expert finding, the information need is usually an area of expertise,
which is to be satisfied by the names of experts in that area. In expert profiling, the aim
is to capture the areas of expertise of a given expert. The latter task is the subject of
Chapter 5. In the remainder of this section, we first take a look at query classification,
then at search result clustering, and finally at expertise retrieval.

Query classification Query classification aims to correctly identify the underlying in-
formation need of an incoming query, with respect to a fixed classification scheme.
In Chapter 1 we discussed Broder’s taxonomy for web search, which distinguishes in-
formational, navigational, and transactional information needs [38]. This typology has
served as the basis for a number of query classification schemes, including those by [107,
117, 189]. For an automatic web search query classification challenge, Li et al. [134] pro-
pose 67 classes, organized by topic. In vertical search engines, similar classification
schemes have been proposed. For search in an audiovisual archive, Huurnink et al. [103]
match query terms with thesaurus terms. Mishne and de Rijke [153] observes that in
blog search, all information needs are informational, and propose a further classification

3http://pewinternet.org/Reports/2010/Reputation-Management.aspx

24

intelius.com
123people.com
spokeo.com
peoplesmart.com
http://pewinternet.org/Reports/2010/Reputation-Management.aspx


2.3. Vertical search applications

scheme. As we will discuss in Chapter 3, our people search query classification can be
seen as a further specialization of [153]. Jones and Diaz [113] focus on collections where
documents are timestamped, e.g., in news search, and blog search. They observe three
classes of temporal profiles for queries, based on the time series of timestamps of result
sets for these queries: (1) atemporal queries, for which retrieved documents are pub-
lished uniformly over time; (2) temporally unambiguous queries, for which a single peak
can be observed in publication dates; and (3) temporally ambiguous queries, for which
there are multiple peaks. Kulkarni et al. [127], studying web search queries, distinguish
between several types of peaks in the number of searches issued over time, depending on
how quickly user interest surges or declines before and after a peak.

When the population of queries to be classified is large, automatic classification is
necessary. For this, features have to be formalized. Broadly, features can be categorized
as (1) capturing user behavior as observed in transaction logs, (2) capturing coverage
of the state of affairs in the real world related to the query as found in some document
collection, e.g., the internet. Both can be studied as a time series, of searches, clicks, or
timestamped documents associated with a query string. In news search and blog search,
Jones and Diaz [113], interested in classifying queries with regard to the temporal profile
of result set publication dates, compute temporal features from this time series, and a
result set content clarity feature [63]. [107] define features that detect whether a query
contains e.g., business names (indicative of navigational queries), song titles (indicative
of transactional queries), and question words (indicative of informational queries); they
also use some session characteristics, e.g., how many result pages a user inspected. As an
aside, defining what a session is, is not trivial, and it can have an impact on the outcome
of a transaction log analysis. Session boundary detection has been the main subject
of several studies, e.g., [90, 91]. An often used way of gaining more infomation about a
query is issuing it to large knowledge bases, e.g., Wikipedia, The Open Directory, Yahoo!
categories [153], or a general purpose web search engine [134].

Given the features, algorithms that have been used for query classification include
rule-based approaches [107], decision trees [113], Naive Bayes classifiers, support vector
machines, and other supervised machine learning techniques [134].

Evaluation of query classification algorithms makes use of general classification per-
formance metrics, but it is interesting to take a look at which considerations play a role
in choosing one or more metrics. Query classes are typically imbalanced [107, 113], and
evaluation under such circumstances has been studied in the literature, e.g., in Daskalaki
et al. [67]. Jansen et al. [107] report on the number of misclassifications of their method.
Care must be taken with this metric, because a classifier that would always predict the
majority class would achieve a high score for this metric if classes are highly imbalanced.
A common approach is to report precision and recall for each class. If a single metric
to estimate the quality of a classifier is desired, usually precision and recall are com-
bined in an F-score. Li et al. [134] organize a query classification challenge, and use the
micro-averaged F-score [214]. As with accuracy, though, a method that performs well on
the majority class will score high on this metric. Most query classification experiments
follow this basic scheme: researchers propose a taxonomy, annotate queries with class la-
bels, define features, perform a supervised pattern recognition experiment, and compute
multiclass classification metrics. To conclude our discussion of related work on query
classification, we give an example of a completely different experimental setup, for the

25



2. Background

classification of Youtube videos by [59]. They focus on videos for which the number of
views over time displays a single peak, and propose a very simple classification scheme.
If a factor outside the network of Youtube users caused the peak (exogenous), the onset
of the peak will be sudden. Then, if the video is not spread through the network with high
enough probability, most of the mass (> 80%) of the views will be concentrated in the
peak itself (the exogenous subcritical class). If the video is shared enough, only between
20 and 80% of the mass will be concentrated in the peak (the exogenous critical class).
If the peak was caused at least in part by users in the network sharing the video (en-
dogenous), mass in user views will be spread before, during, and after the peak, leaving
only < 20% percent of mass in the peak (the endogenous critical class). Subsequently,
they propose mathematical models for each of the three classes, which predict the rate
at which the number of views will decay after the peak, assuming an exponential decay.
These predictions are evaluated by fitting an exponential decay to videos belonging to
the three classes, and observing that, indeed, the most common best fits correspond to
the predictions of the models.

Search result clustering An important characteristic of people search queries is their
very high ambiguity, which is caused by the very high ambiguity of person names. One
way of dealing with this problem is to disambiguate search results. Disambiguating
search results can be approached by clustering the result documents. This clustering is
usually aimed at organizing and categorizing results to facilitate, for example, search re-
finement or exploratory search. Various approaches to (web) search result clustering have
been proposed. Examples include key phrase extraction [243], latent semantic indexing
on result documents [148], and clustering based on document snippets [84, 87, 245]. A
lot of work in the area focuses on selecting clusters to present to users (e.g., [58]) or as-
signing labels to the clusters (e.g., [106]); see [43] for an overview on web search results
clustering.

As a special case of search result clustering, result disambiguation for person name
queries deals with clustering search results per person, such that each cluster contain doc-
uments referring to a particular individual. Because a document can refer to several peo-
ple with the same name, documents are allowed to appear in several clusters. The WePS
campaigns [11–13] provide an evaluation framework for this particular task. Most of
the best performing approaches use hierarchical agglomerative clustering (HAC). HAC
is a greedy iterative clustering procedure that starts out with a clustering in which each
document is assigned to a singleton cluster. Then, the algorithm chooses the pair of
clusters that has the highest cluster similarity. If their similarity exceeds a fixed mini-
mal similarity threshold, the clusters are merged and the process continues, or, alterna-
tively, the process continues a fixed number of iterations. Differences between WePS
participants mainly exist in the features that are being used, and in how the similarity
between clusters is computed. Chen et al. [51] use tokens from sentences in which the
query name occurs, tokens from the entire web result page, and bigrams as features in
their clustering approach; each feature is weighed using tf.idf. Monz and Weerkamp
[158] compare a large range of features for HAC, including windows around the query
name, different tf.idf weighting schemes, and various schemes for computing cluster
similarity. Ikeda et al. [104] use a two-stage clustering algorithm, in which HAC (based
on named entities, compound keywords, and links) is followed by keyword extraction

26



2.3. Vertical search applications

from the resulting clusters to add documents to these clusters. Yoshida et al. [240] build
on the system created by [104], but replace the second stage with a bootstrapping algo-
rithm: Espresso [168]; this bootstrapping algorithm uses single words as patterns and
documents as instances. When the number of clusters is known beforehand, the person
name disambiguation task can be formulated as a classification problem. The work in
Chapter 4 differs from previous work in that it focuses on a people search engine setting,
in which social media profiles play an important role. We show that the task of disam-
biguation is harder when these profiles are common. We propose to treat social media
profiles separately and are able to overcome this problem. In a similar approach to ours,
Delgado et al. [69] refuse to compute similarity between social media profiles from the
same platform (e.g., two Facebook profiles) while clustering, although in a later stage of
the clustering algorithm, the two profiles could still end up in the same cluster. In their
experiments, this strategy also leads to an improvement.

In the WePS campaigns, evaluation is performed by creating a gold standard clus-
tering, and computing metrics that compare participant clusterings to the gold standard.
Amigó et al. [6] propose four constraints that such metrics should satisfy, and show that
B-cubed precision and recall are the only of a wide range of cluster evaluation metrics
that do so. They also extend B-cubed precision and recall to handle overlapping clus-
ters. In the second edition of the WePS benchmarking activity [12], extended B-cubed
precision and recall were reported on, as well as on a weighted F-score of the two. By
weighting precision and recall differently, F-scores for systems varied, and sometimes
large changes in the rank of a system relative to other systems were observed. Amigó
et al. [7] propose a Unanimous Improvement Ratio (UIR) which can be used to calculate
the degree to which observed differences in F-score are robust with regard to how preci-
sion and recall are weighted. In Chapter 4, we report on extended B-cubed precision and
recall, an F-score in which they are equally weighted (i.e., their harmonic mean), and on
UIR.

Result disambiguation in people search is related to other tasks, such as named entity
disambiguation [65, 93, 175] and entity linking [203]. In these two tasks, most com-
monly, mentions of entities are linked to known entities in a knowledge base. Gruetze
et al. [89] propose an interesting connection between people search result clustering and
entity linking. If we use a social media platform such as Facebook as a knowledge base
of individuals, people search result clustering can be approached as a classification task,
where each document must be assigned to the right social media profile.

Expertise retrieval A special case of people search is expert retrieval [18]. An excel-
lent overview of this area can be found in [24], who broadly group information needs in
expertise retrieval in two categories: (1) Who is an expert on a given knowledge area,
and (2) What are knowledge areas of a given expert?. In the first scenario, an example
query could be “information retrieval”, and the information may be satisfied by a list of
people ranked by their expertise in information retrieval. This is the expert finding task.
In the second scenario, an example query could be “Bruce Croft”, and the information
need may be satisfied by a list of knowledge areas ranked by the degree to which Bruce
Croft is an expert in them. This is the expert profiling task. In Chapter 5 we study the
second scenario.

One important challenge in both scenarios is that in most document collections, ex-

27



2. Background

perts and knowledge areas are not directly represented [24]. Rather, expert names may
appear as authors of documents, or teachers in a course, for example. Expert names are
ambiguous, and knowledge areas may be represented by different words in document
collections. The evaluation test-bed we study in Chapter 5 mitigates these problems to
some extent, because the document collection was obtained from a knowledge intensive
organization, experts are known by their employee number, and many unambiguous as-
sociations between experts and documents in the collection are known. In addition, the
task is defined as ranking knowledge areas from a specific taxonomy of knowledge areas.
Still, there are no associations between documents and knowledge areas, so matches be-
tween a document and a knowledge area have to be estimated by the profiling algorithms.

Though documents, e.g., publications, e-mails, technical reports, course descrptions,
etc., are not what an expert finding or expert profiling system has to retrieve, it is clear
that such documents provide essential evidence for both tasks. Estimating expertise from
such documents is a difficult problem, complicated by the heterogeneity of documents,
e.g., their multilinguality, their document type (course description vs scientific article).
These challenges are also presented by the document collection used for expert profiling
in Chapter 5.

To support innovation in expertise retrieval, from 2005 until 2008, benchmarking
activities for expertise retrieval were organized in the TREC Enterprise Track [17, 23,
60, 211]. At the time, the state of the art was represented by variants of two generative
models [24]. In our evaluation study in Chapter 5, which was initiated in the late 2000s,
we use eight variants of these generative expertise retrieval models. The first of the two
generative models is expert-centric. From all documents associated with an expert, a
language model for that expert is estimated. Using that language model, the expertise
of the expert can be estimated in turn. This model became known as simply Model
1. The second generative model is document-centric. It builds a language model for
each document, which can be used to estimate the association between documents and
knowledge areas. By accumulating evidence over documents that a candidate expert is
associated with, his or her expertise on a given knowledge area can be estimated. This
document-centric model is often referred to as Model 2. Both Model 1 and Model 2 can
be applied to expert finding as well as expert profiling. In Chapter 5, Section 5.2 we
introduce these models formally. Other effective models models for expertise retrieval
include discriminative models [82], voting models [142], and graph based models [200].

To evaluation expertise retrieval algorithms, several test collections are available. The
first TREC Enterprise Track edition [60] used a collection crawled from W3C for their
expert finding task. As expertise areas, topics of W3C working groups were used, and
members of these groups were considered experts. This test collection has also been used
in the paper that introduced the expert profiling task [19]. In the next edition of the Enter-
prise Track [211], participants contributed information needs and relevance assessments.
Because it proved hard for outsiders to create realistic information needs for expertise
in a knowledge intensive organization, in the next edition of the track [17] information
needs and relevance judgments were contributed by employees of CSIRO, the Australian
Commonwealth Scientific and Industrial Research Oganization [16]. In the final year of
the track, information needs were mined and from an e-mail log, selecting email requests
that were answered with a link to at least one CSIRO website, and making sure the set
of requests have a wide coverage. The TU expert collection that we release in Chapter 5

28



2.3. Vertical search applications

is an update and extension of the “UvT collection” released in [20] which has previously
been used for expert profiling and expert finding. In the UvT collection, as we noted in
Chapter 1, relevance assessments are produced by employees from Tilburg University,
who select knowledge areas from a taxonomy of expertise areas to describe their own
expertise. The sparseness of these relevance judgments motivates our work in Chapter 5.
For an overview including these and a number of other test collections, we refer to [24].

Automatic generation of test collections has also been done. We give a couple of
examples. Seo and Croft [199] use Apple Discussions4 forums as expertise areas and
use the top ten rated answerers for each forum as experts in the ground truth. Jurczyk
and Agichtein [115] consider the author ranking task, where authors have to be ranked
according to the quality of their contributions. This task is related to expert finding except
that authors are not ranked by quality of contributions on a specific query. They use
Yahoo! Answers’5 thumbs-up/thumbs-down votes and average number of stars received
for best answers as ground truth for the author ranking task.

2.3.2 Finding papers

In Chapter 6, we propose methods for the automatic generation of ground truth in the
domain of scientific literature search and digital libraries. This ground truth can then be
used for optimizing and evaluating retrieval algorithms. In this chapter, we have already
discussed related work for automatic generation of ground truth. Here, we will present
background on scientific literature search itself, and on retrieval algorithms proposed for
this task.

Scientific literature retrieval is an evolving research area with a long history. White
[234] offers a rich review, focusing on the difficult task of writing a literature survey, and
the exhaustive literature search that is a part of it. To support such exhaustive search, it
is natural that scientific literature retrieval requires high recall in the first place. Similar
demands on search engines are made in the context of patent retrieval [140], and legal
research [105]. Literature surveys and meta analyses are more commnonly produced
in a rigorous fashion, e.g., with criteria for inclusion and exclusion of studies, explicit
mentioning of search strategies, and so on [234]. Besides writing literature surveys, re-
searchers have other information needs, such as known-item finding [133], or exploratory
search to formulate a research question [40]. Search strategies in literature search can be
categorized as locating prior research by starting from references of articles you know
(footnote chasing), the consultation of your colleagues or other experts, search using a
controlled vocabulary, keyword search (ad-hoc search), browsing, and looking for arti-
cles that cite a work you know (searching citations) [234].

To support such strategies, scientific literature search applications should offer a rich
set of features, such as navigating to prior work and later work through references and ci-
tations; highlighting key authors and navigating to other work by these authors; advanced
search functionality to search controlled vocabulary terms; strong, preferably full-text ad-
hoc search; the ability to save documents; recommendation of related literature; and so
on. We zoom in on search using controlled vocabulary terms, and ad-hoc search.

4http://discussions.apple.com
5http://answers.yahoo.com

29

http://discussions.apple.com
http://answers.yahoo.com


2. Background

Controlled vocabularies are used to index document collections of scientific articles
exhaustively. To give an example, the GIRT collection [122], which we use in Chapter 6,
contains annotations that categorize articles by research area, topic, and the methodology
used. The idea is that if an information need can be formulated in terms of the controlled
vocabularies, then all relevant documents can be retrieved. The annotation effort to in-
dex entire document collection is enormous, and often performed by professional index-
ers [234]. Controlled vocabularies can also be used to improve retrieval performance for
ad-hoc keyword queries, e.g., by associating natural language terms from titles of articles
with the controlled vocabulary terms the articles are labeled with. Then, for incoming
queries, strongly assocatiated controlled vocabulary terms can be used for query expan-
sion [172]. Meij and de Rijke [149] propose a similar idea, first translating a query to
annotations, and then sampling distinguishing terms from these annotations to expand
the query.

One benchmarking activity for ad-hoc, domain-specific search in scientific articles
is the CLEF Domain Specific Track, the last two editions of which were organized in
2007 [174] and 2008 [173]. We perform experiments on the two IR test-collections used
in these two tracks in Chapter 6, focusing on the monolingual (English) retrieval task.
In the 2007 edition, participants experimented with different retrieval models, query ex-
pansion, and data fusion, combining scores of several retrieval runs in a single score.
The best performing group fused language modeling and divergence from randomness
(DFR) retrieval runs. Their query expansion using controlled vocabulary terms did not
lead to improvements [83]. Their approach is very similar to our approach in Chap-
ter 6, where we combine scores for similar retrieval models using learning to rank (L2R).
Performance scores between our runs and theirs cannot be compared directly, however,
because Fautsch et al. [83] use both the title and the description fields of the information
needs, whereas we opted to use only the title field, which represents the query that a
user submits to a search engine. Participants in the 2008 edition of the CLEF Domain
Specific track experimented with different stemming methods, retrieval models, query
expansion, and data fusion. The best performing system fused runs for which different
stemming algorithms had been used, used standard pseudo relevance feedback (PRF),
and experimented with query expansion using controlled vocabulary terms, although the
latter did not help performance [110]. Meij and de Rijke [149] do observe improvements
when expanding queries using controlled vocabulary annotations (see above). In Chap-
ter 6, we confirm that standard PRF is very strong, with our Terrier divergence from
randomness-based PRF run.

In Chapter 6, we propose document features, to be used in a L2R setup. Largely,
these features concern the authors of papers. This highlights an interesting connection
between scientific literature search and expertise retrieval. In expertise retrieval, it is
recognized that locating good documents is essential to aggregate evidence of expertise.
For scientific document retrieval, author-based features reflect the belief that expertise
retrieval can help document retrieval. While we did not convincingly demonstrate a pos-
itive effect of the document features in our experiments, we still believe it is a promising
direction. One way to improve our author-based features would be to base them on prop-
erly disambiguated surface forms of author names, using techniques from research on
author name disambiguation [205], and people search result disambiguation (Chapter 4).

30



2.3. Vertical search applications

2.3.3 Finding posts

In Chapter 7 we extend our pseudo test collection (PTC) generation ideas and apply them
in the domain of microblog search. This section discuss work related to finding posts; in
particular, microblog posts.

Microblog search is a relatively young research area, naturally, since microblogging
platforms have only recently emerged, the largest exponent being Twitter. Hundreds of
millions of people use microblogging platforms to post so-called status updates, short
messages consisting of a limited number of characters (140, in Twitter), on topics rang-
ing from personal (e.g., “pointless babble” [118], cited from [76], to political, to instan-
taneaus reports of current events, e.g., earthquakes [192]. In addition to offering people
the opportunity to blog, microblogging platforms are social networks. Authors have fol-
lowers, and “followees”: other authors they follow in turn. On Twitter, tweets can be
re-tweeted with little effort, which relays messages to followers of the retweeter. It is
also possible to address other authors explicitly by their username in a tweet, and to re-
ply to a post. To indicate that microblog posts are part of a larger discussion, hashtags
can be inserted in a post. Another important aspect of microblog posts is that they con-
tain links (usually in a shortened form) to web pages and content, which can provide rich
context regarding the topic of the tweet. The spread of information in microblogging
networks and the influence that authors exert as a consequence of this has attracted much
attention [47, 129, 233].

Microblog search is essential, because of the sheer volume of information on mi-
croblogging platforms. Twitter search, for example, handled over 1.6B queries a day by
2011.6 The real-time and personal nature of microblog posts is reflected in the informa-
tion needs of searchers, who look for recent content pertaining to events, breaking news,
and trends, and for information about people [221]. Also, repeatet queries are observed,
where people appear to monitor search results [221].

Determining the relevance or usefulness of microblog posts with regard to a query
poses new problems and challenges [76, 221]. Massoudi et al. [146] report on an early
study of retrieval in microblogs, and introduce a retrieval and query expansion method
to account for the fact that microblog posts are short, which increases the risk that there
is a vocabulary mismatch between a query and a post. Naveed et al. [161] show that
because posts tend to have the same length, document length normalization is not helpful
for retrieval. In addition, they recognize that estimating the probability that a tweet is
retweeted can boost retrieval performance, in particular for underspecified queries. Efron
and Golovchinsky [77] investigate the temporal aspects of documents on query expansion
using pseudo relevance feedback. Efron [75] recognizes the significance of hashtags and
proposes to retrieve hashtags which are often used to label tweets that are relevant to a
query.

In 2011, TREC launched the microblog search track, as a part of which an ad-hoc
search task was organized. For this task, systems are asked to return relevant and inter-
esting tweets given a query issued at a particular time [166]. The organizers required
systems to retrieve a set of relevant results and then rank them in reverse chronological
order. The main evaluation metric used was P30, and many succesful systems ranked
by relevance first, cut off the ranking after the 30st result, and only then ranked tweets

6https://en.wikipedia.org/wiki/Twitter

31

https://en.wikipedia.org/wiki/Twitter


2. Background

by their publication time. This constitutes evidence that ranking by relevance is more
useful for microblog search. In the 2012 edition of the TREC task, organizers required
an ordering by relevance, and this is the evaluation setup we use in Chapter 7.

In the 2011 edition of the TREC microblog search track, the temporal aspect of Twit-
ter and its characteristics, e.g., hashtags and existence of hyperlinks, were exploited by
many participants, for query expansion, filtering, or learning to rank [166]. For learning
to rank, in TREC 2011, teams depended on self-constructed, manually labeled training
data to train their model on. The lack of training data that necessitated these manual
annotation efforts provides a strong motivation for our work in Chapter 7, where we gen-
erate training data (pseudo test collections) automatically and are able to achieve a very
competitive performance (top two, for P30) by training our L2R methods on these PTCs.
Particpant systems in TREC microblog 2011 were subdivided according to whether or
not they used external resources (e.g., by following outlinks and obtaining terms from
linked-to web pages), and according to whether or not they used future evidence (e.g., by
computing IDF scores for tweets published later than a query timestamp). At least one
run without using external sources and future data was required. Our methods in Chap-
ter 7 use no external sources, and we build separate indexes for every query to avoid
using future data.7 In the 2012 [212], 2013 [137] and 2014 editions of the TREC mi-
croblog search track, participants started to use external sources heavily, and this led to
large improvements in retrieval performance.

As effective approaches for microblog retrieval, query expansion, temporal informa-
tion retrieval, document expansion, and learning to rank stand out. Even without using
external resources, large improvements have been observed for query expansion [52, 80,
244, 246]. Further improvements have been obtained by using context outside of the
status updates themselves. For example, by doing query expansion against other collec-
tions [25, 72, 78, 79, 154, 230, 237, 244]. Temporal retrieval information is developing
into a field on its own [160], and a score of work has investigated temporal aspects of mi-
croblog retrieval, particularly for query expansion [50, 52, 77, 116, 128, 146, 155, 169].
Document expansion approaches using external sources, in particular by following out-
links from tweets and using web content terms to expand tweet representations, yield
improvements as well [135, 141, 147, 237, 246]. Many of the abovementioned stud-
ies use simple linear L2R approaches such as the ones we use in Chapter 7 to combine
their features and obtain improvements. Some more complex models have been shown
to perform well, e.g., data fusion methods [136], ranking factorization machines [177],
ensembles of L2R systems [79], and support vector machines with kernels that take syn-
tactic similarities between queries and tweets into account [201].

7The use of future data was later found not to have a noticeable effect on performance scores [228].

32











3
Query Classification in People Search

In this chapter we address RQ1, which is concerned with automatic classification of infor-
mation needs in the people search domain. People search is an important aspect of human
search behavior. E.g., in web search an estimated 3.6–4% of the queries contain person
names [217]. People search for themselves, people from their past, friends, colleagues,
business associates, etc.1 We examine queries submitted to a people search engine and
are particularly interested in what types of queries are submitted. That is, what types of
people are searchers looking for? This increases our understanding of user behaviour.
We then describe features for automatically classifying people into these types. This is
useful for a number of reasons. A search engine can return different kinds of results or
apply a different ranking algorithm depending on the predicted category of an incoming
query. Different types of query may also give rise to different ways of presenting results.

In [231], we analyze the logs of a Dutch people search engine and do indeed observe
that most queries are entered only infrequently and target unknown people: possibly
friends, colleagues, and so on. We refer to such queries as low-profile queries. We also
identify two types of high-profile people queries. Here, we rephrase the definitions of the
two classes, not intending to change their meaning, but merely to complement them.

1. event-based: such a person is well-known and is likely being searched for because
she was recently in the news or involved in a recent event or hype, and

2. regular: such a person is well-known because she is a celebrity, politician, etc.,
and most likely not queried because of any particular event, but rather because of
the accumulation of events that made her well-known.

We emphasize the uncertainty that is always associated with interpreting query logs: we
do not know the reasons people had when entering this query or even if an entered person
name corresponds to the name of, e.g., a celebrity or politican only by chance. Never-
theless, the two categories have a clear presence in the abovementioned logs. Many
examples of event-based query targets can be observed, including murder victims, sus-
pects, and so on. After their names have been published there is a sudden and huge peak
in the frequency of searches for them. There are also people who continuously attract
significant attention from searchers; they are clear cases of regular high-profile targets.

1http://pewinternet.org/Reports/2010/Reputation-Management.aspx

37

http://pewinternet.org/Reports/2010/Reputation-Management.aspx


3. Query Classification in People Search

We do not assume that the type of a query is fixed over time, e.g., a soldier who died
in Afghanistan may have been low-profile before he died, but may become event-based
high profile afterwards. The three class definitions pertain to query instances: queries
entered by a particular user at a particular time.

With regards to Broder’s influential taxonomy of web search queries [38], it is reason-
able to assume that most queries in our logs are informational, as in blog search [153];
we confirm this in [231]. Mishne and de Rijke [153] propose context queries (“locate
contexts in which a name appears”) and content queries (“locate blogs or blog posts that
deal with the searcher’s interest areas”). With respect to this taxonomy, our queries are
all context queries: tracking references to the target person; thus, the above taxonomy
refines the one in [153]. From the definition of low- and high-profile queries, it is clear
that the user interest in the person name over time should play a role in determining the
class of a person name query. As discussed in Chapter 2, Section 2.3.1, Jones and Diaz
[113] classify queries into three temporal classes according to the distribution of pub-
lication dates of result sets. There is a resemblance between our taxonomy and theirs.
In particular, the temporally unambiguous queries observed by [113], where a single
peak can be observed in a time series of publication dates, intuitively correspond to our
event-based high-profile queries.

A general motivation for query classification was provided at the start of this section.
Concerning person name queries, if a people search engine can establish with reasonable
accuracy the most likely class of an incoming query instance, it may use this in various
ways. E.g., for low-profile queries, the result page could include results from social
media, contact information and images. For event-based high-profile queries, it could
include information about relevant news stories, that may be presented on a time line.
For regular high-profile queries, there may be many news stories to be found, as well
as many images, video clips, social media pages, etc. Here, a sensible strategy is for the
result list to include a diverse set of material about the target so as to facilitate exploratory
search. Because person names are highly ambiguous (see Chapter 4), it may be that a
user is looking for a non-famous person sharing the name of a celebrity; in such cases,
the search engine may want to adapt its strategy so as to avoid result pages from being
dominated by hits relating to the famous person.

In [231], we propose a limited set of features for people search query classifica-
tion, and perform two classification experiments. The results suggest that classification
into low- and high-profile queries is feasible, with high precision and recall scores for
both classes. A three-way classification that also requires the distinction between event-
based and regular high-profile queries is harder, with lower precision and recall scores
for both high-profile classes. We redo these experiments. The focus is not on improv-
ing upon our previous performance scores, but rather on increasing our understanding
of the challenges in this relatively new classification task. We perform annotation again,
in an annotation interface that gives the annotator more information, and report annota-
tor agreement. We propose several new features. We slightly modify the experimental
setup. In [231], we reported test performance scores on a dataset in which the more
frequent classes were downsampled. Here, we report test performance on a test set in
which classes are as imbalanced as in the entire dataset, using a stratified cross validation
setup. In a realistic setting, we would also expect class proportions in unseen data points
to mirror class proportions in a training set. Finally, and most importantly, we perform a

38



3.1. Data and methods

feature analysis to shed light on which factors play a role in classification decisions.
We address the following research question from the introduction:

RQ1 Is it possible to classify person name queries submitted to a people search engine
as either low-profile, event-based and regular high-profile classes such that reasonable
agreement with human classifying decisions is achieved? Among a set of features cap-
turing online context of person names and interactions of people search engine users,
which features have the largest influence on classification decisions?

In Section 3.1 we present our data and methods, in Section 3.2 we present our results and
discuss them, and in Section 3.3 we provide conclusions.

3.1 Data and methods

To inform our study, we use four months of query logs of a Dutch people search engine,
collected during September–December, 2010. In [231], we describe the search engine
and the logs, but we repeat the essentials here.

A people search engine The default search box provided by the engine is a single free
text box in which the user is suggested to enter a first and a last name, see Figure 3.1.
After entering a query and performing a search, the user is presented with search results

Figure 3.1: Simple search interface: a single search box with a search button.

from social media platforms, e.g., Hyves2, Facebook, LinkedIn, and so on. Results are
grouped per platform. Users can expand results for a platform to get a listing of profiles.
Expanding again shows more information from a single profile, and an outlink to the
profile itself. If this outlink is followed, a clickout is registered in the query logs. Via
tabs at the top of the page, users can navigate to other kinds of search results: (1) doc-
uments obtained from general purpose web search engines, (2) multimedia content, and
(3) miscellaneous content [231].

Query logs The query logs contain queries and clickouts. Query entries consist of a
first name, last name, an optional keyword, a timestamp and an associated unique ID of a
persistent cookie. Even though a cookie need not correspond one to one with a person, we
interpret it as a unique visitor, i.e., a user. Clickouts consist of a URL, a top level domain
(TLD), a timestamp and a persistent cookie ID. We define sessions as consecutive query
entries with the same cookie, and a maximum time interval of forty minutes between each
consecutive query pair, following [231]. In the three month data collection period, we

2A Dutch social networking site, which no longer exists. At the time of this study, its results were clicked
most of all social media platforms.

39



3. Query Classification in People Search

observed about 13 million queries. These queries: (1) amount to 4 million unique query
strings; (2) are issued by almost 7 million users, of which 1.5 million users issued more
than one query; and (3) result in 4 million clickouts, on a subset of 2.4 million queries
(17.6% of all queries). Of all the clickouts, the majority landed on social media profiles
(66%), followed by web search engine results (17%), miscellaneous content (8.5%), and
multimedia content (3.1%). 4.7% of clickouts landed on advertisements. For further
details, we refer the reader to [231].

Query selection For this study, we are interested in queries that are issued by at least
twenty different users over time from September 1st until December the 31st. The main
reason for this is discarding a large pool of queries that are likely to be low-profile any-
way. If we are interested in classifying these queries, an approach without interaction
data features may be indicated. The queries we keep with this filtering step are queries
for which the user population has shown some interest, and the challenge becomes to de-
tect what kind of interest that is. Note that the twenty-user requirement does not imply
that there are no low profile query instances. First, if the query instance is one of the first
searches for this query, it may well be annotated as low profile: we noted already that
the class of a query may change over time. Also, names are ambiguous, and searches for
various low profile persons with the same name may add up to above the threshold. From
these queries, then, we want to classify instances submitted from October 1st onwards,
to give us, for each query, at least a month of history to extract features from. From this
population of query instances, we sampled randomly for annotation.

Annotation For a query selected for annotation, in an annotation interface, annotators
could see the query itself, search and news volume up to the date of the query instance,
previous queries from the same session, and the values of the classification features we
describe below. Finally, they were allowed to use a web search engine. Annotators were
asked to determine if a query likely targeted a high- or a low-profile person at the time of
the query instance. In case an annotator labeled a target as high-profile, we also required a
decision whether the query instance was event-based high-profile or regular high-profile.
This decision can be subtle; we illustrate this with an example.

In Figure 3.2 we plot the search volume and the number of mentions in RSS feeds
of national newspapers of two high-profile targets, highlighting the difference between
a ‘regular’ and an ‘event-based’ instance. On the left-hand side, we show the graph of
a controversial politician frequently mentioned in the news (Geert Wilders). The query
instance is most likely not related to a particular event, but rather to the sum of the
events that made him well-known, it is a regular high profile instance. On the right-hand
side we display the search volume and number of mentions in RSS feeds of an actress
who is much less mentioned in the news; however, when she is mentioned in the news
(because of the tragic passing of her husband), this is followed by a very clear peak in
search volume. This instance is a quite clear example of an event-based high-profile
query. The subtlety of the decision lies in the fact that she was already a well-known
person before the news event that led to a boost in attention occurred. A query instance
with a timestamp before this event would most likely have been classified as a regular
high-profile query instance, despite the low search volume.

40



3.1. Data and methods

Sep 01 Dec 19 Sep 01 Oct 17

Figure 3.2: Search volume (black lines) and mentions in RSS feeds of national news-
papers (grey lines) of a regular high profile (left) and an event based high-profile (right)
query instance.

In total, 216 people query instances were manually labeled, 200 of which were dou-
bly annotated. Inter-annotator agreement on the 200 doubly annotated queries was 0.70
(Cohen’s kappa). Conflicting annotations were resolved through discussion. Of the 216
instances annotated, 132 were found to be low profile, 60 event-based high profile, 24
regular high-profile. The relatively low number of regular high profile queries may be
due to people preferring to search for celebrities directly in general purpose web engines.
It seems likely that people will resort to a dedicated vertical, i.e., a specialized people
search engine, predominantly when they are unsatisfied with the results of a general pur-
pose web search engine.

Features For automatic query classification, we use the features listed in Table 3.1.
There are 6 types of features, with 15 features in total: (1) search volume, (2) clickout
volume, (3) burstiness, (4) clickout entropy, (5) Wikipedia presence, and (6) news vol-
ume. The first four of these types reflect user behaviour associated with a person name,
as observed in the query logs. The last two types capture coverage of real-world events
and state-of-affairs associated with person names. The search volume, clickout volume,
burstiness, and clickout entropy features are computed from the shape of search volume
and clickout time series, similar to the features used in [113]. The Wikipedia presence
features are static over time. The clickout volume, burstiness, and clickout entropy fea-
ture types are additional features with regard to the classification experiment in [231].
Below, we describe all features, explaining the intuitions behind them.

Search volume for a query is measured in unique daily visitors issuing the same
query string.3 Since query instances can have a timestamp ranging from October, 1st
until December, 31st, the number of days during which search volume amasses ranges
from 30 to 90 days. Therefore, we divide search volume by the number of days between

3Thus, if the same user issues a query string on multiple days, each day is counted once.

41



3. Query Classification in People Search

Table 3.1: Features grouped by type. There are 6 feature types, and 15 features in total.

Name (abbr) Description
1. Search volume Unique daily visitors

– From Sep, 1st (SVFS) From Sep 1st until query instance, on average
– Last week (SV7D) Week before query instance, on average
– Trend (SVT) Difference between the previous two: SV7D - SVFS

2. Clickout volume Clickouts per day

– From Sep, 1st (CVFS) From Sep 1st until query instance, on average
– Last week (CV7D) Week before query instance, on average
– Trend (CVT) Difference between the previous two: CV7D - CVFS

3. Burstiness A burst is defined here as a period of one or more
consecutive days on which the unique daily visitors
per day issuing the query is more than the mean plus
two times the standard deviation.

– Number of bursts (NB)
– Ratio search volume in bursts and total search volume (BV/SV)
– One divided by the number of days since last burst (1/DsLB)

4. Clickout entropy The amount of uncertainty associated with clicks on
TLDs of URLs in the result set, see Equation 3.1.

5. Wikipedia presence Based on Dutch Wikipedia dump dated August 26,
2010

– Title match (WPTM) Query person name matches title Wikipedia page
(yes or no)

– Frequency (WPF) Frequency of occurrence of person name in
Wikipedia

6. News volume Number of mentions in RSS feeds of national news
papers, per day

– From Sep, 1st (NVFS) From Sep 1st until this query instance, on average
– Last week (NV7D) Week before query instance, on average
– Trend (NVT) Difference between the previous two: NV7D - NVFS

42



3.1. Data and methods

September, 1st and the date of the query instance. This yields the first feature: SVFS
(an acronym for “search volume from september”). We define two more search volume
features, to capture the trend in search volume. The intuition behind this is that for
event-based queries, most searches should occur frequently after the event of interest. If
that is true, an event-based query is likely to follow many other, recent queries for the
same person name. The second search volume feature therefore computes the average
unique daily vistors entering the person name over the last seven days (SV7D). The third
search volume feature captures the trend in volume (SVT); it is computed as SV7D -
SVFS. This trend feature is new with regards to the experiments we performed in [231].
A positive value for SVT indicates an increased interest in the person name in the last
week, compared to the whole period from September, 1st.

Clickout features are interesting because they reflect strong interest in a search re-
sult. More so in this people search engine than in general purpose web search engines,
because in the former, users spend more effort in producing a clickout. Clickout volume
is computed in a similar fashion as search volume. It is defined as the total number of
clickouts following previous queries for the same person name as the current query in-
stance. It is also normalized by the number of days in the period considered (either from
September, 1st (CVFS), or the last week (CV7D). The trend (CVT) is computed in the
same way (CV7D - CVFS).

Burstiness captures the degree to which interest in a person name peaks in the query
logs. A burst is defined here as a period of one or more consecutive days on which the
number of unique daily visitors exceeds the mean by two times the standard deviation.
Intuitively, peaks in user interest may correspond to events in the real world. The number
of bursts (NB) is computed. In addition, the fraction of search volume that occurs in
bursts (BV/SV) should be high if user interest peaks strongly. Finally, for event-based
queries, we expect the last burst to be recent, and we define a feature as: 1 divided by the
number of days since the last burst (1/DsLB).

Clickout entropy measures the uncertainty associated with clicks on the result set;
[127] use it in their descriptive analysis of web search queries, instantiating the well
known information theoretic entropy formula as follows:

−
∑
d∈D

P (cd) ∗ log2 P (cd), (3.1)

where P (cd) is the probability of a click landing on d ∈ D, and D is the set of URLs.
Because in our data set, clickouts are sparse, we aggregate clickouts on the level of top-
level domains (TLDs), setting D to be set of TLDs of the URLs in the result set. If
users click on many different TLDs, and each of these events are rare, the uncertainty (or
entropy) is high. If users click on a small number of TLDs only, and these events are less
rare, uncertainty is smaller.

Wikipedia presence of a person name is an indication that this person name is of
interest to the general public, not necessarily because of any single particular event,
and should intuitively help us to detect regular high-profile queries. A binary feature,
Wikipedia title match (WPTM), and the frequency of person name occurence in Wikipedia
pages (WPF) are computed. These two features replace the Wikipedia result set size
count from [231], which was obtained by issuing the person name query to Yahoo! while

43



3. Query Classification in People Search

restricting Yahoo! to Wikipedia results. News volume, finally, is interesting to cap-
ture, because news covers events happening in the real world. We expect both regular
high-profile and event-based person name queries to appear in news. News volume is
computed based on a time series: the number of mentions of a person name in a collec-
tion of RSS news feeds of national news papers, per day. Three features are computed,
in the same way as the corresponding search and clickout volume features: news volume
since September, 1st (NVFS), in the last seven days (NV7D), and the difference between
the latter and the former (NVT).

Classification We use three different classifiers. First, a non-linear decision tree clas-
sifier, specifically, the C4.5 decision tree classifier [178]. It was used also by [113],
who classify news and blog queries. Second, a Naive Bayes (NB) classifier. This clas-
sifier estimates class conditional distributions for the training points, and checks which
class most likely generated unseen test points. Third, we use a support vector machine
(SVM) [57] to classify the instances. This is a discriminative approach. SVMs do not
model the data, but only separate training points from different classes by a margin as
wide as possible. Using three different classifiers on this relatively unstudied people
search query classification task is useful to get an initial idea for which approach works
best out-of-the-box. We use the implementations available in the Weka toolkit [92], with
default hyperparameters. For the C4.5 decision tree, this means we set the confidence
threshold for pruning to 0.25, and the minimum instances per leaf to 2. For the SVM
classifier, we set the complexity constant to 1, normalized features, and used a linear
kernel. For the three-way classification experiment, the SVM classifier uses a one vs.
one scheme, where a binary classifier is learned for all pairs of classes, and the majority
vote decides. Default hyperparameter settings often reflect experience on a wide range
of datasets, and are perhaps the best uninformed bet when approaching a new task. It
is probably possible to improve performance for the classifiers we use by optimizing
their hyperparameters, e.g., choosing a different kernel for SVM, or choosing a different
complexity constant. We leave this to future work.

Evaluation For each class, we report on precision (P), recall (R), and their harmonic
mean (F1-score). We also report the macro-averaged precison (PM ) and recall (RM )
over classes. These are defined as the average of the precision (or recall) scores for the
individual classes [214]. We also report the macro-averaged F1-score (FM ), which we
compute as the harmonic mean of PM and RM :

FM = 2
PMRM
PM +RM

, (3.2)

following [214].4 At the KDD 2005 cup on query classification [134], the F1-score
of micro-averaged precision (Pµ) and recall (Rµ) was used instead to rank participant
systems. We opted against using micro-averaging because we wanted to weight precision
and recall for each class equally, regardless of how many instances a class has. In our
dataset, the low-profile query class is most common. A method that would find many
true positives for the low-profile class, while performing bad on other classes, could still

4An alternative macro-averaged F1-score is the average of the per-class F1-scores; both variants are used.

44



3.2. Results and discussion

achieve high micro-averaged precision and recall scores. This is not true for macro-
averaged scores.

We use ten-fold cross-validation to test the predictive power of our classifiers. Be-
cause some of our classes have few instances, to make sure each class is represented in
each test fold, we apply stratified cross validation. This entails that for each class, we
aim to have about the same proportion of instances in all folds. We divide the data in ten
stratified folds randomly, once. Then, to test a classifier, on each test fold, predictions
are generated by a model which is trained on the remaining folds. The test predictions
for all folds are then concatenated, and precision and recall scores are computed on the
entire set.

To test if an observed performance difference for a metric between two systems are
significant, we use a pairwise randomization test. A nice exposition of the this test in
the context of a classification task can be found in [239]; we use the two-tailed variant.
We report significance for two α levels, a strict level (α = 0.001), denoted by H, and a
lenient level (α = 0.05), denoted by O.

3.2 Results and discussion

We report on two experiments: (1) a two-way experiment in which we aim to automati-
cally distinguish between high-profile and low-profile people queries; and (2) a three-way
experiment in which we aim to distinguish between event-based high-profile, regular
high-profile and low-profile queries. The results of both classification experiments are
given in Table 3.2.

45



3. Query Classification in People Search

Ta
bl

e
3.

2:
R

es
ul

ts
of

tw
o

st
ra

tifi
ed

te
n

fo
ld

cr
os

sv
al

id
at

io
n

ex
pe

ri
m

en
ts

:(
1)

lo
w

-p
ro

fil
e

vs
.h

ig
h-

pr
ofi

le
cl

as
si

fic
at

io
n,

an
d

(2
)c

la
ss

ifi
ca

tio
n

of
qu

er
ie

s
as

lo
w

-p
ro

fil
e,

re
gu

la
r

hi
gh

-p
ro

fil
e

or
ev

en
t-

ba
se

d
hi

gh
pr

ofi
le

.
T

he
da

ta
is

di
vi

de
d

in
to

te
n

st
ra

tifi
ed

fo
ld

s
ra

nd
om

ly
.

Fo
r

ea
ch

al
go

ri
th

m
(C

4.
5,

N
B

,a
nd

SV
M

),
on

ea
ch

te
st

fo
ld

,p
re

di
ct

io
ns

ar
e

ge
ne

ra
te

d
by

m
od

el
s

tr
ai

ne
d

on
th

e
re

m
ai

ni
ng

fo
ld

s.
T

he
te

st
pr

ed
ic

tio
ns

ar
e

th
en

co
nc

at
en

at
ed

,a
nd

pr
ec

is
io

n
an

d
re

ca
ll

sc
or

es
ar

e
co

m
pu

te
d

on
th

e
en

tir
e

se
t.

Fo
rb

ot
h

cl
as

si
fic

at
io

n
ta

sk
s,

fo
re

ac
h

m
et

ri
c,

hi
gh

es
t

sc
or

es
ar

e
lis

te
d

in
bo

ld
fa

ce
.T

he
cl

as
si

fie
rw

ith
th

e
be

st
F
M

sc
or

e
on

bo
th

ta
sk

s
is

C
4.

5.
Fo

rt
he

N
B

an
d

SV
M

cl
as

si
fie

rs
,f

or
ea

ch
m

et
ri

c,
si

gn
ifi

ca
nt

pe
rf

or
m

an
ce

di
ff

er
en

ce
sw

ith
re

ga
rd

to
C

4.
5

ar
e

m
ar

ke
d

w
ith

H
or

N
(α

=
0.

0
0
1
);

or
w

ith
O

or
M

(α
=

0.
0
5

).
A

tw
o-

ta
ile

d
pa

ir
w

is
e

ra
nd

om
iz

at
io

n
te

st
w

as
us

ed
.

C
4.

5
N

B
SV

M

Q
ue

ry
ty

pe
P

R
F1

P
R

F1
P

R
F1

H
ig

h-
pr

ofi
le

(8
4)

0.
85

0.
82

0.
84

0.
89

0.
64

H
0.

74
O

0.
88

0.
60

H
0.

71
H

L
ow

-p
ro

fil
e

(1
32

)
0.

89
0.

91
0.

90
0.

81
H

0.
95

0.
87

0.
79

H
0.

95
0.

86
O

P
M

,R
M

,a
nd
F
M

0.
87

0.
87

0.
87

0.
85

0.
79

O
0.

82
0.

83
0.

77
H

0.
80

O

E
ve

nt
-b

as
ed

(6
0)

0.
83

0.
87

0.
85

0.
74

0.
62

O
0.

67
O

0.
85

0.
55

H
0.

67
O

R
eg

ul
ar

(2
4)

0.
57

0.
54

0.
55

0.
53

0.
33

0.
41

0.
45

0.
38

0.
41

L
ow

-p
ro

fil
e

(1
32

)
0.

92
0.

90
0.

91
0.

81
H

0.
92

0.
86

O
0.

80
H

0.
95

M
0.

87

P
M

,R
M

,a
nd
F
M

0.
77

0.
77

0.
77

0.
69

0.
62

O
0.

66
O

0.
70

0.
63

O
0.

66
O

46



3.2. Results and discussion

After discussing the outcomes of the two experiments we will analyze the results of
the C4.5 decision tree in more detail because (1) it is the best overall performing classifier
in our experiments, and (2) because it produces models that are easily interpretable.

In our setting, decision tree classifiers like C4.5 perform well because they can com-
bine nominal and ratio features and they handle dependencies in features well. Our fea-
tures are somewhat redundant and depend on each other, e.g., if the average number of
unique visitors per day that entered a given query since September the 1st is high, the
average over the week before the query is more likely to be high. Since Naive Bayes
assumes class conditional independence of features, this may explain why it performs a
bit worse.

3.2.1 High profile versus low profile classification

We first examine the outcomes of the two-way classification experiment; see the top half
of Table 3.2. Clearly, it is feasible to classify query instances into the high- and low-
profile classes with a C4.5 decision tree classifier. Recall of the high-profile instances
is significantly worse with Naive Bayes and with an SVM (H). At the cost of this drop
in recall, both Naive Bayes and SVM do achieve higher precision for the high-profile
instances, but these differences are not significant. Precision of the low-profile predic-
tions is significantly worse for Naive Bayes and SVM (H). Both Naive Bayes and SVM
improve recall of the low-profile class with regard to the decision tree classifier, but these
differences are not significant. Looking at our summary metric FM (macro-averaged F-
score), only the difference between the decision tree (0.87) and the SVM classifier (0.80)
is significant (O).

In Figure 3.3 we show a partial decision tree. This tree is learned on the entire dataset.
On each node the training samples are split on the indicated feature, see Table 3.1. Each
edge shows the threshold value on which it is split. The leaf nodes indicate the class that
the tree will predict for new examples that satisfy the requirements to reach the node. “H”
and “L” represent the high- and low-profile classes. In brackets the number of queries
within that class is listed. If training examples are misclassified their number is reported
after a slash. Some leaf nodes contain a feature and a number of classes. Here, the
decision tree visualization was truncated to save space; the feature listed will yield the
next splitting criterion; in brackets it is shown how many data points were classified as
high-profile (“H”) and low-profile (“L”), respectively, in the remainder of the tree. As
before, the number of miclassifications for each class is reported after a slash.

The most important feature is the average number of clicks per day over the last
week. A surprisingly low number of clicks is sufficient to classify as many as 32 queries
as high-profile queries. One explanation for this is that clicks in the people search engine
we study require substantial effort on the part of the user. Recall that search results are
displayed grouped social media platform or search engine. If a user wants to find, e.g., a
social media profile, she has to expand the results for the social media platform of choice,
then expand a text snippet (a short description of a particular search result), before finally
an outlink may be followed. This explains why there are not many clickouts in the query
log files. A few clicks may well have resulted from many searches.

The second feature used is the number of bursts. This feature uses the search volume
history. If there are one or more bursts, then the query is high profile. In the absence of

47



3. Query Classification in People Search

CV7D

NB

 <= 2 

H(32)

 > 2 

SVFS

 <= 1 

H(18/1)

 > 1 

H(9)

 <= 0.051

BV/SV, H(18/1), L(139/9)

 > 0.051

Figure 3.3: Partial decision tree for the two-way classification experiment. Nodes are
labeled with the feature based on which the data is split, according to the conditions
listed next to the outgoing edges. In leaf nodes, the predicted class of data points in
that node are indicated: H for high-profile, L for low-profile. The numbers of correct
predictions are given between brackets, followed by a forward slash and the number of
incorrect predictions, if any. We truncated the tree to save space: the node at the right
bottom will split on the feature BV/SV next, and yield predictions for both classes in
later leaf nodes.

48



3.2. Results and discussion

bursts, the third split is counterintuitive. The average unique number of unique visitors
on which the remaining set is split seems very low. Even so, queries that were issued by
even fewer people are all high profile queries in this dataset. And the bulk of the instances
with a higher search volume is low-profile. This is surprising because we defined high
profile persons as well-known people, either because of some recent event (event-based)
or because they are a public figure, celebrity, or generally much sought after.

The news volume features do not appear at all in the decision tree for the two-way
experiment. We will see that they do play a role in the three way experiment, however.

3.2.2 Low profile, event-based, and regular high-profile classifica-
tion

We now turn to the three-way classification experiment; see the bottom half of Table 3.2.
Three-way classification into event-based high-profile (“H”), regular high-profile (“R”),
and low-profile (“L”) is harder than two-way classification. For the C4.5 decision tree,
performance on the low-profile and event-based high-profile is strong, but precision and
recall for regular high-profile needs improvement. Results for this category suffer from
the fact that there are only 24 regular high-profile instances in the data set. Looking at the
Naive Bayes and SVM results, we see similar patterns as in the two-way classification
experiment. Recall for the event-based high-profile class is significantly lower for Naive
Bayes (O) and SVM (H). For the regular high-profile class, it is mainly recall where
performance scores of Naive Bayes and SVM drop substantially compared to the decision
tree, but here we observe no significant differences. A possible explanation for the lack
of significance here is that there are only 24 regular high-profile instances. Precision
of the low-profile instances is significantly lower for both Naive Bayes and SVM (H).
SVM does achieve a significant improvement of recall of low-profile instances over the
decision tree classifier, however (M). Looking at the summary metric FM , we see that
the difference between the decision tree and both the Naive Bayes and SVM classifiers
is significant (O).

We can learn the contribution of individual features from the learned decision tree on
the entire dataset in Figure 3.4. The first feature is again the average number of clicks
per day over the last week before the query. But this time if it is higher than 2.0 the news
volume comes into play. It seems counterintuitive that a low average number of mentions
in the news per day over the last week leads the classifier to the conclusion that the query
instance is event based. However: a few mentions in the news are often enough to cause a
large interest in the person. If somebody passes away, this may be followed by a peak in
search volume in the people search log even if it is hardly mentioned in the news. Many
mentions in the news can be a sign that a person is famous but not well-known because
of a particular event.

Again, the number of bursts is an important feature. In the absence of bursts, we find
many low profile queries. Again, there is the curious exception of searches that also have
a low average search volume until the date of the current instance: these are all event
based queries. If there are bursts we see again that regular high profile queries have a
higher search volume.

49



3. Query Classification in People Search

CV7D

NB

 <= 2 

NV7D

 > 2 

SVFS

 <= 1 

SVFS

 > 1 

E(24)

 <= 0.29 

SVFS
R(5)
E(3)

 > 0.29 

E(9)

 <= 0.051

BV/SV
L(139/9)

E(11)
R(7/1)

 > 0.051

WPF
E(10/1)
R(3/1)

 <= 35 

R(5)

 > 35 

Figure 3.4: Partial decision tree for the three-way classification experiment. Nodes are
labeled with the feature based on which the data is split, according to the conditions
listed next to the outgoing edges. In leaf nodes, the predicted class of data points in that
node are indicated: L for low-profile, E for event-based high-profile, and R for regular
high-profile. The numbers of correct predictions are given between brackets, followed by
a forward slash and the number of incorrect predictions, if any. We truncated the tree to
save space: nodes that contain both a feature name and class predictions represent trees
that will split on the indicated feature first, and, in later leaf nodes, yield the given class
predictions.

50



3.3. Conclusions

3.2.3 Lessons learned in the two experiments

The similarities between the decision trees for both experiments are clear: the click and
search volume features appear with the same threshold values. This is not very surprising
as the high-profile class is nothing more than the union of the event-based and the regular
high-profile class. There are also differences. When high-profile searches have to be split
into event-based and regular query instances, the news volume feature group is one of
the top features. Moreover, a Wikipedia feature appears. From each group in Tabel 3.1 a
feature is now being used, except for the clickout entropy features: evidence from clicks,
searches, news sources and Wikipedia all contribute.

Another finding is that different features from the same groups are quite redundant.
From each group typically only one feature plays a prominent role in the decision trees.

We can now answer our research question posed in the introduction. Two-way clas-
sification into low- and high-profile queries seems feasible. High recall and precision
is obtained for both classes, reflecting reasonable agreement with human classification
decisions. Three-way classification is harder, precision and recall for regular high-profile
queries are low. There may be several causes for this. First, there were only 24 regu-
lar high-profile queries in the dataset. Second, more features may need to be added to
capture the meaning of being a well-known person. Particularly promising may be fea-
tures obtained from the document collections being searched. Note that we have seen
that human annotators do not always agree with each other: even for people the task
is hard. Features that use clickouts, search volume and news volume are all important,
especially for the three way task. It is not very useful to add much redundancy. For
example, none of the “trend” features from Tabel 3.1 appeared high in the two decision
trees. The clickout entropy feature also does not appear high in the decision trees. A
possible explanation for this is that it does not contain very useful information once it
has been aggregated to top-level domains only (which was done to ameliorate data spar-
sity). Since most clicks land on social media platforms, the clickout entropy feature tells
us mostly if results from different social media platforms are clicked on. But it would be
more informative to know if many different profiles are clicked on.

3.3 Conclusions

We discussed a query classification scheme for a specific vertical search engine, viz. a
people search engine [231]. The scheme consists of low-profile people queries, event-
based high-profile queries and regular high-profile queries. We have shown that people
query instances can be automatically classified into high-profile queries and low-profile
queries with high precision and recall scores, confirming our findings in [231]. Features
that appeared to be particularly informative are click volume and the number of bursts.
A further three-way classification into event-based and regular high-profile queries is
harder. Here, the most informative features use clickouts, search volume and number of
mentions in the news.

Our findings suggest that a people search engine could take into account the predicted
class of an incoming query in its retrieval algorithms and in making decisions about result
presentation. Even in the three-way classification experiment, event-based queries were

51



3. Query Classification in People Search

recognized with reasonably high precision and recall. Presenting search results on a
timeline is an example of an interesting adaptation to the event-based query type.

Future work may develop more features to increase the effectiveness of classification
according to the three-way classification scheme. It is also interesting to study the effect
of using the predicted class of to inform the retrieval process. As an example, it may be
used as a feature in a learning to rank system.

52



4
Result Disambiguation in People Search

In the previous chapter we studied what different types of person name queries are sub-
mitted to a people search engine. In this chapter we study the retrieval, and more in par-
ticular, the organization of search results for person name queries. Regardless of the type
of person name query (low-profile, event-based high-profile, or regular high-profile), the
high ambiguity of person names presents a difficult challenge for a search engine. For
the purpose of studying how to deal with this name ambiguity, we treat all three types of
person name queries in the same way in this chapter. For a person name query, ideally,
a search engine would figure out in which individual a user is interested, and retrieve
search results for that person only. But in most cases, search results will refer to many
different people with the same name. A search application can meet this problem by
performing result disambiguation. In the context of people search, this is the problem of
finding correct referents for all occurrences of the query person name in the search re-
sults. This will allow for a result representation where documents are grouped by person,
allowing the user to efficiently zoom in on the documents referring to the individual of
interest. As we have discussed in Chapter 2, Section 2.3.1, Result disambiguation has
been studied in the Web People Search (WePS) campaigns [11–13]. For each query in
a set of person name queries, the organizers retrieved a a hundred search results using a
major web search engine, and produced a gold standard clustering, to which clusterings
generated by partipants in the WePS campaigns could be compared. One of the lessons
learned in those campaigns is that standard hierarchical agglomerative clustering (HAC)
approaches using textual features achieve high performance on the task.

We revisit the result disambiguation problem for people search and we do so in the
setting of a people search engine, a vertical meta-search engine that aggregates people
search results from a broad range of sources, both generic web search engines and social
media platforms. As an example, consider the people search engine we studied in Chap-
ter 2. Recall that it presents search results obtained from social media platforms on the
SERP, while search results from web search engines are displayed on a separate page.
This reflects recognition of the omnipresence of social media profiles on the web, and
of their importance among search results. However, it is tedious for a user to find docu-
ments referring to the individual of interest among different SERPs, and for this chapter,
we envisage a scenario where a single SERP would be generated, containing both social
media profiles (from any platform) and web search engine results (from any web search
engine), in a single result list. The inclusion of large numbers of social media proiles

53



4. Result Disambiguation in People Search

in the aggregated result list poses new challenges for result disambiguation methods that
have previously been shown to be very effective. Specifically, social media profiles are
textually sparse and contain relatively large amounts of boilerplate material, making it
non-trivial to extract good textual features from them.

We propose a dual strategy: different ways of treating social results and other, “non-
social” results. We examine the effectiveness of various disambiguation techniques on
social results and we contrast our findings with known results for non-social results. The
two types of document require different strategies for effective result disambiguation. We
then propose and examine techniques for combining the outcomes of result disambigua-
tion on social results with those on non-social results. We address the second research
question from the introduction and ask:

RQ2 State-of-the-art hierarchical aglommerative clustering (HAC) methods for clus-
tering web search results for person name queries break down on search results of a peo-
ple search engine, which contain many social media profiles. Can we remedy this prob-
lem by treating social media profiles differently from regular web documents, clustering
the two types of documents separately and then merging the clusterings back together?

Our main contributions are: (1) signaling the problem that people search results contain
increasing numbers of social media profiles plus its negative impact on existing disam-
biguation strategies for “traditional” web search results; (2) a new strategy of treating
social and non-social results separately and combining the resulting clusterings; (3) a
detailed error analysis. We also make available the data set (queries, ground truth, search
results) used in this chapter.

In Section 4.1 we detail our methods, and in Section 4.2 our experimental setup. We
show the results, answer our research question and perform an error analysis in Sec-
tion 4.3. We discuss the parameter sensitivity of our methods in Section 4.4. Finally, we
offer conclusions and point out directions for future work in Section 4.5.

4.1 Dual strategies for result disambiguation

In this section we describe our methods for disambiguating search engine results in
the setting of web people search. We start with a high level overview and then zoom in
on individual steps that make up our method.

As explained in the introduction, we work in the setting of a meta-search engine,
one that aggregates search results from generic web search engines and from a range of
social media platforms into a single result list D. The goal is to create a clustering of
this aggregated result list such that documents are grouped around the individuals they
refer to. We propose a dual strategy, with separate disambiguation steps for social and
non-social documents, followed by a merge step in which we combine the results of the
two clustering steps. Algorithm 4.1 outlines this strategy, introducing some notation.
The following paragraphs discuss the individual steps of the dual strategy.

54



4.1. Dual strategies for result disambiguation

Algorithm 4.1: Dual strategy for result disambiguation
1: Input: query q, search engine results D
2: Uses: clustering methods Mw and Ms

3: Split document set D into two sets, social documents Ds and non-social documents
Dw

4: for non-social documents Dw do
5: disambiguate Dw by creating clusters using method Mw

6: return clustering W
7: end for
8: for social documents Ds do
9: disambiguate Ds by creating clusters using method Ms

10: return clustering S
11: end for
12: Merge cluster results W and S into final clustering C
13: return merged clustering C

Splitting D into social and non-social documents Let D be the set of result docu-
ments retrieved for a given person name query. We use two methods to split the docu-
ments into social and non-social documents. The first method adds a search result d to
the set of social results Ds if it was obtained through the API of a social media platform,
i.e., in this study, Hyves, Facebook, LinkedIn, Twitter, and MySpace. Otherwise, it adds
the document to the non-social results Dw. We call this splitting method “By source”.
The idea behind it is that Dw is qualitatively more similar to the WePS collections than
D, because the WePS collections also contained search results obtained from a general
purpose web search engine.1 Note that when we split by source, Dw may still contain
social media profiles, if they were returned by a web search engine, just like the WePS
collections contain social media profiles. Thus, we split by source to enable a better com-
parison to results obtained in the WePS campaigns. Our second splitting method splits
the social and non-social search results a bit more aggressively, to achieve a better per-
formance. It adds d to the set of social results if the URL of a result document d contains
the top level domain of one of the social media platforms we consider. Otherwise it adds
d to the non-social results Dw. We dub this method “By URL.”

Clustering methods considered forMw andMs We now discuss the clustering meth-
ods that we consider. Due to the fact that the algorithm has to run online, at query time,
we have a strong preference for relatively light-weight methods.

• One-in-one: This simple baseline method creates a singleton cluster for each doc-
ument.

• All-in-one: This simple baseline method creates one cluster that contains all doc-
uments.

1Yahoo!

55



4. Result Disambiguation in People Search

• HAC: Hierarchical agglomerative clustering (HAC) approaches have been success-
ful in WePS-2, as we have seen in Chapter 2. Recall that HAC iteratively merges
cluster pairs with the highest similarity. It stops when this similarity does not ex-
ceed a fixed threshold, when a fixed number of iterations has been performed, or
when all items have been merged in a single cluster. Here, we use a fixed similarity
threshold. Different cluster similarity measures can be used. We report on exper-
iments that use singe link clustering (the similarity between the two most similar
points, one from each cluster), and centroid clustering (the similarity between the
centroids of both clusters). To compute the similarity between two documents,
we employ cosine similarity between document vectors with tf-idf term weights.
Inverse document frequencies (idf) are calculated with respect to search results
over all queries, and term frequencies are normalized as in [158]. We use Porter
stemming. See Section 4.2 for details on the parameter settings.

Additional clustering methods considered for Ms We apply four methods that are
specifically targeted at results obtained from social media platforms: (1) Cross links,
(2) Co-clicks, (3) Clicked in the same burst, and (4) Face clustering. For the first three
methods, we generate a binary similarity matrix, and subsequently perform HAC cluster-
ing. Our face clustering method generates a clustering of social media profile pictures,
and we then generate the corresponding clustering of social media profiles. The four
methods in a bit more detail:

• Cross links: If we find a hyperlink between two result documents, we set the simi-
larity of these two documents to one, and otherwise the similarity is zero.

• Co-clicks: For each query and people search engine user, we check if this user
clicked two results from different social media platforms for the same query. If
this is the case for at least two users, we set the similarity between these results to
one, otherwise to zero.

• Clicked in same burst: In the query logs of the people search engine, we count the
unique daily visitors who issue a given query, resulting in a time series. We then
define a burst in this time series to be a number of consecutive days in which the
unique daily search count exceeds the mean daily search count plus two standard
deviations. In addition, a burst-day needs to have at least ten unique daily searches.
We record for each search the last clicked result document. If two search results
are clicked on last during the same burst, we set their similarity to one, otherwise
to zero.

• Face clustering: We extract all user profile pictures from the social media profiles
and load them in Google Picasa, which has a built-in face clustering component.
We let Picasa find groups of faces using its default parameters and without any
user feedback. We then cluster the corresponding profiles.

Merging methods We consider two methods for merging clusterings W and S of the
non-social and social result documents contained in D.

56



4.1. Dual strategies for result disambiguation

Algorithm 4.2: Merging social media cluster results S with non-social cluster re-
sults W

1: Input: (1) Social clustering S = {S1, . . . , SI}, where Si is a cluster of social
search results from Ds; (2) non-social clustering W = {W1, . . . ,WJ}, where Wj is
a cluster of non-social search results from Dw; (3) a between-cluster similarity
threshold τ ∈ [0, 1]; (4) a social penalty p ∈ R+ that decreases similarity with
clusters in W once they contain social results; and (5) a cluster similarity function
HACsim .

2: Output: A final clustering C.
3: while S 6= ∅ do
4: A←− {A1, . . . , AJ}, where Aj ←− ∅; Aj will contain the set of social clusters

that apply for a merge with the non-social cluster Wj .
5: T ←− ∅; T will contain social clusters that cannot apply for a merge with any

non-social cluster.
6: for cluster Si in S do
7: find cluster Wj ∈W with highest sim(Si,Wj) =

HACsim(Si,Wj)
1+np , where n is

the number of social results already in Wj

8: if sim(Si,Wj) < τ then
9: T ←− T ∪ {Si}

10: S ←− S \ {Si}
11: else
12: Aj ←− Aj ∪ {Si}
13: end if
14: end for
15: for cluster Wj in W do
16: find cluster Si ∈ Aj with highest sim(Wj , Si) =

HACsim(Wj ,Si)
1+np ,

17: Wj ←−Wj ∪ Si
18: S ←− S \ {Si}
19: end for
20: W ←−W ∪ T
21: end while
22: return merged clustering W

57



4. Result Disambiguation in People Search

Table 4.1: Result disambiguation methods.

Name Splitting Mw Ms Merge method

Dual baseline By URL HAC single link One in one C ←−W ∪ S
Dual merge By URL HAC single link One in one Algorithm 4.2

• Baseline merge: This algorithm is precision oriented. It does not merge any social
clusters with non-social clusters, but simply returns the union of the respective
clusterings: C ←−W ∪ S.

• Advanced merge: This algorithm does attempt merges between the two kinds of
clusters. The main intuition behind it is that the clusters in W and, to a lesser
extent, S, contain more evidence than individual search results do, making sim-
ilarity estimates more reliable. Another goal of the algorithm is to discourage
further merges between social clusters. Specifically, we apply Algorithm 4.2 to
merge the social and non-social clusterings S and W . The behavior of the merg-
ing algorithm is controlled by three additional parameters. The minimal similarity
threshold required to merge a non-social with a social cluster is given by τ . A
penalty factor p regulates how much to decrease the similarity between a social
cluster and a non-social cluster that already contains one or more social media re-
sults. The between-cluster similarity function that is used is given by HACsim ,
i.e., single-link or centroid similarity. The algorithm first enters a loop that will
end when the set of social clusters is empty (line 3). In that loop, it organizes a
round of merges. First, each social cluster applies for a merge with the non-social
cluster that is most similar to it, unless the similarity is too low to warrant a merge,
in which case the social cluster is set aside (lines 4–14). Next, each non-social
cluster chooses amongst its applicants the social cluster closest to it, and merges it
into itself (lines 15–19). Then, the previously set aside social clusters are added to
the non-social clustering, before the next round of possible merges begin (line 20).
Eventually, all social clusters will either have been merged to a non-social cluster,
or they will have been set aside and added to the non-social clusters.

Dual result disambiguation methods considered The options for the splitting method,
the clustering method for non-social results (Mw), the clustering method for social re-
sults (Ms), and the merge method, give rise to a large number of combinations for dual
strategy runs (Algorithm 4.1). We limit ourselves to the methods for result disambigua-
tion specified in Table 4.1, picking for each step the option for which we expect the best
performance. Our expectations are based on our first set of experiments, and we will
explain our choices in Section 4.3.

4.2 Experimental setup

To test previously established methods and our own methods, we use the experimental
setup detailed in this section. We introduce the query and document sets used, report

58



4.2. Experimental setup

on our ground truth creation, explain our parameters, and finally, discuss the metrics on
which we report.

Query and document set We select queries from query logs of a people search engine.
The logs have been collected between September 2010 and February 2011 and contain
queries, associated clicks, and browser cookies (for user identification); Weerkamp et al.
[231] present a detailed study of the logs; see also Chapter 3. To select ambiguous
queries, we required queries to have clicks to at least three profiles within one social
media platform. In addition, we required that at least seven searches were performed
with clicks to at least two search engines or social media platforms, to make sure we
have some evidence in our click data for clustering. From this population of queries, we
randomly selected queries. For each selected query, the document set is constructed by
retrieving 20 documents (profiles) from each of five large social media platforms (e.g.,
Facebook, LinkedIn, Twitter) and 50 documents from three major web search engines
(Google, Yahoo! and Bing). The resulting document set is de-duplicated based on URL.
Documents that do not contain the person name are ignored. After constructing the
document set, we created a ground truth clustering, as described in the next paragraph.
In total, we created document sets and annotations for 33 queries. We do not reprint all
the person name queries here, for reasons of privacy, but the dataset and annotations are
available.2

Ground truth Annotations were created in the same way as for the WePS campaigns,
allowing for a comparison between results obtained on our data collection and results ob-
tained on the WePS-1 and WePS-2 datasets (see Chapter 2). A document can be assigned
to multiple clusters, if the document contains references to two or more persons with
the same name. If the annotator could not say for sure whether a document belonged to
existing clusters, a new cluster was created. Annotations were done on the full document
set for a query and not on separated datasets as a result of splitting. In case no evidence
whatsoever could be found in a document (e.g., private profiles without pictures), the
document was discarded. We also discarded documents in the web results that were re-
turned by other people search engines. We distributed queries to multiple annotators,
with insufficient means to study inter annotator agreement.

Figure 4.1 shows the number of annotated results per person name query in our
dataset. We have split out the results in non-social (Dw) and social results (Ds) “by
URL.” The queries are ordered by the number of annotated documents.

Parameter settings When it comes to applying HAC, we follow [158]. They did not
report on a minimal threshold stopping criterion value. We perform a partial parame-
ter sweep on the WePS-2 dataset, resulting in the value 0.225 which we use for both
single link and centroid HAC on all datasets. For our dual strategy with merge (viz. Al-
gorithm 4.2) we use the following parameter values: single link clustering as HACsim ,
τ = 0.5, and p = 1. We did not use a separate training set, but explored a few combina-
tions on our test set. We report on parameter sensitivity in Section 4.4.

2See http://ilps.science.uva.nl/resources/ecir2012rdwps.

59

http://ilps.science.uva.nl/resources/ecir2012rdwps


4. Result Disambiguation in People Search

0
50

10
0
15
0

Figure 4.1: Number of documents (y-axis) per person name query (x-axis) in our dataset,
split “by URL” in Ds and Dw. Dark boxes contain non-social results Dw; light boxes
contain social results Ds.

Metrics We use the B-cubed metrics [6] for evaluation of cluster quality, as was done
in WePS-2. An extended version of the metrics is used to accommodate for overlapping
clusters. For each topic, B-cubed precision (B3P ) and B-cubed recall (B3R) are com-
puted, and a macro-averaged F-measure with β = 0.5 is computed. In the presentation
and discussion of our results, when we discuss performance, we refer to performance in
terms of Fβ=0.5, unless we mention precision or recall explicitly, in which case we refer
to the B-cubed variants of precision and recall.

Significance tests We use a paired randomization test, as in, e.g., [209]. We look for
significant differences at an optimistic level α = 0.05, denoted M(or O) and a conservative
level, α = 0.001, denoted N(or H).

Unanimous Improvement Ratio The F-measure weighs precision and recall with the
β parameter. We set β to 0.5 as in the WePS campaigns, to favour neither precision nor
recall. Choosing a different β may affect system ranking. To estimate which pairwise
performance differences in Fβ=0.5 are robust against different β values, we employ the
Unanimous Improvement Ratio (UIR) [7]. For two systems A and B, let TA be the set of
queries for which system A achieves precision and recall scores that are greater than or
equal to the scores of system B. For these queries, the F-score for system A will not be
smaller for any value of β. Let T be the set of all queries. Then UIR(A,B) = (|TA| −
|TB |)/|T | ∈ [−1, 1]. For the people search clustering task, Amigó et al. [7] give a rule
of thumb that we employ in our result section: if |UIR(A,B)| ≥ 0.25 then an observed
performance difference in Fβ=0.5 between system A and B is robust with regards to the
particular value chosen for β. We refer to such performance differences simply as robust
in the remainder of this chapter. We denote robust performance differences with ↑ or ↓.

60



4.3. Results and analysis

Table 4.2: Performance in terms of B-cubed precision, B-cubed recall, and macro av-
eraged F-measure of standard methods on search results from all sources, i.e., on D.
For Fβ=0.5, both significant and robust differences, if indicated, are with regard to HAC
single link.

B3P B3R Fβ=0.5

All-in-one 0.17 1.00 0.25H

One-in-one 1.00 0.48 0.62

HAC single link 0.56 0.87 0.67
HAC centroid 0.72 0.71 0.69

4.3 Results and analysis

We report on three sets of experiments. First, we examine the performance of methods
from the literature on our people search engine data set, for which we consider the per-
formance on the full data set, and its restrictions to search engine results and social media
results. This is to confirm the premise of our research question, that state-of-the art meth-
ods for people search result clustering break on our data set, which contains more social
media profiles. Second, we examine the performance of methods designed for social me-
dia profiles. Third, we present results of our dual strategies (Table 4.1) on the full data
set. Based on the outcomes we answer RQ2. We finish this section with an error analysis
of our methods.

4.3.1 Results
We present the results of applying default clustering methods for web people search re-
sults on our people search engine dataset in Table 4.2. The performance of single link
HAC on our full dataset is substantially lower than scores reported for this algorithm on
the WePS-2 data, e.g., Monz and Weerkamp [158] report an F -score of 0.81.3 While
absolute performance scores for the same algorithm on two different datasets may vary
substantially, the large discrepancy provides a motivation to investigate what causes diffi-
culties for the HAC algorithm. There is another indication that HAC is not very effective
on our full dataset. In Table 4.2, the improvement of single link HAC over the one-in-one
baseline is not significant or robust (UIR < 0.25).

In Table 4.3, we report performance of the same clustering methods, but this time on
either just search results from web search engines (left side) or just search results from
social media profiles (right side). When we restrict ourselves to documents returned by
web search engines (left side), we find that the performance of HAC improves dramat-
ically, approaching the levels reported for WePS-2. Here, single link HAC improves
significantly over the one-in-one baseline. The improvement is not robust. On social
media documents (right side), the performance of HAC is about as bad as the all-in-
one baseline, which simply adds all documents to a single cluster; see the right side of

3Our HAC single link implementation achieved an Fβ=0.5 score of 0.78 on the WePS-2 dataset. Differences
like this may occur due to differences in preprocessing, e.g., tokenization.

61



4. Result Disambiguation in People Search

Table 4.3: Performance in terms of B-cubed precision, B-cubed recall, and macro aver-
aged F-measure of standard methods on either web search engine (Dw) or social media
platform search results (Dw), where D was split “by source” into Dw and Ds. For
Fβ=0.5, both significant and robust differences, if indicated, are with regard to HAC
single link. The best Fβ=0.5 scores are in boldface.

Search results from
search engines social media platforms

B3P B3R Fβ=0.5 B3P B3R Fβ=0.5

All-in-one 0.22 1.00 0.31 H 0.13 1.00 0.20
One-in-one 1.00 0.43 0.58 H 1.00 0.86 0.92 N

HAC single link 0.76 0.86 0.79 0.14 1.00 0.21
HAC centroid 0.89 0.70 0.75 0.17 0.96 0.27 N

Table 4.4: Performance in terms of B-cubed precision and recall, and macro averaged
F-measure of social clustering methods on search results from social media platforms.
The best Fβ=0.5 score, for the one-in-one method, is given in boldface. For Fβ=0.5,
significant and robust differences, if indicated, are with regards to the one-in-one method.

B3P B3R Fβ=0.5

One-in-one 1.00 0.86 0.92
Cross links 0.83 0.88 0.84 H↓
Co-clicks 0.99 0.87 0.91
Clicked in Same Burst 0.98 0.86 0.91
Picasa 1.00 0.86 0.92

Table 4.3.
These experiments also reveal that the difference between single link and centroid

HAC is limited. On our full dataset and on the social media profiles, centroid HAC
works best. If we limit ourselves to the web search results, we find that single link HAC
performs better. The difference is only significant on the social media profiles, and it is
nowhere robust. Looking at the social media results, we find that the one-in-one baseline
is the best system. The observed difference in best performing approaches between the
two document types clearly shows that the two behave very differently, which motivates
our dual strategies. From the experimental results reported on social media documents,
it is almost safe to assume that each document corresponds to a unique individual.

Next, we turn to result disambiguation methods that focus on social results. Table 4.4
lists the results of these experiments. We observe that none of the “social” methods is
able to beat the one-in-one baseline. The only method that differs significantly from the
one-in-one baseline is “Cross links,” but it is worse (H). It is also the only method over
which the improvement of the one-in-one baseline is robust (↓).

Our final set of experimental results concerns the dual strategies (dual baseline and

62



4.3. Results and analysis

Table 4.5: B-cubed precision and recall, macro averaged F-measure of the dual strategies
on search results from all sources. The best Fβ=0.5 score is given in boldface. In the
two rightmost columns, it is indicated if observed performance differences in Fβ=0.5

are significant and robust, with regard to the dual baseline and the dual merge method,
respectively.

Significance and robustness
of performance difference
with:

B3P B3R Fβ=0.5 Dual baseline Dual merge

All-in-one 0.17 1.00 0.25 H H

One-in-one 1.00 0.48 0.62 H H↓
HAC single link 0.56 0.87 0.67 H H

HAC centroid 0.72 0.71 0.69 H↓ H↓
Dual baseline 0.90 0.78 0.82 - H↓
Dual merge 0.90 0.80 0.83 N↑ -

dual merge). Recall that both the dual baseline method and the dual merge method split
search results by URL, perform single-link HAC on the non-social search resultsDw, and
perform one-in-one clustering on the social results Ds, as listed in Table 4.1. We split
by URL because we have observed in our experiments that the presence of social media
profiles hurts clustering performance. Splitting by URL will remove even the social
media profiles that were obtained from web search engines from Dw, and thus we expect
it to do better than splitting by source. To cluster non-social results, we use single-link
rather than centroid HAC, because single-link HAC performed best on non-social results.
To cluster social results, finally, we chose the one-in-one clustering method, because it
performed best on social results. The only difference between dual baseline and dual
merge, then, is how they merge the social and non-social clusterings. The results for
this final set of experiments are listed in Table 4.5. For convenience, besides reporting
on the dual baseline and the dual merge method, we repeat the scores of the clustering
methods from Table 4.2, which do not split search results in social and non-social results.
In the rightmost two columns of Table 4.5, we indicate for each method if observed
performance differences between it and the two dual strategy methods are significant and
robust. We observe that even with a naive merging strategy (dual baseline), we manage
to achieve scores comparable to those achieved with HAC on WePS-2 (e.g., in [158],
Fβ=0.5 = 0.81). Clearly, we are able to suppress the negative impact resulting from
social media results. The dual baseline has large and significant improvements (N) over
all other methods on our full dataset. It improves robustly only over centroid HAC,
however. With regard to single link HAC, the dual baseline improves precision on all
topics, but it also looses a bit of recall on all topics, indicating that there is room for
improvement. The more sophisticated merge method (Algorithm 4.2) improves slightly
but significantly (N) and robustly (↑) on the dual baseline. It has higher recall on about six
out of ten queries and never a lower precision: the intended effect of this method. Dual

63



4. Result Disambiguation in People Search

−0
.2

0.
0

0.
2

Figure 4.2: Difference in Fβ=0.5 score per query between dual merge and HAC single
link; a positive difference indicates a query where dual merge outperforms HAC single
(and vice versa).

merge has robust improvements also over centroid HAC and the one-in-one baseline.
With these results, we can now answer RQ2. Indeed if we treat social media profiles

differently from regular web documents, clustering the two types of documents sepa-
rately and then merging the clusterings back together, we obtain performance on par
with reported levels of performance in WePS campaigns [11–13]. For clustering social
media profiles, the most succesful approach is singleton clustering, where each profile is
used to form a cluster on its own. When merging the social and non-social clusterings,
a robust method is to let the final clustering be the union of the clusters in the original
clustering. It is possible to obtain additional improvements with our iterative method
described in Algorithm 4.2. The improvements are small, but significant.

4.3.2 Analysis
In our analysis, we compare our dual strategy with the single link HAC baseline and we
investigate why our “social” methods fail to improve over the one-in-one baseline.

Dual merge vs. single link HAC As shown in the previous subsection, single link
HAC is the best performing method on the results from search engines, which is why we
use it as Mw in our dual strategy approaches. Here, we compare this method to our dual
merge strategy. Figure 4.2 compares the difference between the dual merge strategy and
our baseline (single link HAC) on a per-query basis. For almost all queries, dual merge
achieves a clear improvement over single link HAC.

Our strategy of treating social media documents in a separate manner leads to large
improvements and we expect to see a stronger improvement in cases where more social
media documents are present. Figure 4.3 shows, however, that there is no clear correla-
tion between the ratio of social media results returned for a query and the improvement
after distinguishing between social and non-social search results.

Returning to Figure 4.2, the query that shows the largest drop in performance, going
from the HAC baseline to our dual strategy method, is the query with the highest ratio
of social documents. For this query, all search engines return noise: after automatically
filtering out results that did not contain the person name, we are left with only 27 results
for this query. During annotation, another 17 of these results were discarded, leaving

64



4.3. Results and analysis

0.1 0.2 0.3 0.4 0.5 0.6

-0
.2

0.
0

0.
2

profile_ratio

im
pr

ov
em

en
t (

F0
5)

Figure 4.3: Improvement in Fβ=0.5 (vertical axis) versus the ratio of social documents in
the total result set for a given query (horizontal axis).

only ten documents for clustering. Some profiles among these documents do refer to the
same person, leading to the degraded performance for this query.

The second query for which our dual merge method performs worse than the base-
line concerns a not very common name, but it is the name of a celebrity (Joey Spaan).
Consequently, this person dominates the search results completely. He has profiles on
various social media platforms, and since our dual merge strategy is designed to cluster
only few social media profiles, the small loss in recall for this query is unsurprising.

Analysis of “social” methods The performance of baseline clustering methods on so-
cial media results shows that such results should be treated differently from other web
documents. The good performance of the one-in-one baseline is caused by people gen-
erally (1) having only one profile per platform, and (2) using different platforms for very
different reasons. While web documents returned by general web search engines can be
completely dominated by a single person, many people will typically be represented in
the social media results. Besides, it is likely that people make an effort to keep their
Facebook profile (for friends) separated from their LinkedIn profile (for work related
contacts), leading to limited overlap in content.

The one-in-one baseline on social media profiles is not perfect. We investigate why
our “social” methods fail to discover the few clusters that are there. First, in eight out of
our 33 queries, the one-in-one baseline is actually perfect. We examined fifteen random
queries of the remaining 25 and found that the main reasons for our annotators to clus-
ter social documents together are: (1) a user profile picture (40 pairs of profiles), (2) a
company name or affiliation (12 pairs) and (3) an occupation (11 pairs).

The method that leads to the highest recall is the cross links method, although it
looses precision, too. A simple cause for this is that, for example, LinkedIn profiles
contain links to other profiles with the same person name (“Find a different John Smith”).
Adding a rule that ignores within platform cross links leads to too few links to make a

65



4. Result Disambiguation in People Search

noticeable difference. The Co-clicks method and the Clicked in same burst method have
almost no effect on performance. They share one problem: clicks are very sparse in
the query logs of our people search engine, making them hard to use. Finally, our face
recognition method fails to recognize and match enough faces in the user profile pictures
to improve recall noticeably. It would be interesting to explore this direction further,
perhaps taking into account other pictures beside profile pictures, and perhaps obtaining
similarities between detected faces instead of the hard clustering we obtained from the
Google Picasa software. All in all, we fail to improve over the one-in-one baseline with
our specific “social” methods.

It proves challenging to identify sufficient textual evidence in the social documents.
In follow-up experiments, we considered dedicated content extractors for each of the
social media platforms, so that only relevant text is extracted and not the boilerplate
material. Using these extractors results in an increase in precision for the single link
HAC baseline, but it also leads to a drop in recall, resulting in little change in F -score.

4.4 Discussion

In this section we explore the impact of various parameters on our results. First, we look
at the similarity threshold in HAC and second, we explore the parameters of our merging
algorithm.

The minimal similarity threshold in HAC Artiles et al. [12] observe that performance
of HAC is strongly dependent on the minimal similarity threshold used as a stopping
criterion. Different topics have different optimal thresholds and the authors provide an
upper and lower bound for HAC by doing a parameter sweep and taking for each query
the optimal value. The variety in optimal threshold is such that learning an average
optimal value on one dataset is no guarantee for success on another dataset.

We try a different, query-dependent approach to estimating the similarity threshold,
based on the observation that if a name is very ambiguous, we would require more ev-
idence to cluster two documents with this name together. For example, it would not be
unlikely to have two different John Smiths’s playing basketball in New York, but it would
be unlikely to have two Jack Rumplestilskin’s doing so. Thus we expect that if a name is
more ambiguous, a higher similarity threshold would be required. One reasonable way
of estimating name ambiguity is counting the number of unique user profiles on a social
media platform that is widely used and where people tend to use their real name. We
choose LinkedIn for this purpose. In Figure 4.4, after a parameter sweep on the WePS-1
data, we plot the best performing value minimal similarity threshold value of each person
name query as a function of the number of profiles with that name. It turns out that the
ambiguity of a name cannot explain the variance in the best performing threshold value
very well. For names with a moderate number of profiles, the best threshold values cover
the full range. Still, for a small number of person name queries with a large number of
profiles, the best performing threshold values average to a value of approximately 0.36,
which is higher than the average for all queries. Based on these observations, we per-
form a test run on the WePS-2 data with the following simple rule: if there are more than
500 LinkedIn profiles for a given query, use a similarity threshold of 0.360, otherwise

66



4.4. Discussion

0 500 1000 1500 2000 2500 3000

0.
1

0.
2

0.
3

0.
4

Number of LinkedIn profiles

Be
st 

pe
rfo

rm
in

g 
ta

u

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.4: The best performing minimal similarity threshold τ (used as a stopping cri-
terion in HAC single link) for each person name query in the WePS-1 dataset (vertical
axis) plotted as a function of the number of LinkedIn profiles with that name (horizontal
axis).

67



4. Result Disambiguation in People Search

Table 4.6: Impact of parameters τ (Top) and p (Bottom) on the performance of the dual
merge method.

τ p B3P B3R Fβ=0.5

τ = 0.225 p = 1.0 0.77 0.82 0.78
τ = 0.500 p = 1.0 0.90 0.80 0.83
τ = 0.775 p = 1.0 0.90 0.78 0.82

p τ B3P B3R Fβ=0.5

p = 0.0 τ = 0.5 0.74 0.82 0.76
p = 0.5 τ = 0.5 0.86 0.81 0.82
p = 1.0 τ = 0.5 0.90 0.80 0.83
p = 1.5 τ = 0.5 0.90 0.78 0.82
p = 2.0 τ = 0.5 0.90 0.78 0.82

use the default threshold of 0.225. Results of this experiment show a slight increase in
precision, but an equal drop in recall, leading to the same F -score as a run without query-
dependent thresholding. Finding a more sophisticated way to use query characteristics
to predict thresholding parameters is an interesting direction for future research, e.g., by
using multiple query features and try to fit a model on the optimal threshold for those
queries using machine learning techniques.

Parameter sensitivity of our merging algorithm Algorithm 4.2 has a number of pa-
rameters. For HACsim we use single link clustering, as it performs best overall. Here,
we explore the impact of the minimal similarity threshold (τ ) and the parameter p, which
regulates how strong the similarity between a social and a non-social cluster decreases
for each social cluster already present in the non-social cluster. Table 4.6 lists the perfor-
mance for different values of τ (Top), while keeping p stable, and different values of p
(Bottom), while keeping τ stable. We find that increasing τ leads to better precision, but
decreasing recall. We find a similar pattern of improving precision with higher values for
p, at the cost of recall. We recommend setting τ to 0.5 and p to 1, as it achieves highest
precision, while sacrificing only little recall. Insisting on higher recall implies having to
accept a sharper drop in precision.

4.5 Conclusion

In this chapter we studied the problem of disambiguating the search results of a people
search engine. Our results show that the increasing availability of results retrieved from
social media platforms causes state-of-the-art methods to break down.

We proposed a dual strategy where we treat social search results differently from
non-social results. For non-social results, we used single link HAC as a strategy, the best
performer when we evaluate on the subset of results obtained via generic web search

68



4.5. Conclusion

engines. For social results, we investigated several methods but were unable to beat the
one-in-one baseline, which considers each document as a cluster on its own. Therefore,
we selected the one-in-one baseline as a strategy here. We tested two methods for merg-
ing the two clusterings. The first is a baseline method that simply takes the union of both
clusterings. This method already achieved a large boost in precision. With the second
merging method we were able to gain recall without losing precision, obtaining results
comparable to state of the art results obtained on WePS datasets.

Future work should explore possibilities to estimate query-dependent stopping thresh-
olds for HAC. While face recognition failed to improve our results here, it seems a
promising direction also, particularly if more images are used besides user profile im-
ages, and raw similarities between detected faces could be incorporated in the clustering
algorithm, instead of only hard predictions.

69





5
On the Evaluation of Expertise Profiles

In the previous two chapters we have studied two problems in the people search setting.
In this chapter, we study a specialization of people search, namely expertise retrieval [18].
We focus on evaluation. Given different ways of creating ground truth, what are differ-
ences in evaluation outcomes? Before repeating RQ3 from the introduction, we provide
background material on expertise finding and topical profiling. An organization’s intranet
provides a means for exchanging information between employees and for facilitating col-
laborations between employees. To efficiently and effectively achieve this, it is necessary
to provide search facilities that enable employees not only to access documents, but also
to identify expert colleagues [98]. At the TREC Enterprise Track [17, 23, 60, 211] the
need to study and understand expertise retrieval has been recognized through the in-
troduction of the expert finding task. The goal of expert finding is to identify a list of
people who are knowledgeable about a given topic: Who are the experts on topic X? This
task is usually addressed by uncovering associations between people and topics [24];
commonly, a co-occurrence of the name of a person with topics in the same context is
assumed to be evidence of expertise. An alternative task, building on the same underly-
ing principle of computing people-topic associations, is expert profiling, where systems
have to return a list of topics that a person is knowledgeable about [19, 20]. Essentially,
(topical) expert profiling turns the expert finding task around, and asks: What topics does
a person know about?

Expert profiling is useful in its own right for users who want to profile experts they
already know. It is also a key task to address in any expert finding system; such systems
rank experts, and users will want to navigate to profiles of these experts. Complete and
accurate expert profiles enable people and search engines to effectively and efficiently
locate the most appropriate experts for an information need. In addition to a topical
profile, it is recognized that social factors play a large role in decisions about which
experts to approach [19, 64, 100, 207].

We focus on the topical expert profiling task in a knowledge-intensive organization,
i.e., a university, and release an updated version of the UvT expert collection [35], which
was created with data from the Universiteit van Tilburg (UvT, Tilburg University). Be-
cause the university no longer uses the acronym UvT and has switched to TU instead,
we call the updated collection the TU expert collection.1 The TU expert collection is

1The TU expert collection is publicly available at http://ilps.science.uva.nl/tu-expert-
collection. For a description of the items contained in the collection, please see the appendix to this

71

http://ilps.science.uva.nl/tu-expert-collection
http://ilps.science.uva.nl/tu-expert-collection


5. On the Evaluation of Expertise Profiles

based on the Webwijs (“Webwise”) system2 developed at Tilburg University. Webwijs is
a publicly accessible database of TU employees who are involved in research or teaching,
where each expert can indicate his/her skills by selecting expertise areas from a list of
knowledge areas. Prior work has used these self-selected areas as ground truth for both
expert finding and expert profiling tasks [18, 20]. With the TU expert collection come
updated profiles consisting of these self-selected knowledge areas; we refer to this set of
areas as self-selected knowledge areas.

One problem with self-selected knowledge areas is that they may be sparse. There
is a large number of possible expertise areas to choose from (more than 2000). When
choosing their knowledge areas, experts may not necessarily browse the set of knowl-
edge areas very thoroughly, especially since the interface in which they select the areas
lists them in alphabetical order without providing links between related areas. This might
result in sparse data with a limited number of knowledge areas assigned to each expert.
Using these self-selected knowledge areas as ground truth for assessing automatic pro-
filing systems may therefore not reflect the true predictive power of these systems. To
find out more about how well these systems perform under real-world circumstances, we
have asked TU employees to judge and comment on the profiles that have been auto-
matically generated for them. Specifically, we have employed state-of-the-art expertise
retrieval methods to construct topical expertise profiles. TU employees were then asked
to re-assess their self-selected knowledge areas based on our recommendations; in addi-
tion, they were given the option to indicate the level of expertise for each selected area.
Moreover, they could give free text comments on the quality of the expert profiles. We
refer to this whole process as the assessment experiment in this chapter.

The research in this chapter can be grouped in two parts. In the first part, we per-
form a detailed analysis of the outcomes of the assessment experiment. One important
outcome is a new set of graded relevance assessments, which we call the judged system-
generated knowledge areas. We examine the completeness of these new assessments.
The knowledge areas experts selected, and the textual feedback they gave provide us
with a unique opportunity to answer the question: “How well are we doing at the ex-
pert profiling task?” We perform a detailed error analysis of the generated profiles and
a content analysis of experts’ feedback, leading to new insights on what aspects make
expertise retrieval difficult for current systems.

In the second part, we take a step back and ask: “Does benchmarking a set of ex-
pertise retrieval systems with the judged system-generated profiles lead to different con-
clusions, compared to benchmarking with the self-selected profiles?” We benchmark
eight state-of-the-art expertise retrieval systems with both sets of ground truth and inves-
tigate changes in absolute system scores, system ranking, and the number of significant
differences detected between systems. We find that there are differences in evaluation
outcomes, and are able to isolate factors that contribute to these differences. Based on
our findings, we provide recommendations for researchers and practitioners who want to
evaluate their own profiling systems. The research questions in this chapter are summa-
rized in RQ3:

chapter.
2http://www.tilburguniversity.edu/webwijs/

72

http://www.tilburguniversity.edu/webwijs/


RQ3 We ask experts to judge profiles we generate for them. What is the quality of our
generated profiles? Which experts are hard to generate a profile for and why? Previously,
evaluation of expert profiling algorithms had been done by using profiles of knowledge
areas that experts selected from an alphabetical list. If we use judged system-generated
profiles for evaluation, what, if any, are the differences in evaluation outcomes?

The main contributions in this chapter are:

• The release of a test collection for assessing expert profiling (the TU expert col-
lection) plus a critical assessment and analysis of this test collection. Test collec-
tions support the continuous evaluation and improvement of retrieval models by
researchers and practitioners: in this case in the field of expertise retrieval.

• Insights into the performance of current expert profiling systems through an exten-
sive error analysis, plus a content analysis of feedback of experts on the generated
profiles. These insights lead to recommendations for improving expertise profiling
systems.

• Insights in the differences in evaluation outcomes between evaluating the two sets
of ground truth released with this chapter. This will allow researchers and prac-
titioners in the field of expertise retrieval to understand the performance of their
own systems better.

Before we delve in, we give a small recap of some terminology. Expert profiles, or topical
profiles, in this chapter consist of a set of knowledge areas from a thesaurus. Throughout
the chapter, we will be focusing on two kinds of expert profile that we use as ground
truth:

Self-selected These profiles consist of knowledge areas that experts originally selected
from an alphabetical list of knowledge areas.

Judged system-generated These profiles consist of those knowledge areas that experts
judged relevant from system-generated profiles: a ranked list of (up to) a hundred
knowledge areas that we generated for them.

The rest of this chapter is structured as follows. In Section 5.1, we define the topical
profiling task. Next, we describe the assessment experiment in Section 5.2: the profiling
models used to generate the profiles, and the assessment interface experts used to judge
these profiles. The evaluation task we study in this chapter is a multi-faceted one, giving
rise to multiple research questions. We organize these in Section 5.3, where we list the
questions and the methods used to answer them. We present and analyze the results
of our assessment experiment in Section 5.4, followed by an analysis of benchmarking
differences between two sets of relevance assessments in Section 5.5: self-selected vs.
judged system-generated knowledge areas. In Section 5.6, we wrap up with a discussion,
conclusion, and look-ahead.

73



5. On the Evaluation of Expertise Profiles

5.1 The topical profiling task

The TU expert collection is meant to help assess topical profiling systems in the setting
of a multilingual intranet of a knowledge intensive organization. One can answer the
question “What topics does an expert know about?” by returning a topical profile of that
expert: a record of the types of areas of skills and knowledge of that individual, and a
level of proficiency in each [24]. The task consists of two steps, (1) identifying possible
knowledge areas, and (2) assigning a score to each knowledge area [19]. In an enterprise
search environment, there often exists a list of knowledge areas in which an organization
has expertise. In our test collection this is indeed the case, therefore we focus on the
second step. We assume that a list of knowledge areas {a1, . . . , an} is given, and state
the problem of assigning a score to each knowledge area (given an expert) as follows:

What is the probability of a knowledge area (a) being part of the expert’s (e)
topical profile?

We approach this task as one where we have to rank knowledge areas by this probability
P (a|e).

In the TU expert collection, for this task systems receive the following ingredients as
input:

• A query consisting of an expert ID (that is, an organization-wide unique identifier
for the person).

• A collection consisting of publications, supervised student theses, course descrip-
tions, and research descriptions crawled from the Webwijs system of Tilburg Uni-
versity. All documents are either Dutch or English. The language is known for
research and course descriptions and is unknown for publications and student the-
ses.

• Explicit associations between the expert ID and documents in the corpus.

• A thesaurus of knowledge areas. Knowledge areas are available in two languages,
Dutch and English. All areas have a Dutch representation, for most of them an
English translation is available as well.

Given this input, the requested system output is a ranked list of knowledge areas from
the thesaurus.

We note a small subtlety concerning the language of documents in the collection.
In previous work [18], systems were evaluated on the subset of knowledge areas for
which both a Dutch and an English translation were available; if an expert had selected
a knowledge area without an English translation, for evaluation purposes this knowledge
area would be considered as non-relevant. In this work, if an expert selects a knowledge
area, we consider it as relevant, regardless of whether or not it has an English translation.

5.2 The assessment experiment

We first describe the models we used to produce the system-generated profiles. Then, we
describe the assessment interface that experts used to judge these profiles.

74



5.2. The assessment experiment

5.2.1 Automatically generating profiles

The system-generated profiles are generated by combining the results of eight state-of-
the-art expert profiling systems in a straightforward way. In this subsection we describe
the eight systems, the combination method, and we list the parameter settings we used
in this chapter. The eight expertise profiling systems that we used differ in three dimen-
sions. First, two different retrieval models are employed. Second, systems use either the
Dutch or the English translations of the knowledge areas. Third, half of the systems treat
knowledge areas as independent of each other, while the other half use a thesaurus of
knowledge areas to capture the similarity between them. We shortly describe the models
here.

The two retrieval models considered below take a generative probabilistic approach
and rank knowledge areas a by the probability that they are generated by expert e:
P (a|e). In the first model, called Model 1 in [21], we construct a multinomial language
model θe for each expert e over the vocabulary of terms from the documents associated
with the expert. We model knowledge areas as bags of words, created from their textual
labels (either Dutch or English). It is assumed that knowledge area terms t are sampled
independently from this multinomial distribution, with replacement. Then, for Model 1
we have:

P (a|e) = P (a|θe) =
∏
t∈a

P (t|θe)n(t,a), (5.1)

where n(t, a) is the number of times term t occurs in a. In estimating P (t|θe), we
apply smoothing using collection term probabilities, with unsupervised estimation of
smoothing parameters. Specifically, we employ Dirichlet smoothing and use the aver-
age representation length (i.e., the average number of terms associated with experts) as
the smoothing parameter. In the second model, called Model 2 in [21], we estimate a
language model θd for each document associated with an expert (we assume binary asso-
ciations between experts and documents). Let this set of documents be De. We sum up
the probabilities of each of these documents generating the knowledge area. The terms
in a are sampled independently from each document. Then, for Model 2 we have:

P (a|e) =
1

|De|
∑
d∈De

P (a|θd) =
1

|De|
∑
d∈De

∏
t∈a

P (t|θd)n(t,a). (5.2)

To estimate P (t|θd) we smooth using collection term probabilities as before, estimating
smoothing parameters in an unsupervised way. As before, we use Dirichlet smoothing,
but here we set the smoothing parameter to the average document length in the collection.

As for the language dimension, recall that knowledge areas come in two languages:
a = {aDutch, aEnglish}. The Dutch retrieval models estimate P (aDutch|e), the English
systems estimate P (aEnglish|e).

Systems that utilize the thesaurus rely on a similarity metric between a pair of knowl-
edge areas, sim(a, a′). This similarity is taken to be the reciprocal of the length of the
shortest path SP(a, a′) between a and a′ in the thesaurus. If two knowledge areas are not
connected, their similarity is set to zero. In addition, we use a parameter m for the max-
imal length of the shortest path for which we allow knowledge areas to have a non-zero

75



5. On the Evaluation of Expertise Profiles

probability. Formally,

sim(a, a′) =

{
1/ SP(a, a′), 0 < SP(a, a′) ≤ m
0, otherwise. (5.3)

We describe the thesaurus graph in detail in Appendix A, Section A.4. Note that we do
not distinguish between different types of relation in the graph and use all of them when
searching for the shortest path. Next, we use sim(a, a′) to measure the likelihood of
seeing knowledge area a given the presence of another knowledge area a′:

P (a|a′) =
sim(a, a′)∑

a′′ 6=a′ sim(a′′, a′)
. (5.4)

The idea is that a knowledge area is more likely to be included in a person’s expertise
profile if the person is knowledgeable on related knowledge areas. This support from
other knowledge areas is linearly interpolated with P (a|e) using a parameter λ to obtain
an updated probability estimate P ′(a|e):

P ′(a|e) = λP (a|e) + (1− λ)

∑
a′ 6=a

P (a|a′)P (a′|e)

 . (5.5)

For all systems, once P (a|e) has been estimated, we rank knowledge areas according
to this probability and return the top 100 knowledge areas for a given user; as we only
retrieve knowledge areas a where P (a|e) > 0, the result list may contain fewer than 100
items.

Merging systems’ outputs To arrive at the set of judged system-generated knowledge
areas, we proceed as follows. We use the eight profiling systems just described (that
is, {Model 1, Model 2} × {Dutch, English} × {with thesaurus, without thesaurus})
to estimate the probabilities of knowledge areas for each expert. Let us denote this as
Pi(a|e) (i = {1, . . . , 8}). These probabilities are then combined linearly to obtain a
combined score P (a|e):

P (a|e) =
∑
i

αiPi(a|e). (5.6)

Additionally, the top three knowledge areas retrieved by each profiling system receive
an extra boost to ensure that they get judged. This is done by adding a sufficiently large
constant C to P (a|e).

Parameter settings For the systems that use the thesaurus, we let m = 3 (Eq. 5.3)
and λ = 0.6 (Eq. 5.5). For the combination algorithm (Eq. 5.6) we let αi = 1/8 for
all i. Further, we set C = 10 and, again, we only retrieve knowledge areas for which
P (a|e) > 0.

76



5.2. The assessment experiment

Figure 5.1: A screenshot of the interface for judging system-generated knowledge areas.
At the top, instructions for the expert are given. In the middle, the expert can select
knowledge areas. For selected knowledge areas, a level of expertise may be indicated.
At the bottom, there is a text field for any comments the expert might have.

77



5. On the Evaluation of Expertise Profiles

5.2.2 Judging the generated profiles

The assessment interface used in the assessment experiment is shown in Figure 5.1. At
the top of the page, instructions for the expert are given. In the middle, the expert can in-
dicate the knowledge areas (called “Expertise areas” in the interface) regarded as relevant
by ticking them. Immediately below the top twenty knowledge areas listed by default,
the expert has the option to view and assess additional knowledge areas. The expert may
or may not have examined all (up to hundred) retrieved knowledge areas in the generated
profile; this information was not recorded. System-generated knowledge areas that were
in the original (self-selected) profile of the expert are pushed to the top of the list and
are ticked by default in the interface, but the expert may deselect them, thereby judging
them as non-relevant. For the ticked knowledge areas, experts have the option to indicate
a level of expertise. If they do not do this, we still include these knowledge areas in the
graded self-assessments, with a level of expertise of three (“somewhere in the middle”).
At the bottom of the interface, experts can leave any comments they might have on the
generated profile.

5.3 Research questions and methodology

In the previous two sections we have introduced the topical profiling task, and our as-
sessment experiment. In this section, we split out RQ3 from the introduction in several
more specific research questions, so as to help structure the analysis in the upcoming
sections. Recall that RQ3 concerns the quality of the profiles we generated for experts in
the assessment experiment, as well as evaluation outcomes when the judgments from that
experiment are used. We organize the specific research questions into two correspond-
ing subsections. The first subsection is concerned with the results of the assessment
experiment. We study the completeness of the judgments gathered and the quality of
the generated profiles; we answer these questions in Section 5.4. The second subsec-
tion deals with the impact of using two sets of ground truth on evaluation outcomes; we
answer these questions in Section 5.5. We briefly motivate each research question and
outline the methods used to answer it.

5.3.1 Results and analysis of the assessment experiment

The TU expert collection includes two sets of assessments: self-selected knowledge areas
and judged system-generated knowledge areas. Our first research question concerns these
two test sets of relevance assessments:

RQ3.1 Which of the two sets of ground truth is more complete?

Methods used We construct the set of all knowledge areas that an expert judged
relevant at some point in time, either by including it in the self-selected profile, or
by judging it relevant in the self assessment interface. We then look which of the
sets of ground truth contains more of these knowledge areas.

78



5.3. Research questions and methodology

Remember that the judged profiles were generated by a combination of state-of-the-art
systems. Our next three research questions address the informal question: “How well are
we doing?”

RQ3.2 What are the characteristics of “difficult” experts?

For example, does the number of relevant knowledge areas correlate with perfor-
mance? Does the number of documents associated with an expert matter? Is there a
significant difference between mean performance over different groups of experts,
for example, PhD students vs. professors?

Methods used We look for correlations by visual inspection. We group experts
by their position (job title) and look for significant performance differences using
Welch’s two sample t-test [232]. Because we perform a number of comparisons
we use an alpha value of α = 0.01, to keep the overall Type I error under control.

RQ3.3 What are the characteristics of “difficult” knowledge areas?

Methods used We identify knowledge areas that are often included in experts’
self-selected profiles but are rarely retrieved in the system-generated profiles. In
addition, we identify knowledge areas that are often retrieved in the top ten ranks
of system-generated profiles but never judged relevant by experts.

RQ3.4 What are important aspects in the feedback experts gave on their system-generated
profiles?

Methods used In a content analysis, performed by two researchers, aspects are
identified in a first pass over the data. In a second pass over the data, occurrences
of these aspects are counted.

5.3.2 Self-selected vs. judged system-generated areas
Next, we analyze the differences in evaluation outcomes that arise when our two sets of
relevance assessments are applied to assess expert profiling systems. Our main research
question is the following:

RQ3.5 Does using the set of judged system-generated knowledge areas lead to differ-
ences in system evaluation outcomes compared to using the self-selected knowl-
edge areas?

When answering this question, we consider four differences between the two sets
of relevance assessments: (1) only a subset of experts has judged the system-
generated knowledge areas, (2) self-selected knowledge areas that were not in
the set of system-generated knowledge areas are considered non-relevant in the
judged system-generated profiles, (3) experts selected new knowledge areas from
the system-generated profile, and (4) experts provided a level of expertise for most
judged system-generated knowledge areas. We isolate the effect of each difference
by constructing five sets of ground truth (self-selected profiles, judged system-
generated profiles, and three intermediate ones), which we will detail later. We
consider the effect of each difference on three dimensions; these are handled as
separate sub-questions.

79



5. On the Evaluation of Expertise Profiles

RQ3.5a How do the differences between the set of self-selected knowledge areas and the
set of judged system-generated knowledgea areas affect absolute system scores?

Methods used We analyze nDCG@100 performance for each of the five sets of
ground truth. nDCG@100 is a metric that rewards both high precision, high recall,
and—in the case of graded relevance assessments—correct ordering of relevant
knowledge areas.

RQ3.5b How do the differences between the set of self-selected knowledge areas and
the set of judged system-generated knowledge areas affect system ranking?

Methods used We analyze differences in ranking with the five sets of ground truth.
Following [224], we use Kendall’s tau. Like [194], we use the formula

τ =
P −Q√

(P +Q+ T )(P +Q+ U)
, (5.7)

where P is the number of concordant pairs, Q is the number of discordant pairs,
T is the number of ties in the first list, and U is the number of ties in the second
list. If there is a tie in at least one of the lists for a pair, the pair is neither correctly
nor incorrectly ordered. When there are no ties, this formula is equivalent to the
original formula as proposed by [119]. For two evaluation metrics which take into
account graded relevance assessments (nDCG@100 and nDCG@10), we rank the
eight systems described in Section 5.2 with each of our five sets of ground truth.
We then compute Kendall’s tau between each pair of these five system rankings, a
total of ten comparisons per metric. For two evaluation metrics that do not take into
account graded relevance (MAP, MRR), we rank the eight systems with four sets of
ground truth, all of which contain only binary relevance judgments. We compute
Kendall’s tau between all pairs of system rankings, a total of six comparisons per
metric. Thus, to answer this research question, we compute Kendall’s tau for 20 +
12 = 32 pairs of system rankings. We accept a probability of Type I error α =
0.01 for each comparison. Then, the probability of at least one Type I error in
all comparisons if they would be independent equals 1 − (1 − 0.01)32 = 0.28.
For eight systems, Kendall’s tau has to be greater than or equal to 0.79 in order to
reject the null hypothesis (two-tailed) [204].3 To compute MAP and MRR scores,
trec eval was used for evaluation; for implementing nDCG, we followed [54].
We took all experts for the given test set into account during evaluation, even if
systems did not retrieve any knowledge areas for them (these experts get zero score
on all evaluation metrics).

RQ3.5c How do the differences between the set of self-selected knowledge areas and
the set of judged system-generated knowledge areas affect the average number of
systems a system differs significantly from?

Methods used We compare the five sets of ground truth on the basis of the number
of significant differences in MAP, nDCG@100, MRR, and nDCG@10 that they
detect between pairs of systems. A pair of systems differ significantly if their

3We observed no ties in our data, thus equation 5.7 reduces to the original Kendall’s tau formula, to which
the critical value 0.79 corresponds.

80



5.4. Results and analysis of the assessment experiment

difference is expected to generalize to unseen queries. We use Fisher’s pairwise
randomization test, following [209], and set α = 0.001. We repeat this test for five
sets of ground truth, four evaluation metrics (except that we have no MAP or MRR
scores for the graded relevance assessments), and all possible ( 1

28(8 − 1) = 28)
pairs of systems: a total of 18 × 28 = 504 comparisons. Assuming all these
comparisons are independent, this means accepting a Type I error of 1 − (1 −
0.001)504 = 0.40. It is no problem for the interpretation of our results if there are
a few spurious rejections of the null hypothesis; we mean to give an indication of
the sensitivity of each set of ground truth, i.e., the average number of systems that
a system differs significantly from.

5.4 Results and analysis of the assessment experiment

In this section we report on the results of the assessment experiment defined in Sec-
tion 5.2. We start with an examination of the completeness of the main tangible outcome
of this experiment, the so-called judged system-generated knowledge areas. Then, we
analyze the quality of the generated profiles.

5.4.1 Completeness of the two sets of ground truth for expert pro-
filing

To answer the question how complete each set of ground truth is (RQ3.1) we start out
with some basic descriptive statistics. Our first set of ground truth contains 761 self-
selected profiles of experts who are associated with at least one document in the col-
lection. Together, these experts selected a total of 1,662 unique knowledge areas. On
average, a self-selected profile contains 6.4 knowledge areas. The second set of ground
truth contains 239 judged system-generated profiles. These experts together selected a
total of 1,266 unique knowledge areas. On average, a judged system-generated profile
contains 8.6 knowledge areas.

In Figure 5.2, the left two histograms show the distribution of experts over their
number of relevant knowledge areas for the self-selected profiles (top) and for the judged
system-generated profiles (bottom). The latter distribution is shifted to the right. The
histograms on the right show the distribution of knowledge areas over the profiles that
include them; top-right the self-selected profiles and bottom-right the judged system-
generated profiles. The latter histogram is more skewed to the left; half of the knowledge
areas have been judged relevant by a single expert only.

As an aside, we now check for how many of the graded judged system-generated
knowledge areas we assigned our “somewhere in the middle” value of three, because the
expert judged the knowledge area relevant without indicating a level of expertise. On
average, this occurred for 0.6 of the 8.8 knowledge areas in each expert’s profile. We
conclude that the effect of this is negligible.

Now, to quantify the completeness of each set of ground truth in a single number, we
proceed as follows. Let the set of all relevant knowledge areas associated with an expert
be the union of the self-selected profile and the judged system-generated profile. Then,
subtract the knowledge areas that the expert deselected during the assessment interface

81



5. On the Evaluation of Expertise Profiles

(a) (b)

(c) (d)

Figure 5.2: Distribution of experts over their number of relevant knowledge areas (left)
and distribution of knowledge areas over the profiles that include them (right). The top
graphs are based on the self-selected profiles, the bottom graphs are based on the judged
system-generated knowledge areas.

Table 5.1: Average percentage of the total number of relevant knowledge areas found for
experts only by the automatic expert profilers, only by the experts when they self-selected
knowledge areas, or by both. The sample standard deviation over experts is shown in the
“Sample std” column.

Average Sample std
Only found by systems 35% 24%
Only found by experts 19% 19%
Found by both 46% 24%

82



5.4. Results and analysis of the assessment experiment

Table 5.2: Retrieval performance of the combined profiling algorithm on the self-selected
and on the judged system-generated knowledge areas.

Ground truth MAP MRR nDCG@10 nDCG@100

Self-selected (761) 0.16 0.40 0.21 0.36
Judged system-generated (239) 0.43 0.71 0.44 0.66

(on average, experts removed two percent of the knowledge areas originally included in
their self-selected profiles). We divide the resulting list of knowledge areas into three
categories:

Only found by systems. These knowledge areas were not in the self-selected profile,
but they were in the system-generated profile and judged relevant by the experts.

Only found by experts. These knowledge areas were in the self-selected profile, but not
in the system-generated profile.

Found by both These knowledge areas were in both the self-selected and
system-generated profiles, and the experts did not deselect them during the assess-
ment experiment.

In Table 5.1 we see the percentage of relevant knowledge areas that fall into each cat-
egory, per profile, averaged over profiles. To answer RQ3.1, we find that the judged
system-generated profiles are more complete. On average, a judged system-generated
profile contains 81% (46% + 35%, see Table 5.1), while a self-selected profile contains
only 65% (46% + 19%, see Table 5.1) of all relevant knowledge areas.

This leads to the following recommendation: because the judged system-generated
profiles are more complete, we expect this set of ground truth to give a more accurate
picture of system performance, even if fewer assessed expert profiles are available. We
will elaborate on this when we answer RQ3.5 later.

5.4.2 Difficult experts and difficult knowledge areas

We investigate the characteristics of “difficult” experts (RQ3.2) and knowledge areas
(RQ3.3). Before we begin with the analysis at the expert and knowledge area level, we
report on the overall quality of the combined profiling algorithm in Table 5.2. We mea-
sure performance against the self-selected and the judged system-generated knowledge
areas, respectively. All metrics are averaged over all profiles. Note that MAP and MRR
treat relevance as a binary decision and the level of expertise indicated is not taken into
account. Also note that there are no graded assessments available for the self-selected
profiles, hence nDCG@10 and nDCG@100 in the first row of Table 5.2 are computed
using the same relevance level for all self-selected knowledge areas. We find that con-
siderably higher absolute scores are obtained on the judged system-generated profiles
than on the self-selected ones. This finding holds for all metrics. Later, when we an-
swer RQ3.5, we will identify four factors that contribute to this large difference. In
our detailed error analysis of the system-generated profiles that follows next, we focus

83



5. On the Evaluation of Expertise Profiles

Figure 5.3: Average nDCG@100 on the self-selected profiles for the four most common
positions, with 99% confidence intervals.

on nDCG@100 as it is a metric that captures the quality of the entire system-generated
profile.

Difficult experts Here, we aim to find properties of experts that can explain some of
the variance in performance. We use the self-selected profiles of all 761 experts; this al-
lows us to incorporate self-selected knowledge areas that were missing from the system-
generated profiles in our analysis. We investigate a number of characteristics: the number
of relevant knowledge areas for the expert, the number of documents associated with ex-
perts, and the position (job title) of an expert.

First, we attempt to find a correlation between these properties and nDCG@100 per-
formance by visual inspection. We find no correlation between the number of relevant
knowledge areas selected and nDCG@100, and no correlation between the number of
documents associated with an expert and nDCG@100 either. Intuitively, the relationship
between the ratio of relevant knowledge areas and number of documents associated with
the expert is also interesting. For example, achieving high recall may be hard when one
has to find many knowledge areas in a few documents. Achieving high precision may be
hard if one has to find a few knowledge areas in a lot of documents. However, between
the ratio of relevant knowledge areas and number of documents associated with an expert
we also find no correlation.

Next, we investigate a variable that may have different effects on performance indi-
rectly: the position of an expert. In Figure 5.3 we see average nDCG@100 scores for the
four most common positions among the 761 experts that self-selected a profile: lecturers
(210), professors (168), PhD students (129), and senior lecturers (77); 99% confidence
intervals on the estimated means are shown. These are calculated as X ± 2.704 ∗ σ/

√
n,

where σ is the sample standard deviation and n is the sample size. The value 2.704 gives
a 99% confidence interval for samples larger than forty. For professors, higher nDCG
scores are achieved than for lecturers and PhD students; both of these differences are
significant at the α = 0.01 level (Welch Two Sample t-test).

An intuitive explanation for the fact that it seems easier to find relevant knowledge
areas for professors than for PhD students is that professors have more publications.
We just noted, however, that the number of documents associated with experts does not
correlate with nDCG@100 performance. But, if we look a bit deeper into the different
kinds of document that can be associated with an expert, we find that it matters whether
or not an expert has a research description. Experts can have no research description,

84



5.4. Results and analysis of the assessment experiment

only a Dutch one, only an English one, or both a Dutch and an English one. We find
that for the 282 experts without a research description we achieve significantly lower
average nDCG@100 performance than for the 479 experts who have at least one (Welch
Two Sample t-test, p < 0.001). The difference, in absolute terms, is also substantial:
0.39 vs. 0.30 for experts with and without a research description, respectively. It is
not surprising that these research descriptions are important; they constitute a concise
summary of a person’s qualifications and expertise, written by the expert himself/herself.
Of the professors, 73% have a research description against 53% of the PhD students, so
this property explains part of the difference in performance between these two groups.

Missing knowledge areas Next we provide insights into relevant knowledge areas that
we failed to retrieve in the system-generated profiles. To capture the fact that some
knowledge areas are missing in more system-generated profiles than other knowledge
areas, we define recall and precision measures for knowledge areas in a very straightfor-
ward and intuitive way. We say that knowledge areas that are missing in many system-
generated profiles are difficult: they have low recall. LettingOa be the set of self-selected
profiles that contain knowledge area a and Ga the set of system-generated profiles that
contain a, we can define recall as:

R(a) =
|Oa ∩Ga|
|Oa|

. (5.8)

We are interested in knowledge areas a with low recall R(a) here. Given equal recall,
the more difficult knowledge areas are those that have lower precision:

P (a) =
|Oa ∩Ga|
|Ga|

. (5.9)

We discard knowledge areas from our error analysis for which we cannot compute reli-
able recall and precision values. First, for computing recall, we exclude knowledge areas
that are not in any self-selected profile. Also, we discard knowledge areas that are present
in less than five self-selected profiles; the reason for doing so is to avoid large differences
in recall for knowledge areas that may occur only by chance. Second, we cannot com-
pute precision for knowledge areas that were not retrieved for any expert; this applies for
only 14 (out of the 2,509) knowledge areas, 8 of which were also not in any self-selected
profile. In this error analysis, then, we analyze only 361 of all 2,509 knowledge areas.

Figure 5.4 displays the abovementioned 361 knowledge areas on a precision-recall
plot. We added some jitter to the points for visualization purposes. In the bottom left
corner of the figure, there are 17 knowledge areas with zero recall and precision. We
list these “problematic” knowledge areas in Table 5.3, ranked by the number of system-
generated profiles that contain them. This may be seen as an ordering by difficulty,
where we consider knowledge areas that are more often retrieved incorrectly to be more
difficult. In this list, we find some very general knowledge areas like computer science
and language; there are also very specific knowledge areas like dutch for foreigners and
income distribution. Looking further down to the knowledge areas that are retrieved less
often, we see many have no English translation. The English language profiling systems
will never contribute these knowledge areas.

85



5. On the Evaluation of Expertise Profiles

Table 5.3: Problematic knowledge areas in terms of precision and recall. For each knowl-
edge area, we list the number of system-generated profiles where it is missing (“Miss-
ing”) and where it is (incorrectly) retrieved (“Retrieved”). In a small number of cases,
experts added these knowledge areas to their profile during the assessment experiment
(“Added”).

Dutch English Missing Retrieved Added

informatica computer science 8 71 0
inkomensverdeling income distribution 5 66 1
taal language 5 61 2
nederlands voor buitenlan-
ders

dutch for foreigners 5 55 0

automatisering automation 5 49 1
culturele verscheidenheid cultural diversity 5 41 2
e-government e-government 6 39 0
evaluatie onderzoek - 8 38 0
bedrijfsbeleid en -strategie corporate policy

and strategy
6 38 2

welzijn well-being 6 26 1
ontwikkelingsvraagstukken - 5 23 0
methoden en technieken,
sociaal-wetenschappelijke

- 8 22 0

programmeren voor internet - 7 20 0
beleidsonderzoek - 8 18 1
cognitieve informatieverw-
erking

- 6 12 0

Kant, Immanuel (1724-
1804)

Kant, Immanuel
(1724-1804)

5 9 0

cultuurparticipatie - 5 9 0

86



5.4. Results and analysis of the assessment experiment

Figure 5.4: Precision and recall of 361 knowledge areas that were in at least five self-
selected profiles.

Figure 5.5: Knowledge areas over the number of experts for whom they were retrieved
in the top ten.

Knowledge areas often retrieved but never selected Here, we are interested in find-
ing knowledge areas that are ranked high (say, in the top 10) for many experts and yet
are always judged non-relevant by these experts. For this analysis, we limit ourselves to
the 239 system-generated profiles that have been judged in the assessment experiment.

In Figure 5.5 we show the distribution of knowledge areas over the number of experts
they were retrieved for in the top ten. Note that this distribution resembles the distribu-
tion of knowledge areas over the number of experts that judged them relevant in the
assessment experiment (Figure 5.2d); this is a good property to have. We see that 1395
knowledge areas are retrieved for at least one expert in the top ten, this is about 60% of
all knowledge areas. Of these 1395 knowledge areas, 773 were not judged relevant by
any of the experts for whom they were retrieved in the top ten. We order these areas by
decreasing number of system-generated profiles in which they were incorrectly included
in the top ten, and show the top twenty in Table 5.4. Most of these knowledge areas
appear to be quite specific.

Summing up, the main findings of this subsection are as follows. With regard to char-

87



5. On the Evaluation of Expertise Profiles

Table 5.4: Knowledge areas shown in the top ten, but never selected. The list is ordered
by the number of times the knowledge area was retrieved in the top ten.

Dutch English In top 10

alfabetisering in nederlands als tweede
taal nt2

– 9

godsdienstpedagogiek pedagogy of religion 8
optietheorie option pricing 8
behendigheidsspelen dexterity games 7
sociolingustiek sociolinguistics 7
asset liability management asset liability management 6
productiemanagement production management 6
dienstenmarketing services marketing 6
werkloosheidsduur – 6
mediarecht – 6
cognitieve lingustiek cognitive linguistics 6
handelsmerken trademarks 6
organisatiebewustzijn – 6
belastingrecht tax law 5
bestuursrecht administrative law 5
geldwezen money 5
instructieve teksten instructive texts 5
oefenrechtbank moot court 5
onderwijs- en opleidingspsychologie educational and training

psychology
5

openbaar bestuur public administration 5

88



5.4. Results and analysis of the assessment experiment

acteristics of difficult experts (RQ3.2): (1) difficulty is not correlated simply with the
number of relevant knowledge areas or with the number of documents associated with
experts; (2) performance is significantly higher for experts who have a research descrip-
tion (in Dutch and/or in English). With regard to characteristics of difficult knowledge
areas (RQ3.3), we find that knowledge areas that we often fail to retrieve (see Table 5.3)
(1) often lack an English translation, making them impossible to find for our English
language profiling algorithms; (2) can be both general and specific knowledge areas.
Knowledge areas that we often retrieve in the top ten while they were not judged relevant
by experts (see Table 5.4) (1) appear to be quite specific knowledge areas; (2) sometimes
lack an English translation.

5.4.3 A content analysis of expert feedback
We now address our research question about important aspects in the feedback experts
gave by carrying out a content analysis (RQ3.4). During the assessment experiment,
91 experts left comments in the text area field at the bottom of the assessment interface.
These comments were coded based on a coding scheme developed by a first pass over the
data. The coding was performed by two of the authors of the paper on which this chapter
is based [29]. A statement could be assigned multiple aspects. After all aspect types
were identified, the participants’ comments were coded in a second pass over the data.
Upon completion, the two annotators resolved differences through discussion. We report
on inter-annotator agreement after discussion, reflecting cases where there remained a
difference in opinion. We use two measures of inter-annotator agreement:

Micro-averaged inter-annotator agreement The number of times both annotators coded
a comment with the same aspect, divided by the total number of codings: 146/150 ≈
0.97.

Macro-averaged inter-annotator agreement For each aspect inter-annotator agreement
is calculated: the number of times both annotators coded a comment with this as-
pect, divided by the total number of codings with this aspect. Then the average of
these aspect inter-annotator agreements is calculated: ≈ 0.98.

Both measures show very high inter-annotator agreement.
Table 5.5 lists all aspects with the count and the percentage of the comments in which

they appeared. First, we address the most common aspects in the experts’ comments
about the system-generated knowledge areas. The most common complaint is that a key
knowledge area is missing. These missing knowledge areas were in Webwijs, and con-
sequently they were in the input list from which the retrieval systems select knowledge
areas. This means the profiling algorithm is perceived to have insufficient recall. The
second most frequently mentioned aspect is a request to add a new knowledge area to
Webwijs. These do not reflect a failure on the part of our profiling algorithms. Rather, it
is a request to the administrators of Webwijs to expand the thesaurus of knowledge areas.
The third most common aspect is that the profile consists entirely of non-relevant knowl-
edge areas. This is a complaint about low precision. If there are relevant knowledge areas
for the expert in the thesaurus, it also implies low recall.

Next, we examine the four categories of aspects in Table 5.5. Looking at the aspects
relating to the quality of recommendations, we see that experts tend to be dissatisfied.

89



5. On the Evaluation of Expertise Profiles

Table 5.5: Results of a content analysis of expert feedback.

Aspects Count Percentage

Quality of recommendations

Excellent recommendations 7 7.9
Partially correct 10 11.2
All nonsense recommendations 15 16.9

Comments about individual knowledge areas

Too much focused on one knowledge area 3 3.4
Missing key knowledge area (present in Webwijs, but not
recommended)

32 36.0

Mix-up between different fields 2 2.2
One single nonsense recommendation 8 9.0

Comments about list as a whole

Big overlap in recommended knowledge areas 10 11.2
Lack of consistency in recommended knowledge areas 1 1.1
Knowledge areas are too specific 4 4.5
Knowledge areas are too broad/general 10 11.2
No clear ordering of list 2 2.2
Upper limit of 10 knowledge areas 2 2.2
Knowledge areas taken from only one source (i.e., publica-
tions vs. theses)

5 5.6

Administrative comments

Request to add expertise term to Webwijs itself. 20 22.5
Missing Webwijs terms due to time difference between
dump and survey

1 1.1

Complaint about incorrect or outdated Webwijs metadata 5 5.6
Rating expertise seen as ineffective 1 1.1
Complaint about spelling or translation of Webwijs knowl-
edge areas

12 13.5

90



5.5. Self-selected vs. judged system-generated areas

We cannot directly relate this to average performance over all experts, because we do
not know the reasons why one expert chooses to leave a comment while another decides
not to. For some, dissatisfaction with the result list may be a motivation to comment,
while others might find the results satisfactory enough and see no reason to add further
feedback.

From comments about the lists as a whole, one of the main complaints is that there
is much overlap in recommended knowledge areas. On the one hand, this means that our
algorithm finds “near misses:” knowledge areas that are not relevant, but are very similar
to relevant knowledge areas. On the other hand, it is clear that retrieving multiple very
similar knowledge areas is not appreciated. De Rijke et al. [68] propose a new metric that
simultaneously rewards near misses and penalizes redundancy in a result list; we leave it
as future work to actually implement and use this metric.

A second main complaint about the list as a whole is that results are too general.
Interestingly, the opposite complaint also occurs: results are too specific. De Rijke et al.
[68] suggest that experts higher up in the organization tend to prefer more specific knowl-
edge areas, while teachers and research assistants prefer broader terms. In our comments,
complaints about a result list being too specific come from a professor, a lecturer, a re-
searcher, and someone with an unknown function description. Complaints about the gen-
erated list being too general come from professors (5), senior lecturers (2), lecturers (2),
and someone with no function description: mostly from senior staff.

In the administrative comments, it is interesting to note that almost no experts view
rating knowledge areas as ineffective or unnecessary. Of course, experts were not ex-
plicitly asked about what they thought of rating knowledge areas, but still this was a big
difference between our assessment interface and the Webwijs interface experts originally
used for selecting knowledge areas.

To answer (RQ3.4), the main aspects in the feedback of experts are (1) missing a key
knowledge area in the generated profile (36%); (2) only non-relevant knowledge areas
in the profile (16.9%); (3) redundancy in the generated profiles (11.2%); (4) knowledge
areas being too general (11.2%).

In sum, it is clear that there is room for improvement in terms of both precision and
recall. Since experts complain about redundancy in their profiles, in future work the
diversity of profiles deserves attention. The desired level of specificity/generality is to a
large extent a matter of personal preference. There are more complaints, however, about
knowledge areas being too general; this is an indication that algorithms in overall may
score better by preferring specific knowledge areas.

5.5 Self-selected vs. judged system-generated areas

In this section we look at another aspect of the TU expert collection as a measurement de-
vice. We study the differences between evaluating profiling systems with the self-selected
knowledge areas and evaluating them with the judged system-generated knowledge ar-
eas (RQ3.5). The differences between the two types of assessment are isolated using five
sets of ground truth, which we detail in the first subsection. In the remaining subsections
we study the changes between evaluating with the two types of assessment along three
dimensions: absolute system scores (RQ3.5a), system ranking (RQ3.5b), and the aver-

91



5. On the Evaluation of Expertise Profiles

age number of systems a system performs significantly different from (RQ3.5c). All this
is meant to help understand the merits of the TU expert collection.

5.5.1 Five sets of assessments
In Section 5.4, we have studied the differences between self-selected and judged system-
generated profiles; the corresponding ground truth that was used for evaluation (cf. Ta-
ble 5.2) will be referred to as GT1 and GT5, respectively, throughout this section. These
two sets of assessments differ in a number of dimensions: the number of profiles eval-
uated, the knowledge areas considered relevant within the profiles, and the grades of
relevance. To help better understand the impact these differences might have on system
evaluation, we introduce three more intermediate sets of assessments (GT2, . . . , GT4).
Next, we briefly discuss each of the five sets.

GT1: Self-selected profiles. The self-selected profiles of all experts for whom we gen-
erated a profile. Experts had previously selected these knowledge areas in the
Webwijs system of Tilburg University; this set contains 761 experts.

GT2: Self-selected profiles of participants in assessment experiment. The self-selected
profiles of only those experts who completed the assessment experiment. To be
able to realize all subsequent evaluation conditions with the same set of experts,
we limit this set of experts to those:

• who completed the assessment experiment, selecting (or keeping) at least one
knowledge area;

• who had a non-empty self-selected profile;

• for whom at least one of the knowledge areas in their self-selected profile
was retrieved by the automatic profiling systems. (This condition is required
to be able to analyze, for the same set of experts, what evaluation differences
there are when we evaluate only on the pooled subsets of their self-selected
profiles.)

As noted in Section 5.4.1, this set comprises of 239 experts; for ease of reference,
we sometimes refer to them as “our assessors.”

GT3: Pooled subsets of self-selected profiles. For each self-selected profile of an as-
sessor, we only use knowledge areas that were in the system-generated profile.
This means that knowledge areas that are not in the system-generated profile are
treated as non-relevant.

GT4: Judged system-generated profiles (binary). The knowledge areas judged rele-
vant during the assessment experiment. We only consider binary relevance; if a
knowledge area was selected it is considered as relevant, otherwise it is taken to be
non-relevant.

GT5: Judged system-generated profiles (graded). The same as GT4, but now with
graded relevance. Experts could optionally indicate their level of expertise on each
knowledge area they selected. Recall that when experts have selected a knowledge

92



5.5. Self-selected vs. judged system-generated areas

(a) GT1 (b) GT2

(c) GT3 (d) GT4

(e) GT5

Figure 5.6: Average nDCG@100 for each profiling system defined in Section 5.2, with
99% confidence intervals, for the five sets of assessments GT1, . . . , GT5 examined in
this section.

area but indicated no level, we assume they would have indicated a level “some-
where in the middle”: level three out of five.

In the next subsection we go through these five sets of ground truth, looking only at
nDCG@100. We will show how absolute system scores change from set to set.

5.5.2 Contrasting GT1–GT5
Previously, in our error analysis of system-generated profiles, we have seen that the
combined profiling algorithm achieved higher scores on GT5 than on GT1. Here, we
investigate the influence of the four differences between GT1 and GT5, in a step-by-
step fashion, by considering each of GT1, . . . , GT5 and evaluating our profiling using
those sets of assessments. To remain focused, we evaluate all systems with nDCG@100;
nDCG is a well understood metric that can be used with both binary and graded relevance
assessments.

In Figure 5.6a we show the nDCG@100 scores obtained with GT1, for all systems.4

4We use the following convention to name the profiling systems defined in Section 5.2: X Y Z, where

93



5. On the Evaluation of Expertise Profiles

Confidence intervals on the means X are shown. These are based on the assumption
that nDCG@100 scores are normally distributed. We show a 99% confidence interval,
calculated as X ± 2.576σ̂/

√
n, where σ̂ is the sample standard deviation and n is the

sample size. The scores of individual systems are close to each other. Model 2 outper-
forms Model 1, the English language systems tend to perform marginally better than their
Dutch counterparts, and using the thesaurus does not appear to offer any benefits. The
combined algorithm, which generated the profile shown to our assessors, outperforms all
individual systems.

In Figure 5.6b we plot the results based on GT2, on the self-selected profiles of
assessors only. Confidence intervals are larger here, this is because the sample size is
smaller. System scores are also a bit higher across the board.

In Figure 5.6c we show the results obtained using GT3, i.e., only using knowledge
areas that the assessors may have seen during the assessment experiment. Recall that
initially experts see only the top twenty of the generated profile, but they can see up to
a hundred knowledge areas if they request more results. When we view the combined
algorithm that generated the profile as a pooling algorithm, we can study the effect of
pooling here. Absolute scores again increase for all systems. This is not surprising;
un-pooled knowledge areas are hard for all systems and regarding them as non-relevant
reduces the problem difficulty. However, we can also see that relative system ranking
hardly changes.

In Figure 5.6d we evaluate profiling with GT4, i.e., with the knowledge areas selected
during the assessment experiment. We see a substantial performance increase in absolute
scores for all systems, compared to evaluating with only the pooled knowledge areas
from the original profiles. This increase is caused by knowledge areas experts chose
to add to their profiles. It is an indication that the original self-selected profiles were
often incomplete, and systems are actually doing a better job than evaluating with the
self-selected profiles would suggest. We also see changes in system rankings here that
are a bit stronger than between other sets of ground truth. Systems that employ Model 2
clearly outperform the ones that work with Model 1. Also, systems without the thesaurus
are distinctly better than those with it. No language is preferred over the other.

For selected knowledge areas experts could optionally indicate a level of expertise
on a scale of one to five. In cases where they did not indicate a level of expertise for a
selected knowledge area we assigned a default level (3). In Figure 5.6e we see how the
move from binary to multiple levels of relevance changes nDCG@100: absolute scores
slightly decrease for all systems. This means that all systems retrieve knowledge areas in
a suboptimal order. The relative ordering of systems, however, remains unchanged.

Answering RQ3.5a: (1) Scores obtained on our assessors only are higher than on all
experts. (2) Scores on only the pooled knowledge areas are higher than on the complete
self-selected profiles; this is because self-selected knowledge areas that were un-pooled
are apparently hard for these systems, and regarding them as non-relevant reduces prob-
lem difficulty. (3) Scores on the binary judged system-generated knowledge areas are
substantially higher than on the self-selected knowledge areas; this is an indication that
the system-generated profiles were better than the original self-selected knowledge areas
would give them credit for. (4) When we consider multiple relevance levels for assess-

X ∈ {NL, UK}, Y ∈ {M1, M2}, and Z ∈ { , TH}.

94



5.5. Self-selected vs. judged system-generated areas

Table 5.6: Kendall’s tau between system rankings on two sets of assessments with MAP
(lower triangle) and average nDCG@100 (upper triangle).

GT1 GT2 GT3 GT4 GT5
GT1 Self-selected profiles of all experts – 0.86 0.86 0.57 0.57
GT2 Self-selected profiles of assessors 0.79 – 0.86 0.43 0.43
GT3 Pooled subsets of self-selected profiles 0.71 0.93 – 0.57 0.57
GT4 Judged system-generated profiles (binary) 0.57 0.50 0.57 – 1.00
GT5 Judged system-generated profiles (graded) – – – – –

Table 5.7: Kendall’s tau between system rankings on two sets of assessments with MRR
(lower triangle) and average nDCG@10 (upper triangle).

GT1 GT2 GT3 GT4 GT5
GT1 Self-selected profiles of all experts – 0.79 0.79 0.93 0.86
GT2 Self-selected profiles of assessors 0.71 – 1.00 0.71 0.79
GT3 Pooled subsets of self-selected profiles 0.71 1.00 – 0.71 0.79
GT4 Judged system-generated profiles (binary) 0.93 0.79 0.79 – 0.93
GT5 Judged system-generated profiles (graded) – – – – –

ment, absolute performance decreases a bit across the board, showing that to some extent
all systems rank knowledge areas suboptimally.

5.5.3 Changes in system ranking
We take a closer look at differences between GT1–GT5 and analyze whether, and if so,
how, they rank profiling systems differently. In the previous section we observed changes
in system ranking in terms of nDCG@100, due to knowledge areas experts had added to
their self-selected profile during the assessment experiment. In this section we study how
system rankings change on each set of GT1, . . . , GT5 for other metrics too: MAP, MRR,
and nDCG@10. We exclude the combined algorithm from our analysis here, because it
produced the actual rankings that experts judged (experts are likely biased by the order
in which suggestions were presented to them).

Tables 5.6 and 5.7 report Kendall’s tau for four evaluation metrics, computed between
all pairs of sets of assessments. (The last rows of the tables are empty, since the MAP and
MRR measures only consider binary relevance.) Table 5.6 shows the tau values for MAP
and nDCG@100 in the lower and upper triangles, respectively. Both of these evaluation
metrics capture precision as well as recall. Because all systems retrieve at most 100
documents, they both consider the complete list of results retrieved.

Let us consider the five sets of assessments GT1, . . . , GT5 for MAP and nDCG@10
and walk through Table 5.6. First, system ranking correlation between evaluating with
the self-selected profiles of all 761 experts (GT1) and evaluating with the self-selected
profiles of only the 239 assessors (GT2) is reasonable for both MAP and nDCG@100.
Compared to GT2, considering un-pooled knowledge areas as non-relevant (GT3) ranks
systems similarly for both metrics as well. While we saw in the previous section that

95



5. On the Evaluation of Expertise Profiles

absolute scores increased substantially when un-pooled knowledge areas are assumed to
be non-relevant, this has little effect on relative performance. The next step is including
knowledge areas added during the assessment experiment (GT4). This does change the
picture for both MAP and nDCG@100. For neither of the two metrics we can reject
the null hypothesis which states that there is no monotone relationship between the two
rankings. Finally, taking into account the level of expertise (GT5) does not affect system
ranking at all.

Next, we look at Table 5.7 and two measures that focus on the top ranks: MRR
and nDCG@10. Table 5.7 shows Kendall’s tau values for MRR and nDCG@10 in the
lower and upper triangles, respectively. Again, we step through the four changes that
lead from GT1 to GT5. When evaluating with self-selected profiles from assessors only
(GT2) instead of from all experts (GT1), rankings change a bit for both metrics. For
MRR, there is no significant correlation. Regarding un-pooled knowledge areas as non-
relevant (GT3) does not affect system ranking at all for these two metrics. Using the
judged system-generated knowledge areas (GT4) instead of the self-selected knowledge
areas changes the ranking a bit, again; for nDCG@10 there is no significant correlation.
Finally, we find that the level of expertise (GT5) leads to only minor changes in system
ranking for nDCG@10.

In answer to RQ3.5b, our findings are: (1) Comparing GT1 with GT2, the only
difference being that GT2 evaluates with a subset of experts, we see that system rank-
ings change a bit; nevertheless, for all metrics but nDCG@10 we can reject the null
hypothesis, which states that system rankings do not correlate. (2) Regarding un-pooled
knowledge areas as non-relevant hardly affects system rankings for the eight systems that
contributed to the pool. Kendall tau values are high, ranging from 0.86 (nDCG@100) to
0.93 (MAP) to 1.00 (nDCG@10 and MRR) when comparing GT2 with GT3. (3) The
knowledge areas that experts added to their self-selected profile during the assessment
experiment have an effect on system rankings. When comparing GT1–3 with GT4, in
all but two cases, we cannot reject the null hypothesis stating that there is no monotone
relationship between system rankings obtained when evaluating with the self-selected
vs. judged system-generated profiles. (4) Comparing GT4 with GT5, we see that tak-
ing into account the level of expertise does not change system ranking for nDCG@10 or
nDCG@100.

5.5.4 Pairwise significant differences

The final analysis we conduct concerns a high-level perspective: the sensitivity of our
evaluation methodology. The measurement that serves as a rough estimate here is the av-
erage number of systems each system differs from; we compute this for each of the five
sets of assessments and for four different metrics. We use Fisher’s pairwise randomiza-
tion test with α = 0.001 to establish the average number of systems each system differs
from in each condition. Table 5.8 lists these averages for MAP, MRR, nDCG@10, and
nDCG@100. We start out with original profiles of all experts (GT1). If we limit our-
selves to the 239 self assessors (GT2), we see that the number of significant differences
detected decreases for all four metrics. This is expected as the power of significance tests
decreases with sample size. If we disregard non-pooled knowledge areas (GT3) we do
not witness much change in the number of significant differences. Regarding non-pooled

96



5.5. Self-selected vs. judged system-generated areas

Table 5.8: Average number of systems each system differs significantly from, using
Fisher’s pairwise randomization test with α = 0.001.

MAP MRR nDCG@10 nDCG@100

Self-
selected
profiles

GT1 all experts 3.75 4.50 4.25 4.75
GT2 assessors 2.75 2.25 2.75 3.00
GT3 pooled subsets 2.75 2.25 3.25 2.75

Judged
system-
generated

GT4 binary 4.00 2.75 4.00 3.50
GT5 graded – – 4.25 4.00

knowledge areas as non-relevant does not change our insights about the relative perfor-
mance of the profiling systems being examined. Comparing the self-selected profiles
with the judged system-generated profiles (interpreted as binary judgments, GT4), there
is a noticeable difference in the number of significant pairwise differences detected. For
MAP and nDCG@10 we are roughly at the same level as for the self-selected profiles
of all experts (GT1). If we use graded relevance (GT5), there is a slight increase for
nDCG@10 and nDCG@100.

Answering RQ3.5c, we find that: (1) smaller test collections (fewer experts) implies
fewer significant differences; (2) regarding un-pooled knowledge areas as non-relevant
does not have much effect on sensitivity; (3) knowledge areas that experts added to their
profile during the assessment experiment lead to more detected significant differences;
(4) taking into account the level of relevance can lead to some further increase in sensi-
tivity.

The two main findings for RQ3.5 overall are: (1) GT4 (the judged system-generated
knowledge areas, with binary relevance) is different from GT3, with much higher abso-
lute scores, a different system ranking, and more detected pairwise significant differences
between systems. (2) For our eight systems, regarding the un-pooled knowledge areas as
non-relevant does lead to higher absolute scores, but not to different system rankings or
more detected pairwise significance differences.

Our findings lead to the following recommendations for researchers who would like
to evaluate their expert profiling systems on the TU expert collection. Since the judged
system-generated profiles are more complete (Section 5.4.1), they form the preferred
ground truth for expert profiling. Compared to evaluating on the self-selected profiles,
system ranking can change. Taking into account the level of expertise is useful because it
does have an effect on absolute scores, even if it is not expected to lead to very different
insights into relative system performance. If researchers are concerned that their meth-
ods are not rewarded for some retrieved knowledge areas that were not in the system-
generated profiles, we recommend to repeat our analysis contrasting GT2 and GT3; this
comparison allows for studying that factor in isolation.

97



5. On the Evaluation of Expertise Profiles

5.6 Discussion and conclusions

In this section we provide a recap of our findings with regard to RQ3 as formulated in the
introduction. We released, described and analyzed the TU expert collection for assessing
automatic expert profiling systems. The collection building process was detailed and
we provided a critical assessment and analysis of this test collection. We started with
an analysis of the completeness of self-selected vs. judged system-generated knowledge
areas as ground truth, an error analysis of system-generated expertise profiles, and a
content analysis of feedback given by experts on system-generated expertise profiles.
Together, this analysis covers the first part of RQ3, which concerns the quality of the
system-generated knowledge areas. Then we took a step back and contrasted findings by
benchmarking eight state-of-the-art expert profiling systems with the two different sets
of ground truth. This analysis answers the second part of RQ3 about evaluation outcomes
using the judged system-generated knowledge areas. In Section 5.3 we reformulated RQ3
in terms of five more specific research questions. Here, we do not repeat all answers
to these detailed questions, but instead list the main findings for each, and with these
main findings we give recommendations for the development and evaluation of expert
profiling systems. After that, we discuss directions for future work for which the TU
expert collection could be of use.

5.6.1 Main findings with recommendations

In this subsection we repeat our research questions and list the main findings and recom-
mendations.

RQ3.1 Which of the two sets of ground truth is more complete?

Judged system-generated profiles are more complete, on average. When we regard
as relevant for an expert the union of knowledge areas in the self-selected profile
and the judged system-generated profile (minus those knowledge areas that were
judged non-relevant), the average judged system-generated profile contains 81%,
the self-selected profile 65% of all relevant knowledge areas.

Recommendation To evaluate expert profiling systems, it is preferred to use the
system-generated profiles because they are more complete.

RQ3.2 What are the characteristics of “difficult” experts?

Our main finding here is that experts that do not have a research description are
significantly harder to profile accurately than experts that do.

Recommendation Have experts in a knowledge-intensive organization maintain
an up-to-date natural language description of their own expertise to facilitate better
expert profiling.

RQ3.3 What are the characteristics of “difficult” knowledge areas?

Our main finding here is that knowledge areas that lack an English translation are
harder to retrieve, and they are also among those knowledge areas that are most
often retrieved without being relevant.

98



5.6. Discussion and conclusions

Recommendation In a multilingual setting, maintain a complete translation of
the list of knowledge areas in all languages to facilitate better expert profiling.

RQ3.4 What are important aspects in the feedback experts gave on their system-generated
profiles?

Experts mainly complain about missing a key knowledge area, about generated
profiles consisting of all nonsense knowledge areas, redundancy in the generated
profiles, and about retrieved knowledge areas being too general.

Recommendation An interesting direction for future work is to go beyond rank-
ing knowledge areas for an expert and to build coherent, complete, concise, diverse
expertise profiles at the right level of specificity.

RQ3.5 Does the set of judged system-generated knowledge areas lead to differences in
system evaluation outcomes compared to using the self-selected knowledge areas?

We found that the knowledge areas experts added to their self-selected profile by
judging them relevant do have an influence on system ranking, and we observe
more significant differences between systems compared to evaluating with the self-
selected profiles of these experts. Even though in the judged system-generated pro-
files some of the knowledge areas that experts had self-selected before are missing,
this hardly affects the relative ranking of our eight systems.

Recommendation It is preferred to use the judged system-generated profiles for
benchmarking expert profiling systems because these profiles are more complete.
The missing knowledge areas from the self-selected knowledge areas hardly had an
effect on relative performance from our systems, but if researchers wish to evaluate
new and very different systems, we recommend to repeat our analysis contrasting
the sets of ground truth GT2 and GT3 (we release all sets of ground truth used in
this chapter).

5.6.2 Directions for future work

One conclusion that can be drawn from the error analysis and the content analysis of
expert feedback is that there is still much room for improvement in the area of expertise
retrieval. In addition to improving system performance on the task we studied in this
chapter, we believe there are interesting possibilities to study tasks that differ subtly from
it.

Expert profiling and expert finding The expert profiling task is closely related to the
expert finding task. Very similar algorithms may be used to approach the expert finding
and profiling tasks; in both cases the extent to which an expert and a knowledge area
are associated have to be estimated [24]. It has also been shown that expert finding
algorithms can benefit from the output of expert profiling algorithms [19]. In addition
to benchmarking expert profiling systems, the TU expert collection can also be used for
benchmarking expert finding systems. In this case, using the self-selected profiles would
suit fine. Since the self-selected profiles are available for more experts, the number of
relevant experts per knowledge area is somewhat larger in them. In addition, the graded

99



5. On the Evaluation of Expertise Profiles

relevance assessments were collected with the task of expert profiling in mind. Relevance
levels are not guaranteed to be comparable across experts.

Diversity, redundancy and specificity The evaluation metrics used in this chapter
treat the relevance of knowledge areas in the ranked list independent from each other. We
have seen that experts complained about redundancy in their generated profiles; some-
thing, our evaluation metrics cannot capture. De Rijke et al. [68] propose a metric that
would reward diversity and near misses in a topical profile. Benchmarking with metrics
like this is an interesting direction for future work. Experts complained about profiles
being too general, and a few about profiles being too specific. One step to accommo-
dating adjusting the level of specificity in expertise profiles would be to require systems
to organize knowledge areas in a hierarchy. A follow-up step could be to develop an
assessment interface where experts can judge: (1) if grouped knowledge areas are indeed
similar; (2) if hierarchical orderings are correct; (3) if retrieved knowledge areas are of
the right specificity. The curated thesaurus that comes with the TU expert collection can
be of help for work in this direction.

A learning assessment interface The retrieval systems we evaluated in this chapter did
not use knowledge areas that had already been self-selected by experts as evidence. This
means our findings on their relative performance generalize to other settings where such
self-selected ground truth is not available. Still, in settings where such ground truth is
available, using it to locate additional relevant items is a powerful way of expanding a set
of relevant items fast, with limited annotation effort. An assessment interface that would
be fed by a learning retrieval model and would be continuously available for experts to
update their profile is an interesting direction for future work.

In this long chapter we have taken a thorough look at evaluating expert profiling al-
gorithms with the TU expert collection. We have used techniques commonly used to
evaluate evaluation methodology, as discussed in Chapter 2, Section 2.2, including using
Kendall’s tau to compare system rankings produced by different evaluation methodolo-
gies, and the use of significance tests to say something about the sensitivity of an evalua-
tion methodology. The TU test collection was created manually, and a significant amount
of effort of employees of Tilburg University went into the assessment experiment. In the
next two chapters, we create Cranfield style test collections automatically, referring to
them as pseudo test collections (PTCs). In the first of these two chapters, we will con-
sider benchmarking on a PTC, comparing system rankings produced by a PTC to that of
a hand-crafted test collection by means of Kendall’s tau again. However, the main focus
will shift to optimizing retrieval algorithms on PTCs.

100











6
Pseudo Test Collections for Scientific

Literature Search

In the previous chapter we treated the problem of profiling an expert in the setting of a
university. In this chapter we look at another task in the domain of science: scientific lit-
erature retrieval. More importantly, perhaps, this chapter is the first of two chapters about
using annotations to generate pseudo test collections (PTCs) automatically. As a first ex-
ploration of this idea, this chapter is relatively short. Recent years have seen increasing
interest in generating pseudo test collections for training and evaluation purposes. This is
primarily motivated by the costs associated with obtaining manual relevance assessments,
and by the hunger of learning based ranking methods for large volumes of training mate-
rial. Most approaches to generating ground truth leverage some kind of human behavior,
such as annotation, hyperlinking, or simply using a search engine. Beitzel et al. [27] use
the Open Directory Project, a large scale annotation effort targeting web pages in general.
They assume relevance of documents to the title of the category they are listed under to
generate relevance judgments. More recently, Asadi et al. [14] use anchor texts as queries
and assume linked-to documents are potentially relevant documents. Web search is char-
acterized by heterogeneous and high volume content and usage data. We investigate the
generation of pseudo test collections in the less studied and more specialized domain of
digital libraries.

Digital libraries are increasingly publishing their content online allowing people to
access, browse, and search the archives. This type of content is typically semi-structured
and manually annotated using rich descriptors. These characteristics differentiate it from
web documents, and many retrieval methods have been developed to exploit them, im-
proving retrieval effectiveness [70]. Modern Information Retrieval (IR) algorithms—
especially in the form of learning to rank (LTR) methods—are able to learn to combine
relatively uncertain evidence from individual features and typically improve retrieval ef-
fectiveness when large amounts of training data are available [138].

In this chapter, we focus on generating pseudo test collections that can be used to
optimize retrieval algorithms for ad-hoc search on domain-specific, semi-structured doc-
uments. The most commonly used method for generating pseudo test collections is to
sample and group documents in a collection by a certain criterion, and generate queries
for these groups [14, 27]. In the domain of digital libraries, rich annotations are often
available in the form of thesaurus terms, classification codes, or other descriptors that can

105



6. Pseudo Test Collections for Scientific Literature Search

Algorithm 6.1: Algorithm for creating pseudo test collections for semi-structured
domain-specific collections

1: Select one or more annotation types.
2: Sample one or more annotations from each type.
3: Sample documents associated with these annotations, populating Rq .
4: Generate a query q from the annotations and Rq .

be used as grouping criteria. Our leading intuition is that people provide this metadata in
order to make documents better findable with regard to certain information needs. In this
chapter, we use such annotations to group documents in topics, and generate simulated
queries (pseudo queries) for and from these topics. The set of documents assigned to a
topic is considered to be the relevant set of documents for the topic, where relevance is
taken to be binary.

In the pseudo test collection generation process there are three key challenges that
shape our research questions and contributions: (1) how to use annotations for grouping
documents, (2) which documents to allow in the groups, and (3) how to simulate queries.
The common ingredient among these challenges is the sampling of annotations. Not all
annotations are equally specific (compare, e.g., “United States of America” and “worka-
holism”). Developing methods for sampling descriptors from different metadata fields
can help to manipulate the generality and specificity of the resulting groups and there-
fore the resulting performance of LTR. In this chapter we tackle each of these challenges,
using the domain-specific characteristics of ad-hoc search in scientific articles.

The research question that we address in this chapter is:

RQ4 Collections of scientific literature are sometimes indexed with different kinds of
annotations. Can the result of these annotation efforts be used to generate a pseudo test
collection (PTC)? When retrieval algorithms are evaluated using a PTC, are they ranked
as they would be by a hand-crafted test collection? And when we test a L2R algorithm on
a hand-crafted test collection, what is the best way to train it: on a different hand-crafted
test collection, or on a PTC?

We detail our problem statement in Section 6.1. We present our methods in Section 6.2,
conduct experiments in Section 6.3, report on our results in Section 6.4, discuss our
findings in Section 6.5, and conclude in Section 6.6.

6.1 Problem statement

We first define the problem of generating pseudo test collections for semi-structured doc-
uments, and then describe our approach to this problem. A pseudo test collection is
defined here as consisting of a set of generated queries Q and, for each query q ∈ Q,
a set of documents assumed to be relevant, Rq (all documents within Rq are assumed
to be equally good results). Given this definition, there are two main steps involved:
(1) simulating the query and (2) simulating the relevant documents.

106



6.2. Sampling methods

Our idea is to use document annotations for this. Let a document be annotated using
several annotation types, each corresponding to a separate descriptor field, such as a field
containing keywords from a thesaurus of research areas, or a field containing specific re-
search methods. We can select one or more of these types of annotation as a starting point
for creating pseudo-topics. Each document has a set of annotations of each type. We can
select one or more of these annotations, e.g., the annotation “information retrieval” from
a research area descriptor field. We can estimate a relevant set of documents Rq from
the set of annotations we selected. Once we have sampled the set of annotations and
their associated documents Rq , we can simulate a query. This way of thinking about the
problem breaks it down to the subproblems listed in Algorithm 6.1.

In the following section, we will detail and explain the choices that we make for each
of the steps in Algorithm 6.1. At each turn, it is useful to keep in mind that our main goal
is to develop sampling methods that optimize the effectiveness of a learning to rank sys-
tem in the setting of domain-specific retrieval. In contrast to other pseudo test collection
research, we are not primarily interested in developing methods that produce pseudo test
collections similar to manually crafted test collections. We evaluate our methods on the
end-to-end performance of an LTR system, i.e., train on pseudo test collections gener-
ated by our methods, and test on manually crafted collections. For a test collection to be
suitable as training material, it is important that the queries should be diverse, covering
a wide range of topics. The scientific article collection we use has been annotated with
a wide range of descriptors, which form a good source for obtaining a rich and diverse
topic set. For a training query, it is desirable that there should be a reasonable amount of
relevant documents to act as positive training examples. In other words, a training query
should not be overly specific. On the other hand, training queries should not be overly
general, either. In the following section, we discuss how we take these desiderata into
account.

6.2 Sampling methods

Below we discuss instantiations for all the steps in Algorithm 6.1; we begin by sampling
an annotation type (Step 1), then move on to sampling annotations (Step 2). All our
PTC generation methods opt for a very straightforward option in sampling documents
for Rq (Step 3): we require each document to have all the annotations we sampled. This
means we view sampling more annotations as narrowing down the scope of the pseudo
topic. Relaxing this requirement is an interesting possibility for future work. Finally, we
discuss simulating queries (Step 4).

Step 1: Sampling annotation type We start with Step 1 in Algorithm 6.1. In our
scientific literature collection, there are three main annotation types:

• METHOD can be any of 40 research methods, e.g., “descriptive study,”

• CLASSIFICATION is a classification code, e.g., “Labor Market Policy,” and

• CONTROLLED is a thesaurus term, e.g., “social partnership.”

107



6. Pseudo Test Collections for Scientific Literature Search

The first two types (METHOD, CLASSIFICATION) cover broad topics, while annota-
tions from CONTROLLED range from very broad to very narrow topics.

We sample annotations in two ways: from each type individually, and from all types
simultaneously. In the first case, we generate pseudo test collections using only annota-
tions from one type, CONTROLLED, because it offers a range of more general and more
specific coverage, just like we would expect in queries. In the second case, we take the
cross product AMETHOD ×ACLASSIFICATION ×ACONTROLLED and the relevant sets
of documents consist of documents that are annotated with the triple of annotations over
the three types.

Step 2: Sampling annotations For Step 2 of Algorithm 6.1 we use two techniques for
sampling annotations from annotation type CONTROLLED: randomly sampling single
annotations, and randomly sampling pairs of annotations (sampling fromACONTROLLED×
ACONTROLLED ), where the relevant sets of documents have both annotations. In the
first case we observed that annotations ranged from broad to specific. Very specific an-
notations were associated with a very small number of documents, while some others
were found very broad and were associated with a large fraction of the documents in the
collection. Our second sampling method using pairs of annotations aims at accounting
for this phenomenon: documents that have both annotations are intuitively more on topic
than documents that have only one of the two.1 Our third sampling strategy samples
annotations from AMETHOD ×ACLASSIFICATION ×ACONTROLLED , as already noted
above. In all three cases, to ensure that our sampled annotations are neither too broad or
too specific, we select single annotations or pairs of annotations that are associated with
between 100 and 1000 documents. The lower bound warrants enough positive training
examples for a learning to rank algorithm. Another consideration for the lower bound is
that we expect the log-likelihood ratio-based query generation technique described in the
next section to work better if it can select terms using estimates based on a reasonable
number of relevant documents. The upper bound on the number of documents associated
with annotations discards very broad annotations. The scientific article collections we
will search over have sum total of about 170K documents, and we do not want pseudo
topics with a number of relevant documents that consists a too large fraction of the doc-
ument collection.

Step 4: Generating queries For simulating the queries in Step 3 of Algorithm 6.1, we
use two approaches: (1) use the annotations as queries, and (2) extract query terms from
the simulated relevant set of documents (Rq).

Our first query simulation method is straightforward. All terms from the sampled an-
notations are used as query terms; we refer to this method as “Keywords”. This method is
also somewhat naive. Intuitively, the set of relevant documents for our keyword queries
would be easy to locate for any retrieval algorithm. Our second query generation method
samples terms only from the title and abstract fields of the scientific articles in the set of
relevant documents. This second method is inspired by [15], who sample discriminative
terms from a given document to generate a known-item query for that document. Be-

1We also experimented with sampling requiring a larger number of annotations to be present. The number
of documents associated with them was found small, therefore of little use for training LTR systems.

108



6.2. Sampling methods

cause, in our setting, we want to sample terms from the set of documents Rq associated
with our sampled annotations, we cannot directly apply their methods. A technique that
has been used in the literature to find discriminative terms in one corpus with regards to
another corpus is based on a log-likelihood ratio, cf. [73, 182]; we use this query gen-
eration technique also in the next chapter. We briefly explain how this log-likelihood
ratio (LLR) technique works. The idea behind the technique is to perform a statistical
test for every term in the vocabulary, which uses term frequency information. We only
consider terms that occur in at least a minimal amount of documents, set to 10. This is
done to avoid selecting extremely rare terms, and to ensure the statistical test has some
information to work with. The null hypothesis in the LLR test states that the observed
frequency for a term in a set of corpora is what we would expect it to be given the size of
the corpora. More formally, let Oi be the observed frequency for a term in corpus i, and
let Ni denote the number of tokens in corpus i. The expected frequency Ei of the term in
corpus i is then computed as follows:

Ei = Oi

∑
iOi∑
iNi

.

In words: the expected frequency of the term is the number of tokens in corpus i mul-
tiplied by the probability of encountering the term in the concatenation of all corpora.
According to the null hypothesis, that single probability explains the observed frequency
in each corpus. Formally, the null hypothesis states that

H0 : Oi = Ei, for all corpora i.

The relative term frequency in a corpus is given by Oi

Ni
. If the null hypothesis holds,

then the relative term frequency of w is the same for all corpora. In our setting, we
have only two corpora of interest: the document set associated with our sampled anno-
tations (Rq), and the rest of the scientific article collection, let us denote this by C. If
the null hypothesis does not hold, either a term is over-represented in Rq , or it is under-
represented; we are interested in over-represented terms. To test the null hypothesis in
this experimental design, the chi-square statistic could be used, but Dunning [73] propose
the log-likelihood ratio as an alternative, because the chi-square test becomes unreliable
when Ei is smaller than five, and it possibly overestimates significance for terms with
high frequency and when one of the corpora is much smaller than the other [182]. Note
that in our setting indeed |Rq| � |C|, and in the small corpus Rq , expected term fre-
quencies will often be smaller than five. The log-likehilood ratio (LLR) is computed
as

LLR =
∑
i

Oi ln
Oi
Ei

,

and the likelihood ratio statistic G as G = 2× LLR. At this point, we could lookup a p-
value forG corresponding to the probability of our observation under the null hypothesis.
Since we are interested in the most over-represented terms, we instead simply rank terms
byG, decreasing (as in e.g., [182]). Then, we select the top ten terms from this ranking as
query terms.2 Setting the length of the query to a fixed length of ten terms is a somewhat

2Incidentally, in our experiments, we did not discard under-represented terms, but, since |Rq | � |T |, and
we only consider terms that occur at least once in Rq , under-represented terms are rare.

109



6. Pseudo Test Collections for Scientific Literature Search

arbitrary choice. In the next chapter, in the context of microblog search, we report on
experiments with generated queries that have fewer terms. Finally, note the similarity of
query generation to query expansion in pseudo relevance feedback. Consequently, there
are many alternatives to LLR to explore, e.g., applying methods from [15] by concate-
nating the documents in Rq into a single document, applying relevance modeling [130],
and so on.

6.3 Experimental setup

To answer our research question RQ4, we evaluate our methods for constructing pseudo
test collections with regard to their effectiveness for training an LTR system. We do this
by testing PTC-trained L2R models on the test collections used in the CLEF Domain
Specific track [173]. We compare their test performance to L2R models that have been
trained on hand-crafted test collections. In addition, we benchmark widely used retrieval
algorithms on each PTC and on each hand-crafted test collection, and we compare how
systems are ranked. Below, we describe in more detail the datasets that we use, the
PTCs we generate, the experiments we perform, the learning to rank (L2R) algorithm we
employ, and the evaluation metric and significance tests we use.

Dataset We use the test collections used in the CLEF Domain Specific track in 2007
(25 topics) and 2008 (25 topics) in our experiments. Of the topics, we only used the title
fields. The topics were created in German, and translated into English and Russian; we
used the English topics. Documents for the Domain Specific track are scientific articles,
for which titles, author names, annotations, and, often, abstracts are available. There were
German, English, and Russian corpora. We used the two English corpora: (1) the English
GIRT corpus, which is a translation of a German GIRT corpus, and (2) the CSA SA
corpus. The English GIRT corpus contains just over 150,000 documents, roughly 17%
of which contain an abstract. The smaller CSA SA corpus contains 20,000 documents,
94% of which contain an abstract [174]. The English GIRT and the CSA SA collections
were available both in 2007 and in 2008.

Generated PTCs For generating PTCs, we use only the GIRT corpus. We generate
pseudo test collections that use both single annotations and pairs of annotations from
the CONTROLLED type, and triples of annotations over all three types (i.e., METHOD,
CLASSIFICATION, CONTROLLED). In each case, we keep only topics with between a
hundred and a thousand documents, resulting in the following numbers of pseudo topics:
2,073, 7,039 and 4,161, respectively. Each of these three sampling methods is coupled
with two query simulation methods: using keywords and using LLR. This yields six PTC
generation recipes in total. For generating queries using our LLR technique, we indexed
the collection with Lucene,3 a comprehensive search engine library. We did not perform
stemming. This yields queries that, like realistic queries, consist of unstemmed words.
Since our main aim is not to generate realistic queries, however, there is no reason not
to experiment with stemming for query generation, if this improves the usefulness of the
resulting PTC for training purposes. We did remove a standard set of stopwords.

3https://lucene.apache.org/core/

110

https://lucene.apache.org/core/


6.3. Experimental setup

Experiments We are interested in how training on our pseudo test collections compares
to training on hand-crafted test collections. To put this more concretely: How does
training on the 2007 topics compare to training on the PTCs when the learned models
are tested on the 2008 topics?; and vice versa for the 2008 topics. In addition, we report
the performance obtained on the training data of the models trained on hand-crafted
test collections. We also compare evaluation outcomes of using our PTCs and hand-
crafted test collections for ranking eleven widely used retrieval algorithms. Between each
pair of (pseudo) test collections, we compute the correlation of the two system rankings
using Kendall’s τ , following [224]. We report significant correlations (two-tailed) at the
α = 0.01 level (τ ≥ 0.600) in boldface [204]. The relatively conservative alpha level is
used to reduce the chance of seeing a Type I error (rejecting the null hypothesis while it
actually holds), as in Chapter 5.

Learning to rank For retrieval we use a learning to rank approach. We use a pairwise
learning to rank approach based on a support vector machine [198, 202],4 with default
values for its hyperparameters, except for the way it samples training examples during
training, which was set to optimize performance for the area under the ROC curve, which
was found to work well in preliminary experiments. Using a single L2R algorithm to
estimate the usefulness of our PTCs as training material raises the question to what extent
our findings will translate to different retrieval algorithms. In the next chapter, where we
pursue a similar PTC generation idea, we will tune parameters of a variety of retrieval
models (e.g., language modeling, BM25) on our PTCS. Moreover, we will experiment
with three L2R algorithms. For L2R, we use two feature sets: (1) query-independent, and
(2) query dependent. Table 6.1 lists eleven query-dependent features (top-half), which
are the outputs of off-the-shelf and widely used retrieval algorithms, and nine query-
independent features.

For the query-dependent features, which we discussed in Chapter 2, we use the Indri
and Terrier retrieval software packages. We do not tune the parameters of the retrieval
models, e.g., µ for language modeling with Dirichlet smoothing, but use default values
for every model. It is true that by tuning such parameters we may expect to increase
our performance, but in this chapter our main focus is on comparing the experimental
condition of training on a PTC with training on a hand-crafted test collection. For Indri
indexing, we use a Porter stemmer, but no stopword removal. For Terrier indexing, we
do remove stopwords, and use Porter stemming. Preprocessing choices like removing
stopwords or leaving them in the index can affect retrieval performance. Rather than ex-
perimenting what works best and opting for exactly the same setup in Indri and Terrier,
we choose different preprocessing options for Indri and Terrier, and trust our L2R algo-
rithm to favor the features that work best. Diversity in features, intuitively, can benefit
L2R performance, even if some individual features are weak. Both with Indri and Ter-
rier we index all fields, also the fields containing the annotations. There are no fielded
retrieval models among our query dependent features, e.g., BM25F, so we build a single
index that contains text from all fields. In future work, it would be interesting to examine
the tuning and training of fielded models on our PTCs. Intuitively, while training a L2R
model on a PTC, it would be complicated to estimate feature importance for features that

4http://code.google.com/p/sofia-ml/

111

http://code.google.com/p/sofia-ml/


6. Pseudo Test Collections for Scientific Literature Search

Table 6.1: Query-dependent and query-independent features for learning to rank. For
the features that use properties of authors, we calculate four different values, one based
on the first author, and three calculated based on all authors: the maximal, minimal and
average value.

Abbr Description and parameters

Query-dependent features

In
dr

i5
.1

Tf-idf Tf-idf run, with k1 = 1.2 and b = 0.75.
BM25 BM25 run, with k1 = 1.2, b = 0.75, and k3 = 7.
LM Language modeling, with Dirichlet smoothing, µ = 2500.
BOW Boolean ordered window, with unlimited window size.
BUW Boolean unordered window, with unlimited window size.
PRF Pseudo-relevance feedback [130], we use the 10 top pseudo-

relevant documents, we extract 10 terms, we give the original
query 0.5 weight and use µ = 0.

Te
rr

ie
r3

.5

Tf-idf Tf-idf run, with k1 = 1.2, b = 0.75.
DFRee A parameter free DFR (Divergence from Randomness) model.
PL2 Another DFR run, with c = 1.0.
PRF A query expansion run, with DFR model Bose-Einstein 1.

Query is expanded with the top 10 terms, obtained from the
top 3 documents.

DFR-FD A full dependence DFR proximity dependence model [171],
with proximity ngram length of 2.

Query-independent features

DocLength Number of terms in title and abstract.
Authors Number of authors of article.
Age Age of publication (2008 - publication year).
Publications Number of publications by authors {max, first, avg, min}.
Co-authors Number of co-authors of authors {max, first, avg, min}.
Degree Degree-centrality of authors {max, first, avg, min}.
Closeness Closeness-centrality of authors {max, first, avg, min}.
Pagerank Pagerank of authors {max, first, avg, min}.

112



6.4. Results

capitalize strongly on the same annotation fields used for generating a PTC. If this proves
true in practice, one can experiment with training on a variety of PTCs and, if available,
handcrafted ground truth. We normalize features as follows. For the Indri language
modeling runs (Indri-LM, Indri-BOW, Indri-BUW, Indri-PRF) we take the exponential
of the scores. Then, for each feature, we normalize by dividing by the maximal value
for that feature over all documents. In addition to the query dependent features listed in
Table 6.1, we use the query clarity feature by [62].

Our query-independent features include degree-centrality and closeness-centrality.
These are properties of nodes in an undirected graph that can be used as measures of
influence or centrality in a collaboration network [74]. We calculated them on the co-
author graph where nodes are authors and edges exist between authors who co-authored
at least one paper, using NetworkX.5 We assumed that two author fields refer to the same
author if, and only if, the strings match exactly. On the one hand, this approach can spread
evidence for an author over different surface forms of his name in publications. On the
other hand, it can conflate evidence for different authors who use the same surface form
of their name in publications. A research area concerned with this problem is author
name disambiguation. For the purposes of our experiments, a full-blown author name
disambiguation approach is out of scope. Query-independent features have values equal
to or greater than zero. We normalize each feature by dividing it through its maximal
value over all documents.

To label the training set of pseudo topics for a L2R algorithm, we need positive and
negative training examples. As positive examples, we use documents in Rq , the set of
documents associated with the annotations of the pseudo-topic. As negative training
examples, following [14], we sample documents from the bottom (starting from rank
1000, going up) of the ranking of a retrieval algorithm, in particular, the Indri language
modeling (LM) algorithm, sampling twice as many negative training examples as there
are positive examples in Rq .

Evaluation For our retrieval experiments, we report on mean average precision (MAP).
Statistical significance testing is done using Fisher’s pairwise randomization test [209],
with α = 0.001. We use a conservative α level to keep Type I errors under control,
as we are making many pairwise comparisons. Significant differences are marked with
N(better) or H(worse).

6.4 Results

Our first experiment is aimed at answering the question whether training on pseudo test
collections leads to different performance from training on hand-crafted test collections.
In the rightmost two columns of Table 6.2, we list the MAP performance scores of our
learning to rank algorithm on the 2007 and 2008 topic sets from the CLEF Domain-
Specific track, respectively. For scores on the 2007 topics, we list in boldface the runs
that are significantly different from the run that was trained on the 2008 queries. For the
2008 topics, we list in boldface the runs that differ significantly from the run trained on

5http://networkx.lanl.gov

113

http://networkx.lanl.gov


6. Pseudo Test Collections for Scientific Literature Search

Table 6.2: MAP performance scores of our learning to rank approach on the CLEF
Domain-Specific 2007 and 2008 topics (title only). The annotation types AM , ACL and
ACO are short for AMETHOD , ACLASSIFICATION and ACONTROLLED , respectively.
The query generation method is given in brackets. For performance scores on the 2007
topics, it is indicated if scores differ significantly (α = 0.001) from scores obtained by
training on the 2008 topics; and vice versa for scores on the 2008 topics. The train-
ing performance for each of the 2007 and 2008 topic sets is given in italics. The best
performance (excluding training performances) are given in boldface.

Test on CLEF DS

Train on 2007 2008

CLEF DS 2008 0.2347 0.3158
CLEF DS 2007 0.2226 0.2970

ACO (Keywords) 0.1985H 0.2734
ACO (LLR) 0.1155H 0.1869H

ACO ×ACO (Keywords) 0.2091H 0.2866
ACO ×ACO (LLR) 0.1240H 0.1959H

AM ×ACL ×ACO (Keywords) 0.1329H 0.1609H

AM ×ACL ×ACL (LLR) 0.1979H 0.2602

the 2007 topics. Training performance scores—where training and testing is done on the
same set of queries—are given in italics. Each row corresponds to one test collection.
The top two rows contain scores for training on the two hand-crafted test collections (the
2007 and 2008 topic sets). The bottom six rows contain scores for our six PTC generation
recipes.

When we evaluate on the 2008 test topics, we see that three of our six methods of
generating a pseudo test collection yield performance that is similar to training on the
2007 test topics: the differences are not statistically significant. This result provides first
evidence for the utility of our pseudo test collection generation methods.

Looking at which methods perform well, we see that for ACONTROLLED , it is best
to use terms occurring in the annotation as query terms, rather than generating a query
with LLR, which is worse on both the 2007 and 2008 topics, even though the difference
is only significant on the 2007 topics. We observe a similar result for ACONTROLLED ×
ACONTROLLED ; in this case using LLR is significantly worse for both 2007 and 2008.
However, forAMETHOD×ACLASSIFICATION ×ACONTROLLED , generating the query
with LLR is more successful, significantly so for the 2008 topics.

Evaluating on the 2007 test topics yields a different picture. In this case all our
methods are significantly outperformed by a learning to rank system trained on the 2008
topics.

Comparing scores between training performances (listed in italics) and test perfor-
mances is useful mostly to check that a model does not overfit. Complex learning algo-
rithms may obtain a perfect score on any training set, but generalize very poorly to a test
set. In these results, we see that our learning to rank algorithm does not seem to overfit.

114



6.4. Results

Table 6.3: MAP performance of our individual query-dependent features. Best scores for
both CLEF DS topic sets are given in bold.

CLEF DS

Algorithm 2007 2008

In
dr

i5
.1

Tf-idf 0.2028 0.2723
BM25 0.1821 0.2707
LM 0.1835 0.2051
PRF 0.1854 0.1984
BUW 0.0733 0.1678
BOW 0.0531 0.1344

Te
rr

ie
r3

.5

PRF 0.2599 0.3360
DFRee 0.2183 0.3107
DFR-FD 0.2355 0.3085
Tf-idf 0.2381 0.2941
PL2 0.2277 0.2794

On the 2007 topics, the training performance is actually lower than the score obtained by
training on the 2008 topics. On the 2008 topics, the training performance is highest, but
it is not significantly higher than the score obtained by training on the 2007 topics.

6.4.1 Performance of individual features
For completeness, we list scores of the individual retrieval algorithms, which were used
as query-dependent features in our L2R setup, in Table 6.3. The Indri and Terrier runs
are ordered decreasingly by MAP on 2008 topics. The best query-dependent feature is
Terrier PRF. However, for 2007, it does not improve significantly over the other Terrier
features. Also, with regard to the learning to rank runs: for 2007, it does not significantly
outperform the runs that trained on 2008 topics, the 2007 topics, or ACONTROLLED ×
ACONTROLLED (Keywords). It is significantly better than all other runs for 2007. For
2008, Terrier PRF does not significantly outperform Indri-tf-idf, nor the other Terrier
features. With regard to the learning to rank runs, it does not significantly outperform the
runs that train on the 2007 topics, the 2008 topics, or ACONTROLLED (Keywords). All
other runs are significantly outperformed. This is strong evidence that PRF can be very
succesful in this domain-specific setting, as was found also in, e.g., [83, 110]. Interest-
ingly, the Indri PRF implementation has lower performance scores than the Indri Tf-idf
and BM25 runs. Possibly, this is a side-effect of our choice not to remove stopwords for
the Indri runs.

Some query-dependent feature scores are very high, and even outperform our learn-
ing to rank approach in some cases. This is a sign that there is room for improvement in
our L2R features and, possibly, in the choice of L2R algorithm. Ideally, L2R algorithms
should outperform all individual features. Our main focus, however, is not on showing
that we can outperform the best query-dependent feature. Rather, it is to show that we can
use pseudo test collections for training retrieval algorithms, with the same effectiveness

115



6. Pseudo Test Collections for Scientific Literature Search

Table 6.4: Kendall’s tau values between system rankings produced by hand-crafted
and pseudo test collections. The annotation types AM , ACL and ACO are short for
AMETHOD , ACLASSIFICATION and ACONTROLLED , respectively. The query genera-
tion method is given in brackets. Significant correlations (α = 0.01, τ ≥ 0.600) are
given in boldface.

(2) (3) (4) (5) (6) (7) (8)

(1) 2007 0.745 0.309 0.294 0.382 0.294 0.636 0.404
(2) 2008 0.418 0.110 0.564 0.110 0.891 0.220

(3) ACO (Keywords) -0.147 0.564 -0.147 0.382 -0.037
(4) ACO (LLR) -0.110 0.982 0.000 0.800
(5) ACO ×ACO (Keywords) -0.110 0.600 0.000
(6) ACO ×ACO (LLR) 0.000 0.800
(7) AM ×ACL ×ACO (Keywords) 0.110
(8) AM ×ACL ×ACO (LLR)

as using hand-crafted test collections for training.

6.4.2 Using pseudo test collections for evaluation

In principle, pseudo test collections can be used for evaluation purposes. In Table 6.4
we list Kendall’s tau values between system rankings produced by the hand-crafted and
pseudo test collections. The systems ranked here are the same eleven retrieval algorithms
we used for our query dependent features (see Table 6.1).

The first two rows contain system ranking correlations between the two hand-crafted
test collections and all other test collections. There is a significant correlation between
how the 2007 and 2008 topics rank the eleven retrieval algorithms. There are no negative
correlations between the system rankings produced by the hand-crafted test collections
and any other collection. It is interesting to note that the pseudo test collection with the
strongest correlation with a hand-crafted test collection isAM×ACL×ACT (Keywords);
the method that uses documents associated with an annotation triple
(METHOD,CLASSIFICATION,CONTROLLED). This is in stark contrast with our pre-
vious observation that this pseudo test collection should not be used to train a learning to
rank system on.

6.5 Discussion

We have shown that it is possible to use the rich annotations available in digital libraries
collections for training a learning to rank system. We assumed that people annotate
documents to make them better findable for certain information needs. We identified four
main steps, addressing what kind of annotations to use, how to sample annotations, how
to sample relevant documents, and how to generate queries. We tackled all four steps and
showed that it is possible to generate pseudo test collections in the digital library domain

116



6.5. Discussion

on which a learning to rank system can be trained, such that in some cases performance
is indistinguishable from training on editorial topics and judgments. In particular, when
testing on the 2008 topics, for three pseudo test collections it holds that training on them
yields performance on par with training on 2007 editorial judgments. There is room for
improvement with regard to training on the 2008 topics: this strategy outperforms our
methods when tested on the 2007 topics.

There are some limitations in our work, which we aim to address in future work. One
of them is that our learning to rank algorithm is unable to outperform our best query-
dependent feature. We plan to experiment with other learning to rank algorithms and
to go beyond using such an algorithm as a black-box. In Chapter 7, where we generate
pseudo test collections for microblog search, we experiment with several L2R algorithms,
which outperform individual retrieval algorithms.

Another limitation is that we used off-the-shelf retrieval algorithms, and did not tune
their parameters. This may limit the quality of our features. In Chapter 7, we do tune
parameters for abovementioned retrieval models. Moreover, we do so on pseudo test
collections for microblog search, showing another way to put pseudo test collections to
good use.

There are some interactions that we do not yet fully understand. One of them is the
following. Recall that Asadi et al. [14] sample non-relevant documents from the bottom
of a retrieval algorithm ranked list, and we followed this procedure. We chose Indri LM,
but noticed that the choice of algorithm to use has a considerable impact on performance.
For example, selecting the Indri tf-idf algorithm instead of Indri-LM made oracle run
performance drop from about MAP 0.30 to MAP 0.25 for 2008 topics. Our choice of
the Indri LM retrieval function was arbitrary, as of yet we have a limited understanding
of the properties such a retrieval function should have. In Chapter 7, we sample negative
training examples randomly, which turns out to work well, and introduces surprisingly
little variance.

The performance of our query-independent features was disappointing. The Pega-
sos [202] algorithm we used for learning to rank learns a linear model, and the weights
for all our query-independent features were close to zero. We used 24 query-independent
features in this chapter, but none of them seemed promising enough in a learning to rank
setting in order to use them in the query generation process. In future work, we plan to
use richer collections which give us the opportunity to test stronger query-independent
features based, e.g., on the citation graph.

Our results raise interesting questions that may be addressed in future work. For ex-
ample, why does the success of the two query term sampling strategies depend so strongly
on the ground truth sampling strategy that is being used and vice versa? And, consider
the correlations between system rankings produced by our PTCs and system rankings
produced by hand-crafted test collections. These correlations were positive, but mostly
insignificant. The only significant correlation observed was for a PTC that performed
poorly when used to train a L2R algorithm on. Apparently using a PTC for benchmark-
ing is different from using it as training material. What are important characteristics that
a PTC should have for either of these use cases? Another interesting direction for future
work is training on a variety of PTCs, to increase diversity in training material.

117



6. Pseudo Test Collections for Scientific Literature Search

6.6 Conclusion

We have shown that it is feasible to generate pseudo test collections for training a learning
to rank system on scientific document collections. We proposed three pseudo test collec-
tion generation methods for which we could show that for one of our test sets, training
on these collections is just as effective as training on editorial topics and judgments. We
pointed to interesting directions for future work and areas where we need to deepen our
understanding. In Chapter 7, we provide another study on the idea of generating pseudo
test collections for training L2R algorithms, addressing several of the limitations raised
in the previous section.

118











7
Pseudo Test Collections for Microblog

Search

In the previous chapter we discussed generating pseudo test collections (PTCs) for sci-
entific article retrieval, for both optimization and evaluation purposes. In this chapter
we develop a similar approach to generate PTCs for the much more noisy setting of mi-
croblog search. We focus exclusively on the optimization of retrieval algorithms. Mod-
ern information retrieval (IR) systems have evolved from single model based systems
to intelligent systems that learn to combine uncertain evidence from multiple individual
models [61, 138]. The effectiveness and flexibility of such systems has led to wide adop-
tation in IR research. A key contributor to the success of such systems is the learning
phase, i.e., the training set they are given for learning. Training sets have to be tailored
to the task at hand and, in contrast to the systems themselves, do not generalize to other
tasks. This characteristic requires compiling task-specific training sets, which is a time
consuming and resource intensive process, as it usually involves human labor. Automat-
ing the process of compiling training sets has obvious advantages in reducing costs, while
it simultaneously increases the size of the training set. This observation has led to a per-
sistent interest in finding ways for generating so-called pseudo test collections, which
consist of a set of queries, and for each query a set of relevant documents (given some
document set).

Microblog search is the task of finding information in microblogs, such as Facebook
status updates, Twitter posts, etc. The task became popular with the advent of social
media and is distinct from web search and from blog search due mainly to its real-time
nature, the very limited length of microblog posts and the use of “microblog language,”
e.g., hashtags, mentions, which can provide useful information for retrieval purposes.
In 2011 the Text REtrieval Conference (TREC) launched the Microblog track aimed at
developing a test collection from Twitter data and evaluating systems’ performance on
retrieving—given a query and time-stamp—relevant and interesting tweets in a simulated
real-time scenario. Several participants approach the task using learning to rank meth-
ods for combining evidence from multiple rankers [166]. This approach to microblog
search comes natural because of the many dimensions available for ranking microblog
posts, e.g., recency, user authority, content, existence of hyperlinks, hashtags, retweets.
For training a learning to rank (L2R) based system at the TREC 2011 Microblog track,
participants use a traditional supervised method: many manually labeled data for com-

123



7. Pseudo Test Collections for Microblog Search

piling a training set. What if we could generate the required training sets automatically?
In 2012 a second edition of the Microblog track was organized. This gives us the oppor-
tunity to compare what yields better learning to rank performance: training on the 2011
relevance assessments, or training on automatically generated ground truth?

Our starting point is the following intuition, based upon the observation that hashtags
tend to represent a topic in the Twitter domain: From tweets Th associated with a hashtag
h, select a subset of tweets Rh ⊆ Th that are relevant to an unknown query qh related
to h. We build on this intuition for creating a training set for microblog rankers. To this
end, we take several steps, each giving rise to multiple options. First, we select hashtags
h and associated relevant tweets Rh. Can we just select all hashtags and use all their
associated tweets? In microblog search, time is important: what is considered relevant
to a query may change rapidly over time. A microblog query, then, has a timestamp, and
relevant tweets must occur prior to this timestamp. As for a query, the topic a hashtag is
associated with may change over time. Can we exploit this analogy, and label hashtags
with a timestamp, regarding tweets prior to this timestamp as relevant? Another well-
known aspect of microblog posts is that they often contain casual conversation that is
unlikely to be relevant to a query. Can we improve generated training sets by selecting
interesting tweets and hashtags associated with such tweets? Once we have selected a
hashtag h and a set of tweets Rh, how do we generate a query qh related to h? The
research question that guides our work in this chapter is:

RQ5 Hashtags are used in microblog search to indicate that a tweet is part of a larger
discussion. We assume that tweets sharing the same hashtag share the same topic, by and
large. Can we build on this assumption to generate a PTC? And when we test an L2R
algorithm on a hand-crafted microblog search collection, what yields better performance:
training on a different hand-crafted collection, or training on a PTC? We consider three
recipes for generating a PTC. What is their relative merit as training material? We con-
sider three strong L2R algorithms. How will our findings vary with a different choice
of L2R algorithms? And, how succesful can free parameters of individual retrieval algo-
rithms such as language modeling be tuned on our PTCs?

The main contribution in this chapter is a set of methods for creating pseudo test collec-
tions for microblog search. These collections are shown to be useful as training material
for tuning well-known retrieval methods from the literature, and for optimizing a learn-
ing to rank method. In particular, we contribute: (1) unsupervised pseudo test collection
generation methods; (2) a supervised pseudo test collection generation method, where we
learn what are interesting tweets from TREC Microblog track assessments; (3) insights
into the sensitivity of our methods to parameter settings.

7.1 Problem definition

Below, we consider a number of instantiations of our pseudo test collection generator.
For the purposes of the TREC Microblog track, a test collection for microblog search
consists of queries with timestamps and a set of relevant documents for these queries.

124



7.2. Selecting hashtags and tweets

A pseudo test collection for microblog search consists of a set of queries Q, in which
each query q ∈ Q is associated with a timestamp qt and a set of relevant documents Rq .
Given this definition, there are three main steps for generating a pseudo test collection
for microblog search: generating (1) the query; (2) the query timestamp; and (3) a set of
relevant tweets for the query.

We start from the following intuition: From the tweets Th that contain a hashtag h,
we can select tweets Rh that are relevant to an unknown query qh related to h. In the
next section, we present three methods to generate a pseudo test collection. Each method
selects hashtags and for every hashtag h it selects tweets Rh from Th that will act as
relevant tweets to a suitable query related to h. In Section 7.3, we present a technique for
generating queries from Rh.

7.2 Selecting hashtags and tweets

We propose four solutions to selecting hashtags and tweets for inclusion in a pseudo test
collection:

Random A sanity check baseline against our hypothesis that hashtags are good sources
for generating pseudo test collections. Collections are created by randomly sam-
pling a set of relevant tweets for each topic, without replacement. All these random
collections are of a fixed size, equal to our largest hashtag-based pseudo test col-
lection.

Hashtags A naive method that serves as baseline in our experiments and that considers
all hashtags and tweets to be equally important (Section 7.2.1).

Hashtags-T A method that creates a test collection in the microblog retrieval sense, in
which queries have timestamps (Section 7.2.2).

Hashtags-TI A method that aims at capturing interestingness in tweets. Interesting
tweets should contain good candidate terms for a query. We present a method with
which we can estimate from example queries and relevant tweets the probability
of interestingness of a tweet (Section 7.2.3).

7.2.1 Hashtags: all hashtags, tweets are equal

We select all hashtags subject to a single requirement: that they are mentioned in a rea-
sonable amount of tweets, m (Algorithm 7.1). There are three reasons for this lower
bound: (1) it reflects a certain consensus about the meaning of a hashtag; (2) we gen-
erate our queries based on word distributions in these tweets: for this to work reliably,
we need a reasonable amount of tweets, see Section 7.3; (3) we train a learning to rank
retrieval algorithm on our pseudo test collection; we hypothesize that it would benefit
from a relative large set of positive training examples, see Section 7.4. We normalize
hashtags by lowercasing them and removing any non-alphanumeric characters. In all our
experiments, we set m = 50. The pseudo test collection generated by Algorithm 7.1 is
called Hashtags.

125



7. Pseudo Test Collections for Microblog Search

Algorithm 7.1: Generating collection Hashtags

1 H ←− {h : |Th| >= m};
2 for h ∈ H do
3 Rh ←− Th;
4 Generate query qh from Rh; // See Section 7.3
5 end

7.2.2 Hashtags-T: generating timestamps

Microblog search is sensitive to the query issue time because of the real time nature of
tweets. To generate a timestamp for a query related to a hashtag h, we make an analogy
between search volume over time for a query and publishing volume over time for tweets
that contain h. Our assumption is that users often issue queries for trending topics be-
cause they want to monitor developments, similar to certain types of blog search [153].
We generate a timestamp for hashtag h just after peaks in publishing volume. In this way,
our generated queries will be about trending topics. In addition, we keep a large amount
of tweets from Th, while discarding a limited number, after h stops trending. In collec-
tions that span a considerable period of time, re-occurring topics, such as Christmas or
Super Bowl, may quite likely be observed. In this case, one may want to assign multiple
issue times for a query, depending on the number of observed peaks. Our corpus (see
Section 7.4) covers a relatively short period, and we assign only one issue time to every
query sampled.

In detail, our query issue time generation works as follows. First, we group the
time span of the collection in 8-hours bins. Then, for each hashtag, we count how many
relevant documents belong to each bin; this results in generating the hashtag’s timeseries.
In our setting, timeseries are short and sparse; our peak detection method aims at coping
with this challenge. We find the bin with the most counts and resolve ties by taking the
earliest date. This approach allows us to return a peak even for very sparse timeseries.
We call the pseudo test collection generated by Algorithm 7.2: Hashtags-T.

Algorithm 7.2: Generating collection Hashtags-T

1 H ′ ←− {h : |Th| ≥ m};
2 for h ∈ H ′ do
3 Generate timestamp t(h); // See Section 7.2.2
4 Rh ←− {τ : τ ∈ Th and t(τ) ≤ t(h)};
5 end
6 H ←− {h : h ∈ H ′and |Rh| ≥ m};
7 for h ∈ H do
8 Generate query qh from Rh; // See Section 7.3
9 end

126



7.2. Selecting hashtags and tweets

7.2.3 Hashtags-TI: selecting interesting tweets

Consider the following tweet: “Hey follow me here #teamfollowback #justinbieber.” We
hypothesize that this tweet would not be useful for sampling terms for topics labeled
#teamfollowback or #justinbieber or as a relevant document for these topics. To avoid
selecting such tweets, we rank tweets by their probability of interestingness and keep
the best X percent. We think of a tweet as interesting if it carries some information
and could be relevant to a query. We use a set of criteria to capture interestingness and
present a method to learn from example queries and relevant documents from an editorial
collection.

Let C1, C2, . . . , Cn be random variables associated with the criteria and let I = 1
denote the event that a tweet is interesting. We estimate the probability that a tweet τ is
interesting, given the observed values for the criteria: P (I = 1|C1 = c1, . . . , Cn = cn),
or, shorthand: P (I|c1, . . . , cn). Following Bayes’ rule, we have

P (I|c1, . . . , cn) =
P (c1, . . . , cn|I)P (I)

P (c1, . . . , cn)
, (7.1)

where P (I) is the a-priori probability that a tweet is interesting, P (c1, . . . , cn|I) is the
likelihood of observing the evidence given that a tweet is interesting, and P (c1, . . . , cn) is
the probability of observing the evidence. The crucial step is to estimate P (c1, . . . , cn|I).
We hypothesize that tweets that are known to be relevant to a query are interesting and
estimate P (c1, . . . , cn|I) with P (c1, . . . , cn|R), where R is the event that a tweet is
relevant to a query in an editorial collection. We use the TREC Microblog 2011 qrels for
this estimation. Since we do not have enough relevant tweets to estimate the full joint
probability, we assume conditional independence of ci given that a tweet is relevant:

P (I|c1, . . . , cn) ≈
(
∏
i P (ci|R))P (I)

P (c1, . . . cn)
. (7.2)

Since we rank tweets by interestingness we do not have to estimate P (I): it is the same
for all tweets. On the other hand, we have to keep and estimate P (c1, . . . , cn), because
it is different for different tweets. Therefore, we have:

ranktweets

(
(
∏
i P (ci|R))P (I)

P (c1, . . . cn)

)
= ranktweets

(∑
i log(P (ci|R))

P (c1, . . . , cn)

)
. (7.3)

Most of the criteria we use have discrete distributions. For those that do not, we bin
their values in B bins; we set B = 10. To avoid rejecting a tweet on the basis of one
measurement that did not occur in any of the relevant tweets, we add one observation
to every bin of every P (ci|R) distribution. For estimating P (c1, . . . , cn) we use the
empirical distribution of all tweets in the collection T . To do this, we bin feature values
for the criteria C1, . . . Cn. Again, most of the criteria have discrete distributions, and for
those that do not, we create B = 10 bins. After binning, C1, . . . , Cn all assume discrete
values c1, . . . , cn. Then,

P (c1, . . . , cn) =
|{τ | Ci = ci for all i}|

|T |
. (7.4)

127



7. Pseudo Test Collections for Microblog Search

After selecting the best X percent of tweets, we again filter out hashtags that have less
than 50 interesting tweets. We build this method on top of our pseudo test collection
Hashtags-T, only ranking the tweets in this collection and keeping the best 50% of them.
We call the pseudo test collection generated by Algorithm 7.3 Hashtags-TI.

Algorithm 7.3: Generating collection Hashtags-TI

1 H ′′ ←− {h : |Th| ≥ m};
2 for h ∈ H ′′ do
3 Generate timestamp t(h); // See Section 7.2.2
4 Th,t ←− {τ : τ ∈ Th and t(τ) ≤ t(h)};
5 end
6 H ′ ←− {h : h ∈ H ′′ and |Th,t| ≥ m};
7 T ←−

⋃
h∈H′ Th,t;

// Rank tweets by probability of being interesting
8 Rank T by P (I|c1, . . . , cn); // See eq. 7.2
9 Let TI be the top X percent of this ranking;

10 for h ∈ H ′ do
11 Rh ←− Th,t ∩ TI ;
12 end
13 H ←− {h : h ∈ H ′ and |Rh| ≥ m};
14 for h ∈ H do
15 Generate query q from Rh; // See Section 7.3
16 end

The criteria we use build on textual features (density and capitalization) and mi-
croblog features (links, mentions, recency). Each criterion is discussed below. The
marginal distributions P (ci|Rτ ) of three criteria are shown in Figure 7.1 as white his-
tograms. They overlap with black histograms of all tweets in our Hashtags pseudo test
collection. These criteria have different distributions over relevant tweets and over tweets
that have a hashtag, which motivates our idea to keep tweets with high probability of in-
terestingness.

Links The existence of a hyperlink is a good indicator of the content value of a tweet.
If the referenced web page adds useful information, it increases the potential relevance
of a Tweet. TREC Microblog 2012 assesors followed outlinks to check this. Also, a
large fraction of tweets are pointers to online news [129]. Tweets with links are likely
to include terms that describe the linked web page, rendering them good surrogates for
query terms [39].

Mentions Tweets with mentions (@username) signify discussions about the hashtag’s
topic. This type of tweet is likely to be noisy because of their personal character. They
may, however, bring in query terms used by a niche of people.

128



7.2. Selecting hashtags and tweets

density

0 100 200 300

∪Th(447957)
∪Rq(2388)

length

0 20 40 60 80 100 120

∪Th(447957)
∪Rq(2388)

capital

0.0 0.2 0.4 0.6 0.8 1.0

∪Th(447957)
∪Rq(2388)

Figure 7.1: Distribution of (Left) density scores, (Center) tweet length, and (Right)
capitalization. Where the histograms for the tweets associated with hashtags (dark
grey) and for the TREC MB 2011 relevant tweets (white) overlap, the color is light
grey.

Tweet length Document length has been shown to matter in retrieval scenarios [186].
Short tweets are less likely to contain terms useful for query simulation, see Figure 7.1
(Center) for the distribution of tweet length. Tweet length is measured in words. Note
that even though a tweet should contain at most 140 characters, we observe a few outlier
tweets with many words.

Density A direct measure for probing a tweet’s content quality is the density score [132].
Density is defined as the sum of tf-idf values of non-stopwords, divided by the number
of stopwords they are apart, squared:

Density(τ) =
K

K − 1

K−1∑
k=1

weight(wk) + weight(wk+1)

distance(wk, wk+1)2
,

whereK is the total number of non-stopwords terms in tweet τ , wk andwk+1 are two ad-
jacent keywords in τ . weight(·) denotes the term’s tf-idf score, and distance(wk, wk+1)
denotes the distance between wk and wk+1 in number of stopwords. Figure 7.1 (Left)
shows the distribution of density scores of tweets.

Capitalization The textual quality of tweets can partially be captured through the use
of capitalization [229]. Words in all capitals are considered shouting and an indication of
low quality. The ratio of capitals may indicate the quality of the text. Figure 7.1 (Right)
shows the distribution of the fraction of capital letters over tweet length.

Direct A tweet is direct if it is meant to be a “private” message to another user (i.e., the
tweets starts with @user).

129



7. Pseudo Test Collections for Microblog Search

7.3 Generating queries

In web search, Asadi et al. [14] use anchor texts of in-links of documents as a source
for query terms. In our microblog setting, such anchor texts are not available. Instead
we resort to sampling query terms from Rh, the set of relevant tweets sampled from Th,
which holds the tweets that contain hashtag h. This is a challenging step in the process
of automatically generating pseudo test collections. Considerations that play a role in
microblog search are the presence of many spelling mistakes and intentional variations
of word spellings indicative of online chatter (e.g., “loooooool”). As a first step to ensure
a basic level of quality for our query terms, we consider only terms that occur in at least
ten documents. As a second step, we discard terms which are equal to the hashtag h up
to the ‘#’ character. This is because all tweets in Rh contain the hashtag, making the
query very easy for all rankers, which then leads to a learning to rank method having a
hard time distinguishing between rankers.

Next, we need a method to determine which of the remaining candidate terms to
sample. Azzopardi et al. [15] propose several methods for sampling query terms from
single documents, for known-item search. Because in our setting we sample from a set
of documets, their methods are not directly applicable. From the three approaches they
proposed: (1) sampling random terms, (2) sampling popular terms, and (3) sampling dis-
criminative terms, the latter method produced best results. Their discriminative sampling
method rewards terms that have a high inverse document frequency (idf). In our setting,
it is not clear that we want to favor terms with a high idf. Such terms could include very
rare terms, which are rare even in Rh. Rather, we want to find terms which are over-
represented in Rh with respect to the rest of the document collection. One technique
which has been used for this purpose is the log-likelihood ratio test (LLR) [182]. We
discussed this technique in detail in the previous chapter. It has the nice property that it
is robust in situations where one of the corpora in which term frequencies are compared
is much smaller than the other, which is the case in our setting (|Rh| � |T \ Rh|). It is
also robust to low expected term frequencies, which also arise in the small set of tweets
Rh [182].

For every hashtag h, we rank the terms occurring in Rh in descending order of their
log-likelihood ratio score. We generate queries that consist of the top-K ranked terms.
For all pseudo test collections described in Section 7.2 we set K = 10. For our most
promising method, we examine the impact of this parameter by generating queries of
length 1, 2, 3, 5, and 20.

130



7.3. Generating queries

Ta
bl

e
7.

1:
T

he
re

tr
ie

va
la

lg
or

ith
m

s
w

e
tu

ne
d,

al
on

g
w

ith
th

e
pa

ra
m

et
er

va
lu

es
w

e
us

ed
.T

he
ra

ng
es

ar
e

ba
se

d
on

si
m

ila
re

xp
er

im
en

ts
in

th
e

lit
er

at
ur

e
w

he
n

po
ss

ib
le

,c
f.

th
e

la
st

co
lu

m
n.

R
an

ke
r

D
es

cr
ip

tio
n

Pa
ra

m
et

er
V

al
ue

s
cf

.L
ite

ra
tu

re

Indri5.1

L
M

L
an

gu
ag

e
m

od
el

in
g

w
ith

D
ir

ic
hl

et
sm

oo
th

in
g

µ
{5

0
,1

5
0
,.
..
,1

0
0
5
0
}

[2
42

]

T
f-

id
f

In
dr

i’s
im

pl
em

en
ta

tio
n

of
tf

-i
df

k1
{0
.2
,0
.4
,.
..
,3
}

[1
83

]
b

{0
,0
.0

5
..
.,

1
}

B
M

25
B

M
25

[1
86

]
k1

{0
,0
.2
,.
..
,3
}

[1
83

]
b

{0
,0
.0

5
..
.,

1
}

k3
{0
}

B
O

W
B

oo
le

an
or

de
re

d
w

in
do

w
W

in
do

w
si

ze
{1
,2
..
.,

1
5
,i

n
f}

B
U

W
B

oo
le

an
un

or
de

re
d

w
in

do
w

W
in

do
w

si
ze

{1
,2
..
.,

1
5
,i

n
f}

Terrier3.5

T
f-

id
f

Te
rr

ie
r’

s
im

pl
em

en
ta

tio
n

of
tf

-i
df

b
{0
,0
.0

5
..
.,

1
}

[1
83

]
PL

2
A

D
iv

er
ge

nc
e

fr
om

R
an

do
m

ne
ss

(D
FR

)m
od

el
[5

]
c

{0
.5
,1
,5
,1

0
}

[5
5]

D
FR

-F
D

Te
rr

ie
r’

s
D

FR
ee

m
od

el
w

ith
a

do
c-

um
en

ts
co

re
m

od
ifi

er
th

at
ta

ke
si

nt
o

ac
co

un
tc

o-
oc

cu
re

nc
e

w
ith

in
a

w
in

-
do

w

W
in

do
w

si
ze

{2
,3
..
.,

1
5
}

[1
71

]

PR
F

Te
rr

ie
rP

R
F

im
pl

em
en

ta
tio

n
N

o.
do

cu
m

en
ts
{1
,5
,1

0
,2

0,
3
0
,5

0}
[1

39
]

N
o.

te
rm

s
{1
,5
,1

0
,2

0,
3
0
,5

0}

131



7. Pseudo Test Collections for Microblog Search

7.4 Experimental setup

In this section, we first describe which experiments we perform. We then follow with a
description of the ingredients used in these experiments: the dataset and preprocessing,
the L2R setup, and the evaluation metrics.

7.4.1 Experiments

To answer RQ5, we perform a number of experiments. These are separated in two main
sets: parameter tuning experiments and L2R experiments. In a third set of experiments
we vary two parameters of our PTC generation recipes to observe the sensitivity of our
methods with regard to these parameter settings.

Parameter tuning Recall that in RQ5 we asked how succesful free parameters of in-
dividual (non L2R) retrieval algorithms, such as language modeling, can be tuned on our
PTCs. To answer this question we do parameter sweeps for some retrieval runs.1 On
different (pseudo) test collections, see Table 7.1 for details. More specifically, we ask:
(1) What is better in terms of retrieval performance: tuning on a different hand-crafted
test collection or tuning on a pseudo test collection? We answer by calculating how far
performance obtained by tuning on either collection is from optimal performance for
each retrieval model. We refer to this quantity as the expected loss. (2) Do scores be-
tween a pseudo test collection and a hand-crafted test collection correlate better than
scores between editorial test collections? For each retrieval algorithm, for each param-
eter setting (cf. Table 7.1), we compute a retrieval performance score on both the PTC
and the hand-crafted test collection. This gives two lists of observations for each retrieval
algorithm. We use Kendall’s tau to compute a correlation between performance scores
in these two lists. Then, finally, we average the correlations of all retrieval algorithms
to estimate the degree to which a PTC gives similar parameter tuning results as a hand-
crafted test collection. Because the number of observations in the lists differs between
retrieval algorithms, we refrain from reporting on p-values here. To handle ties, we opt
for Kendall’s tau-b. Given two lists of observations, it is defined as:

P −Q√
(N − T )(N − U)

, (7.5)

where P is the number of concordant (identically ordered) pairs in the two lists, Q is the
number of discordant pairs in them, N is the total number of pairs, T is the number of
tied pairs in the first list, and U is the number of tied pairs in the second list. This version
of Kendall’s tau has the property that if one of the lists contains only ties, the fraction is
undefined. In such cases, we report the correlation is not available (NA).

A subtle point concering the goal of our parameter tuning experiments is the follow-
ing. The ranges of each of the parameters in Table 7.1 are based on reasonable values
tried in the literature in various domains. From the perspective of the microblog search
domain, some ranges are quite naive, e.g., already in 2011 it was shown that document

1The retrieval models are the same as in the previous chapter, except for the missing Indri PRF implemen-
tation, which, for some PTCs, terminated with an error

132



7.4. Experimental setup

Algorithm 7.4: Training an LTR system on a pseudo test collection, and testing it
on a hand-crafted test collection
1 for i = 1→ N do

// --- Training phase: ---
2 Generate the pseudo test collection;
3 for each ranker do
4 Sweep parameters on the pseudo test collection;
5 Randomly sample parameter vector to use from winners;
6 end
7 for q ∈ Q do
8 Merge the ranked lists into Mq;
9 Let positive training examples← Rq,h ∩Mq;

10 Randomly sample |Rq,h| negative training examples from Mq \Rq,h;
11 end
12 Learn a LTR model on the training set;

// --- Testing phase: ---
13 for each ranker do
14 Run on test topics using the sampled parameter vector;
15 end
16 Run the learned LTR model on the test set;
17 end

length normalization is not beneficial for microblog search [161], and consequently we
could have restricted values for the b parameter of the Tf-idf and BM25 models to values
close to zero. However, the point here is not to maximize microblog search performance,
primarily. The main point is to show that parameters of general retrieval models can be
tuned on a PTC generated for the microblog search domain. To show this, we have to
include “bad” values for parameters in the tuning ranges.

Learning to rank In RQ5, we ask what yields best performance on a hand-crafted test
collection: training on a different hand-crafted test collection or training on a PTC? We
also ask what the relative merit of our PTC generation methods is, and how the choice of
L2R algorithm affects our findings. To answer these questions, we train three different
L2R algorithms. For each algorithm, we optimize a model on each PTC and on each
of two hand-crafted test collections. We then compare the test performance of all these
models on the same two hand-crafted test collections.

Parameter sensitivity. We also analyze parameter sensitivity of our methods, focus-
ing on two parameters. First, in generating Hashtag-TI (Section 7.2), we keep the best
X = 50% percent of tweets. How sensitive are our results to this method to different
values for X? We try these values: 20, 40, 60, and 80. Second, in all our experiments,
when we generate queries, we keep the top 10 terms of the ranking produced by LLR
(Section 7.3). For our best PTC, we ask how parameter tuning results and learning to
rank performance is influenced by different query length. We try query lengths 1, 2, 3, 5,
and 20.

133



7. Pseudo Test Collections for Microblog Search

Table 7.2: Statistics for pseudo test collection generated from our methods and the TREC
Microblog 2011 track.

Collection
Topics Relevant documents

# Max Min Avg. # Max Min Avg.
length

TREC MB 2011 49 6 1 3.4 2,965 178 1 60.5
TREC MB 2012 59 7 1 2.9 6,286 572 1 106.5

Random-1 1,888 10 10 10 462560 245 245 245.0
Hashtags 1,888 10 10 10 462,013 16,105 50 244.7
Hashtags-T 891 10 10 10 212,377 9,164 50 238.4
Hashtags-TI 481 10 10 10 98,586 4,949 50 205.0

H-TI-X20 175 10 10 10 32,221 3661 50 184.1
H-TI-X40 392 10 10 10 75,287 4804 50 192.1
H-TI-X60 576 10 10 10 121,639 5277 50 211.2
H-TI-X80 740 10 10 10 166,489 6956 50 225.0

7.4.2 Dataset and preprocessing

We use the publicly available dataset from the TREC 2011 and 2012 Microblog tracks,
which have 49 and 59 queries, respectively. The document collection covers two weeks
of Twitter data, from January 24, 2011–February 8, 2011, consisting of approximately 16
million tweets. We perform a series of preprocessing steps on the content of tweets. We
discard non-English tweets using a language identification method for microblogs [44].
Exact duplicates are removed; among a set of duplicates the oldest tweet is kept. Retweets
are discarded; in ambiguous cases, e.g., where comments were added to a retweet, we
keep the tweet. Punctuation and stop words are removed using a collection-based stop
word list, but we keep hashtags without the ‘#’ character. After preprocessing we are left
with 4,459,840 tweets, roughly 27% of all tweets. Due to our aggressive preprocessing,
we miss 19% of the relevant tweets per topic, on average. Our 10 retrieval models avoid
using future evidence by using per topic indexes. For completeness, we note that our
stopword list and the idf-weights in the density feature were computed on the entire col-
lection. Pseudo test collections and both TREC microblog test collections also contain
tweets from the entire collection. For generating queries, we index the collection with
Lucene without stemming or stopword removal.

Table 7.2 lists statistics of the pseudo test collections generated with the methods
described in Section 7.2, as well as statistics of the collections generated by choosing
different values for X. The Hashtags-TI-QL{1, 2, 3, 5, 20} pseudo test collections are of
the same proportions as Hashtags-TI, apart from the query length. We list only one of
fifteen Random collections, but these are all of the same proportions: about as large as
the Hashtags collection.

134



7.4. Experimental setup

7.4.3 Learning to rank

We follow a two-step approach to learning to rank, outlined in Algorithm 7.4. First, we
run several retrieval algorithms, then we re-rank all retrieved tweets. For retrieval, we use
the retrieval algorithms listed in Table 7.1, optimized for MAP [143, 184] after tuning on
a training collection. In case of ties among parameter vectors for a ranker, we randomly
sample a parameter vector. We also use a parameter free retrieval algorithm, DFRee [5].
For re-ranking, we compute three groups of features.

Query-tweet features These are features that have different values for each query-
tweet pair. We subdivide these as follows. Rankers: the raw output of each retrieval
algorithm. For LM, BOW and BUW we transform the raw output X by taking the ex-
ponent: exp(X). Ranker meta features: the number of rankers that retrieved the tweet,
the maximal, average, and median reciprocal rank of the tweet over all rankers. Recency:
query-tweet time difference decay, computed as exp(t(τ)− qt), where t(τ) is the times-
tamp of the tweet and qt the timestamp of the query. We linearly normalize query-tweet
features over all retrieved tweets for the query.

Query features These are features which have the same value for every retrieved tweet
within the same query. We use Query clarity, a method for probing the semantic distance
between the query and the collection [63]. We linearly normalize query features over the
set of retrieved tweets for all queries.

Tweet features These are features that have the same value for each tweet independent
of the query. We use the Quality criteria listed in Section 7.2: link, mentions, tweet
length, density, capitalization, and direct. We transform the feature values for tweet
length and capitalization, replacing them with the absolute difference from the median
value for those features. This was done to obtain features more suitable for a linear
classifier. Intuitively, good values for tweet length and capitalization are close to the
median: not too long and not too short (see also Figure 7.1). We linearly normalize tweet
features over the set of retrieved tweets for all queries.

To build a training set, one needs positive and negative training examples. Let q ∈ Q be
a query from the training collection, Rq the set of relevant tweets for query q, and Mq

the set of all retrieved tweets for q. Then, for each query in the training collection we
use Rq ∩Mq as positive examples. To have a balanced training set, we randomly sample
|Rq| tweets as negative training examples from Mq \Rq .

Next, we feed the training set to three state of the art learners: (1) Pegasos SVM [197,
202],2 (2) Coordinate ascent [151], (3) RankSVM [111].34 We used Pegasos with the
same hyperparameter settings as in Chapter 6. We set coordinate ascent to optimize for
MAP with ε = 0.0001 (recommended in [151]), and a maximum step size of 3. We use
line search to optimize each feature with uniform initialization and consider only positive

2http://code.google.com/p/sofia-ml/
3http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4We also considered (4) RT-Rank [157], but since it performed poorly in preliminary experiments, we leave

it out from our report.

135

http://code.google.com/p/sofia-ml/
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html


7. Pseudo Test Collections for Microblog Search

feature weights without projecting points on the manifold, cf. [151]. We used RankSVM
with default settings for its hyperparameters. It is possible to tune hyperparameters for
the L2R algorithms as well, e.g., by subdividing training sets further, performing internal
cross validation. This may lead to further improvements.

Recall that training sets are compiled using tuned rankers and that in case of ties
between different parameter vectors for a ranker, a random vector is selected. When
compiling test sets for TREC MB 2011 and TREC MB 2012 to evaluate the utility of a
training set, we use the exact same parameter vectors, so that the same set of features are
used for training and testing.

Algorithm 7.4 has randomness in several stages: (1) when generating the pseudo test
collection (only in the case of the Random collections), (2) when sampling a winning
parameter setting for each feature, (3) when randomly sampling negative training exam-
ples, and (4) during model learning. To obtain a reliable estimate of of the performance
when training on a pseudo test collection, this procedure is repeated N = 10 times, each
time generating a new pseudo test collection (in the case of the Random test collection),
selecting random parameter vectors, selecting random negative training examples, and
training an LTR model.

7.4.4 Evaluation

We report on precision at 30 (P30) on binary relevance judgments. We choose P30 be-
cause it has been one of the main metrics in both the TREC 2011 and 2012 Microblog
track. We also report on MAP, as it is a well understood and commonly used evalua-
tion metric in information retrieval, allowing us to better understand the behavior of our
pseudo test collections. Note that in the 2011 task, tweets had to be ordered by their
publication date instead of by their relevance. Many top performing systems treated the
task as normal relevance ranking and cut off their ranked lists at rank 30 [166]. In the
2012 track organizers decided to focus on ranking by relevance again, which is what we
will focus on.

Testing for statistical significance For each training collection, we run Algorithm 7.4
N = 10 times, giving rise to N scores for each topic, for each collection. We report
average performance and sample standard deviation over these iterations. To also gain
insight if any differences between a pair of training collections would be observed on
different microblog topics from the same hypothetical population of topics, we proceed
as follows. We pick for each collection the iteration of Algorithm 7.4 which had the
smallest training error on that collection. In a benchmark such as the TREC microblog
track, this is the run one would most likely submit. Then, we do a paired t-test over
differences per topic and report the obtained p-values. Statistically significant differences
are marked as N (or H) for significant differences for α = .001, or M (and O) for α = .05.

7.5 Results and analysis

First, we report on our parameter tuning results; then on our learning to rank results. We
also analyze parameter sensitivity with regard to the percentage of interesting tweets kept

136



7.5. Results and analysis

Table 7.3: For Tf-idf (Indri), and P30, Kendall’s tau correlations of parameter sweeps
on several pseudo test collections with sweeps on TREC MB 2011 and 2012 collections.
Kendall’s tau between sweeps over TREC MB 2011 and 2012 is 0.85.

Tune on TREC MB 2011 TREC MB 2012

Random-1 0.18 0.20
Hashtags 0.87 0.86
Hashtags-T 0.90 0.86
Hashtags-TI 0.90 0.86

Table 7.4: For language modeling (LM), and P30, Kendall’s tau correlations of parameter
sweeps on several pseudo test collections with sweeps on TREC MB 2011 and 2012
collections. Kendall’s tau between sweeps over TREC MB 2011 and 2012 is 0.61.

Tune on TREC MB 2011 TREC MB 2012

Random-1 -0.87 -0.65
Hashtags 0.65 0.78
Hashtags-T 0.69 0.77
Hashtags-TI 0.58 0.79

and query length.

7.5.1 Parameter tuning results

The main outcomes in this section will be correlations, to answer the question whether
relative performance of parameter values on pseudo test collections correlates with rel-
ative performance of the same values on a hand-crafted collection. We begin with two
case studies to gain a better understanding of the behavior of our pseudo text collections.
We sweep (a) the document length normalization parameter b for Terrier’s tf-idf imple-
mentation (Figure 7.2a), and (b) µ for Indri’s implementation of language modeling with
Dirichlet smoothing (Figure 7.2b). We only include one of our ten random pseudo test
collections; all random collections behave similarly, for all retrieval systems and metrics.

Figure 7.2a shows that on the TREC MB 2011 collection there is a general trend to
prefer lower values of b, possibly because of the very small average document length,
which, in turn, renders the deviation from the average length close to one. All pseudo
test collections capture this trend, including the Random-1 pseudo test collection. The
curves of the pseudo test collections are smoother than the curve obtained when tuning on
the TREC MB 2011 topics; this is because the pseudo test collections have far more test
topics. Pseudo test collections show differences in absolute scores, but most importantly,
we are interested in whether pseudo test collection predictions that one parameter vector
is better than another correlate to such predictions of hand-crafted collections. Kendall’s
tau expresses exactly that correlation, see Table 7.3: correlations are high across the
board. In addition, we want to know the following: if we sample a random parameter
vector from those predicted to yield optimal performance on a pseudo test collection,

137



7. Pseudo Test Collections for Microblog Search

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tf−idf (Terrier) 

b

P
30

TREC−MB−2011 
Hashtags 
Hashtags−T 
Hashtags−TI 
Random−1

(a)

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LM 

mu

P
30

TREC−MB−2011 
Hashtags 
Hashtags−T 
Hashtags−TI 
Random−1

(b)

Figure 7.2: Sweeping the b parameter of Tf-idf (Terrier) (7.2a) and the µ parameter of
LM (7.2b). The x-axes have parameter values, the y-axes average P30 over the topics of
the respective tuning collection.

138



7.5. Results and analysis

Table 7.5: For Tf-idf (Indri), expected loss in P30 performance of parameter sweeps on
several training collections compared to optimal performance on TREC MB 2011 and
2012 collections. When only one parameter setting achieves optimal performance on a
PTC, we list the loss with regard to the optimal setting on TREC MB 2011 or 2012. If
there are multiple, we list the expected (average) loss, followed by the sample standard
deviation, and finally their number, in brackets.

Tune on TREC MB 2011 TREC MB 2012

TREC MB 2011 - 0.003
TREC MB 2012 0.006±0.005 (3) -
Random-1 0.029 0.024
Hashtags 0.012±0.002 (2) 0.002±0.002 (2)
Hashtags-T 0.002 0.000
Hashtags-TI 0.002 0.000

Table 7.6: For language modeling (LM), expected loss in P30 performance of parameter
sweeps on several training collections compared to optimal performance on TREC MB
2011 and 2012 collections. When only one parameter setting achieves optimal perfor-
mance on a PTC, we list the loss with regard to the optimal setting on TREC MB 2011
or 2012. If there are multiple, we list the expected (average) loss, followed by the sample
standard deviation, and finally their number, in brackets.

Tune on TREC MB 2011 TREC MB 2012

TREC MB 2011 - 0.010
TREC MB 2012 0.006 -
Random-1 0.039±0.001 (11) 0.014±0.001 (11)
Hashtags 0.010 0.001
Hashtags-T 0.013±0.004 (2) 0.001±0.001 (2)
Hashtags-TI 0.014 0.002

139



7. Pseudo Test Collections for Microblog Search

Table 7.7: Over all retrieval models, the average Kendall’s tau correlations between
P30 performance scores of parameter sweeps on several pseudo test collections and
P30 performance scores of parameter sweeps on TREC MB 2011 and 2012 collections.
Kendall’s tau between sweeps over TREC MB 2011 and 2012 is 0.80. The average tau
over retrieval algorithms is given, followed by the sample standard deviation, and the
number of retrieval algorithms for which tau was undefined.

Tune on TREC MB 2011 TREC MB 2012

Random-1 0.27±0.62 (2 NA) 0.32±0.56 (1 NA)
Hashtags 0.78±0.20 (1 NA) 0.70±0.35 (1 NA)
Hashtags-T 0.80±0.20 (1 NA) 0.78±0.30 (1 NA)
Hashtags-TI 0.75±0.26 (1 NA) 0.81±0.23 (1 NA)

Table 7.8: Over all retrieval models, average expected loss in P30 performance of param-
eter sweeps on several training collections compared to optimal performance on TREC
MB 2011 and 2012 collections.

Tune on TREC MB 2011 TREC MB 2012

TREC MB 2011 - 0.003±0.006
TREC MB 2012 0.003±0.003 -
Random-1 0.021±0.021 0.013±0.012
Hashtags 0.005±0.006 0.004±0.006
Hashtags-T 0.004±0.005 0.002±0.005
Hashtags-TI 0.004±0.005 0.002±0.005

what will be the expected loss with regard to optimal performance on a hand-crafted
collection? Table 7.5 provides these quantities. If there are multiple parameter settings
with the same optimal performance, the sample standard deviation is reported along with
the expected loss, and the number of optimal parameter settings is given in brackets. We
observe that the expected loss is low. All pseudo test collections can be used to reliably
tune the b parameter of Terrier’s TF-IDF, even the Random-1 collection.

Turning to a second case study, Indri’s language modeling algorithm with Dirichlet
smoothing, we see a different picture (Figure 7.2b). The TREC MB 2011 topics show a
slightly decreasing trend for larger µ values. We believe this is due to the short document
length; tweets after processing are few terms long, and therefore even small µ values
overshadow the document term probability with the background probability. This trend
is not entirely captured by the pseudo test collections. All have a short increase for low
values of µ which is much less pronounced in the TREC MB 2011 curve. After that, all
except the Random-1 collection show a decline, if only in the third digit. Correlations
are fair (Table 7.4), but the Random-1 collection fails here. Expected loss is low across
the board (Table 7.6).

Looking at the big picture, we average the correlations and expected loss figures in
Tables 7.7 and 7.8 over all nine retrieval models from Table 7.1. For the hashtag based

140



7.5. Results and analysis

collections, correlations are high, with a large variance over systems. Expected loss is
low. This indicates that pseudo test collections can be used to reliably and profitably tune
parameters for a variety of well established retrieval algorithms, with more or less success
depending on which model is being tuned. Tuning retrieval models on all hashtag based
pseudo test collections is about as reliable as tuning on hand-crafted test collections. For
most retrieval algorithms, a Random collection cannot be recommended for tuning. Thus,
the idea of grouping tweets by hashtag has value for creating pseudo test collections for
tuning retrieval algorithms.

7.5.2 Learning to rank results

In this section we evaluate the usefulness of our pseudo test collections by training several
learning to rank algorithms on them. In Tables 7.9 and 7.10, we report P30 and MAP
performance on the TREC 2011 Microblog track topics. We compare training on our
PTCs with training on the TREC 2012 Microblog track topics and indicate significant
differences. In Tables 7.11 and 7.12, we report P30 and MAP performance on the TREC
2012 Microblog track topics, and compare training on our PTCs with training on the
TREC 2011 Microblog track topics.

A first brief glance at all four tables tells us that training on a hand-crafted test col-
lection is in most cases (but not all) the best strategy. Still, if training on a PTC is not
substantially and significantly worse, we may conclude that in the abscence of training
data, pseudo test collections are a viable alternative.

A second glance at all four tables shows us that training on the Random PTC is always
significantly outperformed by training on hand-crafted collections. Still, in most cases,
there is a hashtag based PTC on which training yields performance on par with training
on hand-crafted collections. This shows that there is indeed considerable merit in our
idea of using hashtags to group tweets by topic.

Another phenomenon we can observe in all tables is that Pegasos has remarkably sta-
ble performance over pseudo test collections, compared to the other two learning to rank
algorithms. With the exception of Hashtags-TI-QL1 and Random, it seems to be able
to exploit the structure in any PTC to learn a function that yields performance compa-
rable to a function learned on hand-crafted training data. RankSVM, on the other hand,
has unstable performance. Especially in Table 7.12 it refuses to work on anything but
manually obtained ground truth. Coordinate Ascent, a remarkably simple learning to
rank algorithm holds the middle ground. When queries are too short, as in Hashtags-TI-
QL1, Hashtags-QL2 and Hashtags-TI-QL3 performance detoriates. When subsamples
of tweets become too small (Hashtags-TI-X20) the same happens.

So which PTC is the best? All PTCs are significantly outperformed by training
on a hand-crafted collection in at least one of the conditions. Hashtags-TI-X60 and
Hashtags-TI-X80 both yield best results in one case. Also, like Hashtags, Hashtags-T
and Hashtags-TI are significantly outperformed in only a small number of cases. Once
we zoom in on the best performing L2R algorithm, Pegasos, the situation becomes more
clear. Hashtags-TI-QL5 is always among the top scorers, and it is never significantly
beaten by training on hand-crafted test collections. Still, the differences among PTCs are
small.

Learning to rank only makes sense if improvements over individual retrieval algo-

141



7. Pseudo Test Collections for Microblog Search

Table 7.9: P30 performance on TREC MB 2011 topics for various LTR algorithms,
trained on different collections. Features are tuned on MAP. Best run in bold. Indi-
cated statistically significant differences are with regard to training on TREC-MB-2012.
The best individual tuned ranker, DFR-FD, achieved 0.416.

Train on Pegasos RankSVM CA

TREC-MB-2012 0.446±0.001 0.436±0.004 0.447±0.004
Random 0.401±0.004O 0.356±0.011H 0.378±0.006H

Hashtags 0.437±0.002 0.430±0.004 0.434±0.002
Hashtags-T 0.438±0.001 0.426±0.002 0.434±0.003
Hashtags-TI 0.437±0.001 0.406±0.007O 0.429±0.002O

Hashtags-TI-X20 0.432±0.001 0.265±0.016H 0.383±0.016H

Hashtags-TI-X40 0.435±0.001 0.361±0.006H 0.427±0.001O

Hashtags-TI-X60 0.438±0.001 0.415±0.004O 0.431±0.003O

Hashtags-TI-X80 0.438±0.001 0.427±0.003 0.435±0.002

Hashtags-TI-QL1 0.189±0.135H 0.034±0.015H 0.293±0.107 H

Hashtags-TI-QL2 0.435±0.002 0.244±0.024H 0.421±0.047 H

Hashtags-TI-QL3 0.443±0.001 0.240±0.012H 0.427±0.023 H

Hashtags-TI-QL5 0.443±0.001 0.259±0.008H 0.428±0.005 O

Hashtags-TI-QL20 0.438±0.001 0.320±0.007H 0.432±0.004

rithms can be obtained. Tables 7.13 and 7.14 show performance of the retrieval models
we use as features. In the great majority of cases our hashtag based PTCs outperform the
best feature. The Random collection never achieves this.

7.6 Discussion

Following the results of our experiments we list three main observations: (1) The Ran-
dom pseudo test collection performs significantly worse than hand-crafted collections
in the retrieval experiments and shows low correlation to these collections in the tuning
phase. (2) The top pseudo test collections are not significantly worse than hand-crafted
collections and show high correlation when tuning parameters. (3) Differences between
various pseudo test collections on retrieval effectiveness are small.

Combining the top two observations leads us to conclude that our approach to con-
structing pseudo test collections works. We can successfully use pseudo test collections,
as long as we find appropriate surrogate relevance labels. Why are these findings impor-
tant? To train learning to rank methods on microblog retrieval tasks we do not have to
invest in manual annotations but can use hashtags for creating training examples. Pseudo
test collections can also be used successfully for tuning parameters of retrieval models.

The third observation is that the differences between our pseudo test collections are
limited. More advanced methods for selecting tweets and hashtags result in performance
that is only sporadically better than the naive baseline method, which treats all tweets
and hashtags equally. We can look at this from two angles. (1) Collection construction:

142



7.6. Discussion

Table 7.10: MAP performance on TREC MB 2011 topics for various LTR algorithms,
trained on different collections. Features are tuned on MAP. Best performance per LTR
algorithm in bold. Indicated statistically significant differences are with regard to training
on TREC-MB-2012. The best individual tuned ranker, Tf-idf (Indri), achieved 0.357.

Train on Pegasos RankSVM CA

TREC-MB-2012 0.388±0.001 0.362±0.003 0.387±0.003
Random 0.348±0.004H 0.294±0.009H 0.319±0.009H

Hashtags 0.374±0.001 0.360±0.005 0.385±0.001
Hashtags-T 0.379±0.000 0.362±0.005 0.386±0.000
Hashtags-TI 0.383±0.001 0.344±0.003 0.377±0.002

Hashtags-TI-X20 0.376±0.001O 0.198±0.015H 0.332±0.013H

Hashtags-TI-X40 0.380±0.001 0.300±0.007O 0.373±0.001O

Hashtags-TI-X60 0.383±0.001 0.352±0.005 0.381±0.003
Hashtags-TI-X80 0.381±0.000 0.363±0.002 0.384±0.002

Hashtags-TI-QL1 0.141±0.125H 0.020±0.009H 0.202±0.119H

Hashtags-TI-QL2 0.370±0.001O 0.185±0.019H 0.360±0.046H

Hashtags-TI-QL3 0.379±0.000 0.166±0.011H 0.366±0.026H

Hashtags-TI-QL5 0.383±0.001 0.165±0.007H 0.372±0.006O

Hashtags-TI-QL20 0.383±0.001 0.231±0.008H 0.381±0.002

Table 7.11: P30 performance on TREC MB 2012 topics for various LTR algorithms,
trained on different collections. Features are tuned on MAP. Best performance per LTR
algorithm in bold. Indicated statistically significant differences are with regard to training
on TREC-MB-2011. The best individual tuned ranker, DFR-FD, achieved 0.351.

Train on Pegasos RankSVM CA

TREC-MB-2011 0.392±0.001 0.391±0.007 0.392±0.007
Random 0.341±0.003H 0.289±0.008H 0.314±0.006H

Hashtags 0.379±0.001 0.330±0.011O 0.378±0.001O

Hashtags-T 0.372±0.001O 0.336±0.005O 0.382±0.001
Hashtags-TI 0.381±0.001 0.326±0.007O 0.393±0.002

Hashtags-TI-X20 0.377±0.001 0.248±0.013H 0.353±0.008
Hashtags-TI-X40 0.379±0.001O 0.294±0.009H 0.389±0.001
Hashtags-TI-X60 0.379±0.001 0.348±0.003O 0.394±0.006
Hashtags-TI-X80 0.373±0.001O 0.337±0.006O 0.388±0.007

Hashtags-TI-QL1 0.198±0.089H 0.047±0.016H 0.291±0.059H

Hashtags-TI-QL2 0.374±0.002O 0.231±0.016H 0.377±0.035H

Hashtags-TI-QL3 0.381±0.001 0.218±0.007H 0.382±0.016H

Hashtags-TI-QL5 0.385±0.001 0.248±0.005H 0.391±0.004
Hashtags-TI-QL20 0.380±0.001 0.302±0.005H 0.388±0.002

143



7. Pseudo Test Collections for Microblog Search

Table 7.12: MAP performance on TREC MB 2012 topics for various LTR algorithms,
trained on different collections. Features are tuned on MAP. Best performance per LTR
algorithm in bold. Indicated statistically significant differences are with regard to training
on TREC-MB-2011. The best individual tuned ranker, DFR-FD, achieved 0.220.

Train on Pegasos RankSVM CA

TREC-MB-2011 0.245±0.000 0.245±0.004 0.246±0.004
Random 0.207±0.001H 0.159±0.005H 0.176±0.006H

Hashtags 0.231±0.000O 0.181±0.008H 0.224±0.001O

Hashtags-T 0.227±0.001O 0.193±0.004H 0.227±0.001O

Hashtags-TI 0.234±0.001O 0.172±0.005H 0.233±0.001O

Hashtags-TI-X20 0.233±0.001O 0.143±0.007H 0.210±0.005H

Hashtags-TI-X40 0.233±0.000O 0.158±0.005H 0.230±0.001O

Hashtags-TI-X60 0.233±0.000 0.196±0.002H 0.234±0.003O

Hashtags-TI-X80 0.230±0.000O 0.189±0.004H 0.230±0.004O

Hashtags-TI-QL1 0.106±0.060H 0.026±0.008H 0.165±0.048H

Hashtags-TI-QL2 0.229±0.001O 0.123±0.011H 0.233±0.021H

Hashtags-TI-QL3 0.234±0.000 0.106±0.004H 0.231±0.015H

Hashtags-TI-QL5 0.235±0.000 0.118±0.004H 0.233±0.003O

Hashtags-TI-QL20 0.231±0.000O 0.162±0.003H 0.228±0.001O

Table 7.13: P30 performance on 2011 and 2012 topics for retrieval models for which
MAP was tuned on 2011 topics, ordered by 2012 performance. The only parameter free
retrieval model, DFRee, achieved 0.416 on the 2011 topics, and 0.346 on the 2012 topics.

Model 2011 2012

DFR-FD (Terrier) 0.416 0.351
Tf-idf (Terrier) 0.397 0.348
PL2 (Terrier) 0.406 0.336
PRF (Terrier) 0.391 0.335
Tf-idf (Indri) 0.413 0.331
Okapi (Indri) 0.409 0.329
LM (Indri) 0.404 0.325
BUW (Indri) 0.128 0.154
BOW (Indri) 0.094 0.134

144



7.7. Conclusion

Table 7.14: MAP performance on 2011 and 2012 topics for retrieval models for which
MAP was tuned on 2011 topics, ordered by 2012 performance. The only parameter free
retrieval model, DFRee, achieved 0.351 on the 2011 topics, and 0.216 on the 2012 topics.

Model 2011 2012

DFR-FD (Terrier) 0.352 0.220
Tf-idf (Terrier) 0.352 0.215
PL2 (Terrier) 0.348 0.209
PRF (Terrier) 0.335 0.201
Tf-idf (Indri) 0.357 0.194
Okapi (Indri) 0.354 0.191
LM (Indri) 0.346 0.188
BUW (Indri) 0.075 0.069
BOW (Indri) 0.060 0.061

We can limit time spent on constructing a smooth and interesting pseudo test collection
by substituting more advanced methods (Hashtags-T and -TI) with the naive Hashtags
method. Using the naive method is faster and results in a larger collection, with similar
results. (2) Training volume: Investing in obtaining more interesting tweets and hashtags
using our more advanced methods substantially reduces the number of queries in our col-
lections. While the naive Hashtags uses over 1,800 queries and 460,000 relevant tweets,
the other methods use only 890 (Hashtags-T) and 480 (Hashtags-TI) queries and equally
reduced sets of relevant tweets. Training efficiency improves substantially by limiting the
number of queries in the collections. In other words, we can choose between spending
more time on constructing our collections, while reducing training time, or take a naive
collection construction approach that results in larger collections and thus longer training
times. A similar observation holds for the hand-crafted collections, which are the small-
est collections (50–60 queries), but (supposedly) with the highest quality. An interesting
follow-up experiment to shed further light on this trade-off would be to generate pseudo
test collections that are both naive and small.

7.7 Conclusion

Summarizing, we have studied the use of pseudo test collections for training and tun-
ing LTR systems for microblog retrieval. We use hashtags as surrogate relevance la-
bels and generate queries from tweets that contain the particular hashtag. These pseudo
test collections are then used for (1) tuning parameters of various retrieval models, and
(2) training learning to rank methods for microblog retrieval. We explore three ways of
constructing pseudo test collections, (1) a naive method that treats all tweets and hash-
tags equally, (2) a method that takes timestamps into account, and (3) a method that uses
timestamps and selects only interesting microblog posts. We compare their performance
to those of a randomly generated pseudo test collection and two hand-crafted collections.

Our pseudo test collections have high correlation with the hand-crafted collections
in the parameter tuning phase, whereas the random collection has a significantly lower

145



7. Pseudo Test Collections for Microblog Search

correlation. In the LTR phase we find that in most cases our collections do not perform
significantly worse than the hand-crafted collections, while the random collection does
perform significantly worse.

Compared to the previous chapter, on PTCs for scientific literature search, the results
in this chapter are somewhat more convincing. The retrieval algorithms were tuned, the
L2R methods outperform all individual features, and in many conditions training on a
PTC was found to yield performance on par with training on hand-crafted test collections.

Looking forward, we are interested in training on a mixture of hand-crafted and gen-
erated ground truth. Our work is related to creating ground truth in a semi-supervised
way and we also aim to further explore this relation.

146



8
Conclusions

In this chapter, we first summarize our main findings by answering the research questions
we posed in Chapter 1. We briefly recall each question, answer it, interpret that answer,
and discuss ramifications. Next, we discuss directions for future work.

8.1 Main findings

In this thesis we studied several vertical search applications. In each of our studies, back-
ground knowledge about information needs and information objects played an important
role. In Chapter 3, on people search, we focused on information needs. In particular, we
automatically categorized queries into three classses [231]. Our research question here
was:

RQ1 Is it possible to classify person name queries submitted to a people search engine
as either low-profile, event-based and regular high-profile classes such that reasonable
agreement with human classifying decisions is achieved? Among a set of features cap-
turing online context of person names and interactions of people search engine users,
which features have the largest influence on classification decisions?

We found that it is indeed possible to separate low-profile from high-profile queries
(either event-based or regular) with reasonable accuracy: roughly on par with inter-
annotator agreement. Best results were obtained by using a decision tree. The most
important features, i.e., the first splits in the decision tree (that was trained on all data),
are click volume in the last seven days and the number of bursts. When we perform a
three-way classification, we see that in particular regular high-profile queries are hard to
classify correctly, both in terms of recall and precision. The first splits in a decision tree
trained on all data are the same as above. The news volume in the last seven days plays
a role in separating event-based and regular high-profile queries.

The feature analysis results are reasonably intuitive. Most low-profile queries are
simply not much searched for and clicked on, explaining the importance of the click
volume feature in both trees. The two decision trees, corresponding to two-way and
three-way classification, shown in Figures 3.3 and 3.4 resemble each other. This makes
sense, since high-profile queries are the union of event-based and regular high-profile
queries. Perhaps surprisingly, less mentions in the news are an indication of event-based

147



8. Conclusions

queries. Indeed, such queries are often connected with a single event. For example, the
most common subclass observed in event-based queries in a people search log are names
of people who recently passed away. More frequent occurences of a name in the news
are an indication of a regular high-profile query: somebody most likely looking for a
well-known public figure with this name. The features we used in the experiment can
be grouped into features that are about search volume, click volume or news volume.
Features from all groups appeared in the first few splits of the above decision trees.
Within each group, only one feature played such a promiment role. It appears then that
using all different kinds of available evidence is a good strategy to obtain reasonable
results, spending only limited resources in design and computation time. Some caution
must be used when drawing conclusions from the feature analysis. Since the two trees
analyzed in Chapter 3 are trained on all labeled data, their generalization performance
has not been evaluated. The number of misclassifications in the two trees seems low, it
is possible that they overfit training data somewhat. However, we would not expect the
two trees to overfit more than the trees that we evaluated in the ten-fold cross-validation,
since the two analyzed trees are trained on more data.

One implication of our finding is that people search engines could use a query clas-
sifier to treat low-profile queries differently from high profile queries, for example, since
this is possible with accuracy close to human agreement. Event-based queries can also
be recognized reliably. For such queries, for example, news results could be featured
prominently.

In Chapter 4, also on people search, we found that two types of documents in the docu-
ment collection were a decisive factor in the task of people search result disambiguation.
Social media profiles are so different from other search results that they should be treated
separately. Our research question here was:

RQ2 State-of-the-art hierarchical aglommerative clustering (HAC) methods for clus-
tering web search results for person name queries break on search results of a people
search engine, which contain many social media profiles. Can we remedy this problem
by treating social media profiles differently from regular web documents, clustering the
two types of documents separately and then merging the clusterings back together?

We find that indeed a dramatic performance increase is achieved when social media
profiles and other web documents are clustered separately from each other, with the
clusterings subsequently being merged. Improving on this simple concept proves to
be hard. The best performing clustering of social media profiles simply assigns each
profile to a singleton cluster. Then simply adding these singleton clusters alongside the
web-document clusters achieves strong performance. It is possible to improve over this
method by iteratively assigning the singleton social media clusters to the most promising
web-document clusters. The improvements are very small, but significant.

An underlying issue in all our results seems to be sparsity of features. The sparsity
of text in social media profiles is one of the reasons their presence in a corpus harms
clustering performance. The sparsity of many of the features we proposed for clustering
profiles (cross-links, co-clicks, a match of a face recognition classifier in profile pictures,
and so on) is part of the reason that the singleton clustering method was best for profiles.

148



8.1. Main findings

Most of these features are strong evidence for clustering, intuitively. Indeed, they loose
little precision to a singleton clustering. But they also do little for recall due to their
sparsity.

The two-stage clustering method deals with the sparse text in profiles by refusing to
cluster them based on textual evidence. While the method is conceptually simple, it was
not obvious to us from the start. The magnitude of the improvement over treating all
documents in the same way gives pause. It is likely that many document collections will
contain distinct groups of documents. Treating different groups separately may be bene-
ficial for various tasks, including clustering tasks, classification tasks and retrieval tasks.
The method of iteratively merging social media clusters to web-document clusters—so as
to gain more evidence on the way—yields only small improvements over simply taking
the union of all clusters. But this need not discourage future research in this direction.
Since we release a test collection, others are free to seek additional improvements. In
time, many small, incremental improvements can be of practical value together.

In Chapter 5, on expert search, we performed a self-assessment experiment in which we
asked experts to judge knowledge area profiles that we generated for them. The main
aim of this study was to gain understanding of the performance of strong expert profiling
algorithms. We asked:

RQ3 We ask experts to judge profiles we generate for them (judged system-generated
profiles). What is the quality of our generated profiles? Which experts are hard to gener-
ate a profile for and why? Previously, evaluation of expert profiling algorithms had been
done by using profiles of knowledge areas that experts selected from an alphabetical list
(self-selected profiles). If we use judged system-generated profiles for evaluation, what
are differences in evaluation outcomes? Why do these differences occur?

The quality of the generated profiles is indeed much larger than previous evalua-
tion results would suggest [20]. During the self-assessment experiment experts judged
relevant many knowledge areas that were not in their self-selected profile. Experts left
useful free-text feedback on their generated profiles and by means of a content analysis
we were able to find aspects that were highlighted by several experts. The most fre-
quently reported issues all concerned the retrieved knowledge areas: missing a key one,
retrieving nonsensical ones, redundant ones, and too general ones. An error analysis re-
vealed that for experts who had written a short research profile, performance of expert
profiling algorithms was significantly higher. Also, knowledge areas without an English
translation are harder to retrieve. A study of differences in evaluation outcomes between
the self-selected and the judged system-generated profiles showed that indeed systems
are ranked rather differently. Most of this difference comes about through the additional
knowledge areas that experts judged relevant in the self-assessment experiment.

The finding that experts judged as relevant many knowledge areas outside of their
self-selected profile confirms that the self-selected profiles were sparse. Consequently,
we recommend using the judged system-generated profiles for the evaluation of expert
profiling systems. The system-generated profiles were generated by combining the re-
sults of eight variants of expert profiling algorithms which are all inspired by language
modelling techniques. It is possible that new and very different algorithms may retrieve

149



8. Conclusions

knowledge area that were never judged by experts in our self-assessment experiment. To
study the impact of this possible bias, researchers may use the self-selected profiles as
well as the judged system-generated profiles: we release both sets of ground truth with
the test collection. The finding that expert profiling is easier for researchers who have
written a research profile, leads us to recommend experts to do this. The finding that
knowledge areas without an English translation are harder to retrieve leads us to recom-
mend keeping up-to-date a fully translated knowledge base.

It is interesting to note, finally, that our recommendations target different groups of
people around knowledge intensive organizations: the experts (employees), the main-
tainers of the knowledge base, and researchers and designers of expertise retrieval algo-
rithms. Ultimately, this should benefit the process of supporting knowledge exchange in
an organization with expert profiling and expert finding algorithms.

In Chapter 6, on scientific literature retrieval, we used annotations of scientific articles,
e.g., topical keywords. These had been added by curators of the literature collection we
study, with the aim of fully indexing the collection. We used these annotations to generate
an IR test collection automatically. IR test collections are used to evaluate or optimize
retrieval algorithms, and contain at least queries, documents, and relevance assessments.
We started by considering documents labeled with particular annotations relevant to a
query that we subsequently generated. We called our automatically generated collections
pseudo test collections (PTCs). We asked:

RQ4 Collections of scientific literature are sometimes indexed with different kinds of
annotations. Can the result of these annotation efforts be used to generate a pseudo test
collection (PTC)? When retrieval algorithms are evaluated using a PTC, are they ranked
as they would be by a hand-crafted test collection? And when we test a L2R algorithm on
a hand-crafted test collection, what is the best way to train it: on a different hand-crafted
test collection, or on a PTC?

We proposed three strategies for sampling sets of documents to be considered relevant;
these strategies use the different kinds of annotations. We formulated two approaches to
generate a query for such a set of documents. The Cartesian product of these two leads to
six different PTCs. We found that if we rank ten retrieval systems using each of our six
PTCs, correlations with the system rankings obtained by evaluation on hand-crafted col-
lections were all positive, but mostly small, with the exception of one PTC. When training
a L2R algorithm on some PTCs and testing on one of our hand-crafted test collections,
performance was not significantly worse than training on the other hand-crafted test col-
lection. This constitutes no scientific proof that the two strategies lead to equivalent test
performance, but it means we could not reject the null hypothesis that they are equivalent
with strong certainty. Note that we looked for significance at a strict α = 0.001 level,
because many pairwise comparisons were made and otherwise the probability of Type
I becomes large. When testing on the other hand-crafted test collection, training on the
first hand-crafted collection was best.

The study was exploratory in nature. It would be too early to use the generated PTCs
for benchmarking: the observed Kendall’s tau correlations were too low and varied too
much over PTCs. More analysis of how these differences come about would still be

150



8.1. Main findings

required. But the results for using the PTCS for training were somewhat encouraging.
Performance was not always significantly worse than training on hand-crafted collec-
tions. It is interesting in the L2R results that which query generation technique is best
depends on what strategy is used for selecting documents as relevant documents. The op-
posite is also true. A final note on the results in Chapter 6 is that the L2R algorithm did
not impress, be it trained on hand-crafted or pseudo test collections. The absolute perfor-
mance of the algorithm was not our main concern here, however. The main concern was
establishing which test collection was most suitable for training.

The implications of this work are that there is promise in the idea of generating train-
ing material in vertical search applications with document collections that have rich an-
notations. When targeting a smaller audience in a vertical search application, there are
often few resources for creating training data by hand. Training on automatically gener-
ated training data can then be a sensible alternative, particularly if performance obtained
by it can be expected to be close to what one could have achieved on hand-crafted ground
truth.

In Chapter 7, on microblog search, we pursued a similar idea as above. The microblog
search domain differs from the digital library domain: user generated content is much
more noisy than the carefully written, edited, and indexed content in scientific literature
collections. The annotations that we leveraged here were hashtags. This time, we focused
exclusively on using PTCs for training L2R algorithms. We asked:

RQ5 Hashtags are used in microblog search to indicate that a tweet is part of a larger
discussion. We assume that tweets sharing the same hashtag share the same topic, by and
large. Can we build on this assumption to generate a PTC? And when we test an L2R
algorithm on a hand-crafted microblog search collection, what yields better performance:
training on a different hand-crafted collection, or training on a PTC? We consider three
recipes for generating a PTC. What is their relative merit as training material? We con-
sider three strong L2R algorithms. How will our findings vary with a different choice
of L2R algorithms? And, how succesful can free parameters of individual retrieval algo-
rithms such as language modeling be tuned on our PTCs?

We found that in many cases training on a PTC was not significantly worse than training
on a hand-crafted test collection. This time we reported significance at both the α = 0.05
and α = 0.001 levels. In the former case, the null hypothesis (that performance is
similar) is rejected much sooner, and we can expect some Type I errors to occur. But
if we do not reject the null hypothesis, indeed the results must be quite similar. The
three recipies for generating a PTC that we proposed yielded suprisingly similar results
in terms of L2R test performance. With regard to the three L2R algorithms we performed
our experiments with, one of them [202] was most robust with respect to which collection
it was trained on. Ten of the features used in our L2R experiments were themselves
retrieval algorithms which had one or more free parameters. These were tuned on the
same collection on which the L2R algorithm was subsequently trained. Tuning these
free parameters on our hashtag based PTCs gives these individual retrieval algorithms
comparable performance to tuning them on hand-crafted test collections.

151



8. Conclusions

In this study, L2R results were strong, particulary on the 2011 topics, compared to
results obtained in the competitive campaign in that year [166]. This perhaps gives a bit
more street credibility to the answers to our main concern: the usefulness of our PTCs
for training a strong L2R algorithm. It remains an interesting question why the other
two L2R algorithms we tested were more sensitive to the type of material they were
trained on. Since the three recipies we propose for PTC generation are similar in terms
of test performance of algorithms optimized on them, one can consider other factors.
Some recipies have a simple design, reducing development effort. Other recipes result
in smaller PTCs, reducing computation time during training. It would be interesting to
test if large PTCs generated with a simple recipe can be randomly subsampled with good
results.

Overall, our results show that there is promise is the idea of generating PTCs for
microblog search using hashtags. In the abscence of training data, a PTC is a reliable
alternative for optimizing the ten retrieval algorithms we employed as features, and for
optimizing at least one strong L2R algorithm. Thus, PTCs can be a cost-effective tool
for optimizing retrieval algorithms in the microblog search domain.

In this dissertation, we studied several vertical search applications. For each, we have
seen how background knowledge may be leveraged for the adaptation of algorithms and
evaluation methodology. Sometimes, this can be as simple as recognizing that different
types of information needs or different types of information objects should be handled
differently, e.g., refraining from clustering social media profiles in people search result
disambiguation. Sometimes, high quality, detailed domain knowledge is available, e.g.,
keyword annotations of scientific articles. In other applications there are more noisy
signals, such as the use of hashtags in microblog environments. No matter the level of
detail, or the level of noise in background knowledge, we have seen how such knowledge
may be used to improve our understanding of information needs, the organization of
search results, the evaluation and analysis of retrieval algorithms, and the generation of
ground truth.

8.2 Future research directions

We walk through our domain-specific search applications once more, pointing out cross-
connections and directions for future work. We sometimes abstract away somewhat from
the exact task considered in each of our research chapters (Chapters 3–7), and add sug-
gestions for future work to those already offered in the conclusion sections of those chap-
ters. Recurring themes are the importance of error analysis, and opportunities for auto-
matic generation of ground truth for optimization and evaluation.

In [231], and in our people search query classification study (Chapter 3), we have
observed large classes of queries. It would be interesting to corroborate the proposed
classification scheme with a user questionnaire, much like in [38], where people would
be asked if their query fits in any of the proposed classes or if they would rather describe
their information need in some other way. If the classification has merit in the eye of the
users, then it makes sense to consider adapting the search engine response to the type of
query, opening up many opportunities for further research. One can think of changes in
the SERP, or changes in the ranking algorithm. Learning to rank algorithms performing

152



8.2. Future research directions

query specialization are already being developed, e.g., [34]. In our automatic classifi-
cation experiment, we saw that regular high-profile queries were difficult. It would be
interesting to drill down further and see if misclassified instances share some character-
istics, e.g., perhaps they are well-known people who nonetheless did not receive much
searcher attention. And, are these misclassifications harder for human annotators, too,
i.e., is annotator disagreement higher?

The high ambiguity of person name queries motivated research into clustering search
results, with each cluster containing document that refer to a particular individual. We
have seen in our result disambiguation study (Chapter 4) that different types of search re-
sults (social media profiles vs. other documents) should be treated quite differently. This
finding is most likely applicable to other domains and tasks as well. Systematic error
analysis is one way to detect such opportunities: plot how documents contribute to the
performance scores, contrasting documents with different characteristics. There are still
many opportunities for improvements in the clustering task. One could take into account
the kind of query, i.e., the predictions of the classifiers from Chapter 3. More in gen-
eral, one can devise query features based on which regression models could be trained
to predict the optimal stopping criterion in an unsupervised HAC algorithm. Another
interesting direction is to look at supervised learning for the task of predicting whether
or not two documents refer to the same individual. Training data for such algorithms can
also be used in a semi-supervised clustering approach such as [26, 126]. An interesting
direction for future work is to generate this kind of pairwise training data automatically.
This could be done using sparse features (i.e., features that are only available for a small
fraction of document pairs) with which document pairs can be clustered with high preci-
sion. Indeed, features such as face recognition, which were too sparse to improve search
result clustering performance in Chapter 4, may be useful in such a setup.

In Chapter 5 we focused on evaluation of expert profiling algorithms, and we also fo-
cus on evaluation in pointing out directions for future work. One desirable extension is to
be able to evaluate algorithms that perform temporal expertise profiling, e.g., [81, 191].
Automatic approaches for this and other expertise retrieval tasks are being used, e.g.,
keywords on scientific articles as expertise areas of the authors [81], and workshop or-
ganizers and program committe members as experts on the topic of the workshop [36].
Hashemi et al. [96] use top search results of a commercial expert search engine as a
source of ground truth for expert finding. To better understand evaluation with such
approaches, re-use of the proposed test-beds should be encouraged. In addition, related
tasks deserve more attention, e.g., matching profiles of researchers to job openings, where
subsequent job offers may be used as ground truth. Coming back to our expert profil-
ing study, in the error analysis of which experts are difficult to profile, we see that we
are much better able to generate profiles for experts if they have a natural language de-
scription of their research interests. This is another example of how different kinds of
documents affect performance differently (cf. the distinction between social and non-
social documents in Chapter 4). The way we performed the error analysis, considering
aspects of documents one after the other and correlating them with performance metrics,
is useful and should be attempted more often in information retrieval, e.g., in workshops
like the Reliable Information Access worskshop [95].

In Chapters 6 and 7 we created ground truth for vertical search applications, using
specific annotations available in the underlying document collections (keywords in sci-

153



8. Conclusions

entific articles, and hashtags in tweets). In the abscence of human labeled ground truth,
such data can be used for evaluation purposes; the expertise retrieval studies discussed
above are other examples. It remains an interesting question to what extent observa-
tions about system performance obtained using these automated techniques would be
acknowledged by end users of search applications. In Chapter 6, we compared system
rankings obtained on our PTCs to system rankings obtained on hand-crafted collections.
Indirectly, this kind of research can give insights about how automatic evaluation may
predict user preferences, because user studies to validate evaluation outcomes obtained
using hand-crafted test collections have been performed in the literature [2, 208, 223]. It
would be interesting to also perform user studies to directly validate some of the auto-
matic evaluation approaches we discussed in Chapter 2.

In our PTC work, however, most of our attention was devoted to optimizing L2R
algorithms. Here, there are several opportunities for further work. While we have shown
that L2R models optimized on a PTC obtain performance on par with models trained
on human labeled data, there is potential to improve L2R performance by using both
hand-crafted test collections and PTCs in the training process. In fact, the Hashtags-TI
collection from Chapter 7 anticipates this combination: it needs hand-crafted training
data anyway, to select interesting tweets. Seen in this light, PTC generation is an attempt
at semi-supervised learning (see e.g., [213] for a recent overview), combining evidence
from labeled data with evidence from (possibly large) amounts of unlabeled data. In
domain adaptation terminology, we can view PTCs as large reservoirs of training data
from a “source domain,” and hand-crafted collections as additional sparse training data
from the “target domain.” An example method, also known as ensemble learning, is to
use the predictions of one or more PTC-trained L2R models as features for a L2R model
that is subsequently trained on human labeled data. As to the choice of L2R model
used in training, more complex models than the linear models we employed deserve
attention, e.g., gradient boosted regression trees [85], or random forests [37]. This is
because complex models in particular need large amounts of training data, as they are
more prone to overfitting on small amounts of it. Future work in this direction should put
some emphasis on efficiency also: training more complex models on larger amounts of
training data should be demonstrated to be efficient and practical for operational search
engines, and running a learned model of course needs to produce a ranking in a matter of
microseconds.

In our automatic ground truth generation efforts, we have focused on using informa-
tion encoded in document collections, e.g., keywords in scientific articles and hashtags
in microblog posts. Another popular evaluation approach is to observe interaction of
users with search engine result pages to perform evaluation, e.g., to perform A/B testing
or to estimate document relevance from clickthrough rates. It would be interesting to
combine content based approaches such as those proposed in this dissertation with inter-
action data approaches. The two approaches could complement each other, since their
strengths and weaknesses do not overlap much. Interaction data reflects user preferences,
which is a strength, but a lot of it is needed to achieve reliable estimates, because it is
noisy. Information in the data collection reflects what content creators find important,
and so it complements the user perspective. It could be given more importance in those
areas where there is less interaction, e.g., for long tail queries, or for applications with a
relatively small user base.

154



Appendices

155





A
Description of the TU expert collection

The TU expert collection consists of a corpus of documents, a thesaurus of expertise
areas, and two sets of relevance assessments. We devote a section to each. Before we
start, we briefly introduce the original UvT collection and highlight the main differences
to it.

A.1 Differences with the original UvT expert collection

The original UvT expert collection was harvested from the Webwijs (“Webwise”) system
developed at Tilburg University (TU) in the Netherlands. As explained in the introduc-
tion of Chapter 5, Webwijs is a publicly accessible database of UvT employees who are
involved in research or teaching. The UvT expert collection consists of four types of
document: research descriptions, course descriptions, publications, and academic home-
pages. The majority of the data set was crawled in October 2006 [35].

The TU expert collection was compiled in December 2008. The main reason necessi-
tating the update is the fact that the data contained in the original version of the collection
has become outdated; employees have left the organization, others have possibly changed
their areas of interest, and new documents have been generated. One additional change
we implement is to exclude academic homepages from the data set, as their usefulness
has been found to be limited [18, 20]. Instead, we add another document type: student
theses; these are Bachelor and Master theses of students supervised by researchers that
are connected to Tilburg University.

A.2 Documents in the TU expert collection

Table A.1 lists the types of documents available in the TU expert collection along with
some descriptive statistics. It is important to note about this new collection that XML
files containing research descriptions include the previously selected expertise areas in
the subject tags; this is ground truth. We did not index the contents of these tags, so
this information is not exploited in our experiments. Researchers using the TU expert
collection should take care to also disregard the contents of these subject tags if they
want to benchmark expert profiling systems.

157



A. Description of the TU expert collection

Table A.1: Descriptive statistics of the TU expert collection. We list the number of
documents of each type, the number of different people associated with documents of
that type, and the average number of people associated with a single document.

Document type Documents People People per document

Research descriptions (UK) 495 495 1.00
Research descriptions (NL) 524 524 1.00
Course descriptions 543 543 1.00
Publications 25,853 668 1.12
Student theses 5,152 520 1.17

Table A.2: Binary relations between areas x and y in the thesaurus

Abbreviation Description Count

BT Area x is a broader term than area y. 1075
NT The inverse of BT. 1076
USE Area x is the preferred term for area y. 247
UF The inverse of USE. 247
RT Area x is related to area y. 1510

A.3 Expertise areas in the TU expert collection

There is a total of 2507 expertise areas. Each area is identified uniquely by a numeric
identifier and has a Dutch textual label; most areas have an English translation as well.
Expertise areas are organized in a thesaurus; see the next section.

A.4 A thesaurus of expertise areas

The thesaurus of expertise areas has broader-term/narrower-term relations between areas
and related-term relations. In addition, it has preferred-term relations, where one area is
the preferred term for another area. Of the total 2507 knowledge areas, 2266 are actually
“approved.”1 When we discard areas that are not approved, there are 4155 relations in
the thesaurus; Table A.2 lists the number of relations per type.

Using only the “broader term” relation we can build a directed graph, with an edge
pointing from area x to area y if x is a broader term than y. Apart from a few erroneous
self referencing areas this graph is acyclic. Ignoring the direction of edges for a mo-
ment, we can find the connected components in this graph. There are no fewer than 635
connected components. One is very big with 718 edges, the second biggest has only 20
edges.

1New expertise areas can be suggested for inclusion in the thesaurus by TU employees. These suggested
areas need to be reviewed by TU university librarians and properly integrated into the thesaurus before they are
fully approved.

158



A.5. Two sets of relevance assessments

Table A.3: Experts, total number of distinct relevant areas, and average number of areas
per profile in both sets of ground truth.

Experts Areas Average areas per profile
Self-selected profiles 761 1662 6.4
Judged system-generated profiles 239 1266 8.8

A.5 Two sets of relevance assessments

The TU expert collection comes with two main sets of relevance assessments, in the
form of two files in standard trec eval format. In both files, experts and areas are
represented unique numeric identifiers. The first set of relevance assessments consists
of profiles containing self-selected areas that experts selected from an alphabetic list
of expertise areas. The second consists of profiles containing judged system-generated
areas. Basic statistics about the number of experts and areas in both sets of ground truth
are listed in Table A.3. See also Figure 5.2 for the distribution of knowledge areas.

In addition to the two main sets of relevance assessments, we also release the three
intermediate sets of relevance assessments used in the analysis in Section 5.5, so that
researchers can repeat our analysis with their systems.

159





Bibliography

[1] M. Agosti, R. Berendsen, T. Bogers, M. Braschler, P. Buitelaar, K. Choukri, G. Maria Di Nunzio,
N. Ferro, P. Forner, A. Hanbury, et al. Promise retreat report prospects and opportunities for information
access evaluation. In ACM SIGIR Forum, volume 46, pages 60–84, 2012.

[2] J. Allan, B. Carterette, and J. Lewis. When will information retrieval be good enough? In SIGIR ’05,
pages 433–440, 2005.

[3] G. Amati. Frequentist and bayesian approach to information retrieval. In Advances in Information
Retrieval, pages 13–24. 2006.

[4] G. Amati and C. Carpineto. Fub at trec-10 web track: A probabilistic framework for topic relevance
term weighting. In TREC ’10, 2010.

[5] G. Amati and C. Van Rijsbergen. Probabilistic models of information retrieval based on measuring the
divergence from randomness. ACM Transactions on Information Systems, 20(4):357–389, 2002.

[6] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo. A comparison of extrinsic clustering evaluation metrics
based on formal constraints. Information Retrieval, 12:461–486, 2009.

[7] E. Amigó, J. Gonzalo, J. Artiles, and M. F. Verdejo. Combining evaluation metrics via the unanimous
improvement ratio and its application to clustering tasks. Journal of Articial Intelligence Research, 42:
689–718, 2011.

[8] E. Amitay, D. Carmel, R. Lempel, and A. Soffer. Scaling ir-system evaluation using term relevance sets.
In SIGIR ’04, pages 10–17, 2004.

[9] J. Arguello, F. Diaz, J. Callan, and B. Carterette. A methodology for evaluating aggregated search
results. In Advances in Information Retrieval, pages 141–152. 2011.

[10] J. Artiles. Web People Search. PhD thesis, UNED University, 2009.
[11] J. Artiles, J. Gonzalo, and S. Sekine. The semeval-2007 weps evaluation: Establishing a benchmark

for the web people search task. In 4th International Workshop on Semantic Evaluations, pages 64–69,
2007.

[12] J. Artiles, J. Gonzalo, and S. Sekine. Weps 2 evaluation campaign: overview of the web people search
clustering task. In 2nd Web People Search Evaluation Workshop (WePS ’09), at WWW ’09, 2009.

[13] J. Artiles, A. Borthwick, J. Gonzalo, S. Sekine, and E. Amigó. WePS-3 Evaluation Campaign: Overview
of the Web People Search Clustering and Attribute Extraction Tasks. In CLEF 2010 Working Notes,
2010.

[14] N. Asadi, D. Metzler, T. Elsayed, and J. Lin. Pseudo test collections for learning web search ranking
functions. In SIGIR ’11, pages 1073–1082. ACM, 2011.

[15] L. Azzopardi, M. de Rijke, and K. Balog. Building simulated queries for known-item topics: an analysis
using six european languages. In SIGIR ’07, pages 455–462. ACM, 2007.

[16] P. Bailey, N. Craswell, I. Soboroff, and A. de Vries. The CSIRO enterprise search test collection. ACM
SIGIR Forum, 41, 2007.

[17] P. Bailey, N. Craswell, A. P. de Vries, and I. Soboroff. Overview of the TREC 2007 Enterprise Track.
In TREC ’07, 2008.

[18] K. Balog. People Search in the Enterprise. PhD thesis, University of Amsterdam, June 2008.
[19] K. Balog and M. de Rijke. Determining expert profiles (with an application to expert finding). In

IJCAI’07, pages 2657–2662, 2007.
[20] K. Balog, T. Bogers, L. Azzopardi, M. de Rijke, and A. van den Bosch. Broad expertise retrieval in

sparse data environments. In SIGIR ’07, pages 551–558, 2007.
[21] K. Balog, L. Azzopardi, and M. de Rijke. A language modeling framework for expert finding. Informa-

tion Processing and Management, 45(1):1–19, January 2009.
[22] K. Balog, L. Azzopardi, and M. de Rijke. Resolving person names in web people search. In Weaving

Services and People on the World Wide Web, pages 301–323. Springer Berlin Heidelberg, 2009.
[23] K. Balog, I. Soboroff, P. Thomas, N. Craswell, A. P. de Vries, and P. Bailey. Overview of the TREC

2008 Enterprise Track. In TREC ’08, 2009.
[24] K. Balog, Y. Fang, M. de Rijke, P. Serdyukov, L. Si, et al. Expertise retrieval. Foundations and Trends

in Information Retrieval, 6(2-3):127–256, 2012.
[25] A. Bandyopadhyay. Query expansion for microblog retrieval: 2013. In TREC ’13, 2013.
[26] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In

KDD ’04, pages 59–68, 2004.
[27] S. M. Beitzel, E. C. Jensen, A. Chowdhury, and D. Grossman. Using titles and category names from

editor-driven taxonomies for automatic evaluation. In CIKM ’03, pages 17–23, 2003.
[28] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder. Using manually-built web

161



Bibliography

directories for automatic evaluation of known-item retrieval. In SIGIR ’03, pages 373–374, 2003.
[29] R. Berendsen, M. De Rijke, K. Balog, T. Bogers, and A. Van den Bosch. On the assessment of expertise

profiles. Journal of the American Society of Information Science and Technology, 64(10):2024–2044.
[30] R. Berendsen, B. Kovachev, E. Meij, M. De Rijke, and W. Weerkamp. Classifying queries submitted to

a vertical search engine. In WebSci ’11, pages 4:1–4:6, 2011.
[31] R. Berendsen, B. Kovachev, E.-P. Nastou, M. De Rijke, and W. Weerkamp. Result disambiguation in

web people search. In ECIR ’12, pages 146–157, 2012.
[32] R. Berendsen, E. Tsagkias, M. De Rijke, and E. Meij. Generating pseudo test collections for learning to

rank scientific articles. In CLEF ’12, pages 42–53, 2012.
[33] R. Berendsen, M. Tsagkias, W. Weerkamp, and M. De Rijke. Pseudo test collections for training and

tuning microblog rankers. In SIGIR ’13, pages 53–62, 2013.
[34] J. Bian, X. Li, F. Li, Z. Zheng, and H. Zha. Ranking specialization for web search: a divide-and-conquer

approach by using topical ranksvm. In WWW ’10, pages 131–140, 2010.
[35] T. Bogers and K. Balog. The UvT expert collection, 2006. URL: http://ilk.uvt.nl/uvt-

expert-collection/.
[36] G. Bordea, T. Bogers, and P. Buitelaar. Benchmarking domain-specific expert search using workshop

program committees. In Workshop on computational scientometrics: theory & applications, pages 19–
24, 2013.

[37] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[38] A. Broder. A taxonomy of web search. ACM SIGIR Forum, 36(2):3–10, 2002.
[39] M. Bron, E. Meij, M. Peetz, M. Tsagkias, and M. de Rijke. Team COMMIT at TREC 2011. In TREC

’11, 2011.
[40] M. Bron, J. Van Gorp, F. Nack, M. de Rijke, A. Vishneuski, and S. de Leeuw. A subjunctive exploratory

search interface to support media studies researchers. In SIGIR ’12, pages 425–434, 2012.
[41] C. Buckley and E. Voorhees. Retrieval evaluation with incomplete information. In SIGIR ’04, pages

25–32, 2004.
[42] S. Büttcher, C. L. A. Clarke, P. C. K. Yeung, and I. Soboroff. Reliable information retrieval evaluation

with incomplete and biased judgements. In SIGIR ’07, pages 63–70, 2007.
[43] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A survey of web clustering engines. ACM Com-

puting Surveys, 41(3):17:1–17:38, 2009.
[44] S. Carter, W. Weerkamp, and E. Tsagkias. Microblog language identification: Overcoming the limita-

tions of short, unedited and idiomatic text. Language Resources and Evaluation Journal, 2012.
[45] B. Carterette, J. Allan, and R. Sitaraman. Minimal test collections for retrieval evaluation. In SIGIR ’06,

pages 268–275, 2006.
[46] B. Carterette, V. Pavlu, E. Kanoulas, J. Aslam, and J. Allan. Evaluation over thousands of queries. In

SIGIR ’08, pages 651–658, 2008.
[47] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Measuring user influence in twitter: The

million follower fallacy. In ICWSM ’10, volume 10, page 30, 2010.
[48] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In

CIKM ’09, pages 621–630, 2009.
[49] O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Weinberger, Y. Zhang, and B. Tseng. Boosted multi-task

learning. Machine learning, 85(1-2):149–173, 2011.
[50] L. Chen, L. Chun, L. Ziyu, and Z. Quan. Hybrid pseudo-relevance feedback for microblog retrieval.

Journal of Information Science, 39(6):773–788, 2013.
[51] Y. Chen, S. Lee, and C. Huang. Polyuhk: A robust information extraction system for web personal

names. In 2nd Web People Search Evaluation Workshop (WePS ’09), at WWW ’09, 2009.
[52] J. Choi and W. B. Croft. Temporal models for microblogs. In CIKM ’12, pages 2491–2494, 2012.
[53] A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan & Claypool Publishers,

August 2015.
[54] C. Clarke, M. Kolla, G. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty

and diversity in information retrieval evaluation. In SIGIR ’08, pages 659–666, 2008.
[55] S. Clinchant and E. Gaussier. Bridging language modeling and divergence from randomness models: A

log-logistic model for ir. Advances in Information Retrieval Theory, pages 54–65, 2009.
[56] P. Cohen. Empirical Methods for Artificial Intelligence, volume 55. MIT press Cambridge, MA, 1995.
[57] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
[58] D. Crabtree, X. Gao, and P. Andreae. Improving web clustering by cluster selection. In WI’05, pages

172–178, 2005.
[59] R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a

162

http://ilk.uvt.nl/uvt-expert-collection/
http://ilk.uvt.nl/uvt-expert-collection/


Bibliography

social system. Proceedings of the National Academy of Sciences, 105(41):15649–15653, 2008.
[60] N. Craswell, A. de Vries, and I. Soboroff. Overview of the TREC-2005 Enterprise Track. In TREC ’05,

2006.
[61] W. B. Croft, D. Metzler, and T. Strohman. Search engines: Information retrieval in practice. Addison

Wesley, 2010.
[62] S. Cronen-Townsend and W. Croft. Quantifying query ambiguity. In HLT 2002, pages 104–109, 2002.
[63] S. Cronen-Townsend and W. B. Croft. Quantifying query ambiguity. In HLT ’02, pages 104–109, 2002.
[64] R. Cross, A. Parker, and S. Borgatti. A bird’s-eye view: Using social network analysis to improve

knowledge creation and sharing. IBM Institute for Business Value, pages 1669–1600, 2002.
[65] S. Cucerzan. Large-scale named entity disambiguation based on wikipedia data. In EMNLP-CoNLL

’07, volume 7, pages 708–716, 2007.
[66] V. Dang and B. W. Croft. Query reformulation using anchor text. In WSDM ’10, pages 41–50, 2010.
[67] S. Daskalaki, I. Kopanas, and N. Avouris. Evaluation of classifiers for an uneven class distribution

problem. Applied artificial intelligence, 20(5):381–417, 2006.
[68] M. De Rijke, K. Balog, T. Bogers, and A. van den Bosch. On the evaluation of entity profiles. In CLEF

’10, pages 94–99, 2010.
[69] A. D. Delgado, R. Martı́nez, V. Vı́ctor Fresno, and S. Montalvo. A data driven approach for person

name disambiguation in web search results. In COLING ’14, pages 301–310, 2014.
[70] G. M. Di Nunzio. Appendix D, Results of the Domain Specific Track. In CLEF ’08 Working Notes,

2008.
[71] F. Diaz. Performance prediction using spatial autocorrelation. In SIGIR ’07, pages 583–590, 2007.
[72] F. Diaz and D. Metzler. Improving the estimation of relevance models using large external corpora. In

SIGIR ’06, pages 154–161, 2006.
[73] T. Dunning. Accurate methods for the statistics of surprise and coincidence. Computational Linguistics,

19(1):61–74, Mar. 1993.
[74] D. Easley and J. Kleinberg. Networks, crowds, and markets. Cambridge University Press, 2010.
[75] M. Efron. Hashtag retrieval in a microblogging environment. In SIGIR ’10, pages 787–788, 2010.
[76] M. Efron. Information search and retrieval in microblogs. Journal of the American Society of Informa-

tion Science and Technology, 62:996–1008, June 2011.
[77] M. Efron and G. Golovchinsky. Estimation methods for ranking recent information. In SIGIR ’11, pages

495–504, 2011.
[78] A. S. El Din and W. Magdy. Web-based pseudo relevance feedback for microblog retrieval. In TREC

’12, 2012.
[79] T. El-Ganainy, W. Magdy, and W. G. Z. Wei. Qcri at trec 2013 microblog track. In TREC ’13, 2013.
[80] T. El-Ganainy, W. Magdy, and A. Rafea. Hyperlink-extended pseudo relevance feedback for improved

microblog retrieval. In Proceedings of the First International Workshop on Social Media Retrieval and
Analysis (SoMeRa ’14), pages 7–12, 2014.

[81] Y. Fang and A. Godavarthy. Modeling the dynamics of personal expertise. In SIGIR ’14, pages 1107–
1110, 2014.

[82] Y. Fang, L. Si, and A. P. Mathur. Discriminative models of integrating document evidence and
document-candidate associations for expert search. In SIGIR ’10, pages 683–690, 2010.

[83] C. Fautsch, L. Dolamic, S. Abdou, and J. Savoy. Domain-specific ir for german, english and russian
languages. In CLEF ’07, pages 196–199. 2008.

[84] P. Ferragina and A. Gulli. A personalized search engine based on web-snippet hierarchical clustering.
Software: Practice and Experience, 38(2):189–225, 2008.

[85] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189–1232, 2001.

[86] M. Gäde, J. Stiller, R. Berendsen, and V. Petras. Interface language, user language and success rates in
the european library. In CLEF ’11 Working Notes.

[87] F. Geraci, M. Pellegrini, P. Pisati, and F. Sebastiani. A scalable algorithm for high-quality clustering of
web snippets. In SAC’06, pages 1058–1062, 2006.

[88] E. Graf and L. Azzopardi. A methodology for building a patent test collection for prior art search. In
2nd international workshop on evaluating information access (EVIA), pages 60–71, 2008.

[89] T. Gruetze, G. Kasneci, Z. Zuo, and F. Naumann. Bootstrapping wikipedia to answer ambiguous person
name queries. In ICDEW ’14, pages 56–61, 2014.

[90] M. Hagen, B. Stein, and T. Rüb. Query session detection as a cascade. In CIKM ’11, pages 147–152,
2011.

[91] M. Hagen, J. Gomoll, A. Beyer, and B. Stein. From search session detection to search mission detection.

163



Bibliography

In OAIR ’13, pages 85–92, 2013.
[92] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The weka data mining

software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.
[93] X. Han and J. Zhao. Named entity disambiguation by leveraging wikipedia semantic knowledge. In

CIKM ’09, pages 215–224, 2009.
[94] D. Harman. Overview of the second text retrieval conference (TREC-2). Information Processing &

Management, 31(3):271–289, 1995.
[95] D. Harman and C. Buckley. Overview of the reliable information access workshop. Information Re-

trieval, 12:615–641, 2009.
[96] S. H. Hashemi, M. Neshati, and H. Beigy. Expertise retrieval in bibliographic network: a topic domi-

nance learning approach. In CIKM ’13, pages 1117–1126, 2013.
[97] C. Hauff, D. Hiemstra, L. Azzopardi, and F. De Jong. A case for automatic system evaluation. Advances

in Information Retrieval, pages 153–165, 2010.
[98] M. Hertzum and A. M. Pejtersen. The information-seeking practices of engineers: Searching for docu-

ments as well as for people. Information Processing & Management, 36(5):761–778, 2006.
[99] K. Hofmann. Fast and reliable online learning to rank for information retrieval. PhD thesis, University

of Amsterdam, 2013.
[100] K. Hofmann, K. Balog, T. Bogers, and M. de Rijke. Contextual factors for finding similar experts.

Journal of the American Society for Information Science and Technology, 61(5):994–1014, 2010.
[101] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring preferences from

clicks. In CIKM ’11, 2011.
[102] B. Huurnink, K. Hofmann, M. de Rijke, and M. Bron. Validating query simulators: An experiment

using commercial searches and purchases. In CLEF ’10, pages 40–51, 2010.
[103] B. Huurnink, L. Hollink, W. van den Heuvel, and M. de Rijke. Search Behavior of Media Professionals at

an Audiovisual Archive: A Transaction Log Analysis. Journal of the American Society for Information
Science and Technology, 61(6):1180–1197, June 2010.

[104] M. Ikeda, S. Ono, I. Sato, M. Yoshida, and H. Nakagawa. Person Name Disambiguation on the Web
by Two-Stage Clustering. In 2nd Web People Search Evaluation Workshop (WePS ’09), at WWW ’09,
2009.

[105] J. M. Jacobstein, R. M. Mersky, and D. J. Dunn. Fundamentals of legal research. Foundation Press,
1994.

[106] J. Janruang and W. Kreesuradej. A new web search result clustering based on true common phrase
label discovery. In International Conference on Computational Intelligence for Modelling, Control and
Automation (CIMCA), 2006.

[107] B. J. Jansen, D. L. Booth, and A. Spink. Determining the informational, navigational, and transactional
intent of web queries. Information Processing and Management, 44(3):1251–1266, 2008.

[108] N. Jardine and C. J. van Rijsbergen. The use of hierarchic clustering in information retrieval. Information
storage and retrieval, 7(5):217–240, 1971.

[109] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Transactions on
Information Systems, 20(4):422–446, 2002.

[110] M. E. Jens Kürsten, Thomas Wilhelm. The xtrieval framework at clef 2008: Domain-specific track. In
CLEF ’08 Working Notes, 2008.

[111] T. Joachims. Training linear svms in linear time. In KDD ’06, pages 217–226, 2006.
[112] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data

as implicit feedback. In SIGIR ’05, pages 154–161, 2005.
[113] R. Jones and F. Diaz. Temporal profiles of queries. ACM Transactions on Information Systems, 25(3):

14, 2007.
[114] S. JONES. Report on the need for and provision of an” ideal” information retrieval test collection. 1975.
[115] P. Jurczyk and E. Agichtein. Hits on question answer portals: exploration of link analysis for author

ranking. In SIGIR ’07, pages 845–846, 2007.
[116] M. Keikha, S. Gerani, and F. Crestani. Time-based relevance models. In SIGIR ’11, pages 1087–1088,

2011.
[117] M. Kellar, C. R. Watters, and M. A. Shepherd. A field study characterizing web-based information-

seeking tasks. Journal of the American Society for Information Science and Technology, 58(7):999–
1018, 2007.

[118] R. Kelly. Twitter study reveals interesting results about usage. PearAnalytics. August 12th, 2009.
[119] M. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.
[120] J. Kim and W. B. Croft. Building pseudo-desktop collections. In SIGIR ’09 Workshop on the Future of

164



Bibliography

IR Evaluation, pages 39–40, 2009.
[121] J. Kim and W. B. Croft. Retrieval experiments using pseudo-desktop collections. In CIKM ’09, pages

1297–1306, 2009.
[122] M. Kluck. The girt data in the evaluation of clir systems–from 1997 until 2003. In CLEF ’03 Working

Notes, pages 376–390, 2004.
[123] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web:

survey and practical guide. Data mining and knowledge discovery, 18(1):140–181, 2009.
[124] M. Koolen, J. Kamps, and G. Kazai. Social book search: Comparing topical relevance judgements and

book suggestions for evaluation. In CIKM ’12, pages 185–194, 2012.
[125] A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem. Aggregated search: a new information retrieval

paradigm. ACM Computing Surveys (CSUR), 46(3):41, 2014.
[126] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a kernel approach.

Machine learning, 74(1):1–22, 2009.
[127] A. Kulkarni, J. Teevan, K. Svore, and S. Dumais. Understanding temporal query dynamics. In WSDM

’11, 2011.
[128] N. Kumar and B. Carterette. Time based feedback and query expansion for twitter search. In ECIR ’13,

pages 734–737, 2013.
[129] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW

’10, pages 591–600, 2010.
[130] V. Lavrenko and W. Croft. Relevance based language models. In SIGIR ’01, pages 120–127, 2001.
[131] J. Lazar, J. Feng, and H. Hochheiser. Research Methods in Human-Computer Interaction. John Wiley

& Sons Inc, 2010.
[132] G. G. Lee, J. Seo, S. Lee, H. Jung, B. hyun Cho, C. Lee, B.-K. Kwak, J. Cha, D. Kim, J. An, H. Kim,

and K. Kim. SiteQ: Engineering high performance QA system using lexico-semantic pattern matching
and shallow NLP. In TREC ’01, pages 442–451, 2001.

[133] J. H. Lee, A. Renear, and L. C. Smith. Known-item search: Variations on a concept. In ASIS&T ’06,
volume 43, pages 1–17, 2006.

[134] Y. Li, Z. Zheng, and H. K. Dai. Kdd cup-2005 report: Facing a great challenge. ACM SIGKDD
Explorations Newsletter, 7(2):91–99, 2005.

[135] F. Liang, R. Qiang, and J. Yang. Exploiting real-time information retrieval in the microblogosphere. In
JCDL ’12, pages 267–276, 2012.

[136] S. Liang, Z. Ren, W. Weerkamp, E. Meij, and M. de Rijke. Time-aware rank aggregation for microblog
search. In CIKM ’14, pages 989–998, 2014.

[137] J. Lin and M. Efron. Overview of the trec-2013 microblog track. In TREC ’13, 2013.
[138] T.-Y. Liu. Learning to Rank for Information Retrieval. Now Publishers Inc., 2009.
[139] C. Lundquist, D. Grossman, and O. Frieder. Improving relevance feedback in the vector space model.

In CIKM ’97, pages 16–23, 1997.
[140] M. Lupu and A. Hanbury. Patent retrieval. Foundations and Trends in Information Retrieval, 7(1):1–97,

2013.
[141] C. Lv, F. Fan, R. Qiang, Y. Fei, and J. Yang. Pkuicst at trec 2014 microblog track. In TREC ’14, 2014.
[142] C. Macdonald and I. Ounis. Voting techniques for expert search. Knowledge and information systems,

16(3):259–280, 2008.
[143] C. Macdonald, R. Santos, and I. Ounis. The whens and hows of learning to rank for web search.

Information Retrieval, pages 1–45, 2012.
[144] M. Madden and A. Smith. Reputation management and social media: How people monitor their identity

and search for others online. Technical report, PewResearchCenter, 2010.
[145] C. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Cambridge University

Press, 2008.
[146] K. Massoudi, E. Tsagkias, M. de Rijke, and W. Weerkamp. Incorporating query expansion and quality

indicators in searching microblog posts. In ECIR ’11, pages 362–367, 2011.
[147] R. McCreadie and C. Macdonald. Relevance in microblogs: Enhancing tweet retrieval using hyperlinked

documents. In OAIR ’13, pages 189–196, 2013.
[148] G. Mecca, S. Raunich, and A. Pappalardo. A new algorithm for clustering search results. Data &

Knowledge Engineering, 62(3):504–522, 2007.
[149] E. Meij and M. de Rijke. The University of Amsterdam at the CLEF 2008 Domain Specific Track -

parsimonious relevance and concept models. In CLEF ’08 Working Notes, 2008.
[150] E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to microblog posts. In WSDM ’12, 2012.
[151] D. Metzler. A Feature-Centric View of Information Retrieval. Springer, 2011.

165



Bibliography

[152] D. Metzler and W. B. Croft. Combining the language model and inference network approaches to
retrieval. Information Processing & Management, 40:735–750, September 2004.

[153] G. Mishne and M. de Rijke. A study of blog search. In ECIR ’06, pages 289–301, 2006.
[154] T. Miyanishi, K. Seki, and K. Uehara. Trec 2012 microblog track experiments at kobe university. In

TREC ’12, 2012.
[155] T. Miyanishi, K. Seki, and K. Uehara. Combining recency and topic-dependent temporal variation for

microblog search. In ECIR ’13, volume 7814, pages 331–343, 2013.
[156] A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effectiveness. ACM Trans-

actions on Information Systems, 27(1):2, 2008.
[157] A. Mohan, Z. Chen, and K. Q. Weinberger. Web-search ranking with initialized gradient boosted regres-

sion trees. Journal of Machine Learning Research, Workshop and Conference Proceedings, 14:77–89,
2011.

[158] C. Monz and W. Weerkamp. A comparison of retrieval-based hierarchical clustering approaches to
person name disambiguation. In SIGIR’09, pages 650–651, 2009.

[159] V. Murdock and M. Lalmas. Workshop on aggregated search. In SIGIR Forum, volume 42, pages 80–83,
2008.

[160] R. B. Nattiya Kanhabua and K. Nrv*g. Temporal information retrieval. Foundations and Trends in
Information Retrieval, 9(2):91–208, 2015.

[161] N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi. Searching microblogs: coping with sparsity and
document quality. In CIKM ’11, pages 183–188, 2011.

[162] R. Nuray and F. Can. Automatic ranking of information retrieval systems using data fusion. Information
Processing & Management, 42(3):595–614, 2006.

[163] P. Ogilvie and J. Callan. Combining document representations for known-item search. In SIGIR ’03,
pages 143–150, 2003.

[164] M. Osborn, T. Strzalkowski, and M. Marinescu. Evaluating document retrieval in patent database: a
preliminary report. In CIKM ’97, pages 216–221, 1997.

[165] I. Ounis. Terrier: A high performance and scalable information retrieval platform. In OSIR workshop at
SIGIR ’06, 2006.

[166] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of the TREC 2011 Microblog track. In TREC
’11, 2011.

[167] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab, 1999.

[168] P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic patterns for automatically harvesting
semantic relations. In ACL’06, pages 113–120, 2006.

[169] M.-H. Peetz and M. De Rijke. Cognitive temporal document priors. In ECIR ’13, pages 318–330, 2013.
[170] M.-H. Peetz, J. Van Gorp, M. De Rijke, M. Bron, R. Berendsen, and W. van Dolen. Social media

analysis at work: Outcomes from a multi-method observational study. Submitted.
[171] J. Peng, C. Macdonald, B. He, V. Plachouras, and I. Ounis. Incorporating term dependency in the dfr

framework. In SIGIR ’07, pages 843–844, 2007.
[172] V. Petras. How one word can make all the difference - using subject metadata for automatic query

expansion and reformulation. In CLEF ’05 Working Notes, 2005.
[173] V. Petras. The domain-specific track at CLEF 2008. In CLEF ’08 Working Notes, 2008.
[174] V. Petras, S. Baerisch, and M. Stempfhuber. The domain-specific track at clef 2007. In CLEF ’07

Working Notes, pages 160–173, 2008.
[175] A. Pilz and G. Paaß. From names to entities using thematic context distance. In CIKM ’11, pages

857–866, 2011.
[176] J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In SIGIR ’98,

pages 275–281, 1998.
[177] R. Qiang, F. Liang, and J. Yang. Exploiting ranking factorization machines for microblog retrieval. In

CIKM ’13, pages 1783–1788, 2013.
[178] J. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.
[179] F. Radlinski and N. Craswell. Comparing the sensitivity of information retrieval metrics. In SIGIR ’10,

pages 667–674, 2010.
[180] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM

’08, pages 43–52, 2008.
[181] S. Rajput, M. Ekstrand-Abueg, V. Pavlu, and J. Aslam. Constructing test collections by inferring docu-

ment relevance via extracted relevant information. In CIKM ’12, pages 145–154, 2012.
[182] P. Rayson and R. Garside. Comparing corpora using frequency profiling. In Workshop on Comparing

166



Bibliography

Corpora ’00, pages 1–6, 2000.
[183] S. Robertson and K. Jones. Simple, proven approaches to text retrieval. Technical report, Computer

Laboratory, University of Cambridge, 1997.
[184] S. Robertson and H. Zaragoza. On rank-based effectiveness measures and optimization. Information

Retrieval, 10(3):321–339, 2007.
[185] S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and beyond. Now Pub-

lishers Inc, 2009.
[186] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3. In TREC

’94, pages 109–109, 1995.
[187] S. E. Robertson. The probability ranking principle in ir. Journal of documentation, 33(4):294–304,

1977.
[188] J. J. Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval System - Experi-

ments in Automatic Document Processing. 1971.
[189] D. E. Rose and D. Levinson. Understanding user goals in web search. In WWW ’04, pages 13–19, 2004.
[190] J. Rowley. Product search in e-shopping: a review and research propositions. Journal of consumer

marketing, 17(1):20–35, 2000.
[191] J. Rybak, K. Balog, and K. Nørvåg. Temporal expertise profiling. In ECIR ’14, pages 540–546, 2014.
[192] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time event detection by

social sensors. In WWW ’10, pages 851–860, 2010.
[193] M. Sanderson. Test collection based evaluation of information retrieval systems. Foundations and

Trends in Information Retrieval, 4:247–375, 2010.
[194] M. Sanderson and I. Soboroff. Problems with Kendall’s tau. In SIGIR ’07, pages 839–840, 2007.
[195] M. Sanderson and J. Zobel. Information retrieval system evaluation: effort, sensitivity, and reliability.

In SIGIR ’05, pages 162–169, 2005.
[196] R. L. Santos, C. Macdonald, and I. Ounis. Search result diversification. Foundations and Trends in

Information Retrieval, 9(1):1–90, 2015.
[197] D. Sculley. Large scale learning to rank. In NIPS ’09 Workshop on Advances in Ranking, 2009.
[198] D. Sculley. Combined regression and ranking. In KDD ’10, pages 979–988, 2010.
[199] J. Seo and W. Croft. Thread-based expert finding. In SIGIR ’09: the Search in Social Media Workshop,

volume 9, 2009.
[200] P. Serdyukov, H. Rode, and D. Hiemstra. Modeling multi-step relevance propagation for expert finding.

In CIKM ’08, pages 1133–1142, 2008.
[201] A. Severyn, A. Moschitti, M. Tsagkias, R. Berendsen, and M. de Rijke. A syntax-aware re-ranker for

microblog retrieval. In SIGIR ’14, pages 1067–1070, 2014.
[202] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient solver

for svm. Mathematical Programming, 127(1):3–30, 2011.
[203] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, techniques, and solutions.

Knowledge and Data Engineering, 27(2):443–460, 2015.
[204] D. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. CRC Pr I Llc, 2011.
[205] N. R. Smalheiser and V. I. Torvik. Author name disambiguation. Annual review of information science

and technology, 43(1):1–43, 2009.
[206] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the

end of the early years. Pattern Analysis and Machine Intelligence, 22(12):1349–1380, 2000.
[207] E. Smirnova and K. Balog. A user-oriented model for expert finding. In ECIR ’11, pages 580–592,

2011.
[208] C. Smith and P. Kantor. User adaptation: good results from poor systems. In SIGIR ’08, pages 147–154,

2008.
[209] M. Smucker, J. Allan, and B. Carterette. A comparison of statistical significance tests for information

retrieval evaluation. In CIKM ’07, pages 623–632, 2007.
[210] I. Soboroff, C. Nicholas, and P. Cahan. Ranking retrieval systems without relevance judgments. In

SIGIR ’01, pages 66–73, 2001.
[211] I. Soboroff, A. de Vries, and N. Craswell. Overview of the TREC-2006 Enterprise Track. In TREC ’06,

2007.
[212] I. Soboroff, I. Ounis, J. Lin, and I. Soboroff. Overview of the trec-2012 microblog track. In TREC ’12,

2012.
[213] A. Søgaard. Semi-supervised learning and domain adaptation in natural language processing. Synthesis

Lectures on Human Language Technologies, 6(2):1–103, 2013.
[214] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for classification tasks.

167



Bibliography

Information Processing & Management, 45(4):427–437, 2009.
[215] K. Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal

of documentation, 28(1):11–21, 1972.
[216] Spärck Jones, K. Automatic indexing. Journal of Documentation, 30(4):393–432, 1974.
[217] A. Spink, B. Jansen, and J. Pedersen. Searching for people on web search engines. Journal of Docu-

mentation, 60(3):266–278, 2004.
[218] A. Spoerri. Using the structure of overlap between search results to rank retrieval systems without

relevance judgments. Information Processing & Management, 43(4):1059–1070, 2007.
[219] M. Szummer and E. Yilmaz. Semi-supervised learning to rank with preference regularization. In CIKM

’11, pages 269–278, 2011.
[220] J. Tague. Problems in the simulation of bibliographic retrieval systems. In SIGIR ’80, pages 236–255,

1980.
[221] J. Teevan, D. Ramage, and M. R. Morris. # twittersearch: a comparison of microblog search and web

search. In WSDM ’11, pages 35–44, 2011.
[222] D. Tunkelang. Faceted search. Synthesis lectures on information concepts, retrieval, and services, 1(1):

1–80, 2009.
[223] A. Turpin and F. Scholer. User performance versus precision measures for simple search tasks. In SIGIR

’06, pages 11–18, 2006.
[224] E. Voorhees. Variations in relevance judgments and the measurement of retrieval effectiveness. Infor-

mation Processing & Management, 36(5):697–716, 2000.
[225] E. Voorhees and C. Buckley. The effect of topic set size on retrieval experiment error. In SIGIR ’02,

pages 316–323, 2002.
[226] E. Voorhees and D. Harman. Overview of the fifth Text REtrieval Conference (TREC-5). In TREC ’96,

1996.
[227] E. Voorhees and D. Harman. Overview of the ninth Text REtrieval Conference (TREC-9). In TREC ’00,

2000.
[228] Y. Wang and J. Lin. The impact of future term statistics in real-time tweet search. In ECIR ’14, pages

567–572, 2014.
[229] W. Weerkamp and M. de Rijke. Credibility improves topical blog post retrieval. In ACL ’08: HLT,

pages 923–931, 2008.
[230] W. Weerkamp, K. Balog, and M. de Rijke. A generative blog post retrieval model that uses query

expansion based on external collections. In ACL-IJCNLP ’09, pages 1057–1065, 2009.
[231] W. Weerkamp, K. Balog, M. de Rijke, R. Berendsen, B. Kovachev, and E. Meij. People searching for

people: Analysis of a people search engine log. In SIGIR ’11, pages 45–54, 2011.
[232] B. Welch. The generalization of Students’ problem when several different population variances are

involved. Biometrika, 34(1/2):28–35, 1947.
[233] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential twitterers. In

WSDM ’10, pages 261–270, 2010.
[234] H. D. White. Scientific communication and literature retrieval. The handbook of research synthesis and

meta-analysis, 2:51–71, 2009.
[235] T. D. Wilson. On user studies and information needs. Journal of documentation, 37(1):3–15, 1981.
[236] S. Wu and F. Crestani. Methods for ranking information retrieval systems without relevance judgments.

In SAC ’03, pages 811–816, 2003.
[237] T. Xu, P. McNamee, and D. W. Oard. Hltcoe at trec 2014: Microblog and clinical decision support. In

TREC ’14, 2014.
[238] X. Xue and W. B. Croft. Automatic query generation for patent search. In CIKM ’09, pages 2037–2040,

2009.
[239] A. Yeh. More accurate tests for the statistical significance of result differences. In COLING ’00, vol-

ume 2, pages 947–953, 2000.
[240] M. Yoshida, M. Ikeda, S. Ono, I. Sato, and H. Nakagawa. Person name disambiguation by bootstrapping.

In SIGIR ’10, pages 10–17, 2010.
[241] H. Zaragoza, N. Craswell, M. Taylor, S. Saria, and S. Robertson. Microsoft cambridge at trec-13: Web

and hard tracks. In TREC ’13.
[242] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc informa-

tion retrieval. In SIGIR ’01, pages 334–342, 2001.
[243] D. Zhang and Y. Dong. Semantic, hierarchical, online clustering of web search results. In APWeb ’04,

pages 69–78, 2004.
[244] B. Zhu, J. Gao, X. Han, C. Shi, S. Liu, Y. Liu, and X. Cheng. ICTNET at Microblog Track TREC 2012.

168



Bibliography

In TREC ’12, 2012.
[245] D. Zhu and H. Dreher. Improving web search by categorization, clustering, and personalization. In

ADMA ’08, pages 659–666, 2008.
[246] S. Zhu, Z. Gao, Y. Yuan, H. Wang, and G. Chen. Pris at trec 2013 microblog track. In TREC ’13, 2013.
[247] J. Zobel. How reliable are the results of large-scale information retrieval experiments? In SIGIR ’98,

pages 307–314, 1998.

169





Summary

There is a growing diversity of information access applications. While general web
search has been dominant in the past few decades, a wide variety of so-called vertical
search tasks and applications have come to the fore. Vertical search is an often used term
for search that targets specific content. Examples include Youtube video search, Face-
book graph search, Spotify music recommendation, product search, expertise retrieval,
and scientific literature search. In this dissertation, we study vertical search engines for
finding people, finding papers, and finding posts.

In a vertical search application, we typically have some background knowledge about
the context in which search is taking place. We may know something about the user pop-
ulation, about the tasks they wish to perform, about their information needs, and about
the information objects in the collection we make available to them. This knowledge can
inform adaptation of retrieval algorithms and evaluation methodology, to provide a better
ranking of information objects, or to organize search results more effectively.

For a people search engine, we analyze and automatically detect the types of infor-
mation needs searchers have. We also provide methods to deal with the high ambiguity
of person names, by finding correct referents for name mentions in search results. We
find that, to do this sucessfully for people search results, social media profiles need to
be treated seperately from other, regular web pages. A special case of people search is
expert finding. The flip-side of that task is expert profiling: ranking knowledge areas for
an expert of interest. We evaluate expert profiling algorithms by asking experts to judge
profiles we generated for them.

Next, we study a search engine for finding scientific papers in a collection where each
paper has been labeled with keywords from a thesaurus with research areas, research
methodologies, and classification codes. We show that these annotations can be used to
automatically construct ground truth for the optimization and evaluation of algorithms for
scientific literature search. Such methods have the potential to reduce the need for manual
evaluation of the quality of search engines. We show that with a similar method, ground
truth for a completely different search task can be generated: finding microblog posts.
Microblog posts, e.g., tweets, contain hashtags, which can be interpreted as annotations
about the topic of a tweet. The generated ground truth can be used to train machine
learning algorithms for microblog search.

This dissertation showcases the need, as well as many opportunities, to leverage back-
ground knowledge in vertical search applications. It provides pointers on how this may
be done to aid in understanding user information needs, organizing search results, evalu-
ating retrieval algorithms, and generating ground truth.

171





Samenvatting

Er is een groeiende diversiteit in applicaties voor het ontsluiten van informatie. Inter-
net zoekmachines hebben over de jaren een dominante positie veroverd, maar daarnaast
is er een grote verscheidenheid aan zogenaamde verticale zoektaken, zoekmachines en
applicaties op de voorgrond getreden. Met verticaal zoeken wordt zoeken naar een spec-
ifiek soort informatie bedoeld. Voorbeelden zijn Youtube video search, Facebook graph
search, Spotify muziekaanbevelingen, internet winkels (zoeken naar producten), exper-
tise zoekmachines en zoekmachines voor het zoeken naar wetenschappelijke literatuur.
In dit proefschrift worden verticale zoekmachines voor zoeken naar mensen, wetenschap-
pelijke artikelen en microblog posts onderzocht.

In een verticale zoekapplicatie is er doorgaans achtergrondkennis beschikbaar over
de context waarin gezocht wordt. We weten misschien iets over de gebruikerspopulatie,
over de taken die men wil volbrengen, over de soort informatie die men wil vinden en
over de informatie-objecten in de collectie die door de zoekapplicatie wordt ontsloten.
Deze kennis kan gebruikt worden om zoekalgoritmes en evaluatiemethodologie aan te
passen, zodat een betere rangschikking of organisatie van informatie-objecten onstaat.

Voor een zoekmachine voor het zoeken naar mensen stellen we automatisch vast
naar wat voor soort informatie gebruikers op zoek zijn. Ook onderzoeken we methoden
om om te gaan met de grote ambiguiteit van persoonsnamen, door middel van het vinden
van juiste referenten voor persoonsnamen in zoekresultaten. Om dit goed te kunnen doen
blijkt dat het nodig is om profielen van sociale media platformen anders te behandelen
dan andere, gewone internet pagina’s. Een specialisatie van het zoeken naar mensen is
het zoeken naar experts. De keerzijde van die taak is het profileren van experts: het
rangschikken van expertisegebieden voor een gegeven expert. We vragen experts om
profielen die we voor ze genereerden te beoordelen; met behulp van die beoordelingen
kunnen we profileringsalgoritmen evalueren.

Vervolgens onderzoeken we een collectie van wetenschappelijke artikelen die zijn
geannoteerd met trefwoorden uit een thesaurus dat onderzoeksgebieden, methodologieën
en classificatiecodes bevat. We laten zien dat deze annotaties kunnen worden gebruikt
om automatisch zoekvragen en juiste antwoorden te genereren; deze kunnen worden ge-
bruikt voor het optimaliseren en evalueren van zoekalgoritmes voor wetenschappelijke
artikelen. Dit soort methoden heeft de potentie om de noodzaak voor handmatige eval-
uatie van zoekmachines te verminderen. Met een soortgelijke methode kunnen we ook
trainings- en evaluatiemateriaal genereren voor een volledig andere taak: het zoeken van
microblog posts. Microblog posts, bijvoorbeeld tweets, bevatten hashtags. Deze hash-
tags kunnen worden geı̈nterpreteerd als annotaties met betrekking tot het onderwerp van
een tweet. We laten zien dat de gegenereerde zoekvragen en antwoorden kunnen worden
gebruikt om lerende zoekalgoritmes voor microblog posts te trainen.

Dit proefschrift laat de noodzaak zien van het gebruik van achtergrondkennis omtrent
verticale zoekmachines, alsook de vele mogelijkheden daartoe. Het laat zien hoe achter-
grondkennis kan helpen bij het begrijpen van het soort informatie waar gebruikers naar
op zoek zijn, bij het organiseren van zoekresultaten, bij de evaluatie van zoekalgoritmes,
en bij het genereren van trainings- en evaluatiemateriaal.

173





SIKS Dissertation Series

1998

1 1998-1 Johan van den Akker (CWI) DEGAS - An
Active, Temporal Database of Autonomous Ob-
jects

2 1998-2 Floris Wiesman (UM) Information
Retrieval by Graphically Browsing Meta-
Information

3 1998-3 Ans Steuten (TUD) A Contribution to the
Linguistic Analysis of Business Conversations

4 1998-4 Dennis Breuker (UM) Memory versus
Search in Games

5 1998-5 E.W.Oskamp (RUL) Computeronderste-
uning bij Straftoemeting

1999

1 1999-1 Mark Sloof (VU) Physiology of Quality
Change Modelling; Automated modelling of

2 1999-2 Rob Potharst (EUR) Classification using
decision trees and neural nets

3 1999-3 Don Beal (UM) The Nature of Minimax
Search

4 1999-4 Jacques Penders (UM) The practical Art
of Moving Physical Objects

5 1999-5 Aldo de Moor (KUB) Empowering Com-
munities: A Method for the Legitimate User-
Driven

6 1999-6 Niek J.E. Wijngaards (VU) Re-design of
compositional systems

7 1999-7 David Spelt (UT) Verification support for
object database design

8 1999-8 Jacques H.J. Lenting (UM) Informed
Gambling: Conception and Analysis of a Multi-
Agent Mechanism

2000

1 2000-1 Frank Niessink (VU) Perspectives on Im-
proving Software Maintenance

2 2000-2 Koen Holtman (TUE) Prototyping of
CMS Storage Management

3 2000-3 Carolien M.T. Metselaar (UVA) Sociaal-
organisatorische gevolgen van kennistechnolo-
gie;

4 2000-4 Geert de Haan (VU) ETAG, A Formal
Model of Competence Knowledge for User Inter-
face

5 2000-5 Ruud van der Pol (UM) Knowledge-
based Query Formulation in Information Re-
trieval

6 2000-6 Rogier van Eijk (UU) Programming Lan-
guages for Agent Communication

7 2000-7 Niels Peek (UU) Decision-theoretic
Planning of Clinical Patient Management

8 2000-8 Veerle Coup (EUR) Sensitivity Analyis of
Decision-Theoretic Networks

9 2000-9 Florian Waas (CWI) Principles of Proba-
bilistic Query Optimization

10 2000-10 Niels Nes (CWI) Image Database Man-
agement System Design Considerations, Algo-
rithms and Architecture

11 2000-11 Jonas Karlsson (CWI) Scalable Dis-
tributed Data Structures for Database Manage-
ment

2001

1 2001-1 Silja Renooij (UU) Qualitative Ap-
proaches to Quantifying Probabilistic Networks

2 2001-2 Koen Hindriks (UU) Agent Programming
Languages: Programming with Mental Models

3 2001-3 Maarten van Someren (UvA) Learning as
problem solving

4 2001-4 Evgueni Smirnov (UM) Conjunctive and
Disjunctive Version Spaces with Instance-Based
Boundary Sets

5 2001-5 Jacco van Ossenbruggen (VU) Process-
ing Structured Hypermedia: A Matter of Style

6 2001-6 Martijn van Welie (VU) Task-based User
Interface Design

7 2001-7 Bastiaan Schonhage (VU) Diva: Archi-
tectural Perspectives on Information Visualiza-
tion

8 2001-8 Pascal van Eck (VU) A Compositional
Semantic Structure for Multi-Agent Systems Dy-
namics

9 2001-9 Pieter Jan ’t Hoen (RUL) Towards Dis-
tributed Development of Large Object-Oriented
Models,

10 2001-10 Maarten Sierhuis (UvA) Modeling and
Simulating Work Practice

11 2001-11 Tom M. van Engers (VUA) Knowledge
Management:

2002

1 2002-01 Nico Lassing (VU) Architecture-Level
Modifiability Analysis

2 2002-02 Roelof van Zwol (UT) Modelling and
searching web-based document collections

3 2002-03 Henk Ernst Blok (UT) Database Opti-
mization Aspects for Information Retrieval

4 2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in
Data Mining

5 2002-05 Radu Serban (VU) The Private Cy-
berspace Modeling Electronic

6 2002-06 Laurens Mommers (UL) Applied legal
epistemology; Building a knowledge-based on-
tology of

7 2002-07 Peter Boncz (CWI) Monet: A Next-
Generation DBMS Kernel For Query-Intensive

8 2002-08 Jaap Gordijn (VU) Value Based Re-
quirements Engineering: Exploring Innovative

175



SIKS Dissertation Series

9 2002-09 Willem-Jan van den Heuvel (KUB) Inte-
grating Modern Business Applications with Ob-
jectified Legacy

10 2002-10 Brian Sheppard (UM) Towards Perfect
Play of Scrabble

11 2002-11 Wouter C.A. Wijngaards (VU) Agent
Based Modelling of Dynamics: Biological and
Organisational Applications

12 2002-12 Albrecht Schmidt (Uva) Processing
XML in Database Systems

13 2002-13 Hongjing Wu (TUE) A Reference Archi-
tecture for Adaptive Hypermedia Applications

14 2002-14 Wieke de Vries (UU) Agent Interaction:
Abstract Approaches to Modelling, Programming
and Verifying Multi-Agent Systems

15 2002-15 Rik Eshuis (UT) Semantics and Verifi-
cation of UML Activity Diagrams for Workflow
Modelling

16 2002-16 Pieter van Langen (VU) The Anatomy of
Design: Foundations, Models and Applications

17 2002-17 Stefan Manegold (UVA) Understand-
ing, Modeling, and Improving Main-Memory
Database Performance

2003

1 Heiner Stuckenschmidt (VU) Ontology-Based
Information Sharing in Weakly Structured Envi-
ronments

2 Jan Broersen (VU) Modal Action Logics for Rea-
soning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer In-
teraction and Presence in Virtual Reality Expo-
sure Therapy

4 Milan Petkovic (UT) Content-Based Video Re-
trieval Supported by Database Technology

5 Jos Lehmann (UVA) Causation in Artificial In-
telligence and Law - A modelling approach

6 Boris van Schooten (UT) Development and spec-
ification of virtual environments

7 Machiel Jansen (UvA) Formal Explorations of
Knowledge Intensive Tasks

8 Yongping Ran (UM) Repair Based Scheduling
9 Rens Kortmann (UM) The resolution of visually

guided behaviour
10 Andreas Lincke (UvT) Electronic Business Ne-

gotiation: Some experimental studies on the in-
teraction between medium, innovation context
and culture

11 Simon Keizer (UT) Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian
Networks

12 Roeland Ordelman (UT) Dutch speech recogni-
tion in multimedia information retrieval

13 Jeroen Donkers (UM) Nosce Hostem - Searching
with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Lan-
guage: Conceptualisation Processes across ICT-
Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-
Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar
Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

17 David Jansen (UT) Extensions of Statecharts with
Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organiza-
tional Interaction: Based on Agents, Founded in
Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts
for E-business

3 Perry Groot (VU) A Theoretical and Empirical
Analysis of Approximation in Symbolic Problem
Solving

4 Chris van Aart (UVA) Organizational Principles
for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge discovery and
monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of
Business Process Modeling Techniques

7 Elise Boltjes (UM) Voorbeeldig onderwijs; voor-
beeldgestuurd onderwijs, een opstap naar ab-
stract denken, vooral voor meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Interna-
tionale Informatiemarkt, Grensregionale politile
gegevensuitwisseling en digitale expertise

9 Martin Caminada (VU) For the Sake of the Argu-
ment; explorations into argument-based reason-
ing

10 Suzanne Kabel (UVA) Knowledge-rich indexing
of learning-objects

11 Michel Klein (VU) Change Management for Dis-
tributed Ontologies

12 The Duy Bui (UT) Creating emotions and facial
expressions for embodied agents

13 Wojciech Jamroga (UT) Using Multiple Models
of Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical
Explorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data Min-
ing

16 Federico Divina (VU) Hybrid Genetic Relational
Search for Inductive Learning

17 Mark Winands (UM) Informed Search in Com-
plex Games

18 Vania Bessa Machado (UvA) Supporting the
Construction of Qualitative Knowledge Models

19 Thijs Westerveld (UT) Using generative proba-
bilistic models for multimedia retrieval

20 Madelon Evers (Nyenrode) Learning from De-
sign: facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UVA) Methodological Aspects
of Designing Induction-Based Applications

176



SIKS Dissertation Series

2 Erik van der Werf (UM) AI techniques for the
game of Go

3 Franc Grootjen (RUN) A Pragmatic Approach to
the Conceptualisation of Language

4 Nirvana Meratnia (UT) Towards Database Sup-
port for Moving Object data

5 Gabriel Infante-Lopez (UVA) Two-Level Proba-
bilistic Grammars for Natural Language Parsing

6 Pieter Spronck (UM) Adaptive Game AI
7 Flavius Frasincar (TUE) Hypermedia Presenta-

tion Generation for Semantic Web Information
Systems

8 Richard Vdovjak (TUE) A Model-driven Ap-
proach for Building Distributed Ontology-based
Web Applications

9 Jeen Broekstra (VU) Storage, Querying and In-
ferencing for Semantic Web Languages

10 Anders Bouwer (UVA) Explaining Behaviour:
Using Qualitative Simulation in Interactive
Learning Environments

11 Elth Ogston (VU) Agent Based Matchmaking
and Clustering - A Decentralized Approach to
Search

12 Csaba Boer (EUR) Distributed Simulation in In-
dustry

13 Fred Hamburg (UL) Een Computermodel voor
het Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VU) Web-Service configura-
tion on the Semantic Web; Exploring how seman-
tics meets pragmatics

15 Tibor Bosse (VU) Analysis of the Dynamics of
Cognitive Processes

16 Joris Graaumans (UU) Usability of XML Query
Languages

17 Boris Shishkov (TUD) Software Specification
Based on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies for
probabilistic networks

19 Michel van Dartel (UM) Situated Representation
20 Cristina Coteanu (UL) Cyber Consumer Law,

State of the Art and Perspectives
21 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Ap-
plication Semantics

2006

1 Samuil Angelov (TUE) Foundations of B2B
Electronic Contracting

2 Cristina Chisalita (VU) Contextual issues in the
design and use of information technology in or-
ganizations

3 Noor Christoph (UVA) The role of metacognitive
skills in learning to solve problems

4 Marta Sabou (VU) Building Web Service Ontolo-
gies

5 Cees Pierik (UU) Validation Techniques for
Object-Oriented Proof Outlines

6 Ziv Baida (VU) Software-aided Service Bundling
- Intelligent Methods & Tools for Graphical Ser-
vice Modeling

7 Marko Smiljanic (UT) XML schema matching –
balancing efficiency and effectiveness by means
of clustering

8 Eelco Herder (UT) Forward, Back and Home
Again - Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formulation
of the Auditor’s Opinion

10 Ronny Siebes (VU) Semantic Routing in Peer-to-
Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over
Nested Data Types

12 Bert Bongers (VU) Interactivation - Towards an
e-cology of people, our technological environ-
ment, and the arts

13 Henk-Jan Lebbink (UU) Dialogue and Decision
Games for Information Exchanging Agents

14 Johan Hoorn (VU) Software Requirements: Up-
date, Upgrade, Redesign - towards a Theory of
Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in the
Biomedical Domain

16 Carsten Riggelsen (UU) Approximation Methods
for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU) User Assistance for Multi-
tasking with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UVA) Graph transformation
for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent Pro-
gramming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for
prediction in data mining

21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adaptive

Personalisation
23 Ion Juvina (UU) Development of Cognitive

Model for Navigating on the Web
24 Laura Hollink (VU) Semantic Annotation for Re-

trieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-

likelihood MDL and Evolutionary MCMC
26 Vojkan Mihajlovic (UT) Score Region Algebra:

A Flexible Framework for Structured Information
Retrieval

27 Stefano Bocconi (CWI) Vox Populi: generat-
ing video documentaries from semantically an-
notated media repositories

28 Borkur Sigurbjornsson (UVA) Focused Informa-
tion Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-
Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Information
Exchange and Confidentiality: A Formal Ap-
proach

3 Peter Mika (VU) Social Networks and the Se-
mantic Web

177



SIKS Dissertation Series

4 Jurriaan van Diggelen (UU) Achieving Seman-
tic Interoperability in Multi-agent Systems: a
dialogue-based approach

5 Bart Schermer (UL) Software Agents, Surveil-
lance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

6 Gilad Mishne (UVA) Applied Text Analytics for
Blogs

7 Natasa Jovanovic’ (UT) To Whom It May Con-
cern - Addressee Identification in Face-to-Face
Meetings

8 Mark Hoogendoorn (VU) Modeling of Change in
Multi-Agent Organizations

9 David Mobach (VU) Agent-Based Mediated Ser-
vice Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Confor-
mity: an Institutional Perspective on Norms and
Protocols

11 Natalia Stash (TUE) Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adap-
tive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Networks
for Clinical Decision Support: A Rational Ap-
proach to Dynamic Decision-Making under Un-
certainty

13 Rutger Rienks (UT) Meetings in Smart Environ-
ments; Implications of Progressing Technology

14 Niek Bergboer (UM) Context-Based Image Anal-
ysis

15 Joyca Lacroix (UM) NIM: a Situated Computa-
tional Memory Model

16 Davide Grossi (UU) Designing Invisible Hand-
cuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems

17 Theodore Charitos (UU) Reasoning with Dy-
namic Networks in Practice

18 Bart Orriens (UvT) On the development an man-
agement of adaptive business collaborations

19 David Levy (UM) Intimate relationships with ar-
tificial partners

20 Slinger Jansen (UU) Customer Configuration
Updating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and
broadening use: A research on residential adop-
tion and usage of broadband internet in the
Netherlands between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of value
and process models from patterns

23 Peter Barna (TUE) Specification of Application
Logic in Web Information Systems

24 Georgina Ramrez Camps (CWI) Structural Fea-
tures in XML Retrieval

25 Joost Schalken (VU) Empirical Investigations in
Software Process Improvement

2008

1 Katalin Boer-Sorbn (EUR) Agent-Based Sim-
ulation of Financial Markets: A modular,
continuous-time approach

2 Alexei Sharpanskykh (VU) On Computer-Aided
Methods for Modeling and Analysis of Organiza-
tions

3 Vera Hollink (UVA) Optimizing hierarchical
menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Uncertain
Data - towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating
causal dependencies on process-aware informa-
tion systems from a cost perspective

6 Arjen Hommersom (RUN) On the Application of
Formal Methods to Clinical Guidelines, an Arti-
ficial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tutor in
the design and support of adaptive e-learning

8 Janneke Bolt (UU) Bayesian Networks: Aspects
of Approximate Inference

9 Christof van Nimwegen (UU) The paradox of the
guided user: assistance can be counter-effective

10 Wauter Bosma (UT) Discourse oriented summa-
rization

11 Vera Kartseva (VU) Designing Controls for Net-
work Organizations: A Value-Based Approach

12 Jozsef Farkas (RUN) A Semiotically Oriented
Cognitive Model of Knowledge Representation

13 Caterina Carraciolo (UVA) Topic Driven Access
to Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware
Querying; Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adaptive
Behavior: Knowledge Representation and Algo-
rithms for the Markov Decision Process Frame-
work in First-Order Domains

16 Henriette van Vugt (VU) Embodied agents from
a user’s perspective

17 Martin Op ’t Land (TUD) Applying Architecture
and Ontology to the Splitting and Allying of En-
terprises

18 Guido de Croon (UM) Adaptive Active Vision
19 Henning Rode (UT) From Document to Entity

Retrieval: Improving Precision and Performance
of Focused Text Search

20 Rex Arendsen (UVA) Geen bericht, goed bericht.
Een onderzoek naar de effecten van de intro-
ductie van elektronisch berichtenverkeer met de
overheid op de administratieve lasten van bedri-
jven

21 Krisztian Balog (UVA) People Search in the En-
terprise

22 Henk Koning (UU) Communication of IT-
Architecture

23 Stefan Visscher (UU) Bayesian network mod-
els for the management of ventilator-associated
pneumonia

178



SIKS Dissertation Series

24 Zharko Aleksovski (VU) Using background
knowledge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable Ex-
change in Air Traffic Management Plan Repair
using Spender-signed Currency

26 Marijn Huijbregts (UT) Segmentation, Diariza-
tion and Speech Transcription: Surprise Data
Unraveled

27 Hubert Vogten (OU) Design and Implementation
Strategies for IMS Learning Design

28 Ildiko Flesch (RUN) On the Use of Independence
Relations in Bayesian Networks

29 Dennis Reidsma (UT) Annotations and Subjec-
tive Machines - Of Annotators, Embodied Agents,
Users, and Other Humans

30 Wouter van Atteveldt (VU) Semantic Network
Analysis: Techniques for Extracting, Represent-
ing and Querying Media Content

31 Loes Braun (UM) Pro-Active Medical Informa-
tion Retrieval

32 Trung H. Bui (UT) Toward Affective Dialogue
Management using Partially Observable Markov
Decision Processes

33 Frank Terpstra (UVA) Scientific Workflow De-
sign; theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent Tree
Mining

35 Ben Torben Nielsen (UvT) Dendritic morpholo-
gies: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal In-
dependence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-
based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the
Quality of Organisational Policy Making using
Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and De-
mand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding Clas-
sification

7 Ronald Poppe (UT) Discriminative Vision-Based
Recovery and Recognition of Human Motion

8 Volker Nannen (VU) Evolutionary Agent-Based
Policy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN) Design, Discovery
and Construction of Service-oriented Systems

10 Jan Wielemaker (UVA) Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UVA) Legal Theory, Sources of
Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-Universitaet zu
Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent
Systems

14 Maksym Korotkiy (VU) From ontology-enabled
services to service-enabled ontologies (making
ontologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UVA) Ontology Representation
- Design Patterns and Ontologies that Make
Sense

16 Fritz Reul (UvT) New Architectures in Computer
Chess

17 Laurens van der Maaten (UvT) Feature Extrac-
tion from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable
Classification

22 Pavel Serdyukov (UT) Search For Expertise: Go-
ing beyond direct evidence

23 Peter Hofgesang (VU) Modelling Web Usage in
a Changing Environment

24 Annerieke Heuvelink (VUA) Cognitive Models
for Training Simulations

25 Alex van Ballegooij (CWI) ”RAM: Array
Database Management through Relational Map-
ping”

26 Fernando Koch (UU) An Agent-Based Model for
the Development of Intelligent Mobile Services

27 Christian Glahn (OU) Contextual Support of so-
cial Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management
with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Semantic
Integration of Service-Oriented Applications

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized stor-
age

31 Sofiya Katrenko (UVA) A Closer Look at Learn-
ing Relations from Text

32 Rik Farenhorst (VU) Architectural Knowledge
Management: Supporting Architects and Audi-
tors

33 Khiet Truong (UT) How Does Real Affect Affect
Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method
Engineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support for
Learners in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support
for Learners in Informal Learning Networks

179



SIKS Dissertation Series

38 Riina Vuorikari (OU) Tags and self-organisation:
a metadata ecology for learning resources in a
multilingual context

39 Christian Stahl (TUE, Humboldt-Universitaet zu
Berlin) Service Substitution – A Behavioral Ap-
proach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Lan-
guage Learning: Investigations into the Geom-
etry of Language

41 Igor Berezhnyy (UvT) Digital Analysis of Paint-
ings

42 Toine Bogers (UvT) Recommender Systems for
Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing Business-
IT Alignment in Networked Organizations

45 Jilles Vreeken (UU) Making Pattern Mining Use-
ful

46 Loredana Afanasiev (UvA) Querying XML:
Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Matter
2 Ingo Wassink (UT) Work flows in Life Science
3 Joost Geurts (CWI) A Document Engineering

Model and Processing Framework for Multime-
dia documents

4 Olga Kulyk (UT) Do You Know What I Know?
Situational Awareness of Co-located Teams in
Multidisplay Environments

5 Claudia Hauff (UT) Predicting the Effectiveness
of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of Video
Game AI

7 Wim Fikkert (UT) Gesture interaction at a Dis-
tance

8 Krzysztof Siewicz (UL) Towards an Improved
Regulatory Framework of Free Software. Pro-
tecting user freedoms in a world of software com-
munities and eGovernments

9 Hugo Kielman (UL) A Politiele gegevensverw-
erking en Privacy, Naar een effectieve waarborg-
ing

10 Rebecca Ong (UL) Mobile Communication and
Protection of Children

11 Adriaan Ter Mors (TUD) The world according to
MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking software
for crime analysis

13 Gianluigi Folino (RUN) High Performance Data
Mining using Bio-inspired techniques

14 Sander van Splunter (VU) Automated Web Ser-
vice Reconfiguration

15 Lianne Bodenstaff (UT) Managing Dependency
Relations in Inter-Organizational Models

16 Sicco Verwer (TUD) Efficient Identification of
Timed Automata, theory and practice

17 Spyros Kotoulas (VU) Scalable Discovery of
Networked Resources: Algorithms, Infrastruc-
ture, Applications

18 Charlotte Gerritsen (VU) Caught in the Act: In-
vestigating Crime by Agent-Based Simulation

19 Henriette Cramer (UvA) People’s Responses to
Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Anyway?
How Improv Informs Agency and Authorship of
Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware data
management by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support for
Access to
Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure of
Emotions

24 Zulfiqar Ali Memon (VU) Modelling Human-
Awareness for Ambient Agents: A Human Min-
dreading Perspective

25 Ying Zhang (CWI) XRPC: Efficient Distributed
Query Processing on Heterogeneous XQuery En-
gines

26 Marten Voulon (UL) Automatisch contracteren
27 Arne Koopman (UU) Characteristic Relational

Patterns
28 Stratos Idreos (CWI) Database Cracking: To-

wards Auto-tuning Database Kernels
29 Marieke van Erp (UvT) Accessing Natural His-

tory - Discoveries in data cleaning, structuring,
and retrieval

30 Victor de Boer (UVA) Ontology Enrichment from
Heterogeneous Sources on the Web

31 Marcel Hiel (UvT) An Adaptive Service Oriented
Architecture: Automatically solving Interoper-
ability Problems

32 Robin Aly (UT) Modeling Representation Un-
certainty in Concept-Based Multimedia Retrieval

33 Teduh Dirgahayu (UT) Interaction Design in Ser-
vice Compositions

34 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Re-
trieval

35 Jose Janssen (OU) Paving the Way for Lifelong
Learning; Facilitating competence development
through a learning path specification

36 Niels Lohmann (TUE) Correctness of services
and their composition

37 Dirk Fahland (TUE) From Scenarios to compo-
nents

38 Ghazanfar Farooq Siddiqui (VU) Integrative
modeling of emotions in virtual agents

39 Mark van Assem (VU) Converting and Integrat-
ing Vocabularies for the Semantic Web

40 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

180



SIKS Dissertation Series

41 Sybren de Kinderen (VU) Needs-driven service
bundling in a multi-supplier setting - the compu-
tational e3-service approach

42 Peter van Kranenburg (UU) A Computational Ap-
proach to Content-Based Retrieval of Folk Song
Melodies

43 Pieter Bellekens (TUE) An Approach towards
Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the
Television Domain

44 Vasilios Andrikopoulos (UvT) A theory and
model for the evolution of software services

45 Vincent Pijpers (VU) e3alignment: Exploring
Inter-Organizational Business-ICT Alignment

46 Chen Li (UT) Mining Process Model Variants:
Challenges, Techniques, Examples

47 Jahn-Takeshi Saito (UM) Solving difficult game
positions

48 Bouke Huurnink (UVA) Search in Audiovisual
Broadcast Archives

49 Alia Khairia Amin (CWI) Understanding and
supporting information seeking tasks in multiple
sources

50 Peter-Paul van Maanen (VU) Adaptive Support
for Human-Computer Teams: Exploring the Use
of Cognitive Models of Trust and Attention

51 Edgar Meij (UVA) Combining Concepts and
Language Models for Information Access

2011

1 Botond Cseke (RUN) Variational Algorithms for
Bayesian Inference in Latent Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent Orga-
nizations. Syntax and Operational Semantics
of an Organization-Oriented Programming Lan-
guage

3 Jan Martijn van der Werf (TUE) Compositional
Design and Verification of Component-Based In-
formation Systems

4 Hado van Hasselt (UU) Insights in Reinforcement
Learning; Formal analysis and empirical evalu-
ation of temporal-difference

5 Base van der Raadt (VU) Enterprise Architecture
Coming of Age - Increasing the Performance of
an Emerging Discipline

6 Yiwen Wang (TUE) Semantically-Enhanced
Recommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information Presen-
tation for High Load Human Computer Interac-
tion

8 Nieske Vergunst (UU) BDI-based Generation of
Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Media
for Learning

10 Bart Bogaert (UvT) Cloud Content Contention
11 Dhaval Vyas (UT) Designing for Awareness: An

Experience-focused HCI Perspective

12 Carmen Bratosin (TUE) Grid Architecture for
Distributed Process Mining

13 Xiaoyu Mao (UvT) Airport under Control. Mul-
tiagent Scheduling for Airport Ground Handling

14 Milan Lovric (EUR) Behavioral Finance and
Agent-Based Artificial Markets

15 Marijn Koolen (UvA) The Meaning of Structure:
the Value of Link Evidence for Information Re-
trieval

16 Maarten Schadd (UM) Selective Search in Games
of Different Complexity

17 Jiyin He (UVA) Exploring Topic Structure: Co-
herence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-Making
in complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on Per-
sonal Profiles

20 Qing Gu (VU) Guiding service-oriented software
engineering - A view-based approach

21 Linda Terlouw (TUD) Modularization and Spec-
ification of Service-Oriented Systems

22 Junte Zhang (UVA) System Evaluation of
Archival Description and Access

23 Wouter Weerkamp (UVA) Finding People and
their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Genera-
tion for Interpersonal Coordination with Virtual
Humans On Specifying, Scheduling and Realiz-
ing Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU) Analysis and
Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VU) Virtual Agents for
Human Communication - Emotion Regulation
and Involvement-Distance Trade-Offs in Embod-
ied Conversational Agents and Robots

27 Aniel Bhulai (VU) Dynamic website optimiza-
tion through autonomous management of design
patterns

28 Rianne Kaptein (UVA) Effective Focused Re-
trieval by Exploiting Query Context and Docu-
ment Structure

29 Faisal Kamiran (TUE) Discrimination-aware
Classification

30 Egon van den Broek (UT) Affective Signal Pro-
cessing (ASP): Unraveling the mystery of emo-
tions

31 Ludo Waltman (EUR) Computational and Game-
Theoretic Approaches for Modeling Bounded Ra-
tionality

32 Nees-Jan van Eck (EUR) Methodological Ad-
vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate
Decisions

34 Paolo Turrini (UU) Strategic Reasoning in Inter-
dependence: Logical and Game-theoretical In-
vestigations

35 Maaike Harbers (UU) Explaining Agent Behav-
ior in Virtual Training

36 Erik van der Spek (UU) Experiments in serious
game design: a cognitive approach

181



SIKS Dissertation Series

37 Adriana Burlutiu (RUN) Machine Learning
for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference

38 Nyree Lemmens (UM) Bee-inspired Distributed
Optimization

39 Joost Westra (UU) Organizing Adaptation using
Agents in Serious Games

40 Viktor Clerc (VU) Architectural Knowledge
Management in Global Software Development

41 Luan Ibraimi (UT) Cryptographically Enforced
Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior
through Mental State Attribution

43 Henk van der Schuur (UU) Process Improvement
through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-Computer
Interfaces

45 Herman Stehouwer (UvT) Statistical Language
Models for Alternative Sequence Selection

46 Beibei Hu (TUD) Towards Contextualized Infor-
mation Delivery: A Rule-based Architecture for
the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VU) Exploring Computa-
tional Models for Intelligent Support of Persons
with Depression

48 Mark Ter Maat (UT) Response Selection and
Turn-taking for a Sensitive Artificial Listening
Agent

49 Andreea Niculescu (UT) Conversational inter-
faces for task-oriented spoken dialogues: design
aspects influencing interaction quality

2012

1 Terry Kakeeto (UvT) Relationship Marketing for
SMEs in Uganda

2 Muhammad Umair (VU) Adaptivity, emotion,
and Rationality in Human and Ambient Agent
Models

3 Adam Vanya (VU) Supporting Architecture Evo-
lution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content
Management System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisa-
tional Information Systems

6 Wolfgang Reinhardt (OU) Awareness Support for
Knowledge Workers in Research Networks

7 Rianne van Lambalgen (VU) When the Going
Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Condi-
tions

8 Gerben de Vries (UVA) Kernel Methods for Ves-
sel Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Manage-
ment Support for Context-Aware Service Plat-
forms

10 David Smits (TUE) Towards a Generic Dis-
tributed Adaptive Hypermedia Environment

11 J.C.B. Rantham Prabhakara (TUE) Process Min-
ing in the Large: Preprocessing, Discovery, and
Diagnostics

12 Kees van der Sluijs (TUE) Model Driven Design
and Data Integration in Semantic Web Informa-
tion Systems

13 Suleman Shahid (UvT) Fun and Face: Exploring
non-verbal expressions of emotion during playful
interactions

14 Evgeny Knutov (TUE) Generic Adaptation
Framework for Unifying Adaptive Web-based
Systems

15 Natalie van der Wal (VU) Social Agents. Agent-
Based Modelling of Integrated Internal and So-
cial Dynamics of Cognitive and Affective Pro-
cesses

16 Fiemke Both (VU) Helping people by under-
standing them - Ambient Agents supporting task
execution and depression treatment

17 Amal Elgammal (UvT) Towards a Comprehen-
sive Framework for Business Process Compli-
ance

18 Eltjo Poort (VU) Improving Solution Architecting
Practices

19 Helen Schonenberg (TUE) What’s Next? Opera-
tional Support for Business Process Execution

20 Ali Bahramisharif (RUN) Covert Visual Spa-
tial Attention, a Robust Paradigm for Brain-
Computer Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse
Matrices for Information Retrieval

22 Thijs Vis (UvT) Intelligence, politie en veilighei-
dsdienst: verenigbare grootheden?

23 Christian Muehl (UT) Toward Affective Brain-
Computer Interfaces: Exploring the Neurophysi-
ology of Affect during Human Media Interaction

24 Laurens van der Werff (UT) Evaluation of Noisy
Transcripts for Spoken Document Retrieval

25 Silja Eckartz (UT) Managing the Business
Case Development in Inter-Organizational IT
Projects: A Methodology and its Application

26 Emile de Maat (UVA) Making Sense of Legal
Text

27 Hayrettin Gurkok (UT) Mind the Sheep! User
Experience Evaluation & Brain-Computer Inter-
face Games

28 Nancy Pascall (UvT) Engendering Technology
Empowering Women

29 Almer Tigelaar (UT) Peer-to-Peer Information
Retrieval

30 Alina Pommeranz (TUD) Designing Human-
Centered Systems for Reflective Decision Making

31 Emily Bagarukayo (RUN) A Learning by Con-
struction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD) Qualitative multi-criteria
preference representation and reasoning

33 Rory Sie (OUN) Coalitions in Cooperation Net-
works (COCOON)

182



SIKS Dissertation Series

34 Pavol Jancura (RUN) Evolutionary analysis in
PPI networks and applications

35 Evert Haasdijk (VU) Never Too Old To Learn –
On-line Evolution of Controllers in Swarm- and
Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Evalua-
tion of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration Pro-
cess for Enterprise Architecture Creation

38 Selmar Smit (VU) Parameter Tuning and Scien-
tific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of value
and coordination networks

40 Agus Gunawan (UvT) Information Access for
SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Patterns for
Learning

42 Dominique Verpoorten (OU) Reflection Ampli-
fiers in self-regulated Learning

43 Anna Tordai (VU) On Combining Alignment
Techniques

44 Benedikt Kratz (UvT) A Model and Language for
Business-aware Transactions

45 Simon Carter (UVA) Exploration and Exploita-
tion of Multilingual Data for Statistical Machine
Translation

46 Manos Tsagkias (UVA) Mining Social Media:
Tracking Content and Predicting Behavior

47 Jorn Bakker (TUE) Handling Abrupt Changes in
Evolving Time-series Data

48 Michael Kaisers (UM) Learning against Learn-
ing - Evolutionary dynamics of reinforcement
learning algorithms in strategic interactions

49 Steven van Kervel (TUD) Ontologogy driven En-
terprise Information Systems Engineering

50 Jeroen de Jong (TUD) Heuristics in Dynamic
Sceduling; a practical framework with a case
study in elevator dispatching

2013

1 Viorel Milea (EUR) News Analytics for Financial
Decision Support

2 Erietta Liarou (CWI) MonetDB/DataCell: Lever-
aging the Column-store Database Technology for
Efficient and Scalable Stream Processing

3 Szymon Klarman (VU) Reasoning with Contexts
in Description Logics

4 Chetan Yadati (TUD) Coordinating autonomous
planning and scheduling

5 Dulce Pumareja (UT) Groupware Requirements
Evolutions Patterns

6 Romulo Goncalves (CWI) The Data Cyclotron:
Juggling Data and Queries for a Data Warehouse
Audience

7 Giel van Lankveld (UvT) Quantifying Individual
Player Differences

8 Robbert-Jan Merk (VU) Making enemies: cogni-
tive modeling for opponent agents in fighter pilot
simulators

9 Fabio Gori (RUN) Metagenomic Data Analysis:
Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT) A Uni-
fied Modeling Framework for Service Design

11 Evangelos Pournaras (TUD) Multi-level Recon-
figurable Self-organization in Overlay Services

12 Marian Razavian (VU) Knowledge-driven Mi-
gration to Services

13 Mohammad Safiri (UT) Service Tailoring: User-
centric creation of integrated IT-based homecare
services to support independent living of elderly

14 Jafar Tanha (UVA) Ensemble Approaches to
Semi-Supervised Learning Learning

15 Daniel Hennes (UM) Multiagent Learning - Dy-
namic Games and Applications

16 Eric Kok (UU) Exploring the practical benefits of
argumentation in multi-agent deliberation

17 Koen Kok (VU) The PowerMatcher: Smart Co-
ordination for the Smart Electricity Grid

18 Jeroen Janssens (UvT) Outlier Selection and
One-Class Classification

19 Renze Steenhuizen (TUD) Coordinated Multi-
Agent Planning and Scheduling

20 Katja Hofmann (UvA) Fast and Reliable Online
Learning to Rank for Information Retrieval

21 Sander Wubben (UvT) Text-to-text generation by
monolingual machine translation

22 Tom Claassen (RUN) Causal Discovery and
Logic

23 Patricio de Alencar Silva (UvT) Value Activity
Monitoring

24 Haitham Bou Ammar (UM) Automated Transfer
in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support. A new way
of representing and implementing clinical guide-
lines in a Decision Support System

26 Alireza Zarghami (UT) Architectural Support for
Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT) Inference-based Frame-
work Managing Data Provenance

28 Frans van der Sluis (UT) When Complexity be-
comes Interesting: An Inquiry into the Informa-
tion eXperience

29 Iwan de Kok (UT) Listening Heads
30 Joyce Nakatumba (TUE) Resource-Aware Busi-

ness Process Management: Analysis and Support
31 Dinh Khoa Nguyen (UvT) Blueprint Model and

Language for Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN) Networking For

Learning; The role of Networking in a Lifelong
Learner’s Professional Development

33 Qi Gao (TUD) User Modeling and Personaliza-
tion in the Microblogging Sphere

183



SIKS Dissertation Series

34 Kien Tjin-Kam-Jet (UT) Distributed Deep Web
Search

35 Abdallah El Ali (UvA) Minimal Mobile Human
Computer Interaction

36 Promotor: Prof. dr. L. Hardman (CWI/UVA)
2013-36

37 Than Lam Hoang (TUe) Pattern Mining in Data
Streams

38 Dirk Br̈ner (OUN) Ambient Learning Displays
39 Eelco den Heijer (VU) Autonomous Evolutionary

Art
40 Joop de Jong (TUD) A Method for Enterprise

Ontology based Design of Enterprise Informa-
tion Systems

41 Pim Nijssen (UM) Monte-Carlo Tree Search for
Multi-Player Games

42 Jochem Liem (UVA) Supporting the Conceptual
Modelling of Dynamic Systems: A Knowledge
Engineering Perspective on Qualitative Reason-
ing

43 Lon Planken (TUD) Algorithms for Simple Tem-
poral Reasoning

44 Marc Bron (UVA) Exploration and Contextual-
ization through Interaction and Concepts

2014

1 Nicola Barile (UU) Studies in Learning Mono-
tone Models from Data

2 Fiona Tuliyano (RUN) Combining System Dy-
namics with a Domain Modeling Method

3 Sergio Raul Duarte Torres (UT) Information Re-
trieval for Children: Search Behavior and Solu-
tions

4 Hanna Jochmann-Mannak (UT) Websites for
children: search strategies and interface design
- Three studies on children’s search performance
and evaluation

5 Jurriaan van Reijsen (UU) Knowledge Perspec-
tives on Advancing Dynamic Capability

6 Damian Tamburri (VU) Supporting Networked
Software Development

7 Arya Adriansyah (TUE) Aligning Observed and
Modeled Behavior

8 Samur Araujo (TUD) Data Integration over Dis-
tributed and Heterogeneous Data Endpoints

9 Philip Jackson (UvT) Toward Human-Level Arti-
ficial Intelligence: Representation and Computa-
tion of Meaning in Natural Language

10 Ivan Salvador Razo Zapata (VU) Service Value
Networks

11 Janneke van der Zwaan (TUD) An Empathic Vir-
tual Buddy for Social Support

12 Willem van Willigen (VU) Look Ma, No Hands:
Aspects of Autonomous Vehicle Control

13 Arlette van Wissen (VU) Agent-Based Support
for Behavior Change: Models and Applications
in Health and Safety Domains

14 Yangyang Shi (TUD) Language Models With
Meta-information

15 Natalya Mogles (VU) Agent-Based Analysis and
Support of Human Functioning in Complex
Socio-Technical Systems: Applications in Safety
and Healthcare

16 Krystyna Milian (VU) Supporting trial recruit-
ment and design by automatically interpreting el-
igibility criteria

17 Kathrin Dentler (VU) Computing healthcare
quality indicators automatically: Secondary Use
of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (VU) Methods and Models for
the Design and Study of Dynamic Agent Orga-
nizations

19 Vincius Ramos (TUE) Adaptive Hypermedia
Courses: Qualitative and Quantitative Evalua-
tion and Tool Support

20 Mena Habib (UT) Named Entity Extraction and
Disambiguation for Informal Text: The Missing
Link

21 Kassidy Clark (TUD) Negotiation and Monitor-
ing in Open Environments

22 Marieke Peeters (UU) Personalized Educational
Games - Developing agent-supported scenario-
based training

23 Eleftherios Sidirourgos (UvA/CWI) Space Effi-
cient Indexes for the Big Data Era

24 Davide Ceolin (VU) Trusting Semi-structured
Web Data

25 Martijn Lappenschaar (RUN) New network mod-
els for the analysis of disease interaction

26 Tim Baarslag (TUD) What to Bid and When to
Stop

27 Rui Jorge Almeida (EUR) Conditional Density
Models Integrating Fuzzy and Probabilistic Rep-
resentations of Uncertainty

28 Anna Chmielowiec (VU) Decentralized k-Clique
Matching

29 Jaap Kabbedijk (UU) Variability in Multi-Tenant
Enterprise Software

30 Peter de Cock (UvT) Anticipating Criminal Be-
haviour

31 Leo van Moergestel (UU) Agent Technology in
Agile Multiparallel Manufacturing and Product
Support

32 Naser Ayat (UvA) On Entity Resolution in Prob-
abilistic Data

33 Tesfa Tegegne (RUN) Service Discovery in
eHealth

34 Christina Manteli (VU) The Effect of Gover-
nance in Global Software Development: Analyz-
ing Transactive Memory Systems

35 Joost van Ooijen (UU) Cognitive Agents in Vir-
tual Worlds: A Middleware Design Approach

36 Joos Buijs (TUE) Flexible Evolutionary Algo-
rithms for Mining Structured Process Models

37 Maral Dadvar (UT) Experts and Machines
United Against Cyberbullying

184



SIKS Dissertation Series

38 Danny Plass-Oude Bos (UT) Making brain-
computer interfaces better: improving usability
through post-processing

39 Jasmina Maric (UvT) Web Communities, Immi-
gration, and Social Capital

40 Walter Omona (RUN) A Framework for Knowl-
edge Management Using ICT in Higher Educa-
tion

41 Frederic Hogenboom (EUR) Automated Detec-
tion of Financial Events in News Text

42 Carsten Eijckhof (CWI/TUD) Contextual Multi-
dimensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Process Im-
provement using Method Increments

44 Paulien Meesters (UvT) Intelligent Blauw. Met
als ondertitel: Intelligence-gestuurde politiezorg
in gebiedsgebonden eenheden

45 Birgit Schmitz (OUN) Mobile Games for Learn-
ing: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analytics: Rele-
vance, Redundancy, Diversity

47 Shangsong Liang (UVA) Fusion and Diversifica-
tion in Information Retrieval

2015

1 Niels Netten (UvA) Machine Learning for Rele-
vance of Information in Crisis Response

2 Faiza Bukhsh (UvT) Smart auditing: Innovative
Compliance Checking in Customs Controls

3 Twan van Laarhoven (RUN) Machine learning
for network data

4 Howard Spoelstra (OUN) Collaborations in
Open Learning Environments

5 Christoph Bösch (UT) Cryptographically En-
forced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Process Quality
Computation - Computing Non-Functional Re-
quirements to Improve Business Processes

7 Maria-Hendrike Peetz (UvA) Time-Aware Online
Reputation Analysis

8 Jie Jiang (TUD) Organizational Compliance: An
agent-based model for designing and evaluating
organizational interactions

9 Randy Klaassen (UT) HCI Perspectives on Be-
havior Change Support Systems

10 Henry Hermans (OUN) OpenU: design of an in-
tegrated system to support lifelong learning

11 Yongming Luo (TUE) Designing algorithms for
big graph datasets: A study of computing bisim-
ulation and joins

12 Julie M. Birkholz (VU) Modi Operandi of Social
Network Dynamics: The Effect of Context on Sci-
entific Collaboration Networks

13 Giuseppe Procaccianti (VU) Energy-Efficient
Software

14 Bart van Straalen (UT) A cognitive approach to
modeling bad news conversations

15 Klaas Andries de Graaf (VU) Ontology-based
Software Architecture Documentation

16 Changyun Wei (TUD) Cognitive Coordination
for Cooperative Multi-Robot Teamwork

17 Andr van Cleeff (UT) Physical and Digital Secu-
rity Mechanisms: Properties, Combinations and
Trade-offs

18 Holger Pirk (CWI/UVA) Waste Not, Want Not! -
Managing Relational Data in Asymmetric Mem-
ories

19 Bernardo Tabuenco (OUN) Ubiquitous Technol-
ogy for Lifelong Learners

20 Loı̈s Vanhée (UU) Using Culture and Values to
Support Flexible Coordination

21 Sibren Fetter (OUN) Using Peer-Support to Ex-
pand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate Net-
works; An alternative theory for undirected
graphical models

23 Luit Gazendam (VU) Cataloguer Support in Cul-
tural Heritage

24 Richard Berendsen (UVA) Finding People, Pa-
pers, and Posts: Vertical Search Algorithms and
Evaluation

185






	Introduction
	Research outline and questions
	Main contributions
	Thesis overview
	Origins

	Background
	Information retrieval
	A very brief history of IR
	Algorithms for document retrieval

	IR evaluation
	On benchmarking
	Ingredients of a test collection
	Error analysis
	Automatic evaluation

	Vertical search applications
	Finding people
	Finding papers
	Finding posts


	Query Classification in People Search
	Data and methods
	Results and discussion
	High profile versus low profile classification
	Low profile, event-based, and regular high-profile classification
	Lessons learned in the two experiments

	Conclusions

	Result Disambiguation in People Search
	Dual strategies for result disambiguation
	Experimental setup
	Results and analysis
	Results
	Analysis

	Discussion
	Conclusion

	On the Evaluation of Expertise Profiles
	The topical profiling task
	The assessment experiment
	Automatically generating profiles
	Judging the generated profiles

	Research questions and methodology
	Results and analysis of the assessment experiment
	Self-selected vs. judged system-generated areas

	Results and analysis of the assessment experiment
	Completeness of the two sets of ground truth for expert profiling
	Difficult experts and difficult knowledge areas
	A content analysis of expert feedback

	Self-selected vs. judged system-generated areas
	Five sets of assessments
	Contrasting GT1–GT5
	Changes in system ranking
	Pairwise significant differences

	Discussion and conclusions
	Main findings with recommendations
	Directions for future work


	Pseudo Test Collections for Scientific Literature Search
	Problem statement
	Sampling methods
	Experimental setup
	Results
	Performance of individual features
	Using pseudo test collections for evaluation

	Discussion
	Conclusion

	Pseudo Test Collections for Microblog Search
	Problem definition
	Selecting hashtags and tweets
	Hashtags: all hashtags, tweets are equal
	Hashtags-T: generating timestamps
	Hashtags-TI: selecting interesting tweets

	Generating queries
	Experimental setup
	Experiments
	Dataset and preprocessing
	Learning to rank
	Evaluation

	Results and analysis
	Parameter tuning results
	Learning to rank results

	Discussion
	Conclusion

	Conclusions
	Main findings
	Future research directions

	Appendices
	Description of the TU expert collection
	Differences with the original UvT expert collection
	Documents in the TU expert collection
	Expertise areas in the TU expert collection
	A thesaurus of expertise areas
	Two sets of relevance assessments

	Bibliography
	Summary
	Samenvatting

