
Reasoning about Changing InformationPatrick Blackburn� Jan Jasparsy Maarten de Rijkez�Computerlinguistik, Universit�at des Saarlandes, Postfach 1150, D-66041 Saarbr�ucken, GermanyyCWI, P.O. Box 94079, 1090 GB Amsterdam, The NetherlandszDept. of Computer Science, University of Warwick, Coventry CV4 7AL, EnglandAbstract
To appear in South African Computer Journal
The purpose of these notes is two-fold: (i) to give a reasonably self-contained introduction to a particular approachto theory change, known as the Alchourr�on-G�ardenfors-Makinson (AGM) approach, and to discuss some of thealternatives, and extensions that have been proposed to it over the past few years; (ii) to relate the AGM ap-proach to other `information-oriented' branches of logic, including intuitionistic logic, non-monotonic reasoning,verisimilitude, and modal and dynamic logic.Keywords: Theory change, knowledge representation, modal logic, dynamic logic.Computing Review Categories: F.4.0, F.4.1, I.2.3, I.2.4.1 IntroductionIn these notes we study a number of approaches to the-ory change alias belief revision alias belief change aliastheory revision. This enterprise is about coping withchanging information, either because new facts havebecome known, or because the world has changed. Ifthe newly obtained information is consistent with ourold theory, there's no problem: we can simply extendour theory with the new piece of information. How-ever, complex decisions need to be made when thenew information conicts with our old theory. Forexample, it may be that the new information casts adoubt on parts of our old theory | in that case we willprobably want to get rid of the doubtful parts. Butit may also be that the newly obtained information isin outright contradiction with our old theory. Assum-ing that we want to keep our theory consistent, thiswill force us to make adjustments. But how? Here'san example; assume that the following are part of ourtheory: Bert is a post-doc in logic. (1)Bert lives in Amsterdam. (2)Amsterdam is located in the Nether-lands. (3)All Dutch post-docs in logic are unem-ployed. (4)From our theory we can derive the following:Bert is unemployed. (5)Assume next that as a matter fact Bert happens tohave a job, say at CWI. This means that we wantto extend our theory with the fact :(5). But theninconsistency strikes. So if we want to keep our theoryconsistent, we have to perform some kind of change,

and give up some of the beliefs in our original theory.As we went through considerable e�ort to arrive atour theory in the �rst place, we don't want to give upthe whole of it. But then, which of the reasons for theinconsistency do we have to give up? Also, which ofthe consequences of the old theory do we want to keep?For example, the following is a direct consequence of(4): All Dutch post-docs in logic who aren'tBert are unemployed.Should we keep this (slightly weaker) generalization ornot? This is not easy to decide. The complicating fac-tor is that our theory is more than just a collection ofatomic facts: there are complex logical dependenciesbetween the elements of our theory, and logical con-siderations alone are not going to tell us which beliefsto give up.Actual operations of theory change tend to berather non-trivial functions whose de�nition may in-volve various orderings and relations on theories andsentences; usually, the additional structure reects theimportance of certain information. A number of gen-eral laws have been proposed to describe the behaviourof such operations; some of these are discussed below.Semantically, one may view acts of belief revisionas moves in an information space. The states of thisspace are some sort of information carriers, and a sen-tence � can be part of a theory associated with aninformation state; in this case � represents a staticpiece of information | it simply describes a belief en-gaged in that state. However, if � does not belong tothe theory associated with a given state, we may viewit as an instruction telling us to move to a state whosetheory does include �; see Figure 1. Various formallanguages for reasoning about such structures will bepresented below.1
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Figure 1. Information spaceSimilar ideas of viewing the meaning of sentencesas instructions, actions or transitions have emergedin many current theories of natural language seman-tics, logic and arti�cial intelligence. Such approachesare usually called dynamic approaches; it turns outthat there are fundamental links between various in-formation-based approaches in logic, including theorychange.A Brief OverviewPart IThe Alchourr�on-G�ardenfors-Makinson (or AGM) tra-dition proposes a set of postulates that are meant togovern the ways in which intelligent agents (humanor mechanical) cope with theory change. In Part I ofthe notes we will discuss this theory, as well as somere�nements, extensions and alternative proposals.In addition to the AGM postulates we discuss var-ious proposals for giving explicit de�nitions of opera-tions of theory change that satisfy these laws.Part IIIn Part II of the notes we change tack. We considervarious information-oriented formalisms in logic, andtry to link these to AGM theory. The formalisms con-sidered are non-monotonic logic, verisimilitude, anddescriptive approaches based on modal and dynamiclogic.I{The AGM Theory2 PreliminariesBefore we introduce the Alchourr�on-G�ardenfors-Ma-kinson theory of belief change, we review a numberof underlying basic assumptions, both concerning themethodology and concerning the conceptual and log-ical apparatus.Kinds of Theory ChangeWe will assume the beliefs are represented by sen-tences of some formal language, and that beliefs �can only beaccepted, orrejected (accept :�), orneither accepted nor rejected.

At �rst sight there only seem to be two basic kinds oftheory change, namely� to insert (or accept) information, and� to delete information (that is, to switch from ac-ceptance to rejection, or to `neither acceptance norrejection').What we are interested in is how, and under whichcircumstances, these basic actions are performed. Theproposals for handling theory change found in the lit-erature can be divided into two kinds: a direct mode,and an indirect mode.In the direct mode one simply inserts or deletesinformation without bothering about the consistencyrequirement. Such simple operations are accompaniedby a complex, usually para-consistent or defeasible in-ference engine to determine which conclusions can ac-tually be drawn from the theory. Thus, in the directmode the complexity of theory change is hidden in theinference engine. Truth maintenance systems form animportant example of the direct mode (see [6]).In the indirect mode one tries to perform the-ory changes subject to (some or all of) the followingmethodological assumptions:Consistency. The beliefs in a theory should be keptconsistent whenever possible. This assumption maywell be the dominating motive for the whole enterpriseof `theory change.' It is certainly what distinguishestheory change from from such �elds as para-consistentlogic, where one is also interested in handling conict-ing information without, however, necessarily deletingreasons for conict, by changing the inference engine.Closure. If the theory implies a belief �, then �should be in the theory. This is an obvious idealiza-tion, but for the time being we will adhere to it.The Consistency and Closure assumptions concern thestatic aspects of theory change: the things that are ac-tually being changed. The following two assumptionsconcern the way in which theory change takes place.Minimality. The amount of information lost in abelief change should be kept minimal. The idea isthat information doesn't come for free and unneces-sary losses are therefore to be avoided.First Things Last. If there is a measure accord-ing to which some beliefs are considered to be moreimportant than others, one should give up the leastimportant ones �rst.Functionality. For every theory K and every sen-tence �, there is a unique theory representing the re-moval or addition of � from or to K. In other words:theory change is a function from theories and formu-las to theories.If one tries to play the game following the above con-straints, the theory change operations themselves be-come highly non-trivial, but in return one can usestandard logics as the underlying inference engine.2



The AGM theory which we will discuss below isthe most prominent example of belief revision in theindirect mode. In the AGM approach three mainkinds of belief change are considered:Expansion. A new sentence � consistent with theold theory K is added to K. The belief system thatresults from expanding K by � is denoted with K+�.Expansions of a theory K result in theories that areat least as large as K.To illustrate the use of expansions, consider a sit-uation in which the theory K is simply (the set oflogical consequences of) the sentence `Bert wrote �vejob applications last month.' Now suppose that a jobopening at the University of Warwick was announced;this new fact could simply be added to K.Revision. A new sentence � is inconsistent with thetheory K; � is added to K, but to preserve consis-tency, some old sentences from K are deleted. We useK�� to denote the result of revisingK by �. Revisionsof K may lead to theories that are neither extensionsof K nor subsets of K.Recall the earlier example involving Bert and theunemployed post-docs; there the incoming informa-tion (Bert has a job) conicted with a sentence thatwas derivable from the database (Bert is unemployed).To incorporate the new information we have to revisethe old theory with the new information.Contraction. Somewhat intermediate between ex-pansion and revision is contraction. Some sentenceis retracted from K without new information beingadded. To ensure logical closure further sentencesfrom K may have to be given up. We write K � �to denote the result of contracting K with �. Con-tractions of K lead to subsets of K.To understand contractions it is best to think ofthought experiments. G�ardenfors [10] considers thestory of Oscar who wonders what would have becomeof his life if he hadn't married his wife; would he havehad the drinking problem that he's developing?Now for the crucial question: How should we de�neexpansion, contraction, and revision operators, givena theory K? Before we can attempt to answer this,we need to review a number of assumptions about ourbackground logic.Logical Bits and PiecesWe will assume that our background logic L is clas-sical propositional logic, and that we have the usualboolean connectives :, _, ^, !, $ available, as wellas the constants ? and >. We write K `L � if thereis a proof (axiomatic, or otherwise) of � from K in L.Usually we will work with a consequence operator Cninstead of the turnstile `: 2 Cn(K) i� K `L  :Note that the consequence operator Cn satis�es thefollowing conditions:

Cut. If � 2 Cn(K),  2 Cn(K [ f�g), then  2Cn(K).Deduction. If  2 Cn(H [ f�g) then (� !  ) 2Cn(H).Compactness. If � 2 Cn(H), then � 2 Cn(H0) forsome �nite H0 � H .We will sometimes need to exploit further propertiesof Cn such as monotonicity (if H � K, then Cn(H) �Cn(K)) or reexivity (H � Cn(H)).We will model belief states by means of sets of L-sentences. That is, a belief set is a setK of L-sentencesthat is closed under logical consequence (i.e., Cn(K) �K). We use K? to denote the inconsistent belief set;that is, the set of all formulas.The advantage of modeling belief states by meansof belief sets is that this approach handles facts, con-straints and derivation rules in a uniform way. It isalso a convenient way of modeling partial informa-tion. The disadvantages are that working with logi-cally closed sets is an idealization that will cause prob-lems when it comes to implementation, since in gen-eral such sets will be in�nite. Moreover, belief setsdon't take into account the fact that belief systemsare structured: some beliefs do not have an indepen-dent standing but arise as consequences of more basicbeliefs | when we perform revisions or contractionswe act on some �nite base for the belief set. Formally,we say that a set of sentences H is a belief base for abelief setK if H � K is �nite and Cn(H) = K. Belowwe will see how theory change can be made to workon belief bases instead of belief sets; this will lead usto consider so-called `base revisions.'Logic Su�ces to De�ne ExpansionsDe�ning explicit operations of theory change that im-plement the earlier kinds of theory change turns outto be virtually trivial in the case of expansions.De�nition 2.1 Let some collection of propositionalvariables be given, let L be classical propositional logicover this language, and letK be a set of sentences thatis L-consistent and closed under L-consequences. Let� be a sentence in the language of L. We de�ne K+�(the expansion of K by �) as follows:(DEF+) K + � = Cn(K [ f�g).That is: K + � is the logical closure of K togetherwith �.Unfortunately, it is not possible to give similarsimple and explicit de�nitions of revisions and con-tractions. The problem was already hinted at follow-ing the `post-doc from Amsterdam' example in Sec-tion 1: when trying to accommodate new informationthere is no purely logical reason for choosing to deleteone piece of information rather than another. One im-portant underlying issue is that theories are not justcollections of atomic facts, but collections of facts from3
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Figure 2. A global perspective on revisionwhich other facts can be derived. It's the logical de-pendencies between facts and derived facts that causesthe di�culties.From here we can proceed in two directions:1. Present explicit constructions of revision and con-traction functions.2. Come up with standards for revision and contrac-tion functions against which such constructionscan be tested.Below we will start with the second item, namely withthe so-called AGM postulates for revision and con-traction. After that we will come up with exampleconstructions that satisfy those postulates.3 AGM Postulates for Theory ChangeIn this section we will work with belief sets, and ourgoal will be to formulate the AGM postulates for ra-tional revision and contraction functions de�ned oversuch sets.Postulates for RevisionIn Figure 2 we give a pictorial representation of thepossible structure of a revision function. The under-lying intuition is that a revision with � consists of anadjustment to prepare for �, followed by an expansionwith �. Clearly, the adjustment function is the vaguepart of this composition. A naive candidate whichcomes to mind �rst is to take the adjustment to bethe converse operation of the expansion function +(that is, simply removing a formula). But this ideadoesn't work, for such an operation most often leadsto no adjustment at all. To see how this can happen,consider the following example:Cn(Cn(fp; p! qg) n fqg) = Cn(fp; p! qg): (6)If we really wish to remove q from Cn(fp; p ! qg),we also need to remove everything from this belief setfrom which we can infer q.Another idea is to de�ne the adjustment functionto be some maximal belief set contained in the resultof performing a retraction as just sketched. The dif-�culty here is that there can be more than one such

a maximal belief subset, and then revision would nolonger be a function. Fortunately, there are ways tomake some satisfactory new belief set out of thesemaximal parts, as we shall later see. In the followingsubsections we will give a set of postulates for revi-sions and contractions which restrict the searchspacefor good de�nitions of this adjustment function.We �rst turn to the postulates for revision. Forthe time being, we take a revision function � to be afunction from belief sets and sentences to belief sets.The Basic PostulatesThe �rst two postulates for revision correspond to thetwo methodological remarks made earlier.(K�1) For any sentence �, and anybelief set K, K � � is a beliefset. (Closure)This postulate says that outputs of revisions are in-deed belief sets. The second one says that the inputsentence � is accepted in K � �.(K�2) � 2 K � � (Success)This means that incoming information is given abso-lute priority over the original theory.If the incoming information � is consistent withour old theory K, we can simply expand K with �,and close it under logical consequence. It is only whenthe incoming information � contradicts what is knownin the theoryK (i.e., if :� 2 K) that we have to resortto revision.(K�3) (K � �) � (K + �) (Expansion 1)(K�4) If :� =2 K, then (K + �) �(K � �) (Expansion 2)The (K�3)-principle completes the square structureof Figure 2. That is, revising by � will never get youmore information than expanding with �, and if � isnot rejected by the original theory K, then expandingand revising with � yield the same result. This canbe paraphrased as `in the consistent case, logic su�cesto guide belief revision.' It also implements the mini-mality idea that we should change as little as possiblewhen we perform a revision.The purpose of a revision is to produce a new con-sistent belief set. Thus, K � � should be consistentwhenever � is:(K�5) K � � = K? i� `L :� (ConsistencyPreservation)Furthermore, only the content of the input shouldmatter, not its actual formulation. That is: logicallyequivalent sentences should yield identical revisions.(K�6) `L �$  implies K �� =K �  . (Extensionality)Postulates (K�1){(K�6) are the basic postulatesgoverning the revision operator �. Before we go onto add two further postulates, we consider some ele-mentary consequences of (K�1){(K�6). First of all,assuming that our background logic L is consistent,we do not have commutativity of revisions:(K � �) �  = (K �  ) � �: (7)4



For, to arrive at a contradiction, assume that we dohave commutativity. Take  to be :� in (7). Then,by (K�2), :� 2 (K � �) � :� and � 2 (K � :�) � �,and hence�;:� 2 (K � �) � :� = (K � :�) � � = K?:By (K�5) it follows that ` ::� and ` :�. In otherwords, ` ?.To spell out the relation between consistency andrevision even further, we assume that our consequenceoperator Cn is monotonic. Then (K�4) is equivalentto if � is consistent with K, then K � K � �. (8)To prove that (K�4) implies (8), assume (K�4) andthe joint consistency of � and K, that is: :� =2 K. By(K�4) it follows that K + � � K � �. So thenK � Cn(K) � Cn(K + �) � K + � � K � �;as required. For the converse implication, assume (8)and assume also that :� =2 K. Then, by (K�2) wehave K [ f�g � (K � �) [ f�g = K � �. SoK + � = Cn(K [ f�g) � Cn(K � �) = K � �;by monotonicity and (K�1).Two More Postulates for RevisionThe two additional postulates for theory revision thatare usually considered in conjunction with the basicpostulates (K�1){(K�6) concern composite belief re-visions that involve conjunctions �^ . If a theory Kis to be changed minimally so as to include two sen-tences � and  , such a change should be possible by�rst revising K with respect to � and then expandingK �� with  provided that  does not contradict theinformation accepted by K � �.(K�7) K � (� ^  ) � (K � �) +  (Conjunction 1)(K�8) If : =2 K � �, then (K ��) +  � K � (� ^  ) (Conjunction 2)Observe that when : 2 K��, then (K��)+ = K?.We now discuss some consequences of the full setof postulates (K�1){(K�8). First of all, some of thebasic postulates become derived ones in the presenceof (K�7), (K�8). For example, assuming that revi-sions with a tautology are trivial, that is: K �> = K,postulates (K�3) and (K�4) turn out to be specialcases of (K�7) and (K�8), respectively. To see this,take � to be > in (K�7). Then, in the presence of(K�6) and (K�7) we getK �  = K � (>^  ) � (K � >) +  = K +  ;which proves (K�3). We leave it to the reader to de-duce (K�4) from (K�8).(K�7) and (K�8) are very powerful postulates.To see just how powerful, we derive a result about theinteraction of revision and disjunction. As a �rst step,

consider the following:K � � = K �  i�  2 K � � and � 2 K �  : (9)The right-to-left implication in (9) says that if  isaccepted in K � �, then the change needed to include inK is no greater than the change needed to include�. Observe that (K�6) is a consequence of (9).Claim 3.1 The AGM postulates for revision imply(9).Proof. Given the AGM postulates for revision it's triv-ial to prove the left to right implication in (9). For theother direction, assume � 2 K �  ,  2 K � �. ThenK � � = (K � �) +  ; by de�nition of += K � (� ^  ); by (K�7) and (K�8)= K � ( ^ �); by (K�6)= (K �  ) + �= K �  : aNext, consider the following statement:(K � �) \ (K �  ) � K � (� _  ): (10)Claim 3.2 Given (K�1){(K�6), (K�7) is equivalentto (10).To obtain the desired characterization of the inter-action between revision and disjunction we need onemore intermediate result. Consider the following:: =2 K � (� _  ) implies K � (� _  ) � K �  . (11)In words: if  is consistent with the revision of K by�_ , then an additional revision by  will not destroyany information.Claim 3.3 Given (K�1){(K�6), (K�8) is equivalentto (11).Putting the above claims together, we arrive at thedesired characterization of revision and disjunction:Theorem 3.4 Given the eight AGM postulates forrevision we haveK � (� _  ) = 8<: K � �; orK �  ; or(K � �) \ (K �  ): (12)In fact, in the presence of the basic postulates (K�1){(K�6), the conjunction of (K�7) and (K�8) is equiv-alent to (12).Proof. To prove the left to right implication, we dis-tinguish a number of cases. Assume �rst that : 2K � (�_ ); then � 2 K � (�_ ), and so K � (�_ ) =K � �, by (9). Likewise, if :� 2 K � (� _  ), thenK � (� _  ) = K �  . The third possibility is that:�, : =2 K � (� _  ). Then, by (11), K � (� _  ) �K ��\K � . The inverse inclusion follows from (10).For the right to left implication, observe that (12)implies (10), which in turn implies (K�7). To derive(K�8), observe that from (12) and (K�6) we get that5



K � � equals one of K � (� ^  ), K � (� ^ : ), orK � (� ^  ) \K � (� ^ : ). If K � � = K � (� ^  ),then(K � �) +  = (K � (� ^  )) +  = K � (� ^  ):If K � � = K � (� ^ : ), then(K � �) +  = (K � (� ^ : )) +  = K?:And if K � � = K � (� ^  ) \K � (� ^ : ), then(K � �) +  = (K � (� ^  ) \K � (� ^ : )) +  = (K � (� ^  )) +  \ (K � (� ^ : )) +  = K � (� ^  ) \K?= K � (� ^  ):In all three cases, we �nd that if : =2 K � �, then(K � �) +  � K � (� ^  ). aPostulates for ContractionWe will now introduce the AGM postulates for con-traction; recall that the contraction of a theory K bya sentence � is meant to result in a theory that nolonger contains �, whenever this is possible.To begin with, we require logical closure for con-traction:(K�1) K � � is a belief set for everysentence � and belief set K. (Closure)Another easy postulate states that contraction is areduction:(K�2) K � � � K. (Inclusion)Contraction does not change anything when the for-mula to be contracted is not contained in the currentbelief set:(K�3) If � 62 K, then K � � = K (Vacuity)Furthermore, a contraction with a formula � is alwayssuccessful whenever � is not tautological:(K�4) If 6`L �, then � 62 K � �. (Success)Note that the converse is always valid by de�nition ofa belief set.These �rst four `easy' postulates already �x someinteraction between expansion and contraction:(K � �) + � � K; whenever � 2 K: (13)The following postulate says that the inclusion rela-tion in (13) can be replaced by equality:(K�5) K � (K � �) + �, whenever� 2 K. (Recovery)In other words, if one believes that � then consecu-tively contracting and adding it again will bring thebeliever in the same state of belief. The vacuity con-dition (K�3) goes some way towards expressing theminimality idea, but the idea is only fully expressedby the recovery postulate (K�5): enough must be leftof the original theory K so as to enable us to restoreit after a contraction.

As for revision, we postulate that contractions ofequivalent formulas lead to the same belief sets.(K�6) If `L �$  then K�� =K �  . (Extensionality)Intuitively, one may also expect that contractionsof stronger formulas lead to smaller belief sets: if`L � !  , then K �  � K � �. However, sucha strengthening of (K�6) is not valid in general.Example 3.5 Assume that Jan believes that bothMaarten and Bert (a logician) are Dutch, and thatJan also believes that if Bert is a Dutch logician thenhe is unemployed.1 Clearly, Jan also believes thatBert is unemployed. If Jan has to give up his be-lief about Maarten being Dutch (p), then Jan willstill believe that Bert is unemployed. However, ifJan removes his belief that both Maarten and Bertare Dutch (p ^ q) then Jan will also give up his be-lief about the unemployed status of Bert. Jan is nolonger certain about Bert being Dutch, which he usedto infer that Bert is unemployed (r).2 Formally, letK = Cn(fp; q; q ! rg). Clearly, r 2 K, and we alsoexpect r 2 K � p, but r 62 K � (p ^ r).For similar reasons the principle of monotonicity doesnot hold for contraction:(K�M) If H � K, then H � � �K � �. (Monotonicity)This failure of monotonicity is a serious structuralweakness of the contraction operation. For a start, itindicates that providing suitable de�nitions for con-traction is much harder than for expansion. The fol-lowing postulate on contraction of conjunctions com-pensates the non-monotonicity a little:(K�7) (K � � \ K �  ) � K �(� ^  ). (Conjunction 1)The intuitive invalidity of K � � � K � (� ^  ) hasbeen illustrated by the Maarten-Bert example above.(K�7) says that it at least holds for the largest beliefset which is contained by the belief sets which resultsfrom contracting both conjuncts separately.Obviously the converse of (K�7) cannot be valid.We are only allowed to conclude that K � (�^ ) is asubset of K � � if � is not contained in K � (� ^  ).This principle is the eighth postulate of contraction.(K�8) If � 62 K � (� ^  ) thenK � (� ^  ) � K � �. (Conjunction 2)Clearly, (K�8) impliesK � (� ^  ) � K � � or K � (� ^  ) � K �  . (14)In fact, the somewhat intransparent last two postu-lates are equivalent with three disjunctive cases whichmake the intuition about their nature much clearer.Theorem 3.6 Under the assumption that the postu-lates (K�1){(K�6) hold for the contraction function�, the additional principles (K�7) and (K�8) hold1Assume that these are the `only' beliefs of Jan.2What Jan still believes is that Maarten or Bert is Dutch.6



i� K � (� ^  ) = 8<: K � �; orK �  ; or(K � �) \ (K �  ): (15)Proof. We only prove the left-to-right implication. So,suppose (K�1){(K�8) hold. LetK� (�^ ) 6= K�� and K� (�^ ) 6= K� . (16)We need to show that K � (� ^  ) = K � � \K � .By (K�7) we only need to prove thatK� (�^ ) � K�� and K� (�^ ) � K� . (17)Suppose that the latter conjunct does not hold. Thenby (14) the former must hold. Because of this and(16) we may infer that there exists � such that� 2 K � � and � 62 K � (� ^  ). (18)By K � (� ^  ) 6� K �  and (K�8) we have  2K � (� ^  ), and also  2 K (K�2). This means( ! �) 62 K� (�^ ). In contrast, ( ! �) 2 K��(� `  ! �).(K�5) and  2 K implies that (K� )+ = K.In other words, Cn((K �  ) [ f g) = K. Because� 2 K, we know that K �  [ f g `L �, and hence,K �  `L  ! �. (K�1) tells us that ( ! �) 2K �  , and by (18) ( ! �) 2 K � � \K �  . Now,(K�7) entails ( ! �) 2 K � (�^ ), and because  is also contained in the latter, we infer � 2 K�(�^ )which contradicts our assumption. aTheorem 15 is not only a partial compensationfor the monotonicity failure, but it also sums up howclose we get to the so-called fullness condition. Thiscondition is a very strong (in fact, too strong) criterionon the e�ect of contraction.(K�F ) If �;  2 K and (� _  ) 2K ��, then either � 2 K��or  2 K � �. (Fullness)Example 3.7 The Jan-Maarten-Bert-setting imme-diately entails a counterexample. Say, Jan believesthat Maarten and Bert are Dutch (p ^ q). After acontraction of this information, you want Jan still tobelieve that Maarten or Bert is Dutch (p _ q). Janshould give up his belief that Maarten is Dutch (p)and also that Bert is Dutch (q).Formally, p _ q 2 Cn(fp ^ qg) � (p ^ q), but p 62Cn(fp ^ qg)� (p ^ q) and q =2 Cn(fp ^ qg)� (p ^ q).Back and Forth between Revisions and Con-tractionsConsider Figure 2, and, especially, the dashed `adjust-ment actions' shown there. This is a `vague' part ofthe story we have been telling so far about revisions.Recall that preparing a belief set for revising with aproposition � comes down to a removal of all things inthe original belief set K which contradict �. Clearly,

the main culprit for a possible conict is the presenceof :�. So, assuming that a contraction function � isavailable, we can implement the adjustment by con-tracting with :�, and moving to K � :�. This boilsdown to the following de�nition of revision on the ba-sis of contraction.K � � = (K �:�) + �: (Levi Identity)Which of the revision postulates come out true,whenever the given contraction function validates thepostulates of the previous subsection? In fact, rathersmooth correspondence results can be given.Theorem 3.8 If (K�1){(K�6) hold for a contrac-tion function �, then the revision function which isde�ned by the Levi identity satis�es (K�1){(K�6).If one assumes the basic postulates for contrac-tion, then the Levi identity entails that (K�7) implies(K�7) and (K�8) implies (K�8).Theorem 3.9 If (K�1){(K�6) hold for a contrac-tion function �, then the revision function which isde�ned by the Levi identity and satis�es (K�7), alsoful�lls (K�7). Likewise, if � satis�es (K�8) then therevision function de�ned by the Levi identity satis�es(K�8).Going the other way around, we can also try togive a de�nition of contraction in terms of revision.The so-called Harper identity tells us that contrac-tion with a formula � should be equal to the result ofremoving everything from the initial belief set whichwould not remain if we revised it with the negation of�. K � � = K \ (K � :�): (Harper Identity)Combining the Levi and Harper identity yields:K � � = K \ ((K � �) + :�)K � � = (K \ (K � �)) + �The AGM postulates for � and � are strong enoughto deduce these equalities (without using the Levi andHarper identities), and this fact gives additional sup-port to the Harper and Levi identities; it also seemsto hint at a kind of conservativity of the two identitiesover the AGM postulates.Theorem 3.10 If (K�1){(K�6) hold for a revisionfunction �, then the contraction which is de�ned bythe Harper identity satis�es (K�1){(K�6).Furthermore, given the Harper identity, we havethe following implications:(K�1){(K�6) and (K�7) =) (K�7)(K�1){(K�6) and (K�8) =) (K�8)NotesThe postulates for revision and contraction discussedhere were originally proposed in the early 1980s inwork by Alchourr�on, G�ardenfors and Makinson; see7



[1, 10]. Further discussions on the connections be-tween postulates for revision and postulates for con-traction may be found in [25].4 Syntax-Based Contraction FunctionsIn Section 3 we considered laws that any reasonablecandidate revision or contraction function should sat-isfy according to the AGM theory. In the present sec-tion we will give explicit constructions of functions sat-isfying some or all of those postulates; the functionsto be de�ned below are syntax-based in that they arede�ned in terms of sets of formulas. We will concen-trate on constructing contraction functions | usingthe Levi identity suitable revision functions can bede�ned on top of those.We focus on two inuential proposals: one usingso-called meet functions, and another using so-calledepistemic entrenchment relations. In the next sectionwe will see an example of a model-based de�nition ofrevision functions.Meet FunctionsTo motivate the introduction of contraction functionsbased on meet functions, observe the following. Let abelief setK and a formula � be given. To computeK��, the result of contractingK with �, we are interestedin the maximal parts of K that don't imply � (this isbecause of the principle that we should change as littleas possible of our old theory). As there may be severalsuch parts, we should somehow make a selection, andtake their intersection | this is the main idea behindmeet functions.We de�ne meet functions in a number of steps,starting with so-called remainders.De�nition 4.1 Let K be a belief set, H a set of for-mulas, and � a formula. H is called a maximal subsetof K that fails to imply � if the following conditionsare met:� H � K� H 6` �� for all G such that H ( G � K, G ` �.We will sometimes use remainders of K after removing� to refer to maximal subsets that fail to imply �. Weuse K ? � to denote the set or remainders of K afterremoving �.Lemma 4.2 Let H be a remainder of K after remov-ing �. Then Cn(H) � H, that is: H is a belief set.Proof. Let H be a remainder of K after removing �.Assume H `  , but  =2 H . We will derive a contra-diction. First, observe that H[f g 6` �, for otherwiseH ` �. So H[f g is a proper superset of H that failsto imply � | but this contradicts the maximality ofH . aExample 4.3 Let K = Cn(fp; qg), and � = p ^ q.What are the elements of K ? �? That is, what arethe maximal subsets of Cn(fp; qg) that fail to imply

p ^ q? A �rst guess may that Cn(fpg) and Cn(fqg)are in K ? �, for if you have to contract with p ^ q,then it su�ces to contract with at least one of p andq, and keep the other. But this is not the case: if thelanguage contains more proposition letters than justp and q, the elements of K ? � are far larger thaneither Cn(fpg) or Cn(fqg):Claim. Let H 2 K ? �. Then, for every formula  ,either (� _  ) 2 H or (� _ : ) 2 H.Proof. Observe �rst that as � 2 K, we have (�_ ) 2K and (�_: ) 2 K. Assume (�_ ) =2 H , (�_: ) =2H . As H 2 K ? �, it follows thatH [ f� _  g ` �H [ f� _ : g ` �:So H ` ( ! �) ^ (: ! �). From this and propo-sitional logic it follows that H ` �, which is a contra-diction as H 2 K ? �. aFrom the above claim it follows that, in languages withmore proposition letters than just p and q, Cn(fpg)and Cn(fqg) are too small to be in K ? (p ^ q). Forif r is any proposition letter di�erent from p (and q),we have that (p ^ q) _ r, (p ^ q) _ :r 62 Cn(fpg), asneither formula is a consequence of p.Observe that our �rst guess is incomplete even inlanguages with just the two proposition letters p andq. We leave it to the reader to check that in this case,the elements of K ? (p ^ q) are Cn(fpg), Cn(fqg), aswell as Cn(fp$ qg).Next we need to de�ne selection functions.De�nition 4.4 A selection function for a theory Kis any functionsK : P(P(K))! P(P(K))such that ; ( sK(X ) � X for all X 6= ;, and sK(;) =fKg.We are ready now to de�ne contraction functionsbased on selection functions. The general scheme isthe following; if K ? � is non-empty, then we de�neK � � =\ sK(K ? �) (19)for some selection function sK .The literature contains several restrictions on se-lection functions; below we will discuss three impor-tant ones.Maxi-Choice Meet FunctionsThe �rst restriction on selection functions that we con-sider is that js(X )j = 1, that is: s always makes aunique selection by returning a singleton.De�nition 4.5 Let s be a selection function for Kthat only returns singletons. Then the contractionfunction � de�ned by (19) is called a maxi-choice con-traction function.Let us examine some properties of maxi-choicecontraction functions.8



Lemma 4.6 Any maxi-choice contraction function �satis�es the six basic postulates for contraction, thatis (K�1){(K�6).Proof. We only show that the �fth postulate (K�5)is valid, leaving the others to the reader. We have toestablish K � (K � �) + �.Let  2 K be arbitrary. Then (� !  ) 2 K. LetK 0 2 K ? �, and assume next that (� !  ) =2 K 0.Then (� !  ) ! � 2 K 0 (why?). As ((� !  ) !�) ! � is a tautology, it belongs to K 0, so we get� 2 K 0 | which contradicts K 0 2 K ? �. So, (� ! ) 2 K 0. But then (�!  ) 2 (K��) � (K��)+�,so  2 (K � �) + �. aMaxi-choice selection functions also satisfy the fol-lowing fullness condition:(K�F2) If �;  2 K and  =2 K � �,then ( ! �) 2 K � �. (Fullness 2)In general the postulates (K�7) and (K�8) don'thold for maxi-choice contraction functions. In fact,one can show that maxi-choice selection functions arecharacterized by the six basic postulates together withthe second fullness condition (K�F2):Theorem 4.7 (AGM) A contraction function satis-�es (K�1){(K�6) and (K�F2) i� it can be de�nedas a maxi-choice contraction function as in De�ni-tion 4.5.Are maxi-choice functions any good? Given thatthey always satisfy the second fullness condition, itdoes seem that they are `too large.' This can be mademore precise as follows. Call a belief set K maximalif for every formula  , either  2 K or : 2 K.As a lemma we have that if � 2 K, and � is amaxi-choice contraction function, then, for every for-mula  , either (� _  ) 2 K � � or (� _ : ) 2 K � �(see Example 4.3).Theorem 4.8 Let � be a revision function that is de-�ned from a maxi-choice function through the LeviIdentity. Then, for any � such that :� 2 K, therevision of K with �, K � � is maximal.Proof. Let � be a maxi-choice contraction function.By the previous remarks we have that (:� _  ) 2K�:� or (:�_: ) 2 K�:� for any formula  . Inother words, either (�!  ) 2 K�:�, or (�! : ) 2K�:�. By the Levi Identity � 2 K�� = (K�:�)+�.Hence,  2 K � �, or : 2 K � : . aFull Meet FunctionsAs maxi-choice contraction functions return resultsthat are too large, let us consider contraction func-tion based on selection functions that make far largerselections, namely selection functions that return asmuch as possible | for then their intersection (andhence the value of the contraction function) will be assmall as possible. So, we consider selection functionss such that s(X ) = X whenever X 6= ;. Let us callsuch selection functions identity selection functions.

De�nition 4.9 A contraction function � is called afull meet contraction function if it is de�ned as in (19)using an identity selection function.To spell out the above de�nition: � is a full meetcontraction function i� it is de�ned as follows:K � � = � T(K ? �); whenever K ? � 6= ;K; otherwise.As the selection function on which a full meet con-traction function is based selects a large collection ofelements from K ? �, the result of a full meet con-traction will be small.Theorem 4.10 Let � be a full meet contraction func-tion and � 2 K. Then  2 K � � i� ( 2 K and:� `  ). In other words: K � � = K \ Cn(:�).Furthermore, if � is a revision function de�ned bythe Levi identity using a full meet contraction func-tion, then :� 2 K implies K � � = Cn(f�g).By way of example, if � is a full meet contractionfunction, then, by the above result, Cn(fp^ qg)� (p^q) = Cn(fp ^ qg \ Cn(f:p _ :qg) = Cn(f>g). Thisreally shows that the result of a full meet contractioncan be too small (cf. Example 4.3). One would expect(p _ q) 2 Cn(fp ^ qg)� (p ^ q) (cf. Example 3.7).Proof. (of Theorem 4.10) We only prove the �rst halfof the theorem, leaving the second half to the reader.We distinguish two cases. Assume �rst that ` �. Then:� `  and K � � = K, so  2 K � � i�  2 K, andwe're done.Assume next that 6` �. Left us �rst prove theright-to-left implication: assume  2 K and :� `  .Suppose for contradiction that  =2 K � �. So thenthere exists K 0 2 K ? � such that  =2 K 0. As  2 K,we have by the maximality of K 0 that K 0 [ f g `�. But on the other hand, from :� `  it followsthat : ` �, and hence K 0 [ f: g ` �. Putting thetwo statements together, we �nd that K 0 ` �, whichcontradicts K 0 2 K ? �.As for the left-to-right implication, assume  =2 Kor :� 6`  . We need to show that  =2 K � �, thatis: for some K 0 2 K ? �,  =2 K 0. Now, if  =2 K,then certainly  =2 K � �. If :� 6`  , then : 6` �,and so �_: 6` �. So there exists a K 0 2 K ? � thatcontains this formula � _ : . As (� _ : ) ^  ` � itfollows that  =2 K 0. aIn addition to the six basic postulates (K�1){(K�6) for contraction, full meet contraction functionsalso satisfy the following intersection condition:(K�I) For all �,  2 K, K � (� ^  ) =(K � �) \ (K �  ).The restriction to �,  2 K in the intersection con-dition (K�I) is necessary: if we were to drop therestriction, (K�I) would no longer hold for full meetcontraction.Observe that (K�7) is an immediate consequenceof (K�I): it's simply the right-to-left inclusion; recallalso that we argued in Section 3 that the left-to-rightinclusion in (K�I) is intuitively invalid.9



Theorem 4.11 A contraction function satis�es thebasic postulates (K�1){(K�6) as well as (K�I) i� itcan be de�ned as a full meet contraction function.Partial Meet FunctionsNow that maxi-choice contraction functions proved tobe too large, and full meet contractions too small,we will try out a third option in between those twochoices, namely partial meet functions.De�nition 4.12 Let K be a belief set. A contractionfunction � is a partial meet contraction function overK if there is a selection function sK such thatK � � =\ sK(K ? �):Thus, instead of taking just one element in K ? �(as with maxi-choice contraction functions) or takingall elements in K ? � (as with full meet contractionfunctions), we take an arbitrary selection of elementsin K ? � and de�ne its intersection to be the resultof a contraction.3Theorem 4.13 A contraction function � can be de-�ned as a partial meet contraction function i� it sat-is�es (K�1){(K�6).Proof. The left-to-right direction is left to the reader.Here's a sketch for the right-to-left direction. Let �be a contraction function satisfying (K�1){(K�6).De�ne a canonical selection function sK by puttingsK(K ? �)= �fK 0 2 K ? � j K � � � K 0g; if K ? � 6= ;fKg; otherwise.We need to show that(1) sK is well-de�ned (that is: K ? � = K ?  implies sK(K ? �) = sK(K ?  ))(2) sK(K ? �) = fKg whenever K ? � = ;(3) sK(K ? �) � K ? � if K ? � 6= ;(4) K � � = T sK(K ? �).To establish these claims, use the postulates and prop-erties of �. aNow that we have a contraction function that sat-is�es the six basic postulates for contraction, the ob-vious next question is: how do we get the seventh andeighth postulate? It turns out that we need to makeone more addition to our apparatus, namely we haveto add a preference relation �K over subsets of thetheory K that is being contracted. Intuitively, �Korders the parts of K according to their relative im-portance for the theory as a whole. So, if X �K Ythen Y is `preferred to' or `at least as good as' X fromthe point of view of K. Such preference relations willhelp us make more re�ned selection functions.We will say that a function s is a selection functiongenerated by a relation just in case1. s is a selection function3For instance, if K = Cn(fp ^ qg) then sK(K ? (p ^ q)) =fCn(fpg);Cn(fqg)g seems a reasonable candidate selectionfunction (see also Example 4.3). In this case we obtain (p _q) 2 Cn(fp ^ qg) � (p ^ q) (see also Example 3.7).

2. there is a reexive relation �K on the collectionSfK ? � j 6` �g such thats(X ) = fX 2 X j Y �K X for all Y 2 Xg:So, a selection function generated by a relation selectsthose subsets that are most preferred or dominatingaccording to the relation on which it is based.To de�ne a contraction function using the abovemachinery, let K be a belief set. Then, a contractionfunction � is called a (transitively) relational partialmeet contraction function if there exists a selectionfunction s that is generated by a (transitive) relationon subsets of K such that for all �,K � � =\ s(K ? �):In words, a transitively relational partial meet con-traction function returns the intersection of the mostpreferred elements of K ? �.Theorem 4.14 Let � be a contraction function, andlet K be a belief set. Then � is a transitively relationalpartial meet contraction function over K i� it satis�esthe contraction postulates (K�1){(K�8) for K.Proof. The left-to-right direction is left to the reader.For the converse, let K be a belief set, and de�ne abinary relation�K � SfK ? � j 6` �g �SfK ? � j 6` �gbyX �K Yi� 8>>>>><>>>>>: either X = Y = Kor 1: X; Y 2 K ? �; for some �, and2: K � � � Y; for some �, and3: for all  : if X , Y 2 K ?  andK �  � X then K �  � Y .It can be shown that given the eight postulates forcontraction, the above relation �K gives rise to atransitively relational partial meet contraction func-tion that coincides with �. aBy the above theorem we �nally have an explicitconstruction of a contraction function that satis�esall of the AGM postulates for contraction. We shouldpoint out, however, that there are various shortcom-ings to partial meet contraction functions as a modelfor contraction. For a start, the computational costsof such functions are high because of the need to deter-mine maximal subsets of a belief set. Also, in the �nalstage of the construction we had to employ a prefer-ence relation on subsets of belief sets | why not takesuch relations seriously and give them a �rst-class sta-tus?Epistemic EntrenchmentIn this subsection we employ a preference relation onindividual formulas to construct contraction functions.10



The idea is that `while all sentences in a belief set mustcount as fully accepted, some are more accepted thanothers' (Fuhrmann [8]).Example 4.15 Bert has a sister, Freddie. She isthinking about her next career move. In her theoryabout the job market and job opportunities the rulethat (nearly) all Dutch post-docs in logic are unem-ployed is probably of greater value than the fact thatsome post-docs in logic (like Bert) happen to have ajob that even happens to be reasonably well-paid.The epistemic entrenchment of a sentence is itsinformational value within the belief set. For example,lawlike sentences tend to have a greater informationalvalue than mere observations. There may be manysources for ranking the sentences in a theory, rangingfrom information theory to the philosophy of science| we won't pursue these issues here.How are we to use a preference relation on formu-las to de�ne a contractions or revisions? If we have togive up sentences from a belief set K, then we give upthose sentences that are least important to us accord-ing to the preference relation:� �K  i�  is at least as important or entrenchedas � from the point of view of K.De�nition 4.16 Let K be a belief set. A binary re-lation on formulas �K is an epistemic entrenchmentrelation if it satis�es the postulates (EE1){(EE5) be-low.(EE1) If � �K  and  �K �, then� �K � (Transitivity)(EE2) If � `  , then � �K  (Dominance)The second postulate for entrenchment says that ifeither � or  has to be given up, then giving up � is asmaller change than giving up  , for if  is given up,so should � because of � `  .(EE3) � �K (� ^  ) or  �K (� ^  ).One slightly inaccurate reading of (EE3) is: if youhave to give up the conjunction �^ , then it su�cesto give up just one of � and  .If a sentence is not contained in K, then it isn'tentrenched in K. Hence it should be minimal in theentrenchment relation.(EE4) � =2 K i� for all  : � �K  (Minimality)The other way around: the sentences that are mostentrenched are the logical laws.(EE5) If � �K  for all �, then `  . (Maximality)Although the entrenchment postulates may seemquite natural, they have a number of counter-intuitiveconsequences, the most striking being the following.Proposition 4.17 Let � be a relation between for-mulas that satis�es the �rst three entrenchment pos-tulates (EE1){(EE3). Then, for all formulas � and : � �  or  � �.Proof. By (EE2) �^ � � and �^ �  . By (EE3)� � � ^  or  � � ^  . Putting this together andusing (EE1), we �nd � �  or  � �. a

As a consequence, epistemic entrenchment relationsdecide on the relative order of any two sentences, eventhough they may be totally unrelated, such as `themoon circles around the earth' and `most post-docs inlogic are unemployed.'We are ready now to look at the connection be-tween contraction functions and entrenchment rela-tions.From entrenchment to contraction. Let �K bean epistemic entrenchment relation. We de�ne a con-traction � as follows: 2 K � � i� 2 K and 8<: � <K (� _  ); or� =2 K; or> �K �: (20)The intuition here is that if � is not provable, thenK�� consists of members of K that are more entrenchedthan �. However, for technical reasons one has to use� <K (� _  ) instead of � <K  .From contraction to entrenchment. Let � bea contraction function. An obvious �rst guess at ade�nition of entrenchment in terms of � would be toput � �K  i� � =2 K � (� ^  ). In other words:  ispreferred to � if whenever we have to choose betweenthe two (i.e., against � ^  ), we choose against �.However, without some restrictions, this will lead toconicts: if  is a tautology, then certainly  2 K� ,so the above de�nition would yield :( �K  ); on theother hand, entrenchment relations are required to bereexive | a contradiction.We therefore de�ne a relation �K on formulas asfollows:� �K  i� � `  ; or� =2 K � (� ^  ); if 6`  : (21)The above two constructions are neatly linked up bythe following representation results.Theorem 4.18 1. If �K is an epistemic entrench-ment relation satisfying (EE1){(EE5), then thecontraction function de�ned by (20) satis�es theAGM postulates for contraction (K�1){(K�8).2. If � is a contraction function satisfying (K�1){(K�8), then (21) de�nes an epistemic entrench-ment relation satisfying (EE1){(EE5).In a picture:
ce CE

contraction functionsentrenchment relations� *Figure 3. Back and forth between entrenchment relationsand contraction functions11



In fact, the result is that if c denotes the function tak-ing entrenchment relations to contraction functions,and e is the function taking contraction functions toentrenchment relations, thene � c = idE and c � e = idC: (22)That is: the composition of e and c is the identity onthe class of entrenchment relations, and the composi-tion of c and e is the identity on the class of contrac-tion functions.NotesIn the following section we will see an example of amodel-based de�nition of revision functions (in the set-ting of revisions for belief bases instead of belief sets).Besides these, the meet function constructions, andthe epistemic entrenchment relations there are a num-ber of alternative ways of constructing explicit con-traction and revision functions.The method of safe contraction due to Alchourr�onand Makinson is the mirror image of the meet func-tions approach. Rather than selecting certain max-imal sets that fail to imply the formula to be con-tracted, safe contractions prune the minimal subsetsof a theory that imply the sentence to be contracted.There are various quantitative approaches to con-traction and revision. One inuential one involves so-called Shackle measures whose qualitative part can beshown to coincide with epistemic entrenchment rela-tions. An alternative quantitative approach is advo-cated by Spohn who uses ordinal conditional functionsto represent revisions.In Part II of these notes we will examine construc-tions of contraction and revision operations based onnon-monotonic logic, verisimilitude, and modal anddynamic logic.5 Variations and ExtensionsIn this section we will look at two variations of theAGM framework discussed in the previous sections.First, we move to knowledge bases that need not bedeductively closed instead of belief sets as the basicobjects of theory change. Another change to the basicformat occurs when we move to multiple contractions,where the new information to be incorporated in ourtheory is a set of formulas rather than a single formula.Base RevisionsWhen we consider computer-based knowledge bases,we need to �x a formalism and a �nite representationof our knowledge base. Katsuno and Mendelzon [18]propose a format in which a knowledge base is rep-resented by a single propositional formula  , and inwhich a revision is represented as a connective �:  ��denotes the revision of  by �.Katsuno and Mendelzon propose the following col-

lection of postulates to govern revisions on (�nite)knowledge bases:(R1)  � � implies �(R2) If  ^ � is satis�able, then ( � �)$ ( ^ �)(R3) If � is satis�able, then  � � is also satis�able(R4) If  1 $  2 and �1 $ �2, then ( 1 � �1) $( 2 � �2)New knowledge (�) is retained in the updated knowl-edge base (R1). The actual presentation of the infor-mation is irrelevant (R4). The obvious path is takenwhen there's no conict (R2), and revision doesn't in-troduce unwarranted inconsistency (R3).To relate the Katsuno-Mendelzon postulates forrevision to the AGM postulates for revision, we re-strict attention to belief sets that are generated by asingle formula: K = f� j  ` �g. Then, it is easy toshow that (R1){(R4) are equivalent to (K�2){(K�6).What about counterparts to (K�7) and (K�8)? Itturns out that (for �nitely generated belief sets) theseare equivalent to the following Katsuno-Mendelzonpostulates:(R5) ( � �) ^ � implies  � (� ^ �)(R6) If ( � �) ^ � is satis�able, then  � (� ^ �)implies ( � �) ^ �.What do these postulates mean? Consider the collec-tion of all models of the knowledge base  , Mod( ).Suppose that there is some metric for measuring the`distance' between Mod( ) and any interpretation Ifor the language of  . In line with the minimal changerequirements of earlier sections, we want the models of �� to be the models of � that are closest to Mod( ).Rule (R5) says that closeness is well-behaved: ifwe pick an interpretation I which is closest to Mod( )in a certain set, namely in Mod(�), and I also belongsto a smaller set, Mod(� ^ �), then I must also beclosest to Mod( ) within the smaller set Mod(� ^ �).A counterexample to (R6) would be an interpretationI that is closer to the knowledge base than J within acertain set, while J is closer than I within some otherset. To make sense of these ideas about closeness, con-sider the following. Let I be the set of all interpre-tations of our language, and consider a function thatassigns to each propositional formula  a pre-order� over I. This assignment is called faithful if thefollowing hold:1. If I , I 0 2 Mod( ), then I < I 0 does not hold2. If I 2 Mod( ) and I 0 62 Mod( ), then I < I 0holds3. If ` �$ �, then � = ��.Let M be a subset of I. An interpretation I iscalled minimal in M with respect to � if I 2 M andthere is no I 0 2 M such that I 0 < I . De�neMin(M;� ) = fI j I is minimal in M w.r.t. � g:Intuitively, I 0 � I means that I 0 is closer to Mod( )than I ; and Min(M;� ) picks out the interpretationsin M that are closest to Mod( ).12



Theorem 5.1 A revision operator � satis�es (R1){(R6) i� there exists a faithful assignment that mapseach knowledge base to a total pre-order � such thatMod( � �) = Min(Mod(�);� ).Example 5.2 (Dalal's revision) Dalal measures thedistance dist(I; J) between two interpretations I andJ by counting the number of proposition letters onwhich they disagree. The distance between Mod( )and I is de�ned asdist(Mod( ); I) = minJ2Mod( ) dist(J; I):Now de�ne a faithful assignment of a total pre-order� by putting I � J i�dist(Mod( ); I) � dist(Mod( ); J):One can then de�ne a revision operator �D as in The-orem 5.1.Assume that our language has just 4 propositionletters p, q, r, s, and that interpretations are repre-sented as boolean vectors of length 4. Consider thefollowing interpretationsI1 = (1; 1; 1; 1); I2 = (0; 0; 0; 0)J1 = (0; 0; 1; 1); J2 = (1; 0; 0; 0);J3 = (0; 0; 1; 0):Let  = Th(I1; I2), �1 = Th(J1, J2, J3), �2 = Th(J1,J2), and �3 = Th(J1; J3). Here Th(M) is a formulawhose set of models is exactly M. Then �D �1 $ Th(J2; J3) �D �2 $ Th(J2) �D �3 $ Th(J3):Example 5.3 (Borgida's revision) Borgida's revisionoperator �B is based on comparing sets of propositionletters on which a model of  and a model of � di�er.For two interpretations I , J , we write Di� (I; J) to de-note the set of proposition letters whose interpretationis di�erent in I and J . Di� (I; �) is[J2Mod(�)Di� (I; J):Borgida's revision is de�ned as follows. If � is incon-sistent with  then an interpretation J is a model of �B � i� J is a model of � and there is some modelI of  such that Di� (I; J) is a minimal element ofDi� (I; u). Otherwise, if � is consistent with  , then �B � is de�ned as  ^ �.Consider the previous example, and add the fol-lowing two interpretationsJ4 = (1; 1; 0; 0); J5 = (1; 1; 1; 0):Let �4 := Th(J2; J4), �5 := Th(J4; J5), and �6 :=Th(J2; J4; J5).Now, suppose for a contradiction that there is a

faithful assignment of a pre-order � that capturesthe �B operator. Then J2 6< J4 because ( �B �4) $Th(J2; J4). Further, J5 6< J4 follows from ( �B�5)$Th(J4; J5). On the other hand, either J2 < J4 orJ5 < J4 follows from ( �B �6) $ Th(J2; J5) | acontradiction.Multiple ContractionsIn this subsection we work with in�nite belief setsagain, just as in the original AGM paradigm, but wechange one of the other parameters. We will discussmultiple contractions , i.e., contractions by a set of for-mulas rather than by a single formula. It will turn outthat there are two major variants: one where all sen-tences must be removed from the belief set, and onewhere it su�ces that at least one of them is removed.Before plunging into formal details, let us brieymotivate multiple contractions. Suppose that we wantto give up two di�erent points of view, � and  . Theresult of the removal should be a belief set that impliesneither � nor  , and is otherwise as similar to the oldtheory as is possible. The following may seem to havethe same e�ects as removing the set f�;  g from ourtheory:1. contracting by � _  2. intersecting the results of contracting by � andcontracting by  3. �rst contract by �, then by  (or the other wayaround)4. contracting by � ^  None of these options is quite satisfactory as an ex-planation of removing f�;  g. In the fourth optionit su�ces to just give up one of the two formulas; inthe third option the problem is that the order in whichsingle-sentence contractions are performed matters; asis shown in [14], the result of �rst contracting by �and then by  need not be the same as the result of�rst contracting by  and then by �. As to the �rstoption, if we inadvertently admit :� to our theorywhile � is already part of our theory, then a commonstrategy is to `suspend belief in �'; that is, to removeboth � and :� from the theory; if the �rst option wereused, then this would be impossible: we can't removetautologies from belief sets. Finally, the second optionseems to have some credibility as an explanation of amultiple contraction with � and  .Fuhrmann and Hansson [9] distinguish two formsof multiple contraction: package contractions in whichall information needs to be removed, and choice con-tractions in which it su�ces to remove just some ofthe information. Changes in legal systems typicallyinvolve simultaneous changes in many parts of the le-gal code, and as such they constitute a nice exampleof package contractions.To help understand the formal properties of thesetwo forms of multiple contraction, it is useful to havetwo notions of derivability:X ` Y : Y � Cn(X)X  Y : Y \ Cn(X) 6= ;13



We will write K � [A] to denote the package contrac-tion of K by the set A, and K � hAi to denote thechoice contraction of K by A.Let us consider how the basic AGM postulates forcontraction (K�1){(K�6) have to be amended formultiple contractions.Closure. For any belief set K and set of sentencesA, both K � [A] and K � hAi are deductively closed.Success. This postulate comes in two avors:� Choice: if 6` A then A 6� K � hAi.� Package: if 6 A then A \ (K � [A]) = ;.Inclusion. Both K � [A] and K � hAi are subsetsof K.Vacuity. This postulate too comes in two avors:� Choice: if A 6� K then K = K � hAi� Package: if A \K = ; then K = K � [A].Extensionality. Again, a postulate in two avors:� Choice: if Cn(A) = Cn(B) then K � hAi = K �hBi� The obvious counterpart for package contraction(if Cn(A) = Cn(B) then K � [A] = K � [B]) isnot an acceptable principle: take K = Cn(fpg),then K � [fp ^ qg] = K by Vacuity, but K �[fp ^ q; pg] 6= K by Success, yet Cn(fp ^ qg) =Cn(fp ^ q; pg). Instead, Fuhrmann and Hanssonpropose a postulate calledPackage Uniformity : If A �K B then K � [A] =K � [B], where A �K B holds if `A and B areequivalent-modulo-K,' that is to say: A �K B if8X � K (X  A, X  B).The Recovery postulate (K � (K � �) + �) isreplaced by a Relevance postulate that is meant tocapture the idea of minimal change in the same wayas the Recovery postulate.Relevance. If  2 K n (K � �), then there exists aset K 0 such that1. K � � � K 0 � K2. K 0 6` �3. K 0;  ` �.Given the other basic AGM postulates (K�1),: : : , (K�4) and (K�6), the Recovery postulate isequivalent to the Relevance postulate.Now, choice and package versions of the Relevancepostulate are easily arrived at:Choice Relevance. Take the relevance postulatefor ordinary contraction and replaceK�� byK�hAi,and � by A.Package Relevance. Take the relevance postulatefor ordinary contraction and replaceK�� byK� [A],� by A, and ` by .With these postulates to our disposal we can for-mulate representation results in the spirit of the pre-vious section. To adapt the machinery of meet func-tions to the present setting we use two de�nitions ofremainders:

Choice Remainders: X 2 K ? A if� X � K� X 6` A� 8Y (X ( Y � K ) Y ` A).Package Remainders: X 2 K ?? A if� X � K� X 6 A� 8Y (X ( Y � K ) Y  A).On top of this one can de�ne choice and package par-tial meet functions as intersections of selections ofchoice and package remainders, respectively.Theorem 5.4 1. A binary operation on sets of for-mulas can be de�ned as a choice partial meet func-tion if it satis�es the postulates for choice contrac-tion.2. A binary operation on sets of formulas can be de-�ned as a package partial meet function if it sat-is�es the postulates for package contraction.NotesThe discussion of base revisions is taken from Kat-suno and Mendelzon [18]. The material on multiplecontractions is based on Fuhrmann and Hansson [9].Further changes to some of the parameters in the basicAGM framework include:1. Relaxing the requirement that revisions be func-tional [24].2. Change-recording theory change, as opposed toknowledge-adding theory change [19].3. Iterated theory change [22, 20].4. Multi-agent theory change [15].II{Alternative ApproachesIn the second half of these notes we discuss alternativeapproaches to dealing with changing information; westart with non-monotonic logic and verisimilitude, andthen turn to descriptive approaches based on modaland dynamic logic.6 Incomplete InformationNon-monotonic logic is concerned with inferring infor-mation from given sentences in ways that don't satisfythe monotonicity property(Monotonicity) j= �!   j= �� j= � .In other words, in non-monotonic logic the additionof premises may lead to fewer conclusions. Here's anexample. Consider the following set of premises.Most post-docs have nice jobsPost-docs in logic are unemployedMike is a post-docIn the absence of further information, you would prob-ably conclude that Mike has a nice job. However, if14



you were then to �nd out that Mike is actually a post-doc in logic, you would cancel your inference, but youwouldn't give up any of the premises.In this section we consider the Kraus-Lehmann-Magidor (KLM) framework for non-monotonic rea-soning. At �rst sight it may seem strange that re-vision and non-monotonic reasoning have anything todo with each other; after all, theory change deals withthe dynamics of belief sets and with the way we adaptour state of information in the face of new data. Non-monotonic logic, on the other hand, studies jumps toconclusions from (often) incomplete data. Yet, wewill be able to establish connections between revisionand non-monotonic inference, and we will do so in twoways: syntactically, by translating postulates into in-ference rules and conversely, and by using the modeltheory developed within the KLM framework.Many calculi perform non-monotonic inferences (cir-cumscription, default logic, auto-epistemic logic, ne-gation-as-failure, inheritance systems, : : : ). The �rstsystematic study of non-monotonic consequence rela-tions is due to Dov Gabbay. Independently, Makinsonand Shoham have proposed model theories for non-monotonic inference. KLM present a uni�ed frame-work in which both approaches are linked togethervia representation results.The KLM framework uses an ordinary proposi-tional language, with the usual boolean operations (:,^, _, !, $). In addition there's a collection I of in-terpretations for this propositional language; this maybe seen as the collection of all worlds considered pos-sible. The language and interpretations are related bya satisfaction relation j= which is assumed to behavenormally for :, ^, : : : .If �,  are formulas, then � j�  is called a con-ditional assertion; the intuitive reading is `if �, thennormally  ,' or ` is a plausible consequence of �.'We will now give a collection of axioms and inferencerules that de�nes j�; after that it will be matched witha suitable model theory.KLM: Inference Rules for Preferential Reason-ingKLM propose the following inference rules for pref-erential reasoning: Reexivity, Left Logical Equiva-lence, Right Weakening, Cut, Cautious Monotonicity,and Or. The resulting system is called P.(Reexivity) � j� �(Left Logical Equivalence) j= �$  � j� � j� �In words, logically equivalent formulas have the sameplausible consequences.The following says that one should accept as plau-sible consequences everything that is logically impliedby things that are plausible consequences.(Right Weakening) j= �!  � j� �� j�  Observe that from Reexivity and Right Weakeningwe get: if � j=  , then � j�  .

(Cut) � ^  j� � � j�  � j� �That is, to obtain a plausible conclusion, one can�rst add a hypothesis and then deduce (plausibly) theadded hypothesis. To replace the full monotonicityprinciple from classical logic, the following `cautious'version is introduced:(Cautious Monotonicity) � j�  � j� �� ^  j� � .If � is reason enough to believe  and also to believe�, then � and  should be reason enough to believe �,since � was enough anyway, and on this basis,  wasexpected. The �nal rule of preferential reasoning is(Or) � j� �  j� �� _  j� �In words, any formula that is, separately, a plausibleconsequence of two di�erent formulas, should also bea plausible consequence of their disjunction.The following are derived rules in the system P.(Equivalence) � j�   j� � � j� � j� �(And) � j�  � j� �� j�  ^ �(MPC) � j�  ! � � j�  � j� �MPC is short for Modus Ponens in the Consequent;And says that the conjunction of two plausible con-sequences should again be plausible, and Equivalenceexpresses that formulas that are plausibly equivalenthave the same plausible consequences.None of the rules below should be part of a logicthat claims to be non-monotonic, as they all implyMonotonicity:(EDT) � j�  ! �� ^  j� �(Transitivity) � j�   j� �� j� �(Contraposition) � j�  : j� :�EDT stands for the Easy half of the Deduction Theo-rem.Lemma 6.1 Given the rules of the system P, Mono-tonicity, EDT and Transitivity are equivalent. More-over, Contraposition implies Monotonicity.The following Hard half of the Deduction Theorem(HDT) is a consequence of P:(HDT) � ^  j� �� j�  ! � .The idea is that deductions performed under strongassumptions may be useful even if the assumptionsare not known facts.KLM: Preferential ModelsThe goal of this subsection is to de�ne models for P,and to show that each model gives rise to a conse-quence relation satisfying the rules of P, and, con-versely, that each consequence relation satisfying thoserules is de�ned by a model.The models consist of a set of states (representingthe possible states of a�airs), and a binary relation onthose states that represents the preferences a reasoner15



may have between states: s � t if s is more preferred(satis�es more of our default assumptions) than t.We need the following de�nitions. Given a binaryrelation � and a domain S with � � S � S, a statet 2 S0 is �-minimal in S0 � S if for all s 2 S0 we haves 6� t. We call t a �-minimum of S0 if for all s 2 S0,s 6= t implies t � s. Furthermore, a subset S0 � Sis smooth if every t in S0 is either �-minimal in S0 orthere exists an s 2 S0 with s � t that is �-minimal inS0.De�nition 6.2 A preferential model M is a tuple(S; l;�) where S is a set of states; l : S ! I as-signs an interpretation to each state, and � is a strictpartial order (i.e., irreexive and transitive) satisfyingthe following smoothness condition:for every formula �, [[�]] = fs j l(s) j= �g issmooth.Preferential models M = (S; l;�) de�ne a conse-quence relation j�M as follows:� j�M  i� Min([[�]];�) � [[ ]]:Here Min(M;�) is the collection of �-minimal modelsin M (compare Section 5!). Thus, � plausibly implies if  is true in all most preferred � states.Lemma 6.3 (Soundness) Every preferential modelM gives rise to a consequence relation j�M that satis-�es all the rules of the system P.Our next aim is to prove the converse of the abovelemma. To this end the following comes in useful. De-�ne �O i� �_ j�  ; intuitively, �O expresses that� is strong enough to (plausibly) imply  . Observethat O is reexive (by Reexivity and Left LogicalEquivalence) and transitive (by Left Logical Equiva-lence and Right Weakening).Call an interpretation I normal for � if for anyformula  such that � j�  we have I j=  .Lemma 6.4 1. If �O and I is a normal interpre-tation for � that satis�es  , then I is normal for as well.2. If �O O�, I is normal for � and satis�es �, thenI is normal for  .We now de�ne the preferential model that we needfor the main representation result. Given a preferen-tial consequence relation j� we de�ne M = (S; l;�)by� S = f(I; �) j I is a normal interpretation for �g� l((I; �)) = I� (I; �) � (J;  ) i� (�O and I 6j=  ).As Johannes Heidema pointed out, what the lattercondition seems to say is that  should be fairly weakcompared to � (�O ), but that it shouldn't be tooweak | there should be interpretations that refute it(the idea being that almost every interpretation is amodel for very weak formulas).To get our representation result we need to showthatM is in fact a preferential model (i.e., � is a strict

partial order, and the smoothness condition is satis-�ed), and that j� coincides with j�M . The followinglemma is useful.Lemma 6.5Assume that the background logic is com-pact. Let j� satisfy all the rules of P. Then, for anytwo formulas � and  we have the following equiva-lence: all normal interpretations for � satisfy  i�� j�  .Lemma 6.6 M is a preferential model.Proof. We �rst show that � is a strict partial order.It is certainly irreexive, as (I; �) � (I; �) would im-ply I 6j= � (by de�nition), and I j= � (by normal-ity and � j� �). To prove transitivity, assume that(I0; �0) � (I1; �1) � (I2; �2). Then �0O�1O�2. As Ois transitive, this gives �0O�2. Further, I0 is normalfor �0 but I 6j= �1. Hence by Lemma 6.4, I 6j= �2.Next comes smoothness. We use the followingcharacterization of minimal sets of the form [[�]]: (I;  )is minimal in [[�]] i� I j= � and  O�. Assuming thischaracterization, smoothness is easily established. Forsuppose that (I;  ) 2 [[�]]. Then I j= �. If  O�, then,by the characterization, (I;  ) is minimal in [[�]], andwe're done. On the other hand, if  O� does not hold,then � _  6j�  . So by Lemma 6.5, there exists aninterpretation J for �_  with J 6j=  . As (� _ )O we get (J; �_ ) � (I;  ). From J j= �_ and J 6j=  we get J j= �. Since (� _  )O�, our characterizationgives us that (J; � _  ) is minimal in [[�]]. aLemma 6.7 The two consequence relations j� andj�M coincide.Proof. We �rst show that � j�  implies � j�M  .Assume � j�  . We need to show Min([[�]];�) � [[ ]].Suppose (I; �) is minimal in [[�]]. Then I is nor-mal for � and satis�es �. So by the characterizationof minimality mentioned above, �O�. Therefore, byLemma 6.4 I is normal for �, so I j=  .Now, for the converse implication, observe thatgiven any normal interpretation I for �, (I; �) is min-imal in [[�]]. If � j�M  ,  is satis�ed by all normalinterpretations of �, and so by Lemma 6.5, � j�  . aTheorem 6.8 A consequence relation is a preferen-tial consequence relation (satisfying the rules of P) i�it can be de�ned by a preferential model.Connecting Theory Change and Non-monoto-nic LogicWe now explore two ways of connecting revision andnon-monotonic logic: a syntactic one based on trans-lating inference rules and postulates, and a semanticone that uses plausible consequence to de�ne the re-vision operator.Postulates and Inference RulesThe syntactic links between revision and non-monoto-nic logic start from the following observation. Let Kbe a (deductively closed) belief set, and � a formula.We can view the revision of K by � as an inference16



from �, using K as the background information onthe basis of which inferences are made. Thus the setof plausible consequences of � (given K) is preciselyK � �: � j�K  i�  2 K � �.Let us check right away that j�K as de�ned aboveis indeed a non-monotonic inference relation: there are�,  , � such that � `  ,  j�K �, but � 6j� �. Take� = p ^ q and K = Cn(f:p _ :qg). Then K � � =K � (p ^ q) 3 (p ^ q) (by Success), but 63 p ^ :q (byConsistency). Clearly � ` p. Yet K � p = Cn(f:p _:qg[fpg) = Cn(fp^:qg). So, � ` p, p j� p^:q, butp ^ q 6j� p ^ :q.From � to j�. The above suggests the followingtranslation scheme for expressing postulates for theorychange in non-monotonic logic: 2 K � � ) � j�K  :This scheme does not tell us how to handle expressionsof the form K + �, but we can use the following trickhere: if K is consistent (and closed under Cn) thenK � > = Cn(K [ f>g) = Cn(K) = K. Thus, usingthe fact that  2 K + � i� (� !  ) 2 K, we rewrite 2 (K + �) to (� !  ) 2 K � >, which translatesinto > j� �!  .Let us now translate the eight AGM postulates forrevision.(K�1) Cn(K � �) = K � �.Translation: f j � j�K  g = Cnf j � j�K  g.The right to left inclusion of the translation maybe proved using And and MPC.(K�2) � 2 K � �.Translation: � j�K �. This is obviously valid inP.(K�3) K � � � K + �.Translation: � j�  implies > j� (� !  ), andthis is a special case of HDT (a derived rule in P).(K�4) If :� =2 K, then K + � � K � �.Rewrite to: if :� =2 K and  2 Cn(K[f�g), then 2 K � �.Translation: If > 6j�K :� and > j�K (� !  ),then � j�K  . This principle is not valid on allpreferential models; simply takeM such that S =f0; 1; 2g, � = f(1; 2)g and assign interpretationsto 0, 1, and 2 so that l(0); l(2) j= p, l(0) j= q. Then6j�M :p, but > `M (p ! q), yet 2 (a minimal p-world) has :q, and so p 6j�M q.(K�5) K � � = K? only if ` :�.Translation: if ? 2 f j � j�K  g then ? 2Cn(f�g). Again this is not a valid principle ofnon-monotonic reasoning; giving a countermodelis left to the reader.(K�6) If ` �$  , then K � � = K �  .Translation: ` � $  implies � j� � i�  j� �;this is the rule of Left Logical Equivalence.(K�7) K � (� ^  ) � (K �  ) + �.Translation:  ^� j� � implies  j� (�! �). Thelatter is the derived rule HDT.

(K�8) If :� =2 K �  , then Cn(K �  [ f�g) � K �( ^ �).Translation:  6j�K :� and  j� (� ! �), then ^ � j�K �. The latter principle is not valid onall preferential models; cf. the discussion following(K�4).From j� to �. Let us now work in the oppo-site direction, and translate the inference rules of thesystem P into statements about revision. We havealready seen that Reexivity and Left Logical Equiv-alence can be obtained from the revision postulates.(Right Weakening) If j= � !  and � j� �, then� j�  .Translation: if j= � !  and � 2 K � � then 2 K � �. Given that belief sets are deductivelyclosed, this is obviously valid.(Cut) If � ^  j� � and � j�  , then � j� �.Translation: if  2 K � � and � 2 K � (� ^  ),then � 2 K � �. This may be derived from thepostulates (use (K�7)).(Cautious Monotonicity) If � j�  and � j� �, then� ^  j� �.Translation: if  2 K � � and � 2 K � �, then� 2 K � (� ^  ). This may be derived from thepostulates (use (K�8)).(Or) If � j� � and  j� �, then � _  j� �.Translation: if � 2 K � � and � 2 K �  , then� 2 K�(�_ ). To see that this is a valid principle,use the the following characterization of revisionsby disjunctions: K � (�_ ) is one of K ��, K � ,or (K � �) \ (K �  ) (Theorem 3.4).The upshot of the above connections between re-vision and non-monotonic logic is the following. Ev-ery inference rule for preferential reasoning is a validprinciple for revision, but the converse does not hold:some principles for revision are not valid for preferen-tial reasoning (notably, (K�4), (K�5)). Thus, revisionis governed by more principles than preferential rea-soning.A Model-Theoretic ApproachThere is a close similarity between the de�nition ofplausible inference in a preferential model (j�M) andthe model-based de�nition of revision presented inSection 5. To see how exactly, note �rst that ourtranslation scheme (� to j�) suggests the following def-inition of revision using preferential models.K �� � := f j Min(Mod(�);�) � Mod( )g: (23)Note, however, that there is no dependence on thebelief set K in the above.If we restrict ourselves to �nitely generated the-ories, the above de�nition can be compared to themodel-based de�nition of revision given in Section 5.There each formula/theory � was equipped with a to-tal pre-order �� on interpretations in such a way thatall models for � are strictly less than non-models for�, but no model for � is strictly less than another17



model for �, and equivalent formulas are associatedwith the same pre-order. This machinery gave rise tothe following de�nition of revision:K �� � := f j Min(Mod(�);��) � Mod( )g; (24)where � is assumed to generate K.Clearly, de�nition (24) is more restrictive than(23): there are more conditions on the relation ��,which is, moreover, dependent on the theory being re-vised. This is reected in the following. We showed,in Section 5, that revisions de�ned by (24) satisfy theAGM postulates for revision. On the other hand, notall of the AGM postulates for revision are satis�ed byde�nition (23); proving this is left to the reader. Butthis is to be expected in the light of our earlier resultsof intertranslating postulates for � and rules for j�:we found that � was the more restricted notion of thetwo that was governed by more laws than j�.Ryan and Schobbens [32] propose adapting the set-upof preference relations and preferential models in thefollowing manner to arrive at a better match.As before, let I denote a collection of interpre-tations for the language, and let T be the set of de-ductively closed sets of sentences over our backgroundlanguage. An RS preference relation v is a ternaryrelation v � I � T � I such that, for all K 2 T , vKis reexive and transitive.A set of interpretations M is called closed ifMod(Th(M)) = M:The set #vK (M) is de�ned as fJ j 9I 2 M J vK Ig,and likewise for "vK (M).The following properties of RS preference relationswill be used below. An RS preference relation is1. sound if for any satis�able K, I is vK-minimal inT i� I j=K;2. stoppered if for all sets of formula X and inter-pretations I 2 Mod(X), there exists J vK I withJ 2 Min(Mod(X);vK);3. abstract if Th(I) = Th(J) implies I vK J vK I ;4. preserves closed sets if for all K and closed setsof interpretations M, the sets Min(M;vK) and#vK (M) and "vK (M) are closed.Conditions 1 and 3 are similar to (part of the) faith-fulness conditions de�ned in Section 5. Condition 2 issimilar to the smoothness condition used in the de�ni-tion of preferential models; it tells us that any theoryhas minimal models. Preservation of closedness is, in-deed, about preservation of closedness under certainoperations on sets of interpretations.Given the above de�nitions, we can de�ne revi-sions in the obvious way:K �v � := Th(Min(Mod(�);vK)): (25)Ryan and Schobbens introduce a number of rathertechnical conditions on v to guarantee that �v sat-

is�es the AGM postulates. Our next concern here isto relate the above to a relation on theories calledverisimilitude | this will be the topic of the followingsection.NotesThe presentation of preferential reasoning and pref-erential models in this section is based on [21]. Thetranslations taking postulates for revision to nonmo-notonic inference rules, and conversely, were �rst pro-posed in [27]. The �nal parts of this section are basedon [32]. A comparison of a variety of approaches tousing minimality in logic is presented in [26].7 VerisimilitudeVerisimilitude is about measuring how close theoriesare to the truth; that is, about measuring which the-ories are better approximations of the complete the-ory of `everything' than others. Instead of closenessto `The Truth,' we will be more modest, and look atcloseness to `the available evidence,' i.e., approxima-tions of a given theory K which is taken to representthe evidence.A verisimilitude relation is a ternary relation be-tween theories:A bK B if A is as close to K as B is.We will assume that b is reexive and transitive.The ternary relation allows us to select, from agiven collection T of theories, one which is closest toa given theory K in an obvious way: A is closest toK if it is bK-minimal in T :A 2 Min(T ;bK):Observe that the above allows for di�erent incompa-rable theories to be closest to K.Historical CommentsThe �rst formal de�nition of verisimilitude is due toKarl Popper:A b(P )K B i� B \K � A and A nK � B:If we assume that K is maximal (i.e., decides on anygiven formula), then the above de�nition says that Ais closer to K than B if A has all the true sentencesthat B has, and A has no more false sentences in itthan B has. Without the assumption of maximality,the latter condition is not very intuitive.An alternative de�nition is due to Miller and Kui-pers:A b(M)K B i� Mod(B) \Mod(K) � Mod(A) andMod(A) nMod(K) � Mod(B).The intuition here is that any model for B that might18



be the true situation must also be a model for A, andany model for A that can't be the true situation mustalso be a model for B.The above two proposals have a number of unde-sirable properties:1. A 6= B and A b(P )K B implies A � K2. If K is maximal and Mod(K)\Mod(A) = ;, thenA b(M)K B.In words, item 1 says that b(P )K can't strictly order`false' theories (i.e., theories that contain at least onestatement not in K): : : but this was exactly the pur-pose of verisimilitude. Item 2 says that the contradic-tory theory (with no models) is an improvement onany theory that shares no models with K.Back and Forth between v and bWe will now describe ways of obtaining a verisimili-tude relation from a preference relation, and the otherway around. We start with the latter case. Givena preference relation, how can we use it to de�ne averisimilitude relation? We use an idea from computerscience called the power-ordering or the Egli-Milnerordering. What this does is the following. Given arelation R on a set X , one can `lift' R to a relation onthe power set P(X ) of X as follows.XR+Y i� 8x 2 X9y 2 Y xRy ^ 8y 2 Y 9x 2 X xRy:Thus, Y reaches up higher than X , and X reachesdown lower than Y .Brink and Heidema propose using the poweringidea in the following manner to derive a verisimili-tude relation from a preference relation. By identify-ing theories A, B with sets of interpretations (namelyMod(A) and Mod(B)), v can be lifted as followsA bvK B i� 8I 2 Mod(A)9J 2 Mod(B) I vK J and8J 2 Mod(B)9I 2 Mod(A) I vK J .The intuition here is that A is as close to K as B ifevery model of A is as close to K as some model of B,and every model of B is a far from K as some modelof A.Going from b to � is easier. Every interpretationI gives us a theory, namely Th(I). If we are compar-ing theories for closeness to K, then we're comparinginterpretations too:I vbK B i� Th(I) bK Th(J):Proposition 7.1 If v is a preference relation, thenbv is a verisimilitude relation. If b is a verisimilituderelation, then vb is a preference relation.Using a verisimilitude relation, one can de�ne arevision operation as follows. Given a belief set Kand a formula �, consider the theories that contain �,and select among them those that are closest to K:K �b � :=\Min(Ctg(�);bK);

where Ctg(�) = fA 2 T j � 2 Ag. The similaritybetween the de�nitions of �b and �v becomes veryclear once we unfold the de�nitions:K �b � = \Min(Ctg(�);bK)= f j Min(Ctg(�);bK) � Ctg( )gK �v � = Th(Min(mod(�);vK))= f j Min(Mod(�);vK) � Mod( )g:Our next aim is to make a number of round-trips:start from a preference relation, use it to de�ne averisimilitude relation, and use that to de�ne a prefer-ence relation again. What is the connection betweenthe �rst and the second preference relation? And sim-ilarly, what happens if we make a round-trip startingfrom a verisimilitude relation? And what is the re-lation between the revision operators de�ned from vand b?Before considering these questions, we state a re-sult that nicely relates the `best' theories to the `best'interpretations:Lemma 7.2 If v is stoppered and preserves closedsets, thenB 2 Min(Ctg(A);bvK) i�Mod(B) � Min(Mod(A);vK):So, the best theories are those with the most preferredmodels.If we start from a preference relation, we can ex-pect the round-trip to produce the same preferencerelation for the following reasons. A preference re-lation v orders total models, but b contains muchmore structure in that it also compares partial andincomplete information. Thus moving from v to bintroduces a lot of additional structure, but when wemove on from b to v we forget about this additionalstructure again.Proposition 7.3 If v is abstract, then vbv = v.By the same intuitions, we should expect a saferound-trip starting from a verisimilitude relation b ifwe only consider maximal theories.Proposition 7.4 If A, B are maximal and consis-tent, then A bvbK B i� A b B.To get a safe round-trip for arbitrary theories, weneed to impose strict conditions on b; see [32] fordetails.Finally, we compare some of the di�erent revisionoperators generated in this section.Proposition 7.5 If v is a stoppered preference rela-tion that preserves closed sets, then �v = �bv .The above proposition can be proved using fairlyweak assumptions; this has to do, again with the factthat moving from a preference relation to a verisimili-tude relation does not destroy information. Moving inthe opposite direction, we do loose information, and,19



hence, we need to impose stronger conditions to ar-rive at �b = �vb . The conditions involved are `proof-generated' and too involved to be explained here.NotesThe presentation in this section is based on [32] and[4]; see also [5].8 A Descriptive ApproachIn this section we develop a descriptive approach totheory change. By this we mean the following. Asexplained in Section 2, theory change may be viewedas a process, where new information induces a transi-tion from one information state to another. The sortof questions we are interested in include: Which tran-sitions are possible? Is there a speci�c structure tothe transitions? Which formulas are accepted in aninformation state after a transition induced by someformula �? In short, the same kind of questions asone �nds in descriptive approaches to the semanticsof programs (see, for example, [28]).There are several reasons why a descriptive ap-proach to theory change may be valuable. First, itis much easier to compare and evaluate di�erent pro-posals for dynamic operations in a technical way. Sec-ond, by using fairly `neutral' tools, we can start meta-theoretical investigations of the phenomena being de-scribed using these tools, and thus get a precise, math-ematical understanding of the complexities and re-quirements of proposals in theory change. Third, pro-posals which are de�ned in a standard logical stylecan be modi�ed or extended fairly easily. And lastbut not least, a technical treatment of theory changemay bring issues to light which are ignored by philo-sophical debate on postulates.We will use models and languages from a num-ber of logical disciplines, namely intuitionistic logic,modal logic, and dynamic logic.Intuitionistic LogicOne branch of logic has had an information orientedavor from the very start: intuitionistic logic. Theunderlying idea is that formulas of intuitionistic logicdescribe the way an idealized mathematician acquiresnew (mathematical) knowledge. So, we will take thetruth of a formula � in an information state to meanthat our mathematician knows � or that she has ac-quired �.The language of intuitionistic logic is simply thelanguage of ordinary propositional logic:� ::= p j ? j :� j � ^ � j � _ � j �! �:This language is interpreted on so-called informationmodels.De�nition 8.1 An information frame is a pair M =(W;E) with W a non-void set of information states

and E a pre-order over W , that is: a reexive, tran-sitive relation, which is called an information order .Intuitively, a move along E is a move to a more infor-mative state.Let L be some language, with a set of atomic sym-bols Prop. An L-information model M is a triple(W;E; V ) with (W;E) an information structure, andV : Prop ! P(W ). The function V will be called anL-valuation.A model for intuitionistic logic is an informationmodel that satis�es the following persistence condi-tion: If w E v and w 2 V (p), then v 2 V (q).That is: one can never lose (atomic) information bymoving up along the information order.Next we de�ne what it means for a formula '�to be `true at a state w in a model M ' (in symbols:M;w j= �):M;w j= ? neverM;w j= p i� w 2 V (p)M;w j= � ^  i� M;w j= � and M;w j=  M;w j= � _  i� M;w j= � or M;w j=  M;w j= �!  i� for all v such that w E v andM; v j= � we have M; v j=  M;w j= :� i� for no v such that w E vwe haveM; v j= �The idea of the clause for implications is that� !  is true of one's current information state if,whenever the information grows so as to include �,it should also include  . And the clause for negationsays that :� is accepted if there's no way of extendingour information so as to include �.Intuitionistic Logic as a Theory of InformationThe only parts where the above truth de�nition de-viates from the one for ordinary propositional logic,is in the clauses for ! and :: they exploit the infor-mation order. As a result, certain familiar principlesfrom classical logic are not valid in intuitionistic logic.The formula p _ :p, for example, is not valid.This is in full agreement with the idea of intu-itionistic logic as logic that the describes the cognitivemoves of a mathematician as she pursue new results:it would be unrealistic to demand that p _ :p be al-ways true; this would mean that our mathematicianis always in a position where she either knows p orknows :p.It may be shown that all intuitionistic formulasare persistent, not just the atomic ones. As a conse-quence, we can really only talk about expansions inintuitionistic logic. To be able to specify contractionsor revisions we need to be able to move backwardsalong the information order as well.20



Modal and Temporal LogicWe will now consider a number of classical logics forreasoning about information models, the �rst one ofwhich is modal logic. To be able to exploit the in-formation order present in our models, the syntaxof modal logic contains two unary operators 3 (`di-amond') and 2 (`box'):� ::= p j ? j :� j � ^ � j 3� j 2�:We interpret modal formulas on information models asde�ned in De�nition 8.1 by using the usual classicalclauses for the boolean connectives, and the followingclauses for the modal operators.M;w j= 3� i� there exists v with w E v andM; v j= �M;w j= 2� i� for all v, if w E v then M; v j= �.A formula � is true on a model if it is true in allstates in the model; � is called valid on an informa-tion frame F = (W;E) if it is true on all informationmodels based on F . As an example, both 2p ! pand 2� ! 22� are valid on all information frames.The formula 3p! 2� is not valid on all informationframes.Knowledge and Information in Modal Logic.Now that we have briey introduced modal logic, howcan we use it to reason about theory change? The �rstthing we need is a modal counterpart of what a the-ory is. Here the link with intuitionistic logic helps toguide the intuition: in intuitionistic logic informationis represented by means of persistent formulas . Whatare the persistent formulas in modal logic? Clearly allboxed formulas (i.e., formulas of the form 2�) are per-sistent, as are conjunctions and disjunctions of boxedformulas.This suggests that we represent theories as sets ofthe form f� j w j= 2�g;where w is a state in a model. So, with each statewe associate a theory, and a formula � is an elementof the theory of that state if 2� is true at the state.Then, a formula of the form 32� can be given anexpansion-like reading: it says that we can move upalong the information order to a state where � is inthe theory. Further, one can de�ne an expansion-likemodal operator [+�] which should be read as ` isin every theory resulting from an expansion with �'by putting: [+�] := 2(2�! 2 ):The above ideas can be traced back to a specialbranch of modal logic, called epistemic logic in whicha formula of the form 2� is interpreted as `it is knownthat �.'One obvious shortcoming of the modal language

we have looked at so far, is that, just as with intuition-istic logic, we only seem to be able to express proper-ties of expansions: there is no way we can move backalong the information order to a state where a givenformula is no longer part of the theory. To accommo-date this, we will now extend our modal language.Adding a Direction: Temporal LogicIn the language of temporal logic we are able to talkabout moves back and forth along the information or-der, thus allowing us to model further operations oftheory change besides expansions.The language of temporal logic has both forwardlooking and backward looking operators. Instead of 3and 2 we write hEi for the forward looking diamond,and [E] for the forward looking box.� ::= p j ? j :� j � ^ � j hEi� j [E]� j hDi� j [D]�:Formulas of temporal logic are interpreted on infor-mation models in the following way:M;w j= hEi� i� there exists v with w E v andM; v j= �M;w j= [E]� i� for all v with w E v, M; v j= �M;w j= hDi� i� there exists v with v E w andM; v j= �M;w j= [D]� i� for all v with v E w, M; v j= �.Models for temporal logic are often given a temporalinterpretation: instead of E one often writes < or �,which is then read as `later than' or `not before'. Tra-ditionally, in temporal logic one writes F� (at sometime in the future � will hold) for hEi�; G� (it is go-ing to be the case that �) for [E]�; P� (at some timein the past �) for hDi�; and H� (it has always beenthe case that �) for [D]�.Knowledge and Information in Temporal LogicNow that we have the means to talk about moves for-ward and backwards along the information order of ourinformation models, let us try and use this to specifya contraction like operator. First of all, observe thata formula of the form hDi:[E]�may be taken to describe the possibility of giving up� from the current theory. Next, here's an implemen-tation in our temporal language of a contraction oper-ator [��] (` belongs to every theory resulting fromcontracting with �'):[��] := [D](:[E]�! [E] ):Here's an alternative proposal for a modal contractionoperator:[��]2 :=21



[D]�:[E]�! hEi(:[E]� ^ [E] )�:The intuition here is the following. Instead of demand-ing that  is in every theory that results from givingup �, we allow for a bit more exibility. We requirethat after every way of giving up � we can extend theresulting theory so as to arrive at a belief set that stilldoesn't contain � and that will contain  .Fuhrmann's Logic of Theory ChangeFuhrmann [7] proposed a modal approach to theorychange in which each formula � is associated withits own `contract-with-�'-relation, instead of havinga global information order of which individual con-tractions are subsets. Formally, Fuhrmann's languageis given by the following rule� ::= p j ? j :� j � ^ � j [��]� j 2�:The operator [��] is read ` holds after every con-traction with �,' and 2� as `� holds,' or `� is currentlyin the theory.'The minimal logic in this language is axiomatizedby taking all classical tautologies together with� [��]( ! �)! ([��] ! [��]�)� 2�$ [�>]�� from `  infer ` [��] � from ` �$  infer [��]�$ [� ]�� from ` �, ` �!  infer `  .On top of these one may add axioms correspondingto the AGM postulates for contraction. These may beobtained by translating statements about set theoreticinclusion into implications, and statements of the formK y � (y 2 f+;�g) translate into [y�]�.(F2) [��] ! 2 (F3) :2� ^ 2 ! [��] (F4) [��]�! [� ]�(F5) 2 ! [��](�!  )(F7) [��]� ^ [ ]�! [�(� ^  )]�(F8) :[�(� ^  )]� ^ [�(� ^  )]�! [��]�.The translation of the fourth postulate (if 6` �, then� =2 K��) calls for some comments. Unlike the otherpostulates for contraction, it resists a direct transla-tion into Fuhrmann's logic. What we have given asa translation is at least an approximation: if � sur-vives a contraction with �, then it must survive anycontraction, the idea being that only theorems of thelogic survive `self-contraction.'Let us turn to the semantics for Fuhrmann's logicnow. A Fuhrmann frame is a structure (W;P;C) withW a non-empty set of states, P � P(W ), and C afamily of binary relations on W , one for each elementof P : C = fCX � W 2 j X 2 Pg. The followingclosure conditions are imposed (here CX(w) denotesfv j CXwvg):� W 2 P� if X 2 P , then W nX 2 P� if X , Y 2 P , then (X [ Y ) 2 P� if X , Y 2 P , then fv j CX (v) � Y g 2 P .

A Fuhrmann frame is turned into a Fuhrmann modelby adding a valuation that assigns elements of P toproposition letters. The boolean truth conditions arethe usual ones, while w j= [��] i� CV (�)(w) � V ( ),and w j= 2 i� CW (w) � V ( ).On top of the basic Fuhrmann models one may im-pose conditions that correspond to the (translationsof the) AGM postulates for contraction. For eachof the (translated) postulates (Fn) there is a corre-sponding semantic condition (Cn) that is satis�ed bya Fuhrmann frame i� the postulate is true in everymodel based on the frame.(C2) CW � CX(C3) if CW (w) 6� X , then CX � CW(C4) if CX(w) � X , then X =W(C5) if CX(w) \X 6= ;, then CX � CW(C7) CX\Y � (CX [ CY )(C8) if CX\Y (w) 6� X , then CX � C(X\Y ).The result is that Fuhrmann's logic, extended withthe axioms (F2){(F8) is sound and complete for allFuhrmann frames satisfying conditions (C2){(C8).The relations CX (X 2 P ) are rather abstract tools| what is their relation to the more intuitive pic-ture involving an information order E discussed be-fore? Clearly, the relations CX can be combined intoan information order by puttingw E v i� w = v or there are w0, w1, : : : , wnand X1, : : : , Xn 2 P such that w =w0CX1w1 � � �CXnwn = vThis de�nition ensures that E is a pre-order. Theprecise connection between these (and other descrip-tive) ways of modeling theory change remains to bedetermined, though.To conclude this section we return to the formatof information models equipped with an informationorder, with contractions and revisions being modeledas subsets of moves along the information order.Dynamic Modal LogicDynamic modal logic (DML) was designed as a generaland expressive modal language for reasoning about asmany of the currently available proposals for analyz-ing change and action in logic, computer science andlinguistics. The main motivation was that a generallanguage like the DML language would allow one tocompare these proposals in a common setting so thatdi�erences and similarities would become visible, andso that techniques and results from one proposal couldbe transferred to another.In the remainder of this section we briey intro-duce the framework o�ered by DML, and then showhow it may be used to talk about theory change.DML has propositions to describe states and pro-cedures to describe moves through information mod-els. In addition it has systematic links taking proposi-tions to procedures and vice versa, as sketched below:22



(RA)(BA) procedurespropositions projectionsmodes� -We use �,  ; : : : to denote formulas, and �, �; : : :to denote procedures. Formulas and procedures areproduced by the following rules:� ::= p j ? j :� j � ^ � j dom(�) j ran(�) j �x(�)� ::= exp(�) j con(�) j �� j ��j �;� j � [ � j �?The readings of the above formulas and proceduresare as follows:dom(�) is a formula that takes a procedure � as itsinput; it is true at a state if from that state an�-procedure can be executed.ran(�) is a formula that takes a procedure � as itsinput; it is true at a state if that state can bereached by executing an �-procedure.�x(�) is a formula that takes a procedure � as itsinput; it is true at a state if it is a �xed point for�, that is, if an �-loop can be made at that state.exp(�) is a procedure that takes a formula � as itsinput; it denotes all steps along the informationorder that lead to a state where � holds.con(�) is a procedure that takes a formula � as itsinput; it denotes all steps backwards along the in-formation order that lead to a state where � fails.�? is again a procedure that takes a formula � as itsinput; it denotes the test-for-� relation.The operations on procedures are familiar ones fromrelation algebra; � is complementation, � is the con-verse operation; ; is composition, and [ is simplyunion.With the above explanations we can say what itmeans for a formula to be true. We interpret formu-las on information models that are extended with adevice [[�]] for handling procedures. So, in the remain-der of this section information models are 4-tuplesM = (W;E; V; [[�]]) where the �rst three items are asbefore, and [[�]] associates a binary relation on W withevery procedure �.The novel truth clauses are the following:M;w j= dom(�) i� there exists v with (w; v) 2 [[�]]M;w j= ran(�) i� there exists v with (v; w) 2 [[�]]M;w j= �x(�) i� (w;w) 2 [[�]]:The clauses for assigning meanings to procedures are[[exp(�)]] = f(x; y) j x E y and M; y j= �g[[con(�)]] = f(x; y) j y E x and M; y 6j= �g[[��]] = (W �W ) n [[�]][[��]] = f(x; y) j (y; x) 2 [[�]]g[[�;�]] = [[�]]; [[�]]= f(x; y) j 9z ((x; z) 2 [[�]] ^ (z; y) 2 [[�]])g[[� [ �]] = [[�]] [ [[�]][[�?]] = f(x; y) j x = y ^M; y j= �g:

The familiar diamond and box operators from modaland temporal logic can be expressed in DML as fol-lows: hEi� $ dom(exp(�))hDi� $ dom(con(:�))So, the earlier modal and temporal logics can both beviewed as fragments of DML.Before moving on, here are some useful abbrevia-tions: � := >?; so � denotes the diagonal f(x; y) j x =yg, and �� denotes the diversity relation f(x; y) j x 6=yg. One important feature missing from the modaland temporal logics introduced earlier in this sectionwas the ability to express minimal moves along theinformation order. With the DML machinery to ourdisposal we are �nally able to express such minimalmoves. A minimal move along the information orderto a state w where � holds is nothing but a move alongE to w that cannot be decomposed into a move to acloser �-state followed by a further step along E tow. Formally, we use �-exp(�) to denote such minimalE-moves to a �-state:�-exp(�) := exp(�) \ ��exp(�); (�� \ exp(>))�:A minimal version of con can be de�ned similarly.Modeling Theory ChangeWe will now introduce modal operators [y�] , wherey is one of +, �, � to denote that  is in every theorythat results from expanding (contracting/revising) thecurrent theory with �.As before, we use `boxed formulas' to representtheories, and hence if [E]� is true at a state w, thiswill denote that � is in the theory associated with w.Expansions. To de�ne the operator [+�] ( is inevery result of expanding the current theory with �)observe that expanding with � involves a move alongthe information order to a state where � is in theory,and moreover, this move should be a minimal one:[+�] := :dom��-exp([E]�); (:[E] )?�In other words: it should not possible to �rst extendthe current theory with � (i.e., make a minimal moveto a state w where [E]� is true), and then �nd that  is not in the result (i.e., �nd that [E] is false at w).Contractions. Our de�nition of a modal contrac-tion operation mirrors the one of the modal expan-sion operation: [��] is true if  is in every result ofcontracting with �.[��] := :dom��-con([E]�); (:[E] )?�Given this modal contraction operation, we now tryand translate the AGM postulates into DML. We can23



then see whether or not the (translated) AGM pos-tulates come out valid, and if they don't, what kindof additional constraints we have to impose on ourmodels.By way of example we will translate postulates(K�2){(K�6) into DML. As with Fuhrmann's logic,the idea is that set theoretic inclusion translates intoan implication, and that statements of the form K y �(y 2 f+;�g) translate into [y�].(K�2) [��] ! [E] .(K�3) :[E]� ^ [E] ! [��] .(K�4) [��]�! [� ]�.(K�5) [E] ! [��][+�] .(K�6) if ` �$  then ` [��]�$ [� ]�.As in the case of Fuhrmann's logic, the fourth postu-late resists a direct translation into DML.We will now look at the translation of the secondpostulate, and determine whether or not it is validon all information models. Let w be a state that re-futes an instance of the translation of (K�2). Thatis, assume w j= [�p]q;:[E]q. Then there exists a E-successor v of w with v 6j= q. Now, to guarantee thatw j= [�p]q, we need to ensure that every minimalway of giving up [E]p leads to a [E]q-state. But, ifthere is no way whatsoever of giving up p, then thisrequirement is vacuously true | so let us require thatv; w j= p. Putting things together, the following modelrefutes the translation of (K�2).p:qpw v�����* uuWhat can we do about the failure of (K�2)? First ofall, we can observe (again) that, according to AGM,contractions with non-theorems are always possibleand de�ned; this is part of the functional reading ofthe operation � in the AGM theory. Next, we cantry to impose a similar constraint on our informationmodels: in every state, and for every non-theorem �it should be possible to move back along the informa-tion order to a state where � is no longer part of thetheory, that is, to a state where [E]� is false. Here isa somewhat unorthodox derivation rule to that e�ect:if ` :hDi:[E]� then ` �. (26)That is: if it is a theorem that [E]� is true down everyinformation order, then � itself must be a theorem.We leave it to the reader to determine whether thetranslations of postulates (K�3){(K�6) are valid onall information models.Revisions. To arrive at a modal counterpart of revi-sions, we will use the Levi Identity according to whichK � � = (K � :�) + �. This leads to the followingde�nition: [��] := [�:�][+�] :

We leave it to the reader to translate the AGM pos-tulates for revision into DML, and to determine thevalidity of the translations.NotesParts of this section are based on [2] and [30]; seealso [31]. The material on Fuhrmann's logic of theorychange is taken from [7].9 Further ReadingTo conclude these notes we give a few pointers to ma-terial related to the themes discussed here.The descriptive approach to theory change putforward in Section 8 is closely related to descriptiveapproaches to other dynamic phenomena in logic, lan-guage and information, such as natural language se-mantics and arti�cial intelligence; Jaspars and Krah-mer [17] provide a systematic approach. See Van Ben-them [3] for further themes along these lines.As pointed out in Section 5, the extension of thebasic AGM paradigm to the setting of multiple agentsis an active area of research. In addition to the ref-erences listed in Section 5 we should mention Jas-pars [16], where multi-agent systems for (partial) de-scriptions of information change are studied, and VanLinder et al. [23], in which the authors combine the de-scriptive approach of Section 8 with ideas from agent-oriented programming.The link between reasoning about changing infor-mation and actual implementations of database up-date operations is an underdeveloped area that de-serves further exploration; see Winslett [34] for rele-vant references. We are con�dent that the exibilityof the descriptive approach will be bene�cial here.References1. C.E. Alchourr�on, P. G�ardenfors, and D. Makin-son. On the Logic of Theory Change: PartialMeet Contraction and Revision Functions. Jour-nal of Symbolic Logic, 50:510{530, 1985.2. J. van Benthem. Modal Logic as a Theory ofInformation. Technical Report LP-91-10, ILLC,University of Amsterdam, 1991.3. J. van Benthem. Exploring Logical Dynamics .Studies in Logic, Language and Information.CSLI Publications, Stanford, 1996.4. C. Brink. Verisimilitude: Views and Reviews.History and Philosophy of Logic, 10:181{201,1989.5. C. Brink and J. Heidema. A Verisimilar Orderingof Theories Based in a Propositional Language.The British Journal for the Philosophy of Sci-ence, 38:533{549, 1987.6. J. Doyle. A Truth Maintenance System. Arti�cialIntelligence, 12:231{272, 1979.24
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