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ABSTRACT
Query auto-completion (QAC) is a prominent feature of modern
search engines. It is aimed at saving user’s time and enhancing
the search experience. Current QAC models mostly rank matching
QAC candidates according to their past popularity, i.e., frequency.
However, query popularity changes over time and may vary drasti-
cally across users. Hence, rankings of QAC candidates should be
adjusted accordingly. In previous work time-sensitive QAC mod-
els and user-specific QAC models have been developed separately.
Both types of QAC model lead to important improvements over
models that are neither time-sensitive nor personalized. We pro-
pose a hybrid QAC model that considers both of these aspects:
time-sensitivity and personalization.

Using search logs, we return the top N QAC candidates by pre-
dicted popularity based on their recent trend and cyclic behavior.
We use auto-correlation to detect query periodicity by long-term
time-series analysis, and anticipate the query popularity trend based
on observations within an optimal time window returned by a re-
gression model. We rerank the returned top N candidates by in-
tegrating their similarities with a user’s preceding queries (both in
the current session and in previous sessions by the same user) on
a character level to produce a final QAC list. Our experimental re-
sults on two real-world datasets show that our hybrid QAC model
outperforms state-of-the-art time-sensitive QAC baseline, achiev-
ing total improvements of between 3% and 7% in terms of MRR.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information Search
and Retrieval

Keywords
Query auto-completion; personalization; time-sensitive

1. INTRODUCTION
To improve the search quality, common search engines and pop-

ular online properties such as online shopping and email, all pro-
vide a query auto-completion (QAC) service, where the goal is
to help users formulate queries by providing possible completions
matching the first few keystrokes typed. As a user enters a query
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(a) Query auto-completion of typed prefix cikm.

(b) Query auto-completion of typed prefix cikm conference.

Figure 1: (Top) Query auto-completion by Google for the pre-
fix cikm. (Bottom) The refined completions with after continu-
ing to type conference after cikm. The snapshot was taken on
Thursday, April 10, 2014.

in search box, matching completions appear below the search box
as a drop-down menu with the typed characters highlighted in each
completion. Once the matching candidates are filtered, they can
be ranked according to different criteria. For instance, in an online
store such completions may be ordered according to the price of
products [12]. In pre-computed auto-completion systems, the list
of matching candidates for each prefix are generated in advance and
stored in efficient data structure for fast lookups. When needed, as
shown in Fig. 1, continuing typing more characters can dynami-
cally refine the completions by exact prefix matching until you find
a more appropriate completion. Where offered, the facility is heav-
ily used and highly influential on search results [3, 32].

Clearly, query auto-completion, or “type ahead” functionality,
just takes a few initial keystrokes as input and returns matching
queries to auto-complete the search clue. QAC candidates can be
weighted by previous popularity and can either be influenced or
hard-sorted by this factor or any other criterion, so that the most
possible completions are listed first. Generally, queries can be
completed from one or more of the following sources: (i) previ-
ous query popularity; (ii) search behavior; (iii) for email search,
sender/recipient names using the field aliases (to:, from: and cc:).

A common approach in previous work on QAC is to extract past
queries with each prefix from a period of query logs, and rank them
by their past popularity [3, 32, 33], which assumes that current or
future query popularity is the same as past query popularity. Al-
though this approach results in satisfactory QAC performance on
average, it is far from optimal since it fails to take strong clues from
time, trend and user-specific context into consideration while such
information often influences the queries most likely to be typed. As
illustrated in Fig. 2, personalized QAC may inject the most popu-
lar completions from a user as query completions to that user; see
Fig. 2a (not personalized) and 2b (personalized). From Fig. 2c and
Fig. 2d according to Google Trends, we can also find the query
popularity strongly depends on the time (a clear burst for MH370



(a) Google QAC of typed prefix c without logging in.

(b) Google QAC of typed prefix c after logging in.

(c) Relative query popularity in the past 10 years (2004-
2013).

(d) Relative query popularity within the past 90 days
(from 10-Jan-2014 to 9-Apr-2014).

Figure 2: (Top) Google QAC of the typed prefix c under dif-
ferent logging settings. (Bottom) Relative query popularity for
different queries over time. Queries: MH370 in blue, movie in
red and christmas in yellow. Among the three queries, movie
is more popular weekly on weekends, while christmas is issued
more commonly by users yearly, and MH370 presents a sharp
increase from a relatively low level near March 8, 2014. The
snapshot was taken on Thursday, April 10, 2014.

around 8 March, 2014), and it presents cyclic phenomena (yearly
for christmas and weekly for movie), which can be explored to fore-
cast the future query popularity.1 This motivates a QAC approach
that takes both the temporal aspect and the personal context into
account. This work is an attempt towards this objective.

To begin with, we differentiate query auto-completion (QAC)
with query suggestion (QS) as follows:

Definition Let a string s with length l be keystrokes typed by user
u in search box. A query suggestion QS of s for u with the form
QS(s, u) is a set of candidate queries q, where q ∈ QS(s, u) is
considered to be relevant to s. Similarly, a query auto completion
QAC of s for u with the form QAC(s, u) is a set of candidate
queries q, where QAC(s, u) = {q : q StartsWith(s)}, namely
q[i] = s[i] for i from 1 to l.

From this definition, QS(s, u) may cover more general queries
than QAC(s, u). Also, we classify queries that need to be con-
sidered for completion into two categories. The first category cor-
responds to periodic queries that are: (i) consistently popular with
short-term periodicity (e.g., movie); (ii) temporally recurring with
long-term periodicity (e.g., christmas). The second category corre-
sponds to aperiodic queries related to entirely unforeseeable break-
ing events and phenomena (e.g., MH370). Therefore, achieving
optimal QAC effectiveness for a user, on average, is attributed to
two factors: time-sensitive query popularity and personal context.

In our QAC model we first return the top N query completions
by predicted popularity, not only based on the recent trend but also
based on cyclic phenomena; we then rerank the returned top N
1http://www.google.com/trends

completions by user-specific context to output a final query com-
pletion list. Predicted query popularity is based on two aspects, i.e.,
periodicity of a query detected by long-term time-series analysis
plus its recent trend as indicated by observations during an optimal
time window returned by a regression model. Rather than summa-
rizing recent variations of query popularity in a fixed time span,
we anticipate the trend from different periods of observations for
each query. Secondly, we exploit each user’s previous queries, both
during the current session and from historical logs as user-specific
context for reranking the top N QAC candidates. We combine the
contributions from the predicted popularity and user-specific query
similarity to produce a personalized list of QAC candidates.

We show that the predicted popularity values produced by our
time-sensitive approach are closer approximations to what will be
observed later in the logs, and are more effective for QAC after
integrating user query similarity, with improvements in Mean Re-
ciprocal Rank (MRR) scores by 3% on the AOL log and 7% on a
search log from an audiovisual archive when compared to a state-
of-the-art time-sensitive baseline [36].

Our contributions in this paper can be summarized as follows:

1. We tackle the challenge of query auto-completion in a novel
way by considering both time-sensitive query popularity and
user-specific context.

2. We propose a new query popularity prediction method that
achieves a better QAC ranking in terms of Mean Reciprocal
Rank (MRR).

3. We analyze the effectiveness of our hybrid QAC model which
considers predicted query popularity and user-specific con-
text and find that it significantly outperforms state-of-the-art
time-sensitive QAC methods.

2. RELATED WORK
Query auto-completion (QAC) [4, 5, 19, 32] is a prominent fea-

ture of common search engines. It relies on query logs to generate
QAC candidates, and is among the first services that users inter-
act when using an information retrieval system as they search and
formulate their queries [31]. In major web search scenarios, the
common and straightforward approach to rank QAC candidates is
to use Maximum Likelihood Estimation (MLE) based on the past
popularity of queries [3]. Bar-Yossef and Kraus [3] refer to this
type of ranking as the Most Popular Completion (MPC) model:

MPC(p) = arg max
q∈C(p)

w(q), w(q) =
f(q)∑
i∈Q f(i)

, (1)

where f(q) denotes the number of occurrences of query q in search
log Q, and C(p) is a set of query completion candidates that start
with prefix p. In essence, the MPC model assumes that the cur-
rent query popularity distribution will remain the same as that pre-
viously observed, and hence completions are ranked by their past
popularity in order to maximize QAC effectiveness for all users on
average. As mentioned earlier, query popularity may change over
time and the ranking of completions is also user-dependent (see
Fig. 2). Accordingly, the QAC candidates must be adjusted con-
sequently to account for time-sensitive and user-specific changes.

2.1 Time-sensitive query auto-completion
Time-sensitive query auto-completion (TS-QAC) takes time in-

formation, such as recency [16, 26, 36] and seasonality [30, 32],
into consideration for ranking QAC candidates. It leverages time-
series analysis techniques for classifying seasonal queries and fore-
casting their future popularity [30, 32]. Alfonseca et al. [1] cluster
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queries based on time-series features; they suggest that their ap-
proach can be used for query completion and query categorization.

Rather than ranking QAC candidates by their previously observed
popularity, Shokouhi and Radinsky [32] propose a long-term time-
series modeling approach to forecast the query frequencies via ap-
plying a fixed moving time window. Queries recurring during spe-
cific temporal intervals, such as day/night, workday/weekend, sum-
mer/winter, etc. are modeled differently to predict future popularity
for QAC ranking at different times. The forecasts obtained by such
time-series modeling are substantially more reliable. However, the
detailed analysis of the performance impact of the time window
period selection and how to choose the optimal length of time win-
dow is unsolved. Similarly, Strizhevskaya et al. [33] study actu-
alization techniques for measuring prediction accuracy of various
daily query popularity prediction models using query logs.

Another aspect of time-sensitive QAC is the problem of search
trend prediction. Short-range query popularity prediction has seen
little attention. Golbandi et al. [16] develop a regression model to
detect bursting queries for enhancing trend detection. By analyzing
query logs, they seek to accurately predict what are the most trend-
ing query items on the Web. Various attempts have been made to
make search trend prediction more accurate with low latency rela-
tive to the actual event that sparked the trend. Kulkarni et al. [21]
classify queries into different categories based on the changes in
popularity over time, and show that monitoring the query popular-
ity can reveal strong signals for detecting the trend in query intent.

White and Marchionini [35] propose a query completion model
that produces an updated list of additional terms as a searcher en-
ters his query. Real-time query completion is found to help users
form better queries. Chien and Immorlica [13] demonstrate that
queries with similar temporal patterns can be semantically related
for query completion despite no lexical overlap. Liu et al. [24] in-
troduce a unified model for forecasting query frequency, in which
the forecast for each query is influenced by the frequencies pre-
dicted for semantically similar queries. Michail et al. [25] develop
a compressed representation for time-series and propose a model
for detecting bursts in query frequencies; these approaches can be
utilized to boost QAC effectiveness.

Recently, considering both recent trend and past query popular-
ity, Whiting and Jose [36] propose several practical QAC ranking
approaches to deal with both robust and time-sensitive QAC task
(as baselines), such as outputting query popularity evidence from a
sliding window of past 2 to 28 days or the query popularity distri-
bution in a recent query chunk observed with a given prefix, as well
as predicting query popularity based on recently observed trends.

Our TS-QAC approach differs from previous work as we con-
sider both periodicity and recent trends in query frequency. Addi-
tionally, none of the work listed so far caters for individual users,
returning the same QAC list of typed prefixes. We return a per-
sonalized QAC ranking list to boost QAC effectiveness based on a
time-sensitive QAC ranking list output by forecasted query popu-
larity, which will specifically benefit revisiting search tasks.

2.2 User-specific query auto-completion
In most work mentioned so far, QAC candidates are computed

globally and for a given prefix: all users are presented with the
same list of candidates. But exploiting the user’s personal context
has led to increases in QAC effectiveness [3, 22, 28, 31].

Bar-Yossef and Kraus [3] treat the user’s recent queries as con-
text and exploit users with shared search activity, considering the
similarity of QAC candidates with this context for ranking. Their
hybrid model computes the final score of each candidate by linearly
combining the MPC score and a context-similarity score. Our ap-

proach to personalized QAC differs in the definition of and in the
way we measure context-similarity. Shokouhi [31] exploits pro-
files to extract user-based features to model the likelihood that a
user will issue certain queries, and explores the effectiveness of
considering a user’s age, gender, location and longer search history
in QAC ranking, to therefore personalize the QAC ranking.

Guo et al. [18] propose a two-step approach, in which the user’s
session context is matched against pre-generated topic models for
ranking QAC candidates. Similarly, Cao et al. [10] and Liao et al.
[22] first cluster queries in the click graph into a smaller set of vir-
tual concepts. They match the users’ context captured based on
their recent queries against these clusters for ranking QAC can-
didates. Weber and Castillo [34] focus on showing differences
in query likelihood across demographics. They predict the sec-
ond term in a query based on an unsupervised probabilistic model.
Building on temporal intuitions, Sengstock and Gertz [29] consider
query completions that depend on the time of day, i.e., taking the
search time as a user-specific context. Arias et al. [2] propose a
QAC algorithm for mobile search; their completions are thesaurus-
based concepts whose relatedness to the user’s context is fixed and
pre-determined by a rule-based mechanism.

Bhatia et al. [7] mine frequently occurring phrases and n-grams
from indexed documents for generating and ranking QAC candi-
dates for partial queries in the absence of search logs. Fan et al.
[14] propose a generative model that incorporates the topical co-
herence of terms based on Latent Dirichlet Allocation (LDA) for
ranking QAC candidates. Closely similar to QAC, Bickel et al. [8]
learn a linearly interpolated n-gram model for sentence completion
based on lexicon statistics of text collections. Grabski and Scheffer
[17] deploy an index-based retrieval algorithm and a cluster-based
approach for their sentence-completion task.

Most user specific QAC approaches (re-)rank QAC candidates
by measuring their similarity with the content in search logs, over-
looking the updated query popularity. To the best of our knowl-
edge, there is no published work on QAC considering both time-
sensitivity and user-specificity. Previous work either focused on
one or the other of these two aspects of QAC. Combining them is
our goal here: time-sensitive personalized query auto-completion.
By doing so our approach to personalized QAC stands to gain from
repetitions in user search behavior.

3. APPROACH
In this section we describe our time-sensitive personalized query

auto-completion approach, a hybrid model, that not only inherits
the merits of time-sensitive query auto-completion but considers a
user’s personal context. Table 1 provides an overview of the QAC
approaches we discuss; the baselines (rows 1–3) are described in
the literature; we detail our models (rows 4–10) in three steps:
time-sensitive QAC, personalized QAC, and hybrid QAC.

3.1 Periodicity and trend based QAC
We propose a time-sensitive QAC (TS-QAC) method that ranks

QAC candidates by predicted query popularity (i.e., its frequency)
based on its periodicity and recent trend to detect both cyclicly and
instantly frequent queries. TS-QAC not only inherits the merits of
time-series analysis on long-term observations of query popularity,
but also considers the recent variation of query counts. Specifi-
cally, we predict a query q’s next-day popularity ỹt0+1(q, λ) at day
t0 + 1 before day t0 by both its recent trend and periodicity with a
free parameter λ (0 ≤ λ ≤ 1) controlling each contribution:

ỹt0+1(q, λ) = λ× ŷt0+1(q)trend + (1−λ)× ȳt0+1(q)peri, (2)



Table 1: Description of various QAC methods.

Approach Description Source

MPC-ALL A QAC model that ranks QAC candidates according to their past popularity on the whole log Reference [3]
MPC-R-TW A QAC model that ranks QAC candidates according to their past popularity within a fixed time window Reference [36]
O-MPC-R A QAC model that ranks QAC candidates according to their past popularity within an optimal time window Reference [36]

λ-TS-QAC A time-sensitive QAC model (see Algorithm 1) with a fixed parameter λ = 0.5 used in (2) This paper
λ∗-TS-QAC A time-sensitive QAC model (see Algorithm 1) with an optimal parameter λ∗ used in (2), achieved by (8) This paper
Personalized QAC A QAC model ranking QAC candidates according to their similarity to previous queries, following (9) This paper
λ-H-QAC A hybrid QAC model (see Algorithm 2) integrating λ-TS-QAC as (14) and our personalized QAC as (15) This paper
λ∗-H-QAC A hybrid QAC model (see Algorithm 2) integrating λ∗-TS-QAC achieved by (8) and our personalized QAC as (15) This paper
G-QAC A combined QAC model integrating MPC-ALL and personalized QAC using n-gram based query similarity as (16) This paper
λ∗-HG-QAC A combined QAC model integrating λ∗-TS-QAC and personalized QAC using n-gram based query similarity as (16) This paper

where λ = 1 for aperiodic queries and 0 ≤ λ < 1 for periodic
queries. The term ŷt0+1(q)trend is estimated via linear aggregation
of predictions from recent Ndays observations:

ŷt0+1(q)trend =
∑Ndays

i=1 norm(ωi)× ŷt0+1(q, i)trend, (3)

where norm(ωi) normalizes the contributions from each day to en-
sure

∑
i ωi = 1. We introduce a temporal decay function to output

the weight before normalizing as ωi = fTD(i)−1, where f is a de-
cay factor and TD(i) refers to the interval from day i to the future
day t0 + 1. We identify the highest prediction accuracy parameter
Ndays for each query based on its past observations in the whole
log using a multiple linear regression model, following [36]. The
prediction ŷt0+1(q, i)trend from each day i (i = 1, . . . , Ndays) is
derived from the first order derivative of q’s daily count C(q, t) as:

ŷt0+1(q, i)trend = yt0−TD(i)(q, i)+

∫ t0+1

t0−TD(i)

∂C(q, t)

∂t
dt, (4)

where yt0−TD(i)(q, i) is the observed query count of q at day i.
The periodicity term ȳt0+1(q)peri in (2) is smoothed by simply

averaging the recent M observations ytp at preceding time points
tp = t0 + 1− 1 · Tq, . . . , t0 + 1−M · Tq in the log:

ŷt0+1(q)peri = 1
M

∑M
m=1 yt0+1−m×Tq (q), (5)

where Tq denotes q’s periodicity. For detecting cyclic aspects of
query q’s frequency, we use the autocorrelation coefficients [11],
which measure the correlation between Ns successive count obser-
vations C(q, t) at different times t = 1, 2, . . . , Ns in the query log.
The correlation is computed between a time series and the same
series lagged by i time units:

ri =

Ns−i∑
t=1

(C(q, t)− x̄1)(C(q, t+ i)− x̄2)

[

Ns−i∑
t=1

(C(q, t)− x̄1)2]
1
2 [

Ns∑
t=i+1

(C(q, t+ i)− x̄2)2]
1
2

, (6)

where x̄1 is the mean of the first Ns − i observations and x̄2 is the
mean of the last Ns − i observations. For Ns reasonably large, the
denominator in (6) can be simplified by approximation. First, the
difference between the sub-period means x̄1 and x̄2 can be ignored.
Second, the difference between summations over observations 1 to
Ns − i and i + 1 to Ns can be ignored. Accordingly, ri can be
approximated by:

ri =

∑Ns−i
t=1 (C(q, t)− x̄)(C(q, t+ i)− x̄)∑Ns

t=1(C(q, t)− x̄)2
, (7)

where x̄ =
∑Ns
t=1 C(q, t) is the overall mean.

Algorithm 1 Time-sensitive query auto-completion (TS-QAC).

Input: All queries: Q; Length of training and validation days: Lt
and Lv; t0; Number of returned completions: N ;

Output: Predictions: Q̄ = {ȳt0+1(q): q ∈ Q};
Top N completions of each prefix of all queries;

1: for each q ∈ Q do
2: Tq ← autocor(Count(q));
3: for i = 1, · · · , Lt do
4: for j = 1, · · · , Lv do
5: ŷt0+1(q)trend[j]← Regression(Count(q)[1 : i]);
6: AbsoluteError[j]← ŷt0+1(q)trend[j]− yt0+1(q)|;
7: end for
8: MAE(i)← mean(AbsoluteError);
9: end for

10: Ndays ← arg min1≤i≤Lt MAE(i);
11: Update ŷt0+1(q)trend with optimal Ndays and Com-

pute ȳt0+1(q)peri;
12: end for
13: Find an optimal λ∗ by (8);
14: λ← λ∗;
15: for each q ∈ Q do
16: ỹt0+1(q, λ)← λ×ŷt0+1(q)trend+(1−λ)×ȳt0+1(q)peri;
17: end for
18: for each q ∈ Q do
19: for each prefix p of q do
20: Return top N completions of p ranked by ỹt0+1(q, λ);
21: end for
22: end for

Additionally, we choose an optimal free parameter λ∗ by min-
imizing a forecast accuracy metric Mean Absolute Error (MAE)
(described in §4.3) as:

λ∗ = arg min
0≤λ≤1

1

|Q| ·
1

|Lv|
∑
q∈Q

|Lv|∑
s=1

|ỹs(q, λ)− ys(q)|, (8)

where ỹs(q, λ) and ys(q) are the predicted and the true query counts
at day s during the validation period (Lv days), respectively.

Algorithm 1 details the major steps of time-sensitive QAC. For
our time-sensitive QAC method with a fixed λ we write λ-TS-
QAC; we write λ∗-TS-QAC when we use an optimal λ∗.

3.2 Personalized QAC
We extend our time-sensitive QAC described in §3.1 with per-

sonalized QAC in this section. After sorting the queries with typed
prefix p by predicted popularity following (2), we are given a rank-
ing list of top N QAC candidates. Let S(p) represent the set of
returned top N QAC candidates of prefix p.



Our personalized QAC works here by scoring the candidates
qc ∈ S(p) using a combination of similarity scores Score(Qs, qc)
and Score(Qu, qc), where Qs relates to the recent queries in the
current search session and Qu refers to those of the same user is-
sued before, if available, as:

Pscore(qc) = ω ·Score(Qs, qc)+(1−ω) ·Score(Qu, qc), (9)

where ω controls the weight of the individual component. Person-
alized QAC works at the session-based and user-dependent level.

To compute the similarity scores, we first consider how to repre-
sent queries inQs andQu. A naive approach would be to represent
a query by n-grams or its terms as “a bag of words”. The resulting
similarity measure can capture syntactic reformulations. However,
the problem is that queries are short, and thus their vocabulary is
too sparse to capture semantic relationships. In order to overcome
this sparsity problem, we use another solution to measure similar-
ity. From the statistics of our datasets (see Table 2 and Fig. 3),
we find that users often request the same query or reformulate the
query by extending or simplifying previous ones within the same
session. We treat a user’s preceding queries Qs in the current ses-
sion and Qu in the historical log as context to personalize QAC
where we measure similarity at the character level.

We represent each query qs ∈ Qs and qc ∈ S(p) by their query
terms as {ws1, ws2, . . . , wsm} and {wc1, wc1, . . . , wcn}. We let
N(w∗, q∗) denote the frequency of term w∗ appearing in q∗. We
score the similarity between qc andQs as a conditional probability:

Score(Qs, qc) = p(qc|Qs) =
∑
qs∈Qs

norm(ωs) · p(qc|qs), (10)

where norm(ωs) introduces a decay function ωs = fTD(s)−1 as
in (3) except that here TD(s) refers to the interval between qc and
qs, and p(qc|qs) is calculated following [9] as:

p(qc|qs) =
∏

wci∈qc

p(wci|qs)N(wci,qc) (11)

=
∏

wci∈qc

p(wci|W (wci))
N(wci,qc)

where W (wci) = {w : w ∈ qs | w[0] = wci[0]} is a set of terms
in qs sharing the same start with wci, and

p(wci|W (wci)) ≡ Similarity(wci,W (wci))

=
1

|W (wci)|
∑

wj∈W (wci)

Similarity(wci, wj)

=
1

|W (wci)|

|W (wci)|∑
j=1

len(common(wci, wj))

min(len(wci), len(wj))
,

where len(common(wci, wj)) is the maximal length of common
string appearing in wci and wj from the beginning.

We compute Score(Qu, qc) in a different manner from Score(Qs,
qc) in (9) because in this setting it is desirable to consider both
query count and time interval. We output Score(Qu, qc) as:

Score(Qu, qc) = p(qc|Qu) =
∑

qu∈Qu

norm(ωu) · p(qc|qu), (12)

where norm(ωs) only depends on the query count—we assume
that frequent queries reflect a user’s personal search clues.

3.3 Hybrid QAC
We introduce a hybrid QAC model that combines time-sensitive

QAC (TS-QAC) with personalized QAC. First, TS-QAC produces

Algorithm 2 Hybrid QAC model

Input: Predictions: Q̄; user: u; prefix p; N ; α;
Output: Ranking list of top N QAC candidates of p;
1: Produce S(p) consisting of top N QAC candidates by (2);
2: List u’s queries Qu and Qs;
3: for each qc ∈ S(p) do
4: Compute TSscore(qc) based on (14);
5: for each qs ∈ Qs do
6: p(qc|qs) = Similarity(qc, qs);
7: end for
8: Compute Score(Qs, qc) based on (10);
9: for each qu ∈ Qu do

10: p(qc|qu) = Similarity(qc, qu);
11: end for
12: Compute Score(Qu, qc) based on (12);
13: Compute Pscore(qc) based on (9) and (15);
14: end for
15: Re-rank S(p) by HQscore(qc) based on (13);
16: Return a reranked list of S(p);

a list of QAC candidates S(p) of prefix p. We assign TSscore(qc)
to each candidate qc ∈ S(p) using its predicted popularity, i.e.,
ỹt0+1(qc, λ) in (2). Like [3], we then define our hybrid models as
convex combinations of two scoring functions:

Hscore(qc) = γ · TSscore(qc) + (1− γ) · Pscore(qc). (13)

As TSscore(qc) and Pscore(qc) use different units and scales,
they need to be standardized before being combined. We standard-
ize TSscore(qc) (used in [3]) as:

TSscore(qc)←
ỹt0+1(qc, λ)− µT

σT
, (14)

where µT and σT are the mean and standard deviation of predicted
popularity of queries in S(p). Similarly, we use (9) to obtain

Pscore(qc)←
Pscore(qc)− µP

σP
, (15)

where µP and σP are the mean and standard deviation of similarity
scores of queries in S(p). Algorithm 2 describes our hybrid QAC
model; (13) provides the overall ranking score (see line 15).

We write λ-H-QAC to refer to the hybrid of λ-TS-QAC (used at
line 4 in Algorithm 2) and the personalization approach described
in the previous section, and λ∗-H-QAC for the variant where λ has
been optimized according to (8).

3.4 Combined QAC models
For comparison, we also introduce further combined QAC mod-

els that combine popularity and personalization. G-QAC and λ∗-
HG-QAC rank QAC candidates according to a combined score:

Cscore(qc) = γ ·MPCscore(qc) + (1− γ) ·Gscore(qc), (16)

where G-QAC MPCscore(qc) is obtained using MPC-ALL and
Gscore(qc) by measuring similarity between qc and previous queries
using an n-gram representation; λ∗-HG-QAC obtains the score
Cscore(qc) by combining λ∗-TS-QAC score (see §3.1) as MPC -
score(qc) with the n-gram similarity score as Gscore(qc).

4. EXPERIMENTAL SETUP
Below, §4.1 lists the research questions to guide our experiments;

§4.2 describes the datasets; §4.3 gives details about our evaluation
metrics and baselines; we detail our settings and parameters in §4.4.



4.1 Research questions
The research questions guiding the remainder of the paper are:

RQ1 As a sanity check, what is the relative performance of our
time-sensitive QAC models λ-TS-QAC and λ∗-TS-QAC in
terms of query popularity prediction? (See §5.1.)

RQ2 How does the trade-off between recent trend and periodicity
(as encoded in λ) impact the accuracy of query popularity
prediction? (See §5.2.)

RQ3 How do our time-sensitive QAC models (λ-TS-QAC and λ∗-
TS-QAC) compare against state-of-the-art time-sensitive QAC
baselines? (See §5.3.)

RQ4 Does our λ∗-H-QAC significantly outperform time-sensitive
QAC methods (O-MPC-R and λ∗-TS-QAC)? (See §5.4.)

RQ5 How does λ∗-H-QAC compare against personalized QAC
method using n-gram based query similarity (G-QAC)? (See
§5.5.)

RQ6 Which part contributes more to a better QAC ranking, the
predicted popularity or the query similarity? (See §5.6.)

RQ7 How do λ∗-HG-QAC and λ∗-H-QAC compare? (See §5.7.)

4.2 Dataset
We use two query log datasets2 in our experiments: AOL [27]

and one made available by The Netherlands Institute for Sound and
Vision,3 a large audiovisual archive [20], which we will refer to as
“SnV.” AOL is publicly available and sufficiently large to guaran-
tee statistical significance and SnV is one of the largest audiovi-
sual archives in Europe. The AOL queries were sampled between
March 1, 2006 and May 31, 2006. In total there are 16,946,938
queries submitted by 657,426 unique users while the SnV logs were
recorded for one year between January 1, 2013 and December 31,
2013 using an in-house system tailored to the archive’s online in-
terface. For consistency, we partitioned each log into two parts: a
training set consisting of 75% of the query log, and a test set con-
sisting of the remaining 25%. Traditional k-fold cross-validation
is not applicable to streaming sequence since it would disorder the
temporal data [15]. Queries in the training set were submitted be-
fore May 8, 2006 in the AOL dataset and before October 1, 2013
in the SnV dataset. We also use the last week of training data to
generate the optimal parameters Ndays in (3) and λ∗ in (8).

Moreover, we filtered out a large volume of navigational queries
containing URL substrings (.com, .net, .org, http, .edu, www.) from
the AOL dataset and removed queries starting with special charac-
ters such as &, $ and # from both datasets. Additionally, only
queries appearing in both two partitions were kept. In total, 95,043
unique queries (21%) in the processed AOL and 6,023 (7%) in
SnV show cyclic phenomena in terms of query frequency. Session
boundaries are identified in the AOL dataset by 30 seconds of inac-
tivity; in the SnV dataset a session boundary occurs when a query
has no overlapping terms with the previous query as users routinely
view audiovisual material during the search process; this can lead
to periods of inactivity even though the user is still fully engaged in
the search process [20]. Table 2 details the statistics of the datasets.

We display the overlaps of queries with various ways of bin-
ning in Fig. 3. Fig. 3a shows the rates of unique <user, query>
pairs posted at different number of repeats. A considerable number
of queries are posted more than once by the same user within the
training period (15.9% for AOL and 56.9% for SnV). The discrep-
ancy between the rates can be explained by considering the type of
2We did not use the MSN and Sogou query logs as the former lacks
users IDs and the latter is too small.
3http://www.beeldengeluid.nl

Table 2: Statistics of processed AOL and SnV Dataset. Queries:
Qs, Sessions: Ss, Users: Us, URLs: Clicked Ds.

AOL SnV

Variables Training Testing Training Testing

#Qs 6,904,655 3,609,617 291,392 154,770
#Unique Qs 456,010 456,010 86,049 86,049
#Ss 5,091,706 2,201,990 176,893 102,496
#Unique Us 466,241 314,153 1051 804
#Qs/Ss 1.36 1.63 1.65 1.51
#Qs/Us 14.81 11.49 277.25 192.50
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Figure 3: Query repeat rates (left) and variation rates (right)
for AOL and SnV.

users the search engine serves. Fig. 3b gives us the distribution of
sessions containing queries that “evolved” from preceding queries
within the session, where we say that query q2 evolved from query
q1 if q2 is issued after q1 and shares at least one common query term
with q1. Sessions with more than one query are considered. In total,
there are 983,983 sessions in AOL and 35,942 in SnV left. Clearly,
users reformulate a query very often from its previous queries. The
difference between the sum of all rates (0.531 for AOL and 1 for
SnV) is a consequence of different session segmentation methods.

4.3 Evaluation metrics and baselines
We first measure our forecast accuracy for the time-sensitive

QAC model and then evaluate the effectiveness of the resulting
QAC rankings. For each task, we use metrics from statistics and
information retrieval for measurement, which are widely used in
the literature on QAC task [3, 31, 32, 36].

Mean Absolute Error (MAE) is widely used to measure the ac-
curacy of forecasts and is defined as follows:

MAE = 1
n

∑n
i=1 |ŷi − yi|, (17)

where yi is the true value and ŷi is the prediction. MAE is an
unbounded measure and is not strongly resilient to outliers. There-
fore, its is often used along with another metric as Symmetric Mean
Absolute Percentage Error (SMAPE) to diagnose the forecast vari-
ation. SMAPE is defined as:

SMAPE = 1
n

∑n
i=1

|ŷi−yi|
ŷi+yi

, (18)

In contrast to MAE, SMAPE is bounded between 0 and 1.
To evaluate the effectiveness of QAC rankings, Mean Reciprocal

Rank (MRR) is a standard measure. For a query q with prefix p
in the query set Q associated with a list of QAC candidates S(p)
and the user’s finally completed query q′, Reciprocal Rank (RR) is
computed as:

RR =

{ 1
rank of q′ in S(p) , if q′ ∈ S(p)

0, else.
(19)

http://www.beeldengeluid.nl


Table 3: The forecast metrics produced by different methods
on AOL and SnV dataset. The best performer in each column
is highlighted. Statistical significance of pairwise differences
(λ-TS-QAC vs. the best baseline P∗ and λ∗-TS-QAC vs. the
best baseline P∗ ) are detected by the t-test (N/H for α = .01, or
M/O for α = .05).

AOL SnV

Method MAE SMAPE MAE SMAPE

P1 0.2906 0.2278 1.2287 0.3104
P3 0.2944 0.2363 1.3739 0.3265
P6 0.2893 0.2325 1.5751 0.3412
Ptrend 0.2996 0.2313 1.2492 0.3117
λ-TS-QAC 0.2848M 0.2197N 1.2291 0.2959N

λ∗-TS-QAC 0.2832M 0.2145N 1.2067N 0.2813N

Then MRR is computed as the mean of RR for all queries in Q.
Statistical significance of observed differences between the per-

formance of two approaches is tested using a two-tailed paired t-test
and is denoted using N/H for significant differences for α = .01, or
M/O for α = .05.

We consider several QAC baselines: (1) the most popular com-
pletion (MPC) QAC method based on the whole log, referred as
MPC-ALL [3]; (2) an MPC-based QAC method within recent time
windows (TW=2, 4, 7, 14 and 28 days, respectively) denoted as
MPC-R-TW [36]; (3) a recent QAC method with an optimized time
window referred as O-MPC-R, which learns the optimal time win-
dow for each prefix and performs best on the AOL dataset in [36].

4.4 Settings and parameters
Following [6], we set the factor f = 0.95 in decay function in

§3.1. For time-sensitive prediction, we use a fixed λ = 0.5 in (2)
to compare with the results produced with an optimal λ∗ returned
by (8). To detect periodicity, we count queries per hour for AOL
and per day for SnV because of the difference in time spans of the
collected data. This means that for SnV, we compute ŷt0+1(q)peri
in (5) directly by averaging the day-level predictions yt0+1−m×Tq ,
while for AOL, we firstly generate predictions per hour and then
accumulate them to produce yt0+1−m×Tq . For identifying trends,
we use per day counts to overcome sparsity. For smoothing in (5),
we setM = 3, as it performs best whenM changes from 1 to 10 in
our trials. In our time-sensitive QAC experiments, we are given a
list of top N QAC candidates; we set N = 10 as this is commonly
used by many web search engines.

We balance the contributions ofQs andQu in (9), if available, by
setting ω = 0.5, and construct Qu using at most ten queries issued
before while collecting all preceding queries in the current session
to form Qs (see Table 2). For personalized QAC comparisons, we
set the size of n-grams to be n = 4, which has been recommended
in string search [23] to represent queries. For hybrid models, we
set γ = 0.5 in (13).

5. RESULTS AND DISCUSSIONS
In §5.1, we examine the performance of our time-sensitive QAC

model in terms of its query popularity prediction performance, which
we follow with a section about the trade-off of the parameter λ in
§5.2. We examine the performance of various TS-QAC approaches
in §5.3. §5.4 details the effectiveness of our hybrid QAC model;
§5.5 provides an analysis of the hybrid QAC model with various
personalized QAC scenarios; §5.6 zooms in on the effect on QAC
ranking via varying the contribution weight in hybrid QAC model.
§5.7 compares the performance of combined QAC models.
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Figure 4: Impact of the trade-off λ in TS-QAC on the accuracy
of query popularity prediction for AOL (left) and SnV (right).

5.1 Query popularity prediction evaluation
Since the true popularity of QAC candidates is unavailable at

runtime, QAC ranking models order candidates according to their
previously observed popularity [3] or predicted popularity inferred
from previous logs [32]. In this section, we evaluate the predic-
tion accuracy on query popularity, and measure the impact of these
predictions on the quality of QAC rankings in section §5.3.

Our time-sensitive prediction method considers both the recent
and long-term query frequency as predicted popularity for future.
To compare, the predicted query frequencies are aggregated over a
past query log (used in [32]) or only contributed over recent trend as
described in (4). We denote the former by Pk where k is the number
of previous days used for averaging (k ∈ {1, 3, 6}) and refer to the
latter as Ptrend. We do not take the prediction produced only by pe-
riodicity as baseline because of deficiency of periodic queries (21%
in AOL and 7% in SnV, see §4.2). Table 3 includes the forecast er-
ror rates of different methods on datasets. The numbers show that
our λ∗-TS-QAC performs better in terms of MAE and SMAPE than
all aggregation- and trend-based baselines, as well as λ-TS-QAC.

We take a closer look at the error rates produced by various meth-
ods. The MAE achieved on the AOL dataset is much smaller than
1 owing to the sparseness of query frequencies. Among the aggre-
gated baselines, MAE favors P6 and SMAPE prefers P1 on AOL.
However, for SnV, P1 wins the competition on both metrics. The
numbers show that with the exception of P1 on SnV, our predictions
are better than all aggregated baselines on both metrics. The dif-
ferences is statistically significant on SMAPE but not so according
to MAE. Overall, the competitive performance on the AOL dataset
can be explained by the fact that compared to the daily query fre-
quency used in the SnV dataset, the data here is less sparse and
have lower variance.

5.2 Impact of the trade-off parameter λ

To answer RQ2, we manually vary the parameter λ in (2) to
achieve the best prediction accuracy. We show the results in Fig. 4

For AOL in Fig. 4a, λ∗-TS-QAC performs best in terms of pre-
diction accuracy under the setting λ∗ = 0.62 achieved by opti-
mization as (2), suggesting the predictions emphasize a bit more on
recent variations. We repeat our analysis on SnV and summarized
the results in Fig. 4b. The results are consistent with the overall
AOL numbers. SnV receives an optimal λ∗ = 0.83 in our exper-
iments. This is due to the fact SnV contains less periodic queries
than AOL and hence it favors the predictions from the trend more.

5.3 Performance of TS-QAC rankings
Next, we turn to RQ3 and use MPC-based models to generate

QAC rankings for each query to compare with our results produced
by time-sensitive QAC models, namely, λ-TS-QAC and λ∗-TS-
QAC. Table 4 contains the evaluation results of different QAC mod-
els in terms of MRR. On both two datasets, each prefix is used to



Table 5: MRR changes observed by comparing O-MPC-R
against λ∗-H-QAC and λ∗-TS-QAC against λ∗-H-QAC, re-
spectively, with a query prefix p length of 1-5 characters on
AOL and SnV query logs. The symbol “-” before MRR changes
means λ∗-H-QAC outperforms the corresponding method. Sta-
tistical significance of pairwise differences (O-MPC-R vs. λ∗-
H-QAC and λ∗-TS-QAC vs. λ∗-H-QAC) is detected by the t-
test (N/H for α = .01, or M/O for α = .05).

AOL SnV

#p O-MPC-R λ∗-TS-QAC O-MPC-R λ∗-TS-QAC

1 -4.00%H -1.31% -5.37%H -0.94%
2 -3.06%H -1.67% -7.68%H -1.10%
3 -3.54%H -2.07%O -5.99%H -3.03%H

4 -5.35%H -2.35%O -8.33%H -3.75%H

5 -2.85%H -1.79%O -6.67%H -3.84%H

generate 10 QAC rankings, one for each day in the test period. For
now, ignore the λ∗-H-QAC column as we will get to it later. The
numbers in the table are averaged across all queries with different
length of typed prefix p. All pairwise differences are detected and
marked if statistically significant.

We find that λ∗-TS-QAC outperforms all MPC-based baselines
as well as λ-TS-QAC in terms of MRR, whereas λ-TS-QAC loses
two competitions against O-MPC-R under #p =1 and 2 on AOL.
Detailedly, λ∗-TS-QAC offers a maximal MRR increase against
O-MPC-R by up to 3.2% significantly at #p = 4, and λ-TS-
QAC brings an increase by up to 1.7% over O-MPC-R at #p = 4
on AOL. Specifically on SnV, we see the best performance im-
provement over O-MPC-R almost 7.1% brought by λ∗-TS-QAC
and 3.3% by λ-TS-QAC both when typing a 2-character prefix.
The limited improvement of λ-TS-QAC is probably due to predic-
tions on occasional queries as news search, whereas λ∗-TS-QAC
smoothes it with cyclic phenomena for QAC ranking tasks.

5.4 Hybrid QAC ranking performance
Our research question RQ4 aims at examining whether a user’s

personal query similarity helps generate better QAC rankings. We
first give the absolute MRR scores of our λ∗-H-QAC in Table 4.
For convenience, we report the MRR changes produced by compar-
ing O-MPC-R against λ∗-H-QAC and λ∗-TS-QAC against λ∗-H-
QAC in Table 5. With the appropriate regression model and query
similarity measure, λ∗-H-QAC is able to marginally outperform the
baselines on both query logs at each prefix length. However, de-
spite the additional overhead of scoring similarity between queries,
λ∗-H-QAC presents relatively small (≈ 2%) improvements over
λ∗-TS-QAC on AOL. This is due to the fact that no strongly differ-
ential features are explored yet for users.

In contrast with AOL, λ∗-H-QAC on SnV is more sensitive to
user’s search log with longer prefix, although AOL on most cases
does have much lower QAC effectiveness than SnV, see Table 4. In
part, this may be caused by following factors. Firstly, AOL contains
more queries than SnV queries, although these are spread sparsely
over a three-month period. This could suggest that a search en-
gine serving more queries is able to generate better completion
candidates since it has a larger sample of similar behavior. Sec-
ondly, AOL is a more general search log across topics while SnV
focuses on multimedia search. Thirdly, there may be underlying
demographic differences between users of the two search logs that
lead to changes in query distributions, for example, AOL covers
more public users while SnV mostly serves for media profession-
als. Additionally, the higher performance of SnV as compared to
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Figure 5: QAC performance in terms of MRR observed for
each approach, with a query prefix p length of 1-10 characters
for AOL (left) and SnV (right) query logs.
Table 6: MRR scores of G-QAC and Personalized QAC, as well
as MRR changes in bracket produced by comparing G-QAC
against λ∗-H-QAC (in Table 4), and Personalized QAC against
λ∗-H-QAC, respectively, with a query prefix p length of 1-5
characters tested on AOL and SnV query logs. Statistical sig-
nificance of pairwise differences are detected by the t-test (N/H
forH α = .01, or M/O for α = .05).

AOL SnV

#p G-QAC Personalized QAC G-QAC Personalized QAC

1 0.1132H 0.0174H 0.2313H 0.2427H
(-7.52%) (-85.78%) (-13.11%) (-8.83%)

2 0.1987H 0.0688H 0.3443H 0.3619H
(-4.97%) (-67.10%) (-11.88%) (-7.35%)

3 0.3175H 0.1371H 0.4564H 0.5018H
(-6.26%) (-59.52%) (-14.76%) (-6.29%)

4 0.4180H 0.2256H 0.5658H 0.6197H
(-8.37%) (-50.55%) (-15.43%) (-7.37%)

5 0.4981H 0.3312H 0.6353H 0.7098H
(-4.88%) (-36.75%) (-15.19%) (-5.25%)

AOL could be a consequence of the difference in user activity as
#Qs/Us in Table 2 indicates SnV users submit v20 times more
queries than AOL ones.

Clearly, for both two query logs, λ∗-H-QAC is considerably
more effective with a longer prefix, see Table 4 and 5. To verify
this, we examine the MRR metric with a longer prefix of up to 10
characters in Fig. 5. We find that effectiveness converges more
quickly on SnV than AOL when the length of prefix increases,
probably because QAC is constrained by how much evidence is
available, and a slightly longer prefix hugely narrows more possi-
ble completion candidates in any case on SnV.

5.5 Personalized QAC performance analysis
To help us answer RQ5, we compare the performance of λ∗-H-

QAC with two personalized QAC scenarios (G-QAC and Person-
alized QAC listed in Table 1) and record the MRR scores of these
two methods in Table 6. We also report the MRR changes produced
by comparing G-QAC against λ∗-H-QAC, as well as Personalized
QAC against λ∗-H-QAC in brackets in Table 6.

We find that λ∗-H-QAC significantly outperforms G-QAC and
Personalized QAC on both AOL and SnV in terms of MRR scores
at all cases, which again confirms the above observations in Ta-
ble 4. For AOL, Personalized QAC does not work well and its MRR
scores are always substantially lower than those of G-QAC, sug-
gesting that ranking QAC candidates only according to query sim-
ilarity on bigger dataset is not reliable because the number of QAC
candidates is beyond control and users often issue new queries.
On the contrary, Personalized QAC wins all competition against



Table 4: The effectiveness of QAC rankings produced by different forecast models on AOL and SnV in terms of MRR, with a query
prefix p length of 1–5 characters. The best performer in each experiment is highlighted. The statistical significance of pairwise
differences (λ-TS-QAC, λ∗-TS-QAC and λ∗-H-QAC vs. the best baseline O-MPC-R, respectively) are detected by the t-test (N/H
for α = .01, or M/O for α = .05) and marked in the upper right hand corner of the corresponding scores; a statistically significant
difference between λ∗-H-QAC and λ∗-TS-QAC is also marked in the upper left hand corner of λ∗-H-QAC scores.

MPC-R-TW

#p MPC-ALL 2 Days 4 Days 7 Days 14 Days 28 Days O-MPC-R λ-TS-QAC λ∗-TS-QAC λ∗-H-QAC

AOL

1 0.1090 0.1093 0.1082 0.1120 0.1140 0.1147 0.1175 0.1169 0.1208 0.1224N

2 0.1903 0.1866 0.1814 0.1938 0.1994 0.2009 0.2027 0.1982O 0.2056M 0.2091N

3 0.3018 0.2989 0.2902 0.3107 0.3217 0.3233 0.3267 0.3270 0.3317M M0.3387N

4 0.3996 0.3970 0.3875 0.4113 0.4254 0.4276 0.4318 0.4390M 0.4455N M0.4562N

5 0.4813 0.4681 0.4593 0.4830 0.4985 0.5076 0.5087 0.5115M 0.5143N M0.5236N

SnV

1 0.1573 0.2437 0.2281 0.2209 0.1953 0.1731 0.2519 0.2536 0.2637N 0.2662N

2 0.2497 0.3526 0.3349 0.3158 0.2946 0.2690 0.3607 0.3726N 0.3864N 0.3907N

3 0.3281 0.4917 0.4751 0.4519 0.4318 0.3873 0.5034 0.5117M 0.5193N N0.5355N

4 0.4762 0.6096 0.5794 0.5528 0.5317 0.5167 0.6133 0.6296N 0.6439N N0.6690N

5 0.5438 0.6913 0.6681 0.6327 0.6108 0.5731 0.6992 0.7103N 0.7203N N0.7491N

G-QAC on SnV. This is due to: (i) users of SnV frequently issue
similar queries; (ii) users of SnV submit considerable queries; (iii)
queries within the same session in SnV must be similar.

Additionally, the MRR improvement produced by λ∗-H-QAC
against G-QAC are still very high, indicating that MPC-ALL in G-
QAC may often eliminate useful QAC candidates. This drawback
can be further exaggerated owing to the low volume of queries as
the relative changes on SnV (around 15%) are larger than those on
AOL (around 7%). We conclude that a small dataset suffers more
from uncertainty on query popularity for ranking QAC candidates.

5.6 Effect of contribution weight γ
To answer RQ6, we examine the effect on the overall QAC per-

formance by varying the contribution weight γ in (13) in our hybrid
QAC model, λ∗-H-QAC, from 0 to 1 gradually tested on AOL and
SnV. See Fig. 6.

For AOL, see Fig. 6a, when the value of γ used in λ∗-H-QAC
goes up from 0 to 0.4, the performance increases more dramati-
cally compared with the results under other settings (0.4 < γ ≤
1). When we rank QAC candidates only by query similarity, i.e.,
γ = 0, the performance is worse than any other result. The MRR
value of λ∗-H-QAC reaches its peak around γ = 0.7 for all cases,
which demonstrates the fact that our λ∗-H-QAC ranking model fa-
vors time-sensitive popularity than user’s query similarity on AOL.
This finding can be further confirmed by averaging MRR values
produced under different settings: 0 ≤ γ ≤ 0.5 and 0.5 ≤ γ ≤ 1
for each length of prefix. Obviously, the average MRR of the latter
(0.5 ≤ γ ≤ 1) is higher for all cases.

In contrast to AOL, the optimal γ on SnV, see Fig. 6b, makes a
substantial move to around 0.3, which indicates that QAC ranking
on SnV favors user’s query similarity a bit more. The discrepancy
between the optimal γ on SnV and the optimal γ on AOL can per-
haps be explained by considering the number of issued queries of
each user. Sufficient personal queries result in effective personal-
ized QAC on SnV. The MRR of SnV tends to be more sensitive to
γ than that of AOL as it varies dramatically with the increase of γ,
especially under setting 0.5 ≤ γ ≤ 1. The overall MRR result of
λ∗-H-QAC is better than that produced by just setting γ = 0 or
γ = 1, which is consistent with our findings for AOL.
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Figure 6: Performance of λ∗-H-QAC when varying the combi-
nation weight γ with a query prefix p length of 1-5 characters
for AOL (left) and SnV (right) query logs.

5.7 Performance of combined QAC models
To answer RQ7, we compare λ∗-HG-QAC (in Table 1) with our

λ∗-H-QAC (MRR scores reported in Table 4). The MRR scores
of λ∗-HG-QAC and the corresponding changes against λ∗-H-QAC
tested on AOL and SnV are recorded in Table 7. We find that λ∗-
HG-QAC performs better on SnV than on AOL, with higher MRR
scores in all cases. However, λ∗-H-QAC still wins all competitions
against λ∗-HG-QAC as the MRR changes produced by comparing
λ∗-HG-QAC against λ∗-H-QAC are always negative.

Another interesting finding is that λ∗-HG-QAC performs very
competitive with λ∗-H-QAC, especially on SnV, and the differ-
ences are limited (MRR changes ≈ 1%). This appears to be due to
the fact that (i) λ∗-HG-QAC completes personalized QAC on the
similar character level but confronts the sparseness problem, and
(ii) the number of grams n is artificially fixed, resulting in failure
to rank QAC candidates properly.

6. CONCLUSION
Most previous work on query auto-completion (QAC) focuses

on either time-sensitive maximum likelihood estimation or context-
aware similarity. In this paper we have adopted a combination of
the two aspects of the QAC problem. We proposed to use time-
series analysis to identify the periodicity and trend of query pop-
ularity for predicting its future frequency. We assigned an opti-



Table 7: MRR scores of λ∗-HG-QAC, as well as MRR
changes produced by comparing λ∗-HG-QAC against λ∗-H-
QAC (MRR scores presented in Table 4), with a query prefix
p length of 1–5 characters tested on AOL and SnV query logs.
Statistical significance of pairwise differences (λ∗-HG-QAC vs.
λ∗-H-QAC) determined using the t-test (N/H for α = .01, or M/O
for α = .05).

AOL SnV

#p MRR MRR changes MRR MRR changes

1 0.1213 -0.90% 0.2650 -0.45%
2 0.2066O -1.21%O 0.3891 -0.41%
3 0.3330O -1.68%O 0.5309 -0.86%
4 0.4476H -1.89%H 0.6617O -1.10%O

5 0.5179 -1.09% 0.7398O -1.24%O

mal time window after learning to each query to find its popular-
ity trend, which led to better prediction. To understand a user’s
personal search task, we extended our time-sensitive QAC method
with personalized QAC, which infers the similarity between current
requests and preceding queries in his current search session and
previous search tasks at a char-level. We verified the effectiveness
of our best performer λ∗-H-QAC on two datasets, showing signifi-
cant improvements over various time-sensitive QAC baselines.

As to future work, parallel processing may enhance the effi-
ciency of our method and other metrics can be used to evaluate
the QAC rankings. Meanwhile, we aim to transfer our approach to
other datasets with long-term query logs, which helps us to ben-
efit from queries with longer periodicity than we had access to
in our current work. Finally, a further possible step is to model
personalized temporal patterns for active users, especially profes-
sional searchers, requiring a generalization from actual query terms
to topics or intents. This might help generate a better QAC ranking.
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