
Journal of Logic, Language, and Information 6: 5–31, 1997. 5
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Zooming In, Zooming Out

PATRICK BLACKBURN
Computerlinguistik, Universität des Saarlandes, Postfach 1150, D-66041 Saarbrücken, Germany
E-mail: patrick@coli.uni-sb.de

MAARTEN DE RIJKE
Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.
E-mail: mdr@dcs.warwick.ac.uk

(Received 8 November 1994; in final form 14 May 1996.)

Abstract. This is an exploratory paper about combining logics, combining theories and combining
structures. Typically when one applies logic to such areas as computer science, artificial intelligence or
linguistics, one encounters hybrid ontologies. The aim of this paper is to identify plausible strategies
for coping with ontological richness.

Key words: Combinations of logics, complex structures, mathematics of modeling, modularity,
modal logic, representation languages, transfer results

AMS Subject Classification (1991): 00A71, 03B45

CR Subject Classification (1991): F.4.0, F.4.1, I.2.4

1. Day 1: Examples

Zi: There’s only two things I want to say: (a) Take things seriously, and (b) Let
them talk to each other.

Zo: I’d appreciate a few more details. Over the past few weeks you’ve been talking
about everything from Object Oriented Programming to Lexical Functional Gram-
mar in the same breath. You’ve been saying that applied modal logic and situation
theory are in the same business, and you’ve been using a lot of words I don’t under-
stand: “Communicating Structures”, “Combined Logics”, “Multiple Ontologies”,
“Layered Languages” : : : can’t we go through it a little more systematically?

Zi: Well, sure. The important point is that real world systems are not flat, mono-
lithic domains – they have a rich internal organization which guides the flow of
information. The task of logical modeling is to capture the essence of this wealth.
This suggests that it will be fruitful to investigate approaches in which multiple
information sources and their interactions are the focus of attention.

To make this concrete I’ll consider various combined structures. I’ll start with a
particularly simple type – what I call refinement structures – move onto the richer
classification structures, and finish with fully fibered structures. But remember one

6 P. BLACKBURN AND M. DE RIJKE

thing. These are just special cases of a general idea, and it’s the general idea I really
want to get at.

Zo: I’ll bear that in mind.

Zi: OK, let’s begin with refinement structures. A nice example is the way Finger
and Gabbay (1992) add a temporal component to reasoning about beliefs. They
work with the following structures:

Time

t3t2t1 sss -

Z

???

Belief models

sss
z(t3)z(t2)z(t1) "!

"!

"!

At the top you see a flow of time, a structure (T;<), where < linearly orders
T . Each of the entities attached to T by Z is a belief structure. These are triples
(W;R; fQpgp2P) where W is a collection of belief states, R transitively orders
these states, and each Qp is a unary relation on belief states (these tell us how the
atomic information is distributed). To use Gabbay’s terminology, these composite
structures consist of a temporal flow fibred over a collection of belief models.

Zo: I’ve seen similar structures before, for example in first-order modal logic. But
what have they got to do with refinement?

Zi: Because “refinement” sums up how the logics of the temporal and belief
domains are combined. Clearly, these structures provide a semantics for two distinct
languages: a temporal languageLTem and a language for belief logicLBel . (Finger
and Gabbay choose LTem to be propositional Until/Since logic and LBel to be
uni-modal belief logic.) The question is, how are we to reason about the composite
ontology? We must combine the two languages, but how should this be done?
Finger and Gabbay adopt a particularly simple solution: they use the LBel wffs
as the atomic wffs of LTem . That is, they build the LTem wffs in the usual way,
but out of structured atomic wffs, namely the LBel wffs. Let’s call this language
LTem(LBel), the language LTem layered over the language LBel .

Zo: Fine. But I still don’t see what this has to do with refinement.

Zi: Consider how you’d evaluate a wff � of the layered language. In general,�will
contain occurrences of the Until and Since operators, and they will move us round

ZOOMING IN, ZOOMING OUT 7

the time stream in the usual way. We keep evaluating subformulas in the familiar
manner until we come to the “atomic” level. Usually we would simply invoke an
assignment or valuation to see whether the atom was true; but now our atoms are
structured and we have further work to do. We zoom in from the time of evaluation
t to the associated belief model Z(t) and start evaluating the “structured atom” at
z(t).

Zo: I get it. The tense operators move us round the temporal level. While we’re
exploring this level we ignore the fact that each point of time is associated with
structured information. However, when we get to the atomic level we take a more
refined view. We zoom in on the associated belief models, and start exploring this
lower level using the belief operator.

Zi: Exactly. It’s a bit like working with the Macintosh’s graphical user interface.
The desktop may contain several icons, but as long as you’re not doing anything
in particular these icons are essentially just blobs. They may contain pictures,
programs, text files or a variety of other things – but this complexity is hidden
until it is actually needed. When we want to perform a certain task, we take a
more refined view: we double-click on an icon, and zoom in to another level of
structure.

Zo: Refinement seems a fairly simple way of combining structures. You’ve got two
ontologies, but the interaction between them is rather limited: the lower level just
provides a refined notion of atomic information. Once you’ve worked your way
down into the belief model, there’s no way back up. Because temporal operators
never occur under the scope of belief operators, you can’t access the temporal flow
from the belief structure. To use your Mac analogy, it’s as if you couldn’t close an
icon once you’d opened it.

Zi: Right. You can’t zoom out. This restriction has a number of pleasant conse-
quences. There are often elegant ways of combining completeness and decidability
results for the component logics into completeness and decidability results for the
layered language; Finger and Gabbay give a number of examples and their results
can be generalized.

However, you said something I don’t like: “because temporal operators never
occur under the scope of belief operators, you can’t access the temporal flow from
the belief structure”. That’s true enough, but it’s a very syntactical way of viewing
matters. The layering process whereby one language is embedded in another at
the atomic level is certainly natural, but it’s essentially syntactic sugar. We could
have freely combined the two languages, allowing temporal operators inside the
scope of belief operators. But if we did this any such wffs would evaluate to false
at any node in the belief structures. You can’t zoom out, and this is a semantic
fact: the nodes in the belief models simply don’t have permission to access the
temporal structure. But when we get to fully fibered structures, things will be more
democratic : : :

8 P. BLACKBURN AND M. DE RIJKE

Zo: The idea of refining atomic information seems fairly natural. Do you have any
other examples?

Zi: There’s one in generative linguistics: the Generalized Phrase Structure Gram-
mar (GPSG) of Gazdar et al. (1985) views linguistic structure as a combined
ontology, namely finite trees fibred over finite feature structures. I don’t have to
tell you what a finite tree is. As for feature structures, they’re just multi-modal
Kripke models in which every relation is a partial function. When we fibre trees
over feature structures we get entities of the following kind:

Z

z

Z

z r
z(n1)

�� ��
��tr�� �

@
@@

n2 t z(n2)

�� �r@
@@t �� �r

�
��t

In GPSG, the feature structures are used to refine the notion of grammatical cate-
gory. In contrast to the usual practice in formal language theory, where the nodes
of parse trees are decorated with “indivisible” information about categories (for
example NP for Noun Phrase, or VP for Verb Phrase) GPSG splits the atom: an NP
becomes a structured object, a feature structure, that contains information about
various subatomic features and values. GPSG is usually formulated using a mixture
of formal language theory and feature logic, but it’s straightforward to recast its
central ideas using a language of trees layered over a language of feature structures.
This is done by Blackburn et al. (1994). The tree language moves us around the
tree, while the feature language allows us access to the inner structure of grammat-
ical categories. Because such a layered language is all that’s required, it’s possible
to prove completeness and decidability results for some quite expressive systems;
Blackburn and Meyer-Viol (1996) supply details.

Zo: Still, like the earlier Finger and Gabbay example you gave, GPSG is only
concerned with zooming in on objects or states. If you’re interested in dynamic
phenomena, or more generally, in notions of change, you should zoom in on actions
or transitions.

Zi: Absolutely. For example, in the top-down design of distributed systems one
uses actions and states on an abstract level to represent complex processes on a
more concrete level. Van Glabbeek (1990) considers the design of an input device,
repeatedly reading data and sending it off. A first, and highly abstract, description
is given by the following picture:

data
send

data
read

����- -- rrrh

ZOOMING IN, ZOOMING OUT 9

On a slightly less abstract level of description the action “read data” breaks up
in two parts: “prepare reading” and “carry out reading”. This corresponds to the
following refined picture:

reading reading

carry outprepare --
data

send

�
�

�
�- - rrrrh

In this setting you find not just refinements of states (as in the earlier Finger and
Gabbay, and GPSG examples), but also refinement of actions or transitions.

Another well known example is the push down automata that parse context
free languages. A push down automata is a whole hierarchy of Kripke models:
the models lower down in the hierarchy spell out the details of the transition
possibilities that are invisible higher up.

Zo: Hmm. It seems you’re after some sort of idea of substitution of structures. I’d
like a more precise formulation.

Zi: OK, one way to formulate it is as follows. The relation between a labeled tran-
sition system T and a structure T0 obtained from T by refinement (or substitution)
of actions, is given by a function from (atomic) actions to rooted transition systems.
Let r be such a function; the refinement of T by r is the structure that is obtained
as follows. For s a

�! t an edge in T let r(a)0 be a new copy of r(a); identify s
with the root of r(a)0, identify t with all end nodes of r(a)0, and remove the edge
s

a
�! t. In other words, instead of making an a-transition at s, we now start at the

root of r(a)0, traverse a terminating path through r(a)0, and then continue from t

onwards.

outout

r(a)0

root

ss
�
�
�
�
�
�

@
@
@
@
@
@

s
s

s
T

a

t

s �
���

'

&

$

%
Zo: OK, that’s clear. Is there anything more I should know about refinement?

Zi: Well, I think it would be interesting to look systematically at the converse of
refinement: abstraction. For example, it’s quite natural to take a structure A to be
an abstraction of a structure B if A is a quotient of B under an appropriate notion
of morphism. A general approach would allow for refinement/abstraction over any
kind of item in ones structures : : : but if we start following this up we’ll be here
all night.

10 P. BLACKBURN AND M. DE RIJKE

� � �

Zo: Tell me about classification structures.

Zi: OK. Let’s return to generative grammar. Lexical Functional Grammar (LFG) is
a nice example of classification structures at work; see Kaplan and Bresnan (1982).
LFG, like GPSG, views syntactic structures in terms of composite entities made
from finite trees and finite feature structures, but it glues them together differently.
The basic picture to bear in mind is the following:

uXXXXXXXXXXXzu u
u����

�*

u

'

&

$

%
�

�
�

@
@
@

@
@
@

�
�
�

tree feature structure

z

Here you see a single finite tree and a single finite feature structure linked by a
partial function z. This feature structure induces a classification on the tree nodes
via z.

Zo: I don’t understand what you mean.

Zi: LFG theorists see sentences as simultaneously embodying two levels of struc-
ture. One level is called constituent structure and is represented using a tree. The
feature structure represents grammatical relations such as subject, object, and indi-
rect object. Syntactic explanations in LFG are couched in terms of classifications
that grammatical relations induce on trees. LFG doesn’t try to reduce grammatical
relations to tree geometry: it insists that we are dealing with two independent,
though interacting, ontologies.

Representing natural language purely in terms of trees leads to a number of
difficulties: sometimes representations of a sentence may place two components
very far apart – and maybe even give them different category labels – while
intuitively they “belong together”. The classification semantics solves such puzzles.
Two tree nodes t and t0 may be distinct, but if z(t) = z(t0) they are functionally
identical.

Zo: I have the feeling that we’ll need more than layered languages to talk about
classification structures.

Zi: Indeed. The name of the game isn’t refinement any more, rather it’s about
ensuring that the internal structures of the two ontologies correctly “match”. LFG
does this using phrase structure rules annotated with equations. For example, the

ZOOMING IN, ZOOMING OUT 11

annotation " = #means that if I move up from a tree node t to its mother node t0 and
then zoom into the feature structure, I arrive at the same point I would have reached
by zooming in directly from t. This can be formulated very nicely in Propositional
Dynamic Logic (PDL). Recall that PDL is a modal language where the modalities
have internal structure; see Harel (1984) for further details. This is a very natural
way of boosting expressive power; and, in the present case, it offers exactly what
we need to capture the “commuting paths” idea. By making use of the intersection
constructor, we can simply write down h(up ; zoom in)\ zoom ini>. This formula
forces the desired matching of structure.

Zo: I think I’m beginning to get the idea. Do you have any other examples?

Zi: Sure. Here’s one from formal semantics. There’s been a lot of debate about
whether point, interval, or event based systems give the best account of tense and
temporal reference in natural language. This has given rise to interesting work – for
example, various constructions for reducing one ontology to another – but it’s not
always obvious that such reductions should be made. Why not combine structures
instead? For example, Blackburn, Gardent and de Rijke (1996) introduce Back and
Forth Structures (BAFs). In their simplest form they look like this:

Zz
C
C
C
C

�
�
�
�#

�
�

�
�

s s

s s-

Time

Events
Q

Here you see an interval structure and a simple event structure linked by a relation
Z . The relation Z is constrained in various ways but the details aren’t particularly
important here. What is important is the extra flexibility this relation gives us.
We’re not forced to identify events and intervals, any more than in LFG we’re
compelled to identify grammatical relations with tree geometry. Rather, events are
indirectly classified as having a certain temporal location. This enables us to take
a more fine grained approach to temporal quantification. For example, following
Moens and Steedman (1988), you can capture the intuition that the present perfect
is “a past tense of present relevance”. Basically, to evaluate a formula of the form
PRES-PERF� at an interval i, we search back for an interval j such that j < i and
with the additional property that if we zoom into the event structure at j we find
the event �. But this � must also be of “present relevance”. That is, � must be
Q-related to an event such that by zooming back out to the interval structure at
we arrive at an interval k that overlaps our starting point i. We “complete a square”
in the two structures back to our starting point.

12 P. BLACKBURN AND M. DE RIJKE

Zo: I guess we’ll need a fairly expressive language for coping with BAFs. If we
work with a modal language we’ll need at least the PRES-PERF operator in addition
to modal operators local to each ontology. The PRES-PERF operator seems rather
powerful: it wants to find its way back to (an interval overlapping) its starting place.
Hey! That’s just PDL program intersection in disguise!

Zi: Quite. But let’s move on. I want to argue that there are deeper reasons for being
interested in classification structures: whenever there are regularities and a flow of
information, classification structures provide a natural modeling medium.

Zo: Hmm. This reminds me of something. The idea that constraints between struc-
tures guide information flow has always been present in Situation Theory. It’s
analyzed in detail in Seligman’s (1990) Channel Theory.

Zi: Indeed. There are obvious links between Channel Theory and the present
discussion. Seligman defines classifications to be triplesA = htok (A); typ(A); :i,
where tok(A) and typ(A) are non-empty sets (of tokens and types, respectively),
and : is the classification relationship between tokens and types. Here the types of

...............
...
...
...
...
..

.............. Tokens

Typesbbb

rrr @
@@

�
��

�
�
�
�

A classification

A classify the tokens of A, and the types induce a natural equivalence relation �
of indistinguishability on tokens: a � b iff for all types � we have a : � iff b : �.
As with LFG and its annotated phrase structure rules, further restrictions may be
imposed on the way types and tokens interact.

Zo: But there’s more to it than that. Classifications aren’t considered in isolation,
there’s another level of stacking to internalize the notion of information flow.

Zi: Right – and so channels are introduced. A channel is something which directs
information flow between classifications. First, a notion of information preserving
morphisms between classifications A and B is defined as a certain kind of bi-
function f : A !

! B. Then, a channelC : A =) B is a classificationC together
with morphisms leftC : C !

! A and rightC : C !

! B.
Roughly, the tokens ofC are used to model connections between the tokens of

A and the tokens ofB, and the types ofC are used to express constraints between
the types of A and the types of B; and a connection is classified by a constraint

ZOOMING IN, ZOOMING OUT 13

�� @@
r
b

...
...
...
...

...

...

...

...
...

...
...

�� � �� ��� �
�� @@
r
b

�� @@
r
b� -

� -

A C B

A channel

just in case information flows along the connection in a way that conforms to the
constraint.

Both Channel Theory and classification structures emphasize the importance of
highly structured universes in which some domains induce equivalence relations on
others. However they tend to exploit these ideas differently. Channel theorists have
made connections with the proof theoretic ideas underlying linear and relevance
logics. I’m interested in exploring the connections with PDL and its cousins.

� � �

Zo: In all of the examples you’ve given so far there’s an obvious master/slave rela-
tionship. In refinement structures one component is clearly boss; the others merely
refine the transitions or states. Even with classification structures the information
flow is essentially one way; one structure classifies the elements of the other. So I
guess we haven’t reached the end of the story yet.

Zi: Indeed not. In a number of recent talks and papers Dov Gabbay has advocated
the idea of fully fibering two sets of semantic entities over each other; see Gabbay
(1994). Roughly, a fully fibered structure consists of two classes of models, each
class with its own language, plus a function between the classes that tells you how
to evaluate formulas belonging to the one language inside structures of the other.

Zo: Give me a concrete example.

Zi: OK. Let’s fully fiber finite trees and finite equivalence relations. For the sake of
this example we assume that we have two mono-modal languages:LT for talking
about trees, and LE for talking about equivalence relations.

�
�
�
�frr r@@��
�
�
�
�rfr r@@��
�
�
�
�rr fr@@�� �
 �	fr r�
 �	frr
���

���:
���

���:
XXXXXXz....................=

...
...

...
...

...
...

..}

Fibering a tree and an equivalence relation

14 P. BLACKBURN AND M. DE RIJKE

First of all, let a model-state pair be a pair (M; s)where M is a model based on a
finite tree or on a finite equivalence relation, and s is an element ofM. Second, let
MT , ME be non-empty sets of model-state pairs whose first component is a finite
tree or a finite equivalence relation, respectively, and such that if (M; s) 2MT[ME

and s0 2 M, then (M; s0) 2 MT [ME . Now for the fibering function: let F be
a pair of functions (FT ; FE) with FT : MT ! ME and FE : ME ! MT such
that model-state pairs that are mapped onto each other agree on all atomic symbols
common to both languages; this function (pair) regulates the interaction between
the classes of structures MT and ME . Finally, for F a fibering function, the F -
fibered structure overMT and ME is the triple (WF ; RF ; VF) such that

1. WF is MT [ME ,
2. RF is f

�
(M1; s1); (M2; s2)

�
: M1 =M2 and Rs1s2 g,

3. VF is the union of the component valuations.

Zo: I see. And as to evaluating complex formulas, tree formulas are interpreted in
MT as usual, and likewise for LE-formulas andME . If we hit a tree formula while
evaluating inME , we apply the fibering function F to the current model-state pair,
and continue evaluating in its associated model-state pair in MT ; a similar move
is made when we hit an LE-subformula while evaluating in MT . We can zoom in
and out with complete freedom.

Zi: You’ve got it. Incidentally, more involved definitions of fibering and similar
constructions are possible – but the one I’ve given demonstrates that more equitable
power relations are conceivable.

Zo: OK, let’s try and summarize today’s discussion. Interacting ontologies seem
to abound in many applications. The essential task of the logician is to take this
diversity seriously and to look closely at the lines of communication involved – I
guess that’s the content of the two slogans you started with.

Once you start looking at concrete applications you realize that there are many
different ways that ontologies can communicate. Some of them are quite weak.
For example, you have the notion of refinement where one ontology essentially
serves to flesh out the low level information of another. But you also get stronger
notions: forcing one ontology to “mimic” or “match” another in some way (your
“classification structures”), or even allowing full two way communication (“full
fibering”).

At the logical level we are dealing with a hierarchy of constraint languages.
With relatively weak notions, like refinement, there seem to be simple and well
behaved ways of combining the “local logics”; for example, you can layer one
language over another. But in general, the richer the interactions, the richer the
language needed to exploit it. For example, we may need to add explicit zooming
operators, or modality constructors à la PDL – and I guess it’s conceivable that we

ZOOMING IN, ZOOMING OUT 15

may need to move up to full first-order expressive power or beyond. Does that sum
it up so far?

Zi: It certainly does. Well, why don’t we go grab a coffee?

2. Day 2: Trios

Zo: Good morning. Yesterday’s examples were nice, but now I’d like some details.
What kind of mathematical framework do you have in mind?

Zi: And good morning to you! Here’s a first pass at a framework for combining
structures. Let A and B be two classes of structures, and let Z be a collection of
relations between the elements of A and those of B. Then the triple (A;Z;B) is
called a trio. The classesA and B are called the left and right continents of the trio,
respectively, and Z is called its bridge.

Zo: I can see how some of yesterday’s examples fit this scheme. In the case of
Finger and Gabbay style refinement, for example, the trios have a left continent
consisting of a single structureA, a right continent consisting of jAjmany structures
fBa j a in A g, and a bridge consisting of an injective function linking each point
a of A to an element in Ba.

Oh, and what you seem to need for the LFG style classification is trios that have
both their left and right continents consisting of a single structure, and a bridge that
is simply a partial function from the left continent to the right one. Is that correct?

Zi: Yes, that’s right. Of course the notion of a trio is a very general one, and it
remains to be seen whether they are mathematically interesting in their own right –
but certainly logical questions concerning them abound, and that’s what I’d like to
talk about today. First I’ll talk about logics of specific trios, then about analyzing
specific bridges, and finally about the classification of bridges.

Consider two mono-modal languages L(hai) and L(hbi) with modal operators
hai and hbi respectively, and suppose that we want to combine two structures
A = (W;

a
�!; V) and B = (W 0;

b
�!; V 0) for those languages. As I am interested

in the connection between the two structures, I’ll explicitly add a binary relationZ
between L(hai)-structures and L(hbi)-structures; let me call such trios (A; Z;B)
connected trios.

A first decision we have to make is: what language do we use to talk about
connected trios? Given that we have components A, B and Z , the natural set-up
has two constants left and right to denote A and B respectively, and three
modalities hai, hbi and hzi, where hzi allows us to zoom in from A to B via Z .
Actually, we’ll soon want to add the converse modality hz�1i to let us zoom back
out – but let’s look at this simpler language first.

An obvious first question is: what is the minimal logic of connected trios?

16 P. BLACKBURN AND M. DE RIJKE

Zo: I think I have the answer; you need the K axioms and rules of inference for
each of hai, hbi and hzi. You also need:
1. left _ right and :(left ^ right), to force every state into exactly one

continent;
2. �$ (�^left) for all L(hai) formulas, and likewise with right and L(hbi)

formulas, to force left and right to denote the points in L(hai) models,
and L(hbi) models, respectively;

3. hai� ! left ^ hai(left ^ �), to force a
�! to be defined only on, and take

values only in, the left continent. An analogous schema for hbi;
4. hzi�! left^hzi(right^�), to force hzi to zoom in from the left continent

to the right one.
I guess that’s about it.

Zi: You’re right. Completeness is easy to establish using a canonical model con-
struction; the interpretations of the constants left and right determine the two
continents of a trio. A straightforward filtration argument yields decidability.

So the basic logic is fairly simple. Things become more interesting when you
constrain the connections between the component models; indeed, depending on
the structure of the continents and of the bridge, you may want to add further items
to your language. Let me give you an example involving bisimulations.

Recall that a non-empty binary relation $ between the domains W and W 0 of
two modelsA = (W;

a
�!; V) andB = (W 0;

b
�!; V 0) is a bisimulation whenever it

only relates points with the same atomic information and satisfies a back-and-forth
condition: if x, y 2 A, x0 2 B, x a

�! y and x $ x0, then there is a y0 2 B

such that x0 b
�! y0 and y $ y0 (and likewise in the opposite direction). Consider

bisimilar (connected) trios (A;$;B) where$ is a bisimulation betweenA andB.
Because of the back-and-forth nature of bisimulations, the simplest modal language
appropriate for talking about bisimilar trios has constants left, right, and modal
operators hai, hbi, hzi as before, as well as a modality hz�1i to allow us to move
fromB to A: we need to be able to zoom out to exploit the bisimulation effectively.
To axiomatize validity on bisimilar trios you take the earlier axioms and add:
1. the K axioms for hz�1i, and hz�1i�! right ^ hz�1i(left ^ �);
2. the usual axioms from temporal logic saying that the relations used to interpret
hzi and hz�1i should be each others converse;

3. left^p! [z]p, andright^p! [z�1]p (for p atomic!), to force the condition
on atomic information;

4. hai� ! [z]hbihz�1i� and hbi� ! [z�1]haihzi� to force the back-and-forth
conditions.

There is no axiom forcing$ to be non-empty; this condition is simply not express-
ible.

To prove completeness, build the canonical model (A;$;B). It follows straight-
forwardly that the relations in this structure have almost all the required properties
– the only possible defect is that $ may be empty. This is easily repaired: add

ZOOMING IN, ZOOMING OUT 17

to each of A and B a single isolated point in which (for example) all proposition
letters are true; then extend $ by adding to it the pair consisting of the two newly
added points. This establishes completeness.

Zo: I get the general idea. But both of your completeness results concern rather
abstract classes of trios – what about trios that arise in real applications? And do
you have any results for refinement or classification structures? For example, if
we think about GPSG in terms of trios we have to consider the following class of
refinement structures: trios of the form (T, Z , fFt gt2T). Here T = (T;�; root)
is a finite rooted tree; Z is the refinement relation � T � fFt gt2T that assigns
to each tree node a unique Ft; the Ft’s are mutually disjoint feature structures
(W; fR�g�2A; V; w) where W is a non-empty set, for each � 2 A, R� is a
binary relation on W that is a partial function, V is a function that assigns to each
propositional symbol a subset of W , and w 2 W is the entrance to the feature
structure where you end up after zooming in from the tree. I guess we could call
such trios GPSG trios. What sort of logic do they have?

Zi: First we need to fix our language. Let’s stick with the format we used for
connected and bisimilar trios – logical aspects of the layered language approach
are discussed by Blackburn and Meyer-Viol (1996). So, we have two constants
left and right which tell us whether we’re in the tree or in one of the feature
structures. We also have a tree language LT for moving around the tree, a modal
language LF with diamonds h�i (� 2 A) for moving around the feature structure,
and a device for zooming in: a diamond hzi.

You axiomatize the logic of GPSG trios by taking the axioms for connected trios
(adapted to LT and LF), adding to it a complete axiomatization for finite trees,
a complete axiomatization for feature structures (suitable calculi may be found
in Blackburn and Meyer-Viol (1996), and Blackburn et al. (1996)), and finally an
axiom to guarantee that each tree node is related to a single feature structure via
the refinement relation Z:hzi�$ [z]�.

Zo: Of course. So these results come relatively easily – but then, refinement of states
is a fairly simple form of interaction between structures. What about refinement of
transitions?

Zi: That’s going to be more complex. Let’s first make precise what we mean
by action refinement. As a concrete example I’ll consider PDL enriched with a
mechanism for action refinement. Recall that in standard PDL programs � 2 �
are generated from atomic programs a by the rule � ::= a j � [� j � ; � j ��; for
simplicity I’ll leave the test relations out.

Now, a refinement function is a function from atomic programs to programs.
I’ll talk about them as follows. Let R be a collection of refinement functions, and
A a set of atomic programs. The programs of r-PDL – that is, PDL with action

18 P. BLACKBURN AND M. DE RIJKE

refinement – are produced by the following rules

� ::= a j r(a)

� ::= � j � [� j � ; � j ��

where r 2 R.

Zo: OK. That’s simple enough. How do you interpret r-PDL?

Zi: First we assign meanings to refinement functions. For each atomic program a,
[[r(a)]] is simply a finite rooted PDL model (that is, a labeled transition system)
such that there is a leaf l that is reachable from the root via an r(a)-transition.

Zo: Am I right to assume that you’ll now refine individual a-transitions by mirror-
ing them by an r(a)-transition that lives inside a copy of [[r(a)]]?

Zi: Yes. Although the general idea of adding structure to transitions by means of
refinements is easy enough, the formal details are a little forbidding. First, a witness
for a transition w a

�! v is an isomorphic copy [[r(a)]]w a
�!v of [[r(a)]]; we assume

that different transitions have disjoint witnesses.
Now, letM = (W; f

�
�!g�2�; V) be a PDL model. Informally, the refinement of

M by [[�]] is obtained by “mirroring” old transitions by witnesses of their refinements.
Formally, it is the model

M
0 = (W 0;

�
�!0; V 0; [[�]];ZI ;ZO);

in which we match each transition w �
�! v with the configuration [[r(a)]]w a

�!v:

��

��

��

��

���AA

AA

AA

AAU g
D
D
D
D
D
D

aaaaaaaaaaa

......................................

a - tt��
�
�

ZI ZO

[[r(a)]]

That is: to each transitionw a
�! vwe associate an isomorphic copy of [[r(a)]]w a

�!v ,
together with a ZI-link between w and the root of [[r(a)]]w a

�!v , and a ZO-link
between the leaves of [[r(a)]]w a

�!v that are r(a)-reachable from the root, and v. If
you want, we can write down the formal details – but I don’t think these will make
things more perspicuous.

ZOOMING IN, ZOOMING OUT 19

Zo: I think I can do without them. Roughly, what you’re doing is taking the old
modelM and adding to it, for every old transition a, a unique copy of an appropriate
labeled transition structure, and you link these LTS’s toM by means of the relations
ZI and ZO. In terms of trios, we have a trioM0 = (M; fZI ;ZOg;

U
f[[r(a)]]w a

�!v j
w

a
�! v in Mg) consisting of the old model M as the left continent, the disjoint

union of the refined transitions as the right one, and the relations ZI , ZO as our
bridge.

Zi: That’s the main point, yes. Of course, the next step is to say how we interpret
the formulas of r-PDL. LetM,M0 be as before. First of all, evaluation takes place in
the left continent, that is: at states of the original, unrefined structureM. Formulas
built according to the old PDL syntax are interpreted as before. Now, consider a
new formula hr(a)i�. ThenM0; w j= hr(a)i� iff

9v 2W (w
a
�! v ^ 9xy 2 [[r(a)]]w a

�!v ^ ZI (w; x) ^ ZO(y; v) ^ v j= �):

So, first we look for an old a-successor v of w among the old states; we then zoom
in fromw to the refined transition [[r(a)]]w a

�!v , follow a terminating r(a)-path, and
zoom out to v.

Zo: I get it. But it seems that you have to do a lot of work to get action refinement
working, and I don’t immediately see that it leads to interesting novel logical
theorizing. Any comments?

Zi: If you mean that the logic of r-PDL models is essentially PDL combined with
some of the ideas used for the logic of bisimilar trios, you’re right; Blackburn and
de Rijke (1996) can tell you more about that. But by moving from PDL models to
r-PDL models we have greatly enhanced our capacity to model change realistically:
we no longer have to think solely in terms of input/output pairs. As it turns out,
this doesn’t seem to lead to radically new logics – but that’s just the way it goes!

Zo: Fair enough. Maybe we can forget about logics for refinement now, and discuss
logics for other kinds of interaction. I guess that the languages you would devise for
LFG or Channel Theory style classification would be variations of PDL, perhaps
with additional structure on the programs?

Zi: Well, that’s what I’ll discuss here – though as I mentioned yesterday, there’s
interesting work relating Channel Theory to substructural logics. PDL and its
cousins – especially those with some sort of intersection construct – are a natural
tool for talking about classification structures. For, when working with classification
structures one usually wants to demand that certain paths commute.

We covered some of these ideas in yesterday’s discussion of LFG. Let’s for-
malize them using trios. An LFG trio is a trio (T; z;F) in which T is a single
finite tree, F a single finite feature structure, and z a partial function from the

20 P. BLACKBURN AND M. DE RIJKE

nodes of T to the nodes of F. Let’s assume that our favorite tree language LT has
a diamond hti for moving down the tree, and let’s also assume that our feature
language LF has diamonds hfi, for every feature f . As you’ve probably guessed
by now, LLFG , our language for talking about LFG trios, has constants denoting
the continents, and a diamond hzi referring to the bridge. But, in addition, we’re
going to allow ourselves to build complex modalities – so we’ll be working in a
fragment of PDL. In particular, we’ll use both the composition constructor “;” and
the intersection constructor “\”. This will enable us to construct diamonds such as
h(up ;zoom in)\zoom ini>, thus capturing the effect of the LFG equation " = #.

Zo: OK, that’s clear. But what sort of results do you have for classification trios?
I guess we could look at axiomatic issues again – but it may be more interesting
to look at decidability and complexity questions. My feeling is that classification
structures give you considerable coding power – even when the base languages for
each continent have relatively easy satisfiability problems.

Zi: You’ve hit the nail on the head: the move from refinement to classification (or:
from GPSG trios to LFG trios) is not as innocent as it looks. Because classification
languages enable us to insist that sequences of transitions in the two structures
commute, it’s straightforward to code unsolvable problems. Here’s a nice example.
Consider type 0 grammars. Suppose we’re given an alphabetA. A production onA
is an (unrestricted) rewrite pair l ! r, where l and r are words on A. A grammar
onA is a finite non-empty set of productions onA. Is it possible to write a program
that takes a grammar and a pair of words i and o and determines whether i can be
rewritten to o usingA productions? No, it’s not. In fact it’s a paradigmatic example
of a computationally unsolvable task.

Zo: Hang on a minute : : : I see how to code it. Let’s work with classification struc-
tures in which each continent has partial functions corresponding to the elements
of A, and the bridge is a partial function z from the left continent to the right one.
I’m going to use the left continent to code the antecedents of the productions, and
the right continent to code the consequents.

Zi: What sort of language will you use?

Zo: I’ll keep it simple. We’ll have a modality hai corresponding to each elementa of
A and an additional zoom-in modality hzi. We’ll also need a way of enforcing inter-
continental synchronization; I’ll assume that we can write down Kasper Rounds
style path equations. That is, we have formulas hm1i : : : hmni

:
= hm0

1i : : : hm
0

ki
which equate two sequences of modalities. Such equations will hold at a node if
there are transition paths from that node corresponding to both sequences, and,
in addition, there is at least one node that is the joint destination of two such
sequences; see Kasper and Rounds (1990) for details. We’ll need the booleans, but
we won’t need any propositional variables; we can build all the formulas we’ll need
out of the path equations.

ZOOMING IN, ZOOMING OUT 21

Zi: That’s basically a fragment of PDL with intersection: over this class of trios
the path equation hm1i : : : hmni

:
= hm0

1i : : : hm
0

ki is just h(m1 ; : : : ; mn) \ (m0

1 ;
: : : ; m0

k)i>.

Zo: Indeed. Now, we don’t need all the path equations. I’m only interested in
enforcing commuting conditions between the continents, not within them, so we can
make do with equations of the following form: hl1i : : : hlnihzi

:
= hzihr1i : : : hrki,

where l1, : : : , ln and r1, : : : , rk are all elements of A. Such equations say that
by taking the transition sequence l1 through ln in the left hand continent and then
zooming in, we can get to a point that is also reachable by immediately zooming
in and following the sequence r1 through rk in the right continent. The two paths
commute.

s
l1 ?...
ln ?s

s
rn?...

rn?s

z -

z -

'

&

$

%

'

&

$

%
Given such a language it’s easy to encode grammars. A word a1 � � � an on A is

represented using the sequence ha1i � � � hani. To each production l ! r there is a
corresponding path equation hlihzi :

= hzihri, where hli and hri are the modality
sequences representing the words l and r respectively. A grammar G is represented
by the conjunction of the corresponding equations; call this formula�. The problem
of determining whether a word i can be rewritten to a word o using A productions
amounts to asking whether we can find a classification structure that validates� and
contains a node satisfying hiihzi := hzihri. As the rewriting problem is unsolvable,
so is the corresponding satisfiability problem. This means that it’s very easy to find
undecidable logics of classification structures.

Zi: Exactly. Their architecture renders them perfect for coding arbitrary compu-
tations. It’s quite fun – and fairly straightforward – to directly encode Turing
machines, the Post completeness problem, and unbounded tiling problems. Clas-
sification structures are intrinsically dangerous! But in spite of this I’d argue that
they’re the appropriate setting for analyzing many practical problems.

Zo: That I don’t see.

Zi: Look – working in ontologically rich settings gives you the opportunity to
formulate problems naturally. When problems are formulated naturally it is eas-
ier to bring additional insights to bear. These may greatly simplify the inherent
computational complexity. There’s a classic example of this. It’s long been known
that undecidable problems can be formulated in the unrestricted LFG architecture.
Nonetheless, precisely because LFG represents the various sources of linguistic

22 P. BLACKBURN AND M. DE RIJKE

information and their interactions so perspicuously, its easy to formulate linguis-
tically natural conditions which regain decidability. Kaplan and Bresnan (1982)
proposed such a condition, the off-line parsability constraint. This forbids the
empty string from annotating any terminal tree node, and also prohibits the same
syntactic category label from appearing twice on any non-branching chain of the
tree. Linguistically these constraints are natural: they insist that all the information
in the tree must be witnessed by lexical items. Their technical effect is to give a
(grammar dependent) upper bound on both the height and depth of the possible
parse trees for a given string. The existence of such upper bounds ensures that the
parsing problem is decidable.

� � �

Zi: Let’s change our perspective somewhat. Assume that we’re interested in one
particular kind of bridge, say X-bridges. What do we know about trios built around
X-bridges, provided that we have ‘nice’ results for the continents? As an example,
if we are given two continents, both with a complete and decidable logic, and if
we build an X-bridge between them, will the resulting trio have a complete and
decidable logic as well?

Zo: Why don’t you give me an example of such a result, together with a detailed
proof? Is anything known, for example, about the special case where the bridge is
refinement of states?

Zi: Yes. Quite a few results are known here. Let me prove a fairly general one
for layered languages. Recall that I write LT (LB) to denote the language LT (the
top language) layered over LB (the bottom language). For the result that I want
to prove, I’ll assume that both languages are modal languages, and that the top
language LT contains some means for randomly accessing nodes in its structures;
I’ll give a precise definition shortly. What I want to prove is that if you start with a
complete logicLT for the top languageLT and a complete logicLB for the bottom
language LB , then there exists a complete logic LT (LB) for the layered language
LT (LB). This generalizes a result of Finger and Gabbay (1992).

Zo: OK. I’m all ears.

Zi: Right. Let’s go to the blackboard then. Assume that the component logics LT

andLB are both given as Hilbert-style systems that are complete for validity inLT

andLB , respectively. Equivalently, everyLT -consistent formula has anLT -model,
and every LB-consistent formula has an LB-model. Moreover, as I said, I will
assume that the top language has a ‘random access’ operator E such that for any
LT -model M we have M; w j= E� iff there exists some node v in M such that
M; v j= �. This can either be a primitive or a defined operator. (For example, if we
were working in linear temporal logic we could define it byP�_�_F�.) All that
matters is that we have it at our disposal.

ZOOMING IN, ZOOMING OUT 23

Zo: Are you assuming anything else about LT and LB apart from the fact that
they’re modal languages?

Zi: Well, I’ll assume that they’re countable and classical. Moreover, to keep the
proof as simple and clean as possible, I’ll assume that they’re one-dimensional:
that is, formulas are evaluated at single states.

OK, let’s begin. First we need to define three ingredients: the layered language
LT (LB), the models for this language and the combined logic LT (LB). Now,
the formulas of the combined language LT (LB) are built up from LT atoms and
LB-formulas-viewed-as-atoms of LT . Note that I haven’t added any modalities
for exploiting the refinement relation between models for LT and models for LB;
we’re working solely with the modalities of the two original languages. I’ll assume
that LT and LB have nothing in common except the boolean connectives.

As for the models, they are refinement trios of the form (M; z;K) consisting of
a single LT -model M as the left continent and a class K of pointed LB-models as
the right continent. By a pointedLB-model I simply mean a pair (N; v) whereN is
an ordinary LB-model, and v is a node in this model. As for the bridge, this is an
injective function z : jMj ! K, where jMj denotes the domain ofM. I will usually
write Nw; vw for z(w).

To interpret LT (L)B-formulas on such refinement trios, let me first introduce
some notation: for # ann-ary modal operator inLT , let Table#(x;X1; : : : ;Xn) be its
table; that is, the recipe for computing the truth value of the formula #(�1; : : : ; �n).
Here Xi stands for the set of states satisfying �i.

Given a refinement trio (M; z;K), then for all nodesw inMwe define (M; z;K),
w j= � as follows. First, for all � 2 LB we define:

(M; z;K); w j= � iff Nw; vw j= �:

(Recall that Nw; vw is just z(w).) Next, for all � 2 LT :

(M; z;K); w j= p iff M; w j= p

(M; z;K); w j= :� iff (M; z;K); w 6j= �

(M; z;K); w j= � ^ iff (M; z;K); w j= � and (M; z;K); w j=

(M; z;K); w j= #(�1; : : : ; �n) iff Table#(w; [[�1]]; : : : ; [[�n]]);

where [[�i]] = fu j (M; z;K); u j= �ig.

Zo: Let me think. OK, the last four clauses essentially say that LT -formulas are
evaluated in the left continent M in exactly the way we would expect – after all,
M is just a model for LT . So the only thing that is new is the first clause. This tells
us that whenever we hit an LB-formula � while evaluating at a point w, we should
zoom into the pointed model in the right continent that’s associated with w, and
start evaluating � at the designated point. That’s OK too; Nw is just a model for
LB .

24 P. BLACKBURN AND M. DE RIJKE

Zi: Exactly! Now, the combined logic LT (LB) is defined as follows. Its axioms
are those of LT . Its inference rules are those of LT plus the following rule that
allows one to lift validities from the bottom logicLB to the combined one:

(Lift) For every LB-formula �, if `LB � then `LT (LB) �.

Zo: I can certainly see whyLT (LB) is sound for the combined models. But I think
I can almost see how you could prove the logic to be complete as well. Simply
take an LT (LB)-formula � that is consistent in LT (LB). If you could view � as a
(consistent)LT -formula, you could first use the completeness ofLT to find anLT -
model for �-viewed-as-an-LT -formula. That would give us half the desired model;
the next step would be to make use of the completeness result for LB to build the
rest. Do you see what I’m trying to get at? First of all you ‘hide’ the LB-parts
of the formula, and build a model for the LT component; then you ‘unpack’ the
LB-information and build the rest of the model.

Zi: That’s exactly the idea behind the completeness proof! To make it work, first
define a function hide : LT (LB) �! LT as follows. Let q0, q1, : : : be a collection
of new proposition symbols, and let 0, 1, : : : be an enumeration of the LB-
formulas. Now define

hide(i) = qi

hide(p) = p

hide(:�) = :hide(�)

hide(� ^) = hide(�) ^ hide()

hide(#(�1; : : : ; �n) = #(hide(�1); : : : ; hide(�n)):

The first thing we need to do is show that hiding preserves consistency. That’s the
content of the following lemma:

LEMMA A. If � is consistent in LT (LB), then hide(�) is consistent in LT .

To prove this, one can argue by contraposition. If hide(�) is inconsistent, this means
`LT hide(�) ! ?. As all axioms and inference rules of LT are also in LT (LB),
this proof can be mimicked to get a proof of � ! ? in LT (LB), and this proves
the lemma.

Zo: Alright, so from the LT (LB)-consistency of � and the completeness of LT ,
we get an LT -model for hide(�). But this model contains hidden LB-information
– how do we extract it?

ZOOMING IN, ZOOMING OUT 25

XXXXXXXXXXX
!!

!!
!!
!!
!!
!!!

'

&

$

%
An LT -model with hidden LB-information

Zi: Indeed, that’s the next issue we need to address. As we want to find LB-
models for the hiddenLB-information, we need to be sure that there are no hidden
inconsistencies waiting to appear when we start the unpacking process. Let’s check
this out.

First, let’s identify the information that’s actually hidden. Let be a formula in
LT (LB). Then

Alien() :=
�

maximal subformulas of whose main
connective is not in LT

�
:

We also need to define the closure of Alien() under single negations:

Alien:() := Alien() [f:� j � 2 Alien()g:

Now, letM be a model for LT , let w be a state in M, and define

Unpack (w) := f� 2 Alien:() jM; w j= hide(�)g:

That is: Unpack (w) contains the relevant LB-information hidden at the state w
in the LT -modelM.

To rephrase our earlier requirement, what we need to prove is that Unpack (w)
is LB-consistent whenever is LT (LB)-consistent. To achieve this, we look at all
the problematic subsets of Alien:(), and using the random access operator E we
can make sure that they occur nowhere:

Problem() :=
n^

� j � � Alien:() and � `LB ?
o

No-Problem() :=
^
f:E� j � 2 Problem()g

OK() := ^ No-Problem():

Zo: I get it. The key point is the use of the random access operator E in the
definition of No-Problem() to explicitly rule out all possible contradictions.

26 P. BLACKBURN AND M. DE RIJKE

Zi: Indeed – and that’s the only thing I use it for. Now, let’s establish a few more
lemmas and finish the completeness proof.

LEMMA B. `LT (LB) No-Problem().

LEMMA C. `LT (LB) OK()$.

LEMMA D. Let M be a model for hide(OK()); that is, assume that for some
w in M, M; w j= hide(OK()). If is LT (LB)-consistent, then Unpack (v) is
LB-consistent for any v in M.

To see that Lemma B holds, note that by propositional calculus

`LT (LB)

^
f:� j � 2 Problem()g:

But then we can deduce

`LT (LB) :E:
^
f:� j � 2 Problem()g:

(This step is just an application of the modal necessitation rule for E, and as LT

is a complete logic, this rule must be derivable.) Using the de Morgan laws and
the fact that E commutes over disjunctions, it is easy to see that this formula is
equivalent to No-Problem(). Thus Lemma B is proved. Lemma C is an immediate
consequence of Lemma B.

Zo: I see. Let me try to prove Lemma D. Assume that Unpack (u) is LB-in-
consistent for some u. That is: there are �1, : : : , �n 2 Unpack (u) such that
`LB �1^ : : :^�n ! ?. It follows that

�V
i �i

�
2 Problem(), and so :E

�V
i �i

�
is one of the conjuncts in No-Problem(). Now, by assumption we have that

M; w j= hide(OK())) M; w j= hide(No-Problem())

) M; w j= hide(:E
V
i �i)

) M; w j= :E hide(
V
i �i)

) M; v j= :
V
i hide(�i); for all v inM.

On the other hand, as �i 2 Unpack (u), M; u j=
V
i hide(�i), and we have a

contradiction. This proves Lemma D.

Zi: Quite right! And with these lemmas at our disposal, we are ready to prove the
completeness of the combined logic LT (LB). To be precise, I want to prove:

THEOREM E. Assume that LT and LB are complete in LT and LB , respectively.
Let � be a formula in LT (LB). Then � is valid on all LT (LB)-models iff it is

ZOOMING IN, ZOOMING OUT 27

provable in the combined logic LT (LB).

To prove the completeness half of this theorem (that is, the right to left direction),
let’s assume that � is anLT (LB)-consistent formula in the combined language. By
Lemma C, OK(�) is LT (LB)-consistent as well, and by Lemma A hide(OK(�))
must be LT -consistent. The completeness of LT gives us an LT -model M and a
state w in M such that M, w j= hide(OK(�)).

Fix any state u inM. By Lemma D it follows that Unpack�(u) is LB-consistent
for all u. Now use the finiteness of Unpack�(u) and the completeness ofLB to find
an LB-model (Nu; vu) for Unpack�(u). Define

K := f(Nu; vu) j u 2Mg

z(u) := (Nu; vu) for u 2M.

Then, by an easy induction we find that for every u in M and every subformula
of OK(�)

M; u j= hide() iff (M; z;K); u j= :

So, from M; w j= hide(OK(�)) we get (M; z;K), w j= OK(�) and hence
(M; z;K), w j= �, as required. Thus we have proved the desired completeness
result.

Zo: Let me try and summarize. First you hide theLB-information in �, and appeal
to the completeness of LT to get an LT -model for hide(�). Then you unpack the
hidden information, and give it suitable models. This step uses the completeness
of LB , and we can be sure that nothing goes wrong here because our use of the
random access operator guarantees that there are no LB-inconsistencies lurking
somewhere. ‘Hide and unpack’ is really a very simple idea!

Zi: Yes, indeed – and one can use it to give transfer results for other bridges besides
state refinement. For example, transfer results for bisimilar trios are easily obtained,
though there is more bookkeeping to do. But the general idea is natural. Simply
iterate the above procedure: move back and forth between the structures, all the
time hiding and unpacking information.

3. Day 3: Questions

Zo: I’ve enjoyed our discussion. Let’s suppose that you’re right, and it really is
important to develop ways of thinking about rich ontologies and their logics. OK,
so where do we go from here? I can see that standard techniques – for example
Henkin models and filtrations – can sometimes be applied in richer settings. And
maybe ‘hiding and unpacking’ will turn out to be a useful technique : : :

28 P. BLACKBURN AND M. DE RIJKE

Zi: I think it will. It underlies the results of Fine and Schurz (1991) and Kracht and
Wolter (1991) concerning transfer of completeness and decidability of modal logics
to their independent joins, and the Finger and Gabbay (1992, 1996) completeness
results for layered and fibered languages.

Zo: It also seems that we know some of the risks involved. For example, the LFG
example shows that undecidability lurks just around the corner. And I guess there’s
often going to be increases in computational complexity : : :

Zi: Quite. Spaan (1993) and Hemaspaandra (1994, 1996) give a good map of the
area.

Zo: OK. So we already know a reasonable amount. But once again: where do
we go from here? I can see a real danger. Your examples are very nice, but your
technical remarks strike me as a bit piecemeal. You run the risk of endless ad-hoc
investigations, starting completely anew each time a new application comes along.

Zi: I think that’s a fair comment. What’s required is a more serious classification
of trios. At the moment I only distinguish between refinements, classifications and
full interaction. That’s not good enough. We need to know what kind of bridges
there are, and what kind of interactions between structures allow a transfer of
properties of the component logics to the trios. From the examples we’ve looked
at we know that completeness transfers if we consider refinement trios. We also
know that decidability does not transfer to LFG style classification trios. But where
is the boundary between transfer and non-transfer? And does completeness always
transfer in the case of uni-directional bridges?

To answer such questions a more abstract approach may be fruitful. There’s
some examples of such work. For example Seligman (1996) takes an algebraic per-
spective on logical combination; interestingly, the “hide and unpack” idea emerges
as a natural construction. Kurucz et al. (1996) use category theory as a framework
for investigating combined logics. Given the way category theory focuses on the
links between mathematical structures, this may turn out to be the natural home for
further investigations. I think 2-categories and fibrations may prove especially use-
ful. Similar categorical approaches have already proved useful in abstract studies
of modularity; see Goguen and Burstall (1984).

The ideal, I think, is to pursue both concrete and abstract investigations. This
will ensure that the guiding intuitions are preserved, and that we don’t run the risk
of missing the wood for the trees.

� � �

Zo: There is an obvious weakness of the story you have been telling so far. You
have acted as if combined ontologies are lifeless, static entities. This ignores the
fact that for many applications it is precisely the dynamic aspects of combined
ontologies that are of interest – for example, how they are to be built, extended, or
otherwise amended over time.

ZOOMING IN, ZOOMING OUT 29

Zi: I couldn’t agree more. Let’s consider a concrete example: the Tree Adjoining
Grammars (TAGs) of Joshi et al. (1975). TAG analyses are essentially dynamic;
sentences are viewed as the result of merging trees together. To gain something of
the flavour of TAG in action, consider the operation known as adjunction. Let �
be a tree with an internal node labeled by the non-terminal symbol A. Let � be an
auxiliary tree with root and foot node labeled by the same non-terminal symbol
A. The tree � 0 that results by adjoining � at the A-labeled node in � is formed by
removing the subtree of � rooted at this node, inserting � in its place, and then
reinserting the subtree at the foot node of �. Perhaps the most important thing to
notice is the role played by the node labeled A. We began with an initial structure
(namely �) with a designated node (namely that labeled A); we then performed a
computation step; and this created a larger structure with a new designated node,
the site for further creation.

Of course, all this could be described statically. But to do so may do violence
to the underlying intuitions. We need analyses which cope with the growth of
structures rather than merely treating them as completed objects.

Zo: And do you have such an analysis?

Zi: No, but I do have some suggestions. Firstly, underlying the TAG example
is a notion of substitution of structure, much as we discussed earlier. Secondly,
dynamics is not alien to logic. For example, formal proof construction can be
naturally thought of as information processing, and recent work in substructural
logics (influenced by Girard’s (1987) treatment of Linear Logic) addresses such
issues as the management of limited resources over time.

Moreover, there are a number of logical systems that draw on computational
metaphors such as “information growth”, “transition sequences” and “updating”.
The classic example is the Kripkean analysis of intuitionistic logic; more recent
examples include propositional dynamic logic (Pratt, 1976; Harel, 1984), action
algebras (Pratt, 1991) Peirce algebras (Brink et al., 1994; de Rijke, 1995)), the
various “arrow logics” (van Benthem, 1993; Marx et al., 1996; Vakarelov, 1996;
Venema, 1996; de Rijke, 1992) and evolving algebras (Gurevich, 1991).

As yet no consensus has emerged, but such systems have already provided
interesting analyses of programming languages (Börger, 1990), theory change
(Gärdenfors, 1988; de Rijke, 1994), anaphora and presupposition in natural lan-
guage (Groenendijk and Stokhof, 1991; Beaver, 1994), and various syntactic for-
malisms (Moshier and Rounds, 1987; Johnson and Moss, 1994). What will ulti-
mately emerge is unclear – but I do think it’s both interesting and important to get
to grips with dynamic issues.

Look, let’s wrap things up here. As far as I’m concerned, the most important
point is the following. Logic is increasingly being influenced by applications – and
not just the traditional applications in philosophy and mathematics. Instead, new
interdisciplinary work in such areas as Computer Science, Artificial Intelligence
and Theoretical and Computational Linguistics are becoming the focus of attention.

30 P. BLACKBURN AND M. DE RIJKE

This broadening of the scope of applied logic brings new responsibilities. It forces
the logician to take ontological diversity seriously, and to consider how rich systems
evolve over time.

Acknowledgment

Part of this research was carried out while Patrick Blackburn was at the Philosophy
Department of Utrecht University, and Maarten de Rijke at CWI, Amsterdam.
During this period both authors were supported by the Netherlands Organisation
for Scientific Research (NWO), project NF 102/62-356.

References

Beaver, D., 1994, “What comes first in dynamic semantics?,” PhD Thesis, University of Edinburgh.
van Benthem, J., 1991, Language in Action, Amsterdam: North-Holland.
Blackburn, P., Gardent, C., and Meyer-Viol, W., 1993, “Talking about trees,” pp. 21–29 inProceedings

of the 6th Conference of the European Chapter of the Association of Computational Linguistics,
Utrecht.

Blackburn, P., Gardent, C., and de Rijke, M., 1996, “Rich ontologies for tense and aspect,” in Logic,
Language and Computation, J. Seligman and D. Westerståhl, eds., Stanford: CSLI Publications.
To appear.

Blackburn, P. and Meyer-Viol, W., 1996, “Modal logic and model theoretic syntax,” in Advances in
Intensional Logic, M. de Rijke, ed., Dordrecht: Kluwer. To appear.

Blackburn, P., Meyer-Viol, W., and de Rijke, M., 1996, “A proof system for finite trees,” in Computer
Science Logic ’95, Berlin: Springer-Verlag. To appear.

Blackburn, P. and de Rijke, M., 1996, Logics of communicating structures. In preparation.
Börger, E., 1990, “A logical operational semantics for full Prolog, Part 1.” pp. 36–64 in Proceedings

CSL ’89, E. Börger et al., eds., LNCS 440, Berlin: Springer-Verlag.
Brink, C., Britz, K., and Schmidt, R., 1994, “Peirce algebras,” Formal Aspects of Computing 6,

339–358.
Fine, K. and Schurz, G., 1991, “Transfer theorems for stratified multi-modal logics,” in Proceedings

of the Arthur Prior Memorial Conference. To appear.
Finger, M. and Gabbay, D.M., 1992, “Adding a temporal dimension to a logic system,” Journal of

Logic, Language and Information 1, 203–233.
Finger, M. and Gabbay, D.M., 1996, “Combining temporal logic systems,” Notre Dame Journal of

Formal Logic. To appear.
Gabbay, D.M., 1994, “Fibered semantics,” manuscript, London: Imperial College.
Gärdenfors, P., 1988, Knowledge in Flux, Cambridge, MA: MIT Press.
Gazdar, G., Klein, E., Pullum, G., and Sag, I., 1985, Generalised Phrase Structure Grammar, Oxford:

Basil Blackwell.
Girard, J.-Y., 1987, “Linear logic,” Theoretical Computer Science 50, 1–102.
van Glabbeek, R., 1990, “Comparative concurrency semantics and refinement of actions,” PhD Thesis,

Vrije Universiteit Amsterdam.
Goguen J.A. and Burstall, R.M., 1984, “Some fundamental algebraic tools of the semantics of

computation (I),” Theoretical Computer Science 31, 175–209.
Groenendijk, J. and Stokhof, M., 1991, “Dynamic predicate logic,” Linguistics and Philosophy 14,

39–100.
Gurevich, Y., 1991, “Evolving algebras; a tutorial introduction,” Bulletin EATCS 43, 264–284.
Harel, D., 1984, “Dynamic logic,” pp. 497–604 in Handbook of Philosophical Logic 2, D. Gabbay

and F. Guenthner, eds., Dordrecht: Reidel.
Hemaspaandra, E., 1994, “Complexity transfer for modal logic,” pp. 164–173 in Proceedings 9th

LICS, Paris.

ZOOMING IN, ZOOMING OUT 31

Hemaspaandra, E., 1996, “The price of universality,” Notre Dame Journal of Formal Logic. To appear.
Johnson, D., and Moss, L., 1994, “Grammar formalisms viewed as evolving algebras,” Linguistics

and Philosophy 17, 537–560.
Joshi, A., Levy, L., and Takahashi, M., 1975, “Tree adjunct grammars,” Journal of Computer and

Systems Sciences 10, 136–163.
Kaplan, R. and Bresnan, J., 1982, “Lexical-functional grammar: a formal system for grammatical

representation,” pp. 173–281 in The Mental Representation of Grammatical Relations, J. Bresnan,
ed., Cambridge, MA: MIT Press.

Kasper, R. and Rounds, W., 1990, “The logic of unification in grammar,” Linguistics and Philosophy
13, 33–58.

Kracht, M. and Wolter, F., 1991, “Properties of independently axiomatisable bimodal logics,” Journal
of Symbolic Logic 56, 1469–1485.

Kurucz, A., Jánossy, A., and Eiben, G., 1996, “Combining algebraizable logics,” Notre Dame Journal
of Formal Logic. To appear.

Marx, M., Németi, I., Sain, I., and Mikulás, S., 1996, “Investigations in arrow logics,” in Arrow Logics
and Multi-modal Logics, M. Marx, L. Polos, and M. Masuch, eds., Studies in Logic, Language
and Information. Stanford: CSLI Publications. To appear.

Moens, M., and Steedman, M., 1988, “Temporal ontology and temporal reference,” Computational
Linguistics 14, 15–28.

Moshier, D., and Rounds, W., 1987, “A logic for partially specified data structures,” pp. 156–167 in
Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich.

Pratt, V., 1976, “Semantical considerations on Floyd–Hoare logic,” pp. 109–121 in Proceedings 17th
IEEE Symposium on the Foundations of Computer Science.

Pratt, V., 1991, “Action logic and pure induction,” pp. 79–120 in Logics in AI, J. van Eijck, ed., LNAI
478, Berlin: Springer.

de Rijke, M., 1992, A system of dynamic modal logic, Report #CSLI-92-170, Stanford University.
To appear in Journal of Philosophical Logic.

de Rijke, M., 1994, “Meeting some neighbours,” pp. 170–195 in Logic and Information Flow, J. van
Eijck and A. Visser, eds., Cambridge, MA: MIT Press.

de Rijke, M., 1995, “The logic of Peirce algebras,” Journal of Logic, Language and Information 4,
227–250.

Seligman, J., 1990, “Perspectives: A relativistic approach to the theory of information,” PhD Thesis,
University of Edinburgh.

Seligman, J., 1996, Combining logics with ease. In preparation.
Spaan, E., 1993, “Complexity of modal logics,” PhD Thesis, ILLC, University of Amsterdam.
Vakarelov, D., 1996, “Modal arrow logic,” in Advances in Intensional Logic, M. de Rijke, ed.,

Dordrecht: Kluwer. To appear.
Venema, Y., 1996, “A crash course in arrow logic,” inArrow Logics and Multi-modal Logics, M. Marx,

L. Polos and M. Masuch, eds., Studies in Logic, Language and Information. CSLI Publications,
Stanford. To appear.

