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ABSTRACT
We show that click models trained with suboptimal hyperparame-
ters suffer from the issue of bad calibration. This means that their
predicted click probabilities do not agree with the observed propor-
tions of clicks in the held-out data. To repair this discrepancy, we
adapt a non-parametric calibration method called isotonic regression.
Our experimental results showthat isotonic regression significantly
improves click models trained with suboptimal hyperparameters
in terms of perplexity, and that it makes click models less sensi-
tive to the choice of hyperparameters. Interestingly, the relative
ranking of existing click models in terms of their predictive per-
formance changes depending on whether or not their predictions
are calibrated. Therefore, we advocate that calibration becomes a
mandatory part of the click model evaluation protocol.
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1 INTRODUCTION
Click models [3] are important and widely used tools for inter-
preting user behavior in Web search. A common way to evaluate
their performance is to measure how well they predict clicks on the
documents presented on a search engine result page (SERP). As for
manymachine learning algorithms, the performance of clickmodels
strongly depends on the hyperparameters used for training.1
We hypothesize that click models trained with suboptimal hy-

perparameters are often not well calibrated. This means that their
∗Now at Microsoft Research AI.
1This statement is based on our preliminary experiments with a range of click models
and their hyperparameters. See §4 for details.
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predicted click probabilities do not agree with the observed propor-
tions of clicks in the held-out data. We validate how well a click
model is calibrated using a reliability diagram [14]. For each rank,
we split query sessions into N = 100 buckets according to the pre-
dicted click probabilities, where the i-th bucket corresponds to click
probabilities in the range from i

N to i+1
N , and plot the observed

click-through rates (CTRs) in these buckets. For a well-calibrated
click model, the observed CTRs in each bucket should lie in the
range of the predicted click probabilities associated with this bucket.
Fig. 1 shows a reliability diagram of the click chain model (CCM)
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Figure 1: Reliability diagram of CCM at ranks 1, 3 and 5.
trained on a publicly available dataset (see §4 for details) with sub-
optimal hyperparameters.2 We learn from Fig. 1 that CCM tends to
underestimate click probabilities at rank 1 and overestimate click
probabilities at ranks 3 and 5. We observe similar trends for other
click models and therefore conclude that click models suffer from
the issue of bad calibration.
There are two approaches to calibration: parametric and non-

parametric [15]. The parametric approach is less flexible but also
requires less data for calibration. The non-parametric approach is
more general but requires more calibration data. Since real-world
click logs are large, we follow the latter approach. In particular,
we propose to use isotonic regression [17] to repair the discrep-
ancy between the click probabilities predicted by a model and the
proportion of clicks in the held-out data.
Our experiments show that(i) isotonic regression significantly

improves click models trained with suboptimal hyperparameters
in terms of perplexity; and that (ii) calibrated click models are
less sensitive to the choice of hyperparameters than the original
(non-calibrated) ones.

2 BACKGROUND AND RELATEDWORK
Assessment of probabilities. Estimating probabilities of future
events is important for effective decision making [13, 18]. Studies
2For rank 1, the prior values of the CCM parameters are distributed according to
Beta(1, 10); for ranks 3 and 5, according to Beta(1, 2).
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show that people are generally not good at these tasks [13]. They
tend to overestimate or underestimate their confidence, which in-
troduces biases in their predictions [13].

Recent work demonstrates that many popular machine learning
methods also suffer from the issue of bad calibration [5, 15, 16, 20,
21]. Niculescu-Mizil and Caruana [15] show that under unrealistic
independence assumptions, Naive Bayes tends to produce proba-
bilities that are too close to the extreme values of 0 and 1 (see [5]
for a theoretical analysis), while SVM and boosted decision trees
rarely predict probabilities that are close to 0 and 1. This suggests
that predictions of these learning algorithms are biased.

To alleviate the discrepancy between probabilities predicted by a
binary classifier and observed frequencies, both parametric and non-
parametric calibration methods have been investigated. Platt [16]
puts forward the idea of fitting a sigmoid transformation between
the outputs predicted by the binary classifier and the observed la-
bels. Zadrozny and Elkan [21] suggest using isotonic regression [17],
which learns a monotone transformation of the scores computed
by the binary classifier to probabilities of class I. Niculescu-Mizil
and Caruana [15] recommend using Platt scaling when the data
used for calibration is limited and isotonic regression when there
is enough data for calibration.
Clickmodeling. Click data is a valuable signal for improving Web
search [2, 10]. However, accurately interpreting user clicks on a
SERP is not straightforward due to the so-called position bias ef-
fect [8, 11]: people tend to click more on the documents presented
on top positions than on the documents presented on lower posi-
tions. To account for this and other types of bias, click models have
been proposed [3].
Traditional click models consist of Bernoulli-distributed ran-

dom variables X ∼ Bernoulli(θ ) associated with query-document
pairs [3]. Here, θ denotes a parameter associated with the query-
document pair, e.g., attractiveness (i.e., the probability of a user
examining the document’s snippet) and satisfactoriness, (i.e., the
probability of a user’s information need being satisfied after in-
teracting with the document). The value of the parameter θ is
estimated during training. It is initially specified by a Beta distri-
bution, θprior ∼ Beta(α, β), and then updated upon observing new
click/skip data. The choice of the training hyperparameters α and β
impacts the overall performance of click models, especially in query
sessions that contain rare or previously unseen query-document
pairs. Existing work on click models rarely provides sufficient de-
tails on tuning click model hyperparameters, even when they aim
to systematically compare click models [7], which is troublesome
because experiments without properly tuned hyperparameters may
yield misleading results [3].
The key distinction of our work compared to the work listed above
is that we are the first to improve the performance of click models
by applying calibration.

3 METHOD
Click models are trained to predict probabilities of a user clicking
on the ranked list of documents d1, . . . ,dn returned by a search
engine in response to a user’s query q. Click models utilize different
assumptions about how a user interacts with d1, . . . ,dn . E.g., many
click models make the linear traversal assumption [4], which states
that a user examines documents on a SERP from top to bottom. Such
models predict the probability of observing a click on document
dr+1 given a user’s query q and clicks c1, . . . , cr on the higher

ranked documents:
P(cr+1 = 1 | q,d1, . . . ,dr+1, c1, . . . cr ), (1)

where ci = 1 if a user clicked on document di , and 0 otherwise.
In order to compare click models, which follow different assump-
tions about user click behavior, conditional click probabilities, pre-
sented in Eq. (1), are marginalized to click probabilities P(cr+1 =
1 | q,d1, . . . ,dr+1) that are unconditional on previous clicks:∑

(c1, ...,cr )

P(cr+1 = 1 | q,d1, . . . ,dr+1, c1, . . . , cr ), (2)

where the sum is computed over all possible click combinations on
the first r documents.

As discussed in §1, for existing click models the click probabilities
shown in Eq. (1) and Eq. (2) do not represent the observed CTRs
well and, thus, need to be calibrated. We calibrate these probabilities
separately for each rank. Following the recommendations in [15]
and considering that real-world click data is usually available in
large quantities, we adopt a non-parametric calibration method,
namely isotonic regression [17]. For each rank r , isotonic regression
learns a function дr (P) that adjusts the click probabilities predicted
at rank r . Specifically, it solves the following optimization problem:

д∗r = argmin
д∈G

N∑
i=1

[д(Pr (s
i )) − cir ]

2, (3)

where G denotes the set of all piecewise linear, isotonic (non-
decreasing), continuous functions, N denotes the number of query
sessions used for calibration, Pr (si ) denotes the predicted click
probability at rank r in query session si and cir denotes whether
the user clicked on the document at rank r in query session si .
We use the pair-adjacent violators (PAV) algorithm [1] to find

the optimal function д∗r (P). This is done in three steps, illustrated
in Fig. 2. First, we sort query sessions si by the predicted click
probabilities at rank r :

Pr (s
i−1) ≤ Pr (s

i ) ∀i = 2, . . . ,N . (4)
We use red dots to display the output of this step in Fig. 2.

Second, we fit a piecewise linear function дr (P) to the sorted se-
quence of pairs [Pr (s1), c1r ], . . . , [Pr (sN ), cNr ] in the following way.
For P that is lower than Pr (s

1), i.e., lower than the first click proba-
bility in the sorted sequence, дr (P) returns zero. For P that is larger
than Pr (s

N ), i.e., larger than the last click probability in the sorted
sequence, дr (P) returns the value of the last click cNr . For P that
is between two consecutive Pr (si−1) and Pr (si ), дr (P) returns the
value of click ci−1r . Formally, this can be written as follows:

дr (P) =


0 P < Pr (s

1)

ci−1r P ∈ [Pr (s
i−1), Pr (si )) ∀i = 2, . . . ,N

cNr P ≥ Pr (s
N ).

(5)

The piecewise linear function дr (P) calculated at this step is shown
with the blue line in Fig. 2.

Third, if the above дr (P) is not isotonic, there exist two consecu-
tive query sessions si−1 and si for which дr (P) decreases (instead of
increasing or staying constant), i.e., дr (Pr (si−1)) > дr (Pr (s

i )). Such
query sessions are called pair-adjacent violators. In this case, we
change the value of дr (P) for the interval P ∈ [Pr (s

i−1), Pr (si+1))
to the average of дr (Pr (si−1)) and дr (Pr (si )).3 This way, for pair-
adjacent violators дr (P) does not decrease anymore, but stays con-
stant and equal to the above-mentioned average. This averaging
process is performed in the direction from Pr (s

1) to Pr (sN ). In the

3If i = N , we perform this averaging for P ≥ Pr (sN−1).



end, дr (P) becomes isotonic as shown with the green line in Fig. 2.
See [1] for a proof of the optimality of дr (P) with respect to Eq. (3).

Note that the optimal calibration function д∗r (P) learned by PAV
outputs a probability of 0 for P < Pr (s

1) and might output a prob-
ability of 1 for large values of P . Following [15, 16] and to avoid
problems with taking the log of д∗r (P), we trim д∗r (P) to predict
probabilities in the range [δ , 1 − δ ] instead of the range [0, 1]. In
our experiments, we use δ = 0.01.
Now that we have learned a calibration function д∗r (P) for a

click model, the calculation of click probabilities at rank r works as
follows. Given a query session s , the click model predicts the click
probability Pr (s) for rank r in that session. This could be either
the conditional, Eq. (1), or unconditional, Eq. (2), probability.4 The
predicted probability Pr (s) is then passed to the calibration function
д∗r (P), which outputs the calibrated probability. This calibrated
probability is then used for click prediction.
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Figure 2: Illustration of the three steps of the PAV algorithm.
Red dots represent observed clicks vs. predicted click proba-
bilities. The blue line represents the piece-wise linear func-
tion in Eq. (5). The green line represents the learned iso-
tonic transformation from original click probabilities to cal-
ibrated click probabilities.

4 EXPERIMENTAL SETUP
We design our experiments to answer two research questions:
RQ1 Does isotonic regression help to improve the performance of

existing click models?
RQ2 Does isotonic regression make click models less dependent on

the choice of hyperparameters?

Dataset and evaluation methodology. We conduct our experi-
ments using a publicly available dataset released for the Yandex
Relevance Prediction challenge by Yandex, the major search engine
in Russia.5 Query sessions are ordered by time. We use the first
1,000,000 query sessions as the training set, the following 100,000
query sessions as the development set and the next 100,000 query
sessions as the test set.
We evaluate click models using perplexity [3], which measures

how “surprised” a model is upon observing a particular set of clicks
on a SERP. We calculate perplexity at position k as follows:

Perplexity@k = 2−
1
N

∑N
i=1 log2 P (ck=c ik |q

i ,d i1 , ...,d
i
n ), (6)

where N denotes the number of query sessions in the test set; qi
is a query in the i-th session; di1, . . . ,d

i
n are documents retrieved

4Note that calibration should be done separately for each of those probabilities.
5http://imat-relpred.yandex.ru/en/datasets (last visited August 25, 2018).

by a search engine in the i-th session in response to the query qi ;
cik = 1 if a user clicked on the document and 0 otherwise. Follow-
ing [6], we use perplexity averaged over all positions as our main
metric. Lower values of perplexity correspond to higher quality of a
model. For each click model, we perform significance testing using a
paired t-test on the perplexity scores computed using different sets
of hyperparameters. Differences are considered statistically signifi-
cant for p-values lower than 0.05. We do not evaluate click models
on the relevance prediction task [3], because the inferred query-
document-specific parameters used for ranking are not affected by
the proposed calibration method.
Experiment 1. To answer RQ1, we measure, before and after cali-
bration, the average of the perplexity values computed for a click
model M trained with different hyperparameters. If the average
value of perplexity is lower after calibration, we conclude that cal-
ibration helps to improve the performance of M. Otherwise, we
conclude that calibration does not help or even hurts the perfor-
mance ofM.
Experiment 2. To answer RQ2, we measure, before and after cali-
bration, the variance of the perplexity values computed for a click
modelM trained with different hyperparameters. If the variance
of the perplexity values is lower after calibration, we conclude that
calibration makes M less dependent on the choice of hyperparam-
eters. Otherwise, we conclude that calibration does not make M
less dependent on the choice of hyperparameters or even makes it
more sensitive to the choice of hyperparameters.
We conduct our experiments using four probabilistic graphical

models (PGMs) that are often used for modeling and predicting
clicks on a SERP: the dynamic Bayesian network (DBN) [2], the
dependent click model (DCM) [9], the click chain model (CCM) [9],
and the user browsing model (UBM) [6]. We train these click mod-
els by maximizing the likelihood of the observed click/skip events
in our logs. For DCM we optimize the likelihood directly, and for
DBN, CCM and UBM we use the expectation-maximization (EM)
algorithm with 50 iterations. We set the prior values of the parame-
ters of these click models to 1
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5 RESULTS
In this section, we present the results of our experiments and pro-
vide answers to our research questions.
Experiment 1. Table 1 shows the perplexity of the click models
CCM, DBN, DCM and UBM averaged over ranks and over runs
with different hyperparameters. The rows of Table 1 correspond to:
(i) Baseline w/o dev set, a method where click models are trained on
the training set; (ii) Baseline w/ dev set, a method where click models
are trained on the union of the training set and the development
set; (iii) Calibrated, a method where click models are trained on the
training set and calibrated on the development set.
From Table 1, we conclude that isotonic regression improves

the performance of the selected click models. The differences in
performance between the click models trained(i) on the training set
only, and (ii) on the union of the training set and the development
set (Table 1, row 2 vs. row 1) are much less than the gains achieved
from using the development set for calibration (Table 1, row 3 vs.
row 1). This means that the gains obtained from the calibration
method described in §3 are not (only) due to usingmore data (i.e., the
development set), but are due to fixing the miscalibration problem.

http://imat-relpred.yandex.ru/en/datasets


Table 1: Perplexity of click models with and without cali-
bration averaged over ranks and over runs with different
hyperparameters. Improvements of the proposed calibra-
tion method over both baselines are statistically significant
(p < 0.001). The best results are given in bold face.

Average perplexity

# Method CCM DBN DCM UBM

1 Baseline w/o dev set 1.3896 1.3915 1.3826 1.3724
2 Baseline w/ dev set 1.3890 1.3908 1.3822 1.3719
3 Calibrated 1.3722 1.3705 1.3752 1.3659

Interestingly, the relative ranking of click models in terms of
perplexity differs, depending on whether we use calibration or not.
From Table 1, we infer the following rankings:

UBM > DCM > CCM > DBN (w/o calibration) (7)
UBM > DBN > CCM > DCM (w/ calibration) (8)

where we writeMX >MY to denote that click modelMX has bet-
ter prediction performance (in terms of perplexity) than click model
MY . Intuitively, the results w/ calibration make more sense, be-
cause DBN and CCM make more realistic assumptions than DCM,
which assumes (i) that a user’s information need cannot be satisfied
directly on a SERP (i.e., a user needs to clicks at least one document
presented on the SERP); and (ii) that the probability of examin-
ing the document at rank (r + 1) after clicking on the document
presented at rank r depends solely on the rank r and not on the
relevance of the document presented at rank r .
Answering RQ1, we conclude that the calibration method de-

scribed in §3 provides good means to fix the miscalibration problem
and, as a result, allows us to improve the performance of existing
click models on the standard click prediction task.
Experiment 2. Tables 2 and 3 show the empirical variance in the
perplexity values computed for click models trained with different
sets of hyperparameters. Table 2 lists the absolute values; Table 3
lists the percentages w.r.t. the baseline w/o dev set. For the methods,
we use the same naming conventions as in Table 1. We find that
the calibration method described in §3 reduces the variance in the
perplexity values by 33.87%–98.25%, depending on the click model.
Answering RQ2, we conclude that the calibration method de-

scribed in §3 makes click models less dependent on the choice of
hyperparameters.

6 CONCLUSIONS AND FUTUREWORK
We introduced the notion of calibration in the context of click mod-
eling. We showed empirically that existing click models are prone to
produce poorly calibrated predictions and that calibration, namely

Table 2: The empirical variance in the perplexity values com-
puted for click models trained with different sets of hyper-
parameters. The best results are given in bold face.

100 × variance in perplexity

# Method CCM DBN DCM UBM

1 Baseline w/o dev set 0.1025 0.1113 0.0908 0.0629
2 Baseline w/ dev set 0.1001 0.1087 0.0886 0.0606
3 Calibrated 0.0079 0.0179 0.0619 0.0011

Table 3: The empirical variance in the perplexity values com-
puted for click models trained with different sets of hyper-
parameters. The best results are given in bold face.

Variance in perplexity

# Method CCM DBN DCM UBM

1 Baseline w/o dev set 100% 100% 100% 100%
2 Baseline w/ dev set 97.66% 97.66% 97.58% 96.34%
3 Calibrated 7.71% 16.08% 68.17% 1.75%

isotonic regression, (i) improves the performance of click models,
and (ii) makes click models less sensitive to tuning of hyperparame-
ters. Therefore, we advocate that calibration becomes a mandatory
part of the click model evaluation protocol. In future work, we are
planning to incorporate calibration at training time, e.g., by means
of hierarchical priors [19] or variational auto-encoders [12].
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