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ABSTRACT
Related entity finding is the task of returning a ranked list of home-
pages of relevant entities of a specified type that need to engage
in a given relationship with a given source entity. We propose a
framework for addressing this task and perform a detailed analy-
sis of four core components; co-occurrence models, type filtering,
context modeling and homepage finding. Our initial focus is on
recall. We analyze the performance of a model that only uses co-
occurrence statistics. While it identifies a set of related entities, it
fails to rank them effectively. Two types of error emerge: (1) en-
tities of the wrong type pollute the ranking and (2) while some-
how associated to the source entity, some retrieved entities do not
engage in the right relation with it. To address (1), we add type
filtering based on category information available in Wikipedia. To
correct for (2), we add contextual information, represented as lan-
guage models derived from documents in which source and target
entities co-occur. To complete the pipeline, we find homepages of
top ranked entities by combining a language modeling approach
with heuristics based on Wikipedia’s external links. Our method
achieves very high recall scores on the end-to-end task, providing
a solid starting point for expanding our focus to improve precision;
additional heuristics lead to state-of-the-art performance.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Entity search, Language modeling, Wikipedia

1. INTRODUCTION
Over the past decade, increasing attention has been devoted to

retrieval technology aimed at identifying entities relevant to an in-
formation need. The area received a big boost with the arrival of
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the TREC Question Answering track in 1999, where much research
has focused on fact-based questions such as “Who invented the pa-
per clip?” Such questions can be answered by named entities such
as locations, dates, etc. [35]. The expert finding task, studied at
the TREC Enterprise track (2005–2008), focused on a single type
of entity: people [7]. The INEX Entity Ranking task (2007–2009)
broadened the task to include other types and required systems to
return ranked lists of entities given a textual description (“Countries
where one can pay with the euro”) and type information (“coun-
tries”) [9]. Next, the TREC 2009 Entity track introduced the related
entity finding (REF) task: given a source entity, a relation and a tar-
get type, identify homepages of target entities that enjoy the spec-
ified relation with the source entity and that satisfy the target type
constraint [3]. E.g., for a source entity (“Michael Schumacher”), a
relation (“His teammates while he was racing in Formula 1”) and
a target type (“people”) return entities such as “Eddie Irvine” and
“Felipe Massa.” REF aims at making arbitrary relations between
entities searchable; it provides a way of searching for information
through entities, previously only possible by (implicitly) manually
annotated links such as those in social networks.
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Figure 1: Components of an idealized entity finding system.
Solid arrows indicate control flow, dashed arrows data flow.

We start with an idealized entity retrieval architecture, see Fig. 1.
Computations take place at two levels: the entity repository is built
off-line, using tools and techniques for named entity recognition
and normalization. Queries are processed online, through a re-
trieval pipeline. This pipeline resembles a question answering ar-
chitecture, where first candidate answers are generated, followed
by type filtering and the final ranking (scoring) steps. Candidate
generation is a recall-oriented step, while the subsequent two blocks
aim to improve precision. Our work sets out the challenge of adopt-
ing this general architecture to the REF task, and addresses the is-
sue of balancing precision and recall when executing a search.

When building a system to perform a task such as REF, the most
important evaluation is on the end-to-end task. The TREC Entity
track will play an important role in advancing REF technology, but
its end-to-end focus means that it is difficult to disentangle the per-
formance contributions of individual components. This effect is
reinforced in the case of a new task such as REF where a canonical
architecture has yet to emerge. In this paper we go through a series
of ablation studies and contrastive runs so as to obtain an under-
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standing of each of the components that play a role and the impact
they have on precision and recall.
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Figure 2: Components of our REF system.
Specifically, we address the REF task as defined at TREC 2009
and consider a particular instantiation of the idealized entity find-
ing system, shown in Fig. 2. Our focus is on retrieval and rank-
ing rather than on named entity recognition and normalization; to
simplify matters we use Wikipedia as a repository of (normalized)
known entities. While the restriction to entities in Wikipedia is a
limitation in terms of the number of entities considered, it provides
us with high-quality data, including names, unique identifiers and
type information, for millions of entities. Our framework is generic
and conceptually independent of this particular usage of Wikipedia.

Given our focus on entities in Wikipedia, it is natural to ad-
dress the REF task in two phases. In the first we build up our re-
trieval pipeline (the blocks at the bottom of Fig. 2) working only
with Wikipedia pages of entities; in the second we map entities to
their homepages. In phase one we use a generative framework to
combine the components. The first component is a co-occurrence-
based model that selects candidate entities. While, by itself, a co-
occurrence-based model can be effective in identifying the poten-
tial set of related entities, it fails to rank them effectively. Our fail-
ure analysis reveals two types of error that affect precision: (1) en-
tities of the wrong type pollute the ranking and (2) entities are re-
trieved that are associated with the source entity without engaging
in the right relation with it. To address (1), we add a type filtering
component based on category information in Wikipedia. To correct
for (2), we complement the pipeline with contextual information,
represented as statistical language models derived from documents
in which the source and target entities co-occur. The addition of
context proves beneficial for both recall and precision. A final im-
provement in this phase is obtained by employing a large corpus to
correct for sparseness issues.

In phase two, we conform to the official TREC definition of the
REF task by adding a homepage finding component that maps en-
tities represented by Wikipedia pages to homepages. We show that
our approach achieves competitive performance on the official task,
especially in terms of recall. We demonstrate the generalizability
of our framework by expanding it with two heuristics: one aimed
at improving type filtering, the other at co-occurrence. We find that
these methods have a very positive impact on all measures.

The main contribution of this paper is two-fold. First, we pro-
pose a transparent architecture for addressing the REF task. Sec-
ond, we provide a detailed analysis of the effectiveness of its com-
ponents and estimation methods, shedding light on the balance be-
tween precision and recall in the context of the REF task.

Below, we discuss related work in §2. In §3 we detail our ap-
proach to the REF task. Our experimental setup is described in
§4. In §5 we analyze the effectiveness of a pure co-occurrence
model. Type filtering is considered in §6 and contextual informa-
tion is added in §7. Improved estimations of co-occurrence and
context models are considered in §8. We address the (sub)task of
homepage finding (mapping entities to their homepages) in §9. In
§10 we discuss TREC Entity results as well as additional heuristics
that can be incorporated into our framework. We conclude in §11.

2. RELATED WORK
Entity retrieval. The roots of entity retrieval go back to natural
language processing, specifically to information extraction (IE).
The goal in IE is to find all entities for a certain class, for exam-
ple “cities.” The general approach taken uses context based pat-
terns to extract entities; e.g., “cities such as * and *”, either learned
from examples [28] or created manually [16]. At the intersection of
natural language processing and IR lies question answering (QA),
which combines IE and IR, investigated at the TREC QA track [35].
What sets QA apart from Entity Retrieval? One is a matter of tech-
nology: many QA systems considered at TREC have a knowledge-
intensive pipeline that simply does not comply with the wishes of
efficient processing on very large volumes of data. Another is the
difference in task; while the “list” subtask at the QA track does in-
deed resemble the REF task, the two differ in important ways: (i)
QA list queries do not always contain an entity [34], e.g., “What
are 12 types of clams” and (ii) REF queries impose a more specific
(elaborate) relation between the source entity and the target entities,
e.g., “Airlines that currently use Boeing 747 planes.”

A particularly relevant paper on the interface of QA and REF is
[26] wherein entity language models are processed using a prob-
abilistic representation of the language used to describe a named
entity (person, organization or location). The model is constructed
from snippets of text surrounding mentions of an entity. Unsurpris-
ingly, we model the language model of an individual entity in the
same manner, but have more complex models of pairs of entities.

Our main concern is with precision and recall aspects of our ap-
proach to the REF task. We initially focus on recall and then ap-
ply techniques to boost precision: one of these techniques is type
filtering, aimed at demoting entities that are not of the required
type. Previously, type filtering has been considered in the setting of
QA, where candidate answers are filtered by employing surface pat-
terns [27] or by a mix of top-down and bottom-up approaches [29].
We apply type filtering based on Wikipedia category assignments
and category structure in the context of the REF task.

The expert finding task, which was run at the TREC Enterprise
track [7], focuses on a single type (“person”) and relation (“expert
in”). In a language modeling approach to the task experts are found
either by modeling an expert’s knowledge by its associated docu-
ments (“Model 1”) or first collecting topic related documents and
then modeling experts (“Model 2”) [1, 2]. Additionally, kernels
have been used to emphasize terms occurring in close proximity to
experts (entities) [25]. A two stage language modeling approach,
consisting of a relevance and a co-occurrence model, has been con-
sidered in [4]; the relevance model determines if a document is rel-
evant to a query, while the co-occurrence model determines the as-
sociation between an expert and query in a document. A generative
probabilistic framework was proposed in [11], with two families of
approaches: candidate and topic generation models.

The novelty of our approach is that we use co-occurrence and
context to model entity-entity associations, instead of entity-docu-
ment and document-query associations as seen in most expert find-
ing systems. Co-occurrence-based methods are widely used to de-
termine the strength of association between terms. These methods
come in many flavors, e.g., as global co-occurrence [18] (deter-
mined on an entire corpus) or local co-occurrence [41] (determined
on a relevant set of documents) for query expansion. Hasegawa
et al. [15] use the context of entity co-occurrence pairs for relation
extraction; entity pairs that occur in the same sentence are clus-
tered based on terms between them, and relations are character-
ized by frequent words in the cluster. Maximum likelihood estima-
tion (MLE) is an obvious choice for determining co-occurrence; a
problem is that some words co-occur frequently just by chance. In
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[21] a number of hypothesis testing methods are listed that deter-
mine whether the co-occurrence of two entities is more than mere
chance, these include statistical tests, likelihood ratio and point
wise mutual information. In §5 we determine their value for REF.

The INEX Entity Ranking track [9] broadened expert search by
moving from searching for a single type of entity (people) to any
type using Wikipedia categories. The corpus also changed to Wi-
kipedia, so that each entity corresponds to a Wikipedia page. Two
tasks were introduced, entity ranking: return a list of Wikipedia
pages (entities) for a query and category, and list completion: re-
turn a list of Wikipedia pages for a query, category and example
entities. The fact that each entity is represented by a Wikipedia
page allows for using standard document retrieval to obtain a list of
relevant entities for a query. The approaches differ in the way they
combine this with category and example entity information; using
a language modeling framework to combine initial retrieval scores
with category information [17, 39], or a linear combination of doc-
ument, category and link based component scores [8, 33, 45]. To
derive a score for the category component most approaches use set
overlap between entity categories and topic target categories; others
use the topic category label as a query to an index of category la-
bels [8, 45]. Another commonly used technique is category expan-
sion, based either on the Wikipedia category structure [32, 39] or on
lexical similarity between category labels and the query topic [33].

TREC 2009 Entity track. A recent development in evaluating
entity-oriented search was the introduction of the Entity track at
TREC in 2009 with the aim to perform entity-oriented search tasks
on the web [3]. The first edition featured the related entity finding
(REF) task. One approach to this task is to directly obtain home-
pages by submitting the REF query (source entity and relation) to
a search engine [24]. Other approaches first collect text snippets
from documents relevant to the REF query, next obtain entities by
performing named entity recognition on the snippets, implement
some sort of ranking step and finally find homepages, usually by
using entity names as queries [37]. Several language modeling ap-
proaches were employed to rank entities, where the entity model is
constructed from snippets containing the entity and the relation is
used as a query [40, 42, 44]. The two stage retrieval model from
the Enterprise track is adapted in [38]. Fang et al. [12] use a hi-
erarchical relevance retrieval model and improve their model by
exploiting list structures, training regression models for type fil-
tering and applying heuristic filtering and pattern matching rules.
Zhai et al. [43] propose a probabilistic framework to estimate the
probability of an entity given a REF query, with two components:
the probability of the relation given an entity and source entity, and
the probability of an entity given the source entity and target type.
While this model is the closest to our approach, it differs in the
assumptions made about the dependencies between the query com-
ponents, see §3. The approaches further differ in the way they es-
timate co-occurrence and construct entity and relation models. A
number of approaches rely heavily on Wikipedia; as a repository
of entity names, to perform entity type filtering based on categories
and to find homepages through external links [19, 22, 30].

3. APPROACH
The goal of the REF task is to return a ranked list of relevant

entities e for a query, where a query consists of a source entity (E),
target type (T ) and a relation (R) [3]. We formalize REF as the task
of estimating the probability P (e|E, T, R). This probability is dif-
ficult to estimate, due to the lack of training material, exacerbated
by the fact that relations do not come from a closed vocabulary.
Also, the model should capture a particular relation conditioned on

the two entities involved. To address these concerns we turn to
a generative model. First, we apply Bayes’ Theorem and rewrite
P (e|E, T, R) to:

P (e|E, T, R) =
P (E, T, R|e) · P (e)

P (E, T, R)
. (1)

Next, we drop the denominator as it does not influence the ranking
of entities, and derive our final ranking formula as follows:

P (E, T, R|e) · P (e)

∝ P (E, R|e) · P (T |e) · P (e) (2)
= P (E, R, e) · P (T |e) = P (R|E, e) · P (E, e) · P (T |e)
= P (R|E, e) · P (e|E) · P (E) · P (T |e) (3)
rank
= P (R|E, e) · P (e|E) · P (T |e) (4)

In (2) we assume that type T is independent of source entity E and
relation R. We rewrite P (E, R|e) to P (R|E, e) so that it expresses
the probability that R is generated by two (co-occurring) entities (e
and E). Finally, we rewrite P (E, e) to P (e|E) ·P (E) in (3) as the
latter is more convenient for estimation. We drop P (E) in (4) as it
is assumed to be uniform, thus does not influence the ranking.

E

e TR

The generative model, shown above, functions as follows. The in-
put entity E is chosen with probability P (E), which generates a
target entity e with probability P (e|E). The input and target enti-
ties together generate a relation R with probability P (R|E, e). Fi-
nally, the target entity generates a type T with probability P (T |e).

Assuming that input entities are chosen from a uniform distri-
bution, we are left with the following components: (i) pure co-
occurrence model (P (e|E)), (ii) type filtering (P (T |e)) and (iii)
contextual information (P (R|E, e)). We summarize the develop-
ments to come in the figure below; we analyze a pure co-occurrence
model and its performance on the REF task in §5. We then add type
filtering and contextual information to the pipeline; these are intro-
duced and examined in §6 and §7, respectively. The components
are combined using Eq. 4.

Co-occurrence 
modeling (§5)

Type filtering 
(§6)

Context 
modeling (§7)query   results

4. EXPERIMENTAL SETUP
Research questions. We address the official REF task, REF on a
web corpus, by first solving it on a smaller less noisy corpus: Wiki-
pedia, where entities are identified by their Wikipedia page. In this
setting we consider three research questions. (1) How do different
measures for computing co-occurrence affect the recall of a pure
co-occurrence based REF model? (2) Can a basic category based
type filtering approach successfully be applied to REF to improve
precision without hurting recall? (3) Can recall and precision be en-
hanced by adding context to co-occurrences, to ensure that source
and target entities engage in the right relation? We then look at the
REF task in the setting of a large web corpus. To conform to the of-
ficial REF task we map the Wikipedia entity representation to a rep-
resentation that identifies entities by homepages and consider three
additional research questions. (4) Does the use of a larger corpus
improve estimations of co-occurrence and context models? (5) Is
the initial focus on Wikipedia a sensible approach; can it achieve
comparable performance to other approaches? (6) Can our basic
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ID Source entity (E) Relation (R) Type (T )

1 Blackberry Carriers that Blackberry makes phones for. ORG
4 Philadelphia, PA Professional sports teams in Philadelphia. ORG
5 Medimmune, Inc. Products of Medimmune, Inc. PROD
6 Nobel Prize Organizations that award Nobel prizes. ORG
7 Boeing 747 Airlines that currently use Boeing 747 planes. ORG
9 The Beaux Arts Trio Members of The Beaux Arts Trio. PER

10 Indiana University Campuses of Indiana University. ORG
11 Home Depot Donors to the Home Depot Foundation. ORG

Foundation
12 Air Canada Airlines that Air Canada has code share flights

with.
ORG

14 Bouchercon 2007 Authors awarded an Anthony Award at Boucher-
con in 2007.

PER

15 SEC conference Universities that are members of the SEC confer-
ence for football.

ORG

17 The Food Network Chefs with a show on the Food Network. PER
18 Jefferson Airplane Members of the band Jefferson Airplane. PER
19 John L. Hennessy Companies that John Hennessy serves on the

board of.
ORG

20 Isle of Islay Scotch whisky distilleries on the island of Islay. ORG

Table 1: Description of our 15 test topics. Target entity types
are ORG=organization, PER=person and PROD=product.

framework effectively incorporate additional heuristics in order to
be competitive with other state-of-the-art approaches?

Document collection. Our document collection is the ClueWeb09
Category B subset [5] (“CW-B” for short), with about 50 million
documents, including English Wikipedia. We use the Wikipedia
part of ClueWeb09 and filtered out duplicate pages, page not found
errors and non-English pages. This left us with about 5M doc-
uments, 2.6M of which correspond to unique entities. The total
number of unique entity occurrences in Wikipedia documents (i.e.,
each unique entity occurring in a document counts only once, inde-
pendent of the actual number of occurrences) is 373M.

Entity recognition and normalization. While named entity recog-
nition and normalization are not our focus, they are key pre-pro-
cessing steps. We use Wikipedia as a repository of known (nor-
malized) entities. We handle named entity recognition (NER) in
Wikipedia by considering only anchor texts as entity occurrences.
We obtain an entity’s name by removing the Wikipedia prefix from
the anchor URL. For named entity normalization (NEN) we map
URLs to a single entity variant. Here we make use of Wikipedia
redirects that map common alternative spellings or references (e.g.,
“Schumacher,” “Schumi” and “M. Schumacher”) to the main vari-
ant of an entity (“Michael Schumacher”). Below, when using the
full CW-B subset, we use the entity names as queries to an index of
this collection. This effectively bypasses NER as the resulting doc-
ument lists identify in which documents the entities occur. In this
case, we do not perform NEN; while potentially introducing noise,
we believe that the amount of data partly compensates for this.

Test topics. We base our test set on the TREC 2009 Entity topics.
A topic consists of a source entity (E), a target entity type (T ) and
the desired relation (R) described in free text. Since we are restrict-
ing ourselves to entities in Wikipedia, we are not able to use all 20
TREC Entity topics, but only 15 of them. Specifically, we exclude
three topics (#3, #8 and #13) without relevant results in Wikipedia
and another two (#2 and #16) with source entities without a Wi-
kipedia page. For the remaining topics we manually mapped the
source entity to a Wikipedia page, this is the only manual interven-
tion in the pipeline; the topics are listed in Table 1.

We perform two types of evaluation. First, throughout §5–§8 we
focus on finding entities as represented by their Wikipedia page.
We establish ground truth by extracting all primary Wikipedia pages
from the TREC 2009 Entity qrels. We handle Wikipedia redirects
and duplicates in our evaluation; a Wikipedia page returned for any

of the variants of a relevant entity is considered to be correct, but
once found, other variants of that page are ignored. This setup con-
stitutes a change to the original TREC REF task, arguably making
it easier, therefore the reported numbers are not directly compara-
ble with those of the TREC 2009 Entity track [3]. Our second type
of evaluation, on the original TREC REF task, is performed in §10,
where we compare our scores with those of TREC Entity partici-
pants; based on their original submissions, we also compute their
Wikipedia-based evaluation scores.1

Evaluation metrics. We focus on two measures: precision and
recall. Specifically, we use R-Precision (R-prec), where R is the
number of relevant entities for a topic, and recall at rank N (R@N),
where we take N to be 100, 2000 and “All” (i.e., considering all
returned entities). In Table 10 we also report on the metrics used at
the TREC 2009 Entity track: P@10, NDCG@R, and the number
of primary and relevant entity homepages retrieved. We forego sig-
nificance testing as we do not have the minimal number of topics
(25) recommended [36].

5. CO-OCCURRENCE MODELING
The pure co-occurrence component is the first building block of

our retrieval pipeline. It can produce a ranking of entities on its
own.

Co-occurrence 
modelingquery   results

Since we are planning on expanding this pipeline with additional
components (that will build on the set of entities identified in this
step), our main focus throughout this section will be on recall.

Estimation. The pure co-occurrence component (P (e|E)) ex-
presses the association between entities based on occurrences in
documents, independent of context (i.e., the actual content of doc-
uments). To express the strength of co-occurrence between e and
E we use a function cooc(e, E) and estimate P (e|E) as follows:

P (e|E) =
cooc(e, E)P
e′ cooc(e′, E)

.

We consider four settings of cooc(e, E): (i) as maximum likelihood
estimate, (ii) χ2 hypothesis test, (iii) pointwise mutual information
and (iv) log likelihood ratio; we briefly recall their details [21].

(i) Maximum likelihood estimate (MLE) uses the relative fre-
quency of co-occurrences between e and E to determine the strength
of their association:

coocMLE (e, E) = c(e, E)/c(E),

where c(e, E) is the number of documents in which e and E co-
occur and c(E) is the number of documents in which E occurs.

(ii) The χ2 hypothesis test determines if the co-occurrence of two
entities is more likely than just by chance. A χ2 test is given by:

coocχ2(e, E) =
N · ( c(e, E) · c(e, E) − c(e, E) · c(e, E) )2

c(e) · c(E) · ( N − c(e) ) · ( N − c(E) )
,

where N is the total number of documents, and e, E indicate that
e, E do not occur, respectively (i.e., c(e, E) is the number of doc-
uments in which neither e or E occurs).

(iii) Pointwise mutual information (PMI) determines the amount
of information we gain if we observe e and E together. It is useful

1Evaluation script, qrels and additional resources are made
publicly available at http://ilps.science.uva.nl/
resources/cikm2010-entity.
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Co-occ. R-prec R@100 R@2000 R@All

MLE .0399 .2957 .7501 .9311
χ2 .1099 .3268 .8273 .9311
PMI .0244 .0981 .4888 .9311
LLR .0399 .2957 .7184 .9311

Table 2: Results of the pure co-occurrence models.

to determine independence between entities, but of less value to
determine how dependent two entities are. PMI is given by:

coocPMI (e, E) = log c(e, E)/(c(e) · c(E)).

(iv) Log likelihood ratio is another measure that determines de-
pendence and is more reliable than PMI [10]. It is defined as:

coocLLR(e, E) = 2(L(p1, k1, n1) + L(p2, k2, n2)

−L(p, k1, n1) − L(p, k2, n2)),

where k1 = c(e, E), k2 = c(e, E), n1 = c(E), n2 = N − c(E),
p1 = k1/n1, p2 = k2/n2 and p = (k1 + k2)/(n1 + n2), while
L(p, k, n) = k log p + (n − k) log(1 − p).

Results. Table 2 shows the results of the different estimation meth-
ods for the pure co-occurrence model. Out of the four methods, χ2

is a clear winner while PMI performs worst on all metrics. MLE
and LLR deliver very similar scores; their recall is comparable to
that of χ2, but they achieve much lower R-precision. All estima-
tors return entities that co-occur at least once with the source entity,
hence R@All is the same for all, just over 93%.

Analysis. The numbers presented in Table 2 demonstrate that sim-
ple co-occurrence statistics can achieve reasonable recall and can
be used to obtain a candidate set of entities (e.g., top 2000) that
can then be further examined by subsequent components in the
pipeline. Fig. 3 (Top) shows the R@2000 scores of the methods
per topic. For most topics at least one of the methods achieves high
recall, with the exception of topic #4.

Unlike recall, R-precision scores are very low, suggesting that
pure co-occurrence is not enough to solve the REF task. Fig. 3 (Bot-
tom) shows that all methods score zero on R-precision on all but 4
topics. To identify the types of errors made, we take topic #17 (cf.
Table 1) as an example and list the top 10 entities produced by our
co-occurrence methods in Table 3.2 Clearly, χ2 finds relevant enti-
ties (bold) mixed with non-relevant entities that are not of the target
type T (normal font). The other methods suffer more heavily from
this type of error and fail to return any relevant entities in the top
10. We also see another type of error: entities, that are of the right
type, but do not satisfy the target relation with the source entity.
Note that one of the entities (indicated by †) is relevant, but not
identified as such, as its Wikipedia page does not occur in the qrels.

Different co-occurrence methods display distinct characteristics
in what they consider as strongly associated. MLE and LLR focus
on popular entities; the top ranking entity, “Charitable Organiza-
tion”, occurs 5,271,075 times. The other extreme is demonstrated
by PMI, which favors rare entities: the top ranking entity occurs 2
times and exclusively with the source entity. Finally, χ2 performs
well when entities co-occur frequently with the source entity and
less with others; the top ranked entity occurs in 327 documents, in
187 cases together with the source entity, for the second best entity
these numbers are 148 and 106, respectively.

As all methods and topics suffer from entities of the wrong type
polluting the rankings, we address this next.

2We use topic #17 as a running example throughout the paper, to
illustrate the impact of additional ranking and filtering components.
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Figure 3: Per topic R@2000 (Top) and R-precision (Bottom)
scores for the pure co-occurrence estimation methods.

PMI MLE/LLR χ2

1 Y’all (magazine) Charitable organization Iron Chef America
2 Wayne Harley Brachman United States Paula Deen
3 Veniero’s New York City Bobby Flay
4 The Hungry Detective 2007 Alton Brown†

5 The FN Dish 2006 Fine Living
6 Super Suppers NBC Rachael Ray
7 Sugar Sugar, Inc 2008 Emeril Live
8 Stonewall Kitchen Website Unwrapped
9 Raul Musibay Internet Movie Database Giada De Laurentiis

10 Party Line with The Hearty
Boys

American Broadcasting
Company

Real Age

Table 3: Top 10 entities for topic #17. Relevant entities in bold,
entities of the wrong type in roman, and entities of the right
type but in the wrong relation in italics. MLE and LLR have
the same top 10 ranking and are not displayed separately.

6. TYPE FILTERING
To combat the problem that results produced by the pure co-

occurrence model are polluted by entities of the wrong type, we
add a type filtering component on top of the pure co-occurrence
model; this is indicated by the thick box in the figure below.

Co-occurrence 
modeling Type filteringquery   results

The challenge will be to maintain the high recall levels attained by
the pure co-occurrence model while improving precision. Recall
from (4), that type filtering is formalized as P (T |e). The entity
type filtering component P (T |e) expresses the probability that an
entity e is of the target type. Combined with the pure co-occurrence
model, it yields the following model for ranking entities (we omit
details of the derivation for brevity; it goes analogously to §3):

P (e|E, T ) ∝ P (e|E) · P (T |e). (5)

Estimation. In order to perform type filtering we exploit category
information available in Wikipedia. We map each of the (input)
entity types (T ∈ {PER,ORG,PROD}) to a set of Wikipedia
categories (cat(T )) and we create a similar mapping from entities
to categories (cat(e)). The former is created manually, while the
latter is granted to us in the form of page-category assignments
in Wikipedia (recall that Wikipedia pages correspond to entities).
With these two mappings we estimate P (T |e) as follows:

P (T |e) =


1 if cat(e) ∩ catLn(T ) 6= ∅
0 otherwise.

Since the Wikipedia category structure is not a strict hierarchy and
the category assignments are imperfect [9], we (optionally) expand
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Figure 4: R-precision and R@2000 at increasing levels of cate-
gory expansion.

the set of categories assigned to each target entity type T , hence
write catLn(T ), where Ln is the chosen level of expansion.

For the initial mapping of types to categories, catL1(T ), we
manually assign a number of categories to each type as in [19]. To
the person type we map categories that end with “birth,” “death,”
start with “People” and the category “Living People.” To the or-
ganization type we map categories that start with “Organizations”
or “Companies” and to the product type we map categories starting
with “Products” or ending with “introductions.” Next, we use the
Wikipedia category hierarchy to expand this set by adding all direct
child categories of the categories in L1, to obtain our first expan-
sion set L2. We continue expanding the categories this way, one
level at a time until no new categories are added.

While this particular form of type filtering is specific and tailored
to Wikipedia, it is reasonable to assume that a named entity recog-
nizer would provide us with high-level type information; therefore,
it is not a limitation of the generalizability of our framework.

Results. By varying the expansion levels, we can optimize type
filtering in two ways: for (R-)precision and for recall (R@2000).
We first investigate the optimal levels of expansion for R-precision.
Fig. 4 (Left) shows that R-precision increases when moving from
level 0 (no filtering, shown on the right end of the plot) to level 2
expansion, but drops as the level of category expansion is further
increased. This is in line with our expectation that an increasing
number of categories allow more entities of the wrong type; be-
cause of the imperfection of the Wikipedia category structure, ex-
pansion results in the addition of many irrelevant categories.

As to recall, Fig. 4 (Right) shows R@2000 vs. level of expansion.
R@2000 first increases and then decreases (PMI) or remains the
same (MLE, LLR, and χ2) as categories are expanded. At level
6 or beyond, the number of non-relevant entities allowed into the
ranking is large enough to push relevant entities out of the top 2000.
Uniformly applying category expansion down to the same level for
all types is not necessarily optimal; some relevant entities of type
organization are removed at expansion levels smaller than 6, while
those of type person are only filtered out at level 1.

Table 4 shows the results of applying type filtering to the pure co-
occurrence model optimized for precision (top rows) and for recall
(bottom rows); relative changes are given w.r.t. the results in Ta-
ble 2. We see an increase in R-precision for all methods. The best
results when optimized for R-precision are achieved with χ2, but
we see large relative improvements for all methods in R-precision.
Type filtering causes recall to drop sharply at low ranks; achiev-
ing max 60% R@2000 as opposed to 83% without filtering (cf.
Table 2). The best R-precision scores averaged over all topics are
achieved with type filtering at level 2 (L2); this is the setting we
will use when reporting scores optimized for R-precision.

As to the results optimized for recall, we find, again, that all
methods improve both R-precision and R@100. The R@100 and
R@2000 results suggest that χ2 ranks relevant entities closer to
the top 100 than the other methods. We find 79% of the relevant
entities in the top 2000 and in total only 7% of the relevant entities

Co-occ. R-Prec R@100 R@2000 R@All

Optimized for Precision

MLE .1196 (+200%) .3827 (+29%) .5924 (-27%) .5977 (-56%)
χ2 .1753 (+60%) .3976 (+22%) .5977 (-38%) .5977 (-56%)
PMI .0316 (+30%) .1920 (+96%) .5910 (+21%) .5977 (-56%)
LLR .1196 (+200%) .3827 (+29%) .5857 (-23%) .5977 (-56%)

Optimized for Recall

MLE .0791 (+98%) .3915 (+32%) .7740 (+3%) .8667 (-7%)
χ2 .1338 (+22%) .5012 (+53%) .7881 (-5%) .8667 (-7%)
PMI .0298 (+22%) .1344 (+37%) .7065 (+45%) .8667 (-7%)
LLR .0791 (+98%) .3915 (+32%) .7740 (+8%) .8667 (-7%)

Table 4: Results of type filtering with optimal level of filtering.

PMI MLE/LLR χ2

1 Wayne Harley Brachman Alton Brown† Paula Deen
2 Kerry Vincent Rachael Ray Bobby Flay
3 Jacqui Malouf Bobby Flay Alton Brown
4 Glenn Lindgren Chef Rachael Ray
5 Geof Manthorne Paula Deen Giada De Laurentiis
6 Anna Pump Mario Batali Mario Batali
7 Alexandra Guarnaschelli Oprah Winfrey Guy Fieri
8 Kenji Fukui George W. Bush Michael Symon
9 Warren Brown Giada De Laurentiis Cat Cora

10 Tatsuo Itoh Emeril Lagasse Charles Scripps

Table 5: Top 10 entities for topic #17 with type filtering (L2).

are lost by type filtering. We achieve the best recall scores with type
filtering at level 6 (L6); this is the value used for recall-optimized
settings reported in the remainder of the paper.

By varying the level of expansion we can effectively aim either
for R-precision or for R@2000, without hurting the other. This
decision is likely to be made depending on whether this is the last
component of the pipeline or results will be passed along for down-
stream processing. Optimizing category expansion levels for pre-
cision and recall carry the risk of overfitting, especially on a small
topic set. Our aim with this tuning, however, is not to squeeze out
the last bit of performance, but to demonstrate that type filtering
can effectively be used to balance precision and recall. Two rea-
sons reduce the risk of overfitting: (i) the target types are of a high
level causing the granularity of category expansion to be of a coarse
nature and (ii) the level of expansion is the same for all types.

Analysis. Table 5 shows the top 10 results for topic #17 after
type filtering. We see that type filtering effectively removes enti-
ties of the wrong type from the ranking: all remaining entities are
of type PER and no relevant entities were removed. Another type
of error—entities of the right type but not engaged in the required
relation R to the source entity E (“Chefs with a show on the Food
Network”)—, is now more prominent (see, e.g., Oprah Winfrey and
George W. Bush). In §7 we address this type of error by adding con-
text to the co-occurrence model and only admitting co-occurrences
in contexts that display evidence of the required relation.

7. ADDING CONTEXT
To suppress entities that are of the right type T but that do not

engage in the required relation R, we add an additional component:
modeling contextual information (the thick box below):

Co-occurrence 
modeling Type filtering Context 

modelingquery   results

Recall from (4) that the context of a co-occurrence model is cap-
tured as P (R|E, e). Putting things, this is how we rank (§3):

P (e|E, T, R) ∝ P (R|E, e) · P (e|E) · P (T |e). (6)
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Co-occ. R-Prec R@100 R@2000 R@All

Optimized for Precision

MLE .2099 (+76%) .4929 (+29%) .5950 (0%) .5977 (0%)
χ2 .2094 (+19%) .4631 (+16%) .5977 (0%) .5977 (0%)
PMI .0678 (+115%) .2715 (+41%) .5889 (-1%) .5977 (0%)
LLR .2032 (+70%) .4955 (+29%) .5950 (+2%) .5977 (0%)

Optimized for Recall

MLE .1905 (+140%) .6221 (+60%) .8344 (+8%) .8667 (0%)
χ2 .1798 (+34%) .5708 (+14%) .8459 (+7%) .8667 (0%)
PMI .0678 (+127%) .3313 (+147%) .8315 (+18%) .8667 (0%)
LLR .1705 (+115%) .5997 (+53%) .8316 (+7%) .8667 (0%)

Table 6: Results of the context dependent model.

Estimation. The P (R|E, e) component is the probability that a
relation is generated from (“observable in”) the context of a source
and candidate entity pair. We represent the relation between a pair
of entities by a co-occurrence language model (θEe), a distribution
over terms taken from documents in which the source and candidate
entities co-occur. By assuming independence between the terms in
the relation R we arrive at the following estimation:

P (R|E, e) = P (R|θEe) =
Q

t∈R P (t|θEe)
n(t,R), (7)

where n(t, R) is the number of times t occurs in R. To estimate the
co-occurrence language model θEe we aggregate term probabilities
from documents in which the two entities co-occur:

P (t|θEe) = 1
|DEe|

P
d∈DEe

P (t|θd), (8)

where DEe denotes the set of documents in which E and e co-
occur and |DEe| is the number of these documents. P (t|θd) is the
probability of term t within the language model of document d:

P (t|θd) =
n(t, d) + µ · P (t)P′

t n(t′, d) + µ
, (9)

where n(t, d) is the number of times t appears in document d, P (t)
is the collection language model, and µ is the Dirichlet smoothing
parameter, set to the average document length in the collection [20].
Results. Table 6 shows the results of the context dependent model
(including type filtering), optimized for precision (Top) and recall
(Bottom); relative changes are w.r.t. the corresponding cells in Ta-
ble 4. In both cases, R-precision and R@100 are substantially im-
proved, while R@2000 and R@All remain the same or slightly im-
prove. The best performing method across the board is MLE, but
there is only a slight difference with the LLR and χ2 scores. PMI
achieved the largest relative improvements, but it still lags behind
the other three methods for both R-precision and R@100.
Analysis. Looking at Table 7 we see that several entities have been
replaced with others, “fresh” ones. Some that were in the “wrong”
relation (i.e., Oprah and Bush, cf. Table 5) have been removed. For
both MLE and LLR Chef and Celebrity are now returned at the top
ranks; these entities are observed very frequently together with re-
lation terms (and type filtering erroneously recognizes them as peo-
ple). Some entities occur only in a handful of documents (<10), as
a consequence of which very little evidence of the relation R can be
found in their contexts (examples from the qrels include Alexandra
Guarnaschelli, Aida Mollenkamp, Daisy Martinez). We observe a
larger performance gain for the MLE and LLR based models than
for χ2. By introducing context, the result lists—consisting of fre-
quent entities, favored by these models—are supplemented with
entities that occur in suitable contexts. The entities found by the
χ2 model show a large overlap with those identified on the basis of
context, hence limiting the performance gain.

R PMI MLE LLR χ2

1 Gennaro Contaldo Chef Chef Bobby Flay
2 Asako Kishi Celebrity Celebrity Anne Burrell
3 Yutaka Ishinabe B. Smith B. Smith Robert Irvine
4 Karine Bakhoum Bobby Flay Bobby Flay Tyler Florence
5 Masahiko Kobe Mario Batali Mario Batali Aaron McCargo, Jr.
6 Tamio Kageyama Tyler Florence Bravo Mario Batali
7 Toshiro Kandagawa Bravo Rachael Ray Sunny Anderson†

8 Alpana Singh Rachael Ray Tyler Florence Guy Fieri
9 Katie Lee Joel Robert Irvine Paula Deen Giada De Laurentiis

10 Kazuko Hosoki Anne Burrell Alton Brown† Kevin Brauch

Table 7: Top 10 entities for topic #17 after adding context.

These observations point to two issues with using Wikipedia as
a corpus: (1) estimates for the pure co-occurrence models are un-
reliable and (2) the corpus is too small for constructing accurate
context models, i.e., there is simply not enough textual material for
certain entities. In §8 we address these problems by considering a
larger corpus to improve our estimations of the pure co-occurrence
model and to gather contexts for more robust context models.

8. IMPROVED ESTIMATIONS
We investigate how using a large corpus (CW-B, §4) for estimat-

ing our models can overcome the issue that for some entities their
co-occurrences are limited to a small set of pages and that for some
there is not enough context to be able to derive a robust language
model. These changes affect two components of our pipeline:

Co-occurrence 
modeling Type filtering Context 

modelingquery   results

Estimation. Using a large corpus for REF presents two challenges:
NER on the entire corpus is time consuming and the shear number
of entities becomes prohibitively large for any but the simplest of
methods. To deal with these issues, we limit ourselves to a “work-
ing entity set” consisting of the top 2000 entities produced by the
context dependent co-occurrence model (estimated on Wikipedia).
We chose the entities returned for PMI without filtering as this pro-
duced the highest R@2000 (i.e., 87%). For our pure co-occurrence
model we need, for each source-candidate entity pair, the number of
documents in which they occur separately and the number of doc-
uments in which they co-occur (§5). We estimate these numbers
by submitting the top 2000 entities as queries to an indexed ver-
sion of CW-B, which returns the document IDs. We do the same
for the source entities and then compare the document ID lists to
find documents with co-occurrences. In order to estimate the con-
text dependent model we consider only documents containing the
source entity. We then create the co-occurrence model for a source-
candidate entity pair by using the candidate as a query, effectively
collecting all documents in which they co-occur.
Results. Table 8 shows the results for the co-occurrence models
with estimates obtained from CW-B; relative changes in columns
2 and 3 are w.r.t. Table 4; those in columns 4 and 5 are w.r.t. Ta-
ble 6. In the top left quadrant R-precision and R@100 of the pure
co-occurrence model (optimized for precision) both improve over
the same model using Wikipedia-based estimates for all methods:
adding data solves the issue of sparse co-occurrences.

In the top right quadrant we see that the addition of context, us-
ing CW-B documents, further improves the χ2 results, similar to
what we saw when adding context in §7. In this case however, R-
precision is worse than that achieved by the Wikipedia-based model
for MLE, PMI, and LLR. In contrast, χ2 shows a 25% improvement
when adding CW-B documents. The models optimized for recall
demonstrate a similar behavior; the pure co-occurrence model (bot-
tom left) improves over the Wikipedia-based model, while the con-
text dependent one does not, except for χ2. For the χ2 method, we
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Co-occ. Pure Co-Occurrence Context Dependent

R-Prec R@100 R-Prec R@100

Optimized for Precision
MLE .1512 (+26%) .5423 (+42%) .1898 (-11%) .5423 (+10%)
χ2 .2382 (+36%) .4891 (+23%) .2623 (+25%) .4747 (+3%)
PMI .1363 (+331%) .3545 (+85%) .0649 (-8%) .3137 (+16%)
LLR .1540 (+29%) .4947 (+29%) .1767 (-15%) .4873 (-2%)

Optimized for Recall

MLE .0799 (+1%) .5821 (+49%) .0966 (-97%) .6982 (+12%)
χ2 .2281 (+70%) .5474 (+9%) .2399 (+33%) .5418 (-5%)
PMI .0966 (+224%) .3748 (+179%) .0577 (-18%) .3308 (0%)
LLR .0793 (0%) .5655 (+44%) .0988 (-73%) .6469 (+8%)

Table 8: Results for the context dependent model with filtering
and estimations using the CW-B corpus.
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Figure 5: Differences in R-precision per topic; context depen-
dent model using CW-B vs. Wikipedia. A negative score indi-
cates greater precision for the Wikipedia-based model.

seem to have reached a good balance between precision and recall,
continuing to improve R-precision with improvements or little ef-
fect on R@100. For the other methods, the picture is more diverse,
especially for recall-optimized type filtering.

Analysis. Fig. 5 shows the difference per topic in R-precision
of the context dependent model using either CW-B or Wikipedia;
a negative score indicates higher R-precision for the Wikipedia-
based model. Using Wikipedia documents greatly improves preci-
sion scores for three of the topics for MLE and LLR. As we look
into these topics we see that the Wikipedia page of each source en-
tity contains a full list of all the relevant entities (e.g., “members of
the Beaux Arts Trio” and “members of Jefferson Airplane”), mak-
ing them relatively easy, with external evidence likely to gener-
ate noise. However, the CW-B based model improves R-precision
scores on a number of topics, which suggests that we can effec-
tively use a larger corpus to handle a more diverse set of topics. In
our running example (cf. Table 9) we now achieve a near perfect
ranking for χ2, MLE and LLR; PMI still finds only rare entities.

R PMI MLE LLR χ2

1 Tamio Kageyama Alton Brown† Alton Brown† Bobby Flay
2 Kazuko Hosoki Rachael Ray Rachael Ray Paula Deen
3 Toshiro Kandagawa Bobby Flay Bobby Flay Alton Brown†

4 Ron Siegel Mario Batali Paula Deen Michael Symon
5 Mayuko Takata Paula Deen Mario Batali Giada De Laure.
6 Asako Kishi Chef Chef Rachael Ray
7 David Evangelista Cat Cora Cat Cora Mario Batali
8 Dave Spector Emeril Lagasse Emeril Lagasse Cat Cora
9 Kazushige Nagash. Michael Symon Giada De Laure. Guy Fieri

10 Chua Lam Giada De Laure. Michael Symon Kenji Fuku

Table 9: Top 10 entities with improved estimations for topic
#17; some names truncated for layout reasons.

9. HOMEPAGE FINDING
Up to this point in the retrieval pipeline entities have been identi-

fied by their Wikipedia page. However, according the TREC Entity
track, an entity is uniquely identified by its homepage, therefore we
now focus on the homepage finding component in our architecture:

Homepage 
finding

Entity 
repository
Unique ID

Name
Type

HomepageWeb crawl

Wikipedia

Corpus

Approach. The 2009 Entity track allows up to three homepages
and a Wikipedia page to be returned for each entity and judges
pages as either primary3, relevant or non-relevant. In this paper,
we define homepage finding as the task of returning the primary
homepage for an entity. Our approach combines language mod-
eling based homepage finding and link-based approaches (see be-
low), as a linear mixture with equal weights on the components.
Ranking homepages. We address homepage finding as a docu-
ment retrieval problem, and employ a standard language modeling
approach with uniform priors [31]; it ranks homepages according
to the query likelihood: here, we use the name of the entity en as
a query, P (q = en|d). Successful approaches to named page and
homepage finding use a combination of multiple document fields to
represent documents [6, 23]. Following [23], we estimate P (en|d)
as a linear mixture of four components, constructed from the body,
title, header and inlink fields. The parameters of the model are es-
timated empirically, see below.
Ranking links. Since our REF system identifies entities by their
Wikipedia pages, it is natural to use the information on those pages
for homepage finding; external links often contain a link to the
entity’s homepage [19, 30]. We, again, view this as a ranking
problem and estimate the probability that document d is the home-
page of entity e given a link ewl on the entity’s Wikipedia page:
P (d|ewl). We set this probability proportional to the position of
the link among all external links on the Wikipedia page (pos(ewl)).
Since we have to return “valid" homepages (i.e., that are present in
CW-B), we perform an additional filtering step, and exlude URLs
from our ranking which do not exist in CW-B.

We also employ a method based on DBpedia, which provides a
list of entities with the URL of their homepage.4 While these home-
pages may be more reliable than those found through the earlier ex-
ternal links strategy, the coverage of this method is limited. We set
the probability of a homepage given a DBpedia URL, P (d|edl), to
1 if the URL exists in CW-B, and to 0 otherwise. To take advantage
of the high quality, but sparse, data in DBpedia, while maintaining
high coverage through external links in Wikipedia, we combine the
external link and DBpedia strategies using a mixture model; for the
sake of simplicity, we set equal weights to both components.
Evaluation. Before incorporating the homepage finding compo-
nent into the end-to-end retrieval process, we evaluate its perfor-
mance on its own. For this purpose we created a test set of home-
page finding topics from TREC 2009 Entity qrels; we consider each
entity with a primary homepage as a topic, and take the homepage
as relevant document; topics and qrels are made available, see Fn. 1.

Parameter estimation (for the weights of the document fields in
the mixture model) is done in two ways. The first uses the TREC
2002 Web track data [6]; while performance on the Web track’s
topics (MRR 0.69) is comparable to the best approaches at TREC
3A primary homepage is the main page about, and in control of,
the entity, whereas a relevant page merely mentions the entity .
4Available at http://wiki.dbpedia.org/Downloads33.
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TREC evaluation WP evaluation

Method P@10 #pri nDCG@R #rel R-prec R@100

Optimized for Precision (χ2)

(p1) Baseline (§8) .2100 121 .1198 54 .2623 .5423
(p2) Improved typefiltering .2350 157 .1399 62 .2959 .6017
(p3) Anchor based co-oc. .3000 174 .1562 76 .3473 .6667
(p4) Adjusted judgements .3900 186 .1966 78 .4759 .6869

Optimized for Recall (MLE)

(r1) Baseline (§8) .0800 171 .0880 105 .0966 .6982
(r2) Improved typefiltering .1000 177 .1012 102 .1408 .7422
(r3) Anchor based co-oc. .1950 187 .1444 143 .2730 .7496
(r4) Adjusted judgements .3450 214 .2207 156 .4134 .8057

Best runs from the TREC Entity track
KMR1PU [12] .4450 137 .2210 115 .5494 .5755
ICTZHRun1 [43] .3100 124 .1525 69 .3182 .4638
NiCTm2 [40] .3050 124 .1689 98 .2721 .3820
tudpwkntop [30] .2600 144 .1506 128 .2705 .5721
uogTrEpr [22] .2350 135 .1760 311 .2945 .4536

Table 10: Comparison of our best runs and TREC results. Wi-
kipedia pages are counted as primary homepages.

2002, this setting does not perform very well on CW-B (MRR
0.35). Our second parameter estimation method utilizes Wikipedia,
using the page title as a name for the entity and considering exter-
nal links with “official website” in their anchor text as homepages
of that entity; this leads to a more acceptable performance of the
mixture model on CW-B (MRR 0.47).

Turning to an evaluation of the homepage finding method, using
the dedicated topics and judgments derived from TREC 2009 En-
tity qrels (Fn. 1), we find that, by itself, the DBpedia-based method
results in very low scores (MRR 0.08), due its low coverage. Using
external links from Wikipedia pages of entities we achieve a more
acceptable score (MRR 0.44). Combining links from DBPedia and
Wikipedia results only in minor improvements (MRR 0.45); this is
not surprising given that DBPedia is extracted from Wikipedia. The
best performance overall is achieved when the language modeling-
based approach is combined with the two link-based approaches
(MRR 0.62); this is the method that we use in the rest of the paper.

10. DISCUSSION
We now perform an end-to-end evaluation on the task specified

at the TREC Entity track. According to the track’s definition, up
to 3 homepages and a Wikipedia page may be returned for each
entity; each is judged on a 3-point scale (non-relevant, relevant or
primary). We combine the pipeline developed in §5–§8 with the
homepage finding component developed in §9. Table 10 presents
the results. The Baseline row corresponds to our best performing
run on CW-B (cf. §8). Note that we still only consider the 15 topics
described in §4. Observe that our recall-oriented model (r1) out-
performs other Entity track approaches in terms of the total number
of primary pages found (#pri), while the precision-oriented model
(p1) is in the top 6 in terms of precision (P10).

Next we take a look at how competitive our results are when we
apply heuristic methods that were popular at the Entity track to our
model. We experiment with two additional techniques.

Improved type filtering. Serdyukov and de Vries [30] use the high
quality type definitions provided by the DBpedia ontology5 to per-
form type filtering. We follow this approach and map the ontology
categories “Person” and “Organization” to their respective topic
target types (PER and ORG). We associate the class “Resource”
5Obtained from http://wiki.dbpedia.org/Ontology.

with the product target type (PROD), as there is no specific prod-
uct category in the ontology. In case an entity does not occur in
the ontology, we fall back to our Wikipedia-based filtering (either
precision- or recall-oriented), as described in §6. We incorporate
this in the type filtering component of our model as follows:

P (T |e) =

8<: 1 if ont(e) 6= ∅ ∧ T ∩ ont(e) 6= ∅
1 if ont(e) = ∅ ∧ cat(e) ∩ catLn(T ) 6= ∅
0 otherwise,

where T ∈ {PER,ORG,PROD} and ont(e) returns the set of
types for an entity in the DBpedia ontology.

The combination of our category based filtering approach with
DBpedia based filtering has a positive effect on both precision and
recall, Table 10 (p2 and r2). The two approaches complement each
other as the category based filtering covers all entities, but is im-
precise, while filtering based on the DBpedia ontology is precise,
but only covers some of the entities in Wikipedia.

Anchor-based co-occurrence. Another approach employed at the
Entity track [30, 40] is to only consider entities that link to, or are
linked from, the Wikipedia page of the source entity. We view this
as a special case of co-occurrence; its strength is proportional to the
number of times source and target entities cross-link to each other
on their corresponding Wikipedia pages. We estimate this anchor
based co-occurrence as follows:

Panc(e|E) = λa ·
c(e, Ea)P
e′ c(e′, Ea)

+ (1 − λa) · c(E, ea)P
E′ c(E′, ea)

,

where c(e, Ea) is the number of times the candidate entity e occurs
in the anchor text on the Wikipedia page of the input entity E, and
c(E, ea) is the other way around. We incorporate this into the pure
co-occurrence component (§5) as a sum with equal weights.

With the addition of the anchor-based co-occurrence we further
improve our precision and recall scores; see Table 10 (p3 and r3).
Anchor-based co-occurrence works well in this setting as for most
topics the relevant entities occur as anchor texts on the page of the
source entity and vice versa (e.g., topics #9 and #20).

Wikipedia-based evaluation. Another way to compare our model
and those of other TREC participants is to use the Wikipedia based
evaluation employed throughout the paper. From each participant’s
run we extract the Wikipedia fields and evaluate the number of pri-
mary Wikipedia pages for each topic in terms of R-precision and
Recall@100. We observe that we outperform all but one of the
other approaches in terms of R-precision (p3) and all approaches in
terms of Recall@100 (r1, r2 and r3). The high precision achieved
by the best performing team is due to their extensive use of heuris-
tics, e.g., using a web search engine to collect relevant pages, craft-
ing extraction patterns and exploiting lists and tables [12].

Adjusted judgements. Finally, the runs produced by our models
are not official TREC runs and as such were not included in the
assessment procedure; this might leave us with sparse judgments.
Following standard TREC practice, non-judged documents are con-
sidered non-relevant—the resulting scores could therefore be an
underestimation of our actual retrieval performance. To investi-
gate how this affects our results we remove all entities for which
there is no judgment available at all (neither primary, relevant or
non-relevant, for neither the homepage or Wikipedia fields). We
observe that only considering judged entities has a big affect on the
precision and recall of our model (extended with anchor based co-
occurrence and improved type filtering), see Table 10 (p4 and r4).
In the precision oriented model 763 of the 6184 pages are judged
(186 primary, 78 relevant). In the recall oriented model 1119 of the
6172 pages are judged (214 primary, 156 relevant). These num-
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bers show that many of the returned entities have not been judged,
impeding an assessment of the full potential of our models.

11. CONCLUSION
We examined an architecture for addressing the related entity

finding (REF) task on a web corpus, where we focused on four
core components: pure co-occurrence, type filtering, contextual in-
formation, and homepage finding. Initially we investigated the task
on a smaller, less noisy corpus, using Wikipedia pages to uniquely
identify entities. To identify a potential set of related entities we
looked at four measures for computing co-occurrence and found
that χ2 performed best. An analysis showed that rankings of all
methods were polluted by entities of the wrong type. We found
that even a basic category based type filtering approach is very ef-
fective and that the level of category expansion can be tuned to-
wards precision or recall. Furthermore, adding context improves
both recall and precision by ensuring that source and target entities
engage in the right relation. We then looked at the REF task in the
setting of a web corpus and found that using a larger corpus im-
proves the estimations of both co-occurrence and context models.
To conform to the official REF task we used a homepage finding
component to map the Wikipedia entity representation to a home-
page and found that our framework achieves decent precision and
very high recall scores compared to other approaches on the official
task. Finally, we found that our model can effectively incorporate
additional heuristics that lead to state-of-the-art performance.
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