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Abstract. Scene Text Recognition (STR) is the problem of rec-
ognizing the correct word or character sequence in a cropped word
image. To obtain more robust output sequences, the notion of bidirec-
tional STR has been introduced. So far, bidirectional STRs have been
implemented by using two separate decoders; one for left-to-right de-
coding and one for right-to-left. Having two separate decoders for al-
most the same task with the same output space is undesirable from a
computational and optimization point of view. We introduce the Bidi-
rectional Scene Text Transformer (Bi-STET), a novel bidirectional
STR method with a single decoder for bidirectional text decoding.
With its single decoder, Bi-STET outperforms methods that apply
bidirectional decoding by using two separate decoders while also be-
ing more efficient than those methods, Furthermore, we achieve or
beat state-of-the-art (SOTA) methods on all STR benchmarks with
Bi-STET. Finally, we provide analyzes and insights into the perfor-
mance of Bi-STET.

1 INTRODUCTION
Scene Text Recognition (STR) is the task of recognizing the cor-
rect word or character sequence in a cropped word image. Many dif-
ferent architectures have been proposed for STR. Since the rise of
deep learning, most state-of-the-art STR methods adopt a Convolu-
tional Neural Network (CNN) for feature extraction and an encoder-
decoder architecture as the core component for sequence modeling.
After feature extraction with a CNN, the extracted features of the in-
put image are encoded into a new representation with an encoder. As
a final step, conditioned on the encoded input image representation,
the character sequence is decoded, which is depicted in the input im-
age. Figure 1 summarizes a general pipeline. Baek et al. [1] identify
sequence modeling as a core component in STR frameworks.

The encoder-decoder architecture for the sequence modeling stage
of many state-of-the-art STR methods (see Section 2) can be charac-
terized by (i) a bidirectional Recurrent Neural Network (RNN) for
feature encoding, (ii) a directed RNN decoder for character decod-
ing, and (iii) various types of attention mechanism [2, 23] to generate
additional context vectors for the current decoding steps.

Two recent developments have accelerated progress in STR: (i) a
move away from recurrent sequence modeling, and (ii) bidirectional
decoding for STR.

Regarding the first, Sheng et al. [28] have changed the standard
STR approach for sequence modeling by introducing a non-recurrent
method based on a transformer encoder-decoder architecture [35].
By using a transformer-based encoder-decoder, the model architec-
ture can be simplified and the time for model optimization can be
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reduced by an order of magnitude in comparison [28].
The second reason for recent progress in STR is bidirectional de-

coding. Bidirectional decoding is the idea of decoding an output se-
quence in two directions (i.e., from left-to-right and right-to-left) for
more robust output predictions. This bidirectional decoding is imple-
mented by using a different decoder for each decoding direction [31].
Decoding the text in two directions at the same time can be seen as
two different sub-tasks for the model to perform.

It is important to reflect on different ways of modeling sub-tasks,
especially using task conditioning. With task conditioning, the out-
put of a method does not solely depend on the input data, but on a
given (sub-)task as well. In other words, given the same input data,
the output may be different based on the (sub-)task it is conditioned
on. As explained by Radford et al. [26], task conditioning can be
implemented in several ways.

One option is at the algorithmic level [7], where different mod-
els are learned for different tasks, and an overall algorithm selects
the correct model for a particular task. Implementing task condition-
ing at the algorithmic level is not optimal, since in most cases, there
is a lot of shared knowledge between different (sub-)tasks, which is
not exploited when separate models are optimized for each task. An-
other way of implementing task conditioning is at the architecture
level. For bidirectional STR, Shi et al. [31] have implemented the
decoding direction as two sub-tasks at the architecture level, that is,
by having two separate decoders: one for left-to-right and another
one for right-to-left text decoding. Although both decoders share the
same encoder, two separate decoders are optimized for two tasks that
are (almost) identical and share the same output space.

Implementing bidirectional decoding at the architecture level is
not uncommon, and has been done for other tasks besides STR [43,
44]. However, having two separate decoders for two tasks that are
similar (i.e., left-to-right and right-to-left STR) is not desirable:
(1) From a computational point of view: The two network compo-

nents do not share weights, which requires separate optimization
for both parts.

(2) From a multi-task learning point of view: There is a lot of shared
knowledge between left-to-right and right-to-left decoding and
both tasks share the same output space, which is not utilized
when optimizing the two decoders apart from each other.

Therefore, the question remains: Can we have the benefits of bidi-
rectional decoding (left-to-right and right-to-left decoding) for STR
without implementing this at the architecture or algorithmic level?

There is promising room for improvement on the implementation
side of bidirectional decoding for STR by just using one decoder
for both decoding directions. Instead of implementing this decoding
direction at the algorithmic or at the architecture level, we propose
a new way of implementing task conditioning, namely, at the input



level. Implementing task conditioning at the input level means that
extra feature information is added to the input of the model. This
context information should be exploited by the model so as to condi-
tion on the right (sub-)task.

More specifically, the transformer architecture, as used by Sheng
et al. [28] for the encoder-decoder part for STR, has no recurrent in-
ductive bias. To solve sequential problems with transformers at the
input level, additional position embeddings are added to provide the
model with information about the order of the input sequence. Due to
the “position unawareness” of the transformer, the model is also not
limited to an inductive decoding direction (unlike RNNs). By adding
an extra embedding to the input data, which tells the method to de-
code an input example from left-to-right or right-to-left, the model
can exploit bidirectional decoding with one unified architecture for
both directions. This means that the model has one decoder with one
set of model parameters that can be optimized for both subtasks at
the same time. This is in contrast with the method by Shi et al. [31],
where two decoders are optimized, one for each decoding direction.

In this work, we show that we can simplify the bidirectional STR
architecture by using a transformer based encoder-decoder which is
able to perform bidirectional text recognition by using a single de-
coder. Our main technical contributions in this paper are the follow-
ing:
• We introduce Bi-STET, BIdirectional Scene TExt Transformer.

Bi-STET is a unified network architecture, optimized for two sub-
tasks (left-to-right and right-to-left STR), using one forward pass.
We achieve this through the implementation of bidirectional de-
coding at the input level as opposed to previous works which do
this at the architecture level [31]. We condition the output se-
quence on a specific decoding direction by adding extra features
at the input level, which results in a direction-agnostic decoder ar-
chitecture. It is possible to exploit the transformer architecture for
task conditioning at the input level, without requiring additional
model components or algorithms to model this task conditioning.

• We show that Bi-STET achieves or outperforms state-of-the-art
STR methods with a simpler and more efficient approach than
other bidirectional STR methods. We achieve these similar results
with fewer weight parameters and 50% less training iterations.

• We provide analyzes and insights on the performance of
Bi-STET.3 We analyze the generalisation of Bi-STET w.r.t. ori-
ented and curved text, the learned attention mechanism of the
encoder-decoder, the relation between sequence length and test-
accuracy of Bi-STET and is Bi-STET makes more mistakes for
rarer expressions than with dictionary words.

2 RELATED WORK
Traditional methods for STR [3, 32] apply a bottom-up approach.
The input image is preprocessed for feature extraction and charac-
ter segmentation is applied to obtain single characters from the input
image for word inference. For an overview, see [45]. With the rise of
deep learning, STR methods increasingly focus on end-to-end train-
ing from the input image to the desired output character sequence.

2.1 Deep-learning based text recognition
Jaderberg et al. [13] have proposed the first method for unconstrained
STR with deep learning. The method predicts a sequence of charac-

3 For reproducibility and repeatability, the code and checkpoint files used
to train and evaluate Bi-STET will be made available at https://
github.com/MauritsBleeker/Bi-STET.

ters with a fixed length by using a CNN classification model. A bag-
of-N-grams is also predicted; representing an unordered set of char-
acter N-grams that occur in the word depicted in the input image.
The predictions are combined in a Path Select Layer to predict the
most likely character sequence. More recently, Jaderberg et al. [15]
propose another method where the recognition task is formulated as
a multi-class classification problem over a 90k-class lexicon.

Many other STR methods [4, 29, 30, 31, 39, 42] use a CNN for
feature extraction in combination with an encoder-decoder model to
map the sequence of image features to a character sequence. To solve
the problem of rotation invariance of CNNs (i.e., for curved and ori-
ented text), several methods have been proposed [29, 31, 39, 40, 42].
Shi et al. [29, 31] and Yang et al. [39] use a Spatial Transformer Net-
work (STN) for input image rectification to handle perspective text
and curved text. Zhan and Lu [42] have introduced an iterative Rec-
tification Network where the input image is rectified multiple times
by removing perspective distortion and text line curvature.

The alignment between the predicted character and the corre-
sponding region in the input image is modelled with two different
approaches. The first approach is to use CTC loss [8, 10, 21, 30, 34].
The other is to connect the RNN encoder to the decoder via an at-
tention mechanism [4, 29, 31, 40, 42], which creates an additional
context vector for the encoded input image conditioned on the al-
ready predicted output sequence.

Shi et al. [31] introduce the notion of bidirectional STR. Each out-
put sequence is predicted in two directions with two separate de-
coders, which do not share parameters. The output sequence with the
highest probability is selected as the final prediction in order to ob-
tain more robust predictions. Sheng et al. [28] are the first to use a
non-recurrent encoder-decoder approach based on a transformer ar-
chitecture; they have also introduced a modality-transform block to
map an image to a sequence feature representation.

In contrast to most work in STR, we do not use any specific com-
ponent for image rectification. We also do not rely on RNNs for se-
quence modeling. Similar to Sheng et al. [28], we also use a trans-
former architecture which yields state-of-the-art results in text recog-
nition without using extra image rectification components, for bidi-
rectional sequence modelling STR. However, we achieve this by us-
ing a single decoder for the bidirectional decoding, resulting in sig-
nificantly fewer parameters and training iterations.

2.2 Task conditioning

As indicated by Radford et al. [26], the distribution over the possible
model outputs is naturally modelled as p(y | x), where x is the input
data, and y is a possible output prediction. With task conditioning
(or modality conditioning), the output is not only conditioned on the
input data, but also on a given task, dataset, or modality as well, i.e.,
p(y | x, t), where t stands for the task.

One way of implementing task conditioning is at the architecture
level. Kaiser et al. [16] introduce a single model for eight tasks; for
each data-modality and/or subtask, different encoders and decoders
are used with a shared latent space. Devlin et al. [6] adopt the trans-
former to train a task-agnostic language model. After training the lan-
guage model, additional task-specific output layers are fined-tuned
for each evaluation task. Finn et al. [7] introduce a meta-learning
framework for multi-task learning where task conditioning is imple-
mented at the algorithmic level: tasks are treated as training examples
and are sampled from a distribution over tasks during training. Dur-
ing each training iteration, for each task, a separate model for each
task is updated based on the loss for that specific task.
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Figure 1: Overview of Bi-STET. A ResNet architecture is used for visual feature extraction. Next, a stack of n transformer encoder layers is
used for encoding the visual image features. For decoding the output sequence, a stack of n decoder transformer layers is used.

Unlike previous work, we condition a subtask (i.e., the decoding
direction) at the input level. As a result, we do not need different
models or network components for each decoding direction. Having
only one decoder is desirable from both a computational point of
view (i.e., only one decoder to optimize) and from an optimization
point of view (i.e., shared weights for all sub-tasks).

3 METHOD

To address the STR task, we take a fixed size image I as input and
want to decode the sequence of output characters y1, . . . , yL, where
L is the length of the character sequence depicted in the input image.
Briefly, we use a multi-layer stack of transformers for both the en-
coder and decoder. We use exactly the same implementation of the
transformer as described in [35] for the encoder-decoder. Therefore,
we refer to [35] for the exact details of the implementation. A full
overview of Bi-STET is shown in Figure 1.

3.1 Visual feature extraction network

Like [4, 31, 39, 42], we use a ResNet [12] based architecture for the
Visual Feature Extraction Network (VFEN). A ResNet architecture is
a more suitable feature extractor than VGG [33] for STR, as shown in
[31, 42]. We use a 45-layer residual network, with the same network
configuration as [31]. We split the obtained feature representation
Q ∈ RW×C×H column-wise, which results in a sequence of Visual
Feature Embeddings (VFEs), v1, . . . , vW , where vi ∈ RC×H .

3.2 Feature encoding

The feature encoder is in charge of encoding the visual image em-
beddings. Each visual image embedding is encoded into a new rep-
resentation in n steps, by using transformer encoder layers, while at-
tending over the entire sequence of VFEs during each encoding step.
We use scaled dot-product as the attention function:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V. (1)

Scaled dot-product attention can be described as a weighted sum of
the vectors in matrix V, which is a horizontal concatenation of the

flattened sequence of VFEs (also referred to as values). Each embed-
ding v is weighted by the similarity between a key k and a query q.
In each transformer layer multiple heads of attention are used:

head i = Attention
(

QWQ
i ,KWK

i ,VWV
i

)
(2)

and

MultiHeadSelfAttention =ConCat(head1, . . . , headh)WO, (3)

An advantage of using multiple attention heads is that it allows the
model to learn to attend over different positions in the input image
per attention head during each step of the encoding process. For self-
attention during encoding, the matrices Q, K, V are consistent per
layer (i.e., Q = K = V) and obtained from the output of the previous
layer. In the first layer, they can be obtained from the VFEN.

The weights of each transformer layer are not shared between en-
coder layers. We apply the positional encoding as introduced in [35].

3.3 Character decoding
The decoder consists of n transformer decoder layers. For both the
encoder and the decoder we use a transformer architecture. The rea-
son to choose a transformer over an RNN-based architecture is that
an RNN already has an inductive bias in terms of decoding and
encoding direction due to the recurrent nature of the architecture.
The decoder takes the embeddings of the decoded output character
sequence as input. Each decoder layer consists of three sublayers:
two multi-head attention layers and one feed-forward neural network
(the same implementation as in Section 3.2). The first multi-head
attention layer attends over the decoded output characters (decoder
self-attention). The second layer of multi-head attention (decoder
cross-attention) attends over the encoded VFEs from the last encoder
layer. The decoder cross-attention is able to look at the encoded in-
put image at every step during decoding. This makes it possible to
attend over different encoded image regions during decoding. Previ-
ous work on STR [4, 31, 42] only uses one attention distribution over
the encoded states per decoding step. In contrast, per decoding layer
n, we have h attention heads modeling complex alignments between
encoder features and decoded output characters.

We add an extra direction embedding in order to add more context
information by using additional embeddings. This direction embed-
ding tells the model to decode the output sequence from left-to-right
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or from right-to-left. By adding the direction embedding, we can use
the same decoder network and still condition on the output sequence
reading direction.

For every decoding step t, the output embedding hn of the stack of
transformer decoders is passed through a feed-forward layer with the
output characters as the output space. A softmax is applied to obtain
a distribution over all output characters. During training, this results
in a V × L matrix, where V is the size of the output character space
(or vocabulary) and L the length of the predicted character sequence.

3.4 Direction embedding
We define the decoding direction of the output sequence as two sub-
tasks of STR. Each decoding direction is one sub-task of the method
on which we condition the output sequence. To condition the output
on a decoding direction, we randomly initialize two 512-d vectors at
the start of training. During each training iteration, every input image
in the batch is decoded twice; once from left-to-right and right-to-
left. The ground truth description of the right-to-left decoded charac-
ter sequence is just the reserved ground truth of the original descrip-
tion. During decoding, we add the direction embedding on top of the
positional embedding and the token embedding. This is another way
to provide additional context information to the model, similar to the
position embeddings. Based on this information, the model should
learn to decode the character sequence not only in the left-to-right
direction but also in the other direction, otherwise the loss function
for the right-to-left decoded images will not be minimized.

Similar to the character embeddings, the direction embeddings are
trained end-to-end with the rest of the model.

4 EXPERIMENTAL SETUP
4.1 Datasets
Bi-STET is trained on two synthetically generated datasets. After
training, the method is evaluated on seven real-word evaluation sets
which are commonly used for scene text recognition.

4.1.1 Training datasets

• Synth90K. The Synth90K dataset [14] is a synthetically generated
dataset for text recognition. It contains 7.2 million training images.
The lexicon used contains 90,000 words. Each word has been used
to render 100 different synthetic images.

• SynthText. The SynthText dataset [11] contains 800,000 syn-
thetically generated images for text detection and recognition,
with roughly 8 million annotated text instances placed in natural
scenes. We crop all text instances from the original input images,
by taking the smallest horizontally aligned bounding box around
the annotated text instances in the image. We discard bounding
boxes that are smaller than 32 pixels in height or 30 pixels in
width. Bounding boxes larger than 800 pixels in width, 500 pixels
in height or with a transcription label longer than 25 characters are
removed too. We obtain 2.9 million cropped-word images from
this dataset for training.

4.1.2 Evaluation datasets

Bi-STET is evaluated cross-dataset. The model is trained only on
synthetically generated word images while we evaluate on real-world
word images. Unless stated otherwise, we use the word-image crops
and annotations as provided by the dataset to be consistent with other

methods. This might result in over-cropped word images; in other
cases adding a margin may lead other artifacts.
• ICDAR03. The ICDAR03 dataset [22] contains 258 images for

training and 251 for testing. For the text recognition task only,
1,156 word instances can be cropped from the test set. This dataset
was collected for the text detection and recognition task. There-
fore, most text instances in the images are clearly horizontally vis-
ible and centred in the image [36]. Following [4, 31, 37, 38], we
ignore all words that are shorter than three characters or contain
non-alpha numeric characters during evaluation.

• ICDAR13. The ICDAR13 dataset [17] contains most images from
the ICDAR03 dataset. In total this dataset contains 1,095 word
images for evaluation. Similar to [31], we add a cropping-margin
of 15% to prevent over-cropping.

• ICDAR15. The ICDAR15 dataset [18] contains 2,077 word images
for evaluating. The word images are cropped from video frames
collected with the Google Glass device. These frame crops con-
tain substantial real-world interference factors such as: occlusions,
motion blur, noise, and illumination factors, which are not present
in the ICDAR03 and ICDAR13 datasets. Like Cheng et al. [4], we
remove all examples where the ground truth transcription contains
non-alpha numeric characters.

• SVT. The Street View Text dataset (SVT) [37, 38] contains images
that have been taken from Google Street View. Due to this ori-
gin, some images have a low resolution and/or contain distortion
factors such as noise or blur. This dataset contains 647 word im-
ages for evaluation. Per image, a 50-word lexicon is provided as
well. Similar to [31], we add a cropping-margin of 5% to prevent
over-cropping. Similar to [31], we add a cropping-margin of 5%
to prevent over-cropping.

• SVTP. The Street View Text Perspective dataset (SVTP) [25] con-
tains 645 word images cropped from Street View. Most images
have perspective distortions due to the camera viewpoint angle.

• IIIT-5K Word. The IIIT-5k Word dataset (IIIT5K) [24] contains
3,000 images for evaluation. The word images are cropped from
scene texts and born-digital images. For this dataset, per evalua-
tion image, two lexicons of 50 and 1,000 words are provided for
lexicon inference.

• CUTE80. The Curved Text dataset (CUTE80) [27] mainly con-
tains curved and/or oriented text instances. The dataset was orig-
inally proposed for text detection, but later annotated for text
recognition as well. In total, 288 high resolution word images can
be cropped from the original dataset.

4.2 Implementation details
Our implementation consists of a feature extraction network fol-
lowed by an encoder-decoder network. The code and checkpoint
files used to train and evaluate Bi-STET are available at https:
//github.com/MauritsBleeker/Bi-STET.

4.2.1 Feature extraction network

All input images are resized to 32×256 without keeping the original
aspect ratio. The maximum output sequence length during training is
24. All pixels are normalized with a per-channel calculated mean and
standard deviation calculated on the ImageNet dataset [5].

4.2.2 Encoder-decoder network

For the encoder and decoder we use exactly the same configuration
as the base model described in [35]. We use a stack of n = 6 trans-
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Table 1: Accuracy of left-to-right vs. right-to-left vs. bidirectional word decoding. Measured without lexicon and compared with the method
by Shi et al. [31].

Method IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

Shi et al. [31], left-to-right 91.93 88.76 93.49 89.75 – 74.11 73.26
Shi et al. [31], right-to-left 91.43 89.96 92.79 89.95 – 73.95 74.31
Shi et al. [31], bidirectional 92.27 89.5 93.60 90.54 – 74.26 74.31

Bi-STET (this paper), left-to-right 94.2 88.3 95.1 92.5 75.0 78.8 81.8
Bi-STET (this paper), right-to-left 94.1 87.9 95.3 93.4 73.2 79.5 83.6
Bi-STET (this paper), bidirectional 94.7 89.0 96.0 93.4 75.7 80.6 82.5

former layers for both the encoder and decoder. Each layer has eight
attentions heads (h = 8). The embedding dimensionality is set to
d = 512. For the hidden state of the two layer feed-forward network
in each transformer layer, we set df = 2048.

The output space of our model contains all the lower-case char-
acters {a, . . . , z}, digits {0, . . . , 9}, 32 ASCII punctuation marks,
similar to [4, 31, 42], and a start- and end-of-word symbol. The
punctuation marks are included during training, but ignored during
evaluation. All evaluation and training ground truth descriptions are
lower-case, which makes the model case-insensitive.

4.3 Optimization

The entire method is trained from scratch. All the weights are ini-
tialized with Xavier initialization [9]. Similar to [4, 29, 30, 31,
40, 42], we use ADADELTA [41] as the optimizer for the model.
ADADELTA has a self-adaptable learning rate, which we initialize
to 1 Even though the learning rate of ADADELTA is self-adaptable,
we apply a learning rate schedule where we reduce the initial learn-
ing rate by a factor of 0.1 after 150,000, 300,000 and 400,000 train-
ing iterations. Similar to [31], we find that a learning rate schedule is
beneficial to the performance.

The model is trained for 500,000 training iterations in total, af-
ter which it converges. We use Kullback-Leibler divergence as the
loss function. The batch size is set to 64. For each training batch
we sample 32 images from the Synth90k dataset and 32 from the
SynthText. Shi et al. [31] and Zhan and Lu [42] show that meth-
ods optimized with balanced batch (of size 64) on the SynthText and
Synth90k datasets outperform methods solely trained on Synth90k.
Per forward-backward pass, we decode the characters per example
from left-to-right and from right-to-left.

During training, we do one forward pass for left-to-right decoding
and one for right-to-left and accumulate the gradients. It is possible
to train both decoding directions with one forward pass, but for com-
putational reasons we have chosen gradient accumulation instead.

4.4 Metrics

We use the same evaluation metrics as in [4, 31, 42]. The text recog-
nition task includes 68 characters in total. During evaluation the 32
ASCII punctuation marks are ignored. When a lexicon is provided,
the word from the lexicon with the shortest edit distance is selected as
the prediction. Only predicted sequences of characters that are com-
pletely correct are considered to be correctly predicted examples. We
select the character with the highest probability per index in the se-
quence, until the end-of-word character is predicted. When decoding
bidirectionally, the sequence with the highest product probability is
selected as final output sequence.

5 RESULTS
First, we compare the bidirectional sequence predicting for STR with
a single decoder vs. with two decoders. Next, we examine the perfor-
mance of Bi-STET and other models on STR evaluation sets. Finally,
we provide analyzes of the attention mechanism in Bi-STET and the
capability of the method to handle curved and rotated text.

5.1 Bidirectional decoding
Similar to [31], we condition the output character sequence on a de-
coding direction. We validate our universal bidirectional decoding
with three evaluation variants, similar to Shi et al. [31]. For the first
variant, we decode the output sequence from left-to-right, by only
using the left-to-right direction embedding. In the second variant, we
only use the right-to-left directional embedding. In the third variant,
we decode each evaluation example twice, once with each direction
embedding. The two predicted outputs can have different sequence
lengths. For each prediction (left-to-right and right-to-left) we take
the sequence with the highest probability by taking the arg-max for
each position and take the product of the probabilities as the proba-
bility of the entire sequence. We select the sequence with the highest
output probability as the final prediction. In case that the right-to-
left prediction has the highest probability, we reverse the sequence to
match with the ground truth.

In Table 1 we show the results of the three aforementioned evalu-
ation variants and the results obtained by Shi et al. [31]. For 6 out of
7 evaluation sets, we achieve state-of-the-art results for bidirectional
STR. For 6 out of 7 of the evaluation sets, Bi-STETs bidirectional
decoding leads to higher scoring sequence prediction than using a
single decoding direction. Only for the CUTE80 set, the right-to-
left decoding leads to a higher accuracy score than bidirectional. The
gain in performance due to the bidirectional decoding is similar as in
the method by Shi et al. [31].

We also show that, by using a transformer-based encoder-decoder,
bidirectional STR can be substantially simplified in comparison to
the method by [31]. In Table 3, we compare the number of model
parameters and the number of training iterations with the method by
Shi et al. [31]. We use similar training settings, in terms of batch size,
optimization, data, etc. as [31]. Based on Table 3, it is clear that with
a single bidirectional transformer decoder, the number of training
iterations can be reduced by 50% compared to methods that use two
separate RNN decoders – in combination with significantly fewer
model parameters. Fewer training iterations and model parameters
are excellent properties from an efficiency and computational point
of view. We also outperform the RNN based method, which also uses
an extra image rectification network, on most evaluation sets.

To summarize, the results in Table 1 and Table 3 show that similar
or better results can be obtained with significant less training param-
eters and twice the efficiency by using a single transformer decoder.
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Table 2: Accuracy compared to state-of-the-art. ST is short for the SynthText dataset, 90K for the Synth90K dataset; 50, 1k, full and 0 are the
size of the used lexicons; 0 means that no lexicon is used.

Method ConvNet, Data IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

50 1k 0 50 0 50 Full 0 0 0 0 0

Su and Lu [34] – – – – 83.0 – 92.0 82.0 – – – – –
Jaderberg et al. [15] VGG, 90k 97.1 92.7 – 95.4 80.7 98.7 98.6 93.1 90.8 – – –
Jaderberg et al. [13] VGG, 90k 95.5 89.6 – 93.2 71.7 97.8 97.0 89.6 81.8 – – –
Shi et al. [30] VGG, 90k 97.8 95.0 81.2 97.5 82.7 98.7 98.0 91.9 89.6 – – –
Shi et al. [29] VGG, 90k 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6 – 71.8 59.2
Lee and Osindero [20] VGG, 90k 96.8 94.4 78.4 96.3 80.7 97.9 97.0 88.7 90.0 – – –
Yang et al. [40] VGG, Private 97.8 96.1 – 95.2 – 97.7 – – – – 75.8 69.3
Cheng et al. [4] ResNet, 90k+ST+ 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2 93.3 70.6 – –
Shi et al. [31] ResNet, 90k+ST 99.6 98.8 93.4 97.4 89.5 98.8 98.0 94.5 91.8 76.1 78.5 79.5
Zhan and Lu [42] ResNet, 90k + ST 99.6 98.8 93.3 97.4 90.2 - - - 91.3 76.9 79.6 83.3
Sheng et al. [28] Modality-Transform, 90k 99.2 98.8 86.5 98.0 88.3 98.9 97.9 95.4 94.7 - - -
Yang et al. [39] ResNet, 90k+ST 99.5 98.8 94.4 97.2 88.9 99.0 98.3 95.0 93.9 78.7 80.8 87.5

Bi-STET (this paper) ResNet, 90k+ST 99.6 98.9 94.7 97.4 89.0 99.1 98.7 96.0 93.4 75.7 80.6 82.5

Table 3: Comparison of the number of trainable model parameters
and training iterations.

Method Model Training Batch
parameters iterations size

(×106) (×106)

Shi et al. [31] 88 1 64

Bi-STET (this paper) 66 0.5 64

5.2 Text recognition
In Table 2, we evaluate Bi-STET in terms of prediction accuracy on 7
public evaluation sets and compare it to other state-of-the-art (SOTA)
STR methods. Bi-STET meets or outperforms SOTA methods on 6
out of 12 evaluation experiments. We achieve new SOTA results on
the ICDAR03 and the IIIT5K datasets.

The strength of the transformer encoder-decoder w.r.t. to images
with oriented and curved text is also shown by the results in Table 2.
The five datasets where STET does not beat, but meets, the state-of-
the-art are CUTE80, ICDAR13, ICDAR15, SVT-P and SVT. The fact
that we do not achieve the state-of-the-art on the datasets SVT-P, IC-
DAR15 and CUTE80 can be explained by the fact that those datasets
contain a considerable number of images that are rotated or have
perspective distortions. We meet SOTA results on these datasets, we
speculate that we don’t exceed them because they have these distor-
tions. It should also be noted we are able to meet these SOTA results
without any specific network component for dealing with distortions,
which other methods explicitly require [31, 39, 42]. For ICDAR13
and SVT-P we do not establish new SOTA performance figures, al-
though we do meet the results of other methods with a small margin.

5.3 Analyzes
5.3.1 Attention heads analyzes

To get an understanding of the internal behaviour of Bi-STET, we
extracted the attention distributions from Bi-STET during evaluation
and visualize them in Figures 2a and 2b. Conditioned on different
decoding directions, Bi-STET has learned to model an inverse align-
ment between the predicted output character and the region in the
input images where the character is depicted – using only a single
decoder. In Figure 2a, there is a clear attention alignment going from
left to right over the image, while in Figure 2b, this alignment goes
in the opposite direction. The model has jointly learned to model the

character-image region alignment in both directions. Also, different
attention heads do not specialize for left-to-right or right-to-left de-
coding, but learn how to change the attention direction when the out-
put is conditioned on a different decoding direction. This shows the
strength the method w.r.t. regularisation towards both sub-tasks. This
is interesting from a multi-task learning point of view because this
indicates that the same attention heads can learn different (sub)tasks.

5.3.2 Rotated and curved text

Bi-STET is solely trained as a general image-to-text encoder-decoder
and does not contain a specific rectification component for han-
dling rotated or curved text instances, unlike previous methods
[31, 39, 42]. We are able to obtain results that meet those of state-of-
the-art methods that are specifically optimized for curved and rotated
text. Figure 3 provides a sample from the CUTE80 dataset with cor-
rectly and incorrectly predicted sequences. Looking at correctly pre-
dicted examples, we see that Bi-STET properly decodes words that
are slightly curved or only curved in one direction. This is where the
bidirectional decoding shows its strength. For example, the two mid-
dle images of the second row are correctly decoded when decoding
from right-to-left decoder, but not when decoding in the other direc-
tion. From the first row of images we see that words that are curved
in very strong arc shapes (heavy perspective distortions) are difficult
for Bi-STET to decode. This also shows the strength of method w.r.t.
regularisation towards curved and rotated text without using any spe-
cific rectification component.

5.3.3 Sequence length

Vaswani et al. [35] argue that transformer-based architectures are
more suitable for capturing long-range dependencies for machine
translation than RNNs, because of the global attention per encod-
ing and decoding step. The self-attention results in the fact that the
maximum distance in a sequence between two embeddings which are
encoded or decoded is 1. Despite the fact that the maximum output
sequence length in our evaluation experiment (max. length 17) is not
as long as for other language tasks [19], we are interested in whether
or not our transformer-based method is better in predicting longer
output character sequence than an RNN-based method. In Figure 4,
we show the relation between output sequence length and accuracy
for the IIIT-5K evaluation set. We can see that the prediction accu-
racy given a sequence length is more or less constant until we reach

6



(a) Decoding attention while decoding from left-to-right.

(b) Decoding attention while decoding from right-to-left.
Figure 2: Visualization of the self-attention of layer 5 of the decoder while decoding the sequence (left-to-right). Each row in the matrix
visualizes the attention distribution over the embeddings of the image on the X axis, while decoding the corresponding character in the input.

(a) ballys vs.
bally

(b) chathamkent
vs. from

(c) starbucks vs.
and

(d) coffee vs.
offer

(e) ronaldo vs.
ronaldo

(f) meant vs.
meant

(g) football vs.
football

(h) united vs.
united

Figure 3: Examples of curved text examples from the CUTE80
dataset that are correctly and incorrectly predicted by Bi-STET. In
black the ground truth is given.

a character length of 11. After a sequence length of 11, the accuracy
starts to degrade. It should be noted that there are very few samples
with a sequence length of 11 or higher.

Figure 4: Text Recognition accuracies versus word length for
Bi-STET. Tested on IIIT-5K.

By comparing Figure 4 to Figure 12 in [31], we see that Bi-STET
performs similarly to Shi et al. [31]’s method for short character
sequences and slightly better for longer character sequences which

are longer than 11 characters. We conclude that Scene Text Trans-
former (STET) performs similar for short characters sequences and
at least as good in decoding longer character sequences.

6 DISCUSSION AND CONCLUSION
We have introduced Bi-STET, a method for bidirectional STR with a
single decoder. Bi-STET is capable of bidirectional decoding, with-
out implementing the decoding direction conditioning at the architec-
ture or algorithm level. The decoding conditioning is implemented at
the input level, by adding an extra direction embedding to the input.

We show that Bi-STET achieves or outperforms state-of-the-art
STR methods, with a considerably more efficient approach than other
bidirectional STR methods (i.e., requiring 50 % less training itera-
tions and significant less model parameters). By having fewer model
parameters, the model can be executed on devices with less compu-
tational resources (for user applications). Besides that, less computa-
tional resources are required to obtain SOTA text recognition results.
We also show that Bi-STET learns to exploit the same attention heads
for both decoding directions, which means that there are no special-
ized attention heads in the model for each decoding direction. This is
interesting from a multi-task learning point of view because different
heads tend not to be focused on one decoding direction. Finally, we
show that, due to the bidirectional decoding, Bi-STET is capable of
handling slightly curved and orientated text and performs as well for
longer text sequence as other bidirectional STR methods.

A future research direction is to combine Bi-STET with a Spatial
Transformer Network [29, 31, 39] or a Rectification Network [42].
Bi-STET is able to handle oriented and perspective text in images; we
believe that Bi-STET could benefit from an extra image processing
component to be able to better handle oriented or perspective text.
From a multi-task learning point of view, it would be interesting to
explore task conditioning on the input level with more diverse tasks.
In addition, an extension to tasks with more complex and diverse data
modalities would also be a possible future research direction.
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