
Query Auto Completion
in Information Retrieval

Fei Cai

Query Auto Completion
in Information Retrieval

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in

de Agnietenkapel
op dinsdag 14 juni 2016, te 14:00 uur

door

Fei Cai

geboren te Jiangsu, China

Promotiecommissie

Promotor:
Prof. dr. M. de Rijke Universiteit van Amsterdam

Co-promotor:
Prof. dr. H. Chen National University of Defense Technology

Overige leden:
Dr. E. Kanoulas Universiteit van Amsterdam
Prof. dr. C. de Laat Universiteit van Amsterdam
Dr. C. Monz Universiteit van Amsterdam
Prof. dr. ir. A.P. de Vries Radboud Universiteit
Prof. S. Wu Jiangsu University

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2016-23
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School
for Information and Knowledge Systems.

The research was supported by the China Scholarship Council.

Copyright c© 2016 Fei Cai, Amsterdam, The Netherlands
Cover by Fei Cai
Printed by Off Page, Amsterdam

ISBN: 978-94-6182-688-6

Acknowledgements

Although only my name appears on the cover of this dissertation, many people have
contributed to its production. I owe my sincere gratitude to all those people who have
made this dissertation possible and who have made my research experience one that I
will cherish forever.

My deepest gratitude is to my promotor Prof.dr. Maarten de Rijke for his continuous
support of my Ph.D study and related research. His patience, motivation, support and
immense knowledge have helped me throughout the research and writing of this disser-
tation. I could not have imagined having a better promotor for my Ph.D. studies. I am
very proud of working with Maarten in the past two and half years for my Ph.D. degree
on computer science in University of Amsterdam. I am also thankful to my co-promotor
Prof.dr. Honghui Chen. He has always been supporting me to finish my Ph.D. at the
University of Amsterdam. I am deeply grateful to him for his long-term encouragement
and discussions that helped me sort out the details of my work.

I am very honored and grateful to have Evangelos Kanoulas, Cees de Laat, Christof
Monz, Arjen de Vries, and Shengli Wu serving as my committee members.

I thank all the members of the Information and Language Processing Systems (ILPS)
group at the University of Amsterdam. I am thankful to Auke and Isaac for setting up
and maintaining the computing infrastructure for ILPS, helping me implement the experi-
ments successfully. My thanks go to Aleksandr, Alexey, Anne, Arianna, Artem, Cristina,
Christophe, Daan, Damien, David vD, David G, Hamid, Hosein, Ilya, Katya, Ke, Lars,
Marlies, Marzieh, Masrour, Nikos, Praveen, Ridho, Richard, Tom, Xinyi, Zhaochun and
others in the IAS and ISIS groups, Guangliang, Nihang, Ran, Zhenyang and Zhongyu,
for discussing and enriching my ideas. I enjoyed working with you! I thank Caroline
and Petra for helping me address countless practical details, allowing me to focus on my
research only.

I would like to acknowledge the China Scholarship Council (CSC) for the financial
support for two years that funded parts of the research discussed in this dissertation. I
also appreciate the generosity of my home university, the National University of Defense
Technology, for supporting my study abroad.

Finally, I would like to thank my family, especially my wife Junlin and my daughter
Xinran, as well as many friends, for supporting me spiritually throughout writing this
thesis and my life in general. Their support and care helped me overcome setbacks and
stay focused on my study. I deeply appreciate their belief in me.

Fei Cai
Changsha
March 14, 2016

iii

Contents

1 Introduction 1
1.1 Research Outline and Questions . 3
1.2 Main Contributions . 7
1.3 Thesis Overview . 8
1.4 Origins . 10

2 Background 13
2.1 Problem Formulation . 13
2.2 Probabilistic QAC Approaches . 15
2.3 Learning-based QAC Approaches . 20
2.4 Practical Issues . 24
2.5 Summary . 31

3 Experimental Methodology 33
3.1 Experimental Setup . 33
3.2 Benchmark Datasets . 34
3.3 Evaluation Measures . 35
3.4 Summary . 37

4 Prefix-adaptive and Time-sensitive Personalized Query Auto Completion 39
4.1 Approach . 42
4.2 Experiments . 49
4.3 Results and Discussion . 53
4.4 Conclusion . 62

5 Learning from Homologous Queries and Semantically Related Terms for
Query Auto Completion 65
5.1 Approach . 68
5.2 Experiments . 74
5.3 Results and Discussion . 77
5.4 Conclusion . 84

6 Diversifying Query Auto Completion 85
6.1 Approaches . 88
6.2 Experiments . 95
6.3 Results and Discussion . 100
6.4 Conclusion . 112

7 Selectively Personalizing Query Auto Completion 115
7.1 Approach . 116
7.2 Experimental Setup . 119
7.3 Results and Discussion . 119
7.4 Conclusion . 122

v

Contents

8 Conclusions 123
8.1 Main Findings . 124
8.2 Future Work . 127

Bibliography 131

Summary 137

Samenvatting 139

vi

1
Introduction

Information Retrieval (IR) aims to address searchers’ information needs. Common search
activities often involve someone submitting a query to a search engine and receiving an-
swers in the form of a list of documents in ranked order. The primary focus of the IR field
since the 1950s has been on text documents, e.g., web pages, emails, scholarly papers,
books, and news stories (Croft et al., 2015), which typically have a special structure to
store the information like title, author, date, and abstract. The elements of the structure
are often called attributes or fields. The important distinction between a document in
IR and a typical database record, such as a bank account record or a flight reservation,
is that most of the information in an IR-related document is in the form of text, which
is relatively unstructured (Croft et al., 2015). A basic goal of the research in IR is to
develop the insights and ideas needed to generate a ranked result list to respond queries
from users, and thus to meet their information acquisition.

Before ranking documents, a search system should receive a query from their users.
After that, the relevance of documents to this particular query can be estimated, by which
the documents are then sorted. Query formulation thus was born to produce such queries
to be consumed by the search engine, where typically a text corpus is involved for term
weighting and query expansion related query formulation activities. The main process of
query formulation refers to query suggestion, query rewriting and query transformation,
etc., with the aim to better represent the underlying intent of the user. Thus, the pri-
mary goal of query formulation is to improve the overall quality of the document ranking
presented to the user in response to their query. As a member of the family of query for-
mulation tasks, Query Auto Completion (QAC) has as its task to help the user formulate
her query while she is typing only the prefix, e.g., several characters (Bast and Weber,
2006). The main purpose of QAC is to predict the user’s intended query and thereby
save her keystrokes. In addition, with the advent of instant as-you-type search results
(e.g., Google Instant1), correct query prediction has become very important, because it
determines the speed at which the user sees the suitable results for her intended infor-
mation request while being engaged in search (Bar-Yossef and Kraus, 2011). QAC has
become a prominent features of today’s major search engines, e.g., Bing, Google and
Yahoo!, as well as some popular online properties, e.g., online shopping sites and email
services. In pre-computed auto completion systems, the list of matching candidates for
a prefix is generated in advance and stored in an efficient data structure for fast lookup.

1http://www.google.com/instant/

1

http://www.google.com/instant/

1. Introduction

ieee xplore
ieee citation
ieee spectrum
ieee format

IEEE

(a) Query auto completion of the prefix “IEEEt”.

ieee tkde
ieee tkde impact factor
ieee tkde submission
ieee tkde manuscript central

IEEE TKDE

(b) Query auto completion of the prefix “IEEE TKDE”.

Figure 1.1: (Top) Query auto completion for the prefix “IEEEt”, where t indicates
that a space follows after “IEEE”. (Bottom) The refined completions after continu-
ing to type TKDE after “IEEEt”.

When needed, as shown in Figure 1.1, continued typing characters can lead to dynamic
refinements of the completions by exact prefix matching according to the user’s input
prefix until an appropriate completion is found. Where offered, the facility is heavily
used and highly influential on search results (Bar-Yossef and Kraus, 2011; Shokouhi and
Radinsky, 2012).

A straightforward and useful approach in previous work on QAC is to extract past
queries with each prefix from a period of query logs, and then rank them by their popu-
larity (Bar-Yossef and Kraus, 2011; Shokouhi and Radinsky, 2012; Strizhevskaya et al.,
2012), i.e., the count of the occurence of queries, which assumes that the current and
future query popularity is the same as past observed query popularity. Although this ap-
proach results in satisfactory QAC performance on average, it is far from optimal since
it fails to take strong clues from time, trend and user-specific context into consideration
while such information often influences the queries most likely to be submitted.

Previous work (Shokouhi, 2011; Shokouhi and Radinsky, 2012) shows that time-
series analysis techniques can be used for classifying seasonal queries and forecasting
their future popularity, which suggests that these schemes should be embedded into
popularity-based query completion and query categorization approaches. In this thesis
we continue to investigate the characteristics of query popularity and develop a time-
sensitive query auto completion approach, which is further combined with a model that
takes user’s personal search history, both short-term (in the current session) and long-
term (in previous logs), into consideration. Our proposal generally can promote user’s
intended query, returning the correct query candidate early in the QAC list. Moreover,
we extend our model to specifically deal with long-tail prefixes by optimizing the contri-
butions from query popularity and user-specific context.

Following popularity-based query auto completion approaches (Bar-Yossef and Kraus,
2011; Shokouhi and Radinsky, 2012; Strizhevskaya et al., 2012), where counting queries
follows a strict query matching policy, in this thesis, we argue that the popularity of

2

1.1. Research Outline and Questions

queries that are similar to a query completion is also important for ranking the origi-
nal query completions. Thus we consider the contributions from so-called homologous
queries when ranking the initial query candidates. Homologous queries typically include
queries with the same terms but ordered differently or queries that expand the original
query candidate. In addition, we take features from computing semantic similarity be-
tween query terms into consideration as we state that users are prone to combine seman-
tically related terms when generating queries. Based on those newly developed features,
a learning-to-rank approach is directly implemented to generate a ranking model. Our
analysis reveals that features of semantic relatedness and homologous queries are impor-
tant and do indeed help boost QAC performance.

The third focus of the work in this thesis is on diversifying query auto completion
(D-QAC), which has not been studied so far. Previous work on query auto completion
mainly centers around returning a list of completions to users, aiming to push queries
that are most likely intended by the user to the top positions but ignoring the redundancy
among the query candidates in the list. Thus, semantically related queries matching the
input prefix are often returned together. This may push valuable suggestions out of the
list, given that only a limited number of candidates can be shown to the user. Hence, this
may result in a less than optimal search experience. Unlike the task of search result di-
versification (Bache et al., 2013; Carbonell and Goldstein, 1998; Dang and Croft, 2012;
Radlinski and Dumais, 2006; Zhai et al., 2003), where the main focus is centered around
diversifying web search results, we aim to return correct query completions early in a
ranked list of candidate completions and at the same time reduce the redundancy among
query auto completion candidates. We develop a greedy query selection approach that
predicts query completions based on the current search popularity of candidate comple-
tions and on the intents of previous queries in the same search session. We quantify the
improvement of our greedy query selection model against a state-of-the-art baseline in
terms of well-known metrics used in query auto completion and diversification.

To cater for a user’s specific information needs, personalized query auto completion
strategies have been investigated by taking their search history and their user profile into
account. Such methods personalize the list of query completions in the same manner.
However, it is unclear whether personalization is consistently effective to query auto
completion under different search contexts. Consequently, our final focus in this thesis
is on selectively personalizing query auto completion. Based on a lenient personalized
QAC strategy that basically encodes the ranking signal as a trade-off between query pop-
ularity and personal search context, we propose a Selectively Personalizing Query Auto
Completion (SP-QAC) model to study such a trade-off. In particular, we predict an effec-
tive trade-off in each case based on a regression model, where the typed prefix, the clicked
documents and the preceding queries in session are considered for weighing personaliza-
tion in the SP-QAC model. We find that personalization can be selectively embedded
into a QAC approach rather than uniformly implemented in a QAC framework.

1.1 Research Outline and Questions

The broad question that motivates the research for this thesis is: How can we improve
the performance of query auto completion (QAC) in information retrieval? Individual

3

1. Introduction

components towards solving this problem already exist (see Chapter 2 for an overview),
but other aspects, such as how to incorporate strong clues from time, user context or
semantics, have not yet been well investigated. This thesis aims to close some of these
gaps, contributing new scenarios for query auto completion in the field of information
retrieval.

We start our investigation by focusing on combining information from both time-
sensitive characteristics and user-specific features for query auto completion. In previous
work, time-sensitive query auto completion (QAC) models and user-specific QAC ap-
proaches have been developed separately. Both types of QAC methods lead to important
improvements over models that are neither time-sensitive nor personalized. We first pro-
pose the time-sensitive QAC models, i.e., λ-TS-QAC and λ∗-TS-QAC, that employ a
fixed trade-off λ and an optimal trade-off λ∗, respectively, to control the contribution of
recent trends and periodic signals when predicting query’s future popularity. Given that
the seasonal change (Shokouhi, 2011) and the recent trend (Whiting and Jose, 2014) of
the search popularity of queries can be used for predicting a query’s future popularity, we
first aim to understand how these two parts can be integrated to improve the accuracy of
query popularity prediction using time-sensitive information. We compare the prediction
results generated by various models to answer the following questions:

RQ1 As a sanity check, what is the accuracy of query popularity prediction generated
by various models?

RQ2 How do our time-sensitive QAC models (λ-TS-QAC and λ∗-TS-QAC) compare
against state-of-the-art time-sensitive QAC baselines?

In answering these two research questions, we find that our prediction method, based on
the periodicity and on the recent trend of query popularity, can produce accurate predic-
tions of query popularity and perform better in terms of Mean Absolute Error (MAE)
and Symmetric Mean Absolute Percentage Error (SMAPE) than other aggregation- and
trend-based prediction baselines. Based on predicted query popularity, our proposed
time-sensitive QAC model achieves better performance in terms of Mean Reciprocal
Rank (MRR) than previous baselines.

After that, we propose a hybrid QAC model λ∗-H-QAC that considers both time-
sensitivity and personalization to compare with an n-gram based hybrid model λ∗-HG-
QAC. Besides, an extension of λ∗-H-QAC, λ∗-H′-QAC, is proposed to deal with long-
tail prefixes, i.e., unpopular prefixes, by optimizing the contributions from the predicted
query popularity and from the user-specific context. To verify the effectiveness of pro-
posed QAC models, we particularly answer the following research questions:

RQ3 Does λ∗-H-QAC outperform time-sensitive QAC methods, e.g., λ∗-TS-QAC)?

RQ4 How does λ∗-H-QAC compare against personalized QAC method using n-gram
based query similarity?

RQ5 How does λ∗-H-QAC compare against λ∗-HG-QAC?

RQ6 How does λ∗-H′-QAC compare against λ∗-H-QAC on long-tail prefixes? And on
all prefixes?

4

1.1. Research Outline and Questions

Our experimental results show that, after integrating the user-centered search context
with our time-sensitive QAC model, our proposal, i.e., a hybrid QAC approach, further
boosts the ranking performance of query completions.

Analyzing previously developed query auto completion methods, we find that most
of today’s QAC models rank candidate queries by popularity (i.e., frequency), and in
doing so they tend to follow a strict query matching policy when counting the queries
as we pointed out in the following section. That is, they ignore the contributions from
so-called homologous queries, i.e., queries with the same terms but ordered differently,
or queries that expand the original query. Importantly, homologous queries often express
a remarkably similar search intent. Moreover, today’s QAC approaches often ignore
semantically related terms. We argue that users are prone to combine semantically related
terms when generating queries. To address this shortcoming, based on a learning-based
QAC model L2R-U which extract features from user behaviors (Jiang et al., 2014b),
we propose several learning to rank-based QAC approaches, where, for the first time,
features derived from predicted popularity, homologous queries and semantically related
terms are introduced, respectively.

In particular, we consider: (1) the observed and predicted popularity of query comple-
tions, which results in the L2R-UP model; (2) the observed and predicted popularity of
homologous queries for a query candidate, which results in the L2R-UPH model; (3) the
semantic relatedness of pairs of terms inside a query and pairs of queries inside a session,
which results in the L2R-UPS model; and (iv) all these newly proposed features, which
results in the L2R-ALL model. Regarding these new models, we address the following
research questions:

RQ7 Do the features that describe the observed and predicted popularity of a query
completion help boost QAC performance without negatively impacting the effec-
tiveness of user behavior related features proposed in (Jiang et al., 2014b)? That
is, how does L2R-UP compare against L2R-U?

RQ8 Do semantic features help improve QAC performance? That is, how does L2R-
UPS compare against L2R-UP?

RQ9 Do homologous queries help improve QAC performance? That is, how does L2R-
UPH compare against L2R-UP?

RQ10 How does L2R-UPS compare against L2R-UPH? What is the performance gain,
if any, if all features are added for learning (L2R-ALL)?

RQ11 What are the principal features developed here for a learning to rank based QAC
task?

Our experimental analysis reveals that features of semantic relatedness and homologous
queries are important and they do indeed help boost QAC performance. In other words,
query terms are not randomly combined when a searcher formulates a query. Semanti-
cally close terms or queries are likely to appear in a query or in a session, respectively.

We then turn to a practical issue of query auto completion in a web search setting. In
this setting, previous work on query auto completion is mainly centered around return-
ing a list of completions to users, aiming to push queries that are most likely intended
by the user to the top positions but ignoring the redundancy among the query candi-
dates in the list. Thus, semantically related queries matching the input prefix are often

5

1. Introduction

returned together. This may push valuable suggestions out of the list, given that only
a limited number of candidates can be shown to the user, and hence, this may result in
a less than optimal search experience. To address this problem, we consider the task
of diversifying query auto completion (D-QAC), which aims to return the correct query
completions early in a ranked list of candidate completions and at the same time re-
duce the redundancy among query auto completion candidates. In particular, we propose
a series of greedy query selection (GQS) models, i.e., GQSMPC+AQ , GQSMSR+AQ ,
GQSMPC+LQ and GQSMSR+LQ , corresponding to a GQS model that first selects the
most popular completion and use all previous queries in a session as search context, that
first selects the most similar completion and use all previous queries in session as search
context, that first selects the most popular completion and use only the last preceding
query in session as search context and that first selects the most similar completion and
use only the last preceding query in session as search context, respectively. For this new
D-QAC task, we try to answer the following questions for this problem:

RQ12 Do our greedy query selection (GQS) models beat the baselines for diversifying
query auto completion task in terms of metrics for QAC ranking (e.g., MRR) and
for diversification (e.g., α-nDCG)?

RQ13 How does the choice of selecting the first query to be included in the QAC re-
sult list impact the performance in diversified query auto completion of our GQS
model?

RQ14 What is the impact on diversified query auto completion performance of our GQS
model of the choice of search context, i.e., choosing all previous queries in a ses-
sion or only the last preceding query?

RQ15 What is the relative D-QAC performance of our QAC models when evaluated
using a side-by-side comparison?

RQ16 What is the sensitivity of our GQS model? In particular, how is the performance
of our GQS model influenced by, e.g., the number of returned query auto comple-
tion candidates, namely a cutoff N , the number of latent features used in BPMF
kf and a trade-off λ controlling the contribution of search popularity and search
context when modeling the closeness of query completion to search intent?

The proposed GQS models predict query completions based on the current search popu-
larity of candidate completions and on aspects of previous queries in the same search ses-
sion. The popularity of completion candidates at query time can be directly aggregated
from query logs. However, query aspects are implicitly expressed by previous clicked
documents in the search context. To determine the query aspect, we categorize clicked
documents of a query using a hierarchy based on the open directory project. Bayesian
probabilistic matrix factorization (BPMF) is applied to derive the distribution of queries
over all aspects. Our experimental results show that our greedy query selection model
can remove redundant query completions from the returned QAC lists without affecting
the ranking performance of query completions.

Finally, we turn to the question how to incorporate personalization effectively in a
generic QAC approach. We assume that the weight of personalization in a hybrid QAC
model, which considers both the search popularity and search context when ordering the

6

1.2. Main Contributions

query completions, can be non-uniformly assigned. Based on a lenient personalized QAC
strategy that basically encodes the ranking signal as a trade-off between query popularity
and search context, we propose a Selectively Personalizing Query Auto Completion (SP-
QAC) model to study such a trade-off. In particular, we predict an effective trade-off in
each case based on a regression model, where the typed prefix, the clicked documents
and the preceding queries in session are considered for weighing personalization in QAC.
The research questions addressed by our preliminary study are:

RQ17 Does selective personalization scheme help improve the accuracy of ranking query
completions in a generic personalized QAC approach?

RQ18 How is the performance of proposed SP-QAC model under various inputs to the
regression model for weighing personalization in a QAC task?

We demonstrate that the typed prefix yields the most benefits for weighing personal-
ization in a QAC model and that the preceding queries contributes more than the click
information. This work makes an important step towards unifying prior work on per-
sonalized QAC by studying when and how to incorporate personalization in QAC. We
will continue to explore other sources for investigating how to best personalize query
auto completion, e.g., a user’s dwell time on clicked results and their long-term search
history. In addition, it is interesting to zoom in on each particular user to know whether
he is at all susceptible to personalization in QAC.

1.2 Main Contributions

In this section, the main contributions of this thesis are summarized as follows.

• A prefix-adaptive and time-sensitive approach for personalized query auto
completion. As previous time-sensitive and user-specific query auto completion
methods have been developed separately, yielding significant improvements over
methods that are neither time-sensitive nor personalized, we propose a hybrid
query auto completion (QAC) method that is both time-sensitive and personal-
ized. We extend it to handle long-tail prefixes, which we achieve by assigning
optimal weights of the contribution from time-sensitivity and personalization. Us-
ing real-world search log datasets, we first return the top N query completions
ranked by predicted popularity as estimated from popularity trends and cyclic pop-
ularity behavior; we rerank them by integrating similarities to a user’s previous
queries (both in the current session and in previous sessions). Our method outper-
forms state-of-the-art time-sensitive QAC baselines, achieving total improvements
of between 3% and 7% in terms of mean reciprocal rank (MRR). After optimizing
the weights, our extended model achieves MRR improvements of between 4% and
8%.

• A learning to rank based approach for query auto completion. We propose a
learning to rank-based QAC approach, where, for the first time, features derived
from homologous queries and semantically related terms are introduced. In partic-
ular, we consider: (1) the observed and predicted popularity of homologous queries
for a query candidate; and (2) the semantic relatedness of term pairs inside a query

7

1. Introduction

and of query pairs inside a session. We quantify the improvements of the proposed
new features using two large-scale real-world query logs and show that the mean
reciprocal rank and the success rate at the top K can be significantly improved by
up to 9% over state-of-the-art QAC models.

• A greedy query selection approach for diversifying query auto completion.
We consider the task of diversifying query auto completion (D-QAC), which aims
to return the correct query completions early in a ranked list of candidate comple-
tions and at the same time reduce the redundancy among query auto completion
candidates. A greedy query selection approach is proposed to deal with the new
D-QAC task, and finally we quantify the improvement of our greedy query se-
lection model against a state-of-the-art baseline using two large-scale real-world
query logs and show that it beats the baseline in terms of well-known metrics used
in query auto completion and diversification. In addition, we implement a side-by-
side experiment to verify the effectiveness of our outcome.

• A selectively personalizing query auto completion approach. We propose a
model for Selectively Personalizing Query Auto Completion (SP-QAC), re-ranking
the top N query completions by popularity, where personalization is individually
weighted when being combined with ranking signals from search popularity. In
particular, we study the following factors for weighing personalization: the typed
prefix for which we recommend query suggestions, the clicked documents for in-
ferring user’s satisfaction and the topic changes of preceding queries in session
for detecting search intent shifts. The experimental results reveal that the SP-
QAC model, which selectively outweighs or depresses the contribution of person-
alization in a generic QAC approach, outperforms a traditional non-personalization
QAC approach and a uniformly personalized QAC approach with a fixed trade-off
controlling the contribution of search popularity and search context.

1.3 Thesis Overview

This section gives an overview of the content of each chapter of this thesis. Besides the
current Introduction chapter, we have two chapters that summarize the main work related
to query auto completion and the main methodology for evaluating the performance of
various QAC algorithms, respectively. Following that, four research chapters detail our
contributions in this thesis and the conclusion chapter highlights our findings.

Chapter 2: Background. In this chapter, we review previous work on query auto com-
pletion in the field of information retrieval. In particular, we discuss the motiva-
tions for query auto completion mainly in web search and then point out some
recent advances as well as potential research directions in the field of query auto
completion.

Chapter 3: Experimental methodology. In this chapter, we detail the problem for-
mulation of query auto completion used throughout this thesis, describe the public
datasets for experiments and introduce the experimental setup that forms the basis
of the empirical evaluations. In addition, well-known metrics for QAC ranking,

8

1.3. Thesis Overview

e.g., MRR (Mean Reciprocal Rank) and SR (Success Rate), and for QAC diver-
sification, e.g., ERR- IA (Intent-aware Expected Reciprocal Rank) and α-nDCG
(Normalized Discounted Cumulative Gain), are introduced in detail.

Chapter 4: Prefix-adaptive and time-sensitive personalized query auto completion.
In this chapter, we adopt a combination of the two aspects of the QAC problem,
where time-series analysis is used to predict a query’s future frequency. To under-
stand a user’s personal search intent, we extend our time-sensitive QAC method
with personalized QAC, which infers the similarity between current requests and
preceding queries in a current search session and previous search tasks at the char-
acter level. We verify the effectiveness of our proposed hybrid model λ∗-H-QAC
on two datasets, showing significant improvements over various time-sensitive
QAC baselines. In addition, we adjust the model specific for long-tail prefixes,
resulting in clear improvements, especially for short prefixes.

Chapter 5: Learning from homologous queries and semantically related terms for
query auto completion. In this chapter, we follow a supervised learning to rank
approach to address the problem of ranking query auto completion (QAC) candi-
dates. We develop new features of homologous queries and semantic relatedness
of terms inside a query and of pairs of terms from a query candidate and from
earlier queries in the same session. Our analysis reveals that features of semantic
relatedness and homologous queries are important and do indeed help boost QAC
performance.

Chapter 6: Diversifying query auto completion. In this chapter, we propose a greedy
query selection (GQS) model to address the query auto completion diversification
task and use the ODP (Open Directory Project) taxonomy to identify aspects of
URLs, based on which we then assign query aspects via clickthrough data derived
from query logs. We experimentally investigate the diversified query auto comple-
tion performance of our GQS models under various settings. Our results show that
the GQS model performs best when starting with the semantically most closely
related query completion and using only the last preceding query in a session as
the search context. This finding indicates that query aspects are commonly shared
by successive queries in a session and may be changed especially in long sessions
with multiple queries. In addition, we find that our GQS model performs better
when more query completions are fed to it.

Chapter 7: Selectively personalizing query auto completion. In this chapter, we pro-
pose a selectively personalized approach for query auto completion (QAC). In par-
ticular, our model predicts whether a specific prefix should be outweighed on per-
sonalization when ranking the query completions. We explore several factors that
influence the weight of personalization in a generic QAC model, such as the typed
prefix, the clicked documents and the preceding queries in session. We find that
the typed prefix yields the most benefits for weighing personalization in QAC re-
ranking and that the preceding queries contributes more than the click information.
This work makes an important step towards unifying prior work on personalized
QAC by studying when and how to incorporate personalization in QAC.

9

1. Introduction

Chapter 8: Conclusion. We go back to the research questions introduced in this chap-
ter and provide detailed answers. Finally, we identify future directions following
the work in this thesis.

Chapter 2 serves as an overview to the related study in the research chapters and can be
read if additional insight in the field is required. Chapter 3 provides some necessary de-
scriptions on the test collections and evaluation metrics that are used for the experiments
in the research chapters and gives additional details about the baseline query auto com-
pletion approaches. The research chapters, i.e., Chapters 4 to 7, can be read individually,
as the content of these chapters is independent of that of other research chapters. Finally,
reading only this introduction chapter and the conclusion in Chapter 8 gives a brief sum-
mary of the whole thesis, and provides insights to the research questions mentioned early
in this chapter.

1.4 Origins

The following publications form the basis of chapters in this thesis.

• Chapter 2 is based on (Cai and de Rijke, 2016b) “Query Auto Completion in
Information Retrieval: A Survey,” submitted to Foundations and Trends in Infor-
mation Retrieval, 2016. Both authors have substantial contributions to the overall
synthesis of the material. The writing was mostly done by Cai.

• Chapter 4 is based on (Cai et al., 2014b) “Time-sensitive Personalized Query
Auto Completion,” published at CIKM 2014 and its extension (Cai et al., 2016a)
“Prefix-adaptive and Time-sensitive Personalized Query Auto Completion,” ac-
cepted subject to minor revisions by IEEE Transactions on Knowledge Discovery
and Engineering, 2016. All authors contributed to the design of the algorithms and
of the experiments. The experiments and analysis were carried out mostly by Cai.
The writing was mostly done by Cai.

• Chapter 5 is based on (Cai and de Rijke, 2016a) “Learning from Homologous
Queries and Semantically Related Terms for Query Auto Completion,” to appear
in Information Processing & Management, 2016. Both authors contribute to the
ideas and experimental designs. The experiments and analysis were carried out
mostly by Cai. The writing was mostly done by Cai.

• Chapter 6 is based on (Cai et al., 2016b) “Diversifying Query Auto Completion,”
to appear in ACM Transactions on Information Systems, 2016. All authors con-
tributed to the design of the algorithms and to the experimental design. The ex-
periments and analysis were carried out mostly by Cai and Reinanda. The writing
was mostly done by Cai.

• Chapter 7 is based on (Cai and de Rijke, 2016c). “Selectively Personalizing Query
Auto Completion,” to appear at SIGIR 2016. Both authors contributed to the design
of the algorithms and to the experimental design. The experiments and analysis
were carried out mostly by Cai. The writing was mostly done by Cai.

10

1.4. Origins

In addition, this thesis draws on insights and experiences from the following materials:

• (Cai et al., 2014a) “Personalized Document Re-ranking Based on Bayesian Prob-
abilistic Matrix Factorization,” published at SIGIR 2014.

• (Cai et al., 2016c) “Behavior-based Personalization in Web Search,” to appear in
Journal of the Association for Information Science and Technology, 2016.

• (Cai and de Rijke, 2015b) “Personalized Web Search Based on Bayesian Proba-
bilistic Matrix Factorization,” published at RuSSIR 2015.

• (Cai and de Rijke, 2015a) “Time-aware Personalized Query Auto Completion,”
published at DIR 2015.

• (Liang et al., 2015) “Efficient Structured Learning for Personalized Diversifica-
tion,” accepted subject to major revisions by IEEE Transactions on Knowledge
Discovery and Engineering, 2015.

11

2
Background

In this chapter, we provide a formal definition of the query auto completion (QAC) prob-
lem in §2.1, which is followed by section §2.2 discussing probabilistic QAC models and
a section §2.3 describing learning-based QAC models.

2.1 Problem Formulation

Formulating queries and, especially, formulating effective queries is an important ingre-
dient of the search experience. Since 2008, Google has offered a service named “Google
Suggest,” which provides users with query completions shown below the search box as
a drop-down menu while they type, in real time.1 To a certain degree, the completions
are based on exploring what others are searching for. From Google’s official blog,2 the
Google Suggest project was already launched in 2004. In 2011, Bar-Yossef and Kraus
(2011) referred to this functionality as query auto completion (QAC) and proposed a
straightforward approach to deal with the task of generating query completions, i.e., the
well-known most popular completion (MPC) approach, which is based on the search
popularity of queries matching the prefix entered by the user.

In essence, the QAC problem can be view as a ranking problem. Given a prefix,
possible query completions are ranked according to a predefined criterion, and then some
of them are returned to the user. Typically, a pre-computed auto completion system
is required for generating query completions corresponding to each specific prefix in
advance; it stores the associations between prefixes and query completions in an efficient
data structure, such as prefix-trees, that allows efficient lookups by prefix matching. This
index is similar to an inverted table storing a mapping from query to documents in an
information retrieval system. Figure 2.1 illustrates a basic QAC framework. As users’
queries and interactions can be recorded by search engines, this kind of data is used
for generating an index table offline; it captures the relationships between prefixes and
queries. When a user enters a prefix in the search box, based on the pre-computed table,
a list of query completions will be retrieved. Based on further re-ranking using signals
determined at query time, e.g., time, location and user behavior, the user will receive a
final list of query completions. In deployed systems, the list of completions typically has

1http://searchengineland.com/how-google-instant-autocomplete-
suggestions-work-62592

2http://googleblog.blogspot.nl/2004/12/ive-got-suggestion.html

13

http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592
http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592
http://googleblog.blogspot.nl/2004/12/ive-got-suggestion.html

2. Background

prefix query
completions

query log

prefix

user prefix

query
completions

prefix p query q feature fu feature fv

p
1

q
11 f 11 f’11

q
12 f 12 f’12

Index

q
1n f 1n f’1n

… … …

p
k

q
k1 f k1 f’ k1

…

…

Online ranking signals

…

time location behavior

Figure 2.1: A basic QAC framework.

a limited length, e.g., at most 4 for Baidu, 8 for Bing, 4 for Google, 10 for Yahoo and
Yandex.

Next, we introduce the problem of query auto completion more formally. Let p de-
note a prefix entered by a user u, i.e., a string of characters. Let QI denote a set of
complete queries that extend p; it is helpful to think of QI as the set of initially retrieved
completions (similar to top-k retrieval in standard document retrieval). The query auto
completion problem is to find a ranking QS of the queries in QI , with |QS | = N , where
N > 0 is a given cutoff denoting the number of top ranked elements ofQI to be included
in QS , such that

Φ(QS) =
∑
q∈QS

φ(q), where φ(q) =

{ 1
rank of q in QS

, if q = q′

0, if q 6= q′
(2.1)

is maximized, where q′ is a query that is finally submitted by the user u. Algorithmic
solutions to the QAC problem aim to predict the user’s intended query and then return it
early in the candidate list QS . We refer to the items in the list QS as query completions
or simply completions.

So far, several approaches have been proposed in the literature for the query auto
completion task and a brief comparison of current approaches to ranking candidate query
completions is proposed by Di Santo et al. (2015). We classify existing approaches to
query auto completion into two broad categories, i.e., probabilistic models and learning-
based models. The probabilistic approaches seek to compute a probability, i.e., a ranking
score, for each query candidate that indicates how likely it is that this query would be
issued. In contrast, learning-based approaches, based on a learning algorithm, aim to
extract dozens of reasonable features to capture the characteristics of each query candi-
date. Each of these two categories of QAC approaches, can be split it into two groups:
time-related and user-centered. In this manner we arrive at a two-by-two grid, which we
adopt to organize the previous work summarized in this chapter; see Table 2.1.

14

2.2. Probabilistic QAC Approaches

Table 2.1: Representative query auto completion approaches in the literature.
Representative work

QAC strategy Time-related User-centered

Probabilistic (Cai et al., 2014b; Shokouhi and
Radinsky, 2012; Whiting and
Jose, 2014)

(Bar-Yossef and Kraus, 2011;
Li et al., 2015)

Learning-based (Cai and de Rijke, 2016a),
Chapter 4

(Jiang et al., 2014b; Li et al.,
2014; Mitra, 2015; Shokouhi,
2013)

2.2 Probabilistic QAC Approaches

In this section, we describe representative probabilistic query auto completion approaches
from the literature that consider time-related aspects (see §2.2.1) and personalization
(see §2.2.2) to compute probabilities for ranking query completions. Basically, these ap-
proaches aim to compute a probability P (qc | t, u) of submitting a query completion qc,
given, for instance, the time t and the user u.

2.2.1 Time-sensitive Query Auto Completion Models

A straightforward approach to rank query completions is to use Maximum Likelihood
Estimation (MLE) based on the past popularity (i.e., the frequency) of queries (Bar-
Yossef and Kraus, 2011). Bar-Yossef and Kraus (2011) refer to this type of ranking as
the most popular completion (MPC) model:

MPC (p) = argmax
q∈C(p)

w(q), where w(q) =
f(q)∑

qi∈Q f(qi)
, (2.2)

where f(q) denotes the number of occurrences of query q in search log Q, i.e., its fre-
quency, and C(p) is a set of query completions that start with prefix p. In essence, the
MPC model assumes that the current query popularity distribution will remain the same
as that previously observed, and hence completions are ranked by their past popularity
in order to maximize QAC effectiveness for all users on average. However, query pop-
ularity may change over time. Accordingly, the ranking of query completions must be
adjusted to account for time-sensitive changes, which could be addressed by limiting
the aggregation period of past query log evidence to increase the temporal sensitivity of
QAC.

As the web increasingly becomes a platform for real-time news search and media
retrieval, time plays a central role in information retrieval activities and more people are
turning to find out about unpredictable, emerging and ongoing events and phenomena.
For instance, a substantial volume of daily top queries are issued about the results re-
lated to up-to-date information of recent or ongoing events (Whiting and Jose, 2014). In
addition, 15% of the daily queries to an industrial web search engine have never been

15

2. Background

seen before.3 A substantial proportion of these queries are attributed to fresh events and
real-time phenomena, rather than the long-tail of very uncommon queries (Whiting et al.,
2013). QAC approaches that are based on aggregating long-term historic query-logs are
not sensitive to very fresh real-time events, which may result in poor performance for
ranking query completions as newly popular queries will be outweighed by long-term
popular queries, especially for short prefixes (e.g., consisting of 1 or 2 characters).

Inspired by the interesting findings from Google trends, Shokouhi (2011) focus on de-
tecting seasonal queries using time-series analysis. They depict how a query’s monthly
popularity cycle can be treated as time-series and decomposed by Holt-Winters addi-
tive exponential smoothing (Goodwin, 2010) into three main components, i.e., level (L),
trend (T) and season (S): Lt = α · (X̂t − St−s) + (1− α) · (Lt−1 + Tt−1)

Tt = β · (Lt − Lt−1) + (1− β) · Tt−1
St = γ · (X̂t − Lt) + (1− γ) · St−s,

(2.3)

where α, β and γ are trade-offs in [0, 1]. The parameter t denotes the current time-span,
and s specifies the length of the seasonal periodicity (e.g., 12 months). Furthermore, X̂t

represents the value of the data point at time t (e.g., in one month). Then, if the de-
composed season component S and raw data X̂ have similar distributions, the query is
deemed to be a seasonal query. For instance, cyclic repeated events such as Halloween
and Christmas happen every year, resulting in periodic spikes in the frequency of re-
lated queries (e.g., “halloween costume” and “Christmas gift”). Other queries, like “sigir
2016,” are requests that target events that are close in time and thus are more likely to
present a relatively obvious search burst than older alternatives (e.g., “sigir 2010”). Thus,
for effective QAC, it is important to correctly identify recent popular queries and make
sure that users who submit such a query do indeed have a temporal information need.

Building on the work of Shokouhi (2011), Shokouhi and Radinsky (2012) propose a
time-sensitive approach for query auto completion. Instead of ranking candidates accord-
ing to their past popularity, they apply time-series analysis and rank candidates accord-
ing to the forecasted frequencies by modeling the temporal trends of queries. Unlike the
ranking criterion specified in (2.2), this time-sensitive QAC approach can be formalized
as follows:

TS (p, t) = argmax
q∈C(p)

w(q | t), where w(q | t) =
f̂t(q)∑

qi∈Q f̂t(qi)
, (2.4)

and where p is the input prefix, C(p) represents a list of query completions matching the
prefix p, and f̂t(q) denotes the estimated frequency of query q at time t in the query log
Q.

In practice, the future frequency of queries ŷt+1 can simply be forecast using the
single exponential smoothing method (Holt, 2004) based on a previous observation yt
and a smoothed output ȳt−1 as follows:

ŷt+1 = ȳt = λ · yt + (1− λ) · ȳt−1, (2.5)

3http://www.google.com/competition/howgooglesearchworks.html

16

http://www.google.com/competition/howgooglesearchworks.html

2.2. Probabilistic QAC Approaches

where yt and ȳt denote the actually observed and smoothed values for the query fre-
quency at time t, λ is a trade-off parameter ranging between 0 and 1, and ŷt+1 is the
estimated future frequency of the query at time t+ 1. As the single exponential smooth-
ing method cannot capture the trend and the periodicity of query popularity, the double
and triple exponential smoothing methods (Holt, 2004) have been applied to forecast a
query’s future frequency (Shokouhi and Radinsky, 2012). For instance, the double expo-
nential smoothing method extends the model in (2.5) as follows: ȳt = λ1 · yt + (1− λ1) · (ȳt−1 + Ft−1)

Ft = λ2 · (ȳt − ȳt−1) + (1− λ2) · Ft−1
ŷt+1 = ȳt + Ft,

(2.6)

where λ1 and λ2 are smoothing parameters, and the forecast ŷt+1 at time t+ 1 depends
on the variable Ft, which models the linear trend of the time-series at time t, and on
the smoothed frequency ȳt at time t. The triple exponential smoothing method adds a
periodicity variable St to (2.6) as follows:

ȳt = λ1 · (yt − St−T) + (1− λ1) · (ȳt−1 + Ft−1)
Ft = λ2 · (ȳt − ȳt−1) + (1− λ2) · Ft−1
St = λ3 · (yt − ȳt) + (1− λ3) · St−T
λ1 + λ2 + λ3 = 1
ŷt+1 = (ȳt + Ft) · St+1−T ,

(2.7)

where T indicates the periodicity, while λ1, λ2 and λ3 are free smoothing parameters
in [0, 1]. QAC methods based on time series analysis techniques consistently outperform
baselines that use aggregated data; using more accurate query popularity predictions pro-
duced by time-series modeling leads to higher quality query suggestions (Shokouhi and
Radinsky, 2012). Strizhevskaya et al. (2012) study actualization techniques for measur-
ing prediction accuracy of various daily query popularity prediction models using query
logs, which can be helpful to query auto completion.

Compared to query popularity prediction based on long-term query logs, short-range
query popularity estimation has attracted more attention. Golbandi et al. (2013) develop
a regression model to detect bursting queries for enhancing trend detection. By analyz-
ing query logs, they seek to accurately predict what the most trending query items on
the Web are. Various attempts have been made to make search trend predictions more
accurate with low latency relative to the actual event that sparked the trend. Kulkarni
et al. (2011) classify queries into different categories based on the changes in popularity
over time and show that monitoring query popularity can reveal strong signals for de-
tecting trends in query intent. In addition, Michail et al. (2004) develop a compressed
representation for time-series and propose a model for detecting bursts in query frequen-
cies. Instead of applying the time-series analysis technologies to predict a query’s future
popularity for query auto completion (Cai et al., 2014b; Shokouhi and Radinsky, 2012),
Whiting and Jose (2014) propose several practical query completion ranking approaches,
including: (i) using a sliding window to collect query popularity evidence from the past
few days, (ii) generating the query popularity distribution in the stream of last N queries
observed with a given prefix, and (iii) predicting a query’s short-range popularity based
on recently observed trends. The predictions produced by their last N query distribution

17

2. Background

Table 2.2: Comparison of time-sensitive probabilistic query auto completion ap-
proaches.
Evidence Requires Representative references

Short-range
Recent search logs, i.e., search
history in a recent period before
querying time.

(Golbandi et al., 2013; Shokouhi
and Radinsky, 2012; Whiting and
Jose, 2014; Whiting et al., 2013)

Long-range
A large volume of search logs,
i.e., search history covering a
long-term period.

(Bar-Yossef and Kraus, 2011;
Shokouhi, 2011)

Both Short- and long-term search logs. (Cai et al., 2014b; Shokouhi and
Radinsky, 2012)

approach help achieve the best performance for query auto completion after learning the
corresponding parameters online.

In addition to the aforementioned time-based clues for query auto completion, the
relationship between query terms, such as semantic similarity, has also been studied in
the setting of QAC. For instance, Chien and Immorlica (2005) demonstrate that queries
with similar temporal patterns can be semantically related for query completion even in
the absence of lexical overlap. Liu et al. (2008) introduce a unified model for forecasting
query frequency, in which the forecast for each query is influenced by the frequencies
predicted for semantically similar queries. These approaches are able to produce accu-
rate popularity predictions of queries and thus boost the effectiveness of popularity-based
query completion approaches. In Table 2.2, we compare the main approaches of time-
sensitive probabilistic query auto completion in the field of information retrieval. Gener-
ally, more work has been published on the use of recent evidence than on the long-term
search history for query auto completion. QAC models that combine both short-term
observations (ongoing trend) and long-term observations (periodic phenomena) achieve
the best performance in terms of query completion ranking, and QAC models only based
on a long-term aggregated frequency are worse than those that only exploit more recent
data. In addition, QAC models based on observed query popularity, e.g., (Bar-Yossef and
Kraus, 2011; Whiting and Jose, 2014), basically assume that the current or future query
popularity is the same as past query popularity. In contrast, models based on predicted
query popularity, such as, e.g., (Cai et al., 2014b; Shokouhi and Radinsky, 2012), take
strong temporal clues into consideration as such information often influences the queries
to be entered.

2.2.2 User-centered Query Auto Completion Models

User activities recorded in browsers have been used extensively to create a precise picture
of the information needs of users; this concerns both long-term browsing logs (Bennett
et al., 2012; Liu et al., 2010b; Matthijs and Radlinski, 2011; Tan et al., 2006) and short-
term search behavior (Collins-Thompson et al., 2011; Jiang et al., 2011; Shen et al.,
2005; Ustinovskiy and Serdyukov, 2013). Such data has become an important resource

18

2.2. Probabilistic QAC Approaches

for search personalization (Dou et al., 2007; Sontag et al., 2012). In this section, we
give an overview of user-centered QAC models, i.e., personalized query auto completion
approaches, where information from a user’s search context and information about their
interactions with a search engine are exploited for query auto completion.

In most work mentioned so far, query completions are computed globally. That is,
for a given prefix, all users are presented with the same list of candidates. But exploiting
the user’s personal context has led to increases in QAC effectiveness (Bar-Yossef and
Kraus, 2011; Liao et al., 2011; Santos et al., 2013; Shokouhi, 2013). The search context
can be collected from the current search session, e.g., the preceding queries. Bar-Yossef
and Kraus (2011) treat the user’s preceding queries in the current session as context and
propose a context-sensitive query auto completion algorithm that produces the comple-
tions of the user input that are most similar to the context queries. In particular, they
propose to output a set of completion qc of prefix p whose vector representation vq has
the highest cosine similarity to the search context C as represented by a vector vC :

qc ← argmax
q∈completion(x)

vq · vC
||vq|| · ||vC ||

, (2.8)

where vq · vC denotes the dot product of vq and vC . By doing so, a ranked list LNC of
query completions of prefix p consisting of the top k completions can be returned. At the
same time, another list LMPC consisting of the top k query completions can be produced
based on query popularity. The final ranked list of query completions is then constructed
by aggregating the two lists LNC and LMPC according to a hybrid score:

hybscore(qc)← α ·NormSim(qc) + (1− α) ·NormMPC (qc), (2.9)

where 0 ≤ α ≤ 1 is a free parameter determining the weight of the normalized sim-
ilarity score NormSim(qc) relative to the weight of the normalized popularity score
NormMPC (qc). This model works well in cases where the immediate search context is
relevant to the user’s intended query and, hence, query similarity can contribute. When
the search context is irrelevant, this model has to rely on query popularity.

Another option is for the search context to be determined by a user’s interactions.
Li et al. (2015) pay attention to users’ sequential interactions with a QAC engine in and
across QAC sessions, rather than users’ interactions at each keystroke of each QAC ses-
sion. Through an in-depth analysis on a high-resolution query log dataset, they propose
a probabilistic model that addresses the QAC task by capturing the relationship between
users’ sequential behaviors at different keystrokes. Zhang et al. (2015) study implicit
negative feed back from a user’s interactions with a search engine, and propose a novel
adaptive model adaQAC that adapts query auto completion to users’ implicit negative
feedback about skipped query completions. This model is based on the assumption that
top ranked but skipped query completions are not likely to be submitted. They propose
a probabilistic model to encode the strength of the implicit negative feedback to a query
completion qc from a user u with personalization.

The user-centered QAC models that we have just discussed mainly explore informa-
tion from the user’s search context, e.g., previous queries, or the user’s interactions while
engaging with QAC, e.g., typing and skipping at each keystroke. This leads to a natural
grouping of approaches as shown in Table 2.3. Search context-based QAC models do

19

2. Background

Table 2.3: Comparison of user-centered probabilistic query auto completion ap-
proaches.

Category Assumption Issue Representative work

Search context

Search context ex-
presses similar query
intent to that of the
intended query.

Search intent may
be changed, thus the
search context is irrel-
evant to the intended
query.

(Bar-Yossef and Kraus,
2011; Cai et al., 2014b)

Interaction

The transition be-
tween keystrokes is
influenced by users’
interactions in a QAC
engagement.

Users may ignore the
completed query candi-
dates before submitting
one.

(Li et al., 2015; Zhang
et al., 2015)

not need a high-resolution query log dataset to record the user’s sequential keystrokes for
specific query completions; however, such data is mandatory in interaction-based QAC
models. In addition, it is more difficult to reproduce interaction-based QAC models, e.g.,
(Li et al., 2015; Zhang et al., 2015) than QAC models based on search context, e.g.,
(Bar-Yossef and Kraus, 2011; Cai et al., 2014b), which are relatively easy to implement.

2.3 Learning-based QAC Approaches

The rise of learning to rank for QAC came on the heels of the introduction of a broad
range of time series-based ranking principles in query popularity prediction (Cai et al.,
2014b; Shokouhi and Radinsky, 2012) and an increased understanding of ranking princi-
ples based on user interactions with search engines (Li et al., 2015; Zhang et al., 2015). In
a typical (supervised) feature-based learning to rank framework for document retrieval,
the training data for a specific learning algorithm (whether pointwise, pairwise or list-
wise) consists of a set of query-document pairs represented by feature vectors associated
with relevance labels, and the goal is to learn a ranking model by optimizing a loss func-
tion (Liu, 2003). In contrast, in a learning to rank-based framework for QAC, the input
is a prefix pi = {char1, char2, . . . , charnc}, i.e., a string of nc characters. Generally,
there is a poolQc(pi) consisting of query completions that start with the prefix pi and that
could be issued after entering pi. These completions can simply be sorted by popularity.
Each completion inQc(pi) can be represented as a prefix-query pair feature vector vq . In
a L2R framework for QAC, the model is trained on prefix-query pairs with binary labels,
i.e., “submitted” or “non-submitted,” similar to the “relevance” label of query-document
pairs in L2R for document retrieval. Table 2.4 provides a high level comparison of L2R
for document retrieval with L2R for QAC.

As illustrated in Figure 2.2, learning-based QAC approaches mainly focus on ex-
tracting useful features to seek a correct prediction of the user’s intended query. Such
QAC models eventually learn a ranking function from the extracted features. We split
learning-based QAC approaches into two groups according to where the features used

20

2.3. Learning-based QAC Approaches

Table 2.4: Comparison of learning to rank for document retrieval (DR) vs. query
auto completion (QAC). In a document retrieval task, for a given query qi, each
of its associated documents d can be represented by a feature vector vd = Φ(d, q),
where Φ is a feature extractor; m(i) is the number of documents associated with
query qi, i.e., D. In a QAC task, for a given prefix pi, each of its auto completed
query candidates q can be represented by a feature vector vq = φ(p, q), where φ is a
feature extractor; n(i) is the number of query candidates associated with prefix pi),
i.e., Qc(pi).

DR

Input Query qi
Ranking candidates Documents d ∈ D
Candidate features TF, IDF, BM25, etc.
Output A ranked list of documents
Ground truth Multi-level relevance labels, i.e., 0, 1, 2
Major metrics MAP, P@K, NDCG@K, etc.

QAC

Input Prefix pi
Ranking candidates Queries q ∈ Qc(pi)
Candidate features Popularity, length, position in session, etc.
Output A ranked list of queries
Ground truth Binary labels: 1 for submitted query and 0 for the others.
Major metrics MRR, SR@K, etc.

come from, i.e., time-related characteristics in §2.3.1 and user interactions in §2.3.2.

2.3.1 Learning from Time-related Characteristics for Query Auto
Completion

So far, time-related characteristics used for learning-based QAC approaches have not
been well studied. In general, time-related characteristics used for learning mainly relate
to popularity-based features from two sources: previous observations and future predic-
tions. Such signals have been used in probabilistic query auto completion (Cai et al.,
2014b; Whiting and Jose, 2014). Similar to (Whiting and Jose, 2014), query popularity
is determined from recent days, for instance, from the recent 1, 2, 4, or 7-day interval
preceding the prefix submission time as well as from the entire query log. In addition,
the predicted query popularity for learning is generated by considering the recent trend
as well as the cyclic behavior of query popularity. Such a scheme will be discussed in
detail in Chapter 5.

2.3.2 Learning from User Interactions for Query Auto Completion

There is more published work on learning-based QAC approaches that focus on features
based on user related characteristics than work than on features based on time-related
characteristics. User centered features typically originate from one of two sources:
(1) from user behavior in search sessions (Jiang et al., 2014b; Mitra, 2015; Shokouhi,
2013), which can capture user’s search interests and how they change queries during

21

2. Background

prefix

ranking
function

favorites

age

career

title
location

comments user

gender

dynamic
information

static
profile

user characteristics

temporal characteristics
learning

Figure 2.2: A general framework for learning-based query auto completion ap-
proaches.

search sessions; or (2) from high-resolution query logs (Li et al., 2014) that capture user
feedback like query typing, skipping, viewing and clicking as feedbacks in an entire QAC
process.

It has been observed that the popularity of certain queries may vary drastically across
different demographics and users (Shokouhi, 2013). To better understand the role played
by user profile and search context, the author presents a supervised framework for person-
alized ranking of query auto completions, where several user-specific and demographic-
based features are newly extracted for learning. In particular, for user-specific context
features, Shokouhi (2013) investigates the effectiveness for personalizing query auto
completion of features developed from the search context consisting of both the short-
term and long-term search history of a particular user. To generate the short-history fea-
tures, the queries submitted previously in the current search session are used. To produce
the long-history features, the whole search history of the particular user is considered.
Then, similarity features of query completions can be measured by n-gram similarity to
those queries in the context. Similar features have been used in previous work for per-
sonalized re-ranking web search results (Bennett et al., 2012; Teevan et al., 2011; Xiang
et al., 2010) and suggested query candidates (Cao et al., 2008; Mei et al., 2008a). For
demographic-based features, the information of a user’s age, gender and location (e.g.,
zip-code) is considered. Based on a learning algorithm, e.g., (Burges et al., 2011), the
experimental results show that demographic features such as location are more effective
than others for personalizing query auto completion. In addition, adding more features
based on users demographics and search history leads to further boosts in performance
of personalized query auto completion.

Similarly, focusing on search context in the current search session, Jiang et al. (2014b)
investigate the feasibility of exploiting the search context consisting of previously sub-
mitted queries to learn user reformulation behavior features for boosting the performance

22

2.3. Learning-based QAC Approaches

of query auto completion. An in-depth analysis is conducted to see how the users refor-
mulate their queries. Three kinds of reformulation-related features are considered, i.e.,
term-level, query-level and session-level features, which can capture clues as to how
users change their preceding queries along the query sessions. Compared to traditional
context-aware QAC methods that directly model term similarities or the query depen-
dencies, this learning-based QAC approach tries to learn how users change preceding
queries, i.e., user reformulation behavior, along query sessions, which results in signifi-
cant improvement over the performance of start-of-the-art context-aware query comple-
tion or suggestion approaches (Bar-Yossef and Kraus, 2011; He et al., 2009; Liao et al.,
2011).

Mitra (2015) builds on the insight that search logs contain lots of examples of fre-
quently occurring patterns of user reformulations of queries. They represent query refor-
mulations as vectors, which is achieved by studying distributed representations of queries
learnt by a deep neural network model, like the convolutional latent semantic model
(CLSM) (Shen et al., 2014). By doing so, queries with similar intents are projected to
the same neighborhood in the embedding space. Based on the distributed representation
of queries learnt by the CLSM model, topical similarity features measured by the co-
sine similarity between the CLSM vectors corresponding to query completions and the
previous queries in the same search session are computed and used as features for learn-
ing in the QAC ranking model. In addition to the CLSM topical similarity features, the
CLSM reformulation features, represented by low-dimensional vectors which map syn-
tactically and semantically similar query changes close together in the embedding space,
are used in the supervised learning model. Interestingly, Mitra and Craswell (2015) focus
on recommending query completions for the prefixes that are sufficiently rare as previ-
ous QAC approaches only center around recommending queries for prefixes that have
been frequently seen by the search engine. In particular, a candidate generation approach
using frequently observed query suffixes mined from historical search logs is proposed
by adopting the CLSM (Shen et al., 2014) trained on a prefix-suffix pairs dataset. The
training data for the CLSM model is generated by sampling queries in the search logs and
segmenting each query at every possible word boundary. This approach provides a solu-
tion to recommend queries that could have never been seen before in the training period,
an issue that cannot be addressed by previously proposed probabilistic algorithms, e.g.,
(Bar-Yossef and Kraus, 2011; Cai et al., 2014b, 2016a; Shokouhi and Radinsky, 2012;
Whiting and Jose, 2014) and Chapter 4, nor by learning-based QAC approaches, e.g.,
(Cai and de Rijke, 2016a; Jiang et al., 2014b; Shokouhi, 2013) and Chapter 5, because
these proposed models depend on the query popularity: only previously seen, sufficiently
frequent queries can be returned.

High-resolution query logs capture more detail information than traditional logs,
which typically contain the timestamp of a query, the anonymous user ID and the final
submitted query. High-resolution logs may capture user interactions at every keystroke
and associated system response. Based on observations from such rich data, Li et al.
(2014) observe the phenomenon that, in QAC, users often skip query completion lists
even though such lists contain the final submitted query and most of the clicked queries
are concentrated at top positions of the query completion lists. Based on this observation,
they propose two types of bias related to user behavior, i.e., a horizontal skipping bias
and a vertical position bias, that are crucial for relevance prediction in QAC. First, the

23

2. Background

Table 2.5: Comparison of learning-based query auto completion approaches.
Feature source Strengths Weaknesses

Time

Easy to implement; effective for
fresh events.

Limited number of features; hard
to predict unpopular completions;
sensitive to the unpredictable
events.

User

Dynamic intent by interaction;
static interest by user profile.

Poor performance if intent shifts;
hard to record a detailed QAC en-
gagement; sensitive to user search
habit; relatively difficult to repro-
duce.

horizontal skipping bias refers to the assumption that a query completion will not receive
a click if the user does not stop and examine the suggested list of query completions,
regardless of the relevance of the query completion. The vertical position bias relates to
the exact position of query completion in the provided list that a query on higher rank
tends to attract more clicks regardless of its relevance to the search intent.

Based on these observations, the authors propose a two-dimensional click model to
interpret the QAC process with particular emphasis on these two types of behaviors.
The phenomenon of position bias has previously been observed for traditional document
retrieval (Craswell et al., 2008; Granka et al., 2004), and several solutions have been
proposed in the setting of click models (Chapelle and Zhang, 2009; Chuklin et al., 2015b;
Dupret and Piwowarski, 2008; Liu et al., 2010a; Richardson et al., 2007; Zhang et al.,
2011; Zhu et al., 2010). Newly extracted features from high-resolution query logs, which
accurately explain user behavior during QAC engagement, reveal that people tend to
stop and look for query completions when they are typing at word boundaries, which is
consistent with the findings in (Mitra et al., 2014).

Finally, we summarize the main strengths and weaknesses of the learning-based QAC
approaches in Table 2.5. So far, user-centered QAC approaches have received more
attention than time-related methods. We believe that this is due to the rich data recorded,
based on which user’s search intent can often be correctly predicted, resulting in good
QAC performance.

2.4 Practical Issues

In this section, we discuss two practical issues related to query auto completion, i.e.,
efficiency in §2.4.1, presentation and interaction in §2.4.2.

2.4.1 Efficiency

Over the past couple of years, QAC has popped up in a range of search engines, like web
search engines, e.g., Bing and Google, as well as social media platforms, e.g., Facebook
and Twitter. It makes for an improved user experience (Zhang et al., 2015), but it can

24

2.4. Practical Issues

be a challenge to implement efficiently. In many cases, a practical implementation of
QAC requires the use of efficient algorithms and data structures for fast lookups. While
efficiency issues in traditional keyword search (Ji et al., 2009; Li et al., 2011) and docu-
ment retrieval (Bast et al., 2007; Francès et al., 2014) have been addressed in numerous
publications, relatively few papers report on efficiency in query auto completion.

However, efficiency must be taken into consideration in a practical QAC framework
as query completion systems should help users form queries when they enter a query
prefix. After summarizing previous work related to efficiency issues in QAC, we find
two main types of practical efficiency issues in QAC, i.e., computational efficiency and
error-tolerant efficiency.

Computational efficiency in QAC

In this section, we discuss a practical issue related to QAC efficiency that has been studied
in the literature that are centered around computational complexity, mainly focusing on
reducing the precessing time for completing a query prefix.

Before be able to rank query completions, indexing hundreds of millions of distinct
queries is required to guarantee a reasonable coverage corresponding to an input prefix.
A trie is a simple data structure that supports a fast query completion lookup. Hsu and
Ottaviano (2013) focus on the case where the completion set is so large that compression
is needed to fit the data structure in memory. The authors present three trie-based data
structures to handle such cases, i.e., Completion Trie, RMQ Trie and Score-Decomposed
Trie. Each has different space vs. time vs. complexity trade-offs. Trie-based indexes of
queries need to be maintained continuously. Such a scenario supports fast query com-
pletion lookups but needs too much memory. To solve the memory problem of tries, a
ternary tree is a good solution where each trie node is represented as a tree-within-a-tree.
Typically, the ternary tree is stored on a server before testing. Then, in a real-time QAC
process, the client will send a prefix to the server to get query completions based on the
constructed ternary tree. Matani (2011) present an algorithm that takes time proportional
to O(k log n) for providing the user with the top k ranked query completions out of a
corpus of n possible suggestions based on the ternary tree for completing the prefix of
the query that user has entered so far.

As a trie-based data index scheme suffers an inherent problem that the number of
prefixes is huge for the first few characters of the query and is exponential in the alpha-
bet size, this will result in a slow query response even if the entire query approximately
matches only few prefixes. In addition, the efficiency critically depends on the number
of active nodes in the trie. To deal with this problem, Xiao et al. (2013) study a QAC
problem that tolerates errors in user’s input using edit distance constraints and propose a
novel neighborhood generation-based algorithm, i.e., IncNGTrie, which can achieve up
to two orders of magnitude speedup over existing methods for the query auto completion
problem. Their proposed algorithm only needs to maintain a small set of active nodes
in a trie, thus saving both space and time to process the query. In addition, they pro-
pose optimization techniques to remove duplicates and reduce the index size by merging
common data strings and common subtrees.

Instead of keeping query completions in one trie, Kastrinakis and Tzitzikas (2010)
propose to partition a trie into two or more subtries to make query completion services

25

2. Background

more scalable and faster. In doing so, the query auto completion mechanism involves
a forest of tries. In particular, each subtrie contains queries whose starting characters
belong to a specific set of characters assigned to this trie. The key challenge is to partition
the trie. A subtrie is created as a partition and gFigurerows until its size becomes greater
than a desired partition capacity. After that, a new partition is created and so on. The
experimental results show that the proposed partitioning scheme allows increasing the
number of query completions to be hosted and speeding up their computation at real
time.

Similar to the work on learning-to-rank for document retrieval (Liu, 2003), where the
features of query-document paris are generated offline, learning-based QAC approaches
(Cai and de Rijke, 2016a; Jiang et al., 2014b; Shokouhi, 2013) extract features of prefix-
query completions in the training period before online testing for effective QAC per-
formance. Figure 2.3 shows an example of typical data format for learning-to-rank in
document retrieval and for learning-to-rank in query auto completion. As shown in Fig-
ure 2.3a, the features depict the relationships between the query and its associated doc-
uments, such as the query frequency in the document title, the word frequency in the
document abstract, and the query frequency in the whole document. Such features are
used for measuring the similarity between a query and a document. The labels in Fig-
ure 2.3a indicate the relevance between a query and a corresponding document. However,
in a learning-based QAC framework as shown in Figure 2.3b, the features are introduced
for measuring the possibility of submitting a query completion after entering the prefix
and the label denotes whether the provided query completion is submitted or not after
entering the prefix. For instance, the features related to the popularity of a query comple-
tion in the query log, the similarity of a query completion to the search context in session
and the similarity of a query completion to a user’s interest contained in their profile, etc.,
are commonly used in a learning-to-rank baed QAC approach. All these features are gen-
erated offline for training a ranking model. In an online test setting, the main time cost
for ranking query completions are on the lookups for matching such query completions
and on calculating a final ranking score based on a trained model, which generally incurs
very limited time costs (Cai and de Rijke, 2016a; Jiang et al., 2014b); see also Chapter 5.

Error-tolerant efficiency in QAC

Another aspect related to efficiency of QAC is concentrated on efficient approaches that
are resilient to typing errors. Just as there is a basic need for making the lookup operation
tolerant to such typing errors, a QAC system needs to be error-tolerant when respond-
ing to an input query prefix. Chaudhuri and Kaushik (2009) take a first step towards
addressing this problem by capturing input typing errors via edit distance and propose a
naive approach of invoking an offline edit distance matching algorithm. Their proposal,
a trie-based QAC strategy, is desirable to generate query completions per-character at a
minimal cost, generally reporting an average per-character response time at a millisecond
level and significantly outperforming an n-gram based algorithm.

As misspellings are commonly found in web search and more than 10% of search en-
gine queries are misspelled according to (Cucerzan, 2007), Duan and Hsu (2011a) study
the problem of online spelling correction for query completions, which involves not only

26

2.4. Practical Issues

(a) An example of data format for learning-to-rank in document retrieval.

(b) An example of data format for learning-to-rank in query auto completion.

Figure 2.3: An example of data format for learning-to-rank in document retrieval
and in query auto completion.

completing a typed prefix but also correcting parts of incorrectly typed prefix when pro-
viding query completions as the query is being entered. Specifically, the search engine
responds to each keystroke with a list of query completions that best correct and com-
plete the partial query. To deal with this online spelling correction for query completion
task, they model search queries with a generative model, where the intended query is
transformed into a potentially misspelled query through a noisy channel that describes
the distribution of spelling errors, and finally propose to find the top spell-corrected query
completions in real-time by adapting an A∗ search algorithm with various pruning heuris-
tics to dynamically expand the search space efficiently. The experimental results demon-
strate a substantial increase in the effectiveness of online spelling correction over existing
techniques.

2.4.2 Presentation and Interaction

In search engines, the most common way that search results are displayed is as a vertical
list of items summarizing the retrieved documents. The search results listings returned
by search engines are often known as search engine result pages (SERPs). In query
auto completion (QAC), a similar way to present query completions responding a typed
prefix can be implemented that as a user enters a query in a search box, matching query
completions appear below the search box as a drop-down menu with the typed characters
highlighted in each query completion.

In addition, users can interact with SERPs in the form of clicking, reading and skip-
ping, etc., which provide valuable feedbacks indicating the relevance of documents to a
query as well as user’s search intent. In contrast, in a QAC process, user’s interaction
behaviors with a QAC system, e.g., typing, skipping and clicking, also can be recorded
to generate a personal search pattern for a particular user, which could improve the pre-

27

2. Background

diction accuracy of their intended query. Most research efforts are directed towards im-
proving the accuracy of query completions, e.g., (Bar-Yossef and Kraus, 2011; Cai et al.,
2014b; Shokouhi, 2013; Shokouhi and Radinsky, 2012), and generally pay less attention
to the presentation issues.

In this section, we specifically discuss how to present QAC results and how people
interact with QAC results during an information retrieval process. These two points could
affect the QAC usage in practice.

Presenting Query Auto Completions Results

The representation for a retrieved document in SERPs is called a search hit (Kazai et al.,
2011; Morris et al., 2008), which is sometimes referred to as document surrogate (Beitzel
et al., 2005; Marchionini and White, 2007). Example of result presentation in document
retrieval and in query auto completion are shown in Figure 2.4 and Figure 2.5, respec-
tively. As shown in Figure 2.4, in a SERP, a brief summary of a relevant portion of

foundations and trends in information retrieval

all images videos shopping news more search tools

about 1.450.000 results

Foundations and Trends in Information Retrieval - Now …
www.nowpublishers.com/inr
Indexed in: Science Citation Index, INSPEC, SCOPUS, ACM Guide, Compendex,
DBLP, Zentralblatt Math, Google Scholar, Summon by …
 Editorial Aims Learning to Rank for …
 Editorial aims. The growth in all Learning to Rank for …Trends in
 aspects of research in the last … Information Retrieval: Vol.
 More results from nowpublishers.com »

Foundations and Trends in Information Retrieval - Scimago …
www.scimagojr.com/journalsearch.php?q=5100155071&tip=sid
Foundations and Trends® in Information Retrieval publishes surveys and tutorials
in the following topics: - Applications of IR - Architectures for IR - Collaborative ...

Foundations and Trends in Information Retrieval - ACM …
dl.acm.org/citation.cfm?id=1734788
Title, Foundations and Trends in Information Retrieval table of contents archive.
Publisher, Now Publishers Inc. Hanover, MA, USA. ISSN: 1554-0669 EISSN: …

Foundations and Trends® in Information Retrieval Journal …
https://www.researchgate.net/.../1554-0677_Foundations_and_TrendsR_i...
Journal » Foundations and Trends® in Information Retrieval. Locate articles and
query publisher details.

Figure 2.4: SERP resulting after querying “foundation and trends in information
retrieval.”

the document intended to help the user understand the primary object (Marchionini and
White, 2007) is highlighted. The quality of the document surrogate has a strong effect

28

2.4. Practical Issues

foundations and trends in information retrieval
foundations and trends
foundations
foundations u

foundations

Figure 2.5: Query completions after entering “foundations.”

on the ability of the searcher to judge the relevance of the document (Clarke et al., 2007).
Even the most relevant document is unlikely to be selected if the title is uninformative or
misleading. In addition, users are known to be biased towards clicking documents higher
up in the rankings (Joachims et al., 2005). Such presentation issues in document retrieval
have, for instance, been studied in (Joho and Jose, 2006, 2008).

In a QAC system, as shown in Figure 2.5, the query completions are listed below the
search box and only a limited number of query completions are displayed to the user. In
addition, the query completions that have been issued before can be highlighted with a
different color. However, other information about the query completions is not provided.
Similarly, the bias towards clicking query completions at top positions of the QAC list
does exist (Li et al., 2014; Zhang et al., 2015). In fact, more than three quarters of clicks
on query completions for desktop search are located within the top 2 positions of query
completions lists and an even higher percentage is observed on mobile devices (Li et al.,
2014). On the other hand, if this intended query is ranked outside the top 2 positions, only
13.4% of them will be clicked by users (Li et al., 2015). Hence, in a QAC system, the
issues related to QAC result presentation should be taken into consideration for designing
a QAC system as well as improving user’s QAC experience.

Amin et al. (2009) focus on the presentation of query completions to see how it
influences user’s search performance. They implement user studies that investigate orga-
nization strategies, e.g., alphabetical order, group and composite, of query completions
in a known-item search task, i.e., searching for terms taken from a thesaurus. They find
that for a geographical thesaurus, a sensible grouping strategy, e.g., by country or by
place type, that people can understand relatively easily is preferred. Regarding organiza-
tion strategies of query completions, both group and composite interfaces help the user
search for terms faster than alphabetical, and are generally easier to use and to understand
than alphabetical. These findings provide insights on designing a better QAC interface
for further improving user experience.

Based on the assumption that users would benefit from a presentation of query com-
pletions that are not only ordered by likelihood but also organized by a high-level user
intent, Jain and Mishne (2010) specifically focus on organizing query completions by
topic for web search, which is achieved by clustering and ordering sets of query com-
pletions. In particular, they first present a variety of unsupervised techniques to cluster
query completions based on the information available to a large-scale web search engine,
and then label each cluster by various scenarios. Finally, the clusters are ranked by min-
imizing an expected cost of locating query completions, e.g., time to read a cluster label

29

2. Background

and time to scan a cluster.
Through a pilot user study, a few interesting and promising observations are obtained

from (Jain and Mishne, 2010). For instance, users prefer query completions displayed in
a clustered style rather than an unclustered presentation. The user effort in identifying the
set of relevant completions can be substantially reduced by grouping query completions
and labeling them, resulting in increased user’s satisfaction. However, the tasks related
to the clustering, e.g., selection of the queries to cluster, assignment of a label to each
cluster, ordering the clusters as well as the query completions within each cluster, are
still challenging. In general, this work opens new and promising directions towards
improving the user experience by reducing the user effort in identifying the set of relevant
query completions. These conclusions motivate follow-up work on diversifying query
auto completion (Cai et al., 2016b); see Chapter 6.

Interaction with Query Auto Completion Results

In this section, we discuss users’ interactions with the QAC results in some detail. With
special devices, a user’s explicit interactions during query auto completion engagement
may be recorded. Such interactions provide valuable information for capturing a user’s
personal characteristics, e.g., typing habits and search interests.

Mitra et al. (2014) present the first large-scale study of user interactions with query
auto completion. Their investigations reveal that lower-ranked query completions receive
substantially less engagement, i.e., fewer clicks, than those ranked higher. In addition,
users are most likely to submit a query by clicking a completion after typing about half
of the query and in particular at word boundaries. Another factor that affects QAC en-
gagement is related to the distance of query characters on the keyboard. For instance, a
monotonic increase in the probability of QAC engagement with keyboard distance up to
a distance of 4 keys can be observed, which demonstrates a clear relation between the
position of the next character on the keyboard and the likelihood of QAC usage. Overall,
such results appear to confirm typical intuitions of when users would like to use QAC.
Furthermore, these results could be due to other attributes like user’s typing habit, e.g.,
skipping and viewing completions. Such problems are studied in (Li et al., 2014; Zhang
et al., 2015), based on a high-resolution query log dataset.

An in-depth eye-tracking study of user interactions with query auto completion in
web search is performed by Hofmann et al. (2014). In their study, the participants’
interactions are recorded using eye-tracking and client-side logging when they complete
the assigned web search tasks. A strong position bias towards examining and using top-
ranked query completions is identified, which is consistent with similar findings on user
interactions with web search results (Chuklin et al., 2015a,b; Guo et al., 2009a; Yue
et al., 2010). Due to this strong position bias, ranking quality does affect QAC usage, as
evidenced by different behavioral patterns, which includes activities such as monitoring,
skipping and searching for query completions. This work suggests that injecting user
feedback into a QAC framework may be beneficial. The issue is partially addressed by
Zhang et al. (2015), where user behavior such as skipping and viewing query completions
is taken into account for query auto completion.

As the QAC process typically starts when a user enters the first character into the
search box and ends until he clicks a completed query, a series of user interactions with

30

2.5. Summary

the QAC system involves examining the list of query completions, continuing to type,
and clicking on a query in the list. Such complete interactions in the QAC process have
not been well studied by previous QAC approaches. Li et al. (2014) adopt a click model
to shed light on QAC user interactions, which consists of a horizontal component that
captures the skipping behavior, a vertical part that depicts the vertical examination bias,
and a relevance model that reflects the intrinsic relevance between a prefix and a query
completion. This model is motivated by the fact that users frequently skip query comple-
tion lists even though such lists contain the final submitted query because the intended
query is not ranked at top positions of the list.

Following (Li et al., 2014), Zhang et al. (2015) exploit implicit negative feedback in
a QAC process, e.g., dwelling on query completion lists for a long time without selecting
query completions ranked at the top. Such user feedback indicates that the user may not
favor these unselected query completions although they are ranked at the top positions
in the list. To model this negative feedback, the dwell time and the position of unse-
lected query completions are taken into account. By incorporating a (static) relevance
score with implicit negative feedback, the proposed model re-ranks the top-N queries
initially returned by popularity. Finally, a case study verifies that the new model gener-
ally outperforms start-of-the-art QAC models for the cases that users submit new queries
when reformulating older queries and that users have clear query intent so as to prefer
disambiguated queries.

2.5 Summary

In this chapter, we have summarized related work on query auto completion, which is
based on either probabilistic models or on a learning framework. In particular, the work
on probabilistic models that we have surveyed so far is mainly based on either the search
context (Bar-Yossef and Kraus, 2011; Cai et al., 2014b) or on user interactions (Li et al.,
2015; Zhang et al., 2015) to estimate a probability of submitting a query completion.
Despite their intuitiveness, these probabilistic QAC approaches have been shown to be
outperformed by relatively simple methods such as the MPC model (Bar-Yossef and
Kraus, 2011), regardless of their choice of how to compute the ranking scores for query
completions. In addition, we have summarized learning-based query auto completion
approaches that explore features from time-related characteristics and from user-specific
characteristics. Such approaches use time series analysis to predict the future popularity
of queries and on user behavior analysis by understanding the interaction data in a QAC
engagement.

Finally, we have discussed some practical issues related to QAC, i.e., efficiency, pre-
sentation and interaction. Addressing these issues makes a QAC service fit together with
search engines well. So far, researcher have paid less attention to these practical issues
in QAC than to query completion ranking models even though QAC services have to run
subject real-time constraints. Most processing steps in a QAC system can be done offline
and the QAC ranking models can be trained regardless of the time consumption. Based
on a trained QAC ranking model, the test phase only requires very limited time cost.

This chapter has introduced the task of query auto completion and its corresponding
methods. In the chapters to come we build on the methods introduced here; the experi-

31

2. Background

mental methodology and setup that we use to assess our proposals is introduced next.

32

3
Experimental Methodology

In this chapter, we move on to the experimental methodology for query auto completion
(QAC) that is commonly used in later research chapters, Chapter 4–7. In particular, we
present the experimental setup in §3.1, detail the benchmark datasets used for experi-
ments in §3.2, and describe the metrics used for evaluations in §3.3.

3.1 Experimental Setup

In essence, QAC approaches deal with a re-ranking problem (Bar-Yossef and Kraus,
2011; Cai and de Rijke, 2016a; Cai et al., 2014b; Jiang et al., 2014b; Shokouhi, 2013).
That is, as shown in Figure 3.1, QAC models focus on re-ranking a ranked list of query
completions that is initially returned by a basic ranker when a user enters a prefix. In this
flow, the initial query list, i.e., query list 1 in Figure 3.1, is at least as long as the final
re-ranked query list, i.e., query list 2 in Figure 3.1. Thus, we can think of QAC models
as re-rankers. The dominant types of signals used for re-ranking are either time-related
or user-centered as described in Chapter 2. In addition, for evaluation purposes, in our

prefix basic
ranker

1.
2.
3.
4.
5.
6.…

1.
2.
3.
4.
5.
6.…

Query list 1 Query list 2

re-
ranker

Figure 3.1: General flow of a QAC approach.

experiments, the typed prefixes are simulated from all possible prefixes of the submitted
query. Typically, the prefix consists of 1 to 5 characters. This setting is consistently
shared in later research chapters. Some very particular parameter settings will be dis-
cussed in the relevant research chapters.

For comparisons, note that we do not compare our approach with query suggestion
methods, e.g., (Liao et al., 2011; Ma et al., 2008; Mei et al., 2008b), because such meth-
ods focus on the task of query suggestion, which is a subtly different task from QAC (Cai
et al., 2014b). For instance, in the case of query suggestion, the user input typically is

33

3. Experimental Methodology

a full query but it is only a prefix in QAC. Also, for generating the original query com-
pletion list to re-rank in our QAC task, only the candidates matching the typed prefix are
taken into consideration. However, for a query suggestion task, each query in the query
log could be included in the candidate list to re-rank given that it is deemed relevant to
the user input. With this limitation we follow a standard practice in research on QAC
(Bar-Yossef and Kraus, 2011; Cai et al., 2014b; Shokouhi and Radinsky, 2012; Whiting
and Jose, 2014), where only appropriate QAC approaches are used as baselines rather
than query suggestion approaches. In addition, QAC is different from query correction
oriented tasks such as those discussed by Duan and Hsu (2011b), where the main focus
is on correctly modifying a misspelled word or query.

3.2 Benchmark Datasets

For a QAC task, each record in a benchmark test collection has at least three main com-
ponents: a submitted query, a user ID (or session ID) and a timestamp. The timestamp
and the user ID (or session ID) are used for extracting time-sensitive and user-specific
characteristics, respectively, while the query can be used to manually generate the query
prefix and to count the appearance in the query logs. Besides, some additional informa-
tion, e.g., the clicked URLs and their ranks, could be available too. Such data could be
developed to infer user’s search intent.

Three publicly available query log datasets, i.e., the AOL dataset (Pass et al., 2006),
the MSN dataset (Craswell et al., 2009), and the Sogou dataset,1 have been widely used
for QAC training and evaluation. For instance, the AOL dataset is commonly used in
time-sensitive QAC approaches (Cai and de Rijke, 2016a; Cai et al., 2014b; Whiting
and Jose, 2014), as a relatively long period of query logs is provided, as well as in per-
sonalized methods (Bar-Yossef and Kraus, 2011; Shokouhi, 2013). The MSN dataset is
preferred in (Cai and de Rijke, 2016a; Cai et al., 2016b) for personalizing query auto
completion. And the Sogou dataset is used in (Whiting and Jose, 2014). Other query log
datasets from modern commercial search engines, which record more search details but
are not publicly available because of privacy or competitiveness issues, have also been
applied for research (Jiang et al., 2014b; Li et al., 2015, 2014; Shokouhi and Radinsky,
2012; Zhang et al., 2015).

Table 3.1 shows an example of search session2 in the well-known AOL query log
dataset (Pass et al., 2006). In this case, this user submitted three queries in total. Each
of the two previous queries, i.e., “goodyear” and “hyundaiusa”, has one clicked URL,
which is ranked at position 1 in the returned corresponding list of URLs. The last query,
i.e., “order hyundai parts,” has three clicked URLs, at position 2, 9 and 6, respectively.
The AOL dataset is one of the few datasets that contain actual queries and is sufficiently
large to guarantee statistical significance. The queries in the AOL dataset were sampled
between March 1, 2006 and May 31, 2006. The MSN logs were recorded for one month
in May 2006 from the MSN search engine. An early version of the Sogou dataset was
released in 2008 but it was replaced by a bigger dataset in 2012. Privacy information has
been removed as well as illegal query sessions. Statistics of the three publicly available

1http://www.sogou.com/labs
2Segmented by a fixed time window of 30 mins inactivity (Jones and Klinkner, 2008; Lucchese et al., 2011).

34

http://www.sogou.com/labs

3.3. Evaluation Measures

Table 3.1: Snapshot from a search session in the AOL query log dataset.

Table 3.2: Statistics of publicly available query log collections, i.e., the AOL dataset
(AOL), the MSN dataset (MSN) and the Sogou dataset (Sogou), for query auto com-
pletion evaluation.

Statistic AOL MSN Sogou

Language English English Chinese
Start date 2006-03-01 2006-05-01 2008-06-01
End date 2006-05-31 2006-05-31 2008-06-30
Days 92 31 30
Records 36,389,567 14,921,285 43,545,444
Queries 10,154,742 8,831,281 8,939,569
Users 657,426 – 9,739,704
Sessions – 7,470,916 25,530,711
URLs 1,632,788 4,975,897 15,095,269

query log collections presented in this section are provided in Table 3.2. Although these
logs largely facilitate research on query auto completion in information retrieval, they are
limited to the detailed user interaction with a QAC engine.

In addition, we use a dataset made available by the Netherlands Institute for Sound
and Vision,3 to which we will refer as “SnV” (Huurnink et al., 2010). SnV is one of
the largest audiovisual archives in Europe. The SnV logs were recorded for one year
between January 1, 2013 and December 31, 2013 using an in-house system tailored to the
archive’s online interface. We filter out a large volume of navigational queries containing
URL substrings (.com, .net, .org, http, .edu, www.) from the datasets and remove queries
starting with special characters such as &, $ and # from all datasets. The chapters in
this thesis are mainly based on the AOL and MSN query log datasets. In particular, the
AOL dataset is used in all research chapters, Chapter 4–7; the MSN dataset is used in
Chapter 5 and 6; and the SnV dataset is used in Chapter 4.

3.3 Evaluation Measures

To evaluate the effectiveness of QAC rankings in all research chapters, Mean Reciprocal
Rank (MRR) is a standard measure. For a prefix p of a query q in the query setQ, assume
that a list of matching query completions S(p) and the user’s final submitted query q′ are

3http://www.beeldengeluid.nl

35

http://www.beeldengeluid.nl

3. Experimental Methodology

given. Then, the Reciprocal Rank (RR) for this prefix is computed as follows:

RR =

{ 1
rank of q′ in S(p) , if q′ ∈ S(p)

0, otherwise.
(3.1)

Finally, the MRR score is computed as the average of all RR scores for tested prefixes of
queries in Q. From this formula, MRR can be taken as a precision-oriented metric.

The choice of MRR as a performance metric is common in settings that are concerned
with finding a single known solution. However, because of the issues reported in (Hof-
mann et al., 2014) on the formulation of MRR (averaging over a non ratio-scale), a less
problematic metric, i.e., success rate at top K (SR@K), is also used for QAC evaluation,
which denotes the average ratio of the actual query that can be found in the top K query
completion candidates over the test data. This metric is widely used for tasks whose
ground truth consists of only one instance such as query completion (Jiang et al., 2014b).

For measuring the accuracy of predicting a query’s future popularity in the time-
sensitive QAC model (Chapter 4), Mean Absolute Error (MAE) is widely used:

MAE = 1
n

∑n
i=1 |ŷi − yi|, (3.2)

where yi is the true value and ŷi is the prediction. MAE is an unbounded measure and
is not strongly resilient to outliers. Therefore, its is often used along with another metric
such as Symmetric Mean Absolute Percentage Error (SMAPE) to diagnose the forecast
variation. SMAPE is defined as:

SMAPE = 1
n

∑n
i=1

|ŷi−yi|
ŷi+yi

, (3.3)

In contrast to MAE, SMAPE is bounded between 0 and 1. To evaluate the quality of
QAC rankings, Mean Reciprocal Rank (MRR) is a standard measure.

For evaluating the D-QAC performance in Chapter 6, which is studied in (Cai et al.,
2016b), the official evaluation metrics in the diversity task of the TREC 2013 Web track
(Collins-Thompson et al., 2013), e.g., ERR-IA (Chapelle et al., 2009), α-nDCG (Clarke
et al., 2008), NRBP (Clarke et al., 2009) and MAP-IA (Agrawal et al., 2009) can be
borrowed. We take the metric α-nDCG at cutoff N as an example for evaluating the
diversity of a QAC rankings, which extends the traditional nDCG metric (Järvelin and
Kekäläinen, 2002) for aspect-specific rankings according to:

α-nDCG@N = ZN

N∑
i=1

∑
a∈Ap

gi|a(1− α)
∑i−1

j=1 gj|a

log2(i+ 1)
, (3.4)

where a is an aspect in the set of query aspects Ap, gi|a denotes the aspect-specific gain
of the i-th query given aspect a, and the normalization constant ZN is chosen so that
the perfect QAC list gets an α-nDCG@N score of 1. The α-nDCG@N commonly is
computed at a trade-off α = 0.5 in order to give equal weights to both relevance and
diversity and all rewards are discounted by a log-harmonic discount function of rank.
Generally, these diversity metrics reward newly-added aspects and penalize redundant
aspects of query completions. See the referred literature for details on how these metrics
are computed.

In our experiments, the statistical significance of observed differences between the
performance of two approaches is tested using a two-tailed paired t-test and is denoted
using N (H) for significant differences at level α = .01 and M (O) at level α = .05.

36

3.4. Summary

3.4 Summary

In this chapter, we have detailed the currently established methodology for evaluating
query auto completion rankings. In particular, we have presented the general experi-
mental setup for query auto completion in information retrieval and then described the
publicly available benchmark query log collections used for query auto completion. In
addition, we have introduced the most widely used metrics for QAC evaluation, includ-
ing the measure for the accuracy of query completion as well as for the diversification of
query auto completion.

So far, we have introduced the background and experimental methodology of this the-
sis. From the next chapter, we will focus on our investigation on query auto completion
in information retrieval.

37

4
Prefix-adaptive and Time-sensitive

Personalized Query Auto Completion

A common and effective approach in previous work on query auto completion (QAC) is
to extract, for each prefix, all past queries that expand it from a period of query logs, and
then rank them by their popularity (Bar-Yossef and Kraus, 2011; Shokouhi and Radinsky,
2012; Strizhevskaya et al., 2012), i.e., by the number of times they have been submitted.
This assumes that the current and future query popularity are the same as the past query
popularity. Although this kind of approach results in satisfactory QAC performance on
average, it is far from optimal since it fails to take strong clues from time, trend and user-
specific context into consideration while such information often influences the queries
most likely to be typed.

For instance, as illustrated in Figure 4.1, personalized QAC may inject the most popu-
lar completions from a user as query completions for that particular user; see Figure 4.1a
(not personalized) and Figure 4.1b (personalized). From Figure 4.2a and Figure 4.2b,
obtained using Google Trends,1 we see that query popularity strongly depends on time.
We observe a clear burst for the query “MH17” around July 18, 2014. We also see that
query popularity may be subject to cyclic phenomena: there is a yearly cycle for the
query “New year” and a weekly cycle for the query “Movie.” These phenomena can be
explored to forecast a query’s future popularity, which motivates a QAC approach that
takes both the temporal aspect and the personal context into account. The work in this
chapter is an attempt towards this objective.

In addition, some user inputs are easier to complete than others, depending on the
“popularity” of the prefix, as measured by the number of returned query completions.
Consider, for instance, Table 4.1, which displays a search session with three queries
from the well-known AOL query log (Pass et al., 2006). For the sake of the example, let
us assume that we have not yet seen the last query (row 4 in Table 4.1a, the query “json-
line”), and that there are three lists in Table 4.1b of query completions with the initial
prefix “js,” “jso” and “json,” respectively, of this query “jsonline,” for which we want to
recommend completions. A regular baseline based on the most popular query is applied
to produce these completions (Bar-Yossef and Kraus, 2011). More query completions
are returned for the first prefix (row 2 in Table 4.1b) than for the second and third prefix
(rows 3 and 4, respectively, in Table 4.1b). This means that, for a single popularity-based

1http://www.google.com/trends

39

http://www.google.com/trends

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

ieee
ieee xplore
ieee citation
ieee spectrum

IEEE

(a) Completion of the prefix “IEEE” without logging in.

ieee transactions on knowledge and data engineering
ieee member
ieee xplore
ieee citation

IEEE

(b) Completion of the prefix “IEEE” after logging in.

Figure 4.1: Query auto completions of the typed prefix “IEEE” under different
settings.

QAC approach, if the user inputs the prefix “jso” (or “json”), then, since there are few
queries that start with “jso” (or “json”), the auto completion task is easier and is likely to
produce better predictions. On the other hand, if the user’s inputs are the letters “js” as
a prefix, the large number of possible completions makes the prediction task harder. We
treat the prefix “jso” (or “json”) as a long-tail prefix and the prefix “js” as a normal one if
we set the threshold N = 10 for the number of returned query completions. This ratio-
nale motivates us to work with a modified QAC model to adaptively deal with long-tail
prefixes.

In this chapter, we focus on how to incorporate information of time-sensitivity with
that of user-personality for boosting the performance of QAC. This chapter addresses
research questions RQ1–RQ6 as specified in §1.1. In particular, we propose to return
the top N query completions by predicted popularity based on their cyclic behavior and
recent trend, and then rerank these completions by user-specific context so as to output
a final list of query completions. We propose two time-sensitive QAC models, λ-TS-
QAC and λ∗-TS-QAC, that employ either a fixed trade-off λ or an optimal trade-off λ∗

to answer the following research questions:

RQ1 As a sanity check, what is the accuracy of query popularity prediction generated
by various models?

RQ2 How do our time-sensitive QAC models (λ-TS-QAC and λ∗-TS-QAC) compare
against state-of-the-art time-sensitive QAC baselines?

We propose to predict a query’s future popularity based on its recent trends as well as its
cyclic popularity behavior, with a trade-off controlling these two parts when combining
them together for a final ranking score. Such a trade-off can be assigned with a fixed value
or can be individually optimized for each particular query based on a regression model.
Our results show that λ∗-TS-QAC performs better in terms of MAE and SMAPE than
all aggregation- and trend-based baselines, as well as λ-TS-QAC. We use the predicted
query popularity to rank query completions for answering RQ2 and find that λ∗-TS-QAC

40

(a) Relative query popularity in the past few years (2004–present).

(b) Relative query popularity within 3 months (June, 2014–August, 2014).

Figure 4.2: Relative query popularity for different queries over time. Queries:
“MH17” in blue, “Movie” in red and “New year” in yellow. The snapshot was taken
on Thursday, February 12, 2015.

outperforms the baseline as well as λ-TS-QAC in terms of MRR for most cases.
After incorporating the personal information from a user’s search context into our

time-sensitive QAC model, we propose a hybrid QAC model λ∗-H-QAC that considers
both time-sensitivity and user personalization to compare with an n-gram based hybrid
model λ∗-HG-QAC so as to answer the research questions:

RQ3 Does λ∗-H-QAC outperform time-sensitive QAC methods, e.g., λ∗-TS-QAC?

RQ4 How does λ∗-H-QAC compare against personalized QAC method using n-gram
based query similarity?

RQ5 How does λ∗-H-QAC compare against λ∗-HG-QAC?

Finally, in this chapter, an extension of λ∗-H-QAC, named λ∗-H′-QAC, is proposed to
deal with long-tail prefixes, i.e., unpopular prefixes, by optimizing the contributions from
the predicted query popularity and from the user-specific context. To verify its effective-
ness, we address another research question:

RQ6 How does λ∗-H′-QAC compare against λ∗-H-QAC on long-tail prefixes? And on
all prefixes?

We prove that, after integrating the user-centered search context with our time-sensitive
QAC model, our proposal, i.e., a prefix-adaptive hybrid QAC approach, further boosts
the accuracy of ranking query completions.

Our contributions in this chapter can be summarized as follows:
(1) We address the challenge of query auto completion in a novel way by considering

both time-sensitive query popularity and user-specific context.

41

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

Table 4.1: An AOL session example (Top) and lists of top ten (at most) candidates
returned based on frequency after typing the corresponding prefix (Bottom).

(a) An AOL session example.

1 SessionID UserID Query Time

2 310 1722 badjocks 20060523, 10:17:44
3 310 1722 jsonline 20060523, 10:21:30
4 310 1722 jsonline 20060523, 10:21:37

(b) Lists of top ten (at most) candidates after typing corresponding prefix.

1 Prefix List of top ten (at most) QAC candidates

2 js jsonline, jsu, js, jstor, js online, jsfirm, jsp, js collection, jso, jscfcu
3 jso jsonline, jso
4 json jsonline

(2) We propose a new query popularity prediction method that explores the cyclic
behavior and recent trend of query popularity, achieving a better approximation to
the real popularity in terms of Mean Average Error (MAE).

(3) We extend our hybrid QAC model to deal with long-tail prefixes by optimizing the
contributions from query popularity and user-specific context.

The remainder of this chapter is organized as follows. Our prefix-adaptive and time-
sensitive personalized query auto completion approach is described in §4.1, while the
experimental setup is presented in §4.2; §4.3 reports our experimental results. We con-
clude in §4.4 where we also recommend several directions for future work.

4.1 Approach

In this section we describe our time-sensitive personalized query auto completion ap-
proach, a hybrid model that not only inherits the merits of time-sensitive query auto
completion but also considers a user’s personal context. Table 4.2 provides an overview
of various QAC approaches; the baselines (rows 1–3) are described in the literature; we
detail our models (rows 4–10) in three steps: time-sensitive QAC first, then personalized
QAC, and, finally, hybrid QAC.

4.1.1 Periodicity and Trend Based QAC

We propose a time-sensitive QAC method, TS-QAC, that ranks query completions by
predicted query popularity (i.e., their frequency) based on periodicity and recent trends
so that we can detect both cyclicity and instantly frequent queries. TS-QAC not only
inherits the merits of time-series analysis for long-term observations of query popularity,
but also considers recent variations in query counts. Specifically, we predict a query q’s
next-day popularity ỹt0+1(q, λ) at day t0 + 1 after day t0 by both its recent trend and

42

4.1. Approach

Table 4.2: Description of query popularity prediction methods and QAC ap-
proaches.
Approach Description Source

Pk Predict a query’s future popularity by ag-
gregating the frequency in the past k days

(Shokouhi and
Radinsky, 2012)

MPC-ALL Rank query completions according to the
popularity on the whole log

(Bar-Yossef and
Kraus, 2011)

MPC-R-TW Rank query completions according to the
popularity within a fixed time window

(Whiting and Jose,
2014)

O-MPC-R Rank query completions according to the
popularity within an optimal time win-
dow

(Whiting and Jose,
2014)

Ptrend Predict a query’s future popularity by its
recent trend as described in (4.3)

This chapter

λ∗-TS-QAC A TS-QAC model with an optimal param-
eter λ∗ used in (4.1), achieved by (4.7)

This chapter

Personalized QAC Rank query completions according to the
similarity to previous queries as (4.8)

This chapter

λ-H-QAC A hybrid model integrating λ-TS-QAC as
(4.13) and personalized QAC as (4.14)

This chapter

λ∗-H-QAC A hybrid model integrating λ∗-TS-QAC
by (4.7) and personalized QAC as (4.14)

This chapter

G-QAC A hybrid model integrating MPC-ALL
and n-gram based personalization as
(4.12)

This chapter

λ∗-HG-QAC A hybrid model integrating λ∗-TS-QAC
and n-gram based personalization as
(4.12)

This chapter

λ∗-H′-QAC A modified λ∗-H-QAC model with long-
tail prefix detection added

This chapter

periodicity with a free parameter λ (0 ≤ λ ≤ 1) controlling the contribution of each
component:

ỹt0+1(q, λ) = λ · ŷt0+1(q)trend + (1− λ) · ȳt0+1(q)peri, (4.1)

where λ = 1 for aperiodic queries and 0 ≤ λ < 1 for periodic queries. The term
ŷt0+1(q)trend is estimated via a linear aggregation of predictions from Ndays recent ob-
servations:

ŷt0+1(q)trend =
∑Ndays

i=1 norm(ωi) · ŷt0+1(q, i)trend, (4.2)

where norm(ωi) normalizes the contributions from each day to ensure
∑
i ωi = 1.

We introduce a temporal decay function to output the weight before normalizing as
ωi = fTD(i)−1, where f is a decay factor and TD(i) refers to the interval from day i to
the future day t0 + 1. We identify the highest prediction accuracy parameter Ndays for

43

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

each query based on past observations in the whole log using a multiple linear regression
model, following (Whiting and Jose, 2014). The prediction ŷt0+1(q, i)trend from each
day i (i = 1, . . . , Ndays) is derived from the first order derivative of q’s daily count
C(q, t) as:

ŷt0+1(q, i)trendyt0−TD(i)(q, i) +

∫ t0+1

t0−TD(i)

∂C(q, t)

∂t
dt, (4.3)

where yt0−TD(i)(q, i) is the observed query count of q at day i.
The periodicity term ȳt0+1(q)peri in (4.1) is smoothed by simply averaging the recent

M observations ytp at preceding time points tp = t0 + 1− 1 · Tq, . . . , t0 + 1−M · Tq
in the log:

ŷt0+1(q)peri = 1
M

∑M
m=1 yt0+1−m·Tq

(q), (4.4)

where Tq denotes q’s periodicity.
For detecting cyclic aspects of a query q’s frequency, we use the autocorrelation co-

efficients (Chatfield, 2004), which measure the correlation between Ns successive count
observations C(q, t) at different times t = 1, 2, . . . , Ns in the query log. The correlation
is computed between a time series and the same series lagged by i time units as:

ri =

∑Ns−i
t=1 (C(q, t)− x̄1)(C(q, t+ i)− x̄2)(∑Ns−i

t=1 (C(q, t)− x̄1)2
) 1

2
(∑Ns

t=i+1(C(q, t+ i)− x̄2)2
) 1

2

, (4.5)

where x̄1 is the mean of the first Ns − i observations and x̄2 is the mean of the last
Ns− i observations. For Ns reasonably large, the denominator in (4.5) can be simplified
by approximation. First, the difference between the means x̄1 and x̄2 can be ignored.
Second, the difference between summations over observations 1 to Ns − i and i + 1 to
Ns can be ignored. Accordingly, ri can be approximated by:

ri ≈
∑Ns−i
t=1 (C(q, t)− x̄)(C(q, t+ i)− x̄)∑Ns

t=1(C(q, t)− x̄)2
, (4.6)

where x̄ =
∑Ns

t=1 C(q, t) is the overall mean.
In addition, we choose an optimal λ∗ by minimizing the metric Mean Absolute Error

(MAE) (described in §4.2) as:

λ∗ = arg min
0≤λ≤1

1

|Q|
· 1

|Lv|
∑
q∈Q

|Lv|∑
s=1

|ỹs(q, λ)− ys(q)|, (4.7)

where ỹs(q, λ) and ys(q) are the predicted and the true query counts at day s in the
validation period (Lv days), respectively.

Algorithm 1 details the major steps of our time-sensitive QAC method. We write λ-
TS-QAC for the version with a fixed λ and λ∗-TS-QAC for the version where an optimal
λ∗ is chosen. We fix the optimal number of days for predicting the popularity trend by
minimizing the MAE in line 10 in Algorithm 1.

44

4.1. Approach

Algorithm 1 Time-sensitive query auto completion (TS-QAC).

Input: All queries: Q;
Length of training and validation days: Lt and Lv;
Querying time: t0;
Number of returned completions: N ;

Output: Predictions: Q̄ = {ȳt0+1(q) : q ∈ Q};
Top N completions of each prefix of all queries;

1: for each q ∈ Q do
2: Tq ← autocor(Count(q));
3: for i = 1, · · · , Lt do
4: for j = 1, · · · , Lv do
5: ŷt0+1(q)trend[j]← Regression(Count(q)[1 : i]);
6: AbsoluteError[j]← ŷt0+1(q)trend[j]− yt0+1(q)|;
7: end for
8: MAE (i)← mean(AbsoluteError);
9: end for

10: Ndays ← arg min1≤i≤Lt
MAE (i);

11: Update ŷt0+1(q)trend with optimal Ndays and Compute ȳt0+1(q)peri;
12: end for
13: Find an optimal λ∗ by (4.7);
14: λ← λ∗;
15: for each q ∈ Q do
16: ỹt0+1(q, λ)← λ× ŷt0+1(q)trend + (1− λ)× ȳt0+1(q)peri;
17: end for
18: for each q ∈ Q do
19: for each prefix p of q do
20: Return top N completions of p ranked by ỹt0+1(q, λ);
21: end for
22: end for

4.1.2 Personalized QAC

Next, we extend our time-sensitive QAC model described in §4.1.1 with personalized
QAC. After sorting the queries with typed prefix p by predicted popularity following
(4.1), we are given a ranking list of top N query completions. Let S(p) represent the set
of returned top N query completions of prefix p.

Our personalized QAC works by scoring candidates qc ∈ S(p) using a combination
of similarity scores Score(Qs, qc) and Score(Qu, qc), where Qs relates to the recent
queries in the current search session and Qu refers to those of the same user issued
before, if available, as:

Pscore(qc) = ω · Score(Qs, qc) + (1− ω) · Score(Qu, qc), (4.8)

where ω controls the weight of the individual components. Personalized QAC works at
the session-based and user-dependent level.

To compute the required similarity scores, we first consider how to represent queries

45

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

in Qs and Qu. A naive approach would be to represent a query by n-grams or its terms
as “a bag of words.” The resulting similarity measure can capture syntactic reformula-
tions. However, the problem is that queries are short, and thus their vocabulary is too
sparse to capture semantic relationships. In order to overcome this sparsity problem, we
use another solution to measure similarity. We observe in our datasets (see Table 4.3 and
Figure 4.4) that users often request the same query or reformulate the query by modifying
previous ones within the same session. We treat a user’s preceding queries Qs in the cur-
rent session and their preceding queries Qu in the historical log as context to personalize
QAC where we measure similarity at the character level.

We represent a query qs ∈ Qs and qc ∈ S(p) by the terms as {ws1, ws2, . . . , wsm}
and {wc1, wc1, . . . , wcn} and let N(w∗, q∗) denote the count of w∗ appearing in q∗. We
estimate the similarity between qc and Qs as a conditional probability:

Score(Qs, qc) = p(qc | Qs) (4.9)

=
∑
qs∈Qs

norm(ωs) · p(qc | qs),

where norm(ωs) introduces a decay function ωs = fTD(s)−1 as in (4.2) except that here
TD(s) refers to the interval between qc and qs, and p(qc | qs) is calculated following (Cai
et al., 2014a) as:

p(qc | qs) =
∏

wci∈qc

p(wci | qs)N(wci,qc) (4.10)

=
∏

wci∈qc

p(wci |W (wci))
N(wci,qc),

where W (wci) = {w : w ∈ qs | w[0] = wci[0]} is a set of terms in qs sharing the same
start with wci, and define

p(wci |W (wci)) ≡ Similarity(wci,W (wci))

=
1

|W (wci)|
∑

wj∈W (wci)

Similarity(wci, wj)

=
1

|W (wci)|

|W (wci)|∑
j=1

len(common(wci, wj))

min(len(wci), len(wj))
,

where len(common(wci, wj)) is the maximal length of common string appearing in wci
and wj from the beginning.

We compute Score(Qu, qc) in a different manner from Score(Qs, qc) in (4.9) be-
cause in this setting it is desirable to consider both query count and time interval. We
output Score(Qu, qc) as:

Score(Qu, qc) = p(qc | Qu) =
∑
qu∈Qu

norm(ωu) · p(qc | qu), (4.11)

where norm(ωs) only depends on the query count—we assume that frequent queries
reflect a user’s personal search clues.

46

4.1. Approach

Algorithm 2 Hybrid QAC model

Input: Predictions: Q̄;
user: u;
prefix: p;
number of query completions to be reranked: N ;
fixed trade-off: γ;

Output: Ranked list of top N query completions of p;
1: Produce S(p) consisting of top N query completions by (4.1);
2: List u’s queries Qu and Qs;
3: for each qc ∈ S(p) do
4: Compute TSscore(qc) based on (4.13);
5: for each qs ∈ Qs do
6: p(qc | qs) = Similarity(qc, qs);
7: end for
8: Compute Score(Qs, qc) based on (4.9);
9: for each qu ∈ Qu do

10: p(qc | qu) = Similarity(qc, qu);
11: end for
12: Compute Score(Qu, qc) based on (4.11);
13: Compute Pscore(qc) based on (4.8) and (4.14);
14: end for
15: Re-rank S(p) by HQscore(qc) based on (4.12);
16: Return a reranked list of S(p);

4.1.3 Hybrid QAC
We introduce a hybrid QAC model that combines time-sensitive QAC (TS-QAC)

with personalized QAC. First, TS-QAC produces a list of query completions S(p) of
prefix p. We assign TSscore(qc) to each candidate qc ∈ S(p) using its predicted popu-
larity, i.e., ỹt0+1(qc, λ) in (4.1). Like (Bar-Yossef and Kraus, 2011), we then define our
hybrid models as convex combinations of two scoring functions:

Hscore(qc) = γ · TSscore(qc) + (1− γ) · Pscore(qc). (4.12)

As TSscore(qc) and Pscore(qc) use different units and scales, they need to be stan-
dardized before being combined. We standardize TSscore(qc) (used in (Bar-Yossef and
Kraus, 2011)) as:

TSscore(qc)←
ỹt0+1(qc, λ)− µT

σT
, (4.13)

where µT and σT are the mean and standard deviation of the predicted popularity of
queries in S(p). Similarly, we use (4.8) to obtain

Pscore(qc)←
Pscore(qc)− µP

σP
, (4.14)

where µP and σP are the mean and standard deviation of similarity scores of queries
in S(p). Algorithm 2 describes our hybrid QAC model, which requires a ranked list of

47

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

Algorithm 3 Optimization on long-tail prefixes (OLP)

Input: Predictions: Q̄;
prefix set: P̄ ;
number of query completions to be reranked: N ;
threshold: Num;

Output: Subset P̄1 for long-tail prefixes and P̄2 for others;
1: P̄1 = P̄2 = {};
2: for each prefix p ∈ P̄ do
3: Produce S(p) consisting of top N query completions by (4.1);
4: if N < Num then
5: P̄1 = P̄1 ∪ {p};
6: else
7: P̄2 = P̄2 ∪ {p};
8: end if
9: for each qc ∈ S(p) do

10: Compute TSscore(qc) based on (4.13);
11: Compute Pscore(qc) based on (4.8) and (4.14);
12: end for
13: end for
14: Apply linear regression on P̄1, producing an optimal weight γ̄ in (4.12);
15: Return γ̄, P̄1 and P̄2;

query completions along with their predicted popularity as produced by Algorithm 1;
(4.12) provides the overall ranking score (see Algorithm 2, row 15).

We write λ-H-QAC to refer to the hybrid combination of λ-TS-QAC (used at line 4
in Algorithm 2) and the personalization approach described in the previous section; we
write λ∗-H-QAC for the variant where λ has been optimized according to (4.7). For com-
parison, we also introduce other combined QAC models that consider query popularity
and personalization. For instance, the G-QAC model derives the TSscore(qc) score in
(4.12) by MPC-ALL and Pscore(qc) by using an n-gram representation similarity. Sim-
ilarly, λ∗-HG-QAC model generates TSscore(qc) by our λ∗-TS-QAC (in §4.1.1) and
Pscore(qc) by the same n-gram representation similarity.

4.1.4 Modified λ∗-H-QAC (λ∗-H′-QAC)

In (4.12), the λ∗-H-QAC model assigns a fixed weight γ to TSscore(qc) and 1 − γ
to Pscore(qc) when calculating the final ranking score for the candidate qc. All prefixes
are handled equally when we score the candidates associated with them. However, we
observe that some typed prefixes are easier to complete than others. This depends on the
prefix popularity discussed in the beginning of this chapter. This observation motivates
an extended ranking model upon λ∗-H-QAC. Rather than using a fixed weight γ for all
prefixes, we assign an optimal weight γ̄ to long-tail prefixes after checking their prefix
popularity.

More specifically, to derive γ̄ we first partition the prefixes in the training data into

48

4.2. Experiments

Algorithm 4 λ∗-H′-QAC

Input: Predictions: Q̄;
prefix set: P̄ ;
number of query completions to be reranked : N ;
optimal trade-off: γ̄;

Output: Ranking list of top N query completions for each p ∈ P̄ ;
1: for each prefix p ∈ P̄ do
2: List S(p);
3: if p ∈ P̄1 then
4: Perform λ∗-H-QAC for p with γ̄ instead of γ in (4.12);
5: else
6: Perform λ∗-H-QAC for p with a fixed γ in (4.12);
7: end if
8: end for
9: Return a reranked list of S(p);

two buckets according to the number of query completions returned by TS-QAC: long-
tail and the other, i.e., P̄1 and P̄2 in Algorithm 3; then we directly perform a linear
regression on P̄1 to generate an optimal weight γ̄ for long-tail prefixes. Finally, λ∗-H′-
QAC coincides with λ∗-H-QAC for normal prefixes with a fixed weight γ in (4.12) but
unlike λ∗-H-QAC, for long-tail prefixes it uses the optimal weight γ̄. The details are
described in Algorithm 3 and Algorithm 4. We visualize the main steps of our model
λ∗-H′-QAC in Figure 4.3, where most steps are done offline, including generating S(p)
by λ∗-TS-QAC and finding the optimal γ̄ for long-tail prefixes, etc.

4.2 Experiments

In this section, §4.2.1 lists interesting observations from the datasets for experiments; we
detail our settings and parameters in §4.2.2.

4.2.1 Datasets and Baselines

We use two query logs2 in our experiments: AOL (Pass et al., 2006) and one made
available by the Netherlands Institute for Sound and Vision,3 to which we will refer as
“SnV” (Huurnink et al., 2010). For consistency, we partitioned each log into two parts: a
training set consisting of 75% of the query log, and a test set consisting of the remaining
25%. Traditional k-fold cross-validation is not applicable to temporally ordered data
since it would obviously mess up the order (Gama et al., 2014). Queries in the training set
were submitted before May 8, 2006 in the AOL dataset and before October 1, 2013 in the

2Other popular query logs used in recent research, such as the MSN log (Craswell et al., 2009) and the
Sogou log (http://www.sogou.com/labs) were not used. The former lacks user IDs and the latter
is too small.

3http://www.beeldengeluid.nl

49

http://www.sogou.com/labs
http://www.beeldengeluid.nl

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

λ*-H-QAC

Yes

No

Use an optimal !"

#$"%&'()*

Use a fixed !"#$"

%&'()*

Generate S(p) by

λ*-TS-QAC

Input prefix p by

user u

Long-tail?

No

Personalized QAC

based on S(p)

A reranked list of

S(p) for p

Figure 4.3: Main steps of the λ∗-H′-QAC model.

SnV dataset. We also use the last week of training data to generate optimal parameters:
Ndays in (4.2) and λ∗ in (4.7).

In addition, only queries appearing in both partitions were kept. In total, 95,043
unique queries (21%) in the processed AOL and 6,023 (7%) in SnV show cyclic phe-
nomena in terms of query frequency. Session boundaries are identified by 30 seconds of
inactivity in the AOL dataset; in the SnV dataset a session boundary occurs when a query
has no overlapping terms with the previous query as users routinely view audiovisual
material during the search process; this can lead to periods of inactivity even though the
user is still fully engaged in the search process (Huurnink et al., 2010). Table 4.3 details
the statistics of the datasets.

We display the overlaps of queries with various ways of binning in Figure 4.4. Fig-
ure 4.4a shows the rates of unique 〈user, query〉 pairs posted at different numbers of
repeats. A considerable number of queries are posted more than once by the same user
within the training period (15.9% for AOL and 56.9% for SnV). The discrepancy between
the rates can be explained by considering the type of user the search engine serves: gen-
eral web users in the case of AOL vs. media professionals in the case of SnV. Figure 4.4b
gives us the distribution of sessions containing queries that “evolved” from preceding
queries within the session, where we say that query q2 evolved from query q1 if q2 is
issued after q1 and shares at least one query term with q1. Sessions with more than one
query are considered. In total, there are 983,983 sessions in AOL and 35,942 in SnV left.
Clearly, users reformulate a query very often from its previous queries. The difference
between the sum of all rates (0.531 for AOL and 1 for SnV) is a consequence of different

50

4.2. Experiments

Table 4.3: Statistics of the processed AOL and SnV datasets. Queries: Qs, Sessions:
Ss, Users: Us.

AOL SnV

Variables Training Testing Training Testing

#Qs 6,904,655 3,609,617 291,392 154,770
#Unique Qs 456,010 456,010 86,049 86,049
#Ss 5,091,706 2,201,990 176,893 102,496
#Unique Us 466,241 314,153 1051 804
Qs/Session 1.36 1.63 1.65 1.51
Qs/User 14.81 11.49 277.25 192.50

0 1 2 3 4 5 >5
0

0.2

0.4

0.6

0.8

1

Number of repeats

R
at

e

AOL

SnV

(a) Distribution of unique pair 〈user,
query〉 at various number of repeats.

1 2 3 >3
0

0.2

0.4

0.6

0.8

1

Number of queries evolved from the preceding queries

R
at

e

AOL

SnV

(b) Distribution of sessions containing
various number of “evolved queries.”

Figure 4.4: Query repeat rates (left) and variation rates (right) for AOL and SnV.

session segmentation methods.
In Figure 4.5, we plot the the ratios of long-tail prefixes among all prefixes in the

training and test periods of the AOL and SnV datasets, respectively. For AOL, more than
13% of the prefixes are relatively rare in both training and test period. For SnV, fewer
long-tail prefixes are detected, resulting in 12.5% and 12.7% for the training and test
datasets, respectively. This means that, on average, we will encounter at least one long-
tail prefix among every 10 prefixes. This finding motivates us to handle long-tail prefixes
in a dedicated manner. In addition, we find that long-tail prefixes are often observed in
search sessions where users resubmit queries that have been issued before in the current
session, as shown in Figure 4.1. Interestingly, for both datasets the percentage of prefixes
with few candidates (e.g., 1 and 2) is higher than those with more candidates (e.g., 8 and
9).

We consider several QAC baselines: (1) the most popular completion (MPC) QAC
method based on the whole log, referred as MPC-ALL (Bar-Yossef and Kraus, 2011);
(2) an MPC-based QAC method within recent time windows (TW = 2, 4, 7, 14 and
28 days, respectively) denoted as MPC-R-TW (Whiting and Jose, 2014); (3) a recent
QAC method with an optimal time window referred as O-MPC-R, which learns the op-
timal time window for each prefix and performs best on the AOL data in (Whiting and
Jose, 2014). To select the best baseline against which we compare our newly introduced

51

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

Number of returned query completions
>=10 1 2 3 4 5 6 7 8 9

P
er

ce
n

ta
g

e
(%

)

0

1

2

3

4

10

20

40

80

90

100
Training
Testing

(a) AOL

Number of returned query completions
>=10 1 2 3 4 5 6 7 8 9

P
er

ce
n

ta
g

e
(%

)

0

1

2

3

4

10

20

40

80

90

100
Training
Testing

(b) SnV

Figure 4.5: Distribution of prefixes with varying numbers of returned query com-
pletions in the AOL and SnV datasets, tested on the training and test periods, re-
spectively.

models, we compare the performance of the three approaches just listed and report the
results in Table 4.4. For both datasets, O-MPC-R outperforms the other two approaches
at different prefix lengths. For instance, it results in near 10% MRR improvements over
MPC-ALL and MPC-R, respectively. Hence, we select O-MPC-R as the baseline for
comparisons against our proposed models in latter experiments.

4.2.2 Settings

Following (Bennett et al., 2012), we set the factor f = 0.95 in the decay function in
§4.1.1. For time-sensitive prediction, we use a fixed λ = 0.5 in (4.1) to compare with
the results produced with an optimal λ∗ returned by (4.7). To detect periodicity, we
count queries per hour for AOL and per day for SnV because of the difference in time
spans of the collected data. This means that for SnV, we compute ŷt0+1(q)peri in (4.4)
directly by averaging the day-level predictions yt0+1−m·Tq

, while for AOL, we firstly
generate predictions per hour and then accumulate them to produce yt0+1−m·Tq . For
identifying trends, we use per day counts to overcome sparsity. For smoothing in (4.4),
we set M = 3, as it performs best when M changes from 1 to 10 in our trials. In our
time-sensitive QAC experiments, we are given a list of top N query completions; we set
N = 10 as this is commonly used by many web search engines.

We balance the contributions of Qs and Qu in (4.8), if available, by setting ω = 0.5,
and construct Qu using the ten most frequent queries of the user while collecting all
preceding queries in the current session to form Qs (see Table 4.3). In particular, for
users without long-term search history, i.e., for cold-start users, we only consider their
short-term search history in the current session for personalization. It could help if we
use the long-term search logs from similar users seen in the training period. For instance,
based on the preceding queries within a current session issued by a new user, we can find
a group of seen users in the training period who have often submitted the same queries
before. By using the long-term search logs of users in this group, we can model the
interests of the new user for personalization. For personalized QAC comparisons, we

52

4.3. Results and Discussion

Table 4.4: Selecting our baseline. The performance of various baselines in terms of
MRR, tested on the AOL and SnV datasets after typing 1 to 5 characters as prefix.
The best performing baseline in each column is highlighted in boldface.

AOL

Model #p = 1 #p = 2 #p = 3 #p = 4 #p = 5

MPC-ALL 0.1090 0.1903 0.3018 0.3996 0.4813

MPC-R-

2 days 0.1093 0.1866 0.2989 0.3970 0.4681
4 days 0.1082 0.1814 0.2902 0.3875 0.4593
7 days 0.1120 0.1938 0.3107 0.4113 0.4830
14 days 0.1140 0.1994 0.3217 0.4254 0.4985
28 days 0.1147 0.2009 0.3233 0.4276 0.5076

O-MPC-R 0.1175 0.2027 0.3267 0.4318 0.5087
SnV

Model #p = 1 #p = 2 #p = 3 #p = 4 #p = 5

MPC-ALL 0.1573 0.2497 0.3281 0.4762 0.5438

MPC-R-

2 days 0.2467 0.3526 0.4917 0.6096 0.6913
4 days 0.2281 0.3349 0.4751 0.5794 0.6681
7 days 0.2209 0.3158 0.4519 0.5528 0.6327
14 days 0.1953 0.2946 0.4318 0.5317 0.6108
28 days 0.1731 0.2690 0.3873 0.5167 0.5731

O-MPC-R 0.2519 0.3607 0.5034 0.6133 0.6992

set the size of n-grams to n = 4, which has been recommended in string search (Litwin
et al., 2007) to represent queries. For our hybrid models, we set γ = 0.5 in (4.12), which
is also used by λ∗-H′-QAC for non-long-tail prefixes. In addition, we set the threshold
Num = 10 when classifying prefixes in Algorithm 3.

4.3 Results and Discussion

In §4.3.1, we examine the performance of our time-sensitive QAC model in terms of
its query popularity prediction performance, which we follow with a section about the
trade-off of the parameter λ in §4.3.2. We examine the performance of various TS-QAC
approaches in §4.3.3. Then, §4.3.4 details the effectiveness of our hybrid QAC model;
§4.3.5 provides an analysis of the hybrid QAC model with various personalized QAC
scenarios; §4.3.6 zooms in on the effect on QAC ranking by varying the contribution
weight in hybrid QAC model. §4.3.7 compares the performance of combined QAC mod-
els. Finally, §4.3.8 and §4.3.9 detail the results of our model on long-tail prefixes.

53

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

Table 4.5: The forecast metrics produced by different methods on the AOL and SnV
dataset. The best performer in each column is highlighted in boldface and the best
performing baseline is underlined. Statistical significance of pairwise differences
(λ-TS-QAC vs. the best baseline P∗ and λ∗-TS-QAC vs. the best baseline P∗) are
indicated.

AOL SnV

Method MAE SMAPE MAE SMAPE

P1 0.2906 0.2278 1.2287 0.3104
P3 0.2944 0.2363 1.3739 0.3265
P6 0.2893 0.2325 1.5751 0.3412
Ptrend 0.2996 0.2313 1.2492 0.3117
λ-TS-QAC 0.2848M 0.2197N 1.2291 0.2959N

λ∗-TS-QAC 0.2832M 0.2145N 1.2067N 0.2813N

4.3.1 Query Popularity Prediction Evaluation

Since the true popularity of query completions is unavailable at runtime, QAC ranking
models sort query candidates according to their previously observed popularity (Bar-
Yossef and Kraus, 2011) or predicted popularity inferred from previous logs (Shokouhi
and Radinsky, 2012). In this section, we first evaluate the prediction accuracy on query
popularity, and then measure the impact of these predictions on the quality of QAC rank-
ings in §4.3.3.

Our time-sensitive prediction method considers both the recent and long-term query
frequency to predict the popularity for future. To compare, the predicted query frequen-
cies are aggregated over a past query log (used in (Shokouhi and Radinsky, 2012)) or
only contributed over recent trend as described in (4.3). We denote the former by Pk
where k is the number of previous days used for averaging (k ∈ {1, 3, 6}) and refer to
the latter as Ptrend. We do not take the prediction produced only by periodicity as base-
line because of the unavailability of sufficiently many periodic queries (21% in AOL and
7% in SnV, see §4.2.1). Table 4.5 includes the forecast error rates of different methods
on datasets. The numbers show that λ∗-TS-QAC performs better in terms of MAE and
SMAPE than all aggregation- and trend-based baselines, as well as λ-TS-QAC.

Still focusing on Table 4.5, we take a closer look at the error rates produced by various
models. The MAE achieved on AOL is much smaller than 1 due to the sparseness of
query frequencies. Among the aggregated baselines, MAE favors P6 and SMAPE prefers
P1 on AOL. However, for SnV, P1 wins the competition on both metrics. The numbers
show that with the exception of P1 on SnV, our predictions are better than all aggregated
baselines on both metrics. The differences are statistically significant on SMAPE but not
so according to MAE. Overall, the competitive performance on the AOL dataset can be
explained by the fact that compared to the daily query frequency used in the SnV dataset,
the data here is less sparse and has lower variance.

54

4.3. Results and Discussion

Table 4.6: Performance in terms of MRR at prefix length #p ranging from 1 to 5
characters on the AOL and SnV datasets. The best performer in each column is
highlighted in boldface. Statistically significant differences are determined against
the baseline, i.e., O-MPC-R in Table 4.4, and marked in the upper right hand corner
of the corresponding scores; statistically significant differences between λ∗-H-QAC
and λ∗-H′-QAC vs. λ∗-TS-QAC are also detected and marked in the upper left hand
corner of the corresponding scores.

AOL

Model #p = 1 #p = 2 #p = 3 #p = 4 #p = 5

Baseline 0.1175 0.2027 0.3267 0.4318 0.5087
λ-TS-QAC 0.1169 0.1982O 0.3270 0.4390M 0.5115M

λ∗-TS-QAC 0.1208 0.2056M 0.3317M 0.4455N 0.5143N

λ∗-H-QAC 0.1224N 0.2091N M0.3387N M0.4562N M0.5236N

λ∗-H′-QAC 0.1224N 0.2103N N0.3408N N0.4594N M0.5278N

SnV

Model #p = 1 #p = 2 #p = 3 #p = 4 #p = 5

Baseline 0.2519 0.3607 0.5034 0.6133 0.6992
λ-TS-QAC 0.2536 0.3726N 0.5117M 0.6296N 0.7103N

λ∗-TS-QAC 0.2637N 0.3864N 0.5193N 0.6439N 0.7203N

λ∗-H-QAC 0.2662N 0.3907N N0.5355N N0.6690N N0.7491N

λ∗-H′-QAC 0.2662N 0.3913N N0.5376N N0.6702N N0.7505N

4.3.2 Impact of the Trade-off Parameter λ

Next, we manually vary the parameter λ in (4.1) to determine the best prediction accu-
racy, with 0.01 increments. We show the results in Figure 4.6. For AOL (Figure 4.6a),
λ∗-TS-QAC performs best in terms of prediction accuracy with λ∗ = 0.62, suggesting a
light emphasis on recent variations. We repeat our analysis on SnV and summarize the
results in Figure 4.6b. The results are consistent with the overall AOL numbers. SnV
receives an optimal value of λ∗ = 0.83 in our experiments. This is due to the fact SnV
contains fewer periodic queries than AOL and hence it favors predictions from the trend.

Another interesting finding on both datasets from Figure 4.6 is that MAE and SMAPE
favor a relatively larger value of λ and they their behaviors are similar: MAE decreases
as SMAPE comes down. This implies that (1) recent trends are important to predict
future popularity; and (2) periodic phenomena also contribute as the errors go up if their
contribution is removed (that is, with λ = 1).

Next, we have a close look at the optimal λ, i.e., λ∗. We find that for periodic queries,
the optimal λ∗ is often larger than 0.5. For instance, the mean of all these optimal λ∗

in the AOL dataset is close to 0.6. In other words, the contribution from the cyclic
behavior of query popularity is relatively less important than that from the recent trend.
However, neither of them is negligible for predictions of query popularity as both weights
are substantially larger than 0.

55

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

λ

0 0.2 0.4 0.6 0.8 1

M
A
E

0.28

0.3

0.32

0.34

0.36

0.38

0 0.2 0.4 0.6 0.8 1

S
M
A
P
E

0.21

0.22

0.23

0.24

0.25

0.26

MAE

SMAPE

(a) Prediction accuracy at various λ on
AOL.

λ

0 0.2 0.4 0.6 0.8 1

M
A
E

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

S
M
A
P
E

0.28

0.3

0.32

0.34

MAE

SMAPE

(b) Prediction accuracy at various λ on
SnV.

Figure 4.6: Impact of the trade-off parameter λ in TS-QAC on the accuracy of
query popularity prediction for AOL and SnV.

4.3.3 Performance of TS-QAC Ranking

For RQ2, we use MPC-based models to generate QAC rankings for each prefix to com-
pare with our results produced by time-sensitive QAC models, namely, λ-TS-QAC and
λ∗-TS-QAC. Table 4.6 contains the evaluation results of different QAC models in terms
of MRR. On both two datasets, each prefix is used to generate ten QAC rankings. For
now, ignore the λ∗-H-QAC row as we will get to it later. All pairwise differences are
detected and marked if statistically significant.

We find that λ∗-TS-QAC outperforms the baseline as well as λ-TS-QAC in terms of
MRR, while λ-TS-QAC loses against the baseline for #p = 1 and 2 on AOL. Specif-
ically, λ∗-TS-QAC offers a maximal MRR increase against the baseline of 3.2% for
#p = 4, which is significant, and λ-TS-QAC brings an increase by up to 1.7% over
the baseline for #p = 4 on the AOL corpus. On the SnV dataset, we see the biggest
performance improvements over the baseline: almost 7.1% for λ∗-TS-QAC and 3.3%
for λ-TS-QAC, both when expanding a 2-character prefix. The limited improvement of
λ-TS-QAC is probably due to predictions on occasional queries such as news search,
whereas λ∗-TS-QAC smoothes it with cyclic phenomena for QAC.

With an optimal λ∗ specifying the contributions from the recent trends and the cyclic
behavior, the TS-QAC model produces better QAC rankings than with a fixed λ, as we
can see by comparing λ-TS-QAC and λ∗-TS-QAC in Table 4.6. Generally, at different
prefix lengths, λ∗-TS-QAC receives larger MRR gains over λ-TS-QAC on SnV than
AOL. We attribute this to the volume of periodic queries in different datasets as discussed
in §4.3.2.

4.3.4 Hybrid QAC Ranking Performance

Research question RQ3 is aimed at examining whether a user’s personal query similarity
helps generate better QAC rankings. We first give the absolute MRR scores of λ∗-H-
QAC in Table 4.6. For convenience, we report the MRR changes produced by comparing
O-MPC-R against λ∗-H-QAC and λ∗-TS-QAC against λ∗-H-QAC in Table 4.7. With
the appropriate regression model and query similarity measure, λ∗-H-QAC is able to

56

4.3. Results and Discussion

Table 4.7: MRR changes observed by comparing O-MPC-R against λ∗-H-QAC and
λ∗-TS-QAC against λ∗-H-QAC, respectively, with a query prefix p of 1–5 characters
on AOL and SnV query logs. The symbol “–” before MRR changes means λ∗-H-
QAC outperforms the corresponding method. Statistical significance of pairwise
differences (O-MPC-R vs. λ∗-H-QAC and λ∗-TS-QAC vs. λ∗-H-QAC) is indicated.

AOL SnV

#p O-MPC-R λ∗-TS-QAC O-MPC-R λ∗-TS-QAC

1 –4.00%H –1.31% –5.37%H –0.94%
2 –3.06%H –1.67% –7.68%H –1.10%
3 –3.54%H –2.07%O –5.99%H –3.03%H

4 –5.35%H –2.35%O –8.33%H –3.75%H

5 –2.85%H –1.79%O –6.67%H –3.84%H

marginally outperform the baselines on both query logs at each prefix length. How-
ever, despite the additional overhead of scoring similarity between queries, λ∗-H-QAC
presents relatively small (∼2%) improvements over λ∗-TS-QAC on AOL. This is due to
the fact that no strongly differential features are explored yet for users.

Compared to AOL, λ∗-H-QAC on SnV achieves more relative MRR gains over the
baselines and the MRR differences are generally enlarged for longer prefixes. In part,
this may be due to the following. Firstly, AOL contains more queries than SnV, although
these are spread sparsely over a three-month period. This could suggest that a search
engine serving more queries is able to generate better completion candidates since it
has a larger sample of similar behavior. Secondly, AOL is a more general search log
across topics while SnV focuses on multimedia search. Thirdly, there may be underlying
demographic differences between users of the two search logs that lead to changes in
query distributions, for example, AOL covers more public users while SnV mostly serves
for media professionals. Additionally, the higher performance of SnV as compared to
AOL could be a consequence of the difference in user activity as Qs/Us in Table 4.3
indicates SnV users submit v20 times more queries than AOL users.

Clearly, for both query logs, λ∗-H-QAC is considerably more effective with a longer
prefix, see Table 4.6 and 4.7. To verify this, we examine the MRR scores with a longer
prefix of up to 10 characters in Figure 4.7. We find that effectiveness converges more
quickly on SnV than AOL when the length of prefix increases, probably because QAC
is constrained by how much evidence is available, and a slightly longer prefix hugely
narrows the number of possible completion candidates, certainly on the SnV dataset.

To illustrate the effectiveness of our model, we consider a test example from the AOL
query log; see Table 4.8. Assume that our user has entered the prefix vo of the last query
in this session, so that we need to recommend query completions for this prefix. The
results shown in Table 4.9 are generated by the O-MPC-R, λ∗-TS-QAC and λ∗-H-QAC
approaches, respectively. Clearly, the queries “volkswagon” and “volkswagen” benefit
more from the search context than others as they are ranked at the top by the λ∗-H-QAC
approach; this is because they are closely related to the earlier query “volks wagon”
(line 4 in Table 4.8). Based on this insight, the queries “volkswagon” and “volkswagen”
are more sensible completions. We could also explain it by introducing the semantic

57

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#p

M
R
R

O−MPC−R

λ
*
−TS−QAC

λ
*
−H−QAC

(a) AOL

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#p

M
R
R

O−MPC−R

λ
*
−TS−QAC

λ
*
−H−QAC

(b) SnV

Figure 4.7: QAC performance in terms of MRR observed for each approach, with
a query prefix p of 1–10 characters for the AOL and SnV query logs.

Table 4.8: An AOL test session.
1 SesionID UserID Query Time

2 221 1038 euro car 20060519, 15:19:12
3 221 1038 eurocar 20060519, 15:19:53
4 221 1038 volks wagon 20060519, 15:21:07
5 221 1038 volkwagon 20060519, 15:21:21

similarity between the query completion and the previous queries in session. We consider
the query pair likelihood ratio (Jones et al., 2006, (LLR)) in (4.15) as

LLR(q1, q2) = −2 log
L(q2 | ¬q1)

L(q2 | q1)
,

where L(q2 | ¬q1) denotes the number of queries containing q2 but without q1, and
L(q2 | q1) indicates the volume of queries containing both q1 and q2, to see whether their
co-occurrence in a search session is statistically significant. We find that, for instance,
the pairs of query “volks wagon” and “volkswagon” or of query “volks wagon” and
“volkswagen” co-occur relatively more often in sessions than other pairs.

4.3.5 Personalized QAC Performance Analysis
To help us answer RQ4, we compare the performance of λ∗-H-QAC with two personal-
ized QAC scenarios (G-QAC and Personalized QAC listed in Table 4.2) and record the
MRR scores of these two methods in Table 4.10. We also report the MRR changes pro-
duced by comparing G-QAC against λ∗-H-QAC, as well as Personalized QAC against
λ∗-H-QAC in brackets in Table 4.10.

λ∗-H-QAC significantly outperforms G-QAC and Personalized QAC on both AOL
and SnV in terms of MRR scores at all cases, which again confirms the above observa-
tions in Table 4.6. For AOL, Personalized QAC does not work well and its MRR scores
are always substantially lower than those of G-QAC, suggesting that ranking query com-
pletions only according to query similarity on bigger dataset is not reliable because the

58

4.3. Results and Discussion

Table 4.9: Ranked lists of query completions for the prefix “vo”.
(a) Ranked by O-MPC-R.

1 vonage
2 voyeur
3 volvo
4 voyeurweb
5 volcanoes
6 volkswagon
7 volkswagen
8 voyeur web
9 volume

10 volcano

(b) Ranked by λ∗TS-QAC.

1 vonage
2 voyeur
3 volvo
4 volkswagon
5 voyeurweb
6 volkswagen
7 volcanoes
8 volume
9 voyeur web

10 volcano

(c) Ranked by λ∗H-QAC.

1 volkswagon
2 volkswagen
3 volvo
4 volume
5 volcanoes
6 volcano
7 vonage
8 voyeur
9 voyeurweb

10 voyeur web

number of query completions is very large and users often issue new queries. Interest-
ingly, Personalized QAC outperforms G-QAC on SnV. We believe this can be attributed
to (i) SnV users frequently issue similar queries in the current search session or in a long-
term period, yielding distinguishable similarity scores for query completions; and (ii) the
average number of queries of SnV users is larger, resulting in a better estimation of Qu
in (4.8).

Additionally, the MRR improvements of λ∗-H-QAC over G-QAC are still very high,
indicating that MPC-ALL in G-QAC may often eliminate useful query completions. This
negative effect is strengthened by low volumes of queries as the relative changes on SnV
(around 15%) are larger than those on AOL (around 7%). We conclude that a small
dataset suffers more from uncertainty on query popularity for ranking query completions.

4.3.6 Effect of the Contribution Weight γ

Next, we examine the effect on the overall QAC performance of varying the contribution
weight γ in (4.12) in our hybrid QAC model, λ∗-H-QAC, from 0 to 1, on AOL and SnV.
See Figure 4.8. For AOL (Figure 4.8a), if the value of γ used in λ∗-H-QAC goes up from
0 to 0.4, the performance increases more dramatically compared with the results under
other settings (0.4 < γ ≤ 1). If we rank query completions only by query similarity, i.e.,
γ = 0, the performance is worse than any other result. The MRR value of λ∗-H-QAC
reaches its peak around γ = 0.7 for all cases, which shows that λ∗-H-QAC favors time-
sensitive popularity over user’s query similarity on AOL. This finding is confirmed when
we average MRR values produced under different settings: 0 ≤ γ ≤ 0.5 and 0.5 ≤ γ ≤ 1
for each length of prefix. Obviously, the average MRR of the latter (0.5 ≤ γ ≤ 1) is
higher for all cases.

In contrast to AOL, the optimal value of γ on SnV (Figure 4.8b) is around 0.3, which
indicates that QAC ranking on SnV favors user’s query similarity a bit more. The dis-
crepancy between the optimal value of γ on SnV and the optimal value of γ on AOL
can be explained by considering the number of issued queries of each user. Having suf-
ficiently many personal queries results in effective personalized QAC on SnV. The MRR
of SnV tends to be more sensitive to γ than that of AOL as it varies dramatically with

59

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

Table 4.10: MRR scores of G-QAC and Personalized QAC (Per. QAC), as well as
MRR changes in bracket produced by comparing G-QAC against λ∗-H-QAC (in
Table 4.6), and Personalized QAC against λ∗-H-QAC, respectively, with a query
prefix p length of 1–5 characters tested on AOL and SnV query logs. Significant
differences against λ∗-H-QAC are indicated.

AOL SnV

#p G-QAC Per. QAC G-QAC Per. QAC

1 0.1132H 0.0174H 0.2313H 0.2427H

(-7.52%) (-85.78%) (-13.11%) (-8.83%)

2 0.1987H 0.0688H 0.3443H 0.3619H

(-4.97%) (-67.10%) (-11.88%) (-7.35%)

3 0.3175H 0.1371H 0.4564H 0.5018H

(-6.26%) (-59.52%) (-14.76%) (-6.29%)

4 0.4180H 0.2256H 0.5658H 0.6197H

(-8.37%) (-50.55%) (-15.43%) (-7.37%)

5 0.4981H 0.3312H 0.6353H 0.7098H

(-4.88%) (-36.75%) (-15.19%) (-5.25%)

the increase of γ, especially when 0.5 ≤ γ ≤ 1. The overall MRR score of λ∗-H-QAC
is better than that produced by just setting γ = 0 or γ = 1, which is consistent with our
findings for AOL.

4.3.7 Performance of Combined QAC Models

To answer RQ5, we compare λ∗-HG-QAC (in Table 4.2) with λ∗-H-QAC (MRR scores
reported in Table 4.6). The MRR scores of λ∗-HG-QAC and the corresponding changes
against λ∗-H-QAC tested on AOL and SnV are recorded in Table 4.11. We find that
λ∗-HG-QAC performs better on SnV than on AOL, with higher MRR scores in all cases.
However, λ∗-H-QAC consistently outperforms λ∗-HG-QAC as the MRR changes pro-
duced by comparing λ∗-HG-QAC against λ∗-H-QAC are always negative.

Another interesting finding is that λ∗-HG-QAC performs very competitive with λ∗-
H-QAC, especially on SnV, and the differences are limited (MRR changes: ∼1%). This
appears to be due to the fact that: (1) λ∗-HG-QAC scores the query similarity on a
close character level but confronts the sparseness problem: (2) the number of grams n is
artificially fixed, resulting in failure to rank query completions properly.

4.3.8 Performance on Long-tail Prefixes

To answer RQ6, we examine the performance of λ∗-H′-QAC on the subsets of the AOL
and SnV datasets that only contain long-tail prefixes to compare against the results pro-
duced by λ∗-H-QAC under setting γ = 0.5 in (4.12). We report the results in Table 4.12
in terms of MRR at various number of returned query completions (No.) ranging from 1

60

4.3. Results and Discussion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

M
R
R

#p=1 #p=2 #p=3 #p=4 #p=5

(a) AOL

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

M
R
R

#p=1 #p=2 #p=3 #p=4 #p=5

(b) SnV

Figure 4.8: Performance of λ∗-H-QAC when varying the combination weight γ with
a query prefix p length of 1–5 characters for the AOL and SnV query logs.

Table 4.11: MRR scores of λ∗-HG-QAC, as well as MRR changes produced by com-
paring λ∗-HG-QAC against λ∗-H-QAC (MRR scores presented in Table 4.6), with
a query prefix p length of 1–5 characters tested on the AOL and SnV query logs.
Significant differences (λ∗-HG-QAC vs. λ∗-H-QAC) are indicated.

AOL SnV

#p MRR change MRR change

1 0.1213 -0.90% 0.2650 -0.45%
2 0.2066O -1.21%O 0.3891 -0.41%
3 0.3330O -1.68%O 0.5309 -0.86%
4 0.4476H -1.89%H 0.6617O -1.10%O

5 0.5179 -1.09% 0.7398O -1.24%O

to 9, including the case of No. = 1, where λ∗-H′-QAC and λ∗-H-QAC display the same
performance.

From Table 4.12 we can see that, generally, λ∗-H′-QAC outperforms λ∗-H-QAC in
terms of MRR on both datasets. It achieves 1.94% and 2.45% MRR improvements on
average over λ∗-H-QAC for all long-tail prefixes in the AOL and SnV subsets, respec-
tively. Moreover, we checked the weights returned by a regression model, which control
the contributions from the time-sensitive part and the personalized aspect in λ∗-H′-QAC,
i.e., γ and 1 − γ in (4.12), and found that γ is less than 0.5 on both datasets (∼0.42 for
AOL and ∼0.31 for SnV), implying that personalization is more important for long-tail
prefixes. For long-tail prefixes, the final submitted queries often occurred in the current
session. In other words, for these cases, repeated query submissions in the same session
are often observed.

One particularly interesting observation from Table 4.12 is that λ∗-H′-QAC achieves
relatively larger MRR gains over λ∗-H-QAC when the median number of query comple-
tions (e.g., No. = 4 or 5) are returned. This can be attributed to the following: (i) for cases
with fewer query completions returned, e.g., No. = 2 or 3, λ∗-H′-QAC achieves similar
results, resulting in many draws; (ii) the cases with more query completions returned,

61

4. Prefix-adaptive and Time-sensitive Personalized Query Auto Completion

Table 4.12: Performance of λ∗-H-QAC and λ∗-H′-QAC in terms of MRR at various
numbers of returned query completions (No.) ranging from 2 to 9 on the subset
of AOL and SnV datasets only containing long-tail prefixes. Significant differences
(λ∗-H′-QAC vs. λ∗-H-QAC) are indicated.

AOL SnV

No. λ∗-H-QAC λ∗-H′-QAC λ∗-H-QAC λ∗-H′-QAC

1 1.0000 1.0000 1.0000 1.0000
2 0.7756 0.7842 0.8217 0.8305
3 0.6119 0.6207 0.6412 0.6547
4 0.4701 0.4863N 0.5231 0.5398N

5 0.4197 0.4318M 0.4729 0.4921N

6 0.3558 0.3617 0.3927 0.4035M

7 0.2987 0.3014 0.3138 0.3198
8 0.2461 0.2492 0.2793 0.2816
9 0.2074 0.2098 0.2239 0.2267

e.g., No. = 8 or 9, account for the minority of long-tail prefixes, as shown in Figure 4.5,
resulting in limited improvements.

4.3.9 Performance of Modified Hybrid QAC

Finally, we examine the overall performance of λ∗-H′-QAC on the complete datasets
(AOL and SnV) to compare against other models. The results in terms of MRR scores
are listed in Table 4.6, row 7.

We can see from Table 4.6 that (1) with long-tail prefix detection, our extended hybrid
QAC model, i.e., λ∗-H′-QAC, receives the highest MRR scores among the five methods
at all lengths of prefix, suggesting that long-tail prefix detection helps boost QAC per-
formance; (2) for some cases, e.g., #p = 3 on AOL, significant improvements at level
α = .01 are observed by comparing λ∗-H′-QAC against λ∗-TS-QAC, however, which
are not seen on the comparisons between λ∗-H-QAC and λ∗-TS-QAC; (3) λ∗-H′-QAC
achieves the equal performance with λ∗-H-QAC at #p = 1 because there is no long-tail
prefix consisting of only one character.

In general, λ∗-H′-QAC achieves limited improvements over λ∗-H-QAC. This is be-
cause the majority of prefixes in the datasets are returned by more than ten candidates, in
other words, they are not long-tail prefixes, and in such cases, λ∗-H′-QAC will degener-
ate to λ∗-H-QAC and then reports the same MRR scores with λ∗-H-QAC.

4.4 Conclusion

Most previous work on query auto completion (QAC) focuses on either time-sensitive
maximum likelihood estimation or context-aware similarity. In this chapter we have
adopted a combination of the two aspects of the QAC problem, where time-series analy-
sis is used to predict a query’s future frequency. To understand a user’s personal search

62

4.4. Conclusion

intent, we have extended our time-sensitive QAC method with personalized QAC, which
infers the similarity between current requests and preceding queries in a current search
session and previous search tasks at the character level. In addition, we have adjusted the
model specifically for long-tail prefixes. In particular, we assign an optimal weight γ̄ in
(4.12) to long-tail prefixes after checking their prefix popularity rather than using a fixed
weight γ consistent with that assigned to normal prefixes.

As to future work, we intend to have a closer look at the topN candidates returned by
the popularity-based ranking method for N > 10: how much can we gain from the good
candidates that were ranked at lower ranks? Moreover, we aim to transfer our approach
to other datasets with long-term query logs, which should help us benefit from queries
with longer periodicity than we have access to in the AOL and SnV logs used in our cur-
rent work. To which degree it is beneficial to diversify QAC results (Cai et al., 2016b)?
In addition, we could study a cold-start problem where a user’s long-term search logs are
unavailable, which could be addressed by using the logs from a group of similar users
seen in the training period. A further possible step is to model personalized temporal pat-
terns for active users, especially professional searchers, requiring a generalization from
actual query terms to topics or intents. This might help generate a better QAC ranking.
In the next chapter, we will turn to explore information from similar query submissions
as well as from semantic term closeness, both of which are ignored by current QAC
approaches.

63

5
Learning from Homologous Queries and

Semantically Related Terms for Query
Auto Completion

We have introduced a time-sensitive personalized query auto completion approach in
Chapter 4. In doing so we follow a strict query matching policy when counting the
queries, a policy that is shared by most of today’s query auto completion models that
rank query completions by popularity. However, such models ignore the contributions
from so-called homologous queries, queries with the same terms but ordered differently
or queries that expand the original query. Importantly, homologous queries often express
a remarkably similar search intent. Moreover, today’s QAC approaches often ignore se-
mantically related terms. We argue that users are prone to combine semantically related
terms when generating queries. In this chapter, we propose a learning to rank-based
QAC approach, where, for the first time, features derived from homologous queries and
semantically related terms are introduced. In particular, we consider: (1) the observed
and predicted popularity of homologous queries for a query candidate; and (2) the se-
mantic relatedness of pairs of terms inside a query and pairs of queries inside a session.

First of all, we formally define the two types of homologous queries for a given
query q = (term1, term2, . . . , termm): (1) Given q, a super query of q is a query
sq = (term1, term2, . . . , termm, termm+1, . . . , termL) that extends q; (2) A pseudo-
identical query for q is a query pq that is a permutation of q. To a certain extent, ho-
mologous queries express similar search intents. For instance, in late 2014, for the two
queries “Chile SIGIR” and “SIGIR Chile” (a pseudo-identical query of “Chile SIGIR”),
the same SERPs should probably be returned. And in 2015 the SERPs for “Chile SIGIR”
and “Chile SIGIR 2015” (a super query of “Chile SIGIR”) should probably overlap to a
very large degree. Based on these examples, we hypothesize that it is advantageous to
consider homologous queries as a context resource for QAC.

QAC features inferred from homologous queries are one important innovation that
we study in this chapter. A second way of using lexical variations for QAC that we pro-
pose is based on semantically related terms. As discussed in the literature, a user’s search
history usually reveals their search intent, often expressed by the queries or by clicked
documents. For instance, Shokouhi (2013) studies the similarity between a query com-
pletion and previous queries in both the short-term and long-term history for reranking

65

5. Learning from Homologous Queries and Semantically Related Terms

Table 5.1: An AOL session example.
SessionID UserID Query Time

1 821174 1662425 google 20060408, 17:02:46
2 821174 1662425 evanescence 20060408, 17:04:21
3 821174 1662425 ulitimate guitar 20060408, 17:05:13
4 821174 1662425 evanescence videos 20060408, 17:09:44
5 821174 1662425 evanescence videos 20060408, 17:16:23
6 821174 1662425 music videos 20060408, 17:17:31

query completions. And Jiang et al. (2014b) infer features from users’ reformulation be-
havior for reranking query completions. We exploit a similar intuition but operationalize
it differently, by considering the semantic relatedness of terms in a query completion and
of terms from a query completion and queries previously submitted in the same session.
Let us give an example. Consider Table 5.1, which contains a session from the well-
known AOL query log. For the sake of the example, let us assume that we have not yet
seen the last query (query 6, “music videos”) and that it is in fact the initial segment
“mus” of this query for which we want to recommend completions. A regular baseline
based on query frequency is likely to rank the completion “music” first, as shown in Ta-
ble 5.2a. If we consider the observed frequency of homologous queries for a candidate,
we would return the list seen in Table 5.2b, which is a reranked version of the list in
Table 5.2a. Clearly, the queries “music” and “music video” benefit more homologous
queries than others as they are now ranked at the top. But if we look in the user’s search
session (e.g., at query 4 and 5 in Table 5.1), we would see that “videos” is semantically
closely related to earlier queries. Based on this insight, the query “music videos” in Ta-
ble 5.2a is a more sensible completion. By considering the semantic similarity of terms,
both inside a candidate and of queries inside a session, we may be able to generate an-
other reranked QAC list, as shown in Table 5.2c. We can see that semantically close
queries, e.g., “music videos” and “music video codes,” have now been moved to the top
of the list.

Table 5.2: Ranked lists of query completions for the prefix “mus”.
(a) Ranked by frequency of
candidates.

1 music
2 music dowloads
3 music videos
4 music lyrics
5 music video codes
6 music codes
7 music new
8 music download
9 music friend

10 mustang

(b) Reranked by frequency
of homologous queries.

1 music
2 music videos
3 music download
4 music new
5 music codes
6 music music dowloads
7 music lyrics
8 mustang
9 music video codes

10 musicians friend

(c) Reranked by semantic
similarity.

1 music videos
2 music video codes
3 music dowloads
4 music new
5 musicians friend
6 music codes
7 music dowload
8 music lyrics
9 music

10 mustang

66

Motivated by the examples above, and based on a learning-based QAC model L2R-U
that extract features from user behavior (Jiang et al., 2014b), we propose several learning
to rank-based QAC approaches, where, for the first time, features derived from predicted
popularity, homologous queries and semantically related terms are introduced, respec-
tively. In particular, we consider: (1) the observed and predicted popularity of query
completions, which results in the L2R-UP model; (2) the observed and predicted popu-
larity of homologous queries for a query candidate, which results in the L2R-UPH model;
(3) the semantic relatedness of pairs of terms inside a query and pairs of queries inside a
session, which results in the L2R-UPS model; and (4) all these newly proposed features,
which results in the L2R-ALL model. Building on LambdaMART (Burges et al., 2011),
these learning to rank (L2R) based QAC models aim to rerank the top N query comple-
tions returned by popularity. In doing so, we answer the following research questions:

RQ7 Do the features that describe the observed and predicted popularity of a query
completion help boost QAC performance without negatively impacting the effec-
tiveness of user behavior related features proposed in (Jiang et al., 2014b)? That
is, how does L2R-UP compare against L2R-U?

RQ8 Do semantic features help improve QAC performance? That is, how does L2R-
UPS compare against L2R-UP?

RQ9 Do homologous queries help improve QAC performance? That is, how does L2R-
UPH compare against L2R-UP?

RQ10 How does L2R-UPS compare against L2R-UPH? What is the performance gain,
if any, if all features are added for learning (L2R-ALL)?

RQ11 What are the principal features developed here for a learning to rank based QAC
task?

We address these questions by adding newly extracted features for learning to generate
a new QAC ranking model upon a baseline which similarly works in a learning-to-rank
framework but less features are considered. We apply these models to experiments on two
publicly available query log datasets, finding that features of semantic relatedness and
homologous queries are both important and they do indeed help boost QAC performance.

Our contributions in this chapter can be summarized as:
(1) We propose a learning to rank based query auto completion model (L2R-QAC) that

exploits contributions from so-called homologous queries for a query completion,
in which two kinds of homologous queries are taken into account.

(2) We propose semantic features for QAC, using the semantic relatedness of terms
inside a query candidate and of pairs of terms from a candidate and from queries
previously submitted in the same session.

(3) We analyze the effectiveness of our L2R-QAC model with newly added features,
and find that it significantly outperforms state-of-the-art QAC models, either based
on learning to rank or on popularity.

Our experimental results also reveal that semantic features are probably more important
than those of homologous queries for QAC tasks in our setting even though the dif-
ferences are not statistically significant. In other words, query terms are not randomly
combined when a searcher formulates a query. Semantically close terms or queries are
likely to appear in a query or in a session, respectively.

67

5. Learning from Homologous Queries and Semantically Related Terms

Table 5.3: Summary of popularity features of query completions (10 features) and
the corresponding formulas. The periods considered for the popularity features are
whole , 1-day , 2-day , 4-day , 7-day for observations and predictions.

Period Description Formula

whole , 1-, 2-, 4-, 7-day Observation fre(q, period) in §5.1.1
1-, 2-, 4-, 7-day Predicted by trend ŷt0(q, i)trend as in (5.1)
whole Predicted by periodicity ŷt0(q)peri as in (5.2)

The remainder of this chapter is organized as follows. Features for the specific QAC
learning problem are described in §5.1. Then, §5.2 presents our experimental setup. In
§5.3 we report our experimental results. We conclude in §5.4, where we suggest future
research directions.

5.1 Approach

Here, we formally describe the problem of learning to rank (L2R) for query auto com-
pletion, and then propose a number of L2R-based QAC models. Four categories of query
features that are likely to affect QAC rankings are taken into account: query popularity,
user reformulation behavior, features inferred from homologous queries, and semantic
features. See Tables 5.3, 5.4 and 5.5 below for a tabular overview.

We use LambdaMART (Burges et al., 2011) to re-rank the top N query comple-
tions initially returned by an MPC baseline. Any reasonable L2R algorithm can be
employed to obtain our ranking model and will likely yield similar results; we choose
LambdaMART because it has been shown to be one of the best algorithms for L2R tasks
(Shokouhi, 2013).

5.1.1 Popularity-based Features

Popularity-based features are extracted from two sources: the query candidate (Table 5.3)
and its homologous queries (Table 5.4). Both the observed and the predicted query fre-
quency are introduced.

Popularity from observations

We observe the query popularity within various periods, producing pairs of time-sensitive
features, denoted as fre(q, peri). The period, identified by a changing time window, can
be chosen from the set {1 -day , 2 -day , 4 -day , 7 -day , whole}, where whole indicates
that the popularity is determined based on the entire training query log while the others
are collected from logs for the recent 1, 2, 4, or 7 day(s) only. We only focus on these five
period options as: (1) our available datasets for learning are not big enough to sensibly
consider longer intervals, e.g., the MSN log that we use only covers a one month period;
(2) the sliding windows chosen as part of the time-sensitive approach to QAC in (Whiting
and Jose, 2014) can successfully reveal recent trends of query popularity.

68

5.1. Approach

Table 5.4: Summary of popularity features of homologous queries for query com-
pletions (60 features) and the corresponding formulas. There are two categories of
homologous queries, super queries and pseudo-identical queries. The weight of su-
per queries can be determined using either query term overlap (§5.1.2) or common
prefix weighting (§5.1.2). We consider two choices for each feature: maximum or
summation as described in §5.1.2.
Period Impact Description Formula

Super query

whole , 1, 2, 4, 7-day w in (5.5) or (5.6) Observation fre(q′, peri) in §5.1.1
1-, 2-, 4-, 7-day w in (5.5) or (5.6) Predicted by trend ŷt0(q

′, i)tre in (5.1)
whole w in (5.5) or (5.6) Predicted by periodicity ŷt0(q

′)per in (5.2)

Pseudo-identical query

whole , 1, 2, 4, 7day w = 1 Observation fre(q′, peri) in §5.1.1
1-, 2-, 4-, 7-day w = 1 Predicted by trend ŷt0(q

′, i)tre in (5.1)
whole w = 1 Predicted by periodicity ŷt0(q

′)per in (5.2)

Popularity from predictions

As introduced in Chapter 4, we generate features based on predicted query popularity
according to the recent trend and according to cyclic phenomena. Specifically, we first
detect the trend of query q’s popularity from the first-order derivative of its daily count
C(q, t) observed at different time points t, and then predict its future popularity at day
t0, denoted by ŷt0(q, i)tre , based on the observation of each preceding i-th day as:

ŷt0(q, i)tre = yt0−i(q, i) +

∫ t0

t0−i

∂C(q, t)

∂t
dt, (5.1)

where yt0−i(q, i) is the observed frequency of q at the preceding i-th day. For sim-
plicity, similar to the choices of period in §5.1.1, we consider four options for i, i.e.,
i ∈ {1, 2, 4, 7}.

In addition, we predict the query popularity according to its periodicity of query
volume, denoted by ȳt0(q)per. We detect cyclic phenomena of query popularity at a per
hour level and then produce an aggregated query popularity at a per day level. We smooth
ȳt0(q)per by simply averaging the recentM observations ytp at the preceding time points
tp = t0 − 1 · Tq, . . . , t0 −M · Tq in the log:

ŷt0(q)per =
1

M

M∑
m=1

yt0−m×Tq (q), (5.2)

where Tq denotes query q’s periodicity. For detecting cyclic aspects of q’s frequency, we
use autocorrelation coefficients (Chatfield, 2004), which measure the correlation between
Ns successive count observations C(q, t) at different times t = 1, 2, . . . , Ns in the query
log. The correlation is computed between a time series and the same series lagged by i

69

5. Learning from Homologous Queries and Semantically Related Terms

time units:

ri =

∑Ns−i
t=1 (C(q, t)− x̄1)(C(q, t+ i)− x̄2)

(
∑Ns−i
t=1 (C(q, t)− x̄1)2)

1
2 (
∑Ns

t=i+1(C(q, t+ i)− x̄2)2)
1
2

, (5.3)

where x̄1 is the mean of the first Ns − i observations and x̄2 is the mean of the last
Ns− i observations. For reasonably large Ns, the denominator in (5.3) can be simplified
by approximation. First, the difference between the sub-period means x̄1 and x̄2 can be
ignored. Second, the difference between summations over observations 1 to Ns − i and
i+ 1 to Ns can be ignored. Consequently, ri can be approximated as follows:

ri ≈
∑Ns−i
t=1 (C(q, t)− x̄)(C(q, t+ i)− x̄)∑Ns

t=1(C(q, t)− x̄)2
, (5.4)

where x̄ =
∑Ns

t=1 C(q, t) is the overall mean. A more elaborate discussion can be found
in §4.1.1.

5.1.2 Weighting Homologous Queries

Now, given a query q, Hom(q), the set of homologous queries for q, consists of all super
queries sq and pseudo-identical queries pq of q found in the query logs, which have been
issued before q was submitted. We extract the same popularity features discussed in
§5.1.1 for each homologous query q′c ∈ Hom(qc) for a candidate qc. We are not going
to use all homologous queries q′c for a candidate query qc with the same weight when
generating the final popularity features of homologous queries. Instead, we measure how
similar q′c and qc are with weight w to be able to weigh the contribution of q′c—this will
allow us to capture the popularity of qc from a homologous query q′c.

After discounting the popularity of homologous queries, we calculate the maximal
and aggregated values from all homologous queries as features. Next, we will introduce
two approaches for discounting.

Query term overlap weighting

Clearly, the more terms the homologous query q′c and qc share, the more relevant they
could be to each other. Let q′c ∩ qc refer to the set of common terms in q′c and qc. We
multiply the term overlap ratio as a discount Discount(q′c, qc) with the popularity of
super query sq of candidate qc:

w ← Discount(sq, qc) =
|sq ∩ qc|
|sq|

, (5.5)

where | · | returns the number of terms of the input term set.
For pseudo-identical queries pq for qc, we set Discount(pq, qc) = 1 as we assume

that they enjoy the same search popularity.

70

5.1. Approach

Table 5.5: Summary of semantic features of candidate (14 features) and the corre-
sponding formulas. We consider two choices for each feature: maximum or summa-
tion and there are 2 sources for determining the word2vec scores, the GoogleNews
corpus or one of our query logs (AOL or MSN).
Description Formula

Word2vec score from GoogleNews or query logs word2vec in §5.1.3
Lexical similarity score from query logs fWordSimMax and fWordSimSum in §5.1.3
Term pair likelihood ratio from query logs fLLRMax and fLLRSum as (5.7)
Term pair cooccurrence frequency from query logs fcof max and fcof sum in §5.1.3
Lexical query similarity score from query logs fQueSimMax and fQueSimSum in 5.1.3
Temporal relation from Query logs fTemRelMax and fTemRelSum as in (5.8)

Common prefix weighting

In addition to the query term set overlap discounting, we may also posit that a longer
common prefix matters more than shorter ones. This can be captured by introducing
an impact factor based on the length of the overlapping prefix. Thus, we discount the
popularity of super query sq with Impact(sq, qc) as:

w ← Impact(sq, qc) =
‖CommonPrefix (sq, qc)‖

‖sq‖
, (5.6)

where ‖ · ‖ returns the number of characters of the input string. Rather than emphasizing
the overlapping terms, this emphasizes the longest common prefix. For pseudo-identical
queries pq of qc we assign an impact Impact(pq, qc) = 1.

5.1.3 Semantic Features

We use semantic information in two ways. Our example in the introduction to this chapter
suggests that queries semantically related to queries submitted earlier in a session may be
more likely to be good completion candidates. We also estimate the semantic relatedness
of words occurring in a query: we assume that semantically more coherent queries may
be better query candidates. We start with the latter.

Semantic relatedness in queries

We use several ways of computing semantic relatedness between terms in a query. To
begin, we use a lexical similarity method that combines POS tagging, Latent semantic
analysis and WordNet to determine term-level similarity (Han et al., 2013). Given two
words, it returns a string representing a number between 0.0 and 1.0 with 1.0 indicating
absolutely similar. We use it to capture the word similarity, resulting in two features
fWordSimMax and fWordSimSum obtained by maximizing and summing all similarity
scores of possible term pairs in a query, respectively.1

1We apply a web API released by UMBC that can be used to return the semantic similarity score between
words, http://swoogle.umbc.edu/SimService/api.html.

71

http://swoogle.umbc.edu/SimService/api.html

5. Learning from Homologous Queries and Semantically Related Terms

Next, we consider the query term pair likelihood ratio. Jones et al. (2006) observe that
frequent query pairs from search sessions can be found by statistical hypothesis testing.
Given two queries, the likelihood ratio (LLR) between them can be calculated. LLR
testing is performed to see whether their co-occurrence in a search session is statistically
significant. Similarly, we argue that frequently co-occurring term pairs in a query could
be semantically related and introduce the LLR score to capture the semantic relatedness
of term pairs inside a query. More specifically, assuming that there are two terms term1

and term2 in a query, we calculate the LLR score for this term-pair as:

LLR(term1, term2) = −2 log
L(term2 | ¬term1)

L(term2 | term1)
, (5.7)

where L(term2 | ¬term1) denotes the number of queries containing term2 but without
term1, and L(term2 | term1) indicates the volume of queries containing both term1

and term2. High LLR scores are assumed to indicate semantic relatedness. We calculate
LLR scores for all possible term pairs in a query q (excluding stop words) to measure
the semantic relatedness. Then, we return the maximal and aggregated LLR scores of all
term pairs as semantic features, resulting in fLLRMax and fLLRSum . In addition, we use
the larger LLR score of a term pair (termi, termj) in a query q in spite of the term order,
and then produce the maximal and aggregated LLR scores as partial semantic features,
indicated as

fcof max = max
termi,j∈q

(max(L(termi | termj), L(termj | termi)))

and
fcof sum =

∑
termi,j∈q

max(L(termi | termj), L(termj | termi)).

Our third way of operationalizing semantic relatedness between query terms builds on
the method described in (Mikolov et al., 2013a) and known as word2vec, where vector
representations of words are learned from large amounts of unstructured text resources,
e.g., GoogleNews. Representations of words as continuous vectors have been shown
to capture meaningful semantic word regularities (Mikolov et al., 2013b). We use the
idea to capture semantic relatedness between query terms. The training objective of the
Skip-gram model is to learn word vector representations that are good at predicting the
surrounding words by maximizing the average log probability

1

Tr

Tr∑
t=1

∑
−cs<=j<=cs,j 6=0

logP (termt+j | termt),

with inputting a sentence of terms term1, term2, . . . , termTr
, where cs is the size of

training context. This setup allows us to assign a word2vec score, learnt from Google-
News, to each term pair in a query. In this manner, we produce fW2vGooMax and
fW2vGooSum by maximizing and summing scores of all term pairs.

As the trained word representation is a data-driven approach, which is highly de-
pendent on the text resource and limited by its inability to represent idiomatic queries
or rare words unseen in the text resources, we also train a local Skip-gram model on a

72

5.1. Approach

query log dataset to represent query terms as a compensation and then calculate a local
log-based semantic relatedness score. In other words, we input queries in the query logs
one by one as a sequence of training terms instead of sentences in the unstructured text
resource. Based on the word2vec model learnt from the query logs, the maximal and
aggregated word2vec scores of term pairs are returned, resulting in features fW2vLogMax

and fW2vLogSum .

Semantic relatedness in sessions

So far, we have considered the semantic relatedness between words inside a query. Next,
we consider the semantic relatedness between query candidates and previous queries in
the same session. We use alternative methods to capture this relation.

First, we capture query relatedness between query candidates and previous queries
in a session at the lexical level, by using the combination of latent semantic analysis,
POS tagging and WordNet mentioned before; this results in the features fQueSimMax

and fQueSimSum .
Second, following (Chien and Immorlica, 2005), we investigate query relatedness

using temporal correlations. In other words, two queries are assumed to be semantically
related in this sense if their popularities behave similarly over time. We employ Pearson’s
correlation coefficient, commonly represented by the letter r, to capture this notion of
similarity between candidate qc and previous query qx. Similar to (5.4), we can obtain a
formula for r(qc, qx) as:

r(qc, qx) =
1

nu

nu∑
i=1

(
qc,i − µ(qc)

δ(qc)

)(
qx,i − µ(qx)

δ(qx)

)
, (5.8)

where the frequency of query qc (or qx) over nu days is an nu-dimensional vector
qc = (qc,1, qc,2, . . . , qc,nu

) with µ(qc) and δ(qc) indicating the mean frequency and the
standard deviation of its frequency, respectively. The correlation r(qc, qx) of two queries
qc and qx is a standard measure of how strongly two queries are linearly related. It al-
ways lies between +1 and −1, with +1 implying an exactly positive linear relationship
between them and −1 for an absolutely negative linear relationship. Again, we calcu-
late the maximal and aggregated query relatedness scores of all query pairs as temporal
semantic features, resulting in fTemRelMax and fTemRelSum , respectively.

5.1.4 Feature Summary

We also make use of user reformulation behavior features following (Jiang et al., 2014b),
derived at three levels: term-, query- and session-level. Please refer to (Jiang et al.,
2014b) for details. The use of features of homologous queries and semantic relatedness
for QAC is a new contribution of this chapter. In total, we use 127 features including
those from (Jiang et al., 2014b).

Our features are slotted into three categories: popularity, user reformulation behavior,
and semantic relatedness. For query popularity, we collect evidence from the candidate
and its homologous queries, based on observations and predictions. For user behav-
ior features, we directly use those from (Jiang et al., 2014b). Regarding homologous

73

5. Learning from Homologous Queries and Semantically Related Terms

queries, there are 2 categories, 5 period options for observation (4 for prediction by
trend), 2 weighting schemes (only for super queries) and 2 calculations, accounting for
a total of 60 features, i.e., 30 features by observation and 30 features by prediction (24
from trend and 6 from periodicity). Referring to the candidate’s popularity, recent ob-
servations and predictions are collected by simply changing the time period, yielding
5 + 4 + 1 = 10 features. For the semantic relatedness features, 2 sources are used
to calculate the word2vec score: GoogleNews and a local query log, i.e., AOL (MSN)
queries are scored by the corresponding word2vec model trained on the AOL (MSN)
logs; 2 calculations are adopted for generating popularity features of homologous queries
and semantic features: maximization and summation; 2 term-pair significant scores are
included; semantic relatedness is measured on word- and query-level, resulting in 14
features.

Accordingly, in total, we develop 70 (= 60 + 10) features for popularity, 14 features
for semantic relatedness and 43 features for user reformulation behavior, yielding a total
of 70 + 14 + 43 = 127 features for our L2R-based QAC approach.

5.2 Experiments

In this section we detail our experimental setup. §5.2.1 summarizes the proposed models
trained on different features; §5.2.2 describes our datasets; we detail further experimental
settings and parameters in §5.2.3.

5.2.1 Model Summary

To examine the contribution from each specific feature source, we specify six L2R-QAC
variations depending on the features used: L2R-U, -UP, -UPS, -UPH, -ALL and -TOP;
see Table 5.6.

For comparison, we consider several QAC baselines: (1) the Most Popular Comple-
tion (MPC) model, which is based on query frequencies in the whole log and has been
discussed in §4.2.1, referred to as MPC-ALL (Bar-Yossef and Kraus, 2011); (2) an MPC
based QAC method, using frequency within a recent time window, denoted as MPC-
R (Whiting and Jose, 2014), which is state-of-the-art. Here we set R = 7 days as the
time window because performance peaks with this setting (Whiting and Jose, 2014); (3) a
recent L2R-based QAC model considering user reformulation behavior features (Jiang
et al., 2014b), denoted as L2R-U. The former two baselines are popularity-based while
L2R-U is a L2R-based QAC model.

To select a single baseline against which we compare our newly introduced models,
we compare the performance of the three baselines just listed and report the results in
Table 5.7. For both datasets, L2R-U outperforms the other two baselines. For instance
on AOL, it results in more than 8% and 5% improvements in MRR over MPC-ALL and
MPC-R, respectively, after typing one character as prefix. Similar results can be found
on the MSN dataset. Hence, we select L2R-U as the single baseline for comparison with
our proposed models in later experiments.

74

5.2. Experiments

Table 5.6: An overview of the QAC models discussed in the chapter.
Model Description No. of fea-

tures
Source

Baselines

MPC-ALL Ranking query completions
according to their past popularity
in the whole log

– (Bar-Yossef and
Kraus, 2011)

MPC-R Ranking query completions
according to their past popularity
within recent R days

– (Whiting and Jose,
2014)

L2R-U Learning to rank query
completions using user
reformulation behavior features

43 (Jiang et al., 2014b)

Our models

L2R-UP Extending L2R-U by adding 10
popularity features of the same
query

43 + 10 = 53 This chapter

L2R-UPS Extending L2R-UP by adding 14
semantic features of the same
query

53 + 14 = 67 This chapter

L2R-UPH Extending L2R-UP by adding 60
popularity features of homologous
queries

53+60 = 113 This chapter

L2R-ALL All features are considered for
learning to rank query completions

67+60 = 127 This chapter

L2R-TOP Extending L2R-UP by only adding
top ten important features newly
developed here

53 + 10 = 63 This chapter

5.2.2 Datasets

In this chapter, we implement our models on the MSN query log (Craswell et al., 2009)
as well as the AOL query log (Pass et al., 2006), both of which have been discussed in
Chapter 3. Both datasets are publicly available. For consistency, we partition each log
into two parts: a training set consisting of 75% of the query log and a test set consisting
of the remaining 25% in terms of time period. We also use the temporally last 10%
samples in the training set as validation set for LambdaMART. Traditional k-fold cross-
validation is not applicable to a streaming sequence since it would negate the temporal
order inherent in the data (Gama et al., 2014). Queries in the training set were submitted
before May 8, 2006 in the AOL dataset and before May 24, 2006 in the MSN dataset.

We divide the queries into sessions by 30 minutes’ inactivity2 and only English
queries appearing in both two partitions were kept. Importantly, in our experimental

2Only applied on the AOL dataset as the MSN dataset provides session IDs.

75

5. Learning from Homologous Queries and Semantically Related Terms

Table 5.7: Selecting our baseline. The performance of various baselines in terms of
MRR and SR@K, tested on the AOL and MSN datasets after typing one character
as prefix. The best performing baseline in each row is highlighted.

Dataset Metric MPC-ALL MPC-R L2R-U

AOL

MRR 0.6157 0.6348 0.6682
SR@1 0.4532 0.4643 0.4815
SR@2 0.5914 0.6038 0.6256
SR@3 0.7016 0.7121 0.7304

MSN

MRR 0.6305 0.6498 0.6821
SR@1 0.4702 0.4757 0.4876
SR@2 0.6083 0.6276 0.6385
SR@3 0.7251 0.7368 0.7437

Table 5.8: Statistics of the AOL and MSN datasets used. The “?” in # Prefix-?
indicates the length of the prefix in characters.

AOL MSN

Variables Training Test Training Test

Queries 3,808,083 1,571,346 3,784,925 1,402,308
Unique queries 452,980 452,980 304,943 304,943
Sessions 1,149,528 465,302 674,717 256,512
Queries / session 3.31 3.38 5.60 5.46
All prefixes 8,783,957 3,260,130 4,995,213 1,751,158
Prefix-1 605,710 209,650 427,502 141,925
Prefix-2 1,175,087 405,857 749,821 249,065
Prefix-3 1,954,285 707,580 1,134,539 387,633
Prefix-4 2,433,385 916,976 1,320,529 470,286
Prefix-5 2,615,490 1,020,067 1,362,822 502,249

design we follow Jiang et al. (2014b) and focus on sessions with at least two queries. By
doing so, we can extract user behavior related features. Like previous session context-
based QAC approaches (Bar-Yossef and Kraus, 2011; Jiang et al., 2014b), we set the
prefix in our experiments to be the first 1–5 character(s) of queries in a session. To obtain
our training and test sets, we remove input prefixes for which the ground truth (see be-
low) is not included in the top ten query completions returned by MPC at the time point
of querying; this too follows previous QAC work and is a commonly used methodology
in QAC tasks (Cai et al., 2014b; Jiang et al., 2014b; Shokouhi, 2013). Table 5.8 details
the statistics of our processed datasets.

The ground truth for a QAC task is defined as follows. Given a search session with
T queries, i.e., {q1, q2, . . . , qT−1, qT }, we want to predict each intended query qi, i =
{1, 2, . . . , T} at position i of a session after typing its prefix p. Then, a query q is a
correct completion of this prefix p of qi if, and only if, q = qi.

Next we take a closer look at the processed datasets so to be able to report the ratio
of queries at various lengths in words and of queries that have homologous queries. As

76

5.3. Results and Discussion

1 2 3 4 5 >5
0

5

10

15

20

25

Query length

P
er

ce
n

ta
g

e
(%

)

AOL

MSN

(a) The ratio of queries possessing homolo-
gous queries.

1 2 3 4 5 >5
0

10

20

30

40

50

Query length

P
er

ce
n

ta
g

e
(%

)

AOL

MSN

(b) Distribution of queries with various
number of terms.

Figure 5.1: Statistics of queries at various query lengths (in words) for the AOL and
MSN datasets, respectively.

shown in Figure 5.1a, generally, for both datasets, nearly one quarter of the one-term
queries have homologous queries, solely contributed by their super queries. For two-
and three-term queries, super queries and pseudo-identical queries contribute similarly,
however for longer queries (> 3 words), the latter dominate the contribution. In addition,
as plotted in Figure 5.1b, more than half of all queries contain more than one word, which
supports the feasibility for semantic features between words inside a query.

5.2.3 Settings

As introduces in §4.1.1, for time-sensitive query popularity prediction, we count queries
per hour to detect the periodicity and aggregate the hour-predictions within the same
day to generate the day-volume. For smoothing in (5.2), we set M = 3 as it performs
best when M changes from 1 to 5 in our trials. Before we run our L2R-based QAC
experiments, we are given a list of top N query completions by the traditional MPC
approach; we set N = 10 as this is commonly used by many web search engines and
published QAC work (Cai et al., 2014a,b; Jiang et al., 2014b; Shokouhi, 2013). We use
the LambdaMART learning algorithm for ranking query completions across all experi-
ments (Burges et al., 2011).

5.3 Results and Discussion

In §5.3.1, we examine the performance of L2R-UP, which we follow with a section about
the contribution of semantic features in §5.3.2. We examine the performance of L2R-
UPH in §5.3.3 with features of homologous queries added to L2R-UP. Next, §5.3.4 de-
tails the performance of L2R-ALL learnt from all features above and §5.3.5 provides an
analysis of feature importance. Finally, §5.3.6 zooms in on the impact of query position
on QAC performance.

77

5. Learning from Homologous Queries and Semantically Related Terms

5.3.1 Effect of Query Popularity

Since information about the past popularity of query completions can be generated offline
before ranking while the true popularity is unavailable at runtime, we develop the popu-
larity features according to their previously observed frequency within various periods in
the query logs, known as time-sensitive popularity features. In contrast, we produce the
predicted query popularity as features based either on recent trends or on cyclic patterns.
In this section, we compare the performance of L2R-UP with that of the baseline.

Table 5.9 includes the results on two datasets, i.e., the AOL and MSN datasets, after
entering prefixes consisting of 1 to 5 characters. On each dataset, L2R-UP generally
performs better than the baseline (L2R-U) in terms of MRR. When we take a closer

Table 5.9: Performance in terms of MRR for the QAC task, at a prefix length #p
ranging from 1 to 5 characters on the AOL and MSN datasets. For each dataset
the best performer per row is highlighted. Statistically significant differences are
determined against the baseline.

AOL

#p Baseline L2R-UP L2R-UPS L2R-UPH L2R-ALL L2R-TOP

1 0.6682 0.6764 0.6871M 0.6847M 0.6977N 0.6913M

2 0.6631 0.6815M 0.6939N 0.6898M 0.7024N 0.6980N

3 0.6654 0.6853M 0.7001N 0.6910M 0.7081N 0.7042N

4 0.6673 0.6921M 0.7094N 0.6981N 0.7144N 0.7127N

5 0.6704 0.6986N 0.7186N 0.7059N 0.7215N 0.7201N

MSN

#p Baseline L2R-UP L2R-UPS L2R-UPH L2R-ALL L2R-TOP

1 0.6821 0.6933 0.7028M 0.7011M 0.7136N 0.7084M

2 0.6847 0.6971 0.7112M 0.7048M 0.7204N 0.7183N

3 0.6915 0.7080M 0.7225N 0.7135M 0.7287N 0.7251N

4 0.6873 0.7113M 0.7260N 0.7164N 0.7314N 0.7300N

5 0.6895 0.7212N 0.7366N 0.7263N 0.7416N 0.7487N

look at the results across all prefixes, reported in MRR scores in Table 5.9, L2R-UP is
considerably more effective on longer prefixes as it produces larger MRR improvements
over the baseline on long prefixes, e.g., # = 4 or 5. Longer prefixes notably reduce the
space of possible query completions, which simplifies the problem. In addition, L2R-UP
shows a monotonous increase in MRR as the prefix length goes up. However, the baseline
shows a bit fluctuation in terms of MRR as the prefix length changes. Expectedly, L2R-
UP always receives the higher MRR scores compared to the baseline.

Next, we compare L2R-UP against the baseline (L2R-U) in terms of SR@1 and plot
the results in Figure 5.2. We find that, at each prefix length, for more than half of the
test prefixes, L2R-UP returns the final submitted query at the first position in the QAC
ranking list because all SR@1 scores achieved by L2R-UP are higher than 0.5; L2R-U
receives a lower SR@1 score than 0.5 on both datasets; long prefixes invariably result in
higher SR@1 scores than short ones. From these findings, we conclude that the observed

78

5.3. Results and Discussion

Prefix length
1 2 3 4 5

S
R

@
1

0.4

0.45

0.5

0.55
L2R-U
L2R-UP

(a) AOL

Prefix length
1 2 3 4 5

S
R

@
1

0.4

0.45

0.5

0.55
L2R-U
L2R-UP

(b) MSN

Figure 5.2: QAC performance in terms of SR@1 observed for L2R-U and L2R-UP,
tested on the AOL and MSN datasets.

Prefix length

1 2 3 4 5

S
R

@
1

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS

(a) SR@1
Prefix length

1 2 3 4 5

S
R

@
2

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS

(b) SR@2
Prefix length

1 2 3 4 5
S

R
@

3
0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS

(c) SR@3

Figure 5.3: QAC performance of L2R-UP and L2R-UPS tested on the AOL dataset
at various prefix lengths (in characters), in terms of SR@1, SR@2 and SR@3, re-
spectively.

and predicted popularity features of query candidates indeed help generate better QAC
rankings when embedded into a learning to rank framework.

5.3.2 Effect of Semantic Features

To answer RQ8, we learn our L2R-UPS model by extending L2R-UP with additional
14 semantic features. The MRR scores of L2R-UPS are listed in Table 5.9; we also
plot the scores in terms of other metrics (SR@K, K = 1, 2, 3) of L2R-UP and L2R-UPS
in Figure 5.3 and 5.4, tested on the AOL and MSN datasets, respectively, with varying
lengths of query prefix from 1 to 5.

Generally, we find that L2R-UPS beats L2R-UP for all cases on both datasets in terms
of MRR and SR@K (K = 1, 2, 3). In particular, on the AOL dataset, the MRR improve-
ments of L2R-UPS over L2R-UP are statistically significant (at level α = .05) for most
cases, e.g., at #p = 4 and 5; however, on the MSN dataset, most of the improvements
are not significant except at #p = 5 (at level α = .05). This is due to the fact that com-
pared to the AOL dataset, the MSN dataset contains far more short queries, resulting in
difficulties in capturing the term-pair semantic relatedness. In contrast, compared to the

79

5. Learning from Homologous Queries and Semantically Related Terms

Prefix length

1 2 3 4 5

S
R

@
1

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS

(a) SR@1
Prefix length

1 2 3 4 5

S
R

@
2

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS

(b) SR@2
Prefix length

1 2 3 4 5

S
R

@
3

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS

(c) SR@3

Figure 5.4: QAC performance of L2R-UP and L2R-UPS tested on the MSN dataset
at various prefix lengths (in characters), in terms of SR@1, SR@2 and SR@3, re-
spectively.

baseline (L2R-U), L2R-UPS shows significant MRR improvements for all cases on both
datasets. For instance, on the AOL dataset, significant MRR improvements are observed
at level α = .01 for prefix length #p = 2 to 5 and at level α = .05 for prefix length #p
= 1 by comparing L2R-UPS against the baseline, respectively.

Clearly, the gains in MRR of L2R-UPS over L2R-UP are larger for longer prefixes.
E.g., on the AOL dataset, L2R-UPS achieves a 2.86% improvement over L2R-UP at
#p = 5 and only a 1.58% improvement at #p = 1 in terms of MRR. Similar obser-
vations can be made for other metrics. The results on the MSN dataset show a similar
behavior even though the gaps are smaller. With longer prefixes, query candidates are
more likely composed of multiple terms, which helps to extract semantic features. Re-
garding the outcomes in terms of SR@K, as shown in Figure 5.3 and 5.4, for the majority
of cases, L2R-UPS can return the correct query in top 3 of the QAC list as the scores in
terms of SR@3 are higher than 0.8 on both datasets. Hence, we conclude that the seman-
tic relatedness features can help generate “good” queries, in which terms are semantically
close to each other.

5.3.3 Effect of Homologous Queries

Next, we turn to RQ9 and examine the contribution from features of homologous queries
for the candidate. Recall that the resulting model is called L2R-UPH (see Table 5.6). We
generate the QAC rankings for each prefix; the MRR scores are included in Table 5.9,
column 5. We see that L2R-UPH significantly outperforms the baseline, on both datasets,
resulting in near 5% improvements in terms of MRR for long prefixes, e.g., for #p = 4
or 5, but less for short prefixes, e.g., #p = 1. Generally, L2R-UPH achieves 4.4% and
4.1% improvements over the baseline on the AOL and MSN datasets, respectively, in
terms of MRR.

Additionally, we compare L2R-UPH against L2R-UP in terms of MRR and SR@1
and report the relative changes in Table 5.10. Across the board, L2R-UPH outperforms
L2R-UP in terms of MRR and SR@1. L2R-UPH achieves an average improvement in
MRR scores around 1.2% on AOL and 0.9% on MSN over L2R-UP, respectively. For
all cases, the improvement of L2R-UPH over L2R-UP is not statistically significant.
Interestingly, the gains in MRR of L2R-UPH over L2R-UP are larger for shorter prefixes

80

5.3. Results and Discussion

Table 5.10: Changes in MRR and SR@1 scores between L2R-UPH and L2R-UP at
varying prefix lengths on the AOL and MSN datasets.

AOL MSN

#p MRR SR@1 MRR SR@1

1 +1.23% +1.30% +1.13% +1.21%
2 +1.22% +1.19% +1.10% +1.09%
3 +0.83% +0.93% +0.78% +0.90%
4 +0.87% +0.86% +0.72% +0.82%
5 +1.04% +1.07% +0.71% +0.79%

(e.g., #p = 1 or 2), which differs from the outcomes of comparing L2R-UPS against
L2R-UP where obvious MRR gains are found for long prefixes. We believe that this
is due to the fact that shorter prefixes result in more ambiguous and shorter candidates,
leading to a higher probability for query completions to possess homologous queries
from which more information can be gleaned.

Next, we zoom in on the difference between L2R-UPS and L2R-UPH. L2R-UPS
tends to outperform L2R-UPH in terms of MRR at all prefix lengths (see Table 5.9,
column 4 vs. 5), resulting in an average improvement over L2R-UPH of around 1.5% on
the AOL dataset and 1.3% on the MSN dataset. The differences increase as the prefix
becomes longer. Hence, even though most differences are not statistically significant,
semantic features are probably more important than those of homologous queries for
QAC tasks in our setting.

In sum, homologous queries help improve the ranking of query completions, reflect-
ing the fact that searchers occasionally modify queries by changing the term order or
adding terms. In addition, compared to the contribution from homologous queries, se-
mantic features provide a bigger contribution to L2R-based QAC tasks as L2R-UPS is
more effective than L2R-UPH on both datasets (AOL and MSN).

5.3.4 Performance of L2R-ALL

For research question RQ10 we examine whether our L2R-ALL model learnt from all
discussed features can help boost QAC ranking performance. The MRR scores achieved
by L2R-ALL are listed in Table 5.9, column 6, on the AOL and MSN datasets. Clearly,
for both datasets, L2R-ALL is considerably more effective than L2R-UPS and L2R-UPH,
especially for short prefixes.

In addition, we examine the difference in MRR scores between L2R-ALL, L2R-
UPS and L2R-UPH, respectively. For both datasets, the improvement of L2R-ALL over
L2R-UPS is not significant. However, for all cases on AOL except #p = 1 and 2, L2R-
ALL significantly outperforms L2R-UPH at the α = .05 level; for MSN, significant
improvements of L2R-ALL over L2R-UPH are observed, except for #p = 1 at level
α = .05. Generally, L2R-ALL achieves a 1.2% improvement in terms of MRR over
L2R-UPS on both datasets. Compared to L2R-UPH, L2R-ALL shows a 2.3% MRR
improvement in general. Regarding the comparisons to the baseline, L2R-ALL achieves
significant improvements in terms of MRR at the α = .01 level for all prefix lengths

81

5. Learning from Homologous Queries and Semantically Related Terms

Table 5.11: Per prefix bakeoff, in terms of reciprocal rank: L2R-ALL vs. other mod-
els. The ratios (%) of test prefixes at all lengths for which L2R-ALL loses against the
corresponding model listed in column 1 have a red background, ratios with equal
performance have a yellow background, and those of prefixes for which L2R-ALL
wins have a green background.

Model AOL MSN

Baseline 4.21 52.17 43.62 5.48 54.30 40.22
L2R-UP 9.13 54.92 35.95 10.10 56.53 33.37
L2R-UPS 18.37 54.40 27.23 12.24 54.79 32.97
L2R-UPH 9.35 53.11 37.54 10.46 55.91 33.63

on both datasets. In particular, L2R-ALL achieves an average 6.8% and 6.3% MRR
improvement on AOL and MSN, respectively.

Next, we check the QAC ranking performance per prefix and list the ratio of test
prefixes at all lengths for which L2R-ALL loses against, equals or outperforms the corre-
sponding models; see Table 5.11. We can see that, on both datasets, L2R-ALL presents
a majority of draws with the other models. Actually, the draws are often observed on
prefixes for which all models return the correct query submission at the top positions,
e.g., 1 or 2. That is why these models receive high MRR scores (see Table 5.9). Ad-
ditionally, compared with the other three models in Table 5.11, i.e., Baseline, L2R-UP
and L2R-UPH, the L2R-UPS model beats L2R-ALL more often, especially on the AOL
dataset, usually on long prefixes, e.g., #p = 4 or 5.

5.3.5 Feature Sensitivity Analysis

Finally, we analyze the relative importance of our newly developed features to answer
RQ11. Following the methodology used by Agichtein et al. (2008), the top ten most
significant features on each dataset used for learning, according to a χ2 test, are reported
in Table 5.12.

We see that the word2vec score returned by the word2vec model on the query logs,
with the maximal value of all term pairs in a query, appears to be the most important
feature. Generally, semantic relatedness features are more important than features of
homologous queries, as they are ranked higher and account for the majority of the top
ten features. Popularity features of pseudo-identical (PI) queries are notably more helpful
for QAC than super queries (SQ). Also, the observations and predictions from the recent
2 days are effective. These results are consistent with the findings from previous work
(e.g., (Cai et al., 2014a; Jiang et al., 2014b)) that the predicted popularity dominates
the QAC rankings. However, other signals also contribute many useful features, e.g.,
semantic query similarity represented by temporal relation and term pairwise occurrence
frequency, e.g., fTemRelSum and fLLRSum . Two particularly interesting observations
from Table 5.12 are that: (1) word2vec features are ranked very high, suggesting that
the developed semantic relatedness among term pairs inside a query does indeed help
to generate appropriate queries; (2) the majority of important features use maximization
rather than summation of values.

82

5.3. Results and Discussion

Table 5.12: Ten most important features by χ2 test on the AOL and MSN datasets;
PI (q) and SQ(q) are placeholders for pseudo-identical queries and super queries of
query q, respectively.

Rank AOL MSN

1 fW2vLogMax fW2vLogMax

2 fTemRelSum fre(PI (q), 2)tre max
3 fre(PI (q), 2)tre max fW2vGooMax

4 fW2vGooMax fre(PI (q), 2)obs max
5 fre(PI (q), 4)obs max fTemRelSum

6 fTemRelMax fre(PI (q), 4)tre max
7 fcof sum fre(PI (q), 1)tre max
8 fre(PI (q), 2)obs max fW2vLogSum

9 fW2vLogSum fLLRSum

10 fre(SQ(q), 2)tre sum fre(SQ(q), 4)tre max

To verify the effectiveness of features deemed to be important for QAC, we create
a model called L2R-TOP that extends L2R-UP with the features in Table 5.12 (on the
corresponding datasets). The results in terms of MRR scores are listed in Table 5.9,
column 7. We see that (1) compared to features selected from a sole source into L2R-
UP, i.e., semantic relatedness or homologous queries, the important features according to
Table 5.12 boost the performance; L2R-TOP receives higher MRR scores than L2R-UPS
and L2R-UPH; (2) L2R-ALL invariably performs the best among all models, suggesting
that L2R-based models not only learn from the important features, but also from the
less important ones. Overall, L2R-TOP produces competitive results, implying that its
63 features (the ten most important plus 53 from L2R-UP) are highly informative for
producing high quality QAC rankings.

5.3.6 Impact of Query Position

Previous work mainly focuses on the last query in a session for QAC evaluation (Cai
et al., 2014b; Jiang et al., 2014b). Instead, we implement tests on all queries in a session,
which helps us to examine the performance of our L2R-based QAC models at various
query positions in a search session. We plot the results in terms of MRR in Figure 5.5
for all prefixes at each specific query position in a session, tested on the AOL and MSN
datasets, respectively.

We can see from Figure 5.5 that: (1) for all L2R-based QAC models, the QAC per-
formance in terms of MRR is improved when the user continues querying in a session
because the MRR scores are increased as the query position changes from the beginning
to the end of a session; (2) among these models, the performance of L2R-UP seems to
be less sensitive to the query position than other models, especially on the MSN dataset,
as the MRR scores of L2R-UP are relatively stable; (3) generally, the L2R-ALL model
invariably performs best among these models at each specific query position. These find-
ings could be due to: (1) at the end of a search session, the information of user behaviors
makes more sense for learning than at the beginning of a search session, which helps

83

5. Learning from Homologous Queries and Semantically Related Terms

Query position
1 2 3 4 >=5

M
R

R

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS
L2R-UPH
L2R-ALL
L2R-TOP

(a) AOL

Query position
1 2 3 4 >=5

M
R

R

0.4

0.5

0.6

0.7

0.8

0.9
L2R-UP
L2R-UPS
L2R-UPH
L2R-ALL
L2R-TOP

(b) MSN

Figure 5.5: Performance of L2R-based QAC models in terms of MRR at various
query positions, tested on the AOL and MSN datasets, respectively.

boost the QAC ranking performance; (2) semantic features are more reliably extracted
at the end of a session rather than at the beginning, especially for features depending on
the search context, such as, e.g., fTemRelSum in (5.8) and fcof sum in §5.1.3, which are
important to those models, e.g., L2R-UPS, L2R-ALL and L2R-TOP.

5.4 Conclusion

In this chapter we follow a supervised learning to rank approach to address the problem
of ranking query auto completion (QAC) candidates. We develop new features of homol-
ogous queries (i.e., those with the same terms but different orders and those extending the
initial query) and semantic relatedness of terms inside a query and of pairs of terms from
a query candidate and from earlier queries in the same session. We have verified the ef-
fectiveness of our models on two public datasets, showing significant improvements over
state-of-the-art QAC baselines. Our analysis reveals that features of semantic relatedness
and homologous queries are important and do indeed help boost QAC performance.

As to future work, we will have a closer look at the top N candidates returned by
popularity based candidate ranking (MPC) for N > 10: how much can we gain from
good candidates that were ranked low by MPC? Additionally, we want to study efficiency
aspects of our approaches: parallel processing is likely to boost the efficiency of our
models on feature extraction, and the addition of more, potentially expensive ways of
generating homologous queries or semantic features could produce better QAC rankings.
Finally, we aim to apply our approach to larger datasets than we considered in this paper,
especially datasets that cover longer periods of time than AOL and MSN, as we believe
that QAC can benefit from periodicity-based features.

In Chapter 4, we focused on time-sensitivity and user-specific context for query auto
completion. In this chapter, we mainly focused on exploring information from homolo-
gous queries and from semantically related terms for query auto completion. In the next
chapter, we will investigate whether diversifying the list of query completions can boost
the performance of query auto completion as well as improve the satisfaction of users.

84

6
Diversifying Query Auto Completion

So far, we have explored the information of time-sensitivity and of user-specificity for
query auto completion (QAC) in Chapter 4, and focused on learning from homologous
queries and semantic relatedness for query auto completion in Chapter 5. In both chap-
ters, we have seen that previous work on query auto completion, including our own
proposed models, mainly centers around returning completions that are most likely in-
tended by the user while ignoring the possible redundancy among the query completions
in the list. Thus, semantically related queries matching the input prefix are often returned
together. This may push valuable suggestions out of the list, given that only a limited
number of candidates can be shown to the user, and hence, this may result in a less than
optimal search experience. Therefore, without further information to disambiguate the
user’s query aspect, the search engine needs to focus on how best to produce a list of
relevant and diversified query completions that can cover different interpretations.

Intuitively, a sensible QAC approach should maximize the satisfaction of the pop-
ulation of users typing the prefix, which involves a trade-off between presenting more
possible query completions of the “correct” query aspect and having diverse query com-
pletions in the top positions of the list of query completions for a given prefix, i.e., re-
turning the most probable queries early and removing redundant query candidates as
well. By doing so, the chance that any user typing the same prefix will find at least one
satisfactory query candidate for their particular information need is maximized. Hence,
it is important to capture the user’s query aspect and reduce the redundancy of query
completions.

Let us illustrate the meaning of query completion redundancy, which refers to the
situation where some auto-completed queries are of equivalent meaning to preceding
queries in the list of query completions, describing almost the same query aspect. Ta-
ble 6.1 contains a search session from the well-known AOL query log (Pass et al., 2006).
For the sake of the example, let us assume that we have not yet seen the last query (“sony”
in row 6) and that it is in fact the initial segment (prefix) “so” of this query for which we
want to recommend query completions. A regular baseline (Bar-Yossef and Kraus, 2011)
based on the most popular query is likely to rank the query completions as a list shown
in row 8. But if we look in the list (e.g., query completions at rank 1, 6 and 9), we see
that the queries “southwest airlines,” “southwestairlines” and “southwest airline” are all
returned. Clearly, these three candidates are semantically closely related to each other
and probably express an identical query aspect, which can be easily confirmed by con-

85

6. Diversifying Query Auto Completion

Table 6.1: A session example from the AOL dataset consisting of five queries (rows
2–6), and a ranked list of top ten query completions (row 8), separated by “;” and
returned by MPC (Bar-Yossef and Kraus, 2011) after typing the prefix “so” of the
last query “sony”.

1 SessionID UserID Query Time

2 419 1020 compaq 20060315, 14:18:42
3 419 1020 hewlit packard 20060315, 14:26:58
4 419 1020 toshiba 20060315, 14:32:31
5 419 1020 averatec 20060315, 14:35:39
6 419 1020 sony 20060315, 14:38:15

7 A ranked list of query completions for the prefix “so”

8 southwest airlines; southwest; song lyrics; social security;
sopranos; southwestairlines; sony; sofia laiti;
southwest airlines; social security administration

sidering the overlap of the search engine result pages (SERPs) produced for these three
queries. We hypothesize that in this example, the latter two candidates, i.e., “southwest-
airlines” and “southwest airline,” in this list of query completions (row 8) are redundant
completions for the prefix “so.” Thus, to improve the user’s search satisfaction, they
should be removed from the list, especially when only few query completions can be
returned. By doing so, the QAC performance in this case, typically measured by Mean
Reciprocal Rank (MRR), can be improved given that the final submitted query is “sony.”
Moreover, in this case, if the final query submission is “social security administration,”
the MRR score obviously can be further increased as more redundant candidates before
“social security administration” in the list of query completions are cleared.

After removing redundant queries from the list of query completions, more query
completions can be included, which increases the probability of matching the intended
query of the user. Thus, in this chapter, we consider the task of diversifying query auto
completion (D-QAC), which aims to return the correct query early in the QAC ranking list
and to reduce the redundancy among the query completions. In particular, we propose
a series of greedy query selection (GQS) models, i.e., GQSMPC+AQ , GQSMSR+AQ ,
GQSMPC+LQ and GQSMSR+LQ , corresponding to a GQS model that first selects the
most popular completion and use all previous queries in session as search context, that
first selects the most similar completion and use all previous queries in session as search
context, that first selects the most popular completion and use only the last preceding
query in session as search context and that first selects the most similar completion and
use only the last preceding query in the session as search context, respectively. We iden-
tify a query’s aspects by categorizing its clicked URLs using the ODP (Open Directory
Project) taxonomy,1 a topical hierarchy structure for URL categorization.

In practice, our GQS model faces two main challenges. One relates to a query cold-
start problem. When ranking the query candidates in the testing phase, we may not
know all aspects of a query candidate from the logs in the training period. The other

1http://www.dmoz.org

86

http://www.dmoz.org

problem is a sparseness problem: we only have limited aspect information about every
query. For the query cold-start problem, we propose a solution by which an unlabelled
query can be assigned the same aspects as its semantically most closely related query that
has been labelled by ODP in the training period. For the sparseness problem, we apply
a Bayesian probabilistic matrix factorization approach to derive a distribution of query
over all aspects.

We answer the following questions for this problem:
RQ12 Do our greedy query selection (GQS) models beat the baselines for diversifying

query auto completion task in terms of metrics for QAC ranking (e.g., MRR) and
for diversification (e.g., α-nDCG)?

RQ13 How does the choice of selecting the first query to be included in the QAC re-
sult list impact the performance in diversified query auto completion of our GQS
model?

RQ14 What is the impact on diversified query auto completion performance of our GQS
model of the choice of search context, i.e., choosing all previous queries in a ses-
sion or only the last preceding query?

RQ15 What is the relative D-QAC performance of our QAC models when evaluated
using a side-by-side comparison?

RQ16 What is the sensitivity of our GQS model? In particular, how is the performance
of our GQS model influenced by, e.g., the number of returned query completions,
namely a cutoff N , the number of latent features used in BPMF kf and a trade-
off λ controlling the contribution of search popularity and search context when
modeling the closeness of query completion to search intent?

We answer these questions by changing the scenario of selecting the first query comple-
tion to the final list and of collecting session context for inferring search intents. Our
experimental results for the GQS models, results obtained on two large-scale real-world
query logs, show that our proposal can outperform a competitive state-of-the-art baseline
in terms of well-known metrics used in QAC and diversification, e.g., MRR andα-nDCG,
respectively. We also conduct a side-by-side comparison to assess the diversity of QAC
suggestions.

Our contributions in this chapter can be summarized as:
1. We propose the task of diversifying query auto completion (D-QAC) that aims to

return the user’s intended query early in a list of query completions and, simulta-
neously, to reduce the redundancy of the QAC list. To the best of our knowledge,
there is no published work on D-QAC.

2. We propose a greedy query selection (GQS) approach for D-QAC that captures the
query aspect not only from the current search popularity but also from the search
context in session.

3. We study a query cold-start problem, where we do not have any aspect information
about a query from the logs in the training period. For such unknown queries, we
assign aspect labels from its semantically most closely related query for which
aspect information has been found during the training period.

4. We analyze the effectiveness of our GQS model and find that it significantly outper-
forms state-of-the-art baselines for D-QAC in terms of MRR and α-nDCG. Gener-
ally, against the best baseline, GQS achieves an improvement of around 2.3% and
5.6% in terms of MRR and α-nDCG, respectively.

87

6. Diversifying Query Auto Completion

Table 6.2: Main notation used in the chapter.
Notation Description

T number of queries in a session
qt the t-th (t = 1, 2, . . . , T) query in a session
p prefix of the last query qT in a session
RR a list of query completions for prefix p returned to the user
RI an initial QAC ranking list matching prefix p
kI number of query completions in RI , i.e., |RI |
a aspect
q(i) the probability of relevance of query q to the i-th aspect
CS search context, i.e., sequence of queries preceding qT : {q1, q2, . . . , qT−1}
qc query candidate in a QAC list
λ trade-off between search popularity and previous search context
f(q) frequency of query q
θ decay factor
qs selected query in RR
ωt normalized decay brought by temporal interval
TD(qt) time interval between qt and qT
N number of query completions finally returned to a user, i.e., a cutoff
Q set of unique queries
QL set of labelled queries ⊆ Q
A set of unique aspects
Nq number of unique queries, i.e., |Q|
Ma number of unique aspects, i.e., |A|
kf number of latent features used in BPMF

The remainder of this chapter is organized as follows. The D-QAC problem and our
proposed solution are described in §6.1. Section 6.2 presents our experimental setup. In
§6.3, we report our results. Finally, we conclude in §6.4, where we also suggest future
research directions.

6.1 Approaches

In this section, we formally introduce the problem of diversifying query auto completion
(D-QAC) in §6.1.1, describe our greedy query selection model to deal with D-QAC in
§6.1.2, and derive query distributions over aspects in §6.1.3.

6.1.1 The D-QAC Problem
Before introducing our method for D-QAC, we first recall the main notation used in this
chapter in Table 6.2 and then state the problem of D-QAC. As the search engine only
returns the top N query completions to its users, the objective of D-QAC is to maximize
the probability that the average user finds at least one useful query completion within the
top N candidates.

88

6.1. Approaches

Assume that the following are given:
• a prefix p of the last query qT in a session consisting of T queries {q1, q2, . . . , qT };
• an initial list of query completionsRI produced for this prefix pwith length |RI | =
kI ;

• the probability of relevance P (Rel | a, p, CS) of query aspect a for prefix p given
the search contextCS consisting of a sequence of preceding queries before qT , i.e.,
{q1, q2, . . . , qT−1};

• and a satisfaction value Ps(Rel | qc, p, a, CS), i.e., a probability of query comple-
tion qc matching the query aspect a given the search context CS .

First, we start with a simplified objective of the diversified query auto completion (D-
QAC) problem, which aims to satisfy the average user who enters the prefix p by finding
at least one acceptable query completion among the top N query completions returned,
given his search context CS , where RR ⊆ RI with |RR| = N , such that N ≤ kI . This
is achieved by maximizing

P (RR | p, CS) = P (Rel | p, CS)

1−
∏

qc∈RR

(1− Ps(Rel | qc, p, CS))

 . (6.1)

Let us illustrate this objective and see how it formalizes our intuition. Note that Ps(Rel |
qc, p, CS) can be interpreted as the probability that a query completion qc satisfies a user
who enters the prefix p given the search context CS . Then (1 − Ps(Rel | qc, p, CS))
indicates the probability that qc fails to satisfy the user. Therefore, the probability that
all selected query completions fail to satisfy the user equals its product under the query
independence assumption. One minus that product is the probability that at least one
query completion satisfies the user. Finally, the score, weighted by P (Rel | p, CS),
denotes the probability that the set of query completions RR satisfies the average user.
Then, we break the objective in (6.1) down to the aspect level as

P (RR | p, CS) =
∑
a

P (Rel | a, p, CS)

1−
∏

qc∈RR

(1− Pv(Rel | qc, p, a, CS))

 , (6.2)

where a is a given aspect and summing over all aspects weighted by P (Rel | a, p, CS)
denotes the probability that the set of query candidates RR satisfies the average user who
enters prefix p at the aspect level.

This D-QAC framework promotes diverse rankings of query completions by penal-
izing redundancy at every rank in the list of query completions. It does so by greedily
selecting query completions from RI\RR into RR. At each step, it selects one candi-
date that is most different from those previously selected in RR (thus minimizing redun-
dancy), while still relevant to the query aspect. This can be achieved by iteratively filling
RR with one query q? ∈ RI\RR each time until |RR| = N :

q? ← argmax
qc∈RI\RR

∑
a

P (Rel | qc, p, a, CS)
∏

qs∈RR

(1− P (Rel | a, p, qs, CS)), (6.3)

where P (Rel | qc, p, a, CS) denotes the probability that, for prefix p, candidate qc meets
the query aspect a given the search context CS , and P (Rel | a, p, qs, CS) indicates the

89

6. Diversifying Query Auto Completion

conditional probability that the selected query qs for prefix p matches the aspect a given
the search context CS . Thus,∏

qs∈RR

(1− P (Rel | a, p, qs, CS))

denotes the probability that all previously selected queries qs ∈ RR fail to satisfy the
user, and the product

P (Rel | qc, p, a, CS)
∏

qs∈RR

(1− P (Rel | a, p, qs, CS))

indicates the probability that none of the selected queries in RR satisfy the query aspect
a but finally qc does. Finally, the query completion qc ∈ RI\RR with the maximal
probability satisfying the query aspect is chosen for inclusion in the list RR.

6.1.2 Greedy Query Selection for D-QAC
In this section, we propose our Greedy Query Selection (GQS) model to deal with D-
QAC. In this model, we assume that the probability in (6.3) that a query candidate qc
meets the query aspect P (Rel | qc, p, a, CS) can be expressed either by the current
search popularity or implicitly by the closeness to previous queries in the session context
CS , with a trade-off λ (0 ≤ λ ≤1) controlling the contributions from these two parts.
Thus

P (Rel | qc, p, a, CS) = λP (qc | p) + (1− λ)P (Rel | qc, a, CS) (6.4)
= λP (qc | p) + (1− λ)P (Rel | qc, a, q1, q2, . . . , qT−1)

= λP (qc | p) + (1− λ)
∏
qt∈CS

P (Rel | qc, a, qt),

where the query aspect expressed by search popularity P (qc | p) can be directly esti-
mated by

P (qc | p) =
f(qc)∑
q∈RI

f(q)
, (6.5)

where f(q) indicates the frequency of query q ∈ RI . Before combining these two proba-
bility scores, they should be normalized. Obviously, the query aspect is dominated solely
by the search popularity if λ = 1 or by the search context if λ = 0. The probability
P (Rel | qc, a, qt) in (6.4) can be simply estimated by the normalized distance between
qc and qp given a specific aspect a, weighted by the temporal intervals:

P (Rel | qc, a, qt) = ωt ×
(

1− |qc(a)− qt(a)|
dis(qc, qt)

)
, (6.6)

where dis(qc, qt) returns the 2-norm distance between qc and qt and ωt is a normalized
decay factor brought by the temporal interval between qt and qc (namely qT) to make∑
ωt = 1, as we argue that temporally close queries in a search session are apt to share

common query aspects. Actually, any other similarity function can be used, including,

90

6.1. Approaches

e.g., cosine similarity. However, for computing the distance at a specific aspect, we do
need to normalize the score at this specific aspect dimension. Different similarity func-
tions will return similar results. Note that, in our model, all queries are represented by a
vector, where each entry in this vector indicates the relevance of the query to a particular
aspect a. Specifically, qc(i) denotes the probability of relevance of query qc represented
by a vector to its i-th aspect. We compute ωt as ωt ← norm(θTD(qt)−1), where θ is a
decay factor and TD(qt) refers to the time interval, e.g., TD(qt) = 1 for the last query
qT−1 in the context CS . The query, e.g., qc or qt, can be represented by a probability
distribution over aspects returned by Bayesian probabilistic matrix factorization, which
is to be discussed in Section 6.1.3. Hence these probabilities can be computed offline
before ranking.

Next, the probability P (Rel | a, p, qs, CS) in (6.3) indicates to what degree the se-
lected query completion qs ∈ RR meets the query aspect, which can be learnt from the
search logs. We simplify P (Rel | a, p, qs, CS) in (6.3) as:

P (Rel | a, p, qs, CS) = P (Rel | a, qs, CS), (6.7)

indicating the probability that a query candidate matches the query aspect is dominated
by the closeness to the aspect of preceding queries in the session. Finally, based on the
aforementioned query independency assumption, we have

P (Rel | a, p, qs, CS) = P (Rel | a, qs, CS) ∝
∏
qt∈CS

P (Rel | qs, a, qt), (6.8)

where P (Rel | qs, a, qt) can be derived in the same way as P (Rel | qc, a, qt) in (6.4).
By doing so, we can gradually assign one query candidate into the list RR at a time until
reaching the list length |RR|. The details of our query selection method can be found in
Algorithm 5. We first calculate the semantic similarity of query candidates to the search
context (row 3), and inject the most semantically similar query into RR, shown in row 6,
Algorithm 5, then score the remaining candidates in RI by measuring how are they close
to the query aspects and at the same time how are they diverse to the selected query in
RI (see row 10), and finally select the optimal candidate to RI by row 12 and 13. We
iteratively select one candidate at a time from the remaining list until RR = N .

Clearly, as shown in Algorithm 5, first of all, we should initialize RR. We con-
sider two options. The first option starts with RR ← q∗, where q∗ is the most popular
completion in RI at the time of querying because popular queries normally receive high
attentions. We write GQSMPC to denote this variant of the GQS model. Another op-
tion initializes RR with the most semantically related query to the previous queries in
the search context, where q∗ can be directly returned by using word2vec (Mikolov et al.,
2013b) because queries in the same session normally express closely similar aspects. We
write GQSMSR to denote the variant of our GQS model that starts with the semantically
most related query.

Finally, to get these probabilities used in our GQS model, e.g., P (Rel | qc, a, qt)
in (6.4) and P (Rel | qs, a, qt) in (6.8), we should know the query distribution over
all aspects, which is returned by an algorithm based on BPMF (Bayesian probabilistic
matrix factorization), thereby overcoming the sparseness problem of not knowing the
direct relationship between a query and an aspect, see §6.1.3. However, BPMF needs

91

6. Diversifying Query Auto Completion

Algorithm 5 GQS for D-QAC.

Input: Prefix p, an initial QAC list RI , size of returned QAC list: N , search context
CS

Output: A reranked QAC list RR;
1: RR = ∅
2: for each candidate qc ∈ RI do
3: FirstQuery(qc)← Similarity(qc, CS); %%% Alternatively, MPC(qc)
4: end for
5: q? ← arg maxqc∈RI

FirstQuery(qc)
6: RR ← RR ∪ {q?}
7: RI ← RI\{q?}
8: for |RR| ≤ N do
9: for qc ∈ RI do

10: s(qc)←
∑
i P (Rel | qc, p, a, CS)

∏
qs∈RR

(1− P (Rel | a, p, qs, CS))
11: end for
12: q? ← arg maxqc s(qc)
13: RR ← RR ∪ {q?}
14: RI ← RI\{q?}
15: end for
16: Return RR

to know at least one aspect label of each query while it indeed happens that we may
not know any aspect information about a query. To address this, we use the scenario
proposed in Algorithm 6 by finding a labelled target query that is the semantically most
closely related query to the unlabelled query.

6.1.3 Generating Query Distribution Over Aspects
In this section, we discuss how to generate a query distribution over aspects. We use
Bayesian probabilistic matrix factorization to overcome the sparseness problem of not
knowing direct relationships between a query and an aspect using ODP. Before detailing
our Bayesian probabilistic matrix factorization-based approach, we address the query
cold-start problem, i.e., not knowing any aspect information about a query using ODP
categorization from the training period. We assign the aspect labels from its semantically
most related query in the labelled query set, because semantically related queries (or
words), which often express similar search aspects, have been either directly suggested
to the user or internally used by the search engine to improve the search quality (Bollegala
et al., 2007; Chien and Immorlica, 2005).

More precisely, given an unlabelled query q and a set of labelled queries QL, we
return a labelled query qo ∈ QL for q as:

qo ← argmax
ql∈QL

cos(q, ql) = argmax
ql∈QL

1

W

∑
wk∈q

∑
wj∈ql

cos(wk, wj). (6.9)

We take the cosine similarity between two queries, represented by the average of the
cosine similarity between two sets of normalized word vectors, excluding the stop words.

92

6.1. Approaches

Algorithm 6 Dealing with query cold-start problem.

Input: An unlabelled query q;
a set of labelled queries QL with their labels L

Output: Labels of q: l(q);
1: for each query ql ∈ QL do
2: score(ql) = cos(q, ql)
3: end for
4: qo ← argmaxql∈QL

score(ql)
5: l(q)← l(qo) ∈ L
6: Return l(q) to q

The word vector representation can be directly returned by word2vec (Mikolov et al.,
2013a,b) learnt from the query logs. The details are shown in Algorithm 6, where we
first score each labelled query inQL by its cosine similarity to the unlabelled input query
in row 2, and then select the most similar query (row 4), from which we obtain the
aspect labels that are finally assigned to the input query as aspect labels (row 5). Using
Algorithm 6, all the queries in our datasets can be categorized by ODP. After that, BPMF
can be applied to derive the query distribution over all aspects in order to calculate the
probabilities used in Algorithm 5 to rerank query completions. However, queries are
usually short. E.g., the majority in the AOL and MSN logs that we use in this chapter
consists of fewer than three words; see Figure 6.2b below. Hence, it makes sense to
use the clicked documents rather than the query itself to identify query aspects, which
is commonly used in search result diversification. We thus build a large query-aspect
matrix QCNq×Ma

using ODP, with Nq unique queries and Ma unique aspects, as we
will explain.

In the diversity task of TREC,2 the ground truth is generated by humans, both for
relevance and for aspects. In our setting of diversified query auto completion, we first
train our model by proposing a new approach for inferring multi-aspect relevance for
a query from clickthrough data in the log using aspect information from the open di-
rectory project, ODP.3 The clickthrough data is produced from the search behaviors of
real searchers and has been proved effective for labelling the relevance of a document
to a query (Joachims, 2002). More specifically, our methodology consists of two major
steps. The first step involves extracting the clickthrough data from the search log. By
doing so, we obtain a list of all clicked URLs for each unique query. The second step
involves categorizing these URLs using ODP. After that, we infer the aspects of a query
by aggregating all aspects from its clicked URLs. Let us make this more precise.

Definition 6.1.1 (Multi-aspect relevance) Let a query be given. Given an aspect set
that has m pertinent aspects, i.e., an aspect relevance label is independent of other aspect
relevance labels, the multi-aspect relevance of a query is an m-dimensional vector with
each entry corresponding to a relevance label for an aspect given the query.

Hence, each entry in a multi-aspect relevance vector corresponds to an aspect relevance
2http://trec.nist.gov/tracks.html
3DMOZ – the open directory proejct, http://www.dmoz.org.

93

http://trec.nist.gov/tracks.html
http://www.dmoz.org

6. Diversifying Query Auto Completion

Label

0 1 2 3 4 5 6 7 8 >8

R
a
ti

o
 (

%
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70
AOL
MSN

(a) The ratio of relevance labels of queries
at two-level aspects in the AOL and MSN
datasets.

Aspect

ar
t

bu
si
ne

ss

co
m

pu
te

r

ga
m

e

he
al

th

ho
m

e

ne
w

s

re
cr

ea
tio

n

re
fe

re
nc

e

re
gi

on
al

sc
ie

nc
e

sh
op

pi
ng

so
ci

et
y

sp
or

ts

w
or

ld

R
at

io
 (

%
)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

AOL
MSN

(b) The ratio of queries at one-level aspects in
the AOL and MSN datasets.

Figure 6.1: Distributions of labels (left) and aspects (right) in the AOL and MSN
datasets, respectively.

label. This relevance label can be mapped to a numerical value ne(q, url, a) as:

ne(q, url, a) =
∑

url∈U(q)

J(url, a)× f(q, url), (6.10)

where U(q) contains all clicked URLs of a query q, the indicator J(url, a) = 1 if the
clicked url is categorized by aspect a and J(url, a) = 0 if not, and f(q, url) indicates
the number of clicks on URL url after submitting query q. We use ODP to categorize
the clicked URLs. In practice, following (Chapelle et al., 2009), we split the aspect rel-
evance judgments into a 5-grade scale set, like {perfect , excellent , good , fair , bad} by
ne(q, d, a) ← min(ne(q, d, a), 4). After checking the distribution of labels (see Fig-
ure 6.1a) and aspects4 (see Figure 6.1b), we find the relevance labels, e.g., 2, 3 and 4,
account for the majority of non-zero labels. In this manner, we generate our ground truth
for the relevance of queries to aspects.

To calculate the probabilities mentioned in Section 6.1.2, i.e., P (qc|p, a, CS) in (6.4)
and P (a|p, qs, CS) in (6.7), we should replace the zeros in the original query-aspect
matrix QCNq×Ma

for the cases that no direct relationships between query q and aspect
a are inferred using ODP in the training period. We use Bayesian Probabilistic Ma-
trix Factorization (BPMF) (Salakhutdinov and Mnih, 2008a) to derive the distribution of
queries over aspects. BPMF can be directly applied to the original query-aspect matrix
QCNq×Ma , returning an approximation matrix that assigns a non-zero value to each en-
try in the original matrix to overcome the problem of sparseness and zero-probabilities.
By doing so, the original query-aspect matrix QCNq×Ma

is approximated by:

QC∗approx = Q∗Nq×kf × C
∗
Ma×kf

>, (6.11)

where Q∗Nq×kf and C∗Ma×kf represent the query- and aspect-specific latent feature ma-
trix, and Nq , Ma and kf indicate the number of queries, aspects and latent features,

4To save space, we only plot the distribution of level-one aspects, in total 15 aspects.

94

6.2. Experiments

respectively. Like (Cai et al., 2014a), we compute the value QC∗approx(i, j) of query
i at aspect j in matrix QC∗approx by marginalizing over the model parameters and the
hyperparameters:

p(QC∗approx(i, j)|QCNq×Ma
,Θ0) = (6.12)

=

∫ ∫
p(QC∗approx(i, j)|Qi, Cj)p(Q,C|QCNq×Ma

,ΘQ,ΘC)p(ΘQ,ΘC |Θ0)

d{Q,C}d{ΘQ,ΘC},

where ΘQ = {µQ,ΣQ} and ΘC = {µC ,ΣC} are hyperparameters of query set Q
consisting of all unique queries and of aspect set A consisting of all unique aspects, re-
spectively. The prior distributions over the query and aspect feature vectors are assumed
to be Gaussian, and Θ0 = {µ0,Σ0,W0} is a Wishart distribution hyperparameter with
Σ0×Σ0 scale matrixW0. The intuition behind this approximation is that the relevance of
a query to aspects is determined by a small number of unobserved hyperparameters. This
means that taking a Bayesian approach to the prediction problem involves integrating the
model hyperparameters. In addition, the use of Markov chain Monte Carlo (MCMC)
methods (Neal, 1993) for approximating relevance comes from finding only point esti-
mates of model hyperparameters instead of inferring the full posterior distribution over
them, which results in a significant increase in predictive accuracy (Salakhutdinov and
Mnih, 2008a).

BPMF introduces priors for the hyperparameters, which allows the model complex-
ity to be controlled based on the training data (Salakhutdinov and Mnih, 2008b). When
the prior is Gaussian, the hyperparameters can be updated by performing a single EM
step (Dempster et al., 1977), which scales linearly with the number of observations with-
out significantly affecting the time to train the model. The details of BPMF can be found
in (Salakhutdinov and Mnih, 2008a). As some of the values in the matrix QC∗approx gen-
erated by BPMF are negative, we normalize QC∗approx to guarantee QC∗approx(i, j) ∈
(0, 1). After normalizing, distributions of queries over aspects can be produced.

6.2 Experiments

Below, §6.2.1 provides an overview of the models for D-QAC studied in this chapter;
§6.2.2 describes the datasets; §6.2.3 details the design of a side-by-side experiment, and
we specify our settings and parameters in §6.2.4.

6.2.1 Model Summary
We list all the models to be discussed in Table 6.3. There are three state-of-the-art base-
lines and four flavors of approaches that we introduce in this chapter: greedy query
selection (GQS, Algorithm 5) with two notions of context (AQ, all preceding queries vs.
LQ, only the last query) and two notions of starting query (MPC, most popular query, vs.
MSR, semantically most closely related query).

In addition to the MPC model (Bar-Yossef and Kraus, 2011), which is referred to as
QD-MPC in this chapter and has been introduced as a baseline approach in Chapter 4
and 5, we consider three more QAC baselines:

95

6. Diversifying Query Auto Completion

Table 6.3: An overview of models discussed in the chapter.
Model Description Source

QD-MPC A QAC ranking approach, which ranks query
completions according to their current
popularity collected from the query logs.

(Bar-Yossef and Kraus,
2011)

QD-CON A context-based query ranking approach,
which reranks query completions (returned
by MPC) by a hybrid score considering the
query popularity and the similarity to search
context in current session.

(Bar-Yossef and Kraus,
2011)

QD-QCR A diversification-oriented query ranking
approach, which reranks query completions
(returned by MPC) by selecting queries from
distinct query clusters.

(He et al., 2011)

QD-MMR A diversification-oriented query ranking
approach, which ranks query completions
according to both their popularity and the
dissimilarity between a query candidate to be
selected and those previously selected.

(Carbonell and Gold-
stein, 1998)

GQSMPC+AQ Greedy query selection approach starting
with the most popular query and taking all
preceding queries in session as context.

This chapter

GQSMPC+LQ Greedy query selection approach starting
with the most popular query and taking the
last preceding query in session as context.

This chapter

GQSMSR+AQ Greedy query selection approach starting
with the most semantically related query to
the preceding queries in session and taking all
preceding queries as context.

This chapter

GQSMSR+LQ Greedy query selection approach starting
with the most semantically related query to
the preceding queries in session and taking
the last preceding query in session as context.

This chapter

96

6.2. Experiments

QD-MPC A popularity-based QAC approach, which ranks the query candidates by
their frequency as computed from the counts in the preceding log (Bar-Yossef and
Kraus, 2011);

QD-CON A context-based QAC approach,5 where we rerank the query candidates by
a hybrid score considering the query popularity and the similarity to the search
context in current session (Bar-Yossef and Kraus, 2011);

QD-QCR A diversification-oriented query ranking approach based on query clusters (He
et al., 2011), which reranks query completions returned by MPC via selecting
query from distinct clusters; the K-means clustering algorithm is applied to clus-
ter the queries with a fixed number of clusters, i.e. 5, as we evaluate the results
produced by returning at least 5 query completions in our experiments;

QD-MMR An MMR-based (Carbonell and Goldstein, 1998) query ranking, which con-
siders the candidate’s popularity as well as its dissimilarity to those previously
selected queries with setting a trade-off to 0.5; in particular, the dissimilarity is
computed as:

dissim(qc, RR)← 1

|RR|
∑
q∈RR

(1− cos(q, qc)), (6.13)

where qc is a query candidate to be selected and q is a query which has been
selected in the query set RR. Both queries are represented by a vector returned by
Bayesian probabilistic matrix factorization as detailed in §6.1.3.

6.2.2 Datasets

We use the processed AOL and MSN datasets that have been described in Chapter 3 and
used in Chapter 5. A major difference between the datasets used in Chapter 5 and in this
chapter is that, in Chapter 5, we set the prefix to be the first 1–5 character(s) of all queries
in a session; however, in this chapter, for each session, the prefix is set to be the first 1–
5 character(s) of the last query in the session. To get the training/test set, we remove
the input prefixes whose ground truth is not included in the top 20 query completions
returned by MPC, to guarantee that the candidate set contains the final query submission,
following standard practice in the experimental design for QAC tasks; see, e.g., (Cai
et al., 2014b; Jiang et al., 2014b; Shokouhi, 2013). We remove all test cases where the
final submitted query cannot be categorized by ODP in the training phase, i.e., we cannot
infer the query aspect of such queries, making it impossible to generate the ground truth.

Table 6.4 details the statistics of the datasets used. More than half (64.9%) of all
unique queries in AOL can be categorized using ODP. For the MSN log we reach a
higher ratio (66.2%). In the AOL log, if the user clicked on a search result of a query,
only the domain portion of the URL in the clicked result is listed; however, in the MSN
log, the full URL is recorded. For consistency with the way we process the AOL logs,
we only keep the domains of clicked URLs in the MSN log when inferring query aspects
via clickthrough data. Notice also that, compared to the average number of queries in a
session in the AOL log (∼3.3), the MSN users submit more queries per session (∼5.5).

5We implement the BPMF process to generate a rich query representation over aspects to overcome the
sparsity problem.

97

6. Diversifying Query Auto Completion

Table 6.4: Statistics of the AOL and MSN datasets used. The number of prefixes at
various lengths are generated when top 20 query completions are returned by MPC,
i.e., kI = 20. The n in “# Prefix-n” indicates the length of the prefix in characters.

AOL MSN

Variables Training Test Training Test

Queries 3,808,083 1,571,346 3,784,925 1,402,308
Unique queries 452,980 452,980 304,943 304,943
Labelled Uniq Qs 294,363 294,363 201,872 201,872
Unlabelled Uniq Qs 158,617 158,617 103,071 103,071
Sessions 1,149,528 465,302 674,717 256,512
Queries / session 3.31 3.38 5.60 5.46
All prefixes 3,109,247 1,146,768 2,013,671 697,870
Prefix-1 262,924 90,688 196,831 65,179
Prefix-2 458,999 162,007 319,362 105,082
Prefix-3 698,716 251,623 455,109 154,020
Prefix-4 826,984 309,522 517,570 182,502
Prefix-5 861,624 332,928 524,799 191,087

We take a closer look at the processed datasets to be able to report the ratio of queries
at various lengths in words and of sessions at various lengths in queries in Figure 6.2.
As shown in Figure 6.2a, for both datasets, nearly half of the sessions contain only two
queries. The majority of sessions are short (< 4queries), accounting for 77.3% in the
AOL log and 81.2% in the MSN log. Long sessions (> 6queries) are rare, accounting for
only 6.5% in the AOL log and 3.5% in the MSN log. For the length of queries in words
as shown in Figure 6.2b, more than 90% of the queries consist of at most three words,
making it challenging to infer query aspects directly from queries.

6.2.3 Side-by-side Experiments

In addition to standard contrastive “bake-off” experiments, we use a second method for
evaluating the diversity of QAC lists. Following (Chapelle et al., 2012; Thomas and
Hawking, 2006; Vallet, 2011; Vallet and Castells, 2011), we show human judges in a lab
setting two ranked lists of query completions for a given prefix and ask them which of
the two is more diverse. This side-by-side evaluation experiment is performed using 50
master students in computer science. Each participant is given 50 different test prefix
samples. For each test prefix, five lists of query candidates returned by QAC models,
i.e., the baseline, GQSMPC+AQ , GQSMPC+LQ , GQSMSR+AQ , and GQSMSR+LQ , are
presented in pairs to an individual participant, who is asked to indicate which query list is
more diverse or whether there was a tie: GQSMPC+LQ vs. the baseline, GQSMPC+LQ

vs. GQSMPC+AQ , GQSMSR+LQ vs. the baseline and GQSMSR+LQ vs. GQSMSR+AQ ,
respectively. During their assessments, participants were allowed to use a web search
engine to help them decide. The selection of pairs of approaches for the side-by-side
comparison is aligned with the comparisons for the standard contrastive “bake-off” ex-
periments in §6.3.3. By doing so, we can examine the agreement on diversity preference
between human judgments and the preferences inferred from the contrastive experiments.

98

6.2. Experiments

Session length

2 3 4 5 6 >6

P
er

ce
n

ta
g

e
(%

)

0

10

20

30

40

50

60

70
AOL

MSN

(a) The ratio of sessions at various lengths in
queries in the AOL and MSN dataset.

Query length

1 2 3 4 5 >5

P
er

ce
n

ta
g

e
(%

)

0

10

20

30

40

50

60

70
AOL

MSN

(b) The ratio of queries at various lengths in
terms in the AOL and MSN dataset.

Figure 6.2: Distribution of session length in queries (left) and query length in terms
(right) in the processed AOL and MSN datasets, respectively.

Table 6.5: Statistics of the side-by-side experiment.
Number of participants 50
Total number of prefixes assessed 2500
Number of prefixes assessed per prefix length (1, 2, 3, 4, 5) 500
Number QAC-candidates shown per prefix per model 10
Number of prefixes assessed per individual participant 50
Number of models compared 5
Number of pairs of QAC models judged 4

Table 6.5 summarizes the statistics of the side-by-side experiment.
Following (Chapelle et al., 2012), we use agreement to quantify to which extent the

relative order of rankings obtained by computing the α-nDCG@10 scores of system-
produced lists of QAC-candidates coincides with human preferences.

6.2.4 Parameters and Settings

Following (Bennett et al., 2012), we set the factor θ = 0.95 in the decay function men-
tioned in §6.1.2. We first use one-third of the original test data for validation to optimize
the free parameter λ controlling the contribution of query aspects signaled by the search
popularity and the search context in (6.4), and then use the remaining two-thirds for the
final test. We further discuss the influence of λ in §6.3.5. Similarly, the number of latent
features used by Bayesian probabilistic matrix factorization in §6.1.3 is set to kf = 10,
which is followed by additional experiments and detailed discussions on the results gen-
erated when kf is changing in §6.3.5.

For labeling query aspects, we use multiple relevance labels and proceed as follows.
We first get a list of all clicked URLs of the remaining queries in the training period. Then
we try to project each clicked URL for a query into a two-level ODP aspect based on the

99

6. Diversifying Query Auto Completion

links within each aspect6 where the URLs have been categorized. Finally, given a query,
we aggregate all aspects of its clicked URLs and use the aggregated aspect information
to label the relevance of aspects for the query. Let us consider an example of the labelling
process.

Example 6.2.1 Given a query q, we find that two URLs, e.g., d1 and d2, are clicked c1
and c2 times, respectively, according to the query log after q has been submitted. At the
same time, based on the links within each ODP aspect, d1 is labelled with aspects a1 and
a2, and d2 is labelled with aspects a2 and a3. Consequently, to query q we assign aspects
a1, a2 and a3, with counts c1, c1 + c2 and c2, respectively.

In total, we find 513 level-two topical aspects originated from 15 level-one topical aspects
in our dataset based on this process.7 These aspects are explicit. For instance, we can find
aspects like “/arts/movies”, “/shopping/crafts” and “/business/financial services”, where
“/arts”, “/shopping” and “/business” are level-one aspects, and “/movies”, “/crafts” and
“/financial services” are their corresponding level-two aspects, respectively.

In previous research on QAC, it is often assumed that users are given a list of the top
N = 10 (at most) query completions. This is a common setting used by many web search
engines and in many publications (Cai et al., 2014b; Jiang et al., 2014b; Shokouhi, 2013).
In our experiments, we first retrieve the top 20 query completions (at most) as determined
by MPC and then return a final list of the top 10 (at most) candidates for evaluation after
reranking the original QAC list by each specific model, i.e., N = 10 is initially used as a
cutoff to test the diversified query auto completion performance. In addition, we examine
the performance of our models at different cutoffs, i.e., at N = 5 and 20.

In practice, QAC methods should consider efficiency. Thus, the algorithm needs an
efficient data structure, like a hash table, to support fast lookups for input prefix keys.
Before testing, we generate an initial QAC ranking for each prefix offline by the MPC
approach, and represent queries using vectors returned by the BPMF process. Then, for
the diversification task, the main cost is on computing the similarities for reranking these
query completions. All these preprocessing steps can be done offline.

6.3 Results and Discussion

In §6.3.1 we examine the performance of models for diversifying query auto completion
in terms of MRR and α-nDCG@10, etc. We follow with a section discussing the sce-
nario used in our GQS model for selecting the first query into the QAC list in §6.3.2.
We examine the performance of our GQS model under different choices of the search
context and zoom in on the performance at each prefix length in §6.3.3. We report on the
outcomes of a side-by-side comparison on D-QAC performance in §6.3.4. Finally, §6.3.5
details the impact of the parameters used in our GQS model and provides an analysis of
our GQS model under various settings.

6http://www.dmoz.org/docs/en/rdf.html
7As an aside, in total there are 16 level-one topical aspects in ODP; the aspect “Kids and Teens” was not

found as an aspect in our dataset.

100

http://www.dmoz.org/docs/en/rdf.html

6.3. Results and Discussion

Table 6.6: Performance on the AOL and MSN logs based on the top 20 query com-
pletions initially returned by MPC, which are then re-ranked by the methods listed
in the table. The results are reported at a cutoff of N = 10 for all prefixes. The
values produced by the best baseline and the best performer in each column are un-
derlined and boldfaced, respectively. Statistical significance of pairwise differences
(GQS model vs. the best baseline) are determined by the t-test (N/H for α = .01, or
M/O for α = .05).

Dataset Method MRR ERR-IA@10 α-nDCG@10 NRBP MAP-IA

AOL

QD-MPC .5372 .3765 .6513 .3487 .2768
QD-CON .5391 .3782 .6526 .3488 .2783
QD-QCR .5393 .3791 .6538 .3491 .2794
QD-MMR .5377 .3783 .6530 .3490 .2785
GQSMPC+AQ .5465 .3872M .6681M .3598M .2864M

GQSMSR+AQ .5509M .3958N .6799M .3632M .2885M

GQSMPC+LQ .5516M .3965N .6852N .3645N .2898M

GQSMSR+LQ .5520M .4007N .6901N .3679N .2907N

MSN

QD-MPC .6158 .4184 .6562 .3891 .2546
QD-CON .6173 .4211 .6674 .4002 .2613
QD-QCR .6191 .4315 .6810 .4064 .2698
QD-MMR .6134 .4205 .6658 .3914 .2602
GQSMPC+AQ .6285 .4417M .6933 .4138 .2757M

GQSMSR+AQ .6301 .4438M .6994M .4152M .2771M

GQSMPC+LQ .6307 .4452M .7003M .4174M .2797M

GQSMSR+LQ .6324M .4458M .7025M .4191M .2794M

6.3.1 D-QAC Performance of GQS

To answer our first research question, RQ12, we examine the D-QAC performance of all
mentioned models in Table 6.3 and report the results in Table 6.6 for the AOL and MSN
logs, respectively.

As shown in Table 6.6, QD-QCR achieves the best performance among the four base-
lines in terms of MRR and diversity metrics, e.g., α-nDCG@10. Hence, we only use
QD-QCR as a baseline for comparisons with our proposed models in later experiments
both on the AOL and MSN logs. In particular, for most test cases in these two datasets,
all these baselines can return the final submitted queries early, at the top two positions,
as evidenced by the fact that the MRR scores are larger than 0.5. In addition, the MRR
scores of the baselines are close to each other. In particular, on the AOL log, QD-QCR
achieves a competitive MRR score when compared against QD-CON but only achieves
a minor MRR improvement (< 0.5%) over QD-MMR and QD-MPC. QD-MMR dis-
plays a marginally better performance than QD-MPC in terms of MRR, indicating that
for some cases QD-MMR is able to remove some redundant candidates in the original
QAC list generated by the basic MPC approach. However, the MRR improvement is
limited because QD-MMR partially relies on query popularity and it does not consider
the in-session context when calculating the dissimilarity between queries. In contrast,
on the MSN log, the baselines achieve somewhat higher MRR and diversity scores com-
pared to those on the AOL log. This can be attributed to the difference in session length.

101

6. Diversifying Query Auto Completion

Compared to the sessions in the AOL log, the average length of sessions in the MSN log
is longer and some repeated queries are found, which helps identify the query aspects of
the last query in session and results in higher MRR and diversity scores.

In order to assess the performance of our GQS models, we compare their results
against those of the selected baseline, i.e., QD-QCR. For the AOL log, as shown in Ta-
ble 6.6, compared to the baseline, all of our four QGS models outperform it in terms of
MRR and the diversity metrics. However, the improvements of our models are limited,
starting from a relatively low level of 1.37% improvement achieved by GQSMPC+AQ

to a peak improvement of 2.25% reported by GQSMSR+LQ in terms of MRR. In the
middle, GQSMPC+LQ outperforms GQSMSR+AQ , reaching an MRR improvement of
2.28% against the baseline while 2.15% made by GQSMSR+AQ against the baseline. All
improvements of our GQS models, except GQSMPC+AQ , against the baseline are statis-
tically significant at level α = 0.05 using the t-test. For the diversity results, our GQS
models report notable improvements. As an example, let us take the diversity metric α-
nDCG@10 to analyze the models’ performance. Clearly, GQSMSR+LQ performs best,
with a 5.55% improvement over the baseline on the AOL log. Competitive results are
generated by GQSMPC+LQ with a 0.7% drop against GQSMSR+LQ but still a 4.80% im-
provement over the baseline. Importantly, the improvements achieved by GQSMPC+LQ

and GQSMSR+LQ over the baseline are significant at α = 0.01. In contrast, more modest
improvements over the baseline in terms of α-nDCG@10 are achieved by GQSMPC+AQ

and GQSMSR+AQ , both of which are significant at α = 0.05.

In contrast, on the MSN log, we can see from Table 6.6 that the best results are again
generated by GQSMSR+LQ but with a more modest MRR improvement against the base-
line compared to that on the AOL log. In terms of MRR, significant improvements are
achieved only by the GQSMSR+LQ model over the baseline at α = 0.05. This can be
explained by the fact that most QAC rankings generated both by the baseline and by
our models are high performing, leaving limited space for significant MRR improve-
ments of our models over the baseline. Regarding the diversity results on the MSN log,
generally, our GQS models beat the baseline in terms of four metrics in Table 6.6, col-
umn 3–6. Significant improvements over the baseline in terms of these four diversity
metrics are achieved at α = 0.05 for most cases. In particular, using α-nDCG@10,
GQSMSR+LQ achieves the largest improvement, around 3.15% over the baseline. Com-
pared to the MRR improvements achieved by our GQS models, the improvements in
terms of α-nDCG@10 are more pronounced. For some cases, redundant queries can
indeed be removed from the QAC list by GQS models, resulting in improved diversity
scores; however, these redundant candidates could be ranked lower than the final sub-
mitted query in the original QAC list and consequently do not affect the reciprocal rank
score, and hence this has a limited impact on the MRR scores.

Summing up, based on the results achieved on the AOL and MSN logs, we conclude
that our greedy query selection approach can indeed remove redundant queries in the
original QAC list, returning the final submitted query early and making the final returned
list cover more aspects of queries. Later, we will compare our GQS models in detail in
§6.3.2 and §6.3.3.

102

6.3. Results and Discussion

6.3.2 Effect of the First Completion Selected by GQS

Next, we move to research question RQ13, for which we test our proposed GQS models
on both the AOL and MSN log under different choices of the search context used, i.e.,
all preceding queries before the last query in the session or only the last preceding query.
We begin by analyzing the results generated on the AOL log and reported in Table 6.6.

First of all, we use all previous queries before the last query in session as search
context, i.e., CS ← {q1, q2, . . . , qT−1}. Then, we compare the results produced by
GQSMPC+AQ and GQSMSR+AQ in Table 6.6 to examine the effect of the first query
candidate chosen in our GQS model. Clearly, GQSMSR+AQ outperforms GQSMPC+AQ

in terms of MRR and the diversity metrics. So, to some extent, our GQS model, starting
with the query candidate that is semantically most similar to the current search context
for D-QAC tasks, outperforms that choosing the most popular candidate first into the final
listRR. In particular, as shown in Table 6.6, on the AOL dataset, GQSMSR+AQ achieves
an MRR improvement near 1% over GQSMPC+AQ . For some cases, GQSMPC+AQ

and GQSMSR+AQ start with the same candidate, i.e., the most popular candidate is also
the most semantically related one. Consequently, these two models generate the same
ranked lists of query completions. As to QAC diversification, GQSMSR+AQ achieves
very high α-nDCG@10 scores of over 0.6 and it still achieves near 2% improvement
against GQSMPC+AQ , indicating that, at the aspect level, GQSMSR+AQ returns more
queries with multiple aspects as well as pushes the potential query to be submitted
higher than GQSMPC+AQ . Similar findings can be obtained by setting the last preceding
query in a session as the search context, i.e., CS ← qT−1, by comparing GQSMPC+LQ

vs. GQSMSR+LQ . As shown in Table 6.6, compared with the difference in MRR
difference between GQSMPC+AQ and GQSMSR+AQ , the difference in MRR between
GQSMPC+LQ and GQSMSR+LQ is smaller. The same phenomena can be found for
the α-nDCG@10 scores. However, both GQSMPC+LQ and GQSMSR+LQ show better
performance than GQSMPC+AQ and GQSMSR+AQ , which motivates us to consider re-
search question RQ14 in §6.3.3. Thus, so far on the AOL log, we can conclude that
the first query selected in our GQS model impacts the QAC ranking performance in the
D-QAC tasks and our GQS model can achieve better D-QAC performance when starting
with the most semantically similar query rather than the most popular.

The results achieved on the AOL log discussed in Table 6.6 are produced by averag-
ing the scores of all prefixes at different lengths of prefixes, ranging from 1 to 5. Next,
we compare our models at specific prefix lengths. For comparison, we report the results
in terms of MRR and α-nDCG@10 in Table 6.7. Generally, as shown in Table 6.7, our
GQS models that start with the most semantically related query, i.e., GQSMSR+AQ and
GQSMSR+LQ , perform better in terms of MRR than the corresponding GQS models that
start with the most popular query, i.e., GQSMPC+AQ and GQSMPC+LQ . Interestingly,
significant improvements of the GQS models over the baseline are more easily observed
at long prefixes, e.g., #p = 4 and 5, than short ones, e.g., #p = 1 and 2. Intuitively,
longer prefixes can sharply reduce the space of candidate query completions and hence
can include more similar candidates in the original QAC list, which would be pushed
down in the list by our approaches, resulting in significant improvements over the base-
line.

However, the MRR improvements of the GQSMSR+AQ model over the GQSMPC+AQ

103

6. Diversifying Query Auto Completion

Table 6.7: Performance, in terms of MRR and α-nDCG@10, of GQS models un-
der various choices of the first query candidate selected and of the search context
used, at a prefix length #p ranging from 1 to 5 characters on the AOL log. The
best performer per row is in boldface. Statistical significance of pairwise difference
(GQS model vs. Baseline) is determined using the t-test (N/H for α = .01, or M/O for
α = .05).
Metric #p Baseline GQSMPC+AQ GQSMSR+AQ GQSMPC+LQ GQSMSR+LQ

MRR

1 .4673 .4716 .4738 .4739 .4745
2 .4861 .4927 .4946 .4954 .4960M

3 .5140 .5221 .5253M .5258M .5263M

4 .5556 .5620 .5681M .5686M .5689M

5 .5889 .5975 .6030M .6039M .6045M

α-nDCG@10

1 .6012 .6117 .6235M .6272N .6315N

2 .6270 .6393 .6496M .6551N .6592N

3 .6357 .6490M .6605M .6658N .6713N

4 .6611 .6758M .6883N .6944N .6984N

5 .6882 .7051M .7171N .7220N .7276N

model and of the GQSMSR+LQ model over GQSMPC+LQ are not significant. In terms of
α-nDCG@10, as reported in Table 6.7, one particular finding highlighting the difference
is that, for some cases, our GQS model achieves significant improvements over the base-
line in terms of α-nDCG@10 at level α = .01, which is not the case for MRR as reported
in Table 6.7. In addition, a near 2% improvement of GQSMSR+AQ over GQSMPC+AQ

and around 1% improvement of GQSMSR+LQ over GQSMPC+LQ are observed in terms
of α-nDCG@10. In contrast, the analogous MRR improvements in Table 6.7 are lower;
this means that our models can help diversify queries.

Next, we turn our attention to results obtained using the MSN log, as reported in Ta-
ble 6.6. Some findings consistent with those achieved on the AOL log can be observed:
(1) the first query to be selected by the GQS approaches has a slight impact on the D-QAC
performance; (2) compared to starting with the most popular query, selecting the seman-
tically most closely related query first in the GQS models is more effective. We report on
the performance at the prefix level in terms of MRR and α-nDCG@10 in Table 6.8. As
shown in Table 6.8, few MRR improvements over the baseline achieved by our models
at various prefix lengths is significant. However, our models do produce more diverse
QAC rankings as they receive higher α-nDCG@10 scores compared to the baseline, es-
pecially when using the last query in the session as the search context. We can find from
Table 6.8 that whatever the search context is used, again, selecting the most semantically
related query by GQS models is more effective than injecting the most popular query into
the QAC ranking list first. In addition, long prefixes (e.g., #p = 4 and 5) seem to gain
more in terms of diversity than short ones (e.g., #p = 1 and 2), which is also confirmed
by the significance tests, e.g., GQSMPC+LQ and GQSMSR+LQ achieve significant im-
provements at α = .05 in terms of α-nDCG@10 over the baseline at #p = 4 and 5 but
not at #p = 1. These results are consistent with those on the AOL log. Hence, apart
from the conclusions established based on the AOL log, we come to another conclusion:
our models perform better in cases where users continue to type more in the search box:

104

6.3. Results and Discussion

Table 6.8: Performance, in terms of MRR and α-nDCG@10, of GQS models under
different choices of the first query candidate selected and of the search context used,
at a prefix length #p ranging from 1 to 5 characters on the MSN log. The best
performer per row is boldfaced. Statistical significance of pairwise difference (GQS
model vs. Baseline) is determined using the t-test (N/H for α = .01, or M/O for α =
.05).
Metric #p Baseline GQSMPC+AQ GQSMSR+AQ GQSMPC+LQ GQSMSR+LQ

MRR

1 .4881 .4963 .4991M .4995M .5014M

2 .5456 .5538 .5572M .5578M .5605M

3 .6041 .6147 .6134 .6154 .6152
4 .6523 .6616 .6647 .6646 .6673M

5 .6846 .6945 .6948 .6960 .6975

α-nDCG@10

1 .6313 .6395 .6427 .6423 .6431
2 .6564 .6637 .6691 .6708M .6721M

3 .6679 .6839M .6893M .6927M .6942N

4 .6916 .7051 .7113M .7132M .7146M

5 .7118 .7245 .7302M .7332M .7351M

bigger diversity gains over the baseline are achieved with long prefixes rather than with
short inputs.

6.3.3 Effect of the Search Context Used by GQS

In this section, we address research question RQ14 by changing the search context, i.e.,
using either the most recent query qT−1 as CS in (6.3) or all preceding queries CS ←
{q1, q2, . . . , qT−1}. As shown in Figure 6.2a, nearly half of the sessions consist of more
than two queries. In addition, we argue, in a long session with multiple queries, the query
aspects of later queries may be changed as the searcher has read some results returned
for previous queries and hence they may be different from the original one. The last
preceding query in the search context could be a good signal of the user’s updated query
aspects. We first compare the results reported in Table 6.6 on the AOL and MSN logs
and then move to a prefix level analysis.

We first compare the overall results of GQSMPC+LQ against GQSMPC+AQ gener-
ated on the AOL log and reported in Table 6.6. The improvements of GQSMPC+LQ over
GQSMPC+AQ in terms of diversity, e.g., α-nDCG@10, are obvious but in terms of MRR
they are not. For instance, GQSMPC+LQ shows an improvement of nearly 3% against
GQSMPC+AQ in terms of α-nDCG@10 but less than 1% in terms of MRR. In addition,
a statistically significant improvement (α = .05) is observed in terms of α-nDCG@10
but not in terms of MRR. Thus, using only the last query as search context in our GQS
models can generate notably diverse QAC ranking list on AOL. Similar findings are ob-
tained by comparing GQSMSR+LQ against GQSMSR+AQ although the improvements
are smaller. We compare the results for different search contexts at various prefix lengths
in Table 6.7 in terms of MRR and α-nDCG@10, respectively. The MRR improve-
ments of GQSMPC+LQ over GQSMPC+AQ and of GQSMSR+LQ over GQSMSR+AQ

are limited but stable at different prefix lengths. However, the α-nDCG@10 results

105

6. Diversifying Query Auto Completion

Table 6.9: Per prefix bake-off on the AOL log, in terms of MRR and α-nDCG@10:
GQSMPC+LQ vs. other models. The ratios (%) of test prefixes at various lengths
for which GQSMPC+LQ loses against the corresponding model listed in row 2 have
a red background, ratios with equal performance have a yellow background, and
those of prefixes for which GQSMPC+LQ wins have a green background.

MRR α-nDCG@10

#p Baseline GQSMPC+AQ Baseline GQSMPC+AQ

1 26.83 37.91 35.26 17.58 60.39 22.03 22.37 24.68 52.95 15.14 58.02 26.84
2 20.72 49.17 30.11 18.06 62.15 19.79 20.36 26.83 52.81 14.65 58.97 26.38
3 14.68 60.47 24.85 16.23 63.06 20.71 18.94 27.02 54.04 12.21 60.62 27.17
4 11.38 61.24 27.38 16.08 62.97 20.95 18.51 27.63 53.86 11.45 62.78 25.77
5 10.62 62.54 26.84 15.41 61.53 23.06 18.43 28.37 53.20 09.84 64.15 26.01

Table 6.10: Per prefix bake-off on the AOL log, in terms of MRR and α-nDCG@10:
GQSMSR+LQ vs. other models. The ratios (%) of test prefixes at various lengths
for which GQSMSR+LQ loses against the corresponding model listed in row 2 have
a red background, ratios with equal performance have a yellow background, and
those of prefixes for which GQSMSR+LQ wins have a green background.

MRR α-nDCG@10

#p Baseline GQSMSR+AQ Baseline GQSMSR+AQ

1 24.37 36.53 39.10 17.91 63.31 18.78 20.12 21.83 58.05 17.60 62.61 19.79
2 19.65 47.86 32.49 16.47 64.39 19.14 20.21 23.07 56.72 17.08 63.75 19.17
3 13.78 57.85 28.37 15.93 66.87 17.20 19.55 24.38 56.07 16.35 65.05 18.60
4 12.84 59.17 27.99 15.55 67.62 16.83 18.42 25.82 55.76 15.21 66.36 18.43
5 11.53 61.02 27.45 14.41 68.15 17.44 18.59 27.03 54.38 15.57 67.32 17.11

set GQSMPC+LQ apart from GQSMPC+AQ with significant improvements (α = .05)
except for #p = 5. In contrast, GQSMSR+LQ and GQSMSR+AQ yield very similar
α-nDCG@10 scores. We attribute these findings to the fact that: (1) diverse queries
can be returned by our GQS models usually at positions lower than the final submitted
query, resulting in indistinguishable MRR scores but modified diversity scores; (2) half
of the sessions consist of only two queries, see Figure 6.2a, which means that the search
contexts used are the same, resulting in many ties. To verify this claim, we compare
GQSMPC+LQ vs. GQSMPC+AQ and GQSMSR+LQ vs. GQSMSR+AQ as well as the
baseline in a per prefix bake-off. We report the results in Table 6.9 and 6.10, respectively.

From Table 6.9, we see that, against the baseline, GQSMPC+LQ wins many compar-
isons, especially in terms of α-nDCG@10 (> 50%). We also find many ties between the
baseline and GQSMPC+LQ in terms of MRR. In contrast, GQSMPC+LQ yields a ma-
jority of draws against GQSMPC+AQ in terms of both MRR and α-nDCG@10. Some
of the draws occur when GQSMPC+LQ and GQSMPC+AQ return the same ranked list
of query completions; others happen on prefixes for which the two models return the
final submitted query at top positions in the list of query completions, e.g., 1 or 2. As
to a comparison of GQSMSR+LQ vs. GQSMSR+AQ , similar results can be found except
that there are more ties in terms of MRR and α-nDCG@10. One particularly interest-

106

6.3. Results and Discussion

Table 6.11: Per prefix bake-off on the MSN log, in terms of MRR and α-nDCG@10:
GQSMPC+LQ vs. other models. The ratios (%) of test prefixes at various lengths
for which GQSMPC+LQ loses against the corresponding model listed in row 2 have
a red background, ratios with equal performance have a yellow background, and
those of prefixes for which GQSMPC+LQ wins have a green background.

MRR α-nDCG@10

#p Baseline GQSMPC+AQ Baseline GQSMPC+AQ

1 25.14 39.43 35.43 16.17 63.51 20.32 27.65 21.75 50.60 14.07 62.34 23.59
2 18.62 50.83 30.55 15.57 65.01 19.42 25.18 22.82 52.00 13.26 64.13 22.61
3 13.69 62.45 23.86 13.69 67.87 18.44 26.74 23.95 49.31 11.33 66.22 22.45
4 12.79 63.53 23.68 13.16 68.69 18.15 22.14 26.07 51.79 10.76 67.66 21.58
5 13.02 64.68 22.30 12.88 69.79 17.33 25.28 26.73 47.99 10.01 67.79 22.20

Table 6.12: Per prefix bake-off on the MSN log, in terms of MRR and α-nDCG@10:
GQSMSR+LQ vs. other models. The ratios (%) of test prefixes at various lengths for
which GQSMSR+LQ loses against the corresponding model listed in row 2 have a red
background, ratios with equal performance have a yellow background, and those of
prefixes for which GQSMSR+LQ wins have a green background.

MRR α-nDCG@10

#p Baseline GQSMSR+AQ Baseline GQSMSR+AQ

1 22.63 40.77 36.60 14.33 64.32 21.35 28.39 23.43 48.18 15.37 63.07 21.56
2 15.32 51.75 32.93 13.57 65.33 21.10 23.73 23.24 53.03 15.10 64.12 20.78
3 12.27 62.68 25.05 12.23 68.11 19.66 23.85 25.07 51.08 14.22 65.91 19.87
4 11.48 63.93 24.59 12.54 68.79 18.67 23.77 25.87 50.36 14.51 66.74 18.75
5 10.65 65.11 24.24 11.53 69.70 18.77 22.26 26.31 51.43 13.24 67.35 19.41

ing point shown in Table 6.9 and 6.10 is that, for most cases, more ties occur when the
prefix becomes longer. This is because the QAC models can return the final submitted
query early on for long prefixes and hence they generate more similar rankings of query
completions.

The outcomes of the main comparisons on the MSN log, i.e., GQSMPC+LQ vs.
GQSMPC+AQ and GQSMSR+LQ vs. GQSMSR+AQ are consistent with those on the
AOL log. Regarding the prefix level analysis, see Table 6.8, although the GQS mod-
els using the last query as search context still beat the corresponding models that use all
preceding queries in terms of MRR and α-nDCG@10, the improvements are not statis-
tically significant. Some significant improvements of GQSMPC+LQ and GQSMSR+LQ

against the baseline are observed, especially on long prefixes. Similarly, we report on
a per prefix bake-off in terms of MRR and α-nDCG@10 in Table 6.11 and 6.12. As
the MSN log contains more sessions with only two queries than the AOL log, see Fig-
ure 6.2a, more draws are found between GQSMPC+LQ vs. GQSMPC+AQ as well as
GQSMSR+LQ vs. GQSMSR+AQ . This simply happens because for two-query sessions,
the search context used in GQS models consisting either of all preceding queries or only
of the last query are always the same.

107

6. Diversifying Query Auto Completion

Table 6.13: Agreements (%) between side-by-side comparisons by humans and per
prefix bake-offs by algorithms.

GQSMPC+LQ vs. GQSMSR+LQ vs.

#p Baseline GQSMPC+AQ Baseline GQSMSR+AQ

1 89.20 85.20 92.60 83.40
2 90.20 86.20 93.40 84.60
3 91.40 87.40 94.40 85.40
4 92.40 88.40 95.00 87.00
5 94.00 90.60 96.00 88.20

6.3.4 Side-by-side Experiments
To answer RQ15, we follow the set-up in (Chapelle et al., 2012) and investigate the
agreement between the side-by-side comparison produced by human judges and the rel-
ative ranking of QAC approaches that results from the bake-offs discussed in §6.3.3. See
Table 6.13. We find that the two evaluation methodologies point in the same direction
in the vast majority of pairwise comparisons: the agreement ranges between 83% and
96%. For instance, for the comparison between GQSMPC+LQ and the baseline, we find
that human preferences agree with the preferences obtained from the bake-offs in §6.3.3
in more than 90% of the cases. The agreement between the two types of preference for
GQSMPC+LQ and GQSMPC+AQ are somewhat lower: the difference in performance
in terms of diversity between GQSMPC+LQ and GQSMPC+AQ is smaller than between
GQSMPC+LQ and the baseline, making it harder for human judges to identify differ-
ences or to identify the direction of the difference. We also observe that agreement tends
to be higher for longer prefixes: with longer prefixes, the number of possible completions
is smaller than for shorter prefixes, reducing the possibilities for disagreement and mak-
ing it easier for both systems and humans to determine which aspects and completions
are relevant.

Given the high levels of agreement between human preferences and preferences in-
duced from contrastive experiments, we conclude that the (significant) differences be-
tween QAC approaches that we found in §6.3.3 are confirmed by the side-by-side exper-
iments.

6.3.5 Impact of Parameter Tuning
In this section, we conduct a parameter sensitivity analysis of our GQS models. We ex-
amine the performance of our GQS models in §6.3.5 by changing the trade-off parameter
λ in (6.4) and by varying the number of latent features kf used for Bayesian probabilis-
tic matrix factorization in §6.3.5, and then see how the models perform when more (or
fewer) query completions are returned by varying the cutoff N in §6.3.5.

Zooming in on the trade-off parameter λ in (6.4)

We first examine the overall performance of our GQS models in terms of MRR and α-
nDCG@10 by gradually changing the trade-off parameter λ from 0 to 1 with steps of

108

6.3. Results and Discussion

λ

!"! !"# !"$!"% !"& !"' !"(!") !"* !"+ #"!

,
-
-

!"'%'

!"'&

!"'&'

!"''

!"'''
./0

,1234/
./0

,0-34/
./0

,1235/
./0

,0-35/

(a) Performance in terms of MRR.

λ

!"! !"# !"$!"% !"& !"' !"(!") !"* !"+ #"!

α
,-
.
/
0
1
#
!

!"((

!"(('

!"()

!"()'

!"(*

!"(*'

!"(+

!"(+'
023

45/672
023

438672
023

45/692
023

438692

(b) Performance in terms of α-nDCG@10.

Figure 6.3: Effect on D-QAC performance of GQS models in terms of MRR (left)
and α-nDCG@10 (right) by changing the trade-off λ in (6.4), tested on the AOL log.

λ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
R
R

0.618

0.62

0.622

0.624

0.626

0.628

0.63

0.632

0.634
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(a) Performance in terms of MRR.

λ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α
-n
D
C
G
@
1
0

0.694

0.696

0.698

0.7

0.702

0.704

0.706

0.708
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(b) Performance in terms of α-nDCG@10.

Figure 6.4: Effect on D-QAC performance of GQS models in terms of MRR (left)
and α-nDCG@10 (right) by changing the trade-off λ in (6.4), tested on the MSN
log.

0.1, and then plot the results in Figure 6.3 and Figure 6.4 for the AOL and MSN logs,
respectively.

On the AOL log, we can see, from Figure 6.3a, that when λ varies from 0 to 0.3, the
MRR scores of all GQS models increase; they continue to go up until λ = 0.5 except
for one case where GQSMPC+AQ displays an MRR decrease after λ = 0.3. For most
GQS models the performance in terms of MRR goes down when λ changes from 0.5 to
1. For any GQS model, if it only focuses on search popularity, i.e., λ = 1 in (6.4), the
performance is worse than when it only focuses on the search context, i.e., λ = 0 in (6.4).
In terms of α-nDCG@10, the peak performance appears near λ = 0.5 for GQSMPC+AQ

and GQSMSR+AQ or near λ = 0.6 for GQSMPC+LQ and GQSMSR+LQ . For any λ,
GQSMSR+LQ always performs best among the four models in terms of both MRR and
α-nDCG@10.

In contrast, for MRR on the MSN log, GQSMPC+LQ and GQSMSR+LQ favor a large

109

6. Diversifying Query Auto Completion

λ. For instance, they achieve peak MRR scores near λ = 0.8. However, GQSMPC+AQ

and GQSMSR+AQ prefer a somewhat smaller λ than GQSMPC+LQ and GQSMSR+LQ .
As shown in Figure 6.4a, a maximal MRR score is returned for GQSMSR+AQ near
λ = 0.6 and near λ = 0.7 for GQSMPC+AQ . For the performance in terms of α-
nDCG@10, a sharp increase is observed when λ changes from 0 to 0.1 on all four
models as shown in Figure 6.4b. This means that the search context does help to di-
versify the query candidates. In addition, the α-nDCG@10 scores go up until λ = 0.8
for GQSMPC+LQ and GQSMSR+LQ and λ = 0.7 for GQSMPC+AQ and GQSMSR+AQ .
All four GQS models present a relatively low score when λ = 1.0. In addition, compared
to GQSMPC+AQ and GQSMSR+AQ , the other two GQS models show bigger fluctuations
in terms of both MRR and α-nDCG@10 when λ changes.

From the observations in Figure 6.3 and Figure 6.4, we can conclude that: (1) in our
GQS models for the diversified query auto completion task, search popularity and search
context are both important for query diversification. Compared to search popularity,
search context may contribute much more to the effectiveness of GQS models for diver-
sified query auto completion as a larger λ (0.5 < λ < 0.9) results in better performance
than that of 0.1 < λ < 0.4, especially on the MSN log, see Figure 6.4; (2) the search
context used in GQS models, i.e., either only the last query or all preceding queries in
session, has a small impact on the performance as these four GQS models show their peak
performance at various λ; (3) λ may exert a bigger influence on α-nDCG@10 than on
MRR as relatively noticeable margins can be seen when λ changes shown in Figure 6.3b
and Figure 6.4b.

Effect of the number of latent features kf uses in Bayesian probabilistic
matrix factorization

Next, we zoom in on the number of latent features kf used in Bayesian probabilistic
matrix factorization for generating the query distributions over aspects. We manually
vary the value of kf in GQS models from 5 to 20. See Figure 6.5 on the AOL log and
Figure 6.6 on the MSN log, respectively.

Generally, for the AOL log, when the number of latent features kf used in BPMF in-
creases from 5 to 12, the performance of our GQS models increases dramatically in terms
of MRR, with a little fluctuation. However, the α-nDCG@10 scores stop increasing for
kf ≥ 10. In addition, when the number of latent features kf varies from 10 to 20, the
performance of our GQS models seems to level off, especially in terms of α-nDCG@10.
Another important finding is that the performance in terms of MRR sometimes goes
down when kf increases. For instance, when kf varies from 18 to 20, the MRR scores of
the GQS models except GQSMPC+LQ drops. For the MSN log, the MRR scores of the
GQS models invariably increase from kf = 5 to 10 for all GQS models and remain stable
for kf = 10, . . . , 20. Compared to the MRR results on the AOL log (in Figure 6.5a), the
GQS models seem to be more sensitive to the number of latent features on the MSN log.
When kf is small, e.g., 5 < kf < 10, the MRR jumps (see Figure 6.6a) are easily ob-
served, especially for GQSMSR+LQ and GQSMPC+LQ . Regarding α-nDCG@10 on the
MSN log, similar findings can be observed except that all GQS models arrive at a stable
level of performance much earlier (when kf = 8) than on the AOL log (when kf = 10).
From the results shown in Figure 6.5 and Figure 6.6, we conclude that our GQS models

110

6.3. Results and Discussion

Number of latent features

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
R

R

0.54

0.545

0.55

0.555

0.56
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(a) Performance in terms of MRR.

Number of latent features

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

α
-n

D
C

G
@

1
0

0.64

0.65

0.66

0.67

0.68

0.69

GQS
MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(b) Performance in terms of α-nDCG@10.

Figure 6.5: Effect on diversified query auto completion performance of GQS models
in terms of MRR (left) and α-nDCG@10 (right), tested on the AOL log, by changing
the number of latent features used in BPMF.

Number of latent features

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
R

R

0.624

0.625

0.626

0.627

0.628

0.629

0.63

0.631

0.632

0.633

GQS
MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(a) Performance in terms of MRR.

Number of latent features

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

α
-n

D
C

G
@

1
0

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

GQS
MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(b) Performance in terms of α-nDCG@10.

Figure 6.6: Effect on diversified query auto completion performance of GQS models
in terms of MRR (left) and α-nDCG@10 (right), tested on the MSN log, by changing
the number of latent features used in BPMF.

are robust and not sensitive to the number of latent features kf when it is “large enough”,
e.g., kf > 10.

Zooming in on the cutoff N

Finally, we examine the performance of our GQS models and the baseline, i.e., QD-
QCR, when less (or more) query completions are finally returned by setting the cutoff
N = 5 (or N = 20). We plot the results in terms of MRR and α-nDCG@N scores
(N = 5, 10, 20) in Figure 6.7 and Figure 6.8, tested on the AOL log and the MSN log,
respectively.8

As shown in Figure 6.7 and Figure 6.8, for all five models on both logs, the overall
performance in terms of MRR increases when more query completions are initially re-

8The results for N = 10 were already partially reported in Table 6.6.

111

6. Diversifying Query Auto Completion

Cutoff N

N=5 N=10 N=20

M
R

R

0.5

0.52

0.54

0.56

0.58

0.6
Baseline
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(a) Performance in terms of MRR.

Cutoff N

N=5 N=10 N=20

α
-n

D
C

G
@

N

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Baseline
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(b) Performance in terms of α-nDCG@10.

Figure 6.7: D-QAC performance of all discussed models, tested on the AOL log, in
terms of MRR (left) andα-nDCG@10 (right) when more (or less) query completions
are returned. Note: the scales are different.

turned for re-ranking, i.e., when N becomes larger. A larger value of N simply increases
the probability of including the ground truth in the QAC list. In particular, on both the
AOL and MSN log, these models report competitive MRR score when N = 5. More-
over, the MRR improvements realized by our GQS models over the baseline are further
magnified as N goes up. For instance, on the AOL log, GQSMSR+LQ results in a 1.27%
MRR improvement over the baseline at N = 5, a 2.24% improvement at N = 10, and a
3.72% improvement at N = 20. With respect to query diversification, the improvements
of the GQS models are more obvious in terms of α-nDCG@N (N = 5, 10, and 20) than
MRR as indicated by the relative improvements over the baseline. For instance, at cutoff
N = 20, GQSMSR+LQ shows a 4.43% improvement over the baseline in terms of α-
nDCG@20. This may be because not too many redundant queries can be found among
the top 5 candidates in the list of query completions, hence it is difficult to make signifi-
cant improvements over the baseline at cutoff N = 5. However, as more candidates are
returned, more query redundancy is introduced into the list of query completions, and it
becomes easier for the GQS models to improve over the baseline. Therefore, based on
our findings from Figure 6.7 and Figure 6.8, we conclude that compared to the baseline,
the advantages of our GQS models over the baseline become more prominent when more
query completions are returned.

6.4 Conclusion

In this chapter, we have proposed the challenge of diversifying query auto completion.
We believe this can help search engine designers especially in settings with a limited
number of query completions. To address the query auto completion diversification task,
we propose a greedy query selection (GQS) model and use the ODP taxonomy to iden-
tify aspects of URLs, based on which we then assign query aspects via clickthrough
data derived from query logs. The problems of data sparsity and cold-start in traditional
recommendation systems are overcome by incorporating a Bayesian probabilistic matrix

112

6.4. Conclusion

Cutoff N

N=5 N=10 N=20

M
R

R

0.6

0.61

0.62

0.63

0.64

0.65
Baseline
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(a) Performance in terms of MRR.

Cutoff N

N=5 N=10 N=15

α
-n

D
C

G
@

1
0

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Baseline
GQS

MPC+AQ

GQS
MSR+AQ

GQS
MPC+LQ

GQS
MSR+LQ

(b) Performance in terms of α-nDCG@10.

Figure 6.8: D-QAC performance of all discussed models, tested on the MSN log, in
terms of MRR (left) andα-nDCG@10 (right) when more (or less) query completions
are returned. Note: the scales are different.

factorization approach and determining the semantically most closely related query using
word2vec, respectively.

We have experimentally investigated the diversified query auto completion perfor-
mance of our GQS models under various settings. Our results show that the GQS model
performs best when starting with the semantically most closely related query completion
and using only the last preceding query in a session as the search context. This finding
indicates that query aspects are commonly shared by successive queries in a session and
may be changed especially in long sessions with multiple queries. In addition, we have
found that our GQS model performs better when more query completions are fed to it.

As future work, we plan to move our models to other datasets, where the ground
truth of query aspects is to be generated by humans rather than the automatically gener-
ated clickthrough data used in this paper. In addition, it would be interesting to introduce
other scenarios to deal with the query cold-start problem as this may be helpful to obtain
the query distribution over aspects. Furthermore, since we only consider query aspects as
they are expressed, either explicitly or implicitly, by current search popularity or previ-
ously submitted queries, it would be interesting to further collect users’ long term search
history so as to enhance the performance of diversifying query auto completion, thereby
personalizing diversified query auto completion, which can help narrow the space of
query topics, i.e., adjust the amount of diversification, by removing non-relevant queries,
but can still promote relevant queries as well as diversify QAC completions.

In Chapter 4, we have focused on user’s short- and long-term search context for
personalized query auto completion. In this chapter, we have explored information from
the search context in the current session for diversifying query auto completion. In the
next chapter (Chapter 7), we will investigate whether personalization can always improve
the performance of query auto completion.

113

7
Selectively Personalizing Query Auto

Completion

To cater for a user’s specific information needs, personalized query auto completion
(QAC) strategies have been investigated that take either the user’s search history or their
user profile into account. For instance, as studied in Chapter 4, the user’s long- and
short-term search context can be used for personalized query auto completion; and in
Chapter 6 the search history in current session is explored to diversifying query auto
completion. Such methods personalize the list of query completions in the same manner.
However, it is unclear whether personalization is consistently effective under different
search contexts. In our final research chapter, we study the QAC problem by selectively
personalizing the list of query completions. Based on a lenient personalized QAC strat-
egy that basically encodes the ranking signal as a trade-off between query popularity
and search context, we propose a Selectively Personalizing Query Auto Completion (SP-
QAC) model to study such a trade-off. In particular, we predict an effective trade-off in
each case based on a regression model, where the typed prefix, the clicked documents
and the preceding queries in session are considered for weighing personalization in QAC.

It has been shown that, in general web search (Dou et al., 2007; Teevan et al., 2008)
and recommendation systems (Zhang et al., 2013), not all queries should be personalized
equally as personalization strategies occasionally harm the search accuracy. Similarly, in
a QAC task, we propose that prefixes should not be handled in the same personalization
manner because: (1) user’s initial information needs may be addressed by previous in-
teractions; (2) users may change their search intent during a session. Such clues can be
explicitly expressed by the clicks or directly revealed by the query flow in a session.

In this chapter, we propose a Selectively Personalizing Query Auto Completion (SP-
QAC) model to re-rank the top N query completions produced by the MPC (Most Pop-
ular Completion) model (Bar-Yossef and Kraus, 2011). In particular, personalization
in the proposed SP-QAC model is individually weighted when being combined with
ranking signals from search popularity. We study the following factors for weighing per-
sonalization: the typed prefix for which we recommend query suggestions, the clicked
documents for inferring user’s satisfaction and the topic changes of preceding queries in
session for detecting search intent shifts. We use the description of each URL from the
ODP (Open Directory Project) data1 to represent documents and queries based on the

1http://www.dmoz.org

115

http://www.dmoz.org

7. Selectively Personalizing Query Auto Completion

word2vec model (Mikolov et al., 2013b) when inferring a user’s satisfaction as well as
query intent shifts in session. In doing so, we answer the following research questions:
RQ17 Does selective personalization scheme help improve the accuracy of ranking query

completions in a generic personalized QAC approach?
RQ18 In the SP-QAC model, what is the impact on its performance of varying the inputs

to the regression model?
Finally, we quantify the improvement in terms of Mean Reciprocal Rank (MRR) of our
proposal over state-of-the-art QAC baselines on a publicly available query log dataset.
We find the SP-QAC model, which selectively outweighs or depresses the contribution of
personalization in a generic QAC approach, outperforms a traditional non-personalization
QAC approach and a uniformly personalized QAC approach with a fixed trade-off con-
trolling the contribution of search popularity and search context.

Our contributions in this chapter are summarized as:
1. We propose a Selectively Personalizing Query Auto Completion (SP-QAC) model

that flexibly outweighs or depresses the contribution of personalization in QAC.
2. We study the typed prefix, the clicked documents and the preceding queries in

session to estimate the weight of personalization in a QAC task.
The remainder of this chapter is organized as follows. We detail our approach for selec-
tively personalizing query auto completion in §7.1. Our experimental setup is presented
in §7.2. In §7.3, we provide the results as well as the discussions. We conclude in §7.4.

7.1 Approach

As discussed in Chapters 2, 4, 5 and 6, a straightforward approach to ranking query
completions is based on the popularity of queries. Bar-Yossef and Kraus (2011) refer to
this type of ranking as the Most Popular Completion (MPC) model:

MPC (p) = argmax
q∈S(p)

w(q), w(q) =
f(q)∑
i∈L f(i)

, (7.1)

where f(q) denotes the number of occurrences of query q in search log L, and S(p) is a
set of query completions that start with prefix p.

To cater for a user’s particular information need, personalization is incorporated into
the MPC model. As described in (Bar-Yossef and Kraus, 2011; Cai et al., 2014b), a
generic personalized QAC approach basically employs a fixed parameter λ to control the
contribution of personal information to generate the final ranking of query completions.
For instance, Bar-Yossef and Kraus (2011) compute a hybrid score for each query can-
didate qc, which is a convex combination of two scores, i.e., a query popularity score
MPCsco(qc) and a personalization score Psco(qc):

hybsco(qc) = λ ·MPCsco(qc) + (1− λ) · Psco(qc), (7.2)

where MPCsco(qc) is estimated by candidate qc’s frequency in the query log and Psco(qc)
is measured by qc’s similarity to the search context in session. Such scenarios handle
each prefix uniformly. However, users may modify their search intent in a session. As a
consequence, personalization may harm the accuracy of QAC ranking if we continue to

116

7.1. Approach

use the previous search context. Hence, we propose a Selectively Personalizing Query
Auto Completion (SP-QAC) model, which emphasizes on personalization inconsistently
in different cases when generating the final hybrid score of a candidate as follows:

hybsco(qc) = φ(·) ·MPCsco(qc) + (1− φ(·)) · Psco(qc), (7.3)

where the function φ(·) outputs a trade-off in [0,1] and is parameterized by the typed pre-
fix, the clicked documents and the preceding query in session, which are to be described
in following sections. By doing so, personalization in QAC can be individually weighted
in each particular case.

7.1.1 Signal from the Typed Prefix

As described in Chapter 2, most previous work on query auto completion (Bar-Yossef
and Kraus, 2011; Cai et al., 2014b; Jiang et al., 2014b; Shokouhi, 2013) only considers
the typed prefix for generating a list of matched query candidates, ignoring the potential
signal hidden in the typed prefix for personalization in QAC. However, the typed prefix
normally reveals a strong clue for inferring user’s personal query activity, such as query
expansion and query repetition, etc. Thus, it can be introduced for weighing personaliza-
tion in a QAC task.

Intuitively, if a user’s input to the search box appears as a prefix of query terms in
previous queries inside the current search session, it is possible that this user repeats their
query (Jiang et al., 2014b). As a consequence, personalization can make sense. Thus, we
capture the signal from the typed prefix p for personalization by introducing a factor fp
to weighing the personalization for query auto completion as follows:

fp =
|W(p)|
|S|

+ c, (7.4)

where |W(p)| and |S| indicate the number of words that start with p and that appear in
session, respectively; c is a small constant for smoothing. A larger value of fp could
imply a higher importance of personalization in the final ranking score in (7.3).

7.1.2 Inferring Search Satisfaction from Clicked Documents

User’s clicks on retrieved documents in return to a query are a widely used behavioral
signal for measuring search satisfaction (Kim et al., 2014), which can be further measured
by the closeness between a submitted query and its clicked documents, because the closer
they are the more satisfied the user could be (Fox et al., 2005). Cosine similarity can be
applied to model a factor fd for measuring closeness:

fd =

{
c, no clicks
1
|Q|
∑
q∈Q

1
|Dq|

∑
d∈Dq

cos(q, d), otherwise, (7.5)

where Dq is a set of clicked documents corresponding to a submitted query q in a set |Q|
of previous queries in session. Each clicked document d ∈ Dq has a short description text
T extracted from the ODP data. We vectorize this document description consisting of a

117

7. Selectively Personalizing Query Auto Completion

sequence of words using the word2vec model (Mikolov et al., 2013b) where each word
is represented by a vector vw. In doing so, a document can be vectorized by averaging
the words in T as d = 1

|T |
∑
vw∈T vw. After that, a query q is then similarly represented

by averaging its clicked documents D in the training log, i.e., q = 1
|D|
∑
d∈D d. In

practice, for a query q that has no clicked documents, the same representation of its most
semantically similar query qo, which is identified by the word2vec model (Mikolov et al.,
2013b) and has been vectorized in the training period, is assigned to it by

qo ← argmax
ql∈QL

cos(q, ql) = argmax
ql∈QL

1

W

∑
wk∈q

∑
wj∈ql

cos(wk, wj),

where QL is a set of queries that have clicked documents in the training period and W is
the number of word pairs between two queries.

Intuitively, a large score of fd in (7.5) indicates a high probability that user is satisfied
with the results, thus resulting in a low weight of personalization in QAC. We assign a
small constant c to fd when no clicks are available, where personalization could make
sense because the user’s request has not been addressed and they may continue to submit
similar queries.

7.1.3 Detecting Topic Shifts From Preceding Queries

Generally, a long session may contain multi-topical queries in web search, that often
happens when user’s search task changes in long sessions (Jiang et al., 2014a). We
perceive such signals for weighing personalization in a QAC task by the topic shifts
of submitted queries in a query flow {q1, q2, . . . , qt−1, qt} in session. A strong topical
shift of preceding queries implies low-weight personalization in QAC because the user
may be moving to other topics. Hence, we model a factor fq introduced by the topic
shifts of preceding queries in session as follows:

fq =

 c, r = 1 or 2
cos(q1, q2), r = 3
cos(qr-1−qr-2, qr-2−qr-3), r > 3,

(7.6)

where r is the query position in the session and each query is vectorized by the scheme
described in §7.1.2. For queries at the beginning of a session, i.e., r = 1 or 2, the
topic shift from queries is unavailable, making no impact on personalization, and thus
we assign a small constant c to fq . Similarly, at query position r = 3, the relative topical
shift of queries is still unavailable. Instead, we use the absolute query similarity between
qr-1 and qr-2 as an indicator of query topical shift. For queries at position r > 3, we
study the topic shift from their preceding queries, i.e., qr-1, qr-2 and qr-3.

Essentially, a large value of fq is produced by high topical similarity of the preceding
queries, implying a reasonably high probability that the user’s search intent has persisted
from previous queries to the current session. From this point of view, for a QAC task,
personalization should be outweighed.

118

7.2. Experimental Setup

7.1.4 Weighing Personalization
Taking these discussed factors into account, i.e., the typed prefix, the clicked documents
and the preceding queries, we adopt logistic regression to model how likely each factor
affects the weight of personalization in a QAC task. In the training period, for each typed
prefix, we manually change the value of λ in (7.3) from 0 to 1 with an increasing interval
0.1 to guarantee the final submitted query at the top position. By doing so, we can get an
optimal weight for personalization, which is used as a label in the regression model.

Regarding the inputs to the regression model, the factors discussed above, i.e., fp, fd
and fq , are involved. To overcome the noise brought by the typed prefix, we implement
the regression model on various inputs conditional on whether the terms in previous
queries start with the prefix. Hence, the selective weight φ(·) in (7.3) is finally generated
as follows:

φ(·) =

{
Reg(fd, fq), if fp = c
Reg(fp, fd, fq), otherwise. (7.7)

We use the personalization scenario proposed in (Cai et al., 2014b) to compute the
Psco(qc) score in (7.3) when generating the optimal personalization weights.

7.2 Experimental Setup

In this section, we present the experimental setup and the baselines for comparisons.
Following the setup described in Chapter 6, we use the publicly available AOL query log
dataset in our experiments, which is split into three parts: a training set, a validation set
and a test set consisting of the first 60%, the following 20% and the last 20% of the query
log, respectively. One-query and no-click sessions are both excluded in our experiments
as not enough search context is available. In addition, we only keep the cases where the
final submitted query is included in the top N query completions returned by the MPC
approach, which follows the previous QAC work and is a commonly used methodology
in QAC tasks (Cai et al., 2014b; Jiang et al., 2014b; Shokouhi, 2013).

For comparison, the following baselines are selected: (1) the most popular comple-
tion (MPC) approach which ranks query candidates by their frequency, referred to as
MPC, which we have also used in Chapters 4, 5 and 6; (2) a personalized QAC approach
based on session context with a fixed trade-off λ = 0.5 in (7.2), denoted as P-QAC (Cai
et al., 2014b). As before, Mean Reciprocal Rank (MRR) is used for evaluating the per-
formance of QAC models. Statistical significance of observed differences between the
performance of two approaches is tested using a two-tailed paired t-test and is denoted
using N/H for significant differences for α = .01 and M/O for α = .05.

In addition, we set N = 10 in our experiments, which means that the top ten query
completions returned by the MPC approach are to be re-ranked. We randomly assign a
small value 0.01 to the constant c in our experiments.

7.3 Results and Discussion

In this section, we report on our experiments to verify the effectiveness of our proposed
SP-QAC model. In §7.3.1, we examine the general performance of our proposal; and

119

7. Selectively Personalizing Query Auto Completion

Table 7.1: Performance of QAC models in terms of MRR at a prefix length #p rang-
ing from 1 to 5 characters. The best performer per row is highlighted. Statistical
significance of pairwise differences of SP-QAC vs. MPC and SP-QAC vs. P-QAC
are detected by the t-test (N/H for α = .01, or M/O for α = .05) and marked in the
upper left and upper right hand corners of SP-QAC scores, respectively.

#p MPC P-QAC SP-QAC

1 0.5368 0.5422 M0.5535M

2 0.5556 0.5628 M0.5744M

3 0.5944 0.6046 M0.6165
4 0.6294 0.6427 N0.6547
5 0.6589 0.6646 N0.6762

in §7.3.2, we zoom in on the particular factors for weighing personalization in our QAC
model.

7.3.1 Performance of the SP-QAC Model

To answer the research question RQ17, we compare the results of our proposed model,
i.e., the SP-QAC model, with that of the baselines. We report the results in Table 7.1.

Clearly, as shown in Table 7.1, a generic personalization scheme helps improve the
QAC performance in terms of MRR as the MRR scores of the P-QAC model are higher
than those of the MPC approach at each particular prefix length. In addition, when a
selective personalization strategy is embedded into the P-QAC model, the QAC perfor-
mance is boosted further as the MRR scores of the SP-QAC model are increased upon
those of the baselines, i.e., the MPC and P-QAC models. Compared to the MPC ap-
proach, significant MRR improvements of the SP-QAC approach are observed at level
α = .05 for the short prefixes, e.g., #p = 1 or 2, and at level α = .01 for the long
prefixes, e.g., #p = 4 or 5. This difference can be explained by the fact that for most
cases, compared to short prefixes, long prefixes reveal a stronger signal for search person-
alization, like query repetition. However, compared to the results of the P-QAC model,
significant MRR improvements of the SP-QAC model are only observed at short prefixes,
i.e., #p = 1 or 2. This is due to the fact that, compared to short prefixes, long prefixes of-
ten return the correct query early in the list of query completions in both models, making
it difficult to gain any further performance improvements from selective personalization.

To further verify the effectiveness of the selective personalization scheme for QAC,
we examine the performance of QAC models at different query positions, i.e., at the
beginning (1, 2 or 3), in the middle (4, 5 or 6) and in the later (> 6) part of a session.
We present the results in Table 7.2. We can see that at the start of a session, these three
models return competitive MRR scores as limited information from search context is
available for the P-QAC and SP-QAC models. However, as the search context becomes
richer, significant improvements in terms of MRR are obtained by the SP-QAC model
over the MPC and P-QAC models, respectively.

120

7.3. Results and Discussion

Table 7.2: Performance of QAC models in terms of MRR at various query posi-
tions. The best performer per row is highlighted. Statistical significance of pairwise
differences of SP-QAC vs. MPC and SP-QAC vs. P-QAC are detected by the t-test
(N/H for α = .01, or M/O for α = .05) and marked in the upper left and upper right
hand corners of SP-QAC scores, respectively.

Query position MPC P-QAC SP-QAC

{1, 2, 3} 0.6283 0.6327 0.6340
{4, 5, 6} 0.6005 0.6113 N0.6257M
{7, 8, 9, · · · } 0.5737 0.5863 N0.6058M

7.3.2 Zoom in on Factors for Weighing Personalization

Next, we turn to the research question RQ18 and examine the performance of the SP-
QAC model under different inputs to the regression model for generating the weights of
personalization in a QAC model. We manually remove one factor and remain the other
two for regression model, resulting in the SP-QAC-fdfq , SP-QAC-fpfq and SP-QAC-
fdfp models, which correspond to the SP-QAC model without considering the factors
fp, fd and fq for selectively personalizing QAC, respectively. We plot the results of the
SP-QAC models in Figure 7.1, including the model incorporating all three factors for
selective personalization which is denoted by SP-QAC.

Prefix length
1 2 3 4 5

M
R

R

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
SP-QAC
SP-QAC-f

d
f
q

SP-QAC-f
p
f
q

SP-QAC-f
d
f
p

(a) QAC performance at various prefix
length.

Query position
1 2 3 4 5 6 7 8 9 10

M
R

R

0.59

0.60

0.61

0.62

0.63

0.64
SP-QAC
SP-QAC-f

d
f
q

SP-QAC-f
p
f
q

SP-QAC-f
d
f
p

(b) QAC performance at various query posi-
tion.

Figure 7.1: Performance in terms of MRR of the SP-QAC models under different
schemes for weighing personalization, tested at various prefix lengths (left) and at
various query positions (right).

Generally, as shown in Figure 7.1, the SP-QAC model achieves the best performance
in terms of MRR at any prefix length and any query position. In particular, as shown
in Figure 7.1a, as the prefix length increases, the MRR scores increase monotonically
because a long prefix can sharply cut down the space of possible completions matching
the typed prefix, resulting in increased MRR scores. In contrast, as shown in Figure 7.1b,
the MRR scores of the SP-QAC models are decreasing when users continue to query in

121

7. Selectively Personalizing Query Auto Completion

a session. This can be attributed to that, in the later part of a search session, users are
inclined to submit uncommon queries without clear purposes, making it difficult to return
the correct completion early by the MPC model, which our proposal partially depends
on.

Next, we zoom in on the three factors considered in selective personalization for
QAC. As shown in Figure 7.1a, the MRR scores of the SP-QAC-fpfq and SP-QAC-fdfp
models approximate those of the SP-QAC model when the prefix length goes up. How-
ever, the MRR scores of the SP-QAC-fdfq seem to deviate from those of the SP-QAC
model, even though the differences are small. These observations could be explained by
the fact that the signal for personalization from the typed prefix becomes stronger as the
prefix length increases, which makes the SP-QAC-fpfq and SP-QAC-fdfp models con-
sidering the factor fp perform well. Regarding the QAC performance at varying query
positions, we can see from Figure 7.1b that the four models have the same performance
for the first query and report similar MRR scores at other early positions of a session,
e.g., #p = 2 or 3, because not enough search context is available. In addition, the SP-
QAC-fpfq model performs better than the SP-QAC-fdfq and SP-QAC-fdfp models at
most query positions except for the second query in a session, where the SP-QAC-fdfp
model presents a bit higher MRR score than the SP-QAC-fpfq model. This is because:
(1) for the second query, the topic shifts cannot be detected; however, signals for per-
sonalization from the typed prefix and the click information still make sense; (2) for the
later queries in a session, where a rich search context is provided, valuable information
for selective personalization from the typed prefix and the previous queries does indeed
help for QAC. In essence, from the results in Figure 7.1, the SP-QAC model which does
not consider the factor fp works worst, by which we infer fp is the most important factor
for selectively personalizing QAC. Similarly, we infer that fq is more important than fd.

7.4 Conclusion

In this chapter, we propose a selectively personalized approach for query auto comple-
tion. In particular, our model predicts whether a specific prefix should be outweighed
on personalization when ranking the query completions. We explore several factors that
influence the weight of personalization in a generic personalized QAC model, such as
the typed prefix, the clicked documents and the preceding queries in session. We demon-
strate that the typed prefix yields the most benefits for weighing personalization in QAC
re-ranking and that the preceding queries contributes more than the click information.

This work makes an important step towards unifying prior work on personalized QAC
by studying when and how to incorporate personalization in QAC. As to future work,
other sources can be explored for investigating how to best personalize query auto com-
pletion, e.g., user’s dwell time on clicked results and their long-term search history. In
addition, it would be interesting to zoom in on particular users to discover whether they
stand to benefit from personalization in QAC.

This chapter is the last research chapter of the thesis. The next chapter summarizes
the studies presented in this thesis; it summarizes the answers to the research questions
formulated in Chapter 1 and gives directions for future work based on the findings in this
thesis.

122

8
Conclusions

In this thesis, we have presented work towards automatically completing users’ queries
within an information retrieval activity, when only the prefix has been typed in the search
box. We approach the problem by trying to answer the question how we can predict
users’ intended queries and return those early in a list of completion candidates given
only few keystrokes as inputs, i.e., the prefix of a query. By now, query auto completion
in information retrieval has been well developed; it is commonly integrated into a modern
search engine because it can help users avoid spelling mistakes and produce clear query
expressions. Where offered, query completion is heavily used by visitors and highly
influential on search results, resulting in improved search satisfactions from users.

The four research chapters of this thesis have addressed challenges of query auto
completion in the following manner. First, in Chapter 4, we have focused on how to in-
corporate temporal and user-specific information. In particular, we have analyzed cyclic
querying behavior as well as recent trends in query popularity to better predict a query’s
future popularity. We have also modeled users’ interests based on the context from their
current search session and their previous sessions, and have proposed a new QAC al-
gorithm to address the limitations of existing approaches. Second, in Chapter 5, we
have investigated the limitations of popularity-based query auto completion approaches,
where counting the queries follows a strict query matching policy, ignoring the contribu-
tions from similar queries. Hence, we have focused on the contributions from so-called
homologous queries. In addition, we have paid attention to the semantic similarity be-
tween terms when a user formulates queries and have proposed a learn to rank-based
query auto completion approach to incorporate these mentioned feature. Next, in Chap-
ter 6, we have turned to a practical issue in query auto completion. A limited number
of returned completion candidates does not allow many redundant queries to exist in the
list of query completions. Here, we have proposed a greedy query selection approach
to return the correct query completions early in a ranked list of candidate completions
and at the same time diversify these query completions. Finally, in Chapter 7, we have
focused on when to personalize query auto completion, and have developed an approach
for selectively personalizing query auto completion. We consider several factors, e.g., the
typed prefix, the clicked documents and the preceding queries in session, for weighing
personalization in a generic QAC model when being combined together with signal from
search popularity to rank query completions.

Below, we provide a more detailed summary of the contributions and results of our

123

8. Conclusions

research in §8.1 to answer the research questions presented at the beginning of this thesis.
We conclude with an outlook on future research directions in §8.2.

8.1 Main Findings

The first research chapter focuses on the combination of temporal information and a
user’s personal information to improve the performance of ranking query auto comple-
tions. The first research questions we address in Chapter 4 focus on examining the per-
formance of our proposed time-sensitive QAC models, i.e., λ-TS-QAC and λ∗-TS-QAC:

RQ1 As a sanity check, what is the accuracy of query popularity prediction generated
by various models?

RQ2 How do our time-sensitive QAC models (λ-TS-QAC and λ∗-TS-QAC) compare
against state-of-the-art time-sensitive QAC baselines?

In answering these two research questions, we find that our prediction method, based on
the periodicity and on the recent trend of query popularity, can produce accurate predic-
tions of query popularity and perform better in terms of Mean Absolute Error (MAE)
and Symmetric Mean Absolute Percentage Error (SMAPE) than other aggregation- and
trend-based prediction baselines. Based on predicted query popularity, our proposed
time-sensitive QAC model achieves better performance in terms of Mean Reciprocal
Rank (MRR) than previous baselines.

After that, we propose a hybrid QAC model λ∗-H-QAC that considers both time-
sensitivity and personalization to compare with an n-gram based hybrid model λ∗-HG-
QAC. Besides, an extension of λ∗-H-QAC, λ∗-H′-QAC, is proposed to deal with long-
tail prefixes, i.e., unpopular prefixes, by optimizing the contributions from the predicted
query popularity and from the user-specific context. To verify the effectiveness of pro-
posed QAC models, we answer the following research questions:

RQ3 Does λ∗-H-QAC outperform time-sensitive QAC methods, e.g., λ∗-TS-QAC)?

RQ4 How does λ∗-H-QAC compare against personalized QAC method using n-gram
based query similarity?

RQ5 How does λ∗-H-QAC compare against λ∗-HG-QAC?

RQ6 How does λ∗-H′-QAC compare against λ∗-H-QAC on long-tail prefixes? And on
all prefixes?

After incorporating personal information from a particular user into the TS-QAC model,
the proposed hybrid model, λ∗-H-QAC, is able to marginally outperform the baselines
on query logs at each prefix length. However, despite the additional overhead of scor-
ing similarity between queries, λ∗-H-QAC presents relatively small improvements over
proposed λ∗-TS-QAC. In addition, for both the AOL and SvN query logs, λ∗-H-QAC is
considerably more effective at longer prefixes as a slightly longer prefix hugely narrows
the number of possible completion candidates.

Compared to the personalized QAC scenarios, e.g., G-QAC (n-gram based approach),
λ∗-H-QAC significantly outperforms G-QAC in terms of MRR scores at all cases. How-
ever, when G-QAC is combined with λ∗-TS-QAC, the combined model, i.e., λ∗-HG-
QAC, performs very competitively when compared against λ∗-H-QAC. This appears to

124

8.1. Main Findings

be due to the fact that (1) λ∗-HG-QAC scores the query similarity on a close character
level but confronts the sparseness problem, and (2) the number of grams n is artificially
fixed, resulting in failure to rank query completions properly. We further extend our
model to deal with long-tail prefixes by proposing a modified hybrid QAC model, i.e.,
λ∗-H′-QAC, which receives the highest MRR scores among all QAC models.

In previous work, most of today’s QAC models rank candidates by popularity, fol-
lowing a strict query matching policy when counting the queries. Thus, the contributions
from so-called homologous queries are ignored. Moreover, today’s QAC approaches
often ignore semantically related terms. But users are prone to combine semantically
related terms when generating queries. To address this shortcoming, based on a learning-
based QAC model L2R-U that extracts features from user behavior (Jiang et al., 2014b),
we propose several learning to rank-based QAC approaches, where, for the first time,
features derived from predicted popularity, homologous queries and semantically related
terms are introduced, respectively. In particular, we consider (1) the observed and pre-
dicted popularity of query completions, which results in the L2R-UP model; (2) the
observed and predicted popularity of homologous queries for a query candidate, which
results in the L2R-UPH model; (3) the semantic relatedness of pairs of terms inside a
query and pairs of queries inside a session, which results in the L2R-UPS model; and
(4) all these newly proposed features, which results in the L2R-ALL model. Regarding
these new models, we address the following research questions:

RQ7 Do the features that describe the observed and predicted popularity of a query
completion help boost QAC performance without negatively impacting the effec-
tiveness of user behavior related features proposed in (Jiang et al., 2014b)? That
is, how does L2R-UP compare against L2R-U?

RQ8 Do semantic features help improve QAC performance? That is, how does L2R-
UPS compare against L2R-UP?

RQ9 Do homologous queries help improve QAC performance? That is, how does L2R-
UPH compare against L2R-UP?

RQ10 How does L2R-UPS compare against L2R-UPH? What is the performance gain,
if any, if all features are added for learning (L2R-ALL)?

RQ11 What are the principal features developed here for a learning to rank based QAC
task?

Our experimental analysis reveals that features of semantic relatedness and homologous
queries are important and they do indeed help boost QAC performance. In particular, the
MRR gains of L2R-UPS over L2R-UP are larger for longer prefixes. This means that fea-
tures of semantic relatedness are important and do indeed help boost QAC performance.
In other words, query terms are not randomly combined when a searcher formulates a
query. Semantically close terms or queries are likely to appear in a query or in a session,
respectively.

We further extend L2R-UP to examine the contribution from features of homologous
queries for the candidate. Across the board, L2R-UPH is found to outperform L2R-
UP in terms of MRR and SR@1. L2R-UPH reports an average MRR improvement of
nearly 2% over L2R-UP, respectively. Interestingly, the gains in MRR are larger for

125

8. Conclusions

shorter prefixes (e.g., #p = 1 or 2). We believe that this is due to the fact that shorter
prefixes result in more ambiguous and shorter candidates, leading to a higher probability
for query completions to possess homologous queries from which more information can
be gleaned.

A central question is which features are relatively useful to a learning to rank-based
QAC model? We analyze the relative importance of our newly developed features ac-
cording to a χ2 test and find that, generally, semantic relatedness features are more im-
portant than those of homologous queries. For instance, the semantic features based on
the word2vec score returned by the word2vec model on the query logs, appear to be the
most important features.

In Chapter 6 we turn to a practical issue of the query auto completion task in a web
search setting: semantically related queries matching the input prefix are often returned
together, resulting in a redundancy problem of the list of query candidates. We address
this problem of diversifying query auto completion (D-QAC) by proposing a greedy
query selection (GQS) model. In particular, we propose a series of greedy query selection
(GQS) models, i.e., GQSMPC+AQ , GQSMSR+AQ , GQSMPC+LQ and GQSMSR+LQ ,
corresponding to a GQS model that first selects the most popular completion and use all
previous queries in session as search context, that first selects the most similar comple-
tion and use all previous queries in session as search context, that first selects the most
popular completion and use only the last preceding query in session as search context
and that first selects the most similar completion and use only the last preceding query in
session as search context, respectively. We answer the following questions:

RQ12 Do our greedy query selection (GQS) models beat the baselines for diversifying
query auto completion task in terms of metrics for QAC ranking (e.g., MRR) and
for diversification (e.g., α-nDCG)?

RQ13 How does the choice of selecting the first query to be included in the QAC re-
sult list impact the performance in diversified query auto completion of our GQS
model?

RQ14 What is the impact on diversified query auto completion performance of our GQS
model of the choice of search context, i.e., choosing all previous queries in a ses-
sion or only the last preceding query?

RQ15 What is the relative D-QAC performance of our QAC models when evaluated
using a side-by-side comparison?

RQ16 What is the sensitivity of our GQS model? In particular, how is the performance
of our GQS model influenced by, e.g., the number of returned query auto comple-
tion candidates, namely a cutoff N , the number of latent features used in BPMF
kf and a trade-off λ controlling the contribution of search popularity and search
context when modeling the closeness of query completion to search intent?

We confirm that our greedy query selection approach can indeed remove redundant
queries in the original QAC list and boost the QAC performance in the form of returning
the final submitted query early and making the final returned list cover more aspects of
queries. However, the improvements of our GQS models over the baseline in terms of
MRR are limited. Regarding the diversity results, our GQS models report notable im-
provements. This is probably because for some cases, redundant queries can indeed be

126

8.2. Future Work

removed from the QAC list by our GQS models; however, these redundant candidates are
ranked lower than the final submitted query in the original QAC list and consequently do
not affect the reciprocal rank score but do affect the diversity scores.

In addition, our experimental results reveal that the first query selected in our GQS
model does impact the QAC ranking performance in the D-QAC tasks. Our GQS model
can achieve better D-QAC performance when starting with the most semantically similar
query rather than the most popular one. We contribute this to the cases where the user
submits similar queries, e.g., an extended query of a preceding one in current session or
a repeated query in session.

Regarding the selection of search context used, we concluded that our GQS model us-
ing only the last preceding query as search context achieves better D-QAC performance
than that using all preceding queries in session as search context. Our additional experi-
ments also reveal that the advantages of our GQS models over the baseline become more
prominent when more query completions are initially returned.

Finally, we turn to the question when to incorporate personalization in a generic QAC
approach. We assume that the weight of personalization in a hybrid QAC model, which
considers both the search popularity and search context when ordering the query com-
pletions, can be non-uniformly assigned. Based on a lenient personalized QAC strategy
that basically encodes the ranking signal as a trade-off between query popularity and
search context, we propose a Selectively Personalizing Query Auto Completion (SP-
QAC) model to study such a trade-off. In particular, we predict an effective trade-off in
each case based on a regression model, where the typed prefix, the clicked documents
and the preceding queries in session are considered for weighing personalization in QAC.
The research questions addressed by our study are:

RQ17 Does selective personalization scheme help improve the accuracy of ranking query
completions in a generic personalized QAC approach?

RQ18 How is the performance of proposed SP-QAC model under various inputs to the
regression model for weighing personalization in a QAC task?

We demonstrate that the typed prefix yields the most benefits for weighing personal-
ization in a QAC model and that the preceding queries contributes more than the click
information. This work makes an important step towards unifying prior work on person-
alized QAC by studying when and how to incorporate personalization in QAC. We will
continue to explore other sources for investigating how to best personalize query auto
completion, e.g., user’s dwell time on clicked results and their long-term search history.

8.2 Future Work

The work presented in this thesis provides insights and algorithms for query auto com-
pletion in IR. Beyond the findings and conclusions summarized above, it opens up many
important directions for future work. Below, we identify possible follow-up research
directions regarding specific areas discussed in the thesis (time-sensitive QAC, learning-
based QAC, diversifying QAC) and beyond.

127

8. Conclusions

Time-sensitive QAC. As a common query auto completion approach involves re-rank-
ing the top N candidates initially returned by a basic ranker, typically N = 10 (Bar-
Yossef and Kraus, 2011; Cai et al., 2014b; Shokouhi, 2013), it would be interesting to
have a closer look at the top N candidates returned for N > 10: how much can we
gain from the good candidates that were ranked at lower ranks than 10? A large value
of N could bring a possible completion in the QAC list by considering the time related
information. Moreover, we aim to transfer our approach to other datasets with long-term
query logs, which should help us to benefit from queries with longer periodicity than we
have access to in the logs used in our current work. By doing so, time information could
bring benefits to more queries by correctly predicting their future popularity.

In addition, we could study a cold-start problem where a user’s long-term search logs
are unavailable. This problem could be addressed by using the search logs from a group
of similar users seen in the training period, because similar users who share common
search preferences may have a similar long-term search history (Pan and Chen, 2013). In
other words, we can predict a user’s interest from a group of similar users.

A further possible step is to model a user’s temporal information requests, especially
for news search. It has been reported that queries containing temporal search intents
account for a notable percentage (Metzler et al., 2009; Nunes et al., 2008) of the whole
query stream. The importance of considering temporal aspects in IR and the need for
a continuous search for effective temporal IR solutions is evidenced by numerous time-
related initiatives and applications (Campos et al., 2014; Diaz et al., 2013; Peetz et al.,
2014). Considering temporal information might help generate a better QAC ranking
approach after correctly detecting a user’s temporal needs, which could be explicitly
expressed by terms, like year, month, and day, or implicitly revealed by previous queries
or clicked documents in current search session.

Learning-based QAC. Typically, in a learning to rank-based QAC framework, like
(Jiang et al., 2014b; Shokouhi, 2013), tens of features are proposed to extract meaningful
representations of queries for improving the quality of the ranking of query completions.
Hence, efficiency is an important aspect to take into account in a practical QAC setting.
Thus, we want to study efficiency aspects of our approaches: parallel processing is likely
to boost the learning efficiency of our models on feature extraction, and the addition of
more, potentially expensive ways of generating homologous queries or semantic features
could produce better QAC rankings. In addition, an online QAC test system should pay
attention to the response time, i.e., how fast a user can obtain a QAC list after he or she
inputs the prefix. Hence, how to store these query candidates for fast lookups is a key
point.

Besides, in addition to the proposed features of semantic relatedness and of homol-
ogous queries, we aim to develop new features that can capture a deep understanding of
candidate query completions. For instance, we can resort to a high resolution query log,
where users’ detailed interaction data at each keystroke is recorded. As shown in (Li
et al., 2015), from this rich interaction data behavioral features of a user’s implicit feed-
back can be extracted to indicate the probability or preference of user’s intended query.
It would be interesting to consider user behavior like skipping or viewing the QAC list
(Zhang et al., 2015) as well as the typing speed (Mitra et al., 2014), which should enable
more accurate models for predicting a user’s intended query.

128

8.2. Future Work

Diversifying QAC. In our current solution to the D-QAC problem, the ground truth
data of query relevance to aspects is automatically generated from clickthrough data.
Like (Vallet, 2011; Vallet and Castells, 2011), we plan to move our models to other
datasets, where the ground truth of query aspects is generated by real humans rather than
automatically generated. It is interesting to see the difference between the human judge-
ments and the automatic estimation scenario on the relevance of query to aspects. Like
(Chapelle et al., 2012; Vallet, 2011; Vallet et al., 2010) we could run a crowdsourcing
experiment to implement a side-by-side comparison and give an outcome of pairwise
comparisons between various QAC models rather than implementing a questionnaire in
a laboratory setting as used in Chapter 6.

In addition, it would be interesting to consider other scenarios for dealing with the
query cold-start problem as this may be helpful to obtain the correct query distribution
over aspects. Semantic similarity between query terms or queries, which is effective for
finding close neighbors of queries (Han et al., 2013; Jones et al., 2006), can be helpful
to find similar query terms or queries, by which we can assign the aspect label to those
unknown queries.

Other follow-ups. Looking ahead more broadly, one possible direction of development
is to consider the entities in a query. It has been reported that a remarkable proportion
of queries in query logs involve actions on entities (Guo et al., 2009b; Lin et al., 2012),
calling for an automatic approach to identifying entity-related queries. One of the key
challenges in considering entity information for query auto completion is the correct
detection and recognition of entities, which would involve the segmentation of queries,
the classification of entities as well as the mapping of entities to a pre-known entity
base. From an algorithmic side, this could result in methods for promoting entity-related
queries that are close to user’s search context and possible to be issued. Similar methods
have been developed in the web search community (Reinanda et al., 2015), but need to
be adapted to the application in query auto completion.

Another direction is to develop QAC models for mobile search. The use of search
engines on mobile devices, has experienced a rapid growth in past few years (Church
and Oliver, 2011). So far, QAC in the specific setting of mobile search has not been well
studied. Text input is relatively slower and clumsier than in traditional desktop search
because of a smaller screen of mobile devices. Hence, assisting users to formulate their
queries merits special attention. Previous approaches to QAC do not fully exploit the
spatiotemporal information of query candidates, such as the query time, the direction in
which a user moves or the distance from user to a candidate query completion. Such
spatiotemporal information could be particularly important to QAC for mobile search,
especially for location search on mobile devices.

129

Bibliography

E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne. Finding high-quality content in social media.
In WSDM ’08, pages 183–194, New York, NY, USA, 2008. ACM. (Cited on page 82.)

R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM ’09, pages 5–14,
New York, NY, USA, 2009. ACM. (Cited on page 36.)

A. Amin, M. Hildebrand, J. van Ossenbruggen, V. Evers, and l. Hardman. Organizing suggestions in autocom-
pletion interfaces. In ECIR ’09, pages 521–529, 2009. (Cited on page 29.)

K. Bache, D. Newman, and P. Smyth. Text-based measures of document diversity. In KDD ’13, pages 23–31,
New York, NY, USA, 2013. ACM. (Cited on page 3.)

Z. Bar-Yossef and N. Kraus. Context-sensitive query auto-completion. In WWW ’11, pages 107–116, New
York, NY, USA, 2011. ACM. (Cited on pages 1, 2, 13, 15, 18, 19, 20, 23, 28, 31, 33, 34, 39, 43, 47, 51, 54,
74, 75, 76, 85, 86, 95, 96, 97, 115, 116, 117, and 128.)

H. Bast and I. Weber. Type less, find more: Fast autocompletion search with a succinct index. In SIGIR ’06,
pages 364–371, New York, NY, USA, 2006. ACM. (Cited on page 1.)

H. Bast, A. Chitea, F. Suchanek, and I. Weber. Ester: Efficient search on text, entities, and relations. In SIGIR
’07, pages 671–678, 2007. (Cited on page 25.)

S. M. Beitzel, E. C. Jensen, O. Frieder, A. Chowdhury, and G. Pass. Surrogate scoring for improved metasearch
precision. In SIGIR ’05, pages 583–584, 2005. (Cited on page 28.)

P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey, F. Borisyuk, and X. Cui. Modeling the impact
of short- and long-term behavior on search personalization. In SIGIR ’12, pages 185–194, New York, NY,
USA, 2012. ACM. (Cited on pages 18, 22, 52, and 99.)

D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring semantic similarity between words using web search
engines. In WWW ’07, pages 757–766, New York, NY, USA, 2007. ACM. (Cited on page 92.)

C. J. Burges, K. M. Svore, P. N. Bennett, A. Pastusiak, and Q. Wu. Learning to rank using an ensemble of
lambda-gradient models. J. Mach. Learn. Res., 14:25–35, 2011. (Cited on pages 22, 67, 68, and 77.)

F. Cai and M. de Rijke. Time-aware personalized query auto completion. In DIR ’15, page 12, 2015a. (Cited
on page 11.)

F. Cai and M. de Rijke. Personalized web search based on bayesian probabilistic matrix factorization. In
RuSSIR ’15, pages 39–40, 2015b. (Cited on page 11.)

F. Cai and M. de Rijke. Learning from homologous queries and semantically related terms for query auto
completion. Information Processing and Management, 2016a. To appear. (Cited on pages 10, 15, 23, 26,
33, and 34.)

F. Cai and M. de Rijke. Query auto completion in information retrieval: A survey. Foundations and Trends in
Information Retrieval, 2016b. Submitted. (Cited on page 10.)

F. Cai and M. de Rijke. Selectively personalizing query auto completion. In SIGIR ’16. ACM, 2016c. To
appear. (Cited on page 10.)

F. Cai, S. Liang, and M. de Rijke. Personalized document re-ranking based on bayesian probabilistic matrix
factorization. In SIGIR ’14, pages 835–838, New York, NY, USA, 2014a. ACM. (Cited on pages 11, 46,
77, 82, and 95.)

F. Cai, S. Liang, and M. de Rijke. Time-sensitive personalized query auto-completion. In CIKM ’14, pages
1599–1608, New York, NY, USA, 2014b. ACM. (Cited on pages 10, 15, 17, 18, 20, 21, 23, 28, 31, 33, 34,
76, 77, 83, 97, 100, 116, 117, 119, and 128.)

F. Cai, S. Liang, and M. de Rijke. Prefix-adaptive and time-sensitive personalized query auto completion. IEEE
Transaction on Knowledge and Data Engineering, 2016a. Accepted subject to minor revisions. (Cited on
pages 10 and 23.)

F. Cai, R. Reinanda, and M. de Rijke. Diversifying query auto-completion. ACM Transactions on Information
Systems, 2016b. To appear. (Cited on pages 10, 30, 34, 36, and 63.)

F. Cai, S. Wang, and M. de Rijke. Behavior-based personalization in web search. Journal of the Association
for Information Science and Technology, 2016c. To appear. (Cited on page 11.)

R. Campos, G. Dias, A. M. Jorge, and A. Jatowt. Survey of temporal information retrieval and related applica-
tions. ACM Comput. Surv., 47(2):15:1–15:41, 2014. (Cited on page 128.)

H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query suggestion by mining
click-through and session data. In KDD ’08, pages 875–883, 2008. (Cited on page 22.)

J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering documents and pro-
ducing summaries. In SIGIR ’98, pages 335–336, New York, NY, USA, 1998. ACM. (Cited on pages 3, 96,
and 97.)

O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search ranking. In WWW ’09,

131

Bibliography

pages 1–10, 2009. (Cited on page 24.)
O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In CIKM

’09, pages 621–630, New York, NY, USA, 2009. ACM. (Cited on pages 36 and 94.)
O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved search

evaluation. ACM Trans. Inf. Syst., 30(1):6:1–6:41, 2012. (Cited on pages 98, 99, 108, and 129.)
C. Chatfield. The Analysis of Time Series: An Introduction. Chapman and Hall, New York, 2004. (Cited on

pages 44 and 69.)
S. Chaudhuri and R. Kaushik. Extending autocompletion to tolerate errors. In SIGMOD ’09, pages 707–718,

New York, NY, USA, 2009. ACM. (Cited on page 26.)
S. Chien and N. Immorlica. Semantic similarity between search engine queries using temporal correlation. In

WWW ’05, pages 2–11, New York, NY, USA, 2005. ACM. (Cited on pages 18, 73, and 92.)
A. Chuklin, I. Markov, and M. de Rijke. An introduction to click models for web search: Sigir 2015 tutorial.

In SIGIR ’15, pages 1113–1115, 2015a. (Cited on page 30.)
A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Synthesis Lectures on Information

Concepts, Retrieval, and Services. Morgan & Claypool Publishers, San Rafael, CA, USA, August 2015b.
(Cited on pages 24 and 30.)

K. Church and N. Oliver. Understanding mobile web and mobile search use in today’s dynamic mobile land-
scape. In MobileHCI ’11, pages 67–76, 2011. (Cited on page 129.)

C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty
and diversity in information retrieval evaluation. In SIGIR ’08, pages 659–666, New York, NY, USA, 2008.
ACM. (Cited on page 36.)

C. L. Clarke, M. Kolla, and O. Vechtomova. An effectiveness measure for ambiguous and underspecified
queries. In ICTIR ’09, pages 188–199, Berlin, Heidelberg, 2009. Springer-Verlag. (Cited on page 36.)

C. L. A. Clarke, E. Agichtein, S. Dumais, and R. W. White. The influence of caption features on clickthrough
patterns in web search. In SIGIR ’07, pages 135–142, 2007. (Cited on page 29.)

K. Collins-Thompson, P. N. Bennett, R. W. White, S. de la Chica, and D. Sontag. Personalizing web search
results by reading level. In CIKM ’11, pages 403–412, 2011. (Cited on page 18.)

K. Collins-Thompson, P. Bennett, C. L. A. Clarke, and E. M. Voorhees. Trec 2013 web track overview. In
TREC ’13, pages 1–15, Berlin, Heidelberg, 2013. Springer-Verlag. (Cited on page 36.)

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias models.
In WSDM ’08, pages 87–94, 2008. (Cited on page 24.)

N. Craswell, R. Jones, G. Dupret, and E. Viegas, editors. WSCD ’09: Proceedings 2009 Workshop on Web
Search Click Data, 2009. ACM. (Cited on pages 34, 49, and 75.)

W. B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in Practice, volume 1.
Pearson Education, Inc., 2015. (Cited on page 1.)

S. Cucerzan. Large-scale named entity disambiguation based on wikipedia data. In Proceedings of EMNLP-
CoNLL 2007, pages 708–716, June 2007. (Cited on page 26.)

V. Dang and W. B. Croft. Diversity by proportionality: An election-based approach to search result diversifi-
cation. In SIGIR ’12, pages 65–74, New York, NY, USA, 2012. ACM. (Cited on page 3.)

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algo-
rithm. J. Royal Stat. Soc., Series B, 39(1):1–38, 1977. (Cited on page 95.)

G. Di Santo, R. McCreadie, C. Macdonald, and I. Ounis. Comparing approaches for query autocompletion. In
SIGIR ’15, pages 775–778, 2015. (Cited on page 14.)

F. Diaz, S. Dumais, M. Efron, K. Radinsky, M. de Rijke, and M. Shokouhi. Sigir 2013 workshop on time-aware
information access (#taia2013). In SIGIR ’13: 36th international ACM SIGIR conference on Research and
development in information retrieval. ACM, July 2013. (Cited on page 128.)

Z. Dou, R. Song, and J.-R. Wen. A large-scale evaluation and analysis of personalized search strategies. In
WWW ’07, pages 581–590, 2007. (Cited on pages 19 and 115.)

H. Duan and B.-J. P. Hsu. Online spelling correction for query completion. In WWW ’11, pages 117–126,
2011a. (Cited on page 26.)

H. Duan and B.-J. P. Hsu. Online spelling correction for query completion. In WWW ’11, pages 117–126,
2011b. (Cited on page 34.)

G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine click data from past obser-
vations. In SIGIR ’08, pages 331–338, 2008. (Cited on page 24.)

S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit measures to improve web
search. ACM Trans. Inf. Syst., 23(2):147–168, 2005. (Cited on page 117.)

G. Francès, X. Bai, B. B. Cambazoglu, and R. Baeza-Yates. Improving the efficiency of multi-site web search
engines. In WSDM ’14, pages 3–12, 2014. (Cited on page 25.)

132

Bibliography

J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on concept drift adaptation.
ACM Comput. Surv., 46(4):44:1–44:37, March 2014. (Cited on pages 49 and 75.)

N. G. Golbandi, L. K. Katzir, Y. K. Koren, and R. L. Lempel. Expediting search trend detection via prediction
of query counts. In WSDM ’13, pages 295–304, 2013. (Cited on pages 17 and 18.)

P. Goodwin. The holt-winters approach to exponential smoothing: 50 years old and going strong. Foresight:
The International Journal of Applied Forecasting, 1(19):30–33, 2010. (Cited on page 16.)

L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in www search. In SIGIR ’04,
pages 478–479, 2004. (Cited on page 24.)

F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search. In WSDM ’09, pages 124–131,
2009a. (Cited on page 30.)

J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in query. In SIGIR ’09, pages 267–274, New
York, NY, USA, 2009b. ACM. (Cited on page 129.)

L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and J. Weese. UMBC EBIQUITY-CORE: Semantic textual
similarity systems. In 2nd Joint Conference on Lexical and Computational Semantics. ACL, 2013. (Cited
on pages 71 and 129.)

J. He, E. Meij, and M. de Rijke. Result diversification based on query-specific cluster ranking. J. Am. Soc. Inf.
Sci. Technol., 62(3):550–571, 2011. (Cited on pages 96 and 97.)

Q. He, D. Jiang, Z. Liao, S. C. H. Hoi, K. Chang, E.-P. Lim, and H. Li. Web query recommendation via
sequential query prediction. In ICDE ’09, pages 1443–1454, 2009. (Cited on page 23.)

K. Hofmann, B. Mitra, F. Radlinski, and M. Shokouhi. An eye-tracking study of user interactions with query
auto completion. In CIKM ’14, pages 549–558, New York, NY, USA, 2014. ACM. (Cited on pages 30
and 36.)

C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal
of Forecasting, 20(1):5–10, 2004. (Cited on pages 16 and 17.)

B.-J. P. Hsu and G. Ottaviano. Space-efficient data structures for top-k completion. In WWW ’13, pages
583–594, 2013. (Cited on page 25.)

B. Huurnink, L. Hollink, W. van den Heuvel, and M. de Rijke. Search behavior of media professionals at an
audiovisual archive: A transaction log analysis. J. Am. Soc. Inf. Sci. Techn., 61(6):1180–1197, June 2010.
(Cited on pages 35, 49, and 50.)

A. Jain and G. Mishne. Organizing query completions for web search. In CIKM ’10, pages 1169–1178, 2010.
(Cited on pages 29 and 30.)

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):
422–446, 2002. (Cited on page 36.)

S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword search. In WWW ’09, pages 371–380, 2009.
(Cited on page 25.)

D. Jiang, K. W.-T. Leung, and W. Ng. Context-aware search personalization with concept preference. In CIKM
’11, pages 563–572, 2011. (Cited on page 18.)

J. Jiang, D. He, and J. Allan. Searching, browsing, and clicking in a search session: Changes in user behavior
by task and over time. In SIGIR ’14, pages 607–616, 2014a. (Cited on page 118.)

J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng. Learning user reformulation behavior for query auto-
completion. In SIGIR ’14, pages 445–454, New York, NY, USA, 2014b. ACM. (Cited on pages 5, 15, 21,
22, 23, 26, 33, 34, 36, 66, 67, 73, 74, 75, 76, 77, 82, 83, 97, 100, 117, 119, 125, and 128.)

T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02, pages 133–142, New York, NY,
USA, 2002. ACM. (Cited on page 93.)

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In SIGIR ’05, pages 154–161, 2005. (Cited on page 29.)

H. Joho and J. M. Jose. A comparative study of the effectiveness of search result presentation on the web. In
ECIR ’06, pages 302–313, 2006. (Cited on page 29.)

H. Joho and J. M. Jose. Effectiveness of additional representations for the search result presentation on the
web. Information Processing and Management, 44(1):226–241, 2008. (Cited on page 29.)

R. Jones and K. L. Klinkner. Beyond the session timeout: Automatic hierarchical segmentation of search topics
in query logs. In CIKM ’08, pages 699–708, 2008. (Cited on page 34.)

R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In WWW ’06, pages 387–396,
New York, NY, USA, 2006. ACM. (Cited on pages 58, 72, and 129.)

D. Kastrinakis and Y. Tzitzikas. Advancing search query autocompletion services with more and better sug-
gestions. In ICWE’10, pages 35–49, 2010. (Cited on page 25.)

G. Kazai, J. Kamps, M. Koolen, and N. Milic-Frayling. Crowdsourcing for book search evaluation: Impact of
hit design on comparative system ranking. In SIGIR ’11, pages 205–214, 2011. (Cited on page 28.)

133

Bibliography

Y. Kim, A. Hassan, R. W. White, and I. Zitouni. Modeling dwell time to predict click-level satisfaction. In
WSDM ’14, pages 193–202, 2014. (Cited on page 117.)

A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais. Understanding temporal query dynamics. In WSDM
’11, pages 167–176, 2011. (Cited on page 17.)

G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead search. The VLDB Journal, 20(4):617–640,
2011. (Cited on page 25.)

L. Li, H. Deng, A. Dong, Y. Chang, H. Zha, and R. Baeza-Yates. Analyzing user’s sequential behavior in query
auto-completion via markov processes. In SIGIR ’15, pages 123–132, New York, NY, USA, 2015. ACM.
(Cited on pages 15, 19, 20, 29, 31, 34, and 128.)

Y. Li, A. Dong, H. Wang, H. Deng, Y. Chang, and C. Zhai. A two-dimensional click model for query auto-
completion. In SIGIR ’14, pages 455–464, New York, NY, USA, 2014. ACM. (Cited on pages 15, 22, 23,
29, 30, 31, and 34.)

S. Liang, F. Cai, Z. Ren, and M. de Rijke. Efficient structured learning for personalized diversification.
Manuscript submitted to IEEE TKDE, 2015. (Cited on page 11.)

Z. Liao, D. Jiang, E. Chen, J. Pei, H. Cao, and H. Li. Mining concept sequences from large-scale search logs
for context-aware query suggestion. ACM Trans. Intell. Syst. Technol., 3(1):Article 17, 2011. (Cited on
pages 19, 23, and 33.)

T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman. Active objects: Actions for entity-centric search. In
WWW ’12, pages 589–598, New York, NY, USA, 2012. ACM. (Cited on page 129.)

W. Litwin, R. Mokadem, P. Rigaux, and T. Schwarz. Fast ngram-based string search over data encoded using
algebraic signatures. In VLDB ’07, pages 207–218, 2007. (Cited on page 53.)

C. Liu, F. Guo, and C. Faloutsos. Bayesian browsing model: Exact inference of document relevance from
petabyte-scale data. ACM Transactions on Knowledge Discovery from Data, 4(4):19:1–19:26, 2010a. (Cited
on page 24.)

C. Liu, R. W. White, and S. Dumais. Understanding web browsing behaviors through weibull analysis of dwell
time. In SIGIR ’10, pages 379–386, 2010b. (Cited on page 18.)

N. Liu, J. Yan, S. Yan, W. Fan, and Z. Chen. Web query prediction by unifying model. In ICDM ’08, pages
437–441, 2008. (Cited on page 18.)

T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3):
225–331, 2003. (Cited on pages 20 and 26.)

C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. Identifying task-based sessions in search
engine query logs. In WSDM ’11, pages 277–286, 2011. (Cited on page 34.)

H. Ma, H. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from clickthrough data for query
suggestion. In CIKM ’08, pages 709–718, 2008. (Cited on page 33.)

G. Marchionini and R. White. Find what you need, understand what you find. International Journal of Human
[# x02013] Computer Interaction, 23(3):205–237, 2007. (Cited on page 28.)

D. Matani. An o(k log n) algorithm for prefix based ranked autocomplete. http://
www.dhruvbird.com/autocomplete.pdf, 2011. (Cited on page 25.)

N. Matthijs and F. Radlinski. Personalizing web search using long term browsing history. In WSDM ’11, pages
25–34, 2011. (Cited on page 18.)

Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting time. In CIKM ’08, pages 469–478, 2008a.
(Cited on page 22.)

Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting time. In CIKM ’08, pages 469–478, 2008b.
(Cited on page 33.)

D. Metzler, R. Jones, F. Peng, and R. Zhang. Improving search relevance for implicitly temporal queries. In
SIGIR ’09, pages 700–701, New York, NY, USA, 2009. ACM. (Cited on page 128.)

V. Michail, M. Christopher, V. Zografoula, and G. Dimitrios. Identifying similarities periodicities and bursts
for online search queries. In SIGMOD ’04, pages 131–142, 2004. (Cited on page 17.)

T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation of word representations in vector space.
In Proceedings of Workshop at ICLR, pages 1–13, Cambridge, Massachusetts, 2013a. MIT Press. (Cited on
pages 72 and 93.)

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS 26, pages 3111–3119, Cambridge, Massachusetts, 2013b. MIT Press.
(Cited on pages 72, 91, 93, 116, and 118.)

B. Mitra. Exploring session context using distributed representations of queries and reformulations. In SIGIR
’15, pages 3–12, New York, NY, USA, 2015. ACM. (Cited on pages 15, 21, and 23.)

B. Mitra and N. Craswell. Query auto-completion for rare prefixes. In CIKM ’15, pages 1755–1758, 2015.
(Cited on page 23.)

134

http://www.dhruvbird.com/autocomplete.pdf
http://www.dhruvbird.com/autocomplete.pdf

Bibliography

B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. On user interactions with query auto-completion. In
SIGIR ’14, pages 1055–1058, New York, NY, USA, 2014. ACM. (Cited on pages 24, 30, and 128.)

M. R. Morris, J. Teevan, and S. Bush. Enhancing collaborative web search with personalization: Groupization,
smart splitting, and group hit-highlighting. In CSCW ’08, pages 481–484, 2008. (Cited on page 28.)

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-
1, Dept. of Computer Science, University of Toronto, September 1993. (Cited on page 95.)

S. Nunes, C. Ribeiro, and G. David. Use of temporal expressions in web search. In ECIR ’08, pages 580–584,
Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on page 128.)

W. Pan and L. Chen. Gbpr: Group preference based bayesian personalized ranking for one-class collaborative
filtering. In IJCAI ’13, pages 2691–2697, 2013. (Cited on page 128.)

G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In InfoScale ’06, pages 1–7, New York, NY,
USA, 2006. ACM. (Cited on pages 34, 39, 49, 75, and 85.)

M.-H. Peetz, E. Meij, and M. de Rijke. Using temporal bursts for query modeling. Information Retrieval
Journal, 17(1):74–108, February 2014. doi: 10.1007/s10791-013-9227-2. (Cited on page 128.)

F. Radlinski and S. Dumais. Improving personalized web search using result diversification. In SIGIR ’06,
pages 691–692, New York, NY, USA, 2006. ACM. (Cited on page 3.)

R. Reinanda, E. Meij, and M. de Rijke. Mining, ranking and recommending entity aspects. In SIGIR ’15, pages
263–272, New York, NY, USA, 2015. ACM. (Cited on page 129.)

M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: Estimating the click-through rate for new
ads. In WWW ’07, pages 521–530, 2007. (Cited on page 24.)

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo.
In ICML ’08, pages 880–887, New York, NY, USA, 2008a. ACM. (Cited on pages 94 and 95.)

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS 20, pages 1–8, Cambridge, Mas-
sachusetts, 2008b. MIT Press. (Cited on page 95.)

R. L. T. Santos, C. Macdonald, and I. Ounis. Learning to rank query suggestions for adhoc and diversity search.
Inf. Retr., 16:429–451, 2013. (Cited on page 19.)

X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval using implicit feedback. In SIGIR ’05,
pages 43–50, 2005. (Cited on page 18.)

Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations using convolutional neural
networks for web search. In WWW ’14, pages 373–374, 2014. (Cited on page 23.)

M. Shokouhi. Detecting seasonal queries by time-series analysis. In SIGIR ’11, pages 1171–1172, New York,
NY, USA, 2011. ACM. (Cited on pages 2, 4, 16, and 18.)

M. Shokouhi. Learning to personalize query auto-completion. In SIGIR ’13, pages 103–112, New York, NY,
USA, 2013. ACM. (Cited on pages 15, 19, 21, 22, 23, 26, 28, 33, 34, 65, 68, 76, 77, 97, 100, 117, 119,
and 128.)

M. Shokouhi and K. Radinsky. Time-sensitive query auto-completion. In SIGIR ’12, pages 601–610, New
York, NY, USA, 2012. ACM. (Cited on pages 2, 15, 16, 17, 18, 20, 23, 28, 34, 39, 43, and 54.)

D. Sontag, K. Collins-Thompson, P. N. Bennett, R. W. White, S. Dumais, and B. Billerbeck. Probabilistic
models for personalizing web search. In WSDM ’12, pages 433–442, 2012. (Cited on page 19.)

A. Strizhevskaya, A. Baytin, I. Galinskaya, and P. Serdyukov. Actualization of query suggestions using query
logs. In WWW ’12, pages 611–612, New York, NY, USA, 2012. ACM. (Cited on pages 2, 17, and 39.)

B. Tan, X. Shen, and C. Zhai. Mining long-term search history to improve search accuracy. In KDD ’06, pages
718–723, 2006. (Cited on page 18.)

J. Teevan, S. T. Dumais, and D. J. Liebling. To personalize or not to personalize: Modeling queries with
variation in user intent. In SIGIR ’08, pages 163–170, 2008. (Cited on page 115.)

J. Teevan, D. J. Liebling, and G. Ravichandran Geetha. Understanding and predicting personal navigation. In
WSDM ’11, pages 85–94, 2011. (Cited on page 22.)

P. Thomas and D. Hawking. Evaluation by comparing result sets in context. In CIKM ’06, pages 94–101, New
York, NY, USA, 2006. ACM. (Cited on page 98.)

Y. Ustinovskiy and P. Serdyukov. Personalization of web-search using short-term browsing context. In CIKM
’13, pages 1979–1988, 2013. (Cited on page 18.)

D. Vallet. Crowdsourced evaluation of personalization and diversification techniques in web search. In CIR
’11 Workshop (SIGIR 2011), pages 1–6, New York, NY, USA, 2011. ACM. (Cited on pages 98 and 129.)

D. Vallet and P. Castells. On diversifying and personalizing web search. In SIGIR ’11, pages 1157–1158, New
York, NY, USA, 2011. ACM. (Cited on pages 98 and 129.)

D. Vallet, I. Cantador, and J. M. Jose. Personalizing web search with folksonomy-based user and document
profiles. In ECIR’2010, pages 420–431. Springer-Verlag, 2010. (Cited on page 129.)

S. Whiting and J. M. Jose. Recent and robust query auto-completion. In WWW ’14, pages 971–982, New York,

135

Bibliography

NY, USA, 2014. ACM. (Cited on pages 4, 15, 17, 18, 21, 23, 34, 43, 44, 51, 68, 74, and 75.)
S. Whiting, J. McMinn, and J. M. Jose. Exploring real-time temporal query auto-completion. In Proceedings

of the 12th Dutch-Belgian Information Retrieval workshop, pages 1–4, 2013. (Cited on pages 16 and 18.)
B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, and H. Li. Context-aware ranking in web search. In SIGIR ’10,

pages 451–458, 2010. (Cited on page 22.)
C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane. Efficient error-tolerant query autocomple-

tion. Proceedings of the VLDB Endowment, 6(6):373–384, 2013. (Cited on page 25.)
Y. Yue, R. Patel, and H. Roehrig. Beyond position bias: Examining result attractiveness as a source of presen-

tation bias in clickthrough data. In WWW ’10, pages 1011–1018, 2010. (Cited on page 30.)
C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: Methods and evaluation metrics for

subtopic retrieval. In SIGIR ’03, pages 10–17, New York, NY, USA, 2003. ACM. (Cited on page 3.)
A. Zhang, A. Goyal, W. Kong, H. Deng, A. Dong, Y. Chang, C. A. Gunter, and J. Han. adaqac: Adaptive query

auto-completion via implicit negative feedback. In SIGIR ’15, pages 143–152, New York, NY, USA, 2015.
ACM. (Cited on pages 19, 20, 24, 29, 30, 31, 34, and 128.)

W. Zhang, J. Wang, B. Chen, and X. Zhao. To personalize or not: A risk management perspective. In RecSys
’13, pages 229–236, 2013. (Cited on page 115.)

Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click modeling for understanding and predicting search-
behavior. In KDD ’11, pages 1388–1396, 2011. (Cited on page 24.)

Z. A. Zhu, W. Chen, T. Minka, C. Zhu, and Z. Chen. A novel click model and its applications to online
advertising. In WSDM ’10, pages 321–330, 2010. (Cited on page 24.)

136

Summary

Query auto completion is an important feature embedded into today’s search engines.
It can help users formulate queries which other people have searched for when he/she
finishes typing the query prefix. Today’s most sophisticated query auto completion ap-
proaches are based on the collected query logs to provide the best possible queries for
each searcher’s input.

In this thesis, we develop new query auto completion methods for information re-
trieval. First, we consider the information of both time and user to propose a time-
sensitive personalized query auto completion approach. In previous work, these two
sources of information have been developed separately. We bring them together and pay
special attention to long-tail prefixes. Second, based on a learning-to-rank framework,
we propose to extract features originating from so-called homologous queries and from
the semantic similarity of terms, which allow the contributions from similar queries and
from semantic relatedness to be used for query auto completion.

In addition, we study the problem of query auto completion diversification, where we
aim to diversify aspect-level query intents of query completions. This task has not been
studied before. Given that only a limited number of query completions can be returned
to users of a search engine, it is important to remove redundant queries and improve
user satisfaction by finding an acceptable query. Finally, we conduct an investigation
on when to personalize query auto completion by proposing a selectively personalizing
query auto completion approach, where the weight of personalization in a query auto
completion model is selectively assigned based on the search context in session.

The experimental results in this thesis indicate that our proposed query auto com-
pletion approaches can improve the ranking performance of query completions in terms
of well-known metrics, like Mean Reciprocal Rank. The unique insights and interest-
ing findings in this thesis may be used to help search engine designers to improve the
satisfaction of search engine user by providing high quality query completions.

137

Samenvatting

Automatische aanvulling van zoekopdrachten (query auto completion) is een belangrijk
kenmerken van hedendaagse zoekmachines. Het helpt gebruikers met het formuleren
van zoekopdrachten waar andere gebruikers op hebben gezocht nadat zij zijn gestopt met
het typen van een gedeeltelijke zoekopdracht. De meest geavanceerde huidige methodes
voor automatische aanvulling van zoekopdrachten maken gebruik van eerder verzamelde
zoekopdrachten om zo de best mogelijke zoekopdrachten aan te bieden voor de invoer
van iedere gebruiker.

In dit proefschrift ontwikkelen we nieuwe methoden voor het automatisch aanvullen
van zoekopdrachten. Ten eerste stellen we een tijdsgevoelige en gepersonaliseerde aan-
pak voor, die gebruik maakt van temporele informatie en informatie over de gebruiker.
Dit in tegenstelling tot eerder werk, waarin deze twee bronnen van informatie los van
elkaar worden ontwikkeld. We breiden deze aanpak uit om specifiek geschikt te zijn
voor zeldzame gedeeltelijke zoekopdrachten. Ten tweede, in een raamwerk van machine
leertechnieken voor het ordenen van resultaten, stellen we voor om eigenschappen te ex-
traheren uit zogenaamde homologe zoekopdrachten en uit de semantische gelijkenis van
termen. Dit maakt het mogelijk om gebruik te maken van vergelijkbare zoekopdrachten
bij het automatisch aanvullen van zoekopdrachten.

Vervolgens behandelen we in dit proefschrift het diversificeren van automatisch aange-
vulde zoektermen. Hierbij richten we ons op het diversificeren op aspect-niveau, een
nieuwe taak die niet eerder is onderzocht. Omdat er maar een beperkt aantal resultaten
wordt getoond, kan het voor de gebruiker gunstig zijn om overlappende resultaten achter-
wege te laten. Tot slot onderzoeken we wanneer zoektermen op gepersonaliseerde wijze
moeten worden aangevuld. We introduceren een selectieve gepersonaliseerde aanpak,
waarbij de mate van personalisering selectief gewogen wordt op basis van de context in
de zoeksessie van de gebruiker.

De experimentele resultaten in dit proefschrift tonen aan dat de door ons voorgestelde
methode beter in staat is zoekopdrachten aan te vullen, gemeten met standaard-metrieken
zoals Mean Reciprocal Rank. De unieke inzichten en interessante bevindingen uit dit
proefschrift kunnen door ontwikkelaars van zoekmachines ingezet worden om de ge-
bruikerservaring te verbeteren door vaker de juiste aanvulling van een zoekopdracht voor
te stellen.

139

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI) DEGAS: An Active,
Temporal Database of Autonomous Objects

2 Floris Wiesman (UM) Information Retrieval by
Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguis-
tic Analysis of Business Conversations

4 Dennis Breuker (UM) Memory versus Search in
Games

5 E. W. Oskamp (RUL) Computerondersteuning bij
Straftoemeting

1999

1 Mark Sloof (VUA) Physiology of Quality Change
Modelling: Automated modelling of

2 Rob Potharst (EUR) Classification using decision
trees and neural nets

3 Don Beal (UM) The Nature of Minimax Search
4 Jacques Penders (UM) The practical Art of Mov-

ing Physical Objects
5 Aldo de Moor (KUB) Empowering Communities:

A Method for the Legitimate User-Driven
6 Niek J. E. Wijngaards (VUA) Re-design of com-

positional systems
7 David Spelt (UT) Verification support for object

database design
8 Jacques H. J. Lenting (UM) Informed Gambling:

Conception and Analysis of a Multi-Agent Mech-
anism

2000

1 Frank Niessink (VUA) Perspectives on Improving
Software Maintenance

2 Koen Holtman (TUe) Prototyping of CMS Stor-
age Management

3 Carolien M. T. Metselaar (UvA) Sociaal-
organisatorische gevolgen van kennistechnologie

4 Geert de Haan (VUA) ETAG, A Formal Model of
Competence Knowledge for User Interface

5 Ruud van der Pol (UM) Knowledge-based Query
Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Languages
for Agent Communication

7 Niels Peek (UU) Decision-theoretic Planning of
Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analyis of
Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilistic
Query Optimization

10 Niels Nes (CWI) Image Database Management
System Design Considerations, Algorithms and
Architecture

11 Jonas Karlsson (CWI) Scalable Distributed Data
Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to
Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Lan-
guages: Programming with Mental Models

3 Maarten van Someren (UvA) Learning as prob-
lem solving

4 Evgueni Smirnov (UM) Conjunctive and Disjunc-
tive Version Spaces with Instance-Based Bound-
ary Sets

5 Jacco van Ossenbruggen (VUA) Processing
Structured Hypermedia: A Matter of Style

6 Martijn van Welie (VUA) Task-based User Inter-
face Design

7 Bastiaan Schonhage (VUA) Diva: Architectural
Perspectives on Information Visualization

8 Pascal van Eck (VUA) A Compositional Semantic
Structure for Multi-Agent Systems Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Distributed De-
velopment of Large Object-Oriented Models

10 Maarten Sierhuis (UvA) Modeling and Simulat-
ing Work Practice

11 Tom M. van Engers (VUA) Knowledge Manage-
ment

2002

1 Nico Lassing (VUA) Architecture-Level Modifia-
bility Analysis

2 Roelof van Zwol (UT) Modelling and searching
web-based document collections

3 Henk Ernst Blok (UT) Database Optimization As-
pects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The Dis-
crete Acyclic Digraph Markov Model in Data
Mining

5 Radu Serban (VUA) The Private Cyberspace
Modeling Electronic

6 Laurens Mommers (UL) Applied legal epistemol-
ogy: Building a knowledge-based ontology of

7 Peter Boncz (CWI) Monet: A Next-Generation
DBMS Kernel For Query-Intensive

8 Jaap Gordijn (VUA) Value Based Requirements
Engineering: Exploring Innovative

9 Willem-Jan van den Heuvel (KUB) Integrating
Modern Business Applications with Objectified
Legacy

10 Brian Sheppard (UM) Towards Perfect Play of
Scrabble

11 Wouter C. A. Wijngaards (VUA) Agent Based
Modelling of Dynamics: Biological and Organ-
isational Applications

141

SIKS Dissertation Series

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TUe) A Reference Architecture for
Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Abstract
Approaches to Modelling, Programming and Ver-
ifying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verification of
UML Activity Diagrams for Workflow Modelling

16 Pieter van Langen (VUA) The Anatomy of De-
sign: Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding, Model-
ing, and Improving Main-Memory Database Per-
formance

2003

1 Heiner Stuckenschmidt (VUA) Ontology-Based
Information Sharing in Weakly Structured Envi-
ronments

2 Jan Broersen (VUA) Modal Action Logics for
Reasoning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer In-
teraction and Presence in Virtual Reality Expo-
sure Therapy

4 Milan Petkovic (UT) Content-Based Video Re-
trieval Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial Intel-
ligence and Law: A modelling approach

6 Boris van Schooten (UT) Development and spec-
ification of virtual environments

7 Machiel Jansen (UvA) Formal Explorations of
Knowledge Intensive Tasks

8 Yongping Ran (UM) Repair Based Scheduling
9 Rens Kortmann (UM) The resolution of visually

guided behaviour
10 Andreas Lincke (UvT) Electronic Business Nego-

tiation: Some experimental studies on the inter-
action between medium, innovation context and
culture

11 Simon Keizer (UT) Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian
Networks

12 Roeland Ordelman (UT) Dutch speech recogni-
tion in multimedia information retrieval

13 Jeroen Donkers (UM) Nosce Hostem: Searching
with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Lan-
guage: Conceptualisation Processes across ICT-
Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-
Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar
Systems: Incremental Maintenance of Indexes to
Digital Media Warehouses

17 David Jansen (UT) Extensions of Statecharts with
Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organiza-
tional Interaction: Based on Agents, Founded in
Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts
for E-business

3 Perry Groot (VUA) A Theoretical and Empirical
Analysis of Approximation in Symbolic Problem
Solving

4 Chris van Aart (UvA) Organizational Principles
for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge discovery and
monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of Busi-
ness Process Modeling Techniques

7 Elise Boltjes (UM) Voorbeeldig onderwijs: voor-
beeldgestuurd onderwijs, een opstap naar ab-
stract denken, vooral voor meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Interna-
tionale Informatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

9 Martin Caminada (VUA) For the Sake of the Ar-
gument: explorations into argument-based rea-
soning

10 Suzanne Kabel (UvA) Knowledge-rich indexing
of learning-objects

11 Michel Klein (VUA) Change Management for
Distributed Ontologies

12 The Duy Bui (UT) Creating emotions and facial
expressions for embodied agents

13 Wojciech Jamroga (UT) Using Multiple Models of
Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical
Explorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data Min-
ing

16 Federico Divina (VUA) Hybrid Genetic Rela-
tional Search for Inductive Learning

17 Mark Winands (UM) Informed Search in Com-
plex Games

18 Vania Bessa Machado (UvA) Supporting the Con-
struction of Qualitative Knowledge Models

19 Thijs Westerveld (UT) Using generative proba-
bilistic models for multimedia retrieval

20 Madelon Evers (Nyenrode) Learning from De-
sign: facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UvA) Methodological Aspects
of Designing Induction-Based Applications

2 Erik van der Werf (UM) AI techniques for the
game of Go

3 Franc Grootjen (RUN) A Pragmatic Approach to
the Conceptualisation of Language

142

SIKS Dissertation Series

4 Nirvana Meratnia (UT) Towards Database Sup-
port for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level Proba-
bilistic Grammars for Natural Language Parsing

6 Pieter Spronck (UM) Adaptive Game AI
7 Flavius Frasincar (TUe) Hypermedia Presenta-

tion Generation for Semantic Web Information
Systems

8 Richard Vdovjak (TUe) A Model-driven Ap-
proach for Building Distributed Ontology-based
Web Applications

9 Jeen Broekstra (VUA) Storage, Querying and In-
ferencing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Behaviour:
Using Qualitative Simulation in Interactive
Learning Environments

11 Elth Ogston (VUA) Agent Based Matchmaking
and Clustering: A Decentralized Approach to
Search

12 Csaba Boer (EUR) Distributed Simulation in In-
dustry

13 Fred Hamburg (UL) Een Computermodel voor het
Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VUA) Web-Service configu-
ration on the Semantic Web: Exploring how se-
mantics meets pragmatics

15 Tibor Bosse (VUA) Analysis of the Dynamics of
Cognitive Processes

16 Joris Graaumans (UU) Usability of XML Query
Languages

17 Boris Shishkov (TUD) Software Specification
Based on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies for
probabilistic networks

19 Michel van Dartel (UM) Situated Representation
20 Cristina Coteanu (UL) Cyber Consumer Law,

State of the Art and Perspectives
21 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Ap-
plication Semantics

2006

1 Samuil Angelov (TUe) Foundations of B2B Elec-
tronic Contracting

2 Cristina Chisalita (VUA) Contextual issues in the
design and use of information technology in orga-
nizations

3 Noor Christoph (UvA) The role of metacognitive
skills in learning to solve problems

4 Marta Sabou (VUA) Building Web Service On-
tologies

5 Cees Pierik (UU) Validation Techniques for
Object-Oriented Proof Outlines

6 Ziv Baida (VUA) Software-aided Service
Bundling: Intelligent Methods & Tools for Graph-
ical Service Modeling

7 Marko Smiljanic (UT) XML schema matching:
balancing efficiency and effectiveness by means of
clustering

8 Eelco Herder (UT) Forward, Back and Home
Again: Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formulation
of the Auditor’s Opinion

10 Ronny Siebes (VUA) Semantic Routing in Peer-
to-Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over
Nested Data Types

12 Bert Bongers (VUA) Interactivation: Towards an
e-cology of people, our technological environ-
ment, and the arts

13 Henk-Jan Lebbink (UU) Dialogue and Decision
Games for Information Exchanging Agents

14 Johan Hoorn (VUA) Software Requirements: Up-
date, Upgrade, Redesign - towards a Theory of
Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in the
Biomedical Domain

16 Carsten Riggelsen (UU) Approximation Methods
for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU) User Assistance for Multi-
tasking with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA) Graph transformation
for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent Pro-
gramming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for pre-
diction in data mining

21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adaptive

Personalisation
23 Ion Juvina (UU) Development of Cognitive Model

for Navigating on the Web
24 Laura Hollink (VUA) Semantic Annotation for

Retrieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-

likelihood MDL and Evolutionary MCMC
26 Vojkan Mihajlovic (UT) Score Region Algebra:

A Flexible Framework for Structured Information
Retrieval

27 Stefano Bocconi (CWI) Vox Populi: generating
video documentaries from semantically annotated
media repositories

28 Borkur Sigurbjornsson (UvA) Focused Informa-
tion Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-
Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Information
Exchange and Confidentiality: A Formal Ap-
proach

3 Peter Mika (VUA) Social Networks and the Se-
mantic Web

143

SIKS Dissertation Series

4 Jurriaan van Diggelen (UU) Achieving Seman-
tic Interoperability in Multi-agent Systems: a
dialogue-based approach

5 Bart Schermer (UL) Software Agents, Surveil-
lance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics for
Blogs

7 Natasa Jovanovic’ (UT) To Whom It May Con-
cern: Addressee Identification in Face-to-Face
Meetings

8 Mark Hoogendoorn (VUA) Modeling of Change
in Multi-Agent Organizations

9 David Mobach (VUA) Agent-Based Mediated
Service Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Confor-
mity: an Institutional Perspective on Norms and
Protocols

11 Natalia Stash (TUe) Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adap-
tive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Networks for
Clinical Decision Support: A Rational Approach
to Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Environ-
ments: Implications of Progressing Technology

14 Niek Bergboer (UM) Context-Based Image Anal-
ysis

15 Joyca Lacroix (UM) NIM: a Situated Computa-
tional Memory Model

16 Davide Grossi (UU) Designing Invisible Hand-
cuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems

17 Theodore Charitos (UU) Reasoning with Dy-
namic Networks in Practice

18 Bart Orriens (UvT) On the development an man-
agement of adaptive business collaborations

19 David Levy (UM) Intimate relationships with ar-
tificial partners

20 Slinger Jansen (UU) Customer Configuration Up-
dating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and broad-
ening use: A research on residential adoption and
usage of broadband internet in the Netherlands
between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of value
and process models from patterns

23 Peter Barna (TUe) Specification of Application
Logic in Web Information Systems

24 Georgina Ramı́rez Camps (CWI) Structural Fea-
tures in XML Retrieval

25 Joost Schalken (VUA) Empirical Investigations
in Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based Sim-
ulation of Financial Markets: A modular,
continuous-time approach

2 Alexei Sharpanskykh (VUA) On Computer-Aided
Methods for Modeling and Analysis of Organiza-
tions

3 Vera Hollink (UvA) Optimizing hierarchical
menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Uncertain
Data: towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating
causal dependencies on process-aware informa-
tion systems from a cost perspective

6 Arjen Hommersom (RUN) On the Application of
Formal Methods to Clinical Guidelines, an Artifi-
cial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tutor in
the design and support of adaptive e-learning

8 Janneke Bolt (UU) Bayesian Networks: Aspects
of Approximate Inference

9 Christof van Nimwegen (UU) The paradox of the
guided user: assistance can be counter-effective

10 Wauter Bosma (UT) Discourse oriented summa-
rization

11 Vera Kartseva (VUA) Designing Controls for Net-
work Organizations: A Value-Based Approach

12 Jozsef Farkas (RUN) A Semiotically Oriented
Cognitive Model of Knowledge Representation

13 Caterina Carraciolo (UvA) Topic Driven Access
to Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware
Querying: Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adaptive
Behavior: Knowledge Representation and Algo-
rithms for the Markov Decision Process Frame-
work in First-Order Domains

16 Henriette van Vugt (VUA) Embodied agents from
a user’s perspective

17 Martin Op ’t Land (TUD) Applying Architecture
and Ontology to the Splitting and Allying of En-
terprises

18 Guido de Croon (UM) Adaptive Active Vision
19 Henning Rode (UT) From Document to Entity Re-

trieval: Improving Precision and Performance of
Focused Text Search

20 Rex Arendsen (UvA) Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introduc-
tie van elektronisch berichtenverkeer met de over-
heid op de administratieve lasten van bedrijven

21 Krisztian Balog (UvA) People Search in the En-
terprise

22 Henk Koning (UU) Communication of IT-
Architecture

23 Stefan Visscher (UU) Bayesian network mod-
els for the management of ventilator-associated
pneumonia

24 Zharko Aleksovski (VUA) Using background
knowledge in ontology matching

144

SIKS Dissertation Series

25 Geert Jonker (UU) Efficient and Equitable Ex-
change in Air Traffic Management Plan Repair
using Spender-signed Currency

26 Marijn Huijbregts (UT) Segmentation, Diariza-
tion and Speech Transcription: Surprise Data
Unraveled

27 Hubert Vogten (OU) Design and Implementation
Strategies for IMS Learning Design

28 Ildiko Flesch (RUN) On the Use of Independence
Relations in Bayesian Networks

29 Dennis Reidsma (UT) Annotations and Subjec-
tive Machines: Of Annotators, Embodied Agents,
Users, and Other Humans

30 Wouter van Atteveldt (VUA) Semantic Network
Analysis: Techniques for Extracting, Represent-
ing and Querying Media Content

31 Loes Braun (UM) Pro-Active Medical Informa-
tion Retrieval

32 Trung H. Bui (UT) Toward Affective Dialogue
Management using Partially Observable Markov
Decision Processes

33 Frank Terpstra (UvA) Scientific Workflow Design:
theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent Tree
Mining

35 Ben Torben Nielsen (UvT) Dendritic morpholo-
gies: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal Inde-
pendence Models

2 Willem Robert van Hage (VUA) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-
based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the
Quality of Organisational Policy Making using
Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and De-
mand for Knowledge Intensive Tasks: Based on
Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding Clas-
sification

7 Ronald Poppe (UT) Discriminative Vision-Based
Recovery and Recognition of Human Motion

8 Volker Nannen (VUA) Evolutionary Agent-Based
Policy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN) Design, Discovery
and Construction of Service-oriented Systems

10 Jan Wielemaker (UvA) Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UvA) Legal Theory, Sources of
Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-Universitaet zu
Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent
Systems

14 Maksym Korotkiy (VUA) From ontology-enabled
services to service-enabled ontologies (making
ontologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Representation:
Design Patterns and Ontologies that Make Sense

16 Fritz Reul (UvT) New Architectures in Computer
Chess

17 Laurens van der Maaten (UvT) Feature Extrac-
tion from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable
Classification

22 Pavel Serdyukov (UT) Search For Expertise: Go-
ing beyond direct evidence

23 Peter Hofgesang (VUA) Modelling Web Usage in
a Changing Environment

24 Annerieke Heuvelink (VUA) Cognitive Models
for Training Simulations

25 Alex van Ballegooij (CWI) RAM: Array Database
Management through Relational Mapping

26 Fernando Koch (UU) An Agent-Based Model for
the Development of Intelligent Mobile Services

27 Christian Glahn (OU) Contextual Support of so-
cial Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management
with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Semantic
Integration of Service-Oriented Applications

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized stor-
age

31 Sofiya Katrenko (UvA) A Closer Look at Learn-
ing Relations from Text

32 Rik Farenhorst (VUA) Architectural Knowledge
Management: Supporting Architects and Auditors

33 Khiet Truong (UT) How Does Real Affect Affect
Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method
Engineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens: Over geautomatiseerde normatieve
informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support for Learn-
ers in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support for
Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-organisation:
a metadata ecology for learning resources in a
multilingual context

145

SIKS Dissertation Series

39 Christian Stahl (TUE, Humboldt-Universitaet zu
Berlin) Service Substitution: A Behavioral Ap-
proach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Lan-
guage Learning: Investigations into the Geometry
of Language

41 Igor Berezhnyy (UvT) Digital Analysis of Paint-
ings

42 Toine Bogers (UvT) Recommender Systems for
Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing Business-
IT Alignment in Networked Organizations

45 Jilles Vreeken (UU) Making Pattern Mining Use-
ful

46 Loredana Afanasiev (UvA) Querying XML:
Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Matter
2 Ingo Wassink (UT) Work flows in Life Science
3 Joost Geurts (CWI) A Document Engineering

Model and Processing Framework for Multime-
dia documents

4 Olga Kulyk (UT) Do You Know What I Know?
Situational Awareness of Co-located Teams in
Multidisplay Environments

5 Claudia Hauff (UT) Predicting the Effectiveness
of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of Video
Game AI

7 Wim Fikkert (UT) Gesture interaction at a Dis-
tance

8 Krzysztof Siewicz (UL) Towards an Improved
Regulatory Framework of Free Software. Protect-
ing user freedoms in a world of software commu-
nities and eGovernments

9 Hugo Kielman (UL) A Politiele gegevensverwerk-
ing en Privacy, Naar een effectieve waarborging

10 Rebecca Ong (UL) Mobile Communication and
Protection of Children

11 Adriaan Ter Mors (TUD) The world according to
MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking software
for crime analysis

13 Gianluigi Folino (RUN) High Performance Data
Mining using Bio-inspired techniques

14 Sander van Splunter (VUA) Automated Web Ser-
vice Reconfiguration

15 Lianne Bodenstaff (UT) Managing Dependency
Relations in Inter-Organizational Models

16 Sicco Verwer (TUD) Efficient Identification of
Timed Automata, theory and practice

17 Spyros Kotoulas (VUA) Scalable Discovery of
Networked Resources: Algorithms, Infrastruc-
ture, Applications

18 Charlotte Gerritsen (VUA) Caught in the Act: In-
vestigating Crime by Agent-Based Simulation

19 Henriette Cramer (UvA) People’s Responses to
Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Anyway?
How Improv Informs Agency and Authorship of
Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware data
management by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support for
Access to
Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure of
Emotions

24 Zulfiqar Ali Memon (VUA) Modelling Human-
Awareness for Ambient Agents: A Human Min-
dreading Perspective

25 Ying Zhang (CWI) XRPC: Efficient Distributed
Query Processing on Heterogeneous XQuery En-
gines

26 Marten Voulon (UL) Automatisch contracteren
27 Arne Koopman (UU) Characteristic Relational

Patterns
28 Stratos Idreos (CWI) Database Cracking: To-

wards Auto-tuning Database Kernels
29 Marieke van Erp (UvT) Accessing Natural His-

tory: Discoveries in data cleaning, structuring,
and retrieval

30 Victor de Boer (UvA) Ontology Enrichment from
Heterogeneous Sources on the Web

31 Marcel Hiel (UvT) An Adaptive Service Oriented
Architecture: Automatically solving Interoper-
ability Problems

32 Robin Aly (UT) Modeling Representation Uncer-
tainty in Concept-Based Multimedia Retrieval

33 Teduh Dirgahayu (UT) Interaction Design in Ser-
vice Compositions

34 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Retrieval

35 Jose Janssen (OU) Paving the Way for Lifelong
Learning: Facilitating competence development
through a learning path specification

36 Niels Lohmann (TUe) Correctness of services
and their composition

37 Dirk Fahland (TUe) From Scenarios to compo-
nents

38 Ghazanfar Farooq Siddiqui (VUA) Integrative
modeling of emotions in virtual agents

39 Mark van Assem (VUA) Converting and Integrat-
ing Vocabularies for the Semantic Web

40 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

41 Sybren de Kinderen (VUA) Needs-driven service
bundling in a multi-supplier setting: the compu-
tational e3-service approach

146

SIKS Dissertation Series

42 Peter van Kranenburg (UU) A Computational Ap-
proach to Content-Based Retrieval of Folk Song
Melodies

43 Pieter Bellekens (TUe) An Approach towards
Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the
Television Domain

44 Vasilios Andrikopoulos (UvT) A theory and
model for the evolution of software services

45 Vincent Pijpers (VUA) e3alignment: Exploring
Inter-Organizational Business-ICT Alignment

46 Chen Li (UT) Mining Process Model Variants:
Challenges, Techniques, Examples

47 Jahn-Takeshi Saito (UM) Solving difficult game
positions

48 Bouke Huurnink (UvA) Search in Audiovisual
Broadcast Archives

49 Alia Khairia Amin (CWI) Understanding and
supporting information seeking tasks in multiple
sources

50 Peter-Paul van Maanen (VUA) Adaptive Support
for Human-Computer Teams: Exploring the Use
of Cognitive Models of Trust and Attention

51 Edgar Meij (UvA) Combining Concepts and Lan-
guage Models for Information Access

2011

1 Botond Cseke (RUN) Variational Algorithms for
Bayesian Inference in Latent Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent Organi-
zations. Syntax and Operational Semantics of an
Organization-Oriented Programming Language

3 Jan Martijn van der Werf (TUe) Compositional
Design and Verification of Component-Based In-
formation Systems

4 Hado van Hasselt (UU) Insights in Reinforcement
Learning: Formal analysis and empirical evalua-
tion of temporal-difference

5 Base van der Raadt (VUA) Enterprise Architec-
ture Coming of Age: Increasing the Performance
of an Emerging Discipline

6 Yiwen Wang (TUe) Semantically-Enhanced Rec-
ommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information Presen-
tation for High Load Human Computer Interac-
tion

8 Nieske Vergunst (UU) BDI-based Generation of
Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Media
for Learning

10 Bart Bogaert (UvT) Cloud Content Contention
11 Dhaval Vyas (UT) Designing for Awareness: An

Experience-focused HCI Perspective
12 Carmen Bratosin (TUe) Grid Architecture for

Distributed Process Mining

13 Xiaoyu Mao (UvT) Airport under Control. Multi-
agent Scheduling for Airport Ground Handling

14 Milan Lovric (EUR) Behavioral Finance and
Agent-Based Artificial Markets

15 Marijn Koolen (UvA) The Meaning of Structure:
the Value of Link Evidence for Information Re-
trieval

16 Maarten Schadd (UM) Selective Search in Games
of Different Complexity

17 Jiyin He (UvA) Exploring Topic Structure: Co-
herence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-Making in
complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on Personal
Profiles

20 Qing Gu (VUA) Guiding service-oriented soft-
ware engineering: A view-based approach

21 Linda Terlouw (TUD) Modularization and Speci-
fication of Service-Oriented Systems

22 Junte Zhang (UvA) System Evaluation of Archival
Description and Access

23 Wouter Weerkamp (UvA) Finding People and
their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Genera-
tion for Interpersonal Coordination with Virtual
Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VUA) Analysis
and Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VUA) Virtual Agents for
Human Communication: Emotion Regulation and
Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots

27 Aniel Bhulai (VUA) Dynamic website optimiza-
tion through autonomous management of design
patterns

28 Rianne Kaptein (UvA) Effective Focused Re-
trieval by Exploiting Query Context and Docu-
ment Structure

29 Faisal Kamiran (TUe) Discrimination-aware
Classification

30 Egon van den Broek (UT) Affective Signal Pro-
cessing (ASP): Unraveling the mystery of emo-
tions

31 Ludo Waltman (EUR) Computational and Game-
Theoretic Approaches for Modeling Bounded Ra-
tionality

32 Nees-Jan van Eck (EUR) Methodological Ad-
vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate De-
cisions

34 Paolo Turrini (UU) Strategic Reasoning in Inter-
dependence: Logical and Game-theoretical In-
vestigations

35 Maaike Harbers (UU) Explaining Agent Behavior
in Virtual Training

36 Erik van der Spek (UU) Experiments in serious
game design: a cognitive approach

147

SIKS Dissertation Series

37 Adriana Burlutiu (RUN) Machine Learning
for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference

38 Nyree Lemmens (UM) Bee-inspired Distributed
Optimization

39 Joost Westra (UU) Organizing Adaptation using
Agents in Serious Games

40 Viktor Clerc (VUA) Architectural Knowledge
Management in Global Software Development

41 Luan Ibraimi (UT) Cryptographically Enforced
Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior
through Mental State Attribution

43 Henk van der Schuur (UU) Process Improvement
through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-Computer
Interfaces

45 Herman Stehouwer (UvT) Statistical Language
Models for Alternative Sequence Selection

46 Beibei Hu (TUD) Towards Contextualized Infor-
mation Delivery: A Rule-based Architecture for
the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VUA) Exploring Computa-
tional Models for Intelligent Support of Persons
with Depression

48 Mark Ter Maat (UT) Response Selection and
Turn-taking for a Sensitive Artificial Listening
Agent

49 Andreea Niculescu (UT) Conversational inter-
faces for task-oriented spoken dialogues: design
aspects influencing interaction quality

2012

1 Terry Kakeeto (UvT) Relationship Marketing for
SMEs in Uganda

2 Muhammad Umair (VUA) Adaptivity, emotion,
and Rationality in Human and Ambient Agent
Models

3 Adam Vanya (VUA) Supporting Architecture
Evolution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content
Management System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisational
Information Systems

6 Wolfgang Reinhardt (OU) Awareness Support for
Knowledge Workers in Research Networks

7 Rianne van Lambalgen (VUA) When the Going
Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Condi-
tions

8 Gerben de Vries (UvA) Kernel Methods for Vessel
Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Man-
agement Support for Context-Aware Service Plat-
forms

10 David Smits (TUe) Towards a Generic Dis-
tributed Adaptive Hypermedia Environment

11 J. C. B. Rantham Prabhakara (TUe) Process Min-
ing in the Large: Preprocessing, Discovery, and
Diagnostics

12 Kees van der Sluijs (TUe) Model Driven Design
and Data Integration in Semantic Web Informa-
tion Systems

13 Suleman Shahid (UvT) Fun and Face: Exploring
non-verbal expressions of emotion during playful
interactions

14 Evgeny Knutov (TUe) Generic Adaptation
Framework for Unifying Adaptive Web-based
Systems

15 Natalie van der Wal (VUA) Social Agents. Agent-
Based Modelling of Integrated Internal and So-
cial Dynamics of Cognitive and Affective Pro-
cesses

16 Fiemke Both (VUA) Helping people by under-
standing them: Ambient Agents supporting task
execution and depression treatment

17 Amal Elgammal (UvT) Towards a Comprehen-
sive Framework for Business Process Compliance

18 Eltjo Poort (VUA) Improving Solution Architect-
ing Practices

19 Helen Schonenberg (TUe) What’s Next? Opera-
tional Support for Business Process Execution

20 Ali Bahramisharif (RUN) Covert Visual Spa-
tial Attention, a Robust Paradigm for Brain-
Computer Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse Ma-
trices for Information Retrieval

22 Thijs Vis (UvT) Intelligence, politie en veilighei-
dsdienst: verenigbare grootheden?

23 Christian Muehl (UT) Toward Affective Brain-
Computer Interfaces: Exploring the Neurophys-
iology of Affect during Human Media Interaction

24 Laurens van der Werff (UT) Evaluation of Noisy
Transcripts for Spoken Document Retrieval

25 Silja Eckartz (UT) Managing the Business Case
Development in Inter-Organizational IT Projects:
A Methodology and its Application

26 Emile de Maat (UvA) Making Sense of Legal Text
27 Hayrettin Gurkok (UT) Mind the Sheep! User Ex-

perience Evaluation & Brain-Computer Interface
Games

28 Nancy Pascall (UvT) Engendering Technology
Empowering Women

29 Almer Tigelaar (UT) Peer-to-Peer Information
Retrieval

30 Alina Pommeranz (TUD) Designing Human-
Centered Systems for Reflective Decision Making

31 Emily Bagarukayo (RUN) A Learning by Con-
struction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD) Qualitative multi-criteria
preference representation and reasoning

148

SIKS Dissertation Series

33 Rory Sie (OUN) Coalitions in Cooperation Net-
works (COCOON)

34 Pavol Jancura (RUN) Evolutionary analysis in
PPI networks and applications

35 Evert Haasdijk (VUA) Never Too Old To Learn:
On-line Evolution of Controllers in Swarm- and
Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Evalua-
tion of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration Pro-
cess for Enterprise Architecture Creation

38 Selmar Smit (VUA) Parameter Tuning and Scien-
tific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of value
and coordination networks

40 Agus Gunawan (UvT) Information Access for
SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Patterns for
Learning

42 Dominique Verpoorten (OU) Reflection Ampli-
fiers in self-regulated Learning

43 Anna Tordai (VUA) On Combining Alignment
Techniques

44 Benedikt Kratz (UvT) A Model and Language for
Business-aware Transactions

45 Simon Carter (UvA) Exploration and Exploita-
tion of Multilingual Data for Statistical Machine
Translation

46 Manos Tsagkias (UvA) Mining Social Media:
Tracking Content and Predicting Behavior

47 Jorn Bakker (TUe) Handling Abrupt Changes in
Evolving Time-series Data

48 Michael Kaisers (UM) Learning against Learn-
ing: Evolutionary dynamics of reinforcement
learning algorithms in strategic interactions

49 Steven van Kervel (TUD) Ontologogy driven En-
terprise Information Systems Engineering

50 Jeroen de Jong (TUD) Heuristics in Dynamic
Sceduling: a practical framework with a case
study in elevator dispatching

2013

1 Viorel Milea (EUR) News Analytics for Financial
Decision Support

2 Erietta Liarou (CWI) MonetDB/DataCell: Lever-
aging the Column-store Database Technology for
Efficient and Scalable Stream Processing

3 Szymon Klarman (VUA) Reasoning with Con-
texts in Description Logics

4 Chetan Yadati (TUD) Coordinating autonomous
planning and scheduling

5 Dulce Pumareja (UT) Groupware Requirements
Evolutions Patterns

6 Romulo Goncalves (CWI) The Data Cyclotron:
Juggling Data and Queries for a Data Warehouse
Audience

7 Giel van Lankveld (UvT) Quantifying Individual
Player Differences

8 Robbert-Jan Merk (VUA) Making enemies: cog-
nitive modeling for opponent agents in fighter pi-
lot simulators

9 Fabio Gori (RUN) Metagenomic Data Analysis:
Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT) A Unified
Modeling Framework for Service Design

11 Evangelos Pournaras (TUD) Multi-level Recon-
figurable Self-organization in Overlay Services

12 Marian Razavian (VUA) Knowledge-driven Mi-
gration to Services

13 Mohammad Safiri (UT) Service Tailoring: User-
centric creation of integrated IT-based homecare
services to support independent living of elderly

14 Jafar Tanha (UvA) Ensemble Approaches to Semi-
Supervised Learning Learning

15 Daniel Hennes (UM) Multiagent Learning: Dy-
namic Games and Applications

16 Eric Kok (UU) Exploring the practical benefits of
argumentation in multi-agent deliberation

17 Koen Kok (VUA) The PowerMatcher: Smart Co-
ordination for the Smart Electricity Grid

18 Jeroen Janssens (UvT) Outlier Selection and One-
Class Classification

19 Renze Steenhuizen (TUD) Coordinated Multi-
Agent Planning and Scheduling

20 Katja Hofmann (UvA) Fast and Reliable Online
Learning to Rank for Information Retrieval

21 Sander Wubben (UvT) Text-to-text generation by
monolingual machine translation

22 Tom Claassen (RUN) Causal Discovery and
Logic

23 Patricio de Alencar Silva (UvT) Value Activity
Monitoring

24 Haitham Bou Ammar (UM) Automated Transfer
in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support. A new way
of representing and implementing clinical guide-
lines in a Decision Support System

26 Alireza Zarghami (UT) Architectural Support for
Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT) Inference-based Frame-
work Managing Data Provenance

28 Frans van der Sluis (UT) When Complexity be-
comes Interesting: An Inquiry into the Informa-
tion eXperience

29 Iwan de Kok (UT) Listening Heads
30 Joyce Nakatumba (TUe) Resource-Aware Busi-

ness Process Management: Analysis and Support
31 Dinh Khoa Nguyen (UvT) Blueprint Model and

Language for Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN) Networking For

Learning: The role of Networking in a Lifelong
Learner’s Professional Development

149

SIKS Dissertation Series

33 Qi Gao (TUD) User Modeling and Personaliza-
tion in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT) Distributed Deep Web
Search

35 Abdallah El Ali (UvA) Minimal Mobile Human
Computer Interaction

36 Than Lam Hoang (TUe) Pattern Mining in Data
Streams

37 Dirk Börner (OUN) Ambient Learning Displays
38 Eelco den Heijer (VUA) Autonomous Evolution-

ary Art
39 Joop de Jong (TUD) A Method for Enterprise

Ontology based Design of Enterprise Information
Systems

40 Pim Nijssen (UM) Monte-Carlo Tree Search for
Multi-Player Games

41 Jochem Liem (UvA) Supporting the Conceptual
Modelling of Dynamic Systems: A Knowledge En-
gineering Perspective on Qualitative Reasoning

42 Léon Planken (TUD) Algorithms for Simple Tem-
poral Reasoning

43 Marc Bron (UvA) Exploration and Contextual-
ization through Interaction and Concepts

2014

1 Nicola Barile (UU) Studies in Learning Monotone
Models from Data

2 Fiona Tuliyano (RUN) Combining System Dy-
namics with a Domain Modeling Method

3 Sergio Raul Duarte Torres (UT) Information Re-
trieval for Children: Search Behavior and Solu-
tions

4 Hanna Jochmann-Mannak (UT) Websites for chil-
dren: search strategies and interface design -
Three studies on children’s search performance
and evaluation

5 Jurriaan van Reijsen (UU) Knowledge Perspec-
tives on Advancing Dynamic Capability

6 Damian Tamburri (VUA) Supporting Networked
Software Development

7 Arya Adriansyah (TUe) Aligning Observed and
Modeled Behavior

8 Samur Araujo (TUD) Data Integration over Dis-
tributed and Heterogeneous Data Endpoints

9 Philip Jackson (UvT) Toward Human-Level Arti-
ficial Intelligence: Representation and Computa-
tion of Meaning in Natural Language

10 Ivan Salvador Razo Zapata (VUA) Service Value
Networks

11 Janneke van der Zwaan (TUD) An Empathic Vir-
tual Buddy for Social Support

12 Willem van Willigen (VUA) Look Ma, No Hands:
Aspects of Autonomous Vehicle Control

13 Arlette van Wissen (VUA) Agent-Based Support
for Behavior Change: Models and Applications
in Health and Safety Domains

14 Yangyang Shi (TUD) Language Models With
Meta-information

15 Natalya Mogles (VUA) Agent-Based Analysis
and Support of Human Functioning in Complex
Socio-Technical Systems: Applications in Safety
and Healthcare

16 Krystyna Milian (VUA) Supporting trial recruit-
ment and design by automatically interpreting el-
igibility criteria

17 Kathrin Dentler (VUA) Computing healthcare
quality indicators automatically: Secondary Use
of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UvA) Methods and Models for
the Design and Study of Dynamic Agent Organi-
zations

19 Vinicius Ramos (TUe) Adaptive Hypermedia
Courses: Qualitative and Quantitative Evalua-
tion and Tool Support

20 Mena Habib (UT) Named Entity Extraction and
Disambiguation for Informal Text: The Missing
Link

21 Kassidy Clark (TUD) Negotiation and Monitor-
ing in Open Environments

22 Marieke Peeters (UU) Personalized Educational
Games: Developing agent-supported scenario-
based training

23 Eleftherios Sidirourgos (UvA/CWI) Space Effi-
cient Indexes for the Big Data Era

24 Davide Ceolin (VUA) Trusting Semi-structured
Web Data

25 Martijn Lappenschaar (RUN) New network mod-
els for the analysis of disease interaction

26 Tim Baarslag (TUD) What to Bid and When to
Stop

27 Rui Jorge Almeida (EUR) Conditional Density
Models Integrating Fuzzy and Probabilistic Rep-
resentations of Uncertainty

28 Anna Chmielowiec (VUA) Decentralized k-
Clique Matching

29 Jaap Kabbedijk (UU) Variability in Multi-Tenant
Enterprise Software

30 Peter de Cock (UvT) Anticipating Criminal Be-
haviour

31 Leo van Moergestel (UU) Agent Technology in
Agile Multiparallel Manufacturing and Product
Support

32 Naser Ayat (UvA) On Entity Resolution in Prob-
abilistic Data

33 Tesfa Tegegne (RUN) Service Discovery in
eHealth

34 Christina Manteli (VUA) The Effect of Gover-
nance in Global Software Development: Analyz-
ing Transactive Memory Systems

35 Joost van Ooijen (UU) Cognitive Agents in Virtual
Worlds: A Middleware Design Approach

36 Joos Buijs (TUe) Flexible Evolutionary Algo-
rithms for Mining Structured Process Models

150

SIKS Dissertation Series

37 Maral Dadvar (UT) Experts and Machines United
Against Cyberbullying

38 Danny Plass-Oude Bos (UT) Making brain-
computer interfaces better: improving usability
through post-processing

39 Jasmina Maric (UvT) Web Communities, Immi-
gration, and Social Capital

40 Walter Omona (RUN) A Framework for Knowl-
edge Management Using ICT in Higher Educa-
tion

41 Frederic Hogenboom (EUR) Automated Detec-
tion of Financial Events in News Text

42 Carsten Eijckhof (CWI/TUD) Contextual Multi-
dimensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Process Im-
provement using Method Increments

44 Paulien Meesters (UvT) Intelligent Blauw:
Intelligence-gestuurde politiezorg in gebiedsge-
bonden eenheden

45 Birgit Schmitz (OUN) Mobile Games for Learn-
ing: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analytics: Rele-
vance, Redundancy, Diversity

47 Shangsong Liang (UvA) Fusion and Diversifica-
tion in Information Retrieval

2015

1 Niels Netten (UvA) Machine Learning for Rele-
vance of Information in Crisis Response

2 Faiza Bukhsh (UvT) Smart auditing: Innovative
Compliance Checking in Customs Controls

3 Twan van Laarhoven (RUN) Machine learning for
network data

4 Howard Spoelstra (OUN) Collaborations in Open
Learning Environments

5 Christoph Bösch (UT) Cryptographically En-
forced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Process Qual-
ity Computation: Computing Non-Functional Re-
quirements to Improve Business Processes

7 Maria-Hendrike Peetz (UvA) Time-Aware Online
Reputation Analysis

8 Jie Jiang (TUD) Organizational Compliance: An
agent-based model for designing and evaluating
organizational interactions

9 Randy Klaassen (UT) HCI Perspectives on Be-
havior Change Support Systems

10 Henry Hermans (OUN) OpenU: design of an in-
tegrated system to support lifelong learning

11 Yongming Luo (TUe) Designing algorithms for
big graph datasets: A study of computing bisimu-
lation and joins

12 Julie M. Birkholz (VUA) Modi Operandi of So-
cial Network Dynamics: The Effect of Context on
Scientific Collaboration Networks

13 Giuseppe Procaccianti (VUA) Energy-Efficient
Software

14 Bart van Straalen (UT) A cognitive approach to
modeling bad news conversations

15 Klaas Andries de Graaf (VUA) Ontology-based
Software Architecture Documentation

16 Changyun Wei (UT) Cognitive Coordination for
Cooperative Multi-Robot Teamwork

17 André van Cleeff (UT) Physical and Digital Secu-
rity Mechanisms: Properties, Combinations and
Trade-offs

18 Holger Pirk (CWI) Waste Not, Want Not!: Man-
aging Relational Data in Asymmetric Memories

19 Bernardo Tabuenca (OUN) Ubiquitous Technol-
ogy for Lifelong Learners

20 Loı̈s Vanhée (UU) Using Culture and Values to
Support Flexible Coordination

21 Sibren Fetter (OUN) Using Peer-Support to Ex-
pand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate Networks
23 Luit Gazendam (VUA) Cataloguer Support in

Cultural Heritage
24 Richard Berendsen (UvA) Finding People, Pa-

pers, and Posts: Vertical Search Algorithms and
Evaluation

25 Steven Woudenberg (UU) Bayesian Tools for
Early Disease Detection

26 Alexander Hogenboom (EUR) Sentiment Analy-
sis of Text Guided by Semantics and Structure

27 Sándor Héman (CWI) Updating compressed
colomn stores

28 Janet Bagorogoza (TiU) KNOWLEDGE MAN-
AGEMENT AND HIGH PERFORMANCE: The
Uganda Financial Institutions Model for HPO

29 Hendrik Baier (UM) Monte-Carlo Tree Search
Enhancements for One-Player and Two-Player
Domains

30 Kiavash Bahreini (OU) Real-time Multimodal
Emotion Recognition in E-Learning

31 Yakup Koç (TUD) On the robustness of Power
Grids

32 Jerome Gard (UL) Corporate Venture Manage-
ment in SMEs

33 Frederik Schadd (TUD) Ontology Mapping with
Auxiliary Resources

34 Victor de Graaf (UT) Gesocial Recommender Sys-
tems

35 Jungxao Xu (TUD) Affective Body Language of
Humanoid Robots: Perception and Effects in Hu-
man Robot Interaction

2016

1 Syed Saiden Abbas (RUN) Recognition of Shapes
by Humans and Machines

2 Michiel Christiaan Meulendijk (UU) Optimiz-
ing medication reviews through decision support:
prescribing a better pill to swallow

151

SIKS Dissertation Series

3 Maya Sappelli (RUN) Knowledge Work in Con-
text: User Centered Knowledge Worker Support

4 Laurens Rietveld (VU) Publishing and Consum-
ing Linked Data

5 Evgeny Sherkhonov (UvA) Expanded Acyclic
Queries: Containment and an Application in Ex-
plaining Missing Answers

6 Michel Wilson (TUD) Robust scheduling in an
uncertain environment

7 Jeroen de Man (VU) Measuring and modeling
negative emotions for virtual training

8 Matje van de Camp (TiU) A Link to the Past: Con-
structing Historical Social Networks from Un-
structured Data

9 Archana Nottamkandath (VU) Trusting Crowd-
sourced Information on Cultural Artefacts

10 George Karafotias (VUA) Parameter Control for
Evolutionary Algorithms

11 Anne Schuth (UvA) Search Engines that Learn
from Their Users

12 Max Knobbout (UU) Logics for Modelling and
Verifying Normative Multi-Agent Systems

13 Nana Baah Gyan (VU) The Web, Speech Tech-
nologies and Rural Development in West Africa -
An ICT4D Approach

14 Ravi Khadka (UU) Revisiting Legacy Software
System Modernization

15 Steffen Michels (RUN) Hybrid Probabilistic
Logics - Theoretical Aspects, Algorithms and Ex-
periments

16 Guangliang Li (UvA) Socially Intelligent Au-
tonomous Agents that Learn from Human Reward

17 Berend Weel (VU) Towards Embodied Evolution
of Robot Organisms

18 Albert Meroño Peñuela (VU) Refining Statistical
Data on the Web

19 Julia Efremova (Tu/e) Mining Social Structures
from Genealogical Data

20 Daan Odijk (UvA) Context & Semantics in News
& Web Search

21 Alejandro Moreno Clleri (UT) From Traditional
to Interactive Playspaces: Automatic Analysis
of Player Behavior in the Interactive Tag Play-
ground

22 Grace Lewis (VU) Software Architecture Strate-
gies for Cyber-Foraging Systems

23 Fei Cai (UvA) Query Auto Completion in Infor-
mation Retrieval

152

	1 Introduction
	1.1 Research Outline and Questions
	1.2 Main Contributions
	1.3 Thesis Overview
	1.4 Origins

	2 Background
	2.1 Problem Formulation
	2.2 Probabilistic QAC Approaches
	2.3 Learning-based QAC Approaches
	2.4 Practical Issues
	2.5 Summary

	3 Experimental Methodology
	3.1 Experimental Setup
	3.2 Benchmark Datasets
	3.3 Evaluation Measures
	3.4 Summary

	4 Prefix-adaptive and Time-sensitive Personalized Query Auto Completion
	4.1 Approach
	4.2 Experiments
	4.3 Results and Discussion
	4.4 Conclusion

	5 Learning from Homologous Queries and Semantically Related Terms for Query Auto Completion
	5.1 Approach
	5.2 Experiments
	5.3 Results and Discussion
	5.4 Conclusion

	6 Diversifying Query Auto Completion
	6.1 Approaches
	6.2 Experiments
	6.3 Results and Discussion
	6.4 Conclusion

	7 Selectively Personalizing Query Auto Completion
	7.1 Approach
	7.2 Experimental Setup
	7.3 Results and Discussion
	7.4 Conclusion

	8 Conclusions
	8.1 Main Findings
	8.2 Future Work

	Bibliography
	Summary
	Samenvatting

