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Logical Aspects of Combined
Structures

PATRICK BLACKBURN AND MAARTEN DE RIJKE

Abstract

This is an exploratory paper about combining structures. Typically when
one applies logic to such areas as computer science, artificial intelligence or
linguistics, one encounters hybrid ontologies. The aim of this paper is to
identify plausible strategies for coping with such ontological richness.

Introduction

This is an exploratory paper about combining structures. The need
for various such combinations has come up in many areas, including
computer science (Aceto 1992, Montanari et al. 1993), artificial intelligence
(Hobbs 1985), linguistics (Blackburn et al. 1993, 1994a), philosophy (Selig-
man and Barwise 1993) and logic itself (Kracht and Wolter 1991, de Rijke
1993).

The aim of this paper is to identify the issue of combining structures
(and of combining logics and theories, for that matter) as a new research
line. We do this as follows. We first present a list of examples in Section 1.
In Section 2 we introduce a very simple framework for combining structures
using so-called trios; briefly, a trio is a triple consisting of a two classes of
structures and a collection of links between them. We give examples of
theories of specific trios, and we discuss how properties of structures that
are combined into trios, transfer — or don’t transfer — to the trio. Section
3 concludes the paper with a discussion of further questions.

A final introductory remark: this paper is a preliminary report of ongo-
ing work; a fuller account will be given in (Blackburn and de Rijke 1994).
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5.1 Examples

In this section we present examples. We focus on combining structures,
but much of what we will say below can be couched in terms of combining
logics or theories. We start with two simple examples of what we call
refinement semantics in which one ontology is given additional structure
at the atomic level by other ontologies; we then move on to the richer
classification semantics in which one structure classifies the elements of
another structure by inducing an equivalence relation on it. F inally we
consider fully interacting structures, where there is no restriction on the
relation between the structures being combined.

Generalized Phrase Structure Grammar

Our first example of a refinement semantics stems from generative linguis-
tics: the Generalized Phrase Structure Grammar of Gazdar et al. (1985)
views linguistic structure as a combined ontology, namely finite trees fibered
over finite feature structures, that is: finite trees such that to every node
in the tree is associated a finite labeled transition system in which every
transition relation —%» is a partial function.

Feature structure Tree Feature structure

FIGURE 1 Linguistic structure in GPSG

In GPSG the feature structures are used to refine the notion of grammatical
category. In contrast to the usual practice in formal language theory where
the nodes of parse trees are decorated with ‘indivisible’ information about
categories (for example NP for Noun Phrase or VP for Verb Phrase), GPSG
splits the atom: an NP is now a structured object, a feature structure, that
contains information about various subatomic features and values.

Finite trees fibered over finite feature structures provide a semantics for
two distinct languages: a tree language £7 that moves us around the tree,
and a feature language £ that allows us access to the inner structure of
grammatical categories. The central ideas of GPSG can then be expressed
in a mixture of the two languages called L7 (L) — the language £T layered
over the language £F — in which the £F wffs are viewed as the atomic
wils of £LT. A wff ¢ in the layered language LT(LF) is evaluated as follows:
in general ¢ contains £ connectives that move us around the tree until we
hit what used to be the atomic level; instead of invoking an assignment or
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valuation at this stage we have further work to do: we zoom in from the
tree node 7 to the associated feature structure Z(n) and start evaluating
at z(n).

Refinement is a very simple way of combining structures; the interac-
tion between the components is limited — nodes in the feature structure,
for example, simply don’t have permission to access the tree structure.
This restriction has a number of pleasant consequences; it’s usually fairly
straightforward to combine completeness and decidability results for the
component logics into completeness and decidability results for the layered
language (cf. Section 3 below).

Action Refinement in Process Theory

The previous example involving GPSG concerned refinement of states. In
the present example we consider refinement of actions or transitions. In
the top-down design of distributed systems one uses actions and states on
an abstract level to represent complex processes on a more concrete level,
leading naturally to refinement of states (as in the earlier GPSG example),
and of actions (Aceto 1992).

Consider the design of an input device, repeatedly reading data and
sending it off. A first, and highly abstract description is given in Figure 2.

read send
Coe . .

data data

FIGURE 2 An input device

On a slightly less abstract level of description the action ‘read data’
decomposes into ‘prepare reading’ and ‘carry out reading.” This corresponds
to Figure 3:

r--T- - - - - - T -7 |
( | Drepare carry out, send )
L] L ]

" - *
| reading reading ! data

FIGURE 3 The input device refined

This is a very simple kind of refinement of actions: it just refines by a
sequence of actions. In general more sophisticated types of refinement may
be needed; one can think of refinement by parallel actions, or by infinite
processes. This is best formulated as a form of substitution of structures
in the following manner. Let 7 be a function from the (atomic) actions of
a labeled transition system ¥ to rooted transition systems. The refinement
of ¥ by 7 is the structure that is obtained as follows. For s 25 ¢ an
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edge in T let r(a)’ be a new copy of r(a); identify s with the root of r(a),
identify ¢ with all end nodes of r(a), and remove the edge s — ¢. In other
words, instead of making an a-transition at s, we now start at the root of
r(a)’, traverse a terminating path through r(a)’, and then continue from ¢
onwards.

In passing, it’s quite natural to look systematically at the converse of
refinement: abstraction. One could take a structure 2l to be an abstraction
of a structure B if A is the quotient of B under an appropriate notion of
morphism (see Hobbs (1985) for an example use of abstraction in AI). A
general approach would allow for refinements/abstractions over any kind of
item in ones structures simultaneously.

Lexical Functional Grammar

In many applications where structures or logics need to be combined, more
complex interactions are required than refinements; classifications provide
an important example of such combinations. To explain these, and to see
how classifications are different from refinements, it’s best to return to
generative grammar; more specifically, we will look at Lexical Functional
Grammar (LFG) (Kaplan and Bresnan 1982). Like GPSG, LFG views syn-
tactic structure in terms of composite entities made from finite trees and
finite feature structures, but it glues these together rather differently. The
basic picture is the one given in Figure 4.

PN

Tree Feature structure

FIGURE 4 Linguistic structure in LFG

Here we have a single finite tree and a single finite feature structure
linked by a partial function z. This feature structure induces a classification
of tree nodes via z in the following sense. According to LFG, sentences
embody two levels of structure: constituent structure, which is represented
by a tree, and grammatical relations, represented by a feature structure.
Then, two tree nodes are identified, or classified as ‘being functionally the
same,’ if they are mapped onto the same point in the feature structure.

Note that this is not the same as refinement of atomic information,
rather it’s about ensuring that the internal structures of the two ontologies
correctly ‘match’ each other. LFG enforces the required matching using
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phrase structure rules annotated with equations. For example, T = | means
that if we move up the tree from a node ¢, and then zoom in to the feature
structure, we arrive at the same point we would have reached by zooming
in directly from ¢.

Channel Theory

Another area where the idea of using one structure to classify the objects of
another is Situation Semantics. Situation semantics has long emphasized
the importance of ontological diversity, and one branch where this is put
forward very elegantly is the channel theory initiated by Jerry Seligman
(1990).

As part of a general attempt to model laws or regularities, and infor-
mation flow, a classification is defined as a triple A = (tok(A), typ(A), 1),
where tok(A) and typ(A) are non-empty sets (of tokens and types, respec-
tively), and : is the classification relationship between tokens and types (see

Figure 5).

.':'. : Tokens

FIGURE 5 A classification

Here the types of A classify the tokens of A, and the types induce a
natural equivalence relation ~ of indistinguishability on tokens: a ~ b iff
for all types a we have a : ' iff b: a. As with LFG and its annotated phrase
structure rules, further restrictions may be imposed on the way types and
tokens interact.

In channel theory classifications are not considered in isolation. A fur-
ther ‘stacking’ of structures occurs when classifications are combined into
so-called channels to model information flow. A channel is something which
directs information flow between classifications. This is achieved as follows.
First, a notion of information preserving morphisms between classifications
A and B is defined as a certain kind of bi-function f : A 3 B. Then,
a chanpel C : A = B is a classification C together with morphisms
leftc : C = A and right : C 3 B.

Roughly, the tokens of C are used to model connections between the
tokens of A and the tokens of B, and the types of C are used to express
constraints between the types of A and the types of B; and a connection is
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A ——6 "

FIGURE 6 A channel

classified by a constraint just in case information flows along the connection
in a way that conforms to the constraint.

Full Interaction: Fibering

In an essential way the four examples of combining structures or logics
given so far all involve only one way traffic between structures: objects in
one structure convey information about objects in another structure. In
a number of recent talks and papers Dov Gabbay has advocated the idea
of fibering two sets of semantic entities over each other (Gabbay 1991).
Roughly, a fibered structure consists of two classes of models, each class
with its own language, plus a function between the classes that tells you
how to evaluate formulas belonging to the one language inside structures
of the other.

To make this more concrete, here is an example: we fiber finite trees
and finite equivalence relations; for the sake of this example we assume that
we have two mono-modal languages, Lr for talking about trees, and Lg
for talking about equivalence relations.

R

FIGURE 7 Fibering a tree and an equivalence relation

First of all, let a model-state pair be a pair (91,s) where 9 is a model
based on a finite tree or on a finite equivalence relation, and s is an element
of 9. Second, let My, Mg be non-empty sets of model-state pairs whose
first component is a finite tree or a finite equivalence relation, respectively,
and such that if (9,s) € My UMg and s’ € 9, then (M,s’) € Mp U
Mg. Now, for the fibering function, let F be a pair of functions (Fr, Fg)
with Fr : My = Mg and Fg : Mg — Mgy such that model-state pairs
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that are mapped onto each other agree on all atomic symbols common to
both languages; the fibering function regulates the interaction between the
classes of structures M7 and Mg. Finally, for F' a fibering function, the
F-fibered structure over M7 and Mg is the triple (Wg, Rr, V) such that

o Wris Mr UMEg,
e Rpis { ((93?1,51),(93?2.32)) : 9, = My and Rs;ss },
e Vg is simply the union of the component valuations.

As to the evaluation of complex formulas, tree formulas are interpreted
in M7 as usual, and likewise for Lg-formulas and Mg. If we hit a tree
formula while evaluating in Mg, we apply the fibering function £ to the
current model-state pair, and continue evaluating in its associated model-
state pair in Mz; a similar move is made when we hit an Lg subformula
while evaluating in M.

We should point out that more involved definitions of fibering (or
similar constructions) have been proposed in the literature (Eiben et al.
1992,Gabbay 1991, Goguen and Burstall 1984). For our purposes the defi-
nition given here suffices.

Much contemporary research in logic is strongly influenced by applications
— and not merely the traditional applications in philosophy or mathemat-
ics. Instead, new interdisciplinary work in such areas as Cognitive Science,
Artificial Intelligence and Theoretical and Computational Linguistics is the
focus of attention. This broadening of the scope of applied logic forces the
logician to take ontological diversity seriously, and emphasizes the need for
investigations such as the present one.

5.2 Trios

In this section we present a first pass at a mathematical framework for
combining structures.

Definition 1 Let A and B be two classes of structures, and let Z be a
collection of relations between the elements of A and those of B. Then the
triple (A, Z,B) is called a trio. The classes A and B are called the left and
right continents, respectively, of the trio, and Z is called its bridge.

As an example, the trios in GPSG style refinement consist of a single tree
2 as their left continent, a right continent consisting of || many structures
{%B, :ain A}, and a bridge consisting of an injective function linking each
point of A to an element of the right continent.

Of course, the general notion of a trio will only lead to useful and interesting
theorizing when we refine it. Such refinements can be pursued along at least
two lines. First of all we can try to develop the systems theory of trios.
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How do they combine? What kind of structure do they form? It seems that
2-categories (Street 1987) will provide a natural setting for understanding
trios at a very abstract level. This kind of question is left to a separate
paper.

Here we pursue a second line of questions that comes up in connection
with trios: logical issues. We will touch upon logics of specific trios, the
analysis of specific bridges, and the classification of bridges.

Logics of specific trios. Consider a bisimilar trio (%, €, B) where 2,
B are labeled transition systems with transition relations — and l>,
respectively, and € is a bisimulation between 2 and 9B; that is, & is a
non-empty relation on 2 x B that only relates points with the same atomic
information and that satisfies a back-and-forth condition: if z, y € %,
' €8,z yand z & 7/, then there is a ¥’ € B such that 2/—2sb and
y € y' (and likewise in the opposite direction). We also assume that 2
comes with a mono-modal language £((a)), and B with a language L((b)).

A first decision we have to make is: what language do we use to talk
about such bisimilar trios? Given that we have components A, B and ©,
the natural set-up has two constants left and right to denote %A and B
respectively, and four diamonds (a). (b) and (z), (¢71), where (z), (z71) let
us move back-and-forth between the two continents 2 and 9B, that is: they
are interpreted using the bisimulation relation <.

An obvious question is: what is the logic of bisimilar trios? — We need
at least the axioms and rules of inference of the minimal modal logic K for
each of (a), (b), (z) and (z71). In addition the following axioms should be
added:

e the well-known axioms from temporal logic stating that the inter-
pretation of (z) is the converse of the interpretation of (27 1):

e left Vright and —(left A right) to force every point to live in
exactly one continent:

o ¢ < (¢ Aleft) for all £((a)) formulas, and likewise with right
and £((b}) formulas, to force the interpretation of 1eft and right
to be an £({a)) model and an L£({b)) model, respectively;

o (2)¢ — leftA(z)(rightA¢)and (z7')¢ — rightA(z 1) (leftAo)
to force the interpretation of (z) to be a subset of ‘the interpreta-
tion of left X the interpretation of right’;

e left Ap — [z]p and right Ap — [z t]p (for p atomic!), to force
the condition on atomic information;

e (a)p — [z](b){271)¢ and (bYo — [z7 ]{a)(z)@, to force the back-
and-forth conditions.

Theorem 1 The above set of axioms and rules completely aziomatizes va-
Lidity of bisimilar trios.
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The proof of the theorem is a canonical model construction; as the re-
quirement that € be non-empty is not expressible we may have to tinker
somewhat with the canonical model — but this can be done using standard
techniques from modal logic.

Analyzing specific bridges. We now move on to a slightly more general
genre of question. Fix a kind of bridge, and let Z be a bridge of that kind
" what do we know about completeness, decidability, complexity ... of
the trios (A, Z,B), given that we have complete, decidable ... theories for
the continents? Here are a few examples.

Finger and Gabbay (1992) prove some general transfer results for a
special form of the notion of refinement that we discussed in Section 2.
They show how to add a temporal dimension to a logic system, or in our
terms: they take temporal logic with Since and Until over the natural
numbers as the ‘top language’, and refine the atomic information of that
language, using any other language as the ‘bottom language’. The results
Finger and Gabbay establish include that, provided the bottom language
has a complete axiomatization, the combined language has one as well; and,
provided the bottom language is decidable, so is the combined one. In the
full paper we enhance and generalize these transfer results in a number
of ways. First, we also consider transfer and non-transfer of complexity
results. Second, we show that the Finger and Gabbay results remain valid
when other (one-dimensional) top languages are used instead of Since, Until
logic. And third, to capture phenomena such as Action Refinement in
Process Theory (as discussed in Section 2). we consider transfer problems
for top languages whose formulas are interpreted at semantic objects other
than single states, including pairs, transitions, and sequences.

As a second example, following their introduction in the formal seman-
tics of natural language, Shehtman (1978) considers the Cartesian product
of two modal logics. For instance, the intended frames of the Cartesian
product of the modal logics S4 and S5 consists of structures whose uni-
verse is a product Uy x U; with a pre-order on Up and an equivalence
relation on U;. An important question here is to determine in which cases
L(31 X F2) = L(31) x L(F2), that is, when does the logic of the product
coincide with the product of the component logics? Shehtman (1978) pro-
vides a partial answer. Another important example of a similar ‘simple’
combination of structures arises when we consider so-called independent
joins of logics. For instance, the independent join of two mono-modal log-
ics L; and L, with distinct modal operators (a) and (b), respectively, is
simply the union of the two logics. On the level of structures this operation
amounts to considering structures (W, —», —) that have reducts living in
the language of L; and in the language of Ly. Kracht and Wolter (1991)
show that the independent join of two complete or decidable logics is again
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complete or decidable. And Spaan (1993) completely classifies the complex-
ity of the independent join of two modal logics in terms of the complexity
of the component logics; she also analyzes the much more difficult situation
in which the component logics are not fully independent. In the full paper
we present further results along these lines.

Classifying bridges. The final of type of question we want to mention is
still more general; it can roughly be summarized as: what kind of bridges
are there? Questions like this serve a dual purpose: on the one hand they
spring from a desire to find sensible ways of cutting up the universe of all
trios (in Section 2 we only considered three kinds of trios: refinements,
classifications and full interactions); on the other hand having available a
taxonomy of trios and bridges may help us in obtaining generalizations —
and thus in gaining a better understanding — of the results obtained so
far. For example, this may help us to understand why refinements and
independent joins behave nicely. These issues are the focus of our ongoing
technical investigations.

5.3 Discussion

At both the technical and conceptual level there is much obvious work
to do. For example, the completeness result for bisimilar trios is just a
pointer to further results; Blackburn and de Rijke (1994) axiomatize other
logics of specific trios, and indeed it is possible to state and prove general
completeness results for trios in the spirit of Sahlqvist’s Theorem.

It seems hard to state general results and properties of combined struc-
tures without moving to a very abstract mathematical framework. As has
already been mentioned, to understand the systems theory of trios at a
general level, we feel that 2-categories may be useful. However, for particu-
lar kinds of trios dedicated system theories can be much more appropriate;
channel theory as a theory of clasification structures provides an example.

To conclude the paper let us consider a very obvious weakness of the
story we have told so far; we have acted as if combined ontologies are life-
less, static entities. This ignores the fact that for many applications it is
precisely the dynamic aspects of combined ontologies that are of interest.
To make matters more concrete, we revert to generative grammar. Con-
sider Tree Adjoining Grammars (tags) (Joshi et al. 1975). Tag analyses
are essentially dynamic; sentences are viewed as the result of merging trees
together. To gain something of the flavour of tags in action, consider the
operation known as adjunction. Let T be a tree with an internal node la-
beled by the nonterminal symbol A. Let p be an auxiliary tree with root
and foot node labeled by the same nonterminal symbol A. The tree 7/ that
results by adjoining p at the A-labeled node in 7 is formed by removing the
subtree of 7 rooted at this node, inserting p in its place, and substituting it
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at the foot node of p. Perhaps the most important thing to notice is the role
played by the node labeled A. We began with an initial structure (namely
7) with a designated node (namely that labeled A); we then performed a
computation step; and this created a larger structure with a new designated
node, the site for further creation. Of course, all this could be described
statically. But to do so does violence to the underlying intuitions. We need
analyses which cope with the growth of structures rather than merely treat-
ing them as completed objects.! This idea brings us to territory already
explored by much of the literature on feature logic (Carpenter 1992), on
evolving algebras (Gurevich 1991) and on specification languages (Groen-
boom and Renardel de Lavalette 1994). Ultimately this seems to require
investigations of ‘imperative logics’, that is, logics that write to models
rather than treating them as read-only structures; see Blackburn, de Rijke
and Seligman (1994b) for some preliminary investigations.
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