
Modelling Modal Satisfiability
in Constraint Logic Programming

Sebastian Brand1, Rosella Gennari1, and Maarten de Rijke2

1 CWI, The Netherlands, {sebastian.brand,rosella.gennari}@cwi.nl
2 Language and Inference Technology Group, ILLC, U. of Amsterdam,

The Netherlands, mdr@science.uva.nl

Abstract. We present a novel encoding of modal satisfiability problems
as Constraint Satisfaction Problems. We allow the domains of the result-
ing constraints to contain other values than just the Boolean 0 or 1, and
add various constraints to reason about these values. This modelling is
pivotal to speeding up the performance of our constraint-based proce-
dure for modal satisfiability in Constraint Logic Programming (CLP).
Our encoding results in a correct solver that attempts to minimize the
size of the tree model that it is implicitly trying to generate. An impor-
tant advantage of our modelling is that we do not need to change the
underlying CSP algorithms, and can use them almost as “black boxes”.

1 Introduction

In various branches of artificial intelligence, modal and modal-like formalisms
such as temporal or description logics are widely used for reasoning about trees,
graphs, and other relational structures [5]. Over the past decade, there have been
various initiatives aimed at developing algorithms for solving the satisfiability
problem for modal logic; this has resulted in a series of implementations. Some
of these implement special purpose algorithms for modal logic, such as DLP [16],
FaCT [11], RACER [9], ∗SAT [17], while others exploit existing tools or provers for
either first-order logic (MSPASS [14]) or propositional logic (KSAT [8], KBDD [15])
through some encoding. In this paper we follow the second approach: we model
and solve the modal satisfiability problem via Constraint Programming (CP).

More precisely, we build on the schema for KSAT, following the intuitions in [3].
First we encode modal input formulas into layers of finite constraint satisfaction
problems (CSPs) with more values than just the Boolean ones; then we show
that any complete constraint solver for finite CSPs can be used to solve them,
and, hence, to determine modal satisfiability, in stead of the Davis-Logemann-
Loveland procedure (usually denoted by DP, where P stands for Putnam).

The main novelty of our work is this: encoding modal satisfiability prob-
lems as CSPs with enlarged domains that can contain other values than just
the Boolean 0 or 1, together with constraints to reason about these valuesOur
approach has a number of benefits; for instance, we can set various strategies
on the variables to split on in the constraint solver, simply by adding suitable

constraints. In particular, the additional values, together with the appropriate
constraints, allow a constraint solver to return a partial Boolean assignment so
that the number of modal reasoning steps does not explode, loosely speaking. All
this is done without changing the underlying CSP algorithms: these are simply
“black boxes” for us. While we are not aiming to be competitive with today’s
highly optimized modal provers, our experimental evaluations suggest that the
approach is very promising in general, and even excellent in some cases.

In this paper, we focus on our modelling of modal satisfiability in Constraint
Logic Programming (CLP); for further details concerning the modal satisfiabil-
ity solver not included here, we refer the reader to [6]. The remainder of the
paper is organized as follows. We start by laying the propositional groundwork
in Section 2. We turn to modal matters in Section 3. In Section 4 we report on
an experimental assessment and compare our implementation with a C version
of KSAT on a benchmark test set used in the TANCS ’98 comparison of provers
for modal logic. We conclude in Section 4.

2 Propositional Formulas as Finite CSPs

When a Boolean-valued assignment µ satisfies a propositional formula φ, we write
µ |= φ. We write CNF (φ) for the result of ordering the propositional variables
in φ and transforming φ into a conjunctive normal form: i.e., a conjunction of
disjunctions of literals without repeated occurrences; a clause of ψ is a conjunct
of CNF (ψ).

Consider a set X of n variables, and assume that X is ordered by <; a scheme
ofX is a sequence s := x1, . . . , xm of variables inX, where xj < xj+1 for each j =
0, . . . ,m. Associate one set Di with each variable xi ∈ X; then Di is the domain
of xi; let D be the set of all such domain and variable pairs 〈Di, xi〉. Given a
scheme s := x1, . . . , xm, a relation C(s) on the Cartesian product

∏m
j=1Dj is a

constraint on s; let C be a set of constraint and scheme pairs 〈C(s), s〉 on X.
Then P := 〈X,D,C〉 is a constraint satisfaction problem (CSP). A CSP is finite
if all the variable domains in D are so. A tuple d ∈ D1 × · · · ×Dn is consistent
or satisfies a constraint C(s) if the projection of d on s is in C(s); if d satisfies
all the constraints of the CSP P , then P is a consistent or satisfiable CSP.

It is not difficult to transform a propositional formula into a CSP so that this
is satisfiable iff the formula is: first the formula is transformed to its CNF; then
each resulting clause is considered as a constraint. E.g., the CNF formula

(¬x ∨ y ∨ z) ∧ (x ∨ ¬y) (1)

is the CSP with variables x, y and z, domains equal to {0, 1}, and two constraints:
C(x, y, z) for ¬x ∨ y ∨ z, that forbids the assignment x := 1, y := 0, z := 0; and
the binary constraint C(x, y) for x∨¬y to rule out the assignment x := 0, y := 1.
In [19] the encoding in (1) is used to prove that a version of forward checking is
superior to the basic DP procedure for deciding propositional satisfiability.

However, an algorithm such as forward checking will always return a total
assignment given the encoding of formulas into CSPs above; whilst we aim at

a partial Boolean assignment. How do we get that without modifying the un-
derlying CSP algorithm? One way is to encode the propositional formula into
a CSP with values other than 0 and 1; the additional values are then used to
mark variables that the solver does not need to satisfy (yet). Let us give a pre-
cise definition of this new encoding. We assume an implicit total order on the
propositional variables in the considered formula; so we avoid formulas that only
differ in the order of occurrence of their atoms, such as y ∨ x and x ∨ y.

Definition 1. Consider a formula ψ and let X be the ordered set of distinct
propositional variables that occur in ψ′:

1. first, transform ψ in CNF; let ψ′ be the resulting CNF formula;
2. create a domain Di := {0, 1, 2} for each xi in X;
3. for each clause θ in ψ′, there is a constraint Cθ on the scheme s := x1, . . . , xm

of X variables in θ defined as follows; consider a tuple d := (d1, . . . , dm) in∏m
j=1Dj , and the function f given by f(xj) = dj , for j = 1, . . . ,m; then d

is consistent with Cθ iff the restriction of f to f−1({0, 1}) satisfies θ.

Denote the resulting CSP by CSP(ψ).

In Definition 1, we do not give any details on how constraints are represented
and implemented; this is done on purpose, since these are not necessary for our
theoretical results concerning the modal satisfiability solver; nevertheless, some
implementation details are discussed in Section 4 below.

Our new modelling of propositional formulas as in Definition 1 allows us
to make a complete constraint solver return a partial Boolean assignment that
satisfies a propositional formula ψ iff this is satisfiable. This result follows from
Definition 1 and the following fact: a partial Boolean assignment µ satisfies ψ if,
for each clause φ of CNF (ψ), µ assigns 0 to at least one negative literal in φ, or
1 to at least one positive literal in φ.

Theorem 1 ([6]). Consider a propositional formula ψ and let X be its ordered
set of variables. Given a function f that assigns to each xi ∈ X a value in the
domain Di of CSP(ψ), we use µ[f] to denote the restriction of f to the X subset
f−1({0, 1}) := {x ∈ X : f(x) ∈ {0, 1}}. Then

1. f satisfies CSP(ψ) iff µ[f] satisfies ψ;
2. a complete constraint solver for finite CSPs returns a function f such that

µ[f] satisfies ψ iff ψ is satisfiable. 2

Note 1. It is sufficient that each CSP(ψ) domain contains the Boolean 0 and 1
for the above result to hold. Thus, one could have values other than 2 (and 0 and
1) in the CSP modelling to mark some variables as“unnecessary” for deciding the
satisfiability of a propositional formula; these values can also be used to devise
several heuristics for modal reasoning, see Section 4.

3 Modal Formulas as Layers of CSPs

In this section we recall the basics on modal logic and provide a link between
solving modal satisfiability and CSPs.

Modal Logic. We refer to [5] for extensive details on modal logic. To simplify
matters, we will focus on the basic mono-modal logic K, even though our results
can easily be generalized to a multi-modal version. Let P be a finite set of
propositional variables. K-formulas are produced by the following rule φ ::= p |
¬φ | φ ∧ φ | φ ∨ φ | 2φ, where p ∈ P . A boxed formula is a formula of the form
2φ.

A modal model is a triple M = (W,R, V) where W is a non-empty set (the
model’s domain), R is a binary relation on W , and V : P → 2W is a valuation,
assigning subsets of W to proposition letters. Satisfaction of a formula φ at a
state w in a model M (M, w |= φ) is defined by induction on φ: M, w |= p if
w ∈ V (p); M, w |= ¬φ iff M, w 6|= φ; M, w |= φ∧ψ iff M, w |= φ and M, w |= ψ;
and M, w |= 2φ iff for all v such that Rwv, M, v |= φ. A formula φ is satisfiable
if for some model M and state w in M we have that M, w |= φ. K-satisfiability
is the following problem: given a mono-modal formula φ, is φ satisfiable?

Given a formula ψ whose set of proposition letters is P , the variables at layer
0, or layer-0 variables of ψ are the subformulas of ψ defined as follows: ψ is a
layer-0 variable if ψ is a boxed formula or a propositional variable p ∈ P ; π is
a layer-0 variable if ¬π is so; π and χ are layer-0 variables if π ∨ χ or π ∧ χ are
so; nothing else is a layer-0 variable. A formula φ is a proposition at layer 0, or
a layer-0 proposition (of ψ) iff it is a layer-0 variable of ψ or its negation, the
conjunction or disjunction of layer-0 propositions of ψ; denote by Lay(ψ, 0) the
set of such formulas. In general, a variable at layer (i + 1), or a layer-(i + 1)
variable θ (of ψ) is a subformula of ψ of the form θ′ where 2θ′ is a layer-i
proposition. A proposition at layer (i+1), or a layer-(i+1) proposition (of ψ) is
a layer-(i+1) variable of ψ or its negation, a conjunction or disjunction of layer-
(i + 1) propositions of ψ; denote by Lay(ψ, i + 1) the set of such formulas. For
instance, given ψ = 2(p∨2q), the only layer-0 variable is ψ itself; p and 2q are
layer-1 variables, and p∨2q is a layer-1 proposition; q is the only layer-2 variable.
Intuitively, a layer-n variable of ψ occurs in the scope of n modal operators in ψ;
a layer-n proposition is a combination of layer-n variables or their negation via
the propositional connectives ∧ or ∨. Subformulas of ψ are thus stratified into
layers of propositions. If n is the maximum for which Lay(ψ, n) is defined, then
n is the modal depth of ψ; this is denoted by md(ψ). Intuitively, md(ψ) gives us
the “deepest layer” of propositions that we need to satisfy.

The General k sat Schema. In Table 1, we present the general algorithm
schema k sat, on which KSAT [8] is based, for deciding the satisfiability of for-
mulas in K. The sat procedure (called at line 5) determines the satisfiability
of ψ as a layer-0 proposition by returning a propositional assignment µ; if µ is
empty, backtracking takes place. Thereby, the modal search space gets stratified
into layers and thus explored, layer by layer, in a depth-first manner. To achieve
this, we use stacks in k sat (in [8] recursive procedures are used instead). For
each layer-i variable of the form 2φ to which the assignment µ, returned by sat,
assigns 0, precisely one layer-(i + 1) proposition is pushed on top of the stack.

Table 1. The k sat algorithm schema.

µ := ∅;
Propositions := stack init([ψ]);
while not stack empty(Propositions) do

ψ := stack pop(Propositions);
sat(ψ, µ); % return µ 6= ∅ else backtrack
Θ :=

V
{θ : 2θ = 1 in µ} ;

for each 2ν = 0 in µ do
Propositions := stack push(¬ν ∧Θ,Propositions);

Each iteration of a while-loop pops a proposition from the stack and tries to
prove it, which may add sub-propositions in turn.

Consider a Boolean assignment µ for a set X of layer-i variables in ψ; then
the formula∧

{ψn : ψn ∈ X and µ(ψn) = 1} ∧
∧
{¬ψj : ψj ∈ X and µ(ψj) = 0} (2)

is called the proposition generated by µ. The following property will be used to
show that k sat is a decision procedure for K-satisfiability.

Property 1. The input formula ψ to sat is K satisfiable iff sat returns a non-
empty Boolean assignment µ such that µ satisfies ψ and P (µ) is K-satisfiable.

Theorem 2 ([6]). If Property 1 holds, then k sat is a decision procedure for
K-satisfiability. 2

The KCSP Algorithm. We now devise a modal decision procedure based on the
k sat schema, but with CSP algorithms as the underlying propositional solver.
We start by explaining the underlying intuitions by considering an example; then
we define and prove how any complete solver for finite CSPs can be correctly
used as the sat procedure in k sat to do modal reasoning.

Example. Consider the following modal formula ψ:

ψ := (2p ∨2r) ∧ ¬2(p ∨ q) ∧ p.

Viewing ψ as a layer-0 proposition, the following CSP(ψ) is obtained:

(a) four layer-0 variables: 2p; 2r; 2(p ∨ q); p;
(b) all the respective domains are set equal to {0, 1, 2};
(c) two unary constraints to assign 1 to p and 0 to 2(p∨ q); a binary constraint

to forbid that 2p and 2r get both instantiated to 0.

Assigning 2 to a variable means not committing to any decision concerning its
Boolean values, 0 and 1. The CSP is given to the propositional CSP solver that
returns one out of the two possible assignments: µ that maps 2p to 1, 2r to 2,

2(p ∨ q) to 0 and p to 1; µ′ that only differs from µ in that it assigns 2 to 2p
and 1 to 2r. Suppose that µ is the returned assignment; then, for all the boxed
formulas to which µ assigns 1, the formulas within the scope of 2 are joined in
a conjunction Φ:

Φ := p. (UT)

This is the universal theory: in model-theoretic terms, this is the formula that is
to be satisfied by each layer-1 modal successor of a state satisfying the layer-0
variable 2p. Then the algorithm considers all the boxed formulas to which µ
assigns 0, in this case only 2(p ∨ q); thus p ∨ q gets negated, translated in CNF
if needed, and the result is the formula

Θ := ¬p ∧ ¬q. (ET)

There may of course be multiple such existential theories Θ, which have to be
satisfied at layer-1, though not necessarily at the same state. The conjunction
Φ ∧ Θ is passed to the propositional CSP solver; in this case, the clause that is
passed on is p∧¬p∧¬q. This is translated into a new CSP and its inconsistency
determined; we backtrack to µ′ and the new (UT) r is created; the satisfiability
of r ∧ ¬p ∧ ¬q is determined, and that of ψ, by returning true.

Notice the key points about (UT) and (ET): we only consider the boxed
formulas to which the assignment assigns a Boolean value, 0 or 1. The boxed
formulas to which 2 is assigned are disregarded, safely so because of Theorem 1.
As we will see below, the availability of values other than 0 and 1 has a number of
advantages. E.g., a sensible heuristic could be to postpone the modal reasoning
part, that is, the creation of (UT) and (ET), “as much as possible.” This can be
obtained by instantiating the propositional variable domains with {0, 1} and the
others with {0, 1, 2}; then, when a value has to be chosen for a boxed formula in
the sat procedure, the non-Boolean value 2 should be always tried first. In this
manner, fewer formulas occur in (UT) and (ET), and this may reduce the modal
search space. This and related heuristics are discussed in Section 4.

As the above example illustrates, when ψ is encoded as a CSP, it is viewed
as a layer-0 proposition. Formally, we have the following definition.

Definition 2. Let φ be a modal formula and X the set of all layer-0 variables
in φ. Consider φ as a layer-0 proposition with variables in X ; then the CSP of
the modal formula φ is the CSP of the layer-0 proposition φ.

We use CSP(φ) to denote the CSP of the modal formula φ. Given φ and X as
in Definition 2, and a total assignment f for CSP(φ), let µ[f] be the restriction
of f to f−1{0, 1} and P (µ[f]) the proposition generated by µ[f], see (2).

Definition 3. The KCSP algorithm is defined as follows. In the k sat schema we
instantiate sat with a complete constraint solver for finite CSPs and we transform
ψ as CSP(ψ) before passing it on to the constraint solver, where CSP(ψ) is as
in Definition 1.

It is not difficult to prove that a constraint solver for finite CSPs enjoys Prop-
erty 1, thanks to the second item of Theorem 1, see [6]. Thus Theorem 2 yields
the following result concerning KCSP as in Definition 3.

Theorem 3 ([6]). KCSP is a decision procedure for K-satisfiability. 2

4 Experimental Assessment and Optimisations of KCSP:
When the Modelling Pays Off

In this section we introduce our implementation of KCSP; the complete solver
adopted as sat in the implementation of KCSP is a backtracking-based algorithm
with hyper-arc consistency. When a value is assigned to a variable xi, the al-
gorithm performs hyper-arc consistency by inspecting constraints involving the
unassigned variables and xi. When an inconsistency is detected, backtracking
to the last assignment for xi occurs; another value is assigned and, if all the
available values are inconsistent with a constraint on xi, backtracking to one of
the previously instantiated variables takes place. Nowadays, there are a num-
ber of variants of this basic backtracking-based algorithm. Walsh [19] provides a
theoretical analysis of CSP-based approaches to SAT formulas, and shows that
a version of forward checking for non-binary CSPs, called nFC1, outperforms the
basic DP procedure on the encoding given in Example 1.

We also present several optimisations for KCSP; our implementation of KCSP
incorporates some switches that allow us to turn the optimisations on or off.
Often, theoretical studies do not provide an indication of the effectiveness and
behavior of complex systems such as satisfiability solvers and their optimisations.
Instead, empirical evaluations have to be used. Therefore, in this section, we
also provide an experimental assessment of the various optimisations for KCSP,
using a test developed by Heuerding and Schwendimann. No matter what other
optimisations we adopt, we will see that we get the best results by using partial
assignments. We conclude this section by comparing the version of KCSP that
features all our optimisations with KSATC, an implementation of KSAT in C++.

Test Environment. In the area of propositional satisfiability checking there
is large and rapidly expanding body of experimental knowledge; see, e.g., [7].
In contrast, empirical aspects of modal satisfiability checking have only recently
drawn the attention of researchers. We now have a number of test sets, some of
which have been evaluated extensively [4, 10, 8, 13, 12]. In addition, we also have
a clear set of guidelines for performing empirical testing in the setting of modal
logic [10, 12].

Currently, there are three main test methodologies for modal satisfiability
solvers, one based on hand-crafted formulas, the other two based on randomly
generating problems. To understand on what kinds of problems a particular
prover does or does not do well, it helps to work with test formulas whose
meaning can (to some extent) be understood. For this reason we opted to carry

out our tests using the Heuerding and Schwendimann (HS) test set [10], which
was used at the TANCS ’98 comparison of systems for non-classical logics [18].

The HS test set consists of several classes of formulas for K, and for other
modal logics that we are not concerned with in this paper. Each class has been
generated from a (relatively) simple parameterized logical formula; this parame-
terized formula is either a K-theorem (hence the generated class is labelled with
p) or only K-satisfiable (hence the generated class is labelled with n) in case
of K. Some of these parameterized formulas are made harder by hiding their
structure or adding extra pieces. The parameters allow for the creation of modal
formulas, in the same class, of differing difficulty. The idea behind the parameter
is that the difficulty of proving formulas in the same class should be exponential
in the parameter. This kind of increase in difficulty will make differences in the
speed of the machines used to run the benchmarks relatively insignificant.

The classes of test formulas for K are: branch p and branch n; d4 p and
d4 n; dum p and dum n; grz p and grz n; lin p and lin n; path p and path n;
ph p and ph n; poly p and poly n; t4 p and t4 n. The benchmark methodology
is to test formulas from each class, starting with the easiest instance, until the
provability status of a formula can not be correctly determined within 100 sec-
onds. The result from this class will then be the parameter of the largest formula
that can be solved within the time limit. The parameter ranges only from 1 to
21 and the modal theorem provers are given a time out of 100 CPU seconds for
each of the 21 formulas.

Implementation Issues. Let us turn to details of our implementation of the
KCSP algorithm. We used the constraint logic programming system ECLiPSe. A
translator from the HS formula format into the format of KCSP was provided by
Juan Heguiabehere. We ran all our experiments on an AMD Athlon Processor
(1 GHz), with 512MB RAM, under Red Hat Linux 7.1. The HS formulas that
we used in the experiments as well as the ECLiPSe code for KCSP are available
at the web page http://www.cwi.nl/∼sbrand/Research/KCSP/.

Modelling, Optimisations and Analysis. In our CSP-modelling of a clause
in a formula, we distinguish the four (disjoint) sets of literals: propositional
literals LitP , and literals LitB representing boxed formulas, and both subdivided
by polarity:

Clause = LitP+ ∨ LitP− ∨ LitB+ ∨ LitB−.

A clause is then viewed as a constraint on the corresponding four sets of variables:

clause constraint(P+,P−,B+,B−).

This holds if at least one variable in the set P+∪B+ is assigned a 1 or one in P−∪
B− is assigned a 0 — see also Definition 1. We use the constraint at least one,
which is defined on a set of variables and parameterised by a constant, and which
requires the latter to occur in the set. We can formulate

at least one(P+ ∪B+, 1) ∨ at least one(P− ∪B−, 0).

The constraint library of ECLiPSe contains a predefined constraint with the
meaning of at most one. It can easily be employed to imitate at least one, using
the number of involved variables. Finally, the disjunction

at least one(X+, 1) ∨ at least one(X−, 0)

is elegantly transformed into a conjunction with the help of a single link variable
l. We find at least one(X+ ∪ {l}, 1) ∧ at least one(X− ∪ {l}, 0). Observe for ex-
ample that l = 0 forces at least one(X+, 1), in which case it is irrelevant whether
at least one(X−, 0) holds — and indeed at least one(X− ∪ {l}, 0) is satisfied.

Optimisation 1: constraints for partial assignments. To get partial Boolean as-
signments in KCSP so that the reasoning on the boxed formulas is “delayed” (and
possibly never done), we let the variable domains of the input CSP be as follows:
the propositional variables have as domains {0, 1}, whereas the boxed formulas
have as domains {0, 1, 2}. Notice that each boxed formula is translated into a
distinct propositional variable for the constraint solver. It occurs not only once
per clause but once per formula.

In a similar way, we impose constraints to obtain a partial assignment in KCSP
with a small number of boxed formulas “switched on”: i.e., at most one boxed
formula per clause may be assigned a Boolean value. These are referred to as the
(assignment-)minimising constraints. To use conjunction instead of disjunction
in these constraints we use several linking variables instead of a single one. More
precisely, a minimising constraint is of the form

at least one(P+ ∪ {l+P }, 1) ∧ exactly one(B+ ∪ {l+B}, 1) ∧
at least one(P− ∪ {l−P }, 0) ∧ exactly one(B− ∪ {l−B}, 0),

where we use a constraint exactly one. It can be modelled by the occurrences
constraint of ECLiPSe, which forces a number of variables in a set to be assigned
to a specific value. The important four linking variables are constrained by

(l+P = 1 ∧ l−P = 0 ↔ (l−B = 2 ∨ l+B = 2)) ∧ (l+B = 1 ∨ l−B = 0)

or, equivalently, as in this table:

l+P l−P l+B l−B
1 0 1 2
1 0 2 0
0 1 1 0
0 0 1 0
1 1 1 0

We found that, among all constraints, this is the one whose propagation is ex-
ecuted most often. Therefore we experimented with several implementations.
ECLiPSe accepts its logical form, and reifies it internally into several arithmetic
constraints. This turned out to be slower than pre-compiling the defining table
into domain reduction rules that can be scheduled efficiently [2, 1].

We add the following heuristics to KCSP with minimising constraints to (at-
tempt to) reduce the depth of the KCSP search tree: the value 2 is preferred for
boxed formulas, and among those, for boxed formulas occurring negatively.

Formula parameter.

Fig. 1. The branch formulas: KCSP with minimising constraints for partial assignments
(+) vs. KCSP with total assignments (3).

Assessment. The superiority of KCSP with minimising constraints over KCSP
with total assignments is particularly evident in the case of branch formulas;
see Figure 1: KCSP with minimising constraints manages to solve 13 instances
of branch n and all 21 of branch n (in less than 2 seconds!), and without only
2 instances are solved, for both flavors. It is worth pointing out that branch n
(non-provable) is recognized as the hardest class of “truly modal formulas” for
today’s modal theorem provers1, and that our results of KCSP with minimising
constraints are competitive with the best optimized modal theorem provers ?SAT
and DLP on this class. What seems to be going on is that the tree-like model that
the solver (implicitly) attempts to construct while trying to satisfy a formula is
kept as small as possible by KCSP with minimising constraints. To understand
why KCSP with minimising constraints seems to be optimal here, observe, first
of all, that constraints allow us to represent in a very compact manner the re-
quirement of reducing the number of boxed formulas to which a Boolean value
is assigned. Secondly, searching for this kind of partial assignments yields other
benefits per se: fewer boxed formulas to which a Boolean value is assigned at the
current layer means fewer propositions in the subsequent layer; in this manner
fewer choice points and therefore fewer search tree branches are created. Con-
sider, for instance, what happens with branch p(3). In KCSP with minimising
constraints, there are two choices for boxed formulas at layer 0, and none at the
1 These are the so-called Halpern and Moses branching formulas that “have an expo-

nentially large counter-model but no disjunction [. . .] and systems that will try to
store the entire model at once will find these formulae even more difficult”; see [12].

subsequent layers, resulting in a modal search tree of exactly two branches. With
total assignments, there are 6 extra boxed formulas at layer 0, which implies an
extra branching factor of 26 = 64 at the root of the modal search tree only. All
6 boxed formulas will always be carried over to the next layers, positively or
negatively.

There is lots of room for additional semantically motivated refinements in
the encoding of formulas as CSPs and the use of these refinements for devising
various searching strategies in KCSP with minimising constraints. We have started
experimenting with several heuristics based on the modal depth of the formula,
for instance:

– assign a Boolean value first to the boxed formulas with minimal modal depth;
– assign a Boolean value first to the boxed formulas with maximal modal

depth.

We compared the implementations of KCSP with and without both heuristics.
The results obtained are not astonishing, even if, in general, choosing a boxed
formula with minimal modal depth usually gives the best results; in fact, this
tends to reduce the depth of the modal model that KCSP is implicitly attempt-
ing to construct. However, these results clearly show that more refined learning
heuristics will be needed to split on modal formulas and take care of the modal
depth information.

Optimisation 2: disjunctive constraints. In the basic KCSP algorithm, every time
0 is assigned to a formula ¬2ψ, the subformula ¬ψ is first transformed in CNF
before turning it into CSP form. This is not an efficient choice. In fact, it is well-
known that CNF conversion can lead to an explosion in the size of the formula.
This can be remedied by treating ¬ψ as a special disjunctive constraint

¬ψ =
n∨
i=1

φi

by means of link variables li, one for each φi in ψ. This constraint is satisfied iff 1
is assigned to at least one of the li. For coherence with our minimising constraints,
1 is assigned to exactly one of the li, again by an exactly one constraint. Setting
a link variable to 1 forces all positively occurring variables in φi to 0, and all
negative ones to 1. All other link variables get set to 2; this means that we set
to 2 the variables representing boxed formulas, while any truth value is allowed
for the propositional variables. Our implementation of this behaviour is a user-
defined constraint in ECLiPSe, and not too difficult.

In all the HS formula classes, having disjunctive constraints in place of CNF
conversions increases the number of returned formulas, or, at least, does not
decrease it. Avoiding CNF conversion by means of disjunctive constraints may
have a substantial effect, for example in the case of ph n(4) — an instance of the
pigeon-hole problem — which can now be solved in a few seconds. In contrast, by
allowing CNF conversion in KCSP (also with minimising constraints), ECLiPSe

stopped before finishing for lack of memory after having allocating 100 MB.

Optimisation 3: constraints for factoring. Consider a subformula 2ψ of φ, the
input to KCSP; suppose that 2ψ occurs several times in φ, positively and nega-
tively. Then, in the KCSP algorithm, each occurrence at position i is encoded as
a different variable in the corresponding CSP, say xi. To obviate this, we add a
new constraint C2ψ on the CSP variables for 2ψ:

C2ψ states that no two variables xi, xk exist with xi = 0 and xk = 1 .

This constraint thus avoids contradictory occurrences of ψ in the subsequent
layer. Notice that even this implementation of factoring may not always provide
a strictly minimal number of boxed formulas with a Boolean value. Nevertheless,
this form of factoring in KCSP turned out to be beneficial for formulas with the
same variables hidden and repeated inside boxes. In fact this factoring proved
useful in all of the following cases: grz, d4, dum p, path p, t4p p. In the remaining
cases the contribution of factoring with constraints is insignificant, except for
path n where searching for candidate formulas to be factored slows down search
slightly.

Optimisation 4: simplifications. Finally, we can turn on a number of simplifica-
tions in the implementation of KCSP. These take place only once, upon reading
the input formula; after that, it is never simplified again as such. We use stan-
dard simplification rules for propositional formulas, at all layers, in a bottom-up
fashion. Also, in the same manner, the following modal equivalences are used in
simplifying a CNF formula: ¬2>∧ψ ↔ ⊥∧ψ and its dual. Simplification in KCSP
plays a relevant role in the case of lin formulas. E.g., consider lin n(3): without
simplifications and minimising constraints, KCSP takes longer than 5 minutes to
return an answer; by adding simplifications and minimising constraints, KCSP
takes less than 0.4 seconds; besides, by adding also factoring, KCSP solves the
most difficult formula of lin n in 0.06 seconds, that of lin p in 0.01.

Results and a Comparison. Table 2 displays a comparison of KSATC with
KCSP in which all the optimisations above are switched on; from now on we refer
to this as KCSP. The time taken by the translator from the HS format into that
of KCSP is insignificant, the worst case among those in Table 2 taking less than
1 CPU second; these timings are taken into account for KCSP in Table 2. The
results for KSATC are taken from [12]; there, KSATC was run on the Heuerding and
Schwendimann test set, on a 350MHz PentiumII with 128MB of main memory.
In the table, we write > when all 21 formulas in the test set are solved within
100 CPU seconds, else we write the number of the most difficult formula decided
within the time available.

There are some interesting similarities and differences in performance be-
tween KSATC and KCSP. For some classes, KCSP clearly outperforms KSATC, for
some it is the other way around, and for yet others the differences do not seem
to be significant. For instance, KCSP is definitely superior in the case of lin and
branch formulas; as explained in the analysis of the optimisation with constraints
for partial assignments, branch n is the hardest “truly modal test class” for the

Table 2. KCSP vs. KSATC.

branch d4 dum grz lin path ph poly t4p
n p n p n p n p n p n p n p n p n p

KSATC 8 8 5 8 > 11 > 17 3 > 8 4 5 5 12 13 18 10
KCSP 13 > 7 9 19 12 10 13 > > 11 4 4 4 15 10 7 10

current modal theorem provers; thus adding constraints to limit the number of
boxed formulas to reason on, while still exploring the truly propositional search
space, seems to be a winning idea in this case. We should point out that KSATC
features partial assignments too. Thus the fact that KCSP shows such a good
behavior on branch formulas has to be attributed to the fact that the models
that it (implicitly) tries to generate when attempting to satisfy a formula, re-
main very small. In the cases of grz and t4, instead, KSATC is superior to KCSP;
notice that KSATC features a number of optimisations for early modal pruning
that we have not added to KCSP (yet), and these are likely to be responsible
for the better behavior of KSATC on these classes. See the discussion in the final
section for more on this point.

5 Finale

In this paper we have described a modelling and a solving procedure for modal
satisfiability problems using off-the-shelf CSP algorithms, but mainly focussed
on the modelling aspects of our work. As discussed at length in [6], the solving
procedure works by decomposing modal satisfiability problems into “layers” of
propositional satisfiability problems, each of which is encoded not as a Boolean
CSP but as a finite CSP with values other than just the Boolean 0 and 1.

Our novel modelling of formulas as CSPs allows us to do modal reasoning by
working on top of existing constraint algorithms for finite CSPs, without modify-
ing the algorithms to obtain partial Boolean assignments. By using the additional
non-Boolean values and appropriate constraints, we implemented KCSP with var-
ious optimisations and some heuristics for modal reasoning in the CLP system
ECLiPSe.

As shown in Section 4, KCSP with our modelling and the various optimisation
constraints is competitive with the best modal theorem provers on the hardest
“truly modal class” in the Heuerding and Schwendimann test set, namely branch.
The addition of CLP constraints for minimising the number of boxed formulas to
be taken into account, seems to result in a reduction of the size (and especially
the width) of the “the tree-model” that the solver implicitly tries to construct
for the input formula. An important advantage of our CLP modelling is that
encoding optimisations (e.g., for factoring or partial assignments) can be done
very elegantly and in an “economical” manner: that is, it is sufficient to add
appropriate constraints to obtain specific optimisations, and constraints provide
a compact representation means in CLP.

We conclude by elaborating on some open questions.

– Modelling: the current encoding of propositional formulas into CSPs can be
enhanced so as to completely avoid CNF conversions. That is, each modal
formula should be directly encoded and solved, layer by layer, as a CSP with
further values than 0 and 1. We are already avoiding CNF conversion in the
restricted case of negative boxed formulas, by adding a disjunctive constraint;
this results in a significant improvement of KCSP’s behavior, see Subsection 4.
Also, the minimising constraints are now only loosely integrated with the
factoring constraints. A better model is likely to further reduce the modal
spanning factor in certain situations.

– Algorithm: we plan to enforce and experiment with stronger forms of con-
straint propagation, e.g., strong 3-consistency. Also, we want to add learning
heuristics in KCSP to split on variables and some form of early modal prun-
ing (such as incrementally adding formulas to the “universal theory”denoted
by Θ in k sat and every time enforcing hyper-arc consistency on Θ, before
constructing a full partial assignment); this is likely to improve the behavior
of KCSP on formulas such as the grz and t4 ones, that are characterized by
repeated occurrences of the same sub-formulas at different layers.

– Implementation: we will work on the implementation of CSPs in CLP to
obtain a more compact representation of CSPs. This will help us to solve our
current problem with the ph formulas (each of these encodes the pigeon-hole
problem, which is notoriously hard for SAT provers): right now ECLiPSe

simply gets stuck when loading the 5th formula in the ph test sets.

Acknowledgements

Maarten de Rijke was supported by grants from the Netherlands Organization
for Scientific Research (NWO), under project numbers 612-13-001, 365-20-005,
612.069.006, 612.000.106, 220-80-001, and 612.000.207. Rosella Gennari was sup-
ported by the ERCIM fellowship 2002-27.

References

1. K.R. Apt and S. Brand. Schedulers for rule-based constraint programming. In
ACM Symposium on Applied Computing (SAC), 2003.

2. K.R. Apt and E. Monfroy. Constraint programming viewed as rule-based program-
ming. Theory and Practice of Logic Programming, 2001.

3. C. Areces, R. Gennari, J. Heguiabehere, and M. De Rijke. Tree-based Heuristics in
Modal Theorem Proving. In Proc. of the 14th European Conference on Artificial
Intelligence 2000, pages 199–203. IOS Press, 2000.

4. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An Empirical
Analysis of Optimization Techniques for Terminological Representation Systems
or: Making KRIS get a move on. In Proc. KR-92, 1992.

5. P. Blackburn, M. De Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

6. S. Brand, R. Gennari, and M. de Rijke. Constraint Programming for Modelling
and Solving Modal Satisfiability. Submitted 2003.

7. I. Gent, H. Van Maaren, and T. Walsh, editors. SAT 2000. IOS Press, 2000.
8. F. Giunchiglia and R. Sebastiani. Building Decision Procedures for Modal Logics

from Propositional Decision Procedures. The Case Study of Modal K(m). Infor-
mation and Computation, 162(1–2):158–178, 2000.

9. V. Haarslev and R. Möller. RACER. Accessed via http://

kogs-www.informatik.uni-hamburg.de/~race/, September 2002.
10. A. Heuerding and S. Schwendimann. A Benchmark Method for the Propositional

Modal Logics K, KT, S4. Technical Report IAM-96-015, University of Bern, 1996.
11. I. Horrocks. FaCT. Accessed via http://www.cs.man.ac.uk/ ~horrocks/FaCT/,

September 2002.
12. I. Horrocks, P.F. Patel-Schneider, and R. Sebastiani. An Analysis of Empirical

Testing for Modal Decision Procedures. Logic Journal of the IGPL, 8(3):293–323,
2000.

13. U. Hustadt and R. A. Schmidt. On Evaluating Decision Procedures for Modal
Logic. In Proc. IJCAI-97, pages 202–207, 1997.

14. MSPASS V 1.0.0t.1.2.a. URL: http://www.cs.man.ac.uk/~schmidt/mspass. Ac-
cessed February 23, 2001.

15. G. Pan, U. Sattler, and M. Y. Vardi. BDD-Based Decision Procedures for K. In
Proceedings of CADE 2002, pages 16–30. Springer LINK, 2002.

16. P.F. Patel-Schneider. DLP. Accessed via http://www.bell-labs.

com.user/pfps/dlp/, September 2002.
17. A. Tacchella. ∗SAT System Description. In Collected Papers from the International

Description Logics Workshop 1999, CEUR, 1999.
18. TANCS: Tableaux Non-Classical Systems Comparison. http://www.dis.

uniroma1.it/~tancs. Accessed January 17, 2000.
19. T. Walsh. SAT v CSP. In R. Dechter, editor, Proc. of the 6th International

Conference on Principles and Practice of Constraint Programming, volume 1894,
pages 441–456, 2000.

