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Query auto-completion assists web search users in formulating queries with a few keystrokes, helping them
to avoid spelling mistakes and to produce clear query expressions, and so on. Previous work on query auto-
completion mainly centers around returning a list of completions to users, aiming to push queries that are
most likely intended by the user to the top positions but ignoring the redundancy among the query candidates
in the list. Thus, semantically related queries matching the input prefix are often returned together. This
may push valuable suggestions out of the list, given that only a limited number of candidates can be shown
to the user, which may result in a less than optimal search experience.

In this article, we consider the task of diversifying query auto-completion, which aims to return the correct
query completions early in a ranked list of candidate completions and at the same time reduce the redundancy
among query auto-completion candidates. We develop a greedy query selection approach that predicts query
completions based on the current search popularity of candidate completions and on the aspects of previous
queries in the same search session. The popularity of completion candidates at query time can be directly
aggregated from query logs. However, query aspects are implicitly expressed by previous clicked documents
in the search context. To determine the query aspect, we categorize clicked documents of a query using a
hierarchy based on the open directory project. Bayesian probabilistic matrix factorization is applied to derive
the distribution of queries over all aspects. We quantify the improvement of our greedy query selection model
against a state-of-the-art baseline using two large-scale, real-world query logs and show that it beats the
baseline in terms of well-known metrics used in query auto-completion and diversification. In addition, we
conduct a side-by-side experiment to verify the effectiveness of our proposal.
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1. INTRODUCTION

Query auto-completion (QAC) is a prominent feature provided by many modern search
engines. The goal of QAC is to accurately predict the user’s intended query with only
a few keystrokes (i.e., typed prefix), helping the user formulate a satisfactory query
with less effort and avoid misspelling it as well. In the absence of any knowledge of
the user’s context or preferences, the standard QAC approach is to return a ranked list
of query candidates that strictly match the prefix by their popularity (i.e., frequency)
[Bar-Yossef and Kraus 2011; Shokouhi and Radinsky 2012; Shokouhi 2013; Whiting
and Jose 2014; Cai et al. 2014b], ignoring similarity between the candidates in this
list and thus resulting in possibly redundant lists of completions. The length of the
list of returned QAC candidates is often limited; if too many redundant queries are
returned, user satisfaction may be negatively impacted, especially for prefixes with
a large number of (possibly redundant) QAC candidates. Therefore, without further
information to disambiguate the user’s query aspect, the search engine needs to focus
on how best to produce a list of relevant and diversified QAC candidates that can cover
different interpretations.

Intuitively, a sensible QAC approach should maximize the satisfaction of the popu-
lation of users typing the prefix, which involves a trade-off between presenting more
possible QAC candidates of the “correct” query aspect and having diverse QAC can-
didates in the top positions of the list of QAC candidates for a given prefix, that is,
returning the most probable queries early and removing redundant query candidates
as well. By doing so, the chance that any user typing the same prefix will find at least
one satisfactory query candidate for one’s particular information need is maximized.
Thus, it is important to capture the user’s query aspect and reduce the redundancy of
query completions.

Let us illustrate the meaning of query completion redundancy, which refers to the
situation in which some auto-completed queries are of equivalent meaning to preceding
queries in the list of QAC candidates, describing almost the same query aspect. Table I
contains a search session from the well-known AOL query log [Pass et al. 2006]. For
the sake of the example, let us assume that we have not yet seen the last query (“sony”
in Row 6) and that it is, in fact, the initial segment (prefix) “so” of this query for
which we want to recommend query completions. A regular baseline [Bar-Yossef and
Kraus 2011] based on the most popular query is likely to rank the QAC candidates
as a list shown in Row 8. But if we look in the list (e.g., QAC candidates at rank
1, 6, and 9), we see that the queries “southwest airlines,” “southwestairlines,” and
“southwest airline” are all returned. Clearly, these three candidates are semantically
closely related to each other and probably express an identical query aspect, which
can be easily confirmed by considering the overlap of the search engine result pages
(SERPs) produced for these three queries. We hypothesize that, in this example, the
latter two candidates—“southwestairlines” and “southwest airline”—in this list of QAC
candidates (Row 8) are redundant completions for the prefix “so.” Thus, to improve the
user’s search satisfaction, they should be removed from the list, especially when only a
few QAC candidates can be returned. By doing so, the QAC performance in this case,
typically measured by Mean Reciprocal Rank (MRR), can be improved given that the
final submitted query is “sony.” Moreover, in this case, if the final query submission is
“social security administration,” the MRR score obviously can be further increased as
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Table I. A Session Example from the AOL Dataset Consisting of Five Queries
(Rows 2–6), and a Ranked List of Top Ten QAC Candidates (Row 8), Separated
by “;” and Returned by MPC [Bar-Yossef and Kraus 2011] after Typing the Prefix

“so” of the Last Query “Sony”

1 SessionID UserID Query Time
2 419 1020 compaq 20060315, 14:18:42
3 419 1020 hewlit packard 20060315, 14:26:58
4 419 1020 toshiba 20060315, 14:32:31
5 419 1020 averatec 20060315, 14:35:39
6 419 1020 sony 20060315, 14:38:15
7 A ranked list of query completions for the prefix “so”
8 southwest airlines; southwest; song lyrics; social security;

sopranos; southwestairlines; sony; sofia laiti;
southwest airline; social security administration;

more redundant candidates before “social security administration” in the list of QAC
candidates are cleared.

After removing redundant queries from the list of QAC candidates, more QAC can-
didates can be included, which increases the probability of matching the intended
query of the user. Thus, in this article, we consider the task of diversifying query auto-
completion (D-QAC), which aims to return the correct query early in the QAC ranking
list and to reduce the redundancy among the QAC candidates. After formally describing
the D-QAC problem, we develop a greedy query selection (GQS) approach for D-QAC.
Rather than using an algorithm that aims to find a global optimum given a prefix,
we implement a greedy algorithm to address the D-QAC task because it follows the
problem-solving heuristic of making the locally optimal choice at each stage, which is
consistent with the purpose of D-QAC, that is, to maximize the diversity of the reranked
list of query completions. In addition, compared to greedy algorithms, a globally opti-
mal algorithm is usually more time-consuming [Cormen et al. 2009]. GQS considers
the query aspects that are implicit in query candidates that are popular at query time
and in a user’s previous search behavior. We capture the former by exploiting previous
query frequency before query time and the latter by using a user’s previous queries and
the documents that they clicked in the current session. We identify a query’s aspects
by categorizing its clicked URLs using the Open Directory Project (ODP) taxonomy,1 a
topical hierarchy structure for URL categorization.

In practice, our GQS model faces two main challenges. One relates to a query cold-
start problem. When ranking the query candidates in the testing phase, we may not
know any aspect information about a query candidate from the logs in the training
period. The other problem is a sparseness problem: we have only limited aspect in-
formation about every query. For the query cold-start problem, we propose a solution
by which an unlabelled query can be assigned the same aspects as its most semanti-
cally related query that has been labelled by the ODP in the training period. For the
sparseness problem, we apply a Bayesian probabilistic matrix factorization approach
to derive a distribution of a query over all aspects.

We evaluate our GQS model using two large-scale, real-world query logs and show
that it outperforms a competitive state-of-the-art baseline in terms of well-known
metrics used in QAC and diversification, for example, MRR and α-nDCG, respectively.
We also conduct a side-by-side comparison to assess the diversity of QAC suggestions.
Our contributions in this article can be summarized as follows:

1http://www.dmoz.org.
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(1) We propose the task of diversifying query auto-completion (D-QAC), which aims to
return the user’s intended query early in a list of QAC candidates and, simultane-
ously, to reduce the redundancy of the QAC list. To the best of our knowledge, there
is no published work on D-QAC.

(2) We propose a greedy query selection (GQS) approach for D-QAC that captures the
query aspect not only from the current search popularity, but also from the search
context in the session.

(3) We study a query cold-start problem, for which we do not have any aspect informa-
tion about a query from the logs in the training period. For such unknown queries,
we assign aspect labels from its semantically most closely related query for which
aspect information has been found during the training period.

(4) We analyze the effectiveness of our GQS model and find that it significantly outper-
forms state-of-the-art baselines for D-QAC in terms of MRR and α-nDCG. Gener-
ally, against the best baseline, GQS achieves an improvement of around 2.3% and
5.6% in terms of MRR and α-nDCG, respectively.

We describe related work in Section 2. The D-QAC problem and our proposed solution
are described in Section 3. Section 4 presents our experimental setup. In Section 5, we
report our results. We present our conclusions in Section 6, in which we also suggest
future research directions.

2. RELATED WORK

In this section, we briefly discuss recent work that is related to our D-QAC task. To
the best of our knowledge, there is no published work that focuses on D-QAC. Thus, we
first give a brief background on QAC in Section 2.1, which is followed by summarizing
diversifying web search results in Section 2.2, and a discussion of diversifying query
suggestions in Section 2.3.

2.1. Query Auto-completion

Since the first QAC application in web search was launched by Google in 2004,2 the
feature has also been known as “type-ahead” or “auto-complete.” QAC has been well
studied and has been successfully embedded as a prominent feature into common
search engines.

The Most Popular Completion (MPC) model [Bar-Yossef and Kraus 2011] is one of the
most effective QAC approaches. It ranks QAC candidates according to their popularity:

MPC(p) = argmax
q∈C(p)

f (q)∑
qi∈QLog

f (qi)
, (1)

where the function f (·) returns the frequency of an input query, for example, q and qi,
in query log QLog; C(p) is a pool of QAC candidates matching the prefix p. Essentially,
the MPC model assumes that the current query popularity distribution is the same as
in the past and, consequently, sorts QAC candidates by their past popularity in order
to maximize the QAC effectiveness for all users, on average.

However, temporal information, for example, recency and seasonality, is not taken
into account in the original MPC model even if the query popularity is changing over
time. To tackle this problem, Shokouhi and Radinsky [2012] propose ranking QAC can-
didates by predicted query frequency based on time series analysis, for which queries
recurring within specific temporal intervals, for example, day/night and workday/

2http://googleblog.blogspot.nl/2004/12/ive-got-suggestion.html.
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weekend, are modeled differently. In an attempt to exploit both recent trends con-
cerning query popularity and past query popularity, Whiting and Jose [2014] propose
several QAC ranking approaches by collecting query popularity evidence from a pe-
riod of recent 2 to 28 days or from a recent query chunk with a fixed size for a given
prefix. The cyclic behavior of query popularity can be determined with high accuracy
according to its historical frequency distribution [Shokouhi 2011]. Accordingly, cyclic
behavior together with recent trends in query popularity have been introduced to pre-
dict a query’s future frequency. Based on this, better ranked lists of QAC candidates can
be produced [Cai et al. 2014b, 2016a]. Forecasts obtained from time-series modeling
are reliable, but selecting the optimal time period remains a challenge. Furthermore,
Cai and de Rijke [2016a] propose a learning-based QAC approach in which features
derived from similar queries and semantically related terms are taken into account.

Aside from temporal information, personalization, in the form of search context or
personal preference, is another aspect that has been studied in the setting of QAC. For
instance, Bar-Yossef and Kraus [2011] developed a hybrid QAC model in which the QAC
candidates are ranked by a final score that is produced by linearly combining the MPC
score and the similarity score between candidates and the search context extracted
from a user’s recent queries. Guo et al. [2011] propose a two-step approach to rank QAC
candidates by learning the user’s context as well, that is, the user’s search history, to
match against pregenerated topic models. Similarly, Liao et al. [2011] capture a user’s
recent queries for matching against the query clusters learned from the clickthrough
graph for ranking QAC candidates. Shokouhi [2013] exploits a user’s personal profile, in
which a user’s age, gender, location, and previous queries are utilized to generate user-
based features for learning to personalize QAC; this model tries to find similar users
who share common search activities with the current user, to rerank the completion
candidates. In addition, Cai and de Rijke [2016c] investigate when to personalize QAC
by capturing the signals from the typed query prefix, clicked documents, and preceding
queries in the same session.

More recently, another factor, the user’s interaction behavior, has been studied for
QAC. For instance, Mitra et al. [2014] investigate the relationship between user inter-
action patterns and QAC engagement, and find that users are most likely to engage
in QAC at word boundaries. Li et al. [2014] propose a two-dimensional click model for
modeling the QAC process after observing the existence of horizontal skipping bias and
vertical position bias in the QAC process. Jiang et al. [2014] exploit the search context
to learn user reformulation behavior and apply a supervised learning approach for
QAC, where term-, query- and session-level features of user reformulation behavior
are developed. Hofmann et al. [2014] conduct an in-depth study of user interactions
with QAC in web search using eye-tracking and client-side logging, through which they
identify a strong position bias towards examining and using top-ranked query comple-
tions. Mitra [2015] learns distributed representations of query reformations using deep
neural network models, through which session context is modeled for QAC tasks. Li
et al. [2015] pay attention to users’ sequential interactions with a QAC system in and
across sessions, and consequently present a probabilistic model to address the QAC
task by capturing the relationship between users’ behaviors at different keystrokes in
high-resolution QAC logs. Zhang et al. [2015] study implicit negative feedback during
user-QAC interactions and propose a novel adaptive model that adapts query auto-
completion to users’ implicit negative feedback towards unselected query candidates.
We refer the reader to Cai and de Rijke [2016b] for a recent survey of the state-of-the-art
in QAC.

Despite many advances, previous QAC approaches focus only on ranking the query
candidates, pushing the most promising queries to the top positions in the list of
candidates but ignoring the redundancy of these candidates, which is likely to hurt
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the user’s search satisfaction as users may fail to find an acceptable query completion,
especially when the number of QAC candidates that can be returned to users is very
limited. In contrast, D-QAC considers both relevance and diversity.

2.2. Diversifying Web Search Results

There has been a significant amount of research on search result diversification that
is aimed at tackling query ambiguity. In one of the early influential publications on
web search result diversification, Maximal Marginal Relevance (MMR) [Carbonell and
Goldstein 1998] is introduced. Here, a trade-off between relevance and diversity of
search results to a query is determined by reducing redundancy while maintaining
relevance when selecting a document (or URL).

A popular strategy for search result diversification is to maximally cover topics,
concepts, or aspects of returned documents. Zhai et al. [2003] combine novelty and
relevance for subtopic retrieval, in which they are concerned with finding documents
that cover many different subtopics of a query topic. Santos et al. [2011] introduce
an intent-aware approach for search result diversification and propose diversification
of the retrieved results for a given query by learning the appropriateness of retrieval
models targeted to each of these intents. Santos et al. [2010a] propose the eXplicit
Query Aspect Diversification (xQuAD) framework, which explicitly models the aspects
underlying an initial query in the form of subqueries. The authors directly estimate the
relevance and novelty of the retrieved documents at the level of multiple subqueries.
Vargas et al. [2012] improve upon intent-oriented diversification schemes through
the introduction of an explicit relevance model. They suggest that a relevance-based
foundation may be better suited for the description of diversification processes and
their underlying principles.

Personalized search result diversification enhances the search experience by con-
sidering both personal preference and plain diversification. For instance, Radlinski
and Dumais [2006] rerank the top results for a given query by introducing diversity
into those results, using past query reformulations learned from a user’s query logs.
They conclude that using diversification is a promising method to improve personal-
ized reranking of search results. Vallet and Castells [2012] combine personalization
and diversification components effectively and develop a generalized framework for
personalized diversification, enhancing each of them by introducing the user as an ex-
plicit random variable in state-of-the-art diversification methods. Liang et al. [2014b]
set up a structured learning framework for supervised personalized diversification, in
which they extract features directly from documents and from a user-interest latent
Dirichlet topic model, resulting in better performance than unsupervised diversifica-
tion algorithms.

Other well-known diversification approaches, including probabilistic models [Chen
and Karger 2006], fusion-based methods [Liang et al. 2014a], query-dependent meth-
ods [Santos et al. 2010b], text-level methods [Bache et al. 2013; Dang and Croft 2013],
and PM-2 [Dang and Croft 2012], will not be described in detail here. However, so far,
all listed work is centered around diversifying web-search results rather than diver-
sifying QACs. To the best of our knowledge, we are the first to address the task of
diversifying QACs.

2.3. Diversifying Query Suggestions

Compared to QAC and diversifying web-search results, there is limited work on diver-
sifying query suggestions (DQS). The task, however, is close to our task in this article,
that is, diversifying QAC.

First, Ma et al. [2010] propose a unified approach to suggest both semantically rele-
vant and diverse queries to Web users, which leverages a Markov random walk model
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on the query-URL bipartite graph. Their method can effectively prevent semantically
redundant queries from receiving a high rank. However, the sparseness problem of the
query-URL bipartite graph is challenging. To alleviate this problem, Song et al. [2011]
rerank the query suggestions by maximizing the diversity of the original search re-
sults from suggested queries. They find that their postranking framework significantly
improves the relevance of suggested queries.

Instead of using query graphs, Li et al. [2012] pick up recommended queries to avoid
redundancy at the level of query concept. They propose a probabilistic model that allows
query recommendations to be determined much more efficiently to satisfy real-time re-
quirements. To avoid query redundancy, Santos et al. [2013] try to locate related queries
from query logs, which relate to common clicks or common sessions for diversifying sug-
gestions. Kharitonov et al. [2013] introduce a contextualization framework that utilizes
a short-term context—for example, the previous queries, the examined documents, and
the candidate query suggestions that the user has discarded—to contextualize and di-
versify the ranking of query suggestions by modeling the user’s information need as a
mixture of intent-specific user models.

Kim and Croft [2014] propose a framework for diversifying query suggestions to as-
sist domain-specific searchers; this framework identifies diverse query aspects, then
suggests both effective and diverse queries based on the identified aspects. Jiang et al.
[2009] propose a new query-suggestion paradigm with both personalization and diver-
sity awareness. They first identify the most relevant query suggestion by a multibipar-
tite representation mined from the query log, then explore the latent structure of the
multibipartite representation, and identify the remaining suggestion candidates with
diversity awareness.

DQS and D-QAC differ in their user input and in the query candidates to be ranked.
The combination of search intent expressed by current search popularity and previously
submitted queries in a session has not been considered for DQS. In this article, this is
one of the approaches that study for D-QAC tasks.

3. DIVERSIFYING QUERY AUTO-COMPLETION

We formally introduce the problem of D-QAC in Section 3.1, describe our greedy query
selection model to deal with D-QAC in Section 3.2, and derive query distributions over
aspects in Section 3.3.

3.1. The D-QAC Problem

Before introducing our method for D-QAC, we first recall the main notation used in
this article in Table II, then state the problem of D-QAC. As the search engine returns
only the top N QAC candidates to its users, the objective of D-QAC is to maximize the
probability that the average user finds at least one useful QAC candidate within the
top N candidates.

Assume that the following are given:

—a prefix p of the last query qT in a search session consisting of T queries
{q1, q2, . . . , qT };

—an initial list of QAC candidates RI produced for this prefix p with length |RI| = kI ;
—the probability of relevance P(Rel | a, p, CS) of query aspect a for prefix p given the

search context CS consisting of a sequence of preceding queries before qT , that is,
{q1, q2, . . . , qT −1};

—and a satisfaction value Ps(Rel | qc, p, a, CS), that is, a probability of QAC candidate
qc matching the query aspect a given the search context CS.

First, we start with a simplified objective of the D-QAC problem, which aims to
satisfy the average user who enters the prefix p by finding at least one acceptable QAC
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Table II. Main Notation used in the Article

Notation Description
T number of queries in a session
qt the tth (t = 1, 2, . . . , T ) query in a session
p prefix of the last query qT in a session
RR a list of QAC candidates for prefix p returned to the user
RI an initial QAC ranking list matching prefix p
kI number of QAC candidates in RI , that is, |RI |
a aspect
q(i) the probability of relevance of query q to the ith aspect
CS search context, that is, sequence of queries preceding qT : {q1, q2, . . . , qT −1}
qc query candidate in a QAC list
λ trade-off between search popularity and previous search context
f (q) frequency of query q
θ decay factor
qs selected query in RR

ωt normalized decay brought by temporal interval
TD(qt) time interval between qt and qT

N number of QAC candidates finally returned to a user, that is, a cutoff
Q set of unique queries
QL set of labelled queries ⊆ Q
A set of unique aspects
Nq number of unique queries, that is, |Q|
Ma number of unique aspects, that is, |A|
kf number of latent features used in BPMF

candidate among the top N QAC candidates returned, given the user’s search context
CS, where RR ⊆ RI with |RR| = N, such that N ≤ kI . This is achieved by maximizing

P(RR | p, CS) = P(Rel | p, CS)

⎛
⎝1 −

∏
qc∈RR

(1 − Ps(Rel | qc, p, CS))

⎞
⎠ . (2)

Let us illustrate this objective and see how it formalizes our intuition. Note that Ps(Rel |
qc, p, CS) can be interpreted as the probability that a QAC candidate qc satisfies a user
who enters the prefix p given the search context CS. Then, (1 − Ps(Rel | qc, p, CS))
indicates the probability that qc fails to satisfy the user. Therefore, the probability that
all selected QAC candidates fail to satisfy the user equals its product under the query
independence assumption. One minus that product is the probability that at least one
QAC candidate satisfies the user. Finally, the score, weighted by P(Rel | p, CS), denotes
the probability that the set of query candidates RR satisfies the average user. Then, we
break this objective in Equation (2) down to the aspect level as follows:

P(RR | p, CS) =
∑

a

P(Rel | a, p, CS)

⎛
⎝1 −

∏
qc∈RR

(1 − Pv(Rel | qc, p, a, CS))

⎞
⎠ , (3)

where a is a given aspect and summing over all aspects weighted by P(Rel | a, p, CS)
denotes the probability that the set of query candidates RR satisfies the average user
who enters prefix p at the aspect level.

The objective of the D-QAC framework indicated in Equation (3) is to promote diverse
rankings of query completions by penalizing redundancy at every rank in the list of
QAC candidates. To achieve this objective, it selects a candidate that is maximally
different from those previously selected in RR (thus minimizing redundancy), while

ACM Transactions on Information Systems, Vol. 34, No. 4, Article 25, Publication date: June 2016.



Diversifying Query Auto-Completion 25:9

still relevant to the query aspect. This is operationalized by iteratively filling RR with
one query q� ∈ RI\RR each time until |RR| = N. Thus, we produce this optimal query
q� at each rank by the objective in Equation (4):

q� ← argmax
qc∈RI\RR

∑
a

P(Rel | qc, p, a, CS)
∏

qs∈RR

(1 − P(Rel | a, p, qs, CS)), (4)

where P(Rel | qc, p, a, CS) denotes the probability that, for prefix p, candidate qc meets
the query aspect a given the search context CS, and P(Rel | a, p, qs, CS) indicates the
conditional probability that the selected query qs for prefix p matches the aspect a
given the search context CS. Thus,∏

qs∈RR

(1 − P(Rel | a, p, qs, CS))

denotes the probability that all previously selected queries qs ∈ RR fail to satisfy the
user, and the product

P(Rel | qc, p, a, CS)
∏

qs∈RR

(1 − P(Rel | a, p, qs, CS))

indicates the probability that none of the selected queries in RR satisfy the query
aspect a but, finally, qc does. Finally, the QAC candidate qc ∈ RI\RR with the maximal
probability satisfying the query aspect is chosen for inclusion in the list RR.

3.2. Greedy Query Selection For D-QAC

In this section, we propose our GQS model to deal with D-QAC. In this model, we
assume that the probability in Equation (4) that a query candidate qc meets the query
aspect P(Rel | qc, p, a, CS) can be expressed either by the current search popularity
or implicitly by the closeness to previous queries in the session context CS, with a
trade-off λ (0 ≤ λ ≤1) controlling the contributions from these two parts. Thus,

P(Rel | qc, p, a, CS) = λP(qc | p) + (1 − λ)P(Rel | qc, a, CS) (5)
= λP(qc | p) + (1 − λ)P(Rel | qc, a, q1, q2, . . . , qT −1)

= λP(qc | p) + (1 − λ)
∏

qt∈CS

P(Rel | qc, a, qt),

where the query aspect expressed by search popularity P(qc | p) can be directly esti-
mated by

P(qc | p) = f (qc)∑
q∈RI

f (q)
, (6)

where f (q) indicates the frequency of query q ∈ RI . Before combining these two prob-
ability scores, they should be normalized. Obviously, the query aspect is dominated
solely by the search popularity if λ = 1 or by the search context if λ = 0. The probabil-
ity P(Rel | qc, a, qt) in Equation (5) can be simply estimated by the normalized distance
between qc and qp given a specific aspect a, weighted by the temporal intervals:

P(Rel | qc, a, qt) = ωt ×
⎛
⎝1 − |qc(a) − qt(a)|√∑Ma

i=1(qc(i) − qt(i))2

⎞
⎠ , (7)

where qt and qc are represented by feature vectors over Ma aspects to be discussed in
Section 3.3. ωt is a normalized decay factor brought by the temporal interval between
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qt and qc (namely, qT ) to make
∑

ωt = 1, as we argue that temporally close queries in
a search session are apt to share common query aspects. Actually, any other similarity
function can be used, including, for example, cosine similarity. However, for computing
the distance at a specific aspect, we do need to normalize the score at this specific aspect
dimension. Different similarity functions will return similar results. Note that, in our
model, all queries are represented by a vector; each entry in this vector indicates the
relevance of the query to a particular aspect a. Specifically, qc(i) denotes the probability
of relevance of query qc represented by a vector to its ith aspect. We compute ωt as
ωt ← norm(θTD(qt)−1), where θ is a decay factor and TD(qt) refers to the time interval, for
example, TD(qt) = 1 for the last query qT −1 in the context CS. The query, for example,
qc or qt, can be represented by a probability distribution over aspects returned by
Bayesian probabilistic matrix factorization, which is to be discussed in Section 3.3.
Thus, these probabilities can be computed offline before ranking.

Next, the probability P(Rel | a, p, qs, CS) in Equation (4) indicates to what degree
the selected QAC candidate qs ∈ RR meets the query aspect, which can be learned from
the search logs. We simplify P(Rel | a, p, qs, CS) in Equation (4) as

P(Rel | a, p, qs, CS) = P(Rel | a, qs, CS), (8)

indicating the probability that a query candidate matching the query aspect is domi-
nated by the closeness to the aspect of preceding queries in the session. Finally, based
on the aforementioned query independency assumption, we further have

P(Rel | a, p, qs, CS) = P(Rel | a, qs, CS) ∝
∏

qt∈CS

P(Rel | qs, a, qt), (9)

where P(Rel | qs, a, qt) can be derived in the same way as P(Rel | qc, a, qt) in Equa-
tion (5). By doing so, we can gradually assign one query candidate into the list RR at
a time until reaching the list length |RR|. The details of our query-selection method
can be found in Algorithm 1. We first calculate the semantical similarity of query can-
didates to the search context (Row 3), and inject the most semantically similar query
into RR, shown in Row 6, Algorithm 1, then score the remaining candidates in RI by
measuring how close they are to the query aspects and how diverse they are to the
selected query in RI (see Row 10), and finally select the optimal candidate to RI by Row
12 and 13. We iteratively select one candidate at a time from the remaining list until
RR = N.

Clearly, as shown in Algorithm 1, first, we should initialize RR. We consider two
options. The first option starts with RR ← q∗, where q∗ is the most popular completion
in RI at the time of querying because popular queries normally receive high attention.
We write GQSMPC to denote this variant of the GQS model. Another option initializes
RR with the most semantically related query to the previous queries in the search
context, where q∗ can be directly returned by using word2vec [Mikolov et al. 2013b]
because queries in the same session normally express closely similar aspects. We write
GQSMSR to denote the variant of our GQS model that starts with the semantically most
related query.

Finally, to get these probabilities used in our GQS model, for example, P(Rel | qc, a, qt)
in Equation (5) and P(Rel | qs, a, qt) in Equation (9), we should know the query distribu-
tion over all aspects, which is returned by a Bayesian probabilistic matrix factorization
(BPMF)–based algorithm, overcoming the sparseness problem of not knowing the di-
rect relationship between a query and an aspect (see Section 3.3). However, BPMF
needs to know at least one aspect label of each query while it happens that we may
not know any aspect information about a query. To address this, we use the scenario
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ALGORITHM 1: GQS for D-QAC

Input: Prefix p, an initial QAC list RI , size of returned QAC list: N, search context CS

Output: A reranked QAC list RR;
1: RR = ∅
2: for each candidate qc ∈ RI do
3: FirstQuery(qc) ← Similarity(qc, CS); %%% Alternatively, MPC(qc)
4: end for
5: q� ← arg maxqc∈RI FirstQuery(qc)
6: RR ← RR ∪ {q�}
7: RI ← RI\{q�}
8: for |RR| ≤ N do
9: for qc ∈ RI do
10: s(qc) ← ∑

i P(Rel | qc, p, a, CS)
∏

qs∈RR
(1 − P(Rel | a, p, qs, CS))

11: end for
12: q� ← arg maxqc s(qc)
13: RR ← RR ∪ {q�}
14: RI ← RI\{q�}
15: end for
16: Return RR

proposed in Algorithm 2 by finding a labelled target query that is the semantically
most related query to the unlabelled query.

3.3. Generating a Query Distribution over Aspects

In this section, we discuss how to generate a query distribution over aspects. We
use BPMF to overcome the sparseness problem of not knowing direct relationships
between a query and an aspect using the ODP. Before detailing our BPMF-based
approach to this, we address the query cold-start problem, that is, not knowing any
aspect information about a query using ODP categorization from the training period.
We assign the aspect labels from its semantically most related query in the labelled
query set, because semantically related queries (or words), which often express similar
search aspects, have been either directly suggested to the user or internally used by the
search engine to improve the search quality [Bollegala et al. 2007; Chien and Immorlica
2005].

More precisely, given an unlabelled query q and a set of labelled queries QL, we
return a labelled query qo ∈ QL for q as

qo ← argmax
ql∈QL

cos(q, ql) = argmax
ql∈QL

1
W

∑
wk∈q

∑
w j∈ql

cos(wk, w j). (10)

We take the cosine similarity between two queries, represented by the average of the
cosine similarity between two sets of normalized word vectors, excluding the stop words.
The word vector representation can be directly returned by word2vec [Mikolov et al.
2013a, 2013b] learned from the query logs. The details are shown in Algorithm 2, in
which we first score each labelled query in QL by its cosine similarity to the unlabelled
input query in row 2, then select the most similar query (Row 4), from which we obtain
the aspect labels that are finally assigned to the input query as aspect labels (Row 5).
Using Algorithm 2, all queries in our datasets can be categorized by the ODP. After
that, BPMF can be applied to derive the query distribution over all aspects in order
to calculate the probabilities used in Algorithm 1 to rerank QAC candidates. However,
queries are usually short. For example, the majority in the AOL and MSN logs that
we use in this article consists of fewer than three words (see Figure 2(b)). Thus, it
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ALGORITHM 2: Dealing with the Query Cold-Start Problem

Input: An unlabelled query q, a set of labelled queries QL with their labels L
Output: Labels of q: l(q);
1: for each query ql ∈ QL do
2: score(ql) = cos(q, ql)
3: end for
4: qo ← argmaxql∈QL

score(ql)
5: l(q) ← l(qo) ∈ L
6: Return l(q) to q

makes sense to use the clicked documents rather than the query itself to identify query
aspects, which is commonly used in search-result diversification. We thus build a large
query-aspect matrix QCNq×Ma using the ODP, with Nq unique queries and Ma unique
aspects, as we will explain.

In the diversity task of TREC,3 the ground truth is generated by humans both for
relevance and for aspects. In our setting of diversified QAC, we first train our model
by proposing a new approach for inferring multiaspect relevance for a query from
clickthrough data in the log using aspect information from the ODP.4 The clickthrough
data is produced from the search behaviors of real searchers and has been proved
effective for labelling the relevance between a document and a query [Joachims 2002].
More specifically, our methodology consists of two major steps. The first step involves
extracting the clickthrough data from the search log. By doing so, we obtain a list of all
clicked URLs for each unique query. The second step involves categorizing these URLs
using the ODP. After that, we infer the aspects of a query by aggregating all aspects
from its clicked URLs. Let us make this more precise.

Definition 3.1 (Multiaspect Relevance). Let a query be given. Given an aspect set
that has m pertinent aspects, that is, an aspect relevance label is independent of other
aspect relevance labels, the multiaspect relevance of a query is an m-dimensional vector
with each entry corresponding to a relevance label for an aspect given the query.

Thus, each entry in a multiaspect relevance vector corresponds to an aspect-relevance
label. This relevance label can be mapped to a numerical value ne(q, url, a) as

ne(q, url, a) =
∑

url∈U (q)

J(url, a) × f (q, url), (11)

where U (q) contains all clicked URLs of a query q, the indicator J(url, a) = 1 if the
clicked url is categorized by aspect a and J(url, a) = 0 if not, and f (q, url) indicates
the number of clicks on URL url after submitting query q. We use the ODP to cat-
egorize the clicked URLs. In practice, following Chapelle et al. [2009], we split the
aspect-relevance judgments into a 5-grade scale set, such as {perfect, excellent, good,
fair, bad} by ne(q, d, a) ← min(ne(q, d, a), 4). After checking the distribution of labels
(see Figure 1(a)) and aspects5 (see Figure 1(b)), we find that the relevance labels, for
exampel, 2, 3, and 4, account for the majority of nonzero labels. In this manner, we
generate our ground truth for the relevance of queries to aspects.

To calculate the probabilities mentioned in Section 3.2, that is, P(qc|p, a, CS) in
Equation (5) and P(a|p, qs, CS) in Equation (8), we should replace the zeros in the

3http://trec.nist.gov/tracks.html.
4DMOZ – the open directory project, http://www.dmoz.org.
5To save space, we plot only the distribution of level-one aspects: in total, 15 aspects.
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Fig. 1. Distributions of labels (left) and aspects (right) in the AOL and MSN datasets, respectively.

original query-aspect matrix QCNq×Ma for the cases in which no direct relationships
between query q and aspect a are inferred using the ODP in the training period. We
use BPMF [Salakhutdinov and Mnih 2008a] to derive the distribution of queries over
aspects. BPMF can be directly applied to the original query-aspect matrix QCNq×Ma ,
returning an approximation matrix that assigns a nonzero value to each entry in the
original matrix to overcome the problem of sparseness and zero probabilities. By doing
so, the original query-aspect matrix QCNq×Ma is approximated by:

QC∗
approx = Q∗

Nq×kf
× C∗

Ma×kf



, (12)

where Q∗
Nq×kf

and C∗
Ma×kf

represent the query- and aspect-specific latent feature ma-
trix, and Nq, Ma, and kf indicate the number of queries, aspects, and latent features,
respectively. Like Cai et al. [2014a, 2016b], we compute the value QC∗

approx(i, j) of query
i at aspect j in matrix QC∗

approx by marginalizing over the model parameters and the
hyperparameters:

p(QC∗
approx(i, j)|QCNq×Ma,�0) = (13)∫ ∫
p(QC∗

approx(i, j)|Qi, C j)p(Q, C|QCNq×Ma,�Q,�C)p(�Q,�C |�0)d{Q, C}d{�Q,�C},

where �Q = {μQ, �Q} and �C = {μC, �C} are hyperparameters of query set Q con-
sisting of all unique queries and of aspect set A consisting of all unique aspects,
respectively. The prior distributions over the query and aspect feature vectors are
assumed to be Gaussian, and �0 = {μ0, �0, W0} is a Wishart distribution hyperparam-
eter with �0 × �0 scale matrix W0. The intuition behind this approximation is that the
relevance of a query to aspects is determined by a small number of unobserved hyper-
parameters. This means that taking a Bayesian approach to the prediction problem
involves integrating the model hyperparameters. In addition, the use of Markov chain
Monte Carlo (MCMC) methods [Neal 1993] for approximating relevance comes from
finding only point estimates of model hyperparameters instead of inferring the full
posterior distribution over them, which results in a significant increase in predictive
accuracy [Salakhutdinov and Mnih 2008a].

BPMF introduces priors for the hyperparameters, which allows model complexity to
be controlled based on the training data [Salakhutdinov and Mnih 2008b]. When the
prior is Gaussian, the hyperparameters can be updated by performing a single EM
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Table III. An Overview of Models Discussed in the Article

Model Description Source
QD-MPC A typical QAC ranking approach, which ranks QAC

candidates according to their current popularity
collected from the query logs.

[Bar-Yossef and Kraus 2011]

QD-CON A context-based query-ranking approach, which
reranks QAC candidates (returned by MPC) by a
hybrid score considering the query popularity and the
similarity to search context in current session.

[Bar-Yossef and Kraus 2011]

QD-QCR A diversification-oriented query-ranking approach,
which reranks QAC candidates (returned by MPC) by
selecting queries from distinct query clusters.

[He et al. 2011]

QD-MMR A diversification-oriented query-ranking approach,
which ranks QAC candidates according to both their
popularity and the dissimilarity between a query
candidate to be selected and those previously selected.

[Carbonell and Goldstein 1998]

GQSMPC+AQ Greedy query selection approach starting with the
most popular query and taking all preceding queries
in session as search context.

This article

GQSMPC+LQ Greedy query selection approach starting with the
most popular query and taking only the last
preceding query in session as search context.

This article

GQSMSR+AQ Greedy query selection approach starting with the
most semantically related query to the preceding
queries in session and taking all preceding queries as
search context.

This article

GQSMSR+LQ Greedy query selection approach starting with the
most semantically related query to the preceding
queries in session and taking the last preceding query
in session as search context.

This article

step [Dempster et al. 1977], which scales linearly with the number of observations
without significantly affecting the time to train the model. The details of BPMF can be
found in Salakhutdinov and Mnih [2008a]. As some of the values in the matrix QC∗

approx
generated by BPMF are negative, we normalize QC∗

approx to guarantee QC∗
approx(i, j) ∈

(0, 1). After normalizing, distributions of queries over aspects can be produced.

4. EXPERIMENTAL SETUP

Section 4.1 provides an overview of the D-QAC models studied in this article and lists
the research questions that guide our experiments, Section 4.2 describes the datasets,
Section 4.3 gives details about our evaluation metrics and baselines, Section 4.4 details
the design of a side-by-side experiment, and we specify our settings and parameters in
Section 4.5.

4.1. Research Questions

We list all models to be discussed in Table III. There are three state-of-the-art baselines
and four types of approaches that we introduce in this article: GQS (Algorithm 1) with
two notions of context (AQ, all preceding queries vs. LQ, only the last query) and two
notions of starting query (MPC, most popular query, vs. MSR, semantically most closely
related query).

The research questions guiding the remainder of the article are the following:

RQ1 Does our GQS model beat the baselines for the D-QAC task in terms of metrics
for QAC ranking (e.g., MRR) and for diversification (e.g., α-nDCG)? (See GQS
models vs. baselines in Section 5.1.)
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RQ2 How does the choice of selecting the first query to be included in the QAC result
list impact the performance in D-QAC of our GQS model? (See GQSMPC+AQ vs.
GQSMSR+AQ and GQSMPC+LQ vs. GQSMSR+LQ in Section 5.2.)

RQ3 What is the impact on D-QAC performance of our GQS model of the choice of
search context, that is, choosing all previous queries in a session or only the last
preceding query? (See GQSMPC+AQ vs. GQSMPC+L and GQSMSR+AQ vs. GQSMSR+LQ
in Section 5.3.)

RQ4 What is the relative D-QAC performance of our QAC models when evaluated
using a side-by-side comparison? (See Section 5.4.)

RQ5 What is the sensitivity of our GQS model? In particular, how is the performance
of our GQS model influenced by, for example, the number of returned QAC can-
didates, namely, the cutoff N, the number of latent features used in BPMF kf ,
and the trade-off λ in Equation (5)? (See Section 5.5.)

4.2. Datasets

We use two publicly available query log datasets in our experiments: AOL [Pass et al.
2006] and MSN [Craswell et al. 2009]. The queries in the AOL log were sampled
between March 1, 2006 and May 31, 2006; those in the MSN log were recorded for one
month in May 2006. For consistency, we partition each log into two parts: a training set
consisting of the first 75% of the query log (ordered by time) and a test set consisting of
the remaining 25%. Additionally, for every log, only queries appearing in both of the two
partitions are kept. Traditional k-fold cross-validation is not applicable to a streaming
sequence since it would disorder the temporal data [Gama et al. 2014]. Thus, queries
in the training set are the ones submitted before May 8, 2006 in the AOL dataset and
before May 24, 2006 in the MSN dataset.

We filter out a large volume of navigational queries with URL substrings (.com,
.net, .org, http, .edu, www, and so on) and removed queries starting with the special
characters (&, $, %, #, and so on) from both datasets. We divide the queries into sessions
by 30min inactivity6 and keep only English queries appearing in both partitions. We
focus on sessions consisting of at least two queries because we would like to leverage
the search aspect of the search context, that is, the previous queries in the current
session.

For each session, the prefix is set to be the first 1 to 5 character(s) of the last query
in the session. To get the training/test set, we remove the input prefixes whose ground
truth is not included in the top 20 QAC candidates returned by MPC to guarantee that
the candidate set contains the final query submission, following standard practice in
the experimental design for QAC tasks (e.g., see Jiang et al. [2014], Shokouhi [2013],
and Cai et al. [2014b]). We remove all test cases in which the final submitted query
cannot be categorized by ODP in the training phase, that is, we cannot infer the query
aspect of such queries, making it impossible to generate the ground truth.

Table IV details the statistics of the datasets used. More than half (64.9%) of all
unique queries in AOL can be categorized by our scenario using the ODP. For the MSN
log, we reach a higher ratio (66.2%). In the AOL log, if the user clicked on a search
result of a query, only the domain portion of the URL in the clicked result is listed;
however, in the MSN log, the full URL is recorded. Toi make it consistent with our
processing of the AOL logs, we keep only the domains of clicked URLs in the MSN
log when inferring the query aspects via clickthrough data. Notice also that, compared
to the average number of queries in a session of AOL (∼3.3), the MSN users seem to
submit more queries in a session (∼5.5).

6This heuristic is only applied to the AOL dataset as the MSN dataset provides session IDs.
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Table IV. Statistics of the AOL and MSN Datasets Used

AOL MSN

Variables Training Test Training Test
# Queries 3,808,083 1,571,346 3,784,925 1,402,308
# Unique queries 452,980 452,980 304,943 304,943
# Labelled Unique Qs 294,363 294,363 201,872 201,872
# Unlabelled Unique Qs 158,617 158,617 103,071 103,071
# Sessions 1,149,528 465,302 674,717 256,512
# Queries / session 3.31 3.38 5.60 5.46
# All prefixes 3,109,247 1,146,768 2,013,671 697,870
# Prefix-1 262,924 90,688 196,831 65,179
# Prefix-2 458,999 162,007 319,362 105,082
# Prefix-3 698,716 251,623 455,109 154,020
# Prefix-4 826,984 309,522 517,570 182,502
# Prefix-5 861,624 332,928 524,799 191,087

Note: The number of prefixes at various lengths are generated when top-20 QAC candi-
dates are returned by MPC, that is, kI = 20. The n in “# prefix-n” indicates the length of
the prefix in characters.

Fig. 2. Distribution of session length in queries (left) and query length in terms (right) in the processed
AOL and MSN datasets, respectively.

In Figure 2, we take a closer look at the processed datasets to be able to report
the ratio of queries at various lengths in words and of sessions at various lengths in
queries. As shown in Figure 2(a), generally, for both datasets, nearly half of the sessions
contain only two queries. The majority of sessions are short (<4 queries), accounting
for 77.3% in the AOL log and 81.2% in the MSN log. Long sessions (>6 queries) are
really rare, accounting for only 6.5% in the AOL log and only 3.5% in the MSN log. For
the length of queries in words, as shown in Figure 2(b), more than 90% of the queries
consist of at most three words, making it challenging to infer the query aspects directly
from queries.

4.3. Evaluation Metrics and Baselines

To evaluate the effectiveness of QAC rankings, MRR has been commonly used in Shok-
ouhi and Radinsky [2012], Shokouhi [2013], Cai et al. [2014b], Jiang et al. [2014], and
Whiting and Jose [2014] as a measure. For a query q with prefix p in the query set
associated with a list of QAC candidates S(p) and the user’s finally completed query
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q′, Reciprocal Rank (RR) is computed as

RR =
{

1
rank of q′ in S(p) , if q′ ∈ S(p)

0, else.
(14)

Then, MRR is computed as the mean of RR for all prefixes.
Regarding the diversity of QAC rankings, we report our results based on the official

evaluation metrics in the diversity task of the TREC 2013 Web track [Collins-Thompson
et al. 2013]: ERR-IA [Chapelle et al. 2009], α-nDCG [Clarke et al. 2008], NRBP [Clarke
et al. 2009], and MAP-IA [Agrawal et al. 2009]. We take α-nDCG at cutoff N as an
example for evaluating the diversity of a QAC ranking, which extends the traditional
nDCG metric [Järvelin and Kekäläinen 2002] for aspect-specific rankings according to

α-nDCG@N = ZN

N∑
i=1

∑
a∈Ap

gi|a(1 − α)
∑i−1

j=1 gj|a

log2(i + 1)
, (15)

where a is an aspect in the set of query aspects Ap, gi|a denotes the aspect-specific gain
of the ith query given aspect a, and the normalization constant ZN is chosen so that
the perfect QAC list gets an α-nDCG@N score of 1. The α-nDCG@N in our experiments
is computed at α = 0.5 in order to give equal weights to both relevance and diversity,
and all rewards are discounted by a log-harmonic discount function of rank. Generally,
these diversity metrics reward newly-added aspects and penalize redundant aspects of
QAC candidates.

We consider four QAC baselines:

QD-MPC. A popularity-based QAC approach, which ranks the query candidates by
their frequency, as computed from the counts in the preceding log [Bar-
Yossef and Kraus 2011];

QD-CON. A context-based QAC approach,7 in which we rerank the query candidates
by a hybrid score considering the query popularity and the similarity to the
search context in the current session [Bar-Yossef and Kraus 2011];

QD-QCR. A diversification-oriented query-ranking approach based on query clus-
ters [He et al. 2011], which reranks QAC candidates returned by MPC via
selecting a query from distinct clusters; the K-means clustering algorithm
is applied to cluster the queries with a fixed number of clusters, that is, 5,
as we evaluate the results produced by returning at least 5 QAC candidates
in our experiments;

QD-MMR. An MMR-based [Carbonell and Goldstein 1998] query ranking, which con-
siders the candidate’s popularity as well as its dissimilarity to those pre-
viously selected queries with setting a trade-off to 0.5; in particular, the
dissimilarity is computed as

dissim(qc, RR) ← 1
|RR|

∑
q∈RR

(1 − cos(q, qc)), (16)

where qc is a query candidate to be selected and q is a query that has
been selected in the query set RR. Both queries are represented by a vector
returned by BPMF, as detailed in Section 3.3.

7We implement the BPMF process to generate a rich query representation over aspects to overcome the
sparsity problem.
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Table V. Statistics of the Side-by-Side Experiment

Number of participants 50
Total number of prefixes assessed 2500
Number of prefixes assessed per prefix length (1, 2, 3, 4, 5) 500
Number QAC-candidates shown per prefix per model 10
Number of prefixes assessed per individual participant 50
Number of models compared 5
Number of pairs of QAC models judged 4

Statistical significance of observed differences between the performance of two ap-
proaches is tested using a two-tailed paired t-test and is denoted using �/� for signifi-
cant differences at level α = .01, or �/� at level α = .05.

4.4. Side-by-Side Experiments

In addition to standard contrastive “bake-off” experiments, we use a second method
for evaluating the diversity of QAC lists. Following Vallet and Castells [2011], Thomas
and Hawking [2006], Vallet [2011], and Chapelle et al. [2012], we show human judges
in a lab setting two ranked lists of QAC candidates for a given prefix and ask them
which of the two is more diverse. This side-by-side evaluation experiment is performed
using 50 master students in computer science. Each participant is given 50 differ-
ent test prefix samples. For each test prefix, five lists of query candidates returned
by corresponding QAC models—baseline, GQSMPC+AQ, GQSMPC+LQ, GQSMSR+AQ, and
GQSMSR+LQ—are presented in pairs to the individual participant, who is asked to indi-
cate which query list is more diverse: GQSMPC+LQ versus baseline, GQSMPC+LQ versus
GQSMPC+AQ, GQSMSR+LQ versus baseline, and GQSMSR+LQ versus GQSMSR+AQ, respec-
tively. Participants were asked to indicate which of the two lists was more diverse
or whether there was a tie. During their assessments, participants were allowed to
use a web search engine to help them decide. The selection of pairs of approaches
for the side-by-side comparison is aligned with the comparisons of those for the stan-
dard contrastive “bake-off” experiments in Section 5.3. By doing so, we can examine
the agreement on diversity preference between human judgments and the preferences
inferred from the contrastive experiments. Table V summarizes the statistics of the
side-by-side experiment.

Following Chapelle et al. [2012], we use agreement to quantify to which extent the
relative order of rankings obtained by computing the α-nDCG@10 scores of system-
produced lists of QAC candidates coincides with human preferences.

4.5. Parameters and Settings

Following Bennett et al. [2012], we set the factor θ = 0.95 in a decay function mentioned
in Section 3.2. We first use one-third of the original test data for validation to optimize
the free parameter λ controlling the contribution of query aspects signaled by the
search popularity and the search context in Equation (5), then use the remaining two-
thirds for the final test. We further discuss the influence of λ in Section 5.5.1. Similarly,
the number of latent features used by BPMF in Section 3.3 is set to kf = 10, which is
followed by additional experiments and detailed discussions on the results generated
when kf is changing in Section 5.5.2.

For labeling query aspects, we use multiple relevance labels and proceed as follows.
We first get a list of all clicked URLs of remaining queries in the training period. Then,
we try to project each clicked URL for a query into a two-level ODP aspect based on
the links within each aspect8 in which the URLs have been categorized. Finally, given

8http://www.dmoz.org/docs/en/rdf.html.
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a query, we aggregate all aspects of its clicked URLs and use the aggregated aspect
information to label the relevance of aspects for the query. Let us consider an example
of the labelling process.

Example 4.1. Given a query q, we find that two URLs, for example, d1 and d2, are
clicked c1 and c2 times, respectively, according to the query log after submitting q. At
the same time, based on the links within each ODP aspect, d1 is labelled with aspects
a1 and a2, and d2 is labelled with aspects a2 and a3. Consequently, to query q, we assign
aspects a1, a2, and a3, with counts c1, c1 + c2, and c2 as relevance, respectively.

In total, we find 513 level-two topical aspects originated from 15 level-one topi-
cal aspects in our dataset based on this process.9 These aspects are explicit. For in-
stance, we can find aspects such as “/arts/movies,” “/shopping/crafts,” and “/business/
financial_services,” for which “/arts,” “/shopping,” and “/business” are level-one aspects;
“/movies,” “/crafts,” and “/financial_services” are their corresponding level-two aspects,
respectively.

In previous research on QAC, it is often assumed that users are often given a list
of top N = 10 (at most) query completion candidates. This is a common setting used
by many web-search engines and works [Cai et al. 2014b; Jiang et al. 2014; Shokouhi
2013]. In our experiments, we first retrieve the top 20 QAC candidates (at most) as
determined by MPC, then return a final list of the top 10 (at most) candidates for
evaluation after reranking the original QAC list by each specific model; that is, N = 10
is initially used as a cutoff to test the D-QAC performance. In addition, we examine
the performance of the models that we discuss when less or more QAC candidates are
finally returned, for example, cutoff N = 5 and 20, respectively.

In practice, QAC methods should consider efficiency. Thus, the algorithm needs an
efficient data structure, like a hash table, to support fast lookups for input prefix keys.
Before testing, we generate an initial QAC ranking for each prefix offline by the MPC
approach, and represent queries using vectors returned by the BPMF process. Then, for
the diversification task, the main cost is from computing the similarities for reranking
these QAC candidates. In general, our model can work online given that all these
preprocessing steps are done offline.

5. RESULTS AND DISCUSSIONS

In Section 5.1, we examine the performance of models for D-QAC in terms of MRR and
α-nDCG@10, and so on. We follow with a section discussing the scenario used in our
GQS model for selecting the first query into the QAC list in Section 5.2. We examine the
performance of our GQS model under different choices of the search context and zoom
in on the performance at each prefix length in Section 5.3. We report on the outcomes
of a side-by-side comparison on D-QAC performance in Section 5.4. Section 5.5 details
the impact of parameters used in our GQS model and provides an analysis of our GQS
model under various settings.

5.1. D-QAC Performance of GQS

To answer our first research question, RQ1, we examine the D-QAC performance of
all mentioned models in Table III and report the results in Table VI for the AOL and
MSN logs, respectively.

As shown in Table VI, QD-QCR achieves the best performance among the four base-
lines in terms of MRR and diversity metrics, for example, α-nDCG@10. Thus, we use
only QD-QCR as the baseline for comparisons with our proposed models in latter

9As an aside, in total, there are 16 level-one topical aspects in ODP; the aspect “Kids and Teens” was not
found as an aspect in our dataset.
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Table VI. Performance on the AOL and MSN Logs Based on the Top 20 QAC Candidates Initially
Returned by MPC, Which Are Then Reranked by the Methods Listed in the Table

Dataset Method MRR ERR-IA@10 α-nDCG@10 NRBP MAP-IA

AOL

QD-MPC .5372 .3765 .6513 .3487 .2768
QD-CON .5391 .3782 .6526 .3488 .2783
QD-QCR .5393 .3791 .6538 .3491 .2794
QD-MMR .5377 .3783 .6530 .3490 .2785
GQSMPC+AQ .5465 .3872� .6681� .3598� .2864�

GQSMSR+AQ .5509� .3958� .6799� .3632� .2885�

GQSMPC+LQ .5516� .3965� .6852� .3645� .2898�

GQSMSR+LQ .5520� .4007� .6901� .3679� .2907�

MSN

QD-MPC .6158 .4184 .6562 .3891 .2546
QD-CON .6173 .4211 .6674 .4002 .2613
QD-QCR .6191 .4315 .6810 .4064 .2698
QD-MMR .6134 .4205 .6658 .3914 .2602
GQSMPC+AQ .6285 .4417� .6933 .4138 .2757�

GQSMSR+AQ .6301 .4438� .6994� .4152� .2771�

GQSMPC+LQ .6307 .4452� .7003� .4174� .2797�

GQSMSR+LQ .6324� .4458� .7025� .4191� .2794�

Note: The results are reported at a cutoff of N = 10 for all prefixes. The values produced by the best
baseline and the best performer in each column are underlined and boldfaced, respectively. Statistical
significance of pairwise differences (GQS model vs. the best baseline) are determined by the t-test (�/�
for α = .01, or �/� for α = .05).

experiments both on the AOL and MSN logs. In particular, for most test cases in these
two datasets, all these baselines can return the final submitted queries early at the top
two positions, which is evidenced by the fact that the MRR scores are larger than 0.5.
In addition, the MRR scores of the baselines are close to each other. In particular, on
the AOL log, QD-QCR achieves a competitive MRR score with QD-CON, but reports a
minor MRR improvement (<0.5%) against QD-MMR and QD-MPC. QD-MMR displays
a marginally better performance than QD-MPC in terms of MRR, indicating that, for
some cases, QD-MMR is able to remove some redundant candidates in the original
QAC list generated by the basic MPC approach. However, the MRR improvement is
limited because QD-MMR partially relies on the query popularity by which QD-MPC
solidly ranks the QAC candidates and QD-MMR does not consider the in-session con-
text when calculating the dissimilarity between queries. In contrast, on the MSN log,
the baselines achieve a somewhat higher MRR and diversity scores compared to those
on the AOL log. This can be attributed to the difference in session length. Compared
to the sessions in the AOL log, the average length of sessions in the MSN log is much
longer and some repeated queries are found, which helps identify the query aspects of
the last query in session and result in higher MRR and diversity scores.

In order to assess the performance of our GQS models, we compare their results
against those of the baseline, QD-QCR. For the AOL log, as shown in Table VI, com-
pared to the baseline, all of our four QGS models outperform it in terms of MRR and the
diversity metrics. However, the improvements of our models are limited, starting from
a relatively low level of 1.37% improvement achieved by GQSMPC+AQ to a peak improve-
ment of 2.25% reported by GQSMSR+LQ in terms of MRR. In the middle, GQSMPC+LQ
outperforms GQSMSR+AQ, reaching an MRR improvement of 2.28% against the baseline,
while 2.15% made by GQSMSR+AQ against the baseline. All improvements of our GQS
models, except GQSMPC+AQ, against the baseline are statistically significant at level
α = 0.05 using the t-test. For the diversity results, our GQS models report notable
improvements. As an example, let us take the diversity metric α-nDCG@10 to ana-
lyze the models’ performance. Clearly, GQSMSR+LQ performs best, resulting in a 5.55%
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improvement over the baseline on the AOL log. Competitive results are generated by
GQSMPC+LQ, with a 0.7% drop against GQSMSR+LQ but still a 4.80% improvement over
the baseline. Importantly, the improvements achieved by GQSMPC+LQ and GQSMSR+LQ
over the baseline are significant at α = 0.01. In contrast, more modest improvements
over the baseline in terms of α-nDCG@10 are achieved by GQSMPC+AQ and GQSMSR+AQ,
both of which are significant at α = 0.05.

In contrast, on the MSN log, we can see from Table VI that the best results are
again generated by GQSMSR+LQ but with a more modest MRR improvement against
the baseline compared to that on the AOL log. In terms of MRR, significant improve-
ments are achieved only by the GQSMSR+LQ model over the baseline at level α = 0.05.
This can be explained by the fact that most QAC rankings generated both by the
baseline and by our models are high performing, leaving limited space for significant
MRR improvements of our models over the baseline. Regarding the diversity results
on the MSN log, generally, our GQS models beat the baseline in terms of four metrics
in Table VI, Columns 3 to 6. Significant improvements over the baseline in terms of
these four diversity metrics are achieved at level α = 0.05 for most cases. In particular,
using α-nDCG@10, GQSMSR+LQ achieves the largest improvement, around 3.15% over
the baseline. Compared to the MRR improvements achieved by our GQS models, the
improvements in terms of α-nDCG@10 are more pronounced. For some cases, redun-
dant queries can be removed from the QAC list by GQS models, resulting in improved
diversity scores. However, these redundant candidates could be ranked lower than the
final submitted query in the original QAC list. Consequently, they do not affect the
reciprocal rank score; thus, this has a limited impact on the MRR scores.

Summing up, based on the results achieved on the AOL and MSN logs, we conclude
that our greedy query selection approach can remove redundant queries in the original
QAC list, returning the final submitted query early and making the final returned list
cover more aspects of queries. We will compare our GQS models in detail in Sections 5.2
and 5.3.

5.2. Effect of the First Candidate Selected by GQS

Next, we move to research question RQ2, for which we test our proposed GQS models
on both the AOL and MSN log under different choices of the search context used, that
is, all preceding queries before the last query in the session or only the last preceding
query. We begin by analyzing the results generated on the AOL log and reported in
Table VI.

First, we use all previous queries before the last query in session as search context:
CS ← {q1, q2, . . . , qT −1}. Then, we can compare the results produced by GQSMPC+AQ
and GQSMSR+AQ in Table VI to examine the effect of the first query candidate cho-
sen in our GQS model. Clearly, GQSMSR+AQ outperforms GQSMPC+AQ in terms of MRR
and the diversity metrics. Thus, to some extent, our GQS model, starting with the
query candidate that is semantically most similar to the current search context for
D-QAC tasks, outperforms that choosing the most popular candidate first into the final
list RR. In particular, as shown in Table VI, for QAC ranking on AOL, GQSMSR+AQ
achieves a marginal MRR improvement near 1% over GQSMPC+AQ. For some cases,
GQSMPC+AQ and GQSMSR+AQ start with the same candidate, that is, the most popular
candidate is also the most semantically related one. Consequently, these two models
generate the absolutely same QAC ranking lists. As to QAC diversification, GQSMSR+AQ
achieves very high α-nDCG@10 scores of over 0.6, and still achieves near 2% improve-
ment against GQSMPC+AQ, indicating that, on the aspect level, GQSMSR+AQ returns
more queries with multiple aspects as well as pushes the potential query to be sub-
mitted higher than GQSMPC+AQ. Similar findings can be obtained by setting the last
preceding query in a session as the search context, that is, CS ← qT −1 by comparing
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Table VII. Performance, in Terms of MRR and α-nDCG@10, of GQS Models Under Various Choices
of the First Query Candidate Selected and of the Search Context Used, at a Prefix Length #p

Ranging from 1 to 5 Characters on the AOL Log

Metric #p Baseline GQSMPC+AQ GQSMSR+AQ GQSMPC+LQ GQSMSR+LQ

MRR

1 .4673 .4716 .4738 .4739 .4745
2 .4861 .4927 .4946 .4954 .4960�

3 .5140 .5221 .5253� .5258� .5263�

4 .5556 .5620 .5681� .5686� .5689�

5 .5889 .5975 .6030� .6039� .6045�

α-nDCG@10

1 .6012 .6117 .6235� .6272� .6315�

2 .6270 .6393 .6496� .6551� .6592�

3 .6357 .6490� .6605� .6658� .6713�

4 .6611 .6758� .6883� .6944� .6984�

5 .6882 .7051� .7171� .7220� .7276�

Note: The best performer per row is in boldface. Statistical significance of pairwise difference (GQS
model vs. baseline) is determined using the t-test (�/� for α = .01, or �/� for α = .05).

GQSMPC+LQ versus GQSMSR+LQ. As shown in Table VI, compared with the MRR differ-
ence between GQSMPC+AQ and GQSMSR+AQ, the MRR margin between GQSMPC+LQ and
GQSMSR+LQ is smaller. The same phenomena can be found on the metric α-nDCG@10.
However, both GQSMPC+LQ and GQSMSR+LQ show better performance than GQSMPC+AQ
and GQSMSR+AQ, which motivates us to consider research question RQ3 in Section 5.3.
Thus, so far on the AOL log, we can conclude that the first query selected in our GQS
model impacts the QAC ranking performance in the D-QAC tasks and our GQS model
can achieve better D-QAC performance when starting with the most semantically sim-
ilar query rather than the most popular.

The results achieved on the AOL log discussed in Table VI are produced by averaging
the scores of all prefixes at different lengths of prefixes, ranging from 1 to 5. Next, we
compare our models at specific prefix lengths. For comparison, we report the results
in terms of MRR and α-nDCG@10 in Table VII. Generally, as shown in Table VII, our
GQS models, starting with the most semantically related query, that is, GQSMSR+AQ and
GQSMSR+LQ, perform better in terms of MRR than corresponding GQS models start-
ing with the most popular query, that is, GQSMPC+AQ and GQSMPC+LQ. Interestingly,
significant improvements of GQS models over the baseline are more easily observed
at long prefixes, for example, #p = 4 and 5, than short ones, for example, #p = 1 and
2. Intuitively, longer prefixes can cut down the space of candidates sharply, thus can
include more similar candidates in the original QAC list, which would be pushed down
in the list by our approaches, resulting in significant improvements over the baseline.

However, the MRR improvements of GQSMSR+AQ over GQSMPC+AQ and of GQSMSR+LQ
over GQSMPC+LQ are not significant. In terms of α-nDCG@10, as reported in Table VII,
one particularly different finding is that, for some cases, our GQS model can report
significant improvements over the baseline at level α = .01, which is not the case for
MRR, as reported in Table VII. In addition, a near 2% improvement of GQSMSR+AQ over
GQSMPC+AQ and around 1% improvement of GQSMSR+LQ over GQSMPC+LQ are observed
in terms of α-nDCG@10. In contrast, the analogous MRR improvements in Table VII
are lower; this means that our models can help diversify queries.

Next, we turn our attention to results obtained using the MSN log, as reported
in Table VI. Some findings consistent with those achieved on the AOL log can be
observed: (1) the first query to be selected by the GQS approaches has a slight impact
on D-QAC performance; (2) compared to starting with the most popular query, selecting
the semantically most closely related query first in the GQS models is more effective.
We report on performance at the prefix level in terms of MRR and α-nDCG@10 in
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Table VIII. Performance, in Terms of MRR and α-nDCG@10, of GQS Models Under Different Choices
of the First Query Candidate Selected and of the Search Context Used, at a Prefix Length #p Ranging

from 1 to 5 Characters on the MSN Log

Metric #p Baseline GQSMPC+AQ GQSMSR+AQ GQSMPC+LQ GQSMSR+LQ

MRR

1 .4881 .4963 .4991� .4995� .5014�

2 .5456 .5538 .5572� .5578� .5605�

3 .6041 .6147 .6134 .6154 .6152
4 .6523 .6616 .6647 .6646 .6673�

5 .6846 .6945 .6948 .6960 .6975

α-nDCG@10

1 .6313 .6395 .6427 .6423 .6431
2 .6564 .6637 .6691 .6708� .6721�

3 .6679 .6839� .6893� .6927� .6942�

4 .6916 .7051 .7113� .7132� .7146�

5 .7118 .7245 .7302� .7332� .7351�

Note: The best performer per row is boldfaced. Statistical significance of pairwise difference (GQS
model vs. baseline) is determined using the t-test (�/� for α = .01, or �/� for α = .05).

Table VIII. As shown in Table VIII, few MRR improvements over the baseline achieved
by our models at various prefix lengths is significant. However, our models do produce
more diverse QAC rankings as they receive higher α-nDCG@10 scores compared to
the baseline, especially when using the last query in the session as the search context.
We can find from Table VIII that whatever search context is used, again, selecting
the most semantically related query by GQS models is more effective than injecting
the most popular query into the QAC ranking list first. In addition, long prefixes (e.g.,
#p = 4 and 5) seem to gain more in terms of diversity than short ones (e.g., #p = 1
and 2), which is also confirmed by the significance tests; for example, GQSMPC+LQ and
GQSMSR+LQ achieve significant improvements at α = .05 in terms of α-nDCG@10 over
the baseline at #p = 4 and 5, but not at #p = 1. These results are consistent with those
on the AOL log. Thus, apart from the conclusions established based on the AOL log, we
come to another conclusion: that our models can work better for D-QAC tasks in the
cases in which users continue to type more in the search box—bigger diversity gains
over the baseline are achieved with long prefixes rather than with short inputs.

5.3. Effect of the Search Context used by GQS

In this section, we address research question RQ3 by changing the search context, that
is, using either the most recent query qT −1 as CS in Equation (4) or all preceding queries
CS ← {q1, q2, . . . , qT −1}. As shown in Figure 2(a), nearly half of the sessions consist of
more than two queries. In addition, we argue, in a long session with multiple queries,
the query aspects of later queries may be changed as the searcher has read some results
returned for previous queries; thus, they may be different from the original one. The
last preceding query in the search context could be a good signal of the user’s updated
query aspects. We first compare the results reported in Table VI on the AOL and MSN
logs, then move to a prefix level analysis.

We first compare the overall results of GQSMPC+LQ against GQSMPC+AQ generated
on the AOL log and reported in Table VI. The improvements of GQSMPC+LQ over
GQSMPC+AQ in terms of diversity, for example, α-nDCG@10, are obvious, but not
in terms of MRR. For instance, GQSMPC+LQ shows a near 3% improvement against
GQSMPC+AQ in terms of α-nDCG@10, but a less than 1% MRR improvement. In addi-
tion, a statistically significant improvement at level α = .05 is observed in terms of
α-nDCG@10, but not in terms of MRR. Apparently, using only the last query as search
context in our GQS models can generate notably diverse QAC ranking list on AOL. Sim-
ilar findings are obtained by comparing GQSMSR+LQ against GQSMSR+AQ, although the
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Table IX. Per Prefix Bake-off on the AOL Log, in Terms of MRR and α-nDCG@10: GQSMPC+LQ
versus Other Models

Note: The ratios (%) of test prefixes at various lengths for which GQSMPC+LQ loses against the correspond-
ing model listed in Row 2 have a red background, ratios with equal performance have a yellow background,
and those of prefixes for which GQSMPC+LQ wins have a green background.

Table X. Per Prefix Bake-off on the AOL Log, in Terms of MRR and α-nDCG@10: GQSMSR+LQ
versus Other Models

Note: The ratios (%) of test prefixes at various lengths for which GQSMSR+LQ loses against the correspond-
ing model listed in Row 2 have a red background, ratios with equal performance have a yellow background,
and those of prefixes for which GQSMSR+LQ wins have a green background.

improvements are smaller. We compare the results for different search contexts at vari-
ous prefix lengths in Table VII in terms of MRR and α-nDCG@10, respectively. The MRR
improvements of GQSMPC+LQ over GQSMPC+AQ and of GQSMSR+LQ over GQSMSR+AQ are
limited, but stable, at different prefix lengths. However, the α-nDCG@10 results set
GQSMPC+LQ apart from GQSMPC+AQ with significant improvements at α = .05, except
for #p = 5. In contrast, GQSMSR+LQ and GQSMSR+AQ yield very similar α-nDCG@10
scores. We attribute these findings to the fact that (1) diverse queries can be returned
by our GQS models usually at positions lower than the final submitted query, resulting
in undistinguishable MRR scores but discriminable diversity scores; and (2) half of the
sessions consist of only two queries (see Figure 2(a)), which means that the search con-
texts used are the same, resulting in many ties. To verify it, we compare GQSMPC+LQ
versus GQSMPC+AQ and GQSMSR+LQ versus GQSMSR+AQ as well as the baseline in a
per-prefix bake-off. We report the results in Tables IX and X, respectively.

From Table IX, we see that, against the baseline, GQSMPC+LQ wins many compar-
isons, especially in terms of α-nDCG@10 (>50%). We also find many ties between the
baseline and GQSMPC+LQ in terms of MRR. In contrast, GQSMPC+LQ yields a majority
of draws against GQSMPC+AQ in terms of both MRR and α-nDCG@10. Some of the
draws occur when GQSMPC+LQ and GQSMPC+AQ return the same ranked list of QAC
candidates; others happen on prefixes for which the two models return the final sub-
mitted query at top positions in the QAC list, for example, 1 or 2. As to a comparison
of GQSMSR+LQ versus GQSMSR+AQ, similar results can be found except that there are
more ties in terms of MRR and α-nDCG@10. One particularly interesting point shown
in Tables IX and X is that, for most cases, more ties occur when the prefix becomes
longer. This is because the QAC models can return the final submitted query early on
long prefixes, thus can generate more similar QAC rankings.
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Table XI. Per Prefix Bake-off on the MSN Log, in Terms of MRR and α-nDCG@10: GQSMPC+LQ
versus Other Models

Note: The ratios (%) of test prefixes at various lengths for which GQSMPC+LQ loses against the corre-
sponding model listed in Row 2 have a red background, ratios with equal performance have a yellow
background, and those of prefixes for which GQSMPC+LQ wins have a green background.

Table XII. Per Prefix Bake-off on the MSN log, in Terms of MRR and α-nDCG@10: GQSMSR+LQ
versus Other Models

Note: The ratios (%) of test prefixes at various lengths for which GQSMSR+LQ loses against the corre-
sponding model listed in Row 2 have a red background, ratios with equal performance have a yellow
background, and those of prefixes for which GQSMSR+LQ wins have a green background.

The outcomes of the main comparisons on the MSN log—that is, GQSMPC+LQ versus
GQSMPC+AQ and GQSMSR+LQ versus GQSMSR+AQ—are consistent with those on the AOL
log. Regarding the prefix-level analysis (see Table VIII), although the GQS models
using the last query as search context still beat the corresponding models that use
all preceding queries in terms of MRR and α-nDCG@10, the improvements are not
statistically significant. Some significant improvements of GQSMPC+LQ and GQSMSR+LQ
against the baseline are observed, especially on long prefixes. Similarly, we report on a
per-prefix bake-off in terms of MRR and α-nDCG@10 in Tables XI and XII. As the MSN
log contains more sessions with only two queries than the AOL log (see Figure 2(a)),
more draws are found between GQSMPC+LQ versus GQSMPC+AQ as well as GQSMSR+LQ
versus GQSMSR+AQ. This simply happens because, for two-query sessions, the search
context used in GQS models consisting either of all preceding queries or only of the
last query are always the same.

5.4. Side-by-Side Experiments

To answer RQ4, we follow the set-up in Chapelle et al. [2012] and investigate the agree-
ment between the side-by-side comparison produced by human judges and the relative
ranking of QAC approaches that results from the bake-offs discussed in Section 5.3
(see Table XIII). We find that the two evaluation methodologies point in the same di-
rection in the vast majority of pairwise comparisons: the agreement ranges between
83% and 96%. For instance, for the comparison between GQSMPC+LQ and the baseline,
we find that human preferences agree with the preferences obtained from the bake-offs
in Section 5.3 in more than 90% of the cases. The agreement between the two types
of preference for GQSMPC+LQ and GQSMPC+AQ are somewhat lower. We explain this as
follows. The difference in performance in terms of diversity between GQSMPC+LQ and
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Table XIII. Agreements (%) Between Side-by-Side Comparisons
by Humans and Per-Prefix Bake-offs by Algorithms

GQSMPC+LQ vs. GQSMSR+LQ vs.
#p Baseline GQSMPC+AQ Baseline GQSMSR+AQ

1 89.20 85.20 92.60 83.40
2 90.20 86.20 93.40 84.60
3 91.40 87.40 94.40 85.40
4 92.40 88.40 95.00 87.00
5 94.00 90.60 96.00 88.20

Fig. 3. Effect on D-QAC performance of GQS models in terms of MRR (left) and α-nDCG@10 (right) by
changing the trade-off λ in Equation (5), tested on the AOL log.

GQSMPC+AQ is smaller than between GQSMPC+LQ and the baseline, making it harder
for human judges to identify differences or to identify the direction of the difference.
We also observe that agreement tends to be higher for longer prefixes. We explain this
as follows. With longer prefixes, the number of possible completions is smaller than for
shorter prefixes, reducing the possibilities for disagreement and making it easier for
both systems and humans find it easier to determine which aspects and completions
are relevant.

Given the high levels of agreement between human preferences and preferences
induced from contrastive experiments, we conclude that the (significant) differences
between QAC approaches that we found in Section 5.3 are confirmed by the side-by-
side experiments.

5.5. Impact of Parameter Tuning

In this section, we conduct a parameter sensitivity analysis of our GQS models. We
examine the performance of our GQS models in Section 5.5.1 by changing the trade-off
parameter λ in Equation (5) and by varying the number of latent features kf used for
BPMF in Section 5.5.2. We then see how the models perform when more (or fewer)
QAC candidates are returned by varying the cutoff N in Section 5.5.3.

5.5.1. Zooming in on the Trade-off Parameter λ in Equation (5). We first examine the over-
all performance of our GQS models in terms of MRR and α-nDCG@10 by gradually
changing the trade-off parameter λ from 0 to 1 with interval 0.1, then plot the results
in Figures 3 and 4 tested on the AOL and MSN logs, respectively.

On the AOL log, we can see from Figure 3(a) that, when λ varies from 0 to 0.3,
the MRR scores of all GQS models are invariably increased; they continue to go up
until λ = 0.5 except for one case in which GQSMPC+AQ displays an MRR decrease after
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Fig. 4. Effect on D-QAC performance of GQS models in terms of MRR (left) and α-nDCG@10 (right) by
changing the trade-off λ in Equation (5), tested on the MSN log.

λ = 0.3. For most GQS models, the performance in terms of MRR goes down when
λ changes from 0.5 to 1. For any GQS model, if it only focuses on search popularity,
that is, λ = 1 in Equation (5), the performance is worse than when it focuses only on
the search context, that is, λ = 0 in Equation (5). In terms of α-nDCG@10, the peak
performance appears near λ = 0.5 for GQSMPC+AQ and GQSMSR+AQ or near λ = 0.6 for
GQSMPC+LQ and GQSMSR+LQ. For any λ, GQSMSR+LQ always performs best among the
four models in terms of both MRR and α-nDCG@10.

In contrast, for MRR on the MSN log, GQSMPC+LQ and GQSMSR+LQ favor a large λ.
For instance, they achieve peak MRR scores near λ = 0.8. However, GQSMPC+AQ and
GQSMSR+AQ prefer a somewhat smaller λ than GQSMPC+LQ and GQSMSR+LQ. As shown
in Figure 4(a), a maximal MRR score is returned for GQSMSR+AQ near λ = 0.6 and near
λ = 0.7 for GQSMPC+AQ. For the performance in terms of α-nDCG@10, a sharp increase
is observed when λ changes from 0 to 0.1 on all four models, as shown in Figure 4(b). This
means that the search context does help diversify the query candidates. In addition,
the α-nDCG@10 scores go up until λ = 0.8 for GQSMPC+LQ and GQSMSR+LQ and λ = 0.7
for GQSMPC+AQ and GQSMSR+AQ. All four GQS models present a relatively low score
when λ = 1.0. In addition, compared to GQSMPC+AQ and GQSMSR+AQ, the other two
GQS models show bigger fluctuations in terms of both MRR and α-nDCG@10 when λ
changes.

From the observations in Figures 3 and 4, we can conclude that (1) in our GQS
models for the D-QAC task, search popularity and search context are both important
for query diversification. Compared to search popularity, search context may contribute
much more in GQS models for D-QAC as a larger λ (0.5 < λ < 0.9) results in better
performance than that of 0.1 < λ < 0.4, especially on the MSN log (see Figure 4); (2) the
search context used in GQS models, that is, either only the last query or all preceding
queries in session, has a small impact on the performance as these four GQS models
show their peak performance at various λ; and (3) λ may exert a bigger influence on
α-nDCG@10 than MRR as relatively noticeable margins can be seen when λ changes
shown in Figures 3(b) and 4(b).

5.5.2. Effect of the Number of Latent Features kf Uses in Bayesian Probabilistic Matrix
Factorization. Next, we zoom in on the number of latent features kf used in Bayesian
probabilistic matrix factorization for generating the query distributions over aspects.
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Fig. 5. Effect on D-QAC performance of GQS models in terms of MRR (left) and α-nDCG@10 (right), tested
on the AOL log, by changing the number of latent features used in BPMF.

Fig. 6. Effect on D-QAC performance of GQS models in terms of MRR (left) and α-nDCG@10 (right), tested
on the MSN log, by changing the number of latent features used in BPMF.

We manually vary the value of kf in GQS models from 5 to 20. See Figure 5 on the AOL
log and Figure 6 on the MSN log, respectively.

Generally, for the AOL log, when the number of latent features kf used in BPMF
increases from 5 to 12, the performance of our GQS models increases dramatically in
terms of MRR, with a little fluctuation. However, the α-nDCG@10 scores stop increasing
after kf = 10. In addition, when the number of latent features kf varies from 10
to 20, the performance of our GQS models seems to level off, especially in terms of
α-nDCG@10. Another important finding is that the performance in terms of MRR
sometimes goes down when kf increases. For instance, when kf varies from 18 to 20,
the MRR scores of the GQS models, except GQSMPC+LQ, drops. For the MSN log, the
MRR scores of the GQS models invariably increase from kf = 5 to 10 for all GQS
models and remain stable for kf = 10, . . . , 20. Compared to the MRR results on the
AOL log (in Figure 5(a)), the GQS models seem to be more sensitive to the number of
latent features on the MSN log. When kf is small, for example, 5 < kf < 10, the MRR
jumps (see Figure 6(a)) are easily observed, especially for GQSMSR+LQ and GQSMPC+LQ.
Regarding α-nDCG@10 on the MSN log, similar findings can be observed except that
all GQS models arrive at a stable level of performance much earlier (when kf = 8) than
on the AOL log (when kf = 10). From the results shown in Figures 5 and 6, we conclude
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Fig. 7. D-QAC performance of all discussed models, tested on the AOL log, in terms of MRR (left) and
α-nDCG@10 (right) when more (or less) QAC candidates are returned. Note: the scales are different.

Fig. 8. D-QAC performance of all discussed models, tested on the MSN log, in terms of MRR (left) and
α-nDCG@10 (right) when more (or less) QAC candidates are returned. Note: the scales are different.

that our GQS models are robust and not sensitive to the number of latent features kf
when it is “large enough,” for example, kf > 10.

5.5.3. Zooming in on the Cutoff N. Finally, we examine the performance of our GQS
models and the baseline, QD-QCR, when less (or more) QAC candidates are finally
returned by setting the cutoff N = 5 (or N = 20). We plot the results in terms of MRR
and α-nDCG@N scores (N = 5, 10, 20) in Figures 7 and 8, tested on the AOL log and
the MSN log, respectively.10

As shown in Figures 7 and 8, for all five models on both logs, the overall perfor-
mance in terms of MRR increases when more QAC candidates are initially returned
for reranking, that is, when N becomes larger. A larger value of N simply increases
the probability of including the ground truth in the QAC list. In particular, on both the
AOL and MSN log, these models report competitive MRR scores when N = 5. More-
over, the MRR improvements realized by our GQS models over the baseline are further
magnified as N goes up. For instance, on the AOL log, GQSMSR+LQ results in a 1.27%

10The results for N = 10 were already partially reported in Table VI.
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MRR improvement over the baseline at N = 5, a 2.24% improvement at N = 10, and
a 3.72% improvement at N = 20. With respect to query diversification, the improve-
ments of the GQS models are more obvious in terms of α-nDCG@N (N = 5, 10, and 20)
than MRR, as indicated by the relative improvements over the baseline. For instance,
at cutoff N = 20, GQSMSR+LQ shows a 4.43% improvement over the baseline in terms of
α-nDCG@20. This may be because not too much redundant queries can be found among
the top 5 candidates in the list of QAC candidates; thus, it is difficult to make signifi-
cant improvements over the baseline at cutoff N = 5. However, as more candidates are
returned, more query redundancy is introduced into the list of QAC candidates, and
it becomes easier for the GQS models to improve over the baseline. Therefore, based
on our findings from Figures 7 and 8, we conclude that, compared to the baseline, the
advantages of our GQS models over the baseline become more prominent when more
QAC candidates are returned.

6. CONCLUSION

In this article, we have proposed the challenge of D-QAC. We believe that this can
help search engine designers, especially in settings with a limited number of QAC
candidates. We have proposed a GQS model to address the QAC diversification task
and use the ODP taxonomy to identify aspects of URLs, based on which we then
assign query aspects via clickthrough data derived from query logs. The problems of
data sparsity and cold start in traditional recommendation systems are overcome by
incorporating a BPMF approach and determining the semantically most closely related
query using word2vec, respectively.

We have experimentally investigated the D-QAC performance of our GQS models
under various settings. Our results show that the GQS model performs best when
starting with the semantically most closely related QAC candidate and using only the
last preceding query in a session as the search context. This finding indicates that
query aspects are commonly shared by successive queries in a session and may be
changed, especially in long sessions with multiple queries. In addition, we have found
that our GQS model performs better when more QAC candidates are fed to it.

As future work, we plan to move our models to other datasets, for which the ground
truth of query aspects is to be generated by humans rather than the automatically
generated clickthrough data used in this article. In addition, it would be interesting
to introduce other scenarios to deal with the query cold-start problem, as this may be
helpful to obtain the query distribution over aspects.

Furthermore, since we only consider query aspects as they are expressed, either
explicitly or implicitly, by current search popularity or previously submitted queries, it
would be interesting to further collect users’ long-term search history to enhance the
performance of D-QAC, thereby personalizing D-QAC, which can help narrow the space
of query topics, that is, adjust the amount of diversification, by removing nonrelevant
queries, but can still promote relevant queries as well as diversify QAC completions.

Finally, Li et al. [2014] adopt a click model [Chuklin et al. 2015] to shed light on
QAC user interactions. This model is motivated by the fact that users frequently skip
query completion lists even though such lists contain the final submitted query because
the intended query is not ranked at the top positions of the list. What is the relation
between such skips and the degree to which a list of query completions is diversified?
Can the model incorporate diversity, for example, similar to Chuklin et al. [2013]?
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João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey
on concept drift adaptation. Computing Surveys 46, 4, 44:1–44:37.

Jiafeng Guo, Xueqi Cheng, Gu Xu, and Xiaofei Zhu. 2011. Intent-aware query similarity. In CIKM’11. ACM,
New York, NY, 259–268.

Jiyin He, Edgar Meij, and Maarten de Rijke. 2011. Result diversification based on query-specific cluster
ranking. Journal of the Association for Information Science and Technology 62, 3, 550–571.

Katja Hofmann, Bhaskar Mitra, Filip Radlinski, and Milad Shokouhi. 2014. An eye-tracking study of user
interactions with query auto completion. In CIKM’14. ACM, New York, NY, 549–558.
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