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A b s t r a c t .  In this paper we introduce a description ta~guage for finite 
trees. Although we briefly note some of its intended applications, the 
main goal of the paper is to provide it with a sound and complete 
proof system. We do so using standard axioms from modal provability 
logic and modal logics of programs, and prove completeness by extending 
techniques due to Van Benthem and Meyer-Viol (1994) and Blackburn 
and Meyer-Viol (1994). We conclude with a proof of the EXPTIME- 
completeness of the satisfiability problem, and a discussion of issues re- 

l a t e d  to complexity and theorem proving. 

1 Introduction 

In this paper we introduce a modal language for describing the internal structure 
of trees, provide it with an axiom system which we prove to be complete with 
respect to the class of all finite trees, and prove the decidability and EXPTIME-  
completeness of its satisfiability problem. But before getting down to the tech- 
nicalities, some motivation. 

In many applications, finite trees are the fundamental data  structure. More- 
over, in many of these applications one wishes to specify how the nodes within 
a single tree relate to each other; that is, it is often the internal perspective 
that  is fundamental. By way of contrast, most work on logics of trees in the 
computer science literature takes an external perspective on tree structure. For 
example, in the work of Courcelle (1985) and Maher (1988), variables range over 
entire trees. This is a natural choice for work on the semantics of programming 
languages, but unsuitable for the applications mentioned below. And although 
the internal perspective on trees has been explored in the logical li terature (the 
classic example is Rabin's (1969) monadic second order theory SnS) ,  such ex- 
plorations have usually been for extremely powerful languages. It is interesting 
to explore (modal) fragments of these systems, and that is the purpose of the 
present paper. 

Although the work that  follows is concerned solely with technical issues, the 
reader may find it helpflfi to consider the sort of applications we have in mind. 
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One has already arisen in theoretical and computational linguistics. In contem- 
porary linguistics, grammars are often considered to be a set of constraints (i.e. 
axioms) which grammatical structures must satisfy. To specify such grammars, 
it is crucial to have the ability to specify how tree nodes are related to each other 
and what properties they must possess. Moreover, it is desirable that such specifi- 
cations be given in a simple, machine implementable system. A substantial body 
of work already exists which models the most commonly encountered grammat- 
ical formalisms using internal logics of trees: we draw the reader's attention to 
Backofen et al. (1995), Blackburn et al. (1993, 1994, 1995), Kracht (1993, 1995), 
and Rogers (1996). Modal logics of the type considered here have been shown to 
provide an appropriate level of expressivity for this application. 

Another possible application is the formal treatment of corrections in graph- 
ical user interfaces. Many competing 'undo mechanisms' have been proposed, 
differing mainly in the way they allow users to jump through the histories of 
their actions, and in the way they perceive these histories. In multi-user appli- 
cations where several agents submit commands concurrently such histories are 
finite trees, and the complexities of the possible action sequences call for simple, 
yet expressive description languages (see Berlage (1994)). Examination of the 
literature suggests that modal languages may be an appropriate modeling tool 
here as well. 

2 T h e  L a n g u a g e  L: 

/2 is a propositional modal language with eight modalities: <l), (r>, <u) and <d) 
explore the left-sister, right-sister, mother-of and daughter-of relations, while 
(l+), (r+), (u+) and (d+) explore their transitive closures. The formal definition 
of L:'s syntax is as follows. We suppose we have fixed a non-empty, finite or 
countably infinite, set of atomic symbols A whose elements are typically denoted 
byp. 

r ::= p I • I T l I r ^ r I (xtr I (x+)r  
x::=Zlrl td. 

We sometimes write Z;(A) to emphasize the dependence on A. We employ the 
usual boolean abbreviations. 

We interpret/~(A) on finite ordered trees whose nodes are labeled with sym- 
bols drawn from A. We assume that the reader is familiar with finite trees and 
such concepts as 'daughter-of', 'mother-of', 'sister-of', 'root-node', 'terminM- 
node', and so on. If a node has no sister to the immediate right we call it a last 
node, and if it has no sister to the immediate left we call it a first node. Note 
that the root node is both first and last. A labeling of a finite tree associates a 
subset of A with each tree node. 

Formally, we present finite ordered trees as tuples T = (T, Rt, Rr, Ru, Ra). 
Here T is the set of tree nodes and R,, Rr, R~, and Ra are the left-sister, right- 
sister, mother-of and daughter-of relations respectively. A pair (T, V), where T 
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is a finite tree and V : A ~ Paw(T), is called a model, and we say that  V is a 
labeling function or a valuation. Let (R~) + denote the transitive closure of R, .  
Then we interpret s on models as follows: 

De f in i t i on  1 (T ru th ) .  For any model M (= (T, Rt, Rr, R~, Ra, V)) define: 

M , t  ~ p  

M , t  ~ --r 

M , t ~ r 1 6 2  

M, t ~ (x)r 

M,  t ~ (x+)r  

iff p E V(t) for all p E A 

iff M , t ~ r  

iff M , t  ~ r  and M , t  ~ r  

iff 3#(tRxt'  and M , t ' ~ r  where x e {l, r, u, d} 

ifr 3t'(t(R,)+t ' add M,t'  pC) ,  where x e ( l ,~ ,u,d} .  

If M,  t ~ r then we say r is satisfied in M at t. For any formula 0, if there 
is a model M and a node t in M such that M , t  ~ r then we say that  r is 
satisfiable. If r is true at all nodes in a model M then we say it is valid in the 
model M. If a formula r is valid in all models then we say it is valid and write 

P C .  

The following defined operators will prove useful. First we define duals of the 
basic operators: [x]r := -,(x)-,r and [x+]r := --(x+)-,r for all x e (l, r, u, d}. 
We also define operators for talking about the reflexive transitive closure of four 
basic relations: (x*}r := CY (x+)r  and [x*]r := -,(x*)--C, for all x e {l,r,u, d}. 
Next we define the following constants: first := [I]_L, last := [r]_l_, start :-= [u]_L 
and term := [d].L. Note that  first, last, start and term are constants true only at 
left nodes, right nodes, the root node, and terminal nodes, respectively. 

3 A P r o o f  S y s t e m  for  E 

We now introduce a logic called LOFT (Logic Of Finite Trees). LOFT is the 
smallest set of s formulas that (a) contains all tautologies, (b) contains all in- 
stances of the axiom schemas given below, (c) is closed under modus ponens (if 
r and r ~ ~b belong to LOFT then so does r and (d) is closed under gen- 
eralisation (if r belongs to LOFT then so do [l]r It]C, [u]r [d]r [l+]r [r+]r 
[u+]r and [d+]r Note that  this is a purely syntactical description of LOFT.  
The completeness theorem proved below shows that LOFT really does deserve 
its name: LOFT consists of precisely the formulas of s valid on finite trees. 

It remains to specify the axiom schemas. These fall naturMly into four groups. 
The first group is the simplest. Schema 1 is the fundamental schema of normal 
modal logic. Schemas 21~ 2r, 2u and 2d reflect the fact that both R~ and Rr, and 
Ru and Rd, are converse pairs of relations (these schemas are basic axioms of 
temporal logic), while schema 3 (familiar from modal logic) reflects the fact that  
Rl, R~ and Ru are partial functions. 

1. [x](r ~ r ~ ([x]r ~ [x]r 
21. r ~ [l](rlr 

(x e ( l , r ,u ,d})  
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2r. r -~ [r](l)r 
2u. r ~ [u](d)r 
2d. r --o [d](u)r 
3. ( z ) r  [~]r ( ,  �9 {l, r, u}) 

The second group are (irreflexive analogs of) the Segerberg schemas used in 
modal logics of programs; they reflect the fact that the operators [l+], [r+], [u+] 
and [d+] make use of the transitive closure of the relations for [l], [r], [u] and [d] 
respectively. 

4. [~+]r  ~ [ , ] [ z , ] r  
5. [x+] (r  --, [,1r --, ([x]r -~ [z+]~)  

(x @ { l , r ,u ,d})  
(x e (1, r, u, d}). 

The third group reflects the fact that we are working only with finite trees. 
Schema 7 (Lhb's schema) is the crucial one. It is the key schema of modal prov- 
ability logic and expresses a second-order fact about finite trees: the transitive 
closure of the 'daughter-of' relation, and of the 'to-the-right-of' relation, are both 
converse well founded. 

6. (u*)startA (d*)termA (l*)first A (r,)last 
7. [x+] ( [~+]r  --* r -~ [~+]r  (x e {r, d}). 

The fourth group reflects the links between the vertically and horizontally 
scanning modalities. 

S. <d>r [d](first ~ (r*>r 
9. (d>r --+ (d>first A (d>last 
10. start --* first A last. 

4 P r o v i n g  C o m p l e t e n e s s  

In this section we prove the completeness of LOFT. (Proving that LOFT is sound 
with respect to finite trees is straightforward, though readers new to modal logic 
may find it helpful to refer to Goldblatt (1992) or Smoryfiski (1985) for fur- 
ther discussion of the Segerberg and Lhb schemas.) Our proof uses ideas from 
provability logic and dynamic logic, and extends techniques used by Van Ben- 
them and Meyer-Viol (1994) and Blackburn and Meyer-Viol (1994). The work 
falls into three phases. First, we show that LOFT is complete with respect to 
a certain class of finite pseudo-models. Although pseudo-models are not trees, 
they embody a great deal of useful information about LOFT, and in the second 
phase we show how to make use of this: we prove a sufficient condition (the truth 
lemma for induced models) under which pseudo-models induce genuine models 
on finite trees. In the third stage, the heart of the proof, we show that there is 
a (finite) inductive method for building induced models. 
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4.1 Preliminaries 

The first notion we need is that of a closure of sentences. Recall that  a set of 
formulas Z is closed under subformulas iff for all r E Z,  every subformula of r 
is in E.  Following Fischer and Ladner (1979) we define sets of formulas that  are 
closed under a little more structure than simply subformulahood. 

Definition 2 (Closures). Let E be a set of formulas. CI(Z) is the smallest 
set of sentences containing E that is closed under subformulas and satisfies the 
following additional constraints. 

1. If (x+)r  ~ CZ(S), then (x)r C CZ(S), where x ~ {Z,r, u, d}. 
2. If (x+)r  E CI(S), then (x)(x+)r  E CI(S), where x E {l ,r ,u,d}.  
3. If (d)r C Cl(S) ,  then (r*)r C Cl(Z). 
4. (x)T e Ct(Z) for x e { l ,T ,u ,d} .  
5. (d)first, (d)last E CI(Z). 
6. (l*)first, (r*)last, (u*)start, (d*)term e Cl(Z). 
7. If  r e Cl(Z) and r is not of the form -~r then -~r E CI(Z). 

Cl(S) is called the closure of Z. Observe that for every r E Cl(Z) there is a 
r E Cl(S) such that r is equivalent to -~r we will often pretend that  for every 
r e e l (S ) ,  -~r is also in e l ( s ) .  

L e m m a 3 .  Let S be a finite set of formulas. Then CI(S) is finite too. 

D e f i n i t i o n  4 ( A t o m s ) .  If S is a set of formulas, then At(S)  consists of all the 
maximal consistent subsets of Cl(S). In other words, At(Z)  consists of all sets 
A C_ C/(S)  such that  A is consistent, and if B is consistent and A C B C C/(S),  
then A = B. The elements of At(S)  are called atoms (over S).  

L e m m a 5  ( A t o m s  exis t ) .  If r E CI(S) and r is consistent, then there exists 
an atom A E At (Z)  such that r E A. 

Proof. Use the usual Lindenbaum technique together with the observation that  
At (S )  ={A/[ M CI(S) I 34 is a maximal consistent set in the usual sense ). -4 

L e m m a 6  ( P r o p e r t i e s  o f  a t o m s ) .  Let S be a set of formulas and ~4 E CI(Z). 

i. If  0 E Cl(Z), then ~ ~. A (ff -~q) r A. 
2. . / ]  r A'~ E CI(Z) then ~ A r e .,4 l i f e  E ,A and ~b E A 
3. I f  r --~ r E CI(Z), then c~ --* ~ and ~ E A implies r E A. 
,~. I f  (x+)r E e l (S ) ,  then (x+)r C ,4 iff (x)r E A or (x)(x+)r  e ,4, where 

x E {l ,r ,u ,d} .  
5. (u*)start, (d,)term, (l,)fiTst, (r*)last, T E A. 

L e m m a T .  Suppose At(~)  = {r ,,An}. Then t- A A1 v . . .  v A A.. 

Proof. Use the propositional tautology r ~-~ ((r A ~) V (r A -~r -4 
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4.2 Pseudo-models 

In this subsection we define a collection of finite pseudo-models with the following 
property: if r is a consistent formula, then there is a (finite) pseudo-model that 
satisfies r Although this result is of interest in its own right (as we shall see 
at the end of the paper), of equal importance are the definitions and results we 
encounter along the way, for these will be used throughout. 

Definition8 (Canonical relations). Let A,B  E At(Z).  For each x E {l, r, 
u, d, l+, r+,  u+, d+} we define the canonical relations Sz on At(Z)  as follows: 

ASzl3 iff A ,4 A (x) f l  B is consistent. 

L e m m a 9 .  Let,4 be an atom, x E {l, r, u, d, l+, r+,  u+,  d+}, and r E CI(Z). 
I f  A A h (x)r is consistent, then there is an atom B over Z such that r C 13 and 
AS~B. 

Proof. Suppose that A A A {x)~p is consistent. We show how to construct the 
required atom B by 'forcing a choice' between the formulas in At(E). For all 
formulas X, r ~ (r A X) V (r A ~X) is a propositional tautology, hence by simple 
modal reasoning: F- (x)r ~ (x)(r162 Hence by propositional logic, 
either A AA(x)(r or/~ A/\(x}(r is consistent. This observation enables 
us to construct the desired B 'behind the modality' Ix/ by working through all 
the formulas in CI(E). -~ 

L e m m a l 0 .  Let .A be an atom, x e {l, r, u, d, l+, r+, u+, d+}, and (x)r E 
CI(Z). Then (x)r e ,4 iff there is an atom 13 such that r e A and ASxB. 

Proof. For the left to right direction, note that if (x)r E ,4 then A A A (x)r is 
consistent, and the result follows by the previous lemma. For the fight to left 
direction note that if such a B exists, then A-4 A (x} A B is consistent, thus so 
is h A A (x)r As (x)r E CI(Z), by maximality it belongs to .4. 

L e m m a l l .  Let .4 and 13 be atoms in Cl(Z). Then for all x E {l ,r ,u,d},  if 
AS~+B then A( S~)+13. 

Proof. Assume that ASx+B where x is either l, r u or d. That is, A AA (x+) A B 
is consistent. Let 

<':: V 
where (S~) + is the transitive closure of S,. Then a A (x)-,a is inconsistent, for 
otherwise a A (x) A 0r would be consistent for at least one d a not reachable from 
A in finitely many Sx steps; but then A 6 A (x)A C' would be consistent for 
at least one C e At(~)  with A(Sz)+C. Hence .A(Sx)+C ' - -  ~ contradiction. 
Therefore 

t -  o- A --> _L t-- o- --> 

t- [x+J(a --~ Ix]a), by generalization 

--, Ix+]o, by 5. 
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By simple modal reasoning, we have ~- A .4 --* ix]a, so ~ A .4 --~ ix+in. Then, as 
A A A (x+) A B was assumed consistent, {x+)(A B A a) is consistent as well, and 
so A B A a must be consistent. By the definition of a this means that ~ B A A C 
is consistent for at least one atom C with A(S,)+C. By maximality/3 = C, and 
so A(S~)+/3, as required. -t 

L e m m a l 2 .  Le~ ,4 E At(Z) ,  and let x E {l ,r ,u,d}.  Assume that {x+)~b e 
CI(E). Then (x+/r  E .4 iff for some/3 E At(~)  we have A(S,)+B and r E B. 

Proof. Suppose (x+)r E A. By Lemma 10 there is an atom/3 such that ASx+/3, 
hence by Lemma 1l, A(S,)+/3. 

Conversely, suppose that A = A1Sx ' . .  SxAk = B and r E B. We show 
the desired result by induction on k. If k = 1, then AS ,  B. We need to show 
{x+)~b E A. As AS~B, Ix)r E A. By axiom 4, {x)r ~ {z+)~b, hence by 
maximality (x+)~b E .4. For the induction step, assume that k > 1 and A = 
A1S,  A 2 . . . S ,  Ak = B. By the induction hypothesis, {x+)r e ,42. It follows 
that (x)(x+)~b e A1 = A (this uses the second closure condition on CI(E)), and 
hence (x+)r E A by axiom 4. -~ 

Def ini t ion 13. Let a finite set of formulas Z be given. Define the canonical 
pseudo-model over At(E) to be the structure 

P = (At(E), St, S~, S~, Sd, (Sl) + , (S~) +, (S~,) + , (Sd) + , V), 

where V(p) = {A [ p E A}. We interpret g in the obvious way on pseudo-models. 

L e m m a 1 4  (Tru th  l e m m a  for pseudo-models) .  Let P be the pseudo-model 
over At(E).  For all A E A t ( r )  and all ~p e CI(Z), ~b E .4 iff P, A ~ ~b. 

Proof. By induction on the structure of r The base case is clear and the boolean 
cases are trivial. It remains to examine the argument for the modalities. 

First, let x E {l,r,u, d} and suppose that P , A  ~ (x)~b. This happens iff 
there is an atom B such that ASJ3  and P~/3 ~ ~b. By the inductive hypothesis, 
this happens iff there is an atom B such that AS,/3 and ~b E /3. By Lemma 10, 
this happens iff (x)~b E A, the desired result. 

Next, let x E { l+ , r§  u+, d+}, and suppose that P, A ~ (x)~p. This happens 
iff there is an atom /3 such that A(Sz)+B and P ,B ~ r By the inductive 
hypothesis, this happens iff there is an atom B such that A(S,)+13 and r E/3. 
By Lemma 12, this happens iff (x)~ E A, the desired result. 

T h e o r e m  15. LOFT is complete with respect to the class of finite pseudo-models. 

Proof. Given a LOFT-consistent formula ~b, form the (finite) pseudo-model P 
over At({~b}). As ~b is consistent it belongs to some atom A, hence by the above 
truth lemma P,r ~ ~b. Thus every consistent sentence has a model, and com- 
pleteness follows. -q 
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This gives us a completeness theorem for LOFT.  Unfortunately it 's not the 
one we want, since pseudo-models need not be based on finite trees. (The easiest 
way to see this is to observe that  St, St, and S~, need not be partial functions.) 
However, as we shall now see, pseudo-models contain all the information needed 
to induce genuine models on finite trees. 

4.3 I n d u c e d  M o d e l s  

In this subsection we prove the following result: if the nodes of a finite tree T 
are sensibly decorated with the atoms from some pseudo-model, then the pseudo- 
model induces a genuine model on T. 

D e f i n i t i o n  16. Let T = (T, R~, R~, R~,, Rd) be a finite tree and E any finite set 
of sentences. A decoration of T by At(Z) is a function h : T ~ At(Z),  and 
the model induced by the decoration on T is the pair (T ,V) ,  where V is the 
valuation on T defined by t e V(p) iff p E h(t). Suppose that  h is a decoration 
with the following properties: 

1. For all t, t' E T, if tRdt' then h(t)Sdh(t'). 
2. For all t, t' E T, if tRrt' then h(t)Srh(t'). 
3. For all t E T, if (d)r C h(t) then there is a t' E T such that  tRdt' and 

r E h(t'). 
4. start E h(t) iff t = root; term E h(t) (respectively: first E h(t), last E h(t)) 

iff t is a terminal node (respectively: iff t is a first node, iff t is a last node). 

Then h is called a sensible decoration of T.  (In short, a sensible decoration is 
simply a certain kind of order preserving morphism between a finite tree and 
the pseudo-model over At(E).) 

To prove a truth lemma for induced models, we need some additional facts. 

L e m m a l T .  Let A, B C At(Z).  Then AStB iff BSrA, and ASuB iff BSdA. 

Proof. This is proved using the temporal logic axioms. We show that  ASdl3 
iff BSuA; the other case is similar. Let ASdB and suppose for the sake of a 
contradiction that A BA (u) A A is inconsistent. Thus ~- A B ~ -~(u) A .4. Hence 
by generalisation t- [d]/~ B ~ [d]--(u) A ,4. As ASdB, A AA(d) A B is consistent, 
thus by simple modal reasoning, so is A A A (d)-~(u) A .4. But by axiom 2d, 
t- A A -~ [d](u)A, therefore (d)( (utAA-~(u) A ,4) is consistent - -  a contradiction. 
We conclude that BS~,A. A symmetric argument (using axiom 2u) establishes 
the converse, as required. -t 

C o r o l l a r y  18. Let h be a sensible decoration of T and x E (l, r, u, d}. Then for 
all nodes t, t' in T, trot  ~ implies h(t)S~h(t~). 

Proof. For r and d this is immediate from the definition of sensible decorations. 
For I and r it follows from the previous lemma. 
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L e m m a l g .  For all atoms A and B in CI(E), and all x E {I,r, u}, if .AS~13 and 
(x)r E A then r E 13. 

Proof. As AS~B, A AA(x) A B is consistent, hence as (x)r E A, (x)r A B is 
consistent. It is an easy consequence of axiom 3, the partial functionality axiom, 
that  F- (x)0 A (x)x --~ (x)(0 A X); thus it follows that (x)(r A AB)  is consistent, 
and thus so is e A A B. As e E Cl( Z), by maximality we get e E B. -q 

L e m m a 2 0  (Effects  o f  t he  cons t an t s ) .  Let A E At(X). Then 

1. start E A iff no formula of the form (ulr or (u§162 is in A; 
2. term E A iff no formula of the form (d)r or (d+)r is in A; 
3. first E ,4 if[ no formula of the form (l)r or ( l+)r  is in A; 
4. last e g iff no formula of the form (r)r or ( r+)r  is in A. 

Proof. For the one step modalities the result is immediate. For the transitive 
closure modalities, note that  by axiom 4, F- (x§162 *-+ ((z)r V (x)(x+)r So, 
assuming that  (z+) r  E CI(S), by the first and second closure conditions, we 
find that  (x+)r  is in A iff either (x)r or (x)(x+)r is in A. This observation 
reduces the transitive closure case to the case for the one step modalities. -t 

L e m m a 2 1 .  Let A ,B  E At(Z),  let x E {l,r,u,d}, and AS~B. I f  (x+)r  E A 
then either • E B or (x+)~b E 13. 

Proof. Follows from axiom 4 and the first and second closure conditions. -q 

L e m m a 2 2  ( T r u t h  l e m m a  for i nduced  mode l s ) .  Let h be a sensible deco- 
ration o f t  and M = (T,V) be the model induced by h on T. Then for all nodes 
t in T,  and all~ E Cl(~),  M , t  ~ r iff~b E h(t). 

Proof. By induction on the structure of ~b. The base case is clear by definition, 
and the boolean cases are trivial. It remains to consider the modalities. 

First we treat the case for the one step modalities. Suppose M , t  ~ (x)r 
where x E {l ,r ,u,d}.  Then there is a node t ~ such that t R J  and M , t  ~ ~ r  
As h is a sensible decoration, by Corollary 18 h(t)Sxh(t'), and by the inductive 
hypothesis, r E h(t'). By Lemma 10, (x)r E h(t) as required. 

For the converse, suppose M~ t ~= (x)~b. Then either x = u and t is the root 
node (respectively: x = d and t is a terminal node, x = 1 and t is a first node, 
x = r and t is a last node) or there is at least one node t ~ such that  t r i g  but for 
all such nodes M, t ~ ~= r Suppose the former. Then by Lemma 20, (x)r r h(t) 
for any ~b, the required result. So suppose that there is a t ~ such that tRzt ~ but 
for all such nodes M, t' ~ r As h is sensible, h(t)Sxh(t') and by the inductive 
hypothesis r ~ h(t'). Now, if x E {1, r, u} then by Lemma 19, (x)r ~ h(t), the 
required result. On the other hand, if x = d then we also have that  (x)r r h(t), 
as otherwise we would contradict item 3 in the definition of sensible decorations. 
Either way, we have the required result. 

It remains to treat the transitive closure operators. Suppose M,  t ~ (x+)r  
where x E {l, r, u, d}. Then there is a node t' such that t(R~)+t'; that  is, there is 
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a finite sequence of nodes t = t l R ,  �9 .. Rz tk  : t' and M, t' ~ r As h is sensible, 
h(t) : h ( t l ) S , " .  S ,h ( t k )  = h(t'), and by the induction hypothesis, r C h(t'). 
Thus by Lemma 12, (x+) r  E h(t), as required. 

Conversely, suppose M,  t ~= (x+)r  Then for all t' such that  tR+~t ' we have 
M,  t' ~= r  and hence by the inductive hypothesis, r ~ h(t~). Suppose for the 
sake of a contradiction that  (x+)r  E h(t). Then by Lemma 20, the constant 
corresponding to x (that is, f irst,  last, start and term for l, r, u and d respec- 
tively) does not belong to h(t). As h is a sensible decoration, this means that  t 
has an R ,  successor t]. By Lemma 21, either r or (x+) r  belongs to h(tl) ,  so as 
r r h( t l ) ,  (x+) r  E h(tl) .  We are now in the same position with respect to tl 
that  we were in with respect to t, and can repeat the argument as many times as 
we wish, generating a sequence of nodes t R x t l R z t 2 . . ,  such that  (x+) r  ~ h(t~) 
for all i. But as t lives in a finite tree, it only has finitely many successors; hence, 
for some j ,  h(t j )  must also contain the constant corresponding to x - -  but then 
by Lemma 20, it must also contain -~(x+)r E h(t~). As atoms are consistent this 
is impossible. We conclude that  (x+)r  r h(t), the desired result. 

4.4 Leve ls  and R a n k s  

The truth lemma for induced models suggests the following strategy for proving 
completeness: given a consistent sentence r simultaneously build by induction a 
suitable finite tree and sensible decoration, and then use the induced model. This 
is essentially what we shall do, but there is a problem. We need to build a f inite 
tree, so we must guarantee that  the inductive construction halts after finitely 
many steps. It is here that  the Lhb axioms come into play. Roughly speaking, 
they enable us to assign to each atom two natural numbers: a vertical 'layer', 
and a horizontal 'rank'. These have the following property: when generating 
vertically we can always work with atoms of lower level, and when generating 
horizontally we can always work with atoms of lower rank. This will enable us 
to devise a terminating construction method. (The reader is warned, however, 
that  these remarks are only intended to give the basic intuition; as we shall see, 
the real situation is more complex.) 

The basic observation on which these ideas rest is the following: 

L e m m a 2 3 .  Let  x E {r, d}. I /  ( x+)r  is consistent then so is CA [x][x*]-~r 

Proof. The contrapositive of the Lhb axiom is (x+)r  ---* (x+)(r [x+]-~r Using 
the first Segerberg axiom, this can be rewritten as 

<x+)(r ^ 

Hence, if (x+>r is consistent, so are (x+>(r [x][x*]-~r and CA [x][x*]-~r -~ 

The following group of definitions and lemmas build on this to show that  the 
set of atoms is 'vertically well behaved'. 

De f in i t i on  24. S.v is the set of all atoms in A t ( ~ )  that contain start.  



96 

Note that S~ is non-empty for any choice of At(E). To see this, note that 
by axiom 6, (u+)start is consistent, hence so is start. By our closure conditions, 
start e CI(E), hence there is some atom in At(E) containing start. 

Lernma25 .  Suppose At(E) \ S~ is non-empty, and let A = {A1,.. .  ,Mn} and 
B = {B: , . . . ,  Bin} be disjoint non-empty sets of atoms with A U B = A t (E ) \  S~. 
Then for some A E A, 

A A ^ [4[d+l(A ~1 V"" V A 

is consistent. 

Proof. Let A be A AIV. . .vA A,~. As any atom is consistent, A is consistent, and 
as -,start belongs to every atom in A, {d+}A is consistent. Let S~ be enumerated 
as S~, . . . ,  St (this is possible, for S~ is finite) and let S be A $1 v . . .  v A st. As 
(d+tA is consistent, so is (d+}(S V A), hence by the previous lemma 

(s v A) ^ [4[d,b(s v A) 

is consistent too. 
Let B be ABIV . . .vAl3m. As SzUAUB = At(E), byLemma 7, F SVAVB, 

hence F -,(S VA) --* B. Thus (SVA)A [d][d*]B is consistent, hence AA [d][d*]B 
is consistent, hence for some ,4 C A, A A [d][d*]B is consistent, which yields the 
desired result. 4 

Def ini t ion 26 (Levels 1). Let Cl(2) be a closed set such that At(E) \ Sz is 
non-empty. Then the levels on At(Z) \ S~ are defined as follows. L0 is defined to 
be {A E (At(E) \ S~) I term C A}. For i _> 0, V/is U0<j<i ni,  and if At(E) \ Vi 
is non-empty, then L~+I exists and is defined to be 

A E (At(E) \ S ~ ) I A  ~f V~ and A A A  [d][d*] V A B  is consistent } .  
BEV~ 

On the other hand, if At(Z) \ Vi is empty then there is no i + 1-th level on 
At(E) \ S~. 

L e m m a 2 7 .  Suppose At(E) \ 56 is non-empty. Then every atom in At(E) \ Sx 
belongs to exactly one level. Furthermore, there is a maximal level Lma,. 

Proof. It is clear that each atom in At(Z) \ S~ belongs to at most one level. 
Further, it follows by induction that no level is non-empty. For the base case 
let A E At(E) \ SE. By Lemma 6 item 5, (d*}term e A. If term e A, then A 
belongs to L0. On the other hand, if term r A, then (d+}term E A, and by 
Lemma 12, there is an atom B such that term C 13 and A(Sd)+B. Either way, 
some atom contains term and the base case of the induction is established. To 
drive through the inductive step of this argument, use Lemma 25. It follows by 
induction that no level is empty. 
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As there are only finitely many atoms, there is a maximum level L,~a~. Sup- 
pose for the sake of a contradiction that some atom .4 belongs to no level. Then 
.4 • Vmax, hence At(X) \ Vmax is non-empty, hence by Lemma 25 Lma~+l exists 
and is non-empty; a contradiction. We conclude that every atom belongs to at 
least one level. 

Defini t ion 28 (Levels 2). For an arbitrary closed set CI(X), the levels on 
At(Z)  are defined as follows. If Sz = At(Z), then all atoms have level 0. On the 
other hand, if At(X) \ Sz is non-empty, then all atoms in At(X) \ S~ receive 
the level assigned by Definition 26, and all atoms in SE are assigned the level 
Lm~+l ,  where Lm~ is the maximum level assigned to an atom in At(Z)  \ S~. 

The following lemma tells us that At(X) really is 'vertically well behaved'. 

L e m m a 2 9 .  Let A, B E At(Z).  Suppose .4 E Li+l where i >_ 0 and (d)r E A. 
Then there is an atom B ELm, where m < i + 1, such that r E B and `4SdB. 

Proof. Case 1: A E Lma~+l. Let (d)r E A, and suppose for the sake of a 
contradiction that there is no atom B in a lower level such that r E B and `4SdB. 
Now, by Lemma 10 there is at least one atom C such that r E C and `4SdC, hence 
by our initial supposition C must be in Lm~+l,  and hence start E C. As `4SdC, 
by Lemma 17, CS~A. As T E A, (u)T E C. But by Lemma 20 this contradicts 
the fact that start E C. We conclude that an appropriate atom B in a lower level 
exists. 

Case 2: A E Li+l where i + 1 < max. Let (d)r E A. Suppose for the sake 
of a contradiction that for all atoms B E V~, A A A (d) A B is inconsistent. This 
means that for all B e V~, ~- A ,4 --, [~-~ A B. Enumerate all the atoms in V/ 
as {B1,. . . ,  Bn}, and let B be A B1 Y .. .  Y A Bn. It follows by simple modal 
reasoning that t- h A ~ [d]-~B. Now, by our definition of levels, A A A [~B is 
consistent, therefore A `4A M(B A-~B) is consistent also. But as (d)r belongs to 
A, this implies that (d)(B ^-~B) is consistent, which is impossible. We conclude 
that the required atom B exists. 

We now turn to a trickier task: ensuring that At(S) is also 'horizontally well 
behaved'. We need the auxiliary notion of a downset. 

Def in i t ion30 (Downsets) .  Let .40 E Li+l, where i _> 0. Then the downset 
of -40 is {7) E V/ i `4oSd7)}, and the initial segment of the downset is simply 
{~) E V/ I AOSdT) and first E D}. 

L e m m a 3 1 .  Let .40 E Li+l, where i >_ O. Then the downset of Ao, and the 
initial segment of this downset, are both non-empty. 

Proof. As A0 E Li+l, where i >_ 0, term ~ A0. Hence by Lemma 20, there is 
some formula of the form (d)r E .40. By axiom 9 and the fifth closure condition, 
(dlfirst E .Ao. By the previous lemma, there is a 7) C V/ such that first E 7) and 
AoSdT), thus the initial segment of ~A0's downset is non-empty, and so is `40's 
downset. 
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In order to proceed further, we must define a notion of rank on downsets. 
The basic ideas are similar to those underlying our notion of level; in particular, 
our initial observation concerning the Lhb axiom does the real work. As a first 
step, we prove a horizontal analog of Lemma 25. 

L e m m a 3 2 .  Let D be a downset of some atom Ao belonging to Li+l, where 
i ~_ O, and let I be its initial segment. Suppose D \ I is non-empty, and let 
A = {.A1,. . .  ,.An} and B = {B1, . . .  ,13m} be disjoint non-empty sets of atoms 
such that A U B = D \ I. Then for some A E A, 

A x^  [rllr+]( A B, v... v A 

is consistent. 

Proof. Let A be AA1 v . . .  v AAn.  As any atom is consistent, so is A. By 
the previous lemma, I is non-empty. Let I be AZI v -.. v AZh  where the Zj 
(1 _~ j _< l) are all and only the elements of I. As first does not belong to any 
atom in A, ( r + ) A  is consistent. 

Let H (short for 'High') be the set of all atoms in At (E)  \ Vi. Note that H 
is non-empty, for by our initial assumption there is at least one atom in Li+l. 
Define H to be AT/l  v . . .  v A ?-/v, where the 7-/i (1 _< j _~ p) are all and only the 
elements of H. Let L (short for 'Low') be the set of all atoms in Vi \ D. Note that 
it is possible that k is empty. If this is the case, we define L to be _L, otherwise 
we define it to be A E1 v . . .  v A/:q, where the Ej (1 ~ j _< q) are all and only 
the elements of L. Let ~P be I V I'I V L V A. As ( r + ) A  is consistent, so is (r+)kV, 
hence by Lemma 23, ~V A [r][r+]-~V is consistent too. 

Let B b e A B l v . . . V A B m .  A s A t ( Z ) = l U H U L U A U B ,  it follows from 
Lemma 7 that 

~- I v H v L  v A v B  ~ b- -~(I v H v L v A) ~ B 

=~ r A [ri[r+]B is consistent 

==~ A A [r][r+]B is consistent. 

Hence for some A E A, A h [r][r+]B is consistent, the required result, q 

D e f i n i t i o n  33 ( R a n k s  1). Let D be a downset of some atom ,40 belonging to 
Li+t (i ~_ 0) with a non-empty initial segment I. Then the Ao-ranks on D \ I are 
defined as follows. R0 is {l) E (D \ ]) I last E/)} .  For i > 0, Hi is defined to be 
O0<_j<i Rj ,  and if D \ Hi is non-empty then Ri+l exists and is defined to be 

T) e ( D \ I )  ID  C H i  and A / ) A [ r ] [ r * ]  V A Eisc~  } .  
EEHI 

On the other hand, if D \ Hi is empty then there is no i + 1-th rank on D \ S~. 
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Although the point should be clear, it's probably worth emphasizing that  ranks 
are defined relative to some atom ,40. Levels, on the other hand, were defined in 
absolute terms. 

Next we prove a horizontal analog of Lemma 27. 

L e m m a 3 4 .  Let D be a downset of some atom ,40 belonging to Li+l, where 
i >_ O, with a non-empty initial segment I. Then every atom in D \ ] belongs to 
exactly one Ao-rank. Furthermore, there is a maximal ,4o-rank Rm~z on O. 

Proof. It is clear that each atom in D \ I belongs at most one A0-rank. Further,  
it follows by induction that  no .d0-rank is non-empty. For the base case, note 
that  D is the downset of the atom A0 in Li+l. At ,40 has a non-empty downset, 
it contains a formula of the form (d)r By axiom 9 and the fifth condition on 
closures, it must also contain (d)tast, hence by Lemma 29 there is some atom 
/ )  E D containing last and the base case is established. The inductive step follows 
from Lemma 32, and hence every .d0-rank is non-empty. The remainder of the 
argument is essentially the same as that for Lemma 27. -~ 

D e f i n i t i o n 3 5  ( R a n k s  2). For an arbitrary downset D of an atom A0, the A0- 
ranks on D are defined as follows. If D \ I is empty, then all atoms in D have 
A0-rank 0. On the other hand, if D \ I is non-empty, then all atoms in D \ I 
receive the A0-rank assigned by Definition 33, and all atoms in I are assigned 
the ./t0-rank R m ~ +l ,  where R , ~  is the maximum A0-rank assigned to an atom 
in D \ I .  

L e m m a 3 6 .  Suppose A has .do-rank Ri+l, where i > 0 and (r)~) C A. Then 
there is a B with Ao-rank Rm, where m < i + 1, such that r C B and ASrB.  

Proof. Essentially identical to the proof of Lemma 29. -{ 

The previous lemma is our first clue that downsets are horizontally well 
behaved, but we have more work to do. The next definition isolates the key 
concept required. 

D e f i n i t i o n  37 ( W i t n e s s i n g  p a t h s ) .  Let A E Li+l and let D be its downset. 
A witnessing path for A is non-empty subset { / ) i , - - . ,  Dn} of O such that:  

1. ~) iSr~) i+l  , for for all i < n. 
2. first E/)1;  and for all i > 1, first ~ l)i. 
3. last E/),~; and for all i < n, last ~_ /)io 
4. If {d)r E A, then r E Di for some 0 < i < n. 

The reader should compare this definition with the definition of sensible 
decorations. Witnessing paths are designed to provide the structure demanded 
by the t ru th  lemma for induced models, and to do so using atoms of lower level. 
Thus our goal is to prove that enough witnessing paths exist. First, a preliminary 
lemma, 
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L e m m a 3 8 .  Let A E Li+l, and let ~ be any element of the initial segment of 
A's downset. If  (d)r E A, then (r*)r E 5 c. 

Proof. By Lemma 31, the initial segment of A's downset is non-empty, so such 
an . f  exists. Suppose for the sake of a contradiction that  for some (d)r E A, 
(r*)r ~f ~'. By the third closure condition, -~(r*)r E 2", hence as first E J:, 
first A -~(r*)r is consistent. Now, as ASa., ~ holds, A A h (d} A ~" is consistent, 
hence h A A (d)(first A -~(r*)r is consistent. As {d}r E A, 

A A ̂ (d)r A (d)(first A -~(r*)r 

is also consistent. Hence by axiom 8, 

A A A [dl(first --* (v*)r A [aq (first ~ --(r*)r 

is consistent, thus by simple modal reasoning, 

A A ^ [dl((first (T,)r A (first -qT,)r 

is consistent as well. As A's downset is non-empty, (d)first E A, hence 

(d)first A [d]((first ~ (r*)r A (first --* -,(r*}r 

is consistent, hence (d}((r*)r is consistent too - -  but this is impossible. 
We conclude that  (r*}r E ~'. -t 

L e m m a 3 9 .  Let A E Li+l and let D be its downset. Then A has a witnessing 
path. 

_Proof. Choose any element ~" of A's initial segment. We now construct a wit- 
nessing path for A whose first item is ~'. 

Case 1: ~ contains no formula of the form (r)r Suppose (d}r E A. By the 
previous lemma, (v*}r E .T. As no formul~ of the form (r)r is in 9 r ,  no formul~ 
of the form (r+}r is in ~" either, and hence r E -f. As a special case of this, 
note that  by axiom 9 and the fifth closure condition, last E ~v. Hence {~'} is a 
witnessing path for A. 

Case 2: jr contains a formula of the form (r)r By Lemma 36, it is possible 
to construct a sequence 5 r = ~D1S~722 . . . ,  where all items in the sequence belong 
to A's downset, and such that DiS~Di+I implies that Di+l has a strictly lower 
A-rank than Di. Construct such a sequence that is closed under Sr successors. 
As (x/r  E 5 r, this sequence has length at least 2. Moreover, the sequence must 
be finite: as each item in the sequence has a strictly lower A-rank than all its 
predecessors, each item in the sequence is unique. As there are only finitely many 
atoms in A's downset, the sequence has length n, for some natural number n. 

Clearly first E J:. Moreover, for any atom ~Di in the sequence (2 < i < n), 
79i-tSr:Di, hence by Lemma 17 ZIiSt:Di-1. As T E :Di-1, (I)T E :Di, hence by 
Lemma 20, first f[ "Di. Next, note that there can be no formula of the form 
(r)r E :Dn. If there were, we could apply Lemma 36 to find an atom :Dn+l such 
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that  7)Sr:D,~+x. But the sequence is closed under Sr successors, and :D,, is the 
final item in the sequence, so this is impossible. Thus no formula of the form 
(r}r belongs to ~n,  hence by Lemma 20, last E l)n. We leave it to the reader 
to verify (again using Lemma 20) that last cannot belong to Di for i < n. 

It remains to verify that  (d)r E A implies A E :Di for some 1 < i < n. 
Suppose for the sake of a contradiction that  this is not the case; that  is, for some 
(d)r e .,4, ~/, ~ :D~ for all 1 < i < n. Now, by the previous lemma, {d)r E .,4 
implies that  (r*)r e ,T. As (r*)r E .T and r r .T, we have that  ( r + ) r  e .T. By 
Lemma 21, for all 1 <_ i < n, if ( r+ ) r  e / ) i  and :DiS~D~+x, then r e T~i+l or 
( r + ) r  E Di+l. As by assumption r belongs to no item in the sequence, ( r + ) r  
belongs to them all, and in particular, ( r+ ) r  E :Dn. By Lemma 20, this means 
that  -~last E /)n, contradicting the fact that  last E T)n. We conclude that  our 
original supposition was false, and have the desired result. -q 

4.5 C o n s t r u c t i n g  a n d  D e c o r a t i n g  a F in i t e  Tree  

We can now simultaneously construct a finite tree T and a decoration h of T by 
induction. The construction will terminate after finitely many steps, and, as we 
shall see, results in a sensible decoration of T. 

So, suppose r is LOFT-consistent. Let T be a denumerably infinite set. We 
will use (finitely many) of its elements as the tree nodes, and decorate them with 
atoms taken from At({start  ^ (d*)r 

S tage  1. Choose some tl E T and an atom ,4 e At({startA(d,}~b}) that  contains 
start A (d*)r (As r is consistent, so is start A (d*)r so this is possible.) Define 

T 1 := {t~} 

-~ : = 0  

R~ :=0 

Stage  n + l .  Suppose n stages of the construction have been performed. Call 
t E T n unsatisfied if for some (d)r E hn(t) there is no t' E T n such that  tRdt' 
and r E hn(t'). 

i f  there are no unsatisfied nodes 
t h e n  halt 
else choose an unsatisfied node t. As (d)r E hn(t), by Lemma 39 h'~(t) 

has a witnessing path {D1, . . . ,  D~}. Let t l , . . . ,  tk E T \ T  n. Define: 

T "+1 = T ~ u { t l , . . . , t k }  

R~ '+1 = n~  u {(t, t l ) , . . . ,  (t, t~)} 

R~ '+1 = R~' U {(t~, t~+~) I 1 < i < k} 

h '~+1 = h  n U { ( t i , D i ) [ l < i < k } .  
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L e m m a 4 0 .  The above construction halts after finitely many steps. Moreover 
the number of nodes adjoined in the course of the construction is finite. 

Proof. Whenever we adjoin new Ra successors to a node t, we adjoin one new 
node for each element of the chosen witnessing path for h(t). But witnessing 
paths are finite, thus at each stage we adjoin only finitely many nodes. Moreover, 
as witnessing paths are subsets of downsets, each element of h(t) 's witnessing 
path belongs to a strictly lower level that h(t). As there are only finitely many 
levels, we can only adjoin new nodes finitely many times in the course of the 
construction. -~ 

Let max be the stage at which the construction halts. Define T to be T max, 
Ra to be R max Rr to be R max, h maz. d , and h to be Let Rt and R,~ be the converses 
of Rr  and Rd respectively. Let T be (T, Ri, Rr, Ru, Rd). 

L e m m a 4 1 .  T is a finite tree and h is a sensible decoration o f T .  

Proof. That  T is a finite tree follows straightforwardly from the nature of the 
inductive construction. To see that h is a sensible decoration of T,  argue as 
follows. 

First, suppose the construction halts immediately after stage 1. By construc- 
tion, start E h(t). As the construction halted after one step, tl was not unsat- 
isfied, so there is no formula of the form (d)r E h(tl) and hence by Lemma 20, 
term e h(t). By axiom 10, first, last E h(t) also. It follows that h is a sensible 
decoration of T.  

So suppose the construction closed after max steps, where max > 1. The 
important  point to observe is that because we used witnessing paths to satisfy 
tree nodes t, h fulfills the first three clauses in the definition of a sensible deco- 
ration. The fourth clause in the definition of sensible decorations insists that  the 
constants be 'sensibly distributed'. Now, first and last are sensibly distributed in 
all witnessing paths. Further, start is sensibly distributed because start E h(t), 
where t is the root node in the tree, and thereafter the construction assigns atoms 
of lower level to tree nodes, and such nodes do not contain start. We leave it the 
reader to verify that term is also sensibly distributed. -~ 

T h e o r e m  42. LOFT is complete with respect to finite trees. 

Proof. Given a consistent formula r use the inductive construction to build a 
finite tree T and a decoration h : T ~ At({start A (d*)r Let M be the 
model induced by h on T. By the previous lemma, h is a sensible decoration 
of T,  hence by the t ruth ]emma for induced models (Lemma 22), M satisfies 
start A (d*)r at the root node, and thus r is true somewhere in this model. -4 

5 D i s c u s s i o n  

To conclude the paper we note some issues concerning complexity and theorem 
proving raised by this work. As a first step, note that LO F T is decidable. This 



103 

could be proved by appealing to the results of l~b in  (1969), but the completeness 
result yields it immediately. 

T h e o r e m 4 3 .  LOFT is decidable. 

Proof. Because we are only working with finite trees, the set of satisfiable for- 
mulas is clearly RE. But the set of non-satisfiable formulas is also RE: by com- 
pleteness, our axiomatisation recursively enumerates all the valid/2 formulas. So 
if a formula r is not satisfiable on a finite tree, then its negation will eventually 
be generated. 

What  is the complexity of LOFT's  satisfiability problem? The easiest way 
to answer this question is to think in terms of pseudo-models. We proved the 
following completeness theorem: if r is consistent, then, by Lemma 22, it is 
satisfiable in a pseudo-model, namely, the pseudo-model over At({r (The 
corresponding soundness theorem is clear: if r is not consistent, it cannot belong 
to any atom in any closure, hence it cannot be satisfied in any pseudo-model at 
all.) As we now know that  LOFT is the logic of finite trees, the completeness 
result for pseudo-models takes on a new significance. For a start, as ]At({r 
is O(2161), it gives an exponential upper bound on the size of pseudo-models 
needed to establish LOFT-satisfiability. This immediately yields: 

T h e o r e m  44. LOFT-satisfiability is in NEXPTIME. 

But with a little more effort, one can do better. 

T h e o r e m  45. LOFT-satisfiability is EXPTIME-complete. 

Proof. The lower bound is an immediate corollary of Spaan's (1993) analysis of 
the lower bound result for PDL. She notes that  the following fragment of PDL 
is EXPTIME-hard:  formulas of the form r A [a*]0, (where r and 0 contain only 
the atomic program a and no embedded modalities) that  are satisfiable at the 
root of a finite binary tree. Trivially, this PDL fragment can be identified with 
an /2 fragment in the modalities [d*] and [d], hence LOFT-satisfiability is also 
EXPTIME-hard.  

The upper bound can be proved by using the methods of Pra t t  (1979). We 
sketch what is involved. The reader who consults Prat t ' s  paper will have no 
difficulty in filling in the details. 

Following Prat t ,  we define H(S) ,  the set of Hintikka sets over S ,  to be 
subsets of Cl(S)  that  have all the properties of atoms listed in lemma 6, but 
that  may not be consistent. That is, At(Z)  C H ( S )  C Cl(S) .  For 7-/, 7-/' E H ( E )  
and x E {/, r, u, d}, define 7-/S~7-/~ to hold if[ for some atomic formula p, (xlp E 7-[ 
and p E 7-/l, and moreover, for all atomic formulas q, [x]q E 7-[ implies q C 7-/~. 
Define 

D O := ( H ( S ) , { S : ,  ' + (s=) }=c{, . . . . .  

Given D n, one forms D n+l by eliminating all Hintikka sets ?-I E D n such that  
(x)r E 7-/, but there is no 7-l' such that r E 7-/I and 7-/S~7-/'. The relations 
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for D n+l are defined by restricting the relations on D n to this (smaller) set of 
Hintikka sets. This process terminates (there are only finitely many Hintikka 
sets) and yields a model. It is standard work to show that if r is consistent, then 
this model satisfies r 

From the point of view of complexity, two points are important. First, the 
process terminates after at most exponentially many steps, as there are only ex- 
ponentially many Hintikka sets. Second, at each stage it is possible to calculate 
in polynomial time which Hintikka sets to eliminate. Thus 'elimination of Hin- 
tikka sets' is a deterministic EXPTIME-algorithm for LOFT-satisfiability. -~ 

However, while interesting in its own right, the above EXPTIME-complete- 
hess result for LOFT raises another question. For many applications we are 
not merely interested in whether or not r is satisfiable: if r is satisfiable, we 
would like to see a concrete finite tree that  satisfies it. (This would be useful for 
applications in computational linguistics.) By the previous result, this problem 
is EXPTIME-hard,  but at present we do not have tight upper and lower bounds. 

Similar considerations apply to theorem proving for LOFT. It is clearly pos- 
sible to devise tableaux systems for LOFT: working with pseudo-models is essen- 
tially the same as working with tableaux, and indeed the completeness result for 
pseudo-models gives us all that is required to define such systems. But a more 
interesting question is the following. Is it possible to develop a tableaux system 
that  produces finite trees directly and is reasonably efficient on the formulas 
typically encountered in applications? Such issues are the focus of our ongoing 
work. 
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