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ABSTRACT
Session-based recommendation is the task of recommending the
next item a user might be interested in given partially known ses-
sion information, e.g., part of a session or recent historical sessions.
An effective session-based recommender should be able to exploit
a user’s evolving preferences, which we assume to be a mixture
of her short- and long-term interests. Existing session-based rec-
ommendation methods often embed a user’s long-term preference
into a static representation, which plays a fixed role when dealing
with her current short-term interests. This is problematic because
long-term preferences may be more or less important for predicting
the next conversion depending on the user’s short-term interests.

We propose a Dynamic Co-attention Network for Session-based
Recommendation (DCN-SR). DCN-SR applies a co-attention net-
work to capture the dynamic interactions between the user’s long-
and short-term interaction behavior and generates co-dependent
representations of the user’s long- and short-term interests. For
modeling a user’s short-term interaction behavior, we design a
Contextual Gated Recurrent Unit (CGRU) network to take actions
like “click”, “collect” and “buy” into account. Experiments on e-
commerce datasets show significant improvements of DCN-SR over
state-of-the-art session-based recommendation methods, with im-
provements of up to 2.58% on the Tmall dataset and 3.08% on the
Tianchi dataset in terms of Recall@10. MRR@10 improvements
are 3.78% and 4.05%, respectively. We also investigate the scala-
bility and sensitivity of DCN-SR. The improvements of DCN-SR
over state-of-the-art baselines are especially noticeable for short
sessions and active users with many historical interactions.

CCS CONCEPTS
• Recommender systems;
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1 INTRODUCTION
Recommender systems are an effective solution to help people
cope with an increasingly complex information landscape [5, 37].
Conventional recommender systems often discard sequential in-
formation and focus on mining the static relevancy between users
and items from interactions [10, 27, 38]. For instance, a typical con-
ventional recommender system based on matrix factorization [18]
may be effective at modeling a user’s general preferences by learn-
ing from their entire interaction history but it does not model the
order of the user’s interactions. Unlike conventional recommender
systems, session-based recommender systems model the evolution
of a user’s short-term preference implied by sequential interactions
in a session with the aim of recommending the next item a user
may be interested in [34]. Popular modeling choices for session-
based recommender systems include Markov chains and Recurrent
Neural Networks (RNNs) [8]. For instance, the Factorizing Per-
sonalized Markov Chain (FPMC) model combines Markov chains
with matrix factorization to achieve good recommendation perfor-
mance [25]. Wang et al. [32] propose a Hierarchical Representation
Model (HRM) model that extends FPMC by employing a two-layer
structure to construct a hybrid representation. Markov chain-based
methods only model local sequential patterns between adjacent
interactions. RNN-based models can model multi-step sequential
behaviors: the Hierarchical Recurrent Neural Network (HRNN)
model [23] and Dynamic REcurrent bAsket Model (DREAM) [36]
model embed all of a user’s historical interactions into the final
hidden state of an RNN to represent their current preferences; both
achieve significant improvements over HRM and FPMC.

Today’s session-based recommender systems successfully cap-
ture users’ short-term decision making process. But they do not
capture variations in the relative importance of a user’s long-term
vs. short-term interests for session-based recommendation. Users
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with different shopping preferences may prefer different next items
even under the same session context. Thus, how to better capture in-
dividual users’ dynamic consumption motivations is critical [16, 33].

Our working hypothesis is that the relative importance of events
in a user’s long-term interaction history depends on events in their
short-term interaction history, and vice versa. Let us consider an
example. Take a user who has searched for a camera in the current
session; her long-term interactions related to electronic products
should probably be given a higher weight than her interactions
related to clothing when deciding what to recommend next. Con-
versely, if the user’s past interactions indicate a strong interest
in the Sony brand, then, during the current session, interactions
related to this brand may be more important than others when
predicting the next item. But there is more that should be modeled
than the relation between past and present interactions. Different
user actions, e.g., clicks, add-to-cart, or buy, provide different types
of information about the user’s interest and, hence, should trigger
different follow-up actions. For example, a click on a camera may
indicate that the current recommendation is not satisfactory so
that substitute offerings should be recommended; adding an item
to the cart may show a strong consumption motivation of a user
for the item; and while repeat purchases are important [24], a pur-
chase action involving a camera should probably be followed by a
recommendation of complementary items [30].

In summary, the main challenges facing session-based recom-
mendation are [16, 33]:
• How to incorporate user’s long-term as well as short -term prefer-
ences for session-based recommendation? and

• How to capture users’ dynamic preferences with implicit preference
data?

To address these questions, we propose a Dynamic Co-attention
Network for Session-based Recommendation (DCN-SR). DCN-SR
has three main components:
(1) The first is a Contextual Gated Recurrent Unit (CGRU) network

to model a user’s short-term preferences, which we represent
as a combination of hidden states of interactions in the current
session.

(2) The second is a Multi-Layer Perceptron (MLP) to deal with a
user’s historical interactions and infer long-term preferences.

(3) The third is a co-attention network that uses the outputs of the
first two components to capture interactions between actions
in a user’s long-term and short-term interaction histories and
generate co-dependent representations of their long-term and
short-term preferences.

To the best of our knowledge, in the field of session-based rec-
ommender systems, ours is the first attempt to use a co-attention
network to exploit the relation between a user’s long-term and
short-term preferences learned from their long-term and short-
term interaction history.

Experiments on two e-commerce datasets, the Tmall dataset and
the Tianchi dataset, show that DCN-SR outperforms state-of-the-
art baselines in prediction accuracy. In addition, we investigate
the scalability and sensitivity of DCN-SR with different lengths of
search sessions and different numbers of user historical interactions.

In summary, our key technical contributionss in this paper are:

(1) We design a dynamic co-attention network model for session-
based recommendation (DCN-SR) that is able to integrate users’
long-term and short-term preferences.

(2) We design a contextual gated recurrent unit CGRU to incorpo-
rate different types of short-term user actions so as to better
estimate a user’s next consumption interests.

(3) We analyse the recommendation performance of DCN-SR and
find that DCN-SR consistently meets or beats the state-of-the-
art, especially with short sessions and active users.

2 RELATEDWORK
We summarize related work in two areas – sequential recommender
systems and attention-based models.

2.1 Sequential recommendation models
Interactive systems log users’ behavior along with the associated
timestamps [14]. Many models have been proposed to leverage this
kind of sequential data for modeling users’ dynamic preferences
and for sequential recommendation. Markov chains have been a
popular choice. Following the Factorizing Personalized Markov
Chain (FPMC) [25] model, Feng et al. [6] apply metric embeddings
with a low dimensional vector for playlist and successive location
recommendation. He and McAuley [8] fuse similarity models with
Markov chains for sequential recommendation to solve sparse rec-
ommendation problems. In order to better capture both users’ gen-
eral taste and sequential behavior, Wang et al. [32] extend FPMC by
using a hierarchical structure to learn user representations (HRM).
Those Markov chain-based methods only model the local sequential
patterns between adjacent interaction events.

Deep neural networks have improved the performance on the
sequential recommendation task. Hidasi et al. [13] propose an RNN-
based model for session-based recommendation that consists of
Gated Recurrent Unit (GRU) units and uses a session-parallel mini-
batch training process. With user profiles available, Quadrana et al.
[23] develop hierarchical RNNs with cross-session information
transfer and Yu et al. [36] propose a dynamic recurrent basket model
(DREAM) to capture global sequential patterns for learning a user’s
dynamic interest representations based on RNNs, which outper-
forms HRM and FPMC. DREAM embeds all of a users’ historical
interactions into the final hidden state of an RNN to represent their
current preferences. To improve the performance of RNN-based
approaches to sequential recommendation, Tan et al. [26] adopt
data augmentation and a method to account for shifts in the input
data distribution. The RNN-based approaches listed above usually
implicitly encode a user’s long-term and short-term interactions
into a latent factor or hidden state without distinguishing between
the roles that each event may play when making recommendations.

Memory-based approaches leverage user memory networks to
store and manipulate a user’s previous interactions. Chen et al. [4]
propose a Recommendation with User Memory Network (RUM)
model to leverage external memory networks integrated with col-
laborative filtering. It uses a static latent vector to represent users’
general preferences and the memory can only store and distinguish
users’ short-term interactions with a fixed size, which ignores the
possibility that different historical interactions may have different
degrees of importance.



Our approach to sequential recommendation differs from the
work listed above because we do not only exploit the benefits of
incorporating long-term and short-term interests, but also consider
dynamic aspects of the relation between a user’s long-term and
short-term preferences. In addition, unlike the work listed above,
we explore the information contained in users’ different actions.

2.2 Neural attention based models
Attention mechanisms have been applied to recommendation tasks
to help models exploit users’ preferences [11, 22, 28]. Li et al. [19]
propose a neural attentive session-based recommendation machine
(Neural Attentive Recommendation Machine (NARM)) that takes
the last hidden state from the session-based RNN as the sequen-
tial behavior, and uses the other hidden states of previous clicks
for computing attention to capture users’ current preferences in a
given session. Although NARM achieves significant improvements
over traditional RNN-based approaches, it does not consider users’
long-term preferences based on their historical interactions. Ying
et al. [35] adopt a hierarchical attention network for sequential
recommendation (SHAN). The first attention layer in SHAN learns
users’ long-term preferences based on the historical purchased item
representations, while the second one outputs the final user repre-
sentation as a combination of the user’s long-term and short-term
preferences. It is worth pointing out that SHAN generates its atten-
tive representation of user’s long-term and short-term preferences
independently and thus ignores the relations between them. As
to memory-based models, Liu et al. [21] propose a short-term at-
tention memory priority model (STAMP), in which the attention
weights are calculated from the session context and enhanced with
the final records in the current session.

Our approach to sequential recommendation differs from the
aforementioned models in two ways. First, the attention mechanism
used in recent sequential recommendation models deals with users’
historical and recent interactions separately. In contrast, DCN-SR
applies a co-attention network to calculate the correlated impor-
tance of actions in both a user’s historical and recent interactions,
and generates co-dependent representations for their long-term and
short-term preferences. Second, previous work considers a user’s
long-term preferences to be a static vector when dealing with the
user’s different short-term interests. In contrast, in DCN-SR, an
event in a user’s historical interactions may have different degrees
of importance when combined with different recent sessions.

3 APPROACH
TheDCN-SRmodel we propose has threemain components: a short-
term preference generator, a long-term preference generator, and a
co-attention network with short-term and long-term preferences.
As shown in Fig. 1, these three components can be trained in a joint
manner and give a predicted score of a user’s preference for an
item through a trilinear composition. We first describe the notation
used and then detail the three components in DCN-SR.

3.1 Problem formulation and notation
Given a user and their sequential interactions, we aim to recom-
mend their next purchase based on her long-term and short-term
preferences learned from those interactions.

For a useru, we denote her current session as Sessionu = {(x1,a1),
(x2,a2), . . . , (xT ,aT )}, where xi is the i-th item in the session and ai
denotes an action (e.g., click, cart or purchase) along with the item;
T denotes the number of events in the current session. In addition,
we consider the items thatu interacts with in her historical sessions
and denote them as Historyu = {x1, x2, . . . , xN }. Here, N denotes
the number of events in the user’s historical interactions. For ex-
ploring the user’s long-term preferences, not all actions necessarily
depict the user’s preference. Therefore, we only retain items with
actions that can clearly reveal the user’s preference, such as buy
or collect. As shown in Fig. 1, there is an embedding layer at the
bottom of the network used for generating the item embeddings
as well as the action embeddings. We use xi and ai to indicate the
embeddings of xi and ai .
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Figure 1: Structure of the DCN-SR model.

3.2 Short-term preference generator
A user’s discriminative actions, such as click, collect or purchase,
can help to explore sequential interactions as prior knowledge
to predict the items that the user is mostly like to access. Since
different actions may imply different consumption motivations in
a short session, we take all types of actions in the current session
into account when learning a user’s short-term preferences.

As shown in Fig. 2, we model a user’s sequential interactions in
a session with a Contextual GRU network (CGRU) considering the
action along with each item as a contextual feature. We modify the
operations in a traditional GRU cell and add the action embedding
ai to the input gate, forget gate and update gate, respectively, shown
as the purple arrows in Fig. 2. The hidden state ht in CGRU can be
a linear interpolation between the previous hidden state ht−1 and
the candidate hidden state ĥt :

ht = ztht−1 + (1 − zt )ĥt , (1)
where the update gate zt is given by:

zt = σ (Wzxt + Vzat + Uzht−1), (2)
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Figure 2: Structure of the Contextual GRU network.

where Wz , Vz and Uz are update parameters for xt , at and ht−1,
respectively. The candidate hidden state can be computed as:

ĥt = tanh(Wxt + Vat + rt ⊙ Uht−1), (3)

where the reset gate rt can be calculated by:

rt = σ (Wr xt + Vr at + Urht−1), (4)

where Wr , Vr and Ur are reset parameters for xt , at and ht−1,
respectively.

As each hidden state contains the information of a user’s search
intent in the current session, we use a collection of hidden states to
represent a user’s initial short-term preference as Us = {hs ,1, hs ,2,
. . . , hs ,T } andUs ∈ RD×T , whereD is the dimension of each hidden
state in Us . We will future explore the user’s interest drift across
these hidden states with a co-attention network in Section 3.4.

3.3 Long-term preference generator
As we discussed above, when exploring a user’s long-term prefer-
ence with their historical interactions, we only retain the items with
actions that could depict users’ preferences (e.g., buy or collect).
We feed the dense low-dimensional embedding of each item in a
user’s historical interactions Historyu = {x1, x2, . . . , xN } through
a multi-layer perceptron (MLP) to generate hidden representations
of those events:

z1,i = ϕ(W1xi + b1)

z2,i = ϕ(W2z1,i + b2)

...

zM ,i = tanh(WM zM−1,i + bM )

Xi = zM ,i ,

(5)

whereWm , bm and ϕ denote the weight matrix, the bias vector and
the activation function in them-th layer. Here, we use a ReLU as
the activation function, as it has been shown to be more expressive
than others and can deal with the vanishing gradient problem ef-
fectively [12, 15]. M indicates the number of layers used in MLP
network. The output of the final layer Xi is the hidden represen-
tation of the i-th event. We also apply a collection of these event
representations to indicate a user’s initial long-term preference as
Ul = {X1,X2, . . . ,XN } andUl ∈ RD×N . We use a MLP network be-
cause of its non-linear modeling capability, which has been applied
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Figure 3: Structure of the co-attention network.

in many neural collaborative filtering works and shows reliable
performance [12].

3.4 Co-attention network
It is beneficial to incorporate the short-term and long-term prefer-
ence of a user whenmaking recommendations. However, traditional
methods treat these two types of preference as independent [35],
which ignores the (potential) mutual dependence between them.

In addition, conventional attention mechanisms assign weights
for the events in a user’s historical and recent interactions sepa-
rately. We argue that historical interactions and recent interactions
can provide context for each other when calculating the importance
of each event. Thus, we design a co-attention network to explore
correlations between historical and current interactions of a user.

As shown in Fig. 3, after generating a user’s initial short-term
and long-term preferences, we use them as the inputs of the co-
attention network and calculate the affinity matrix C:

C = tanh(UT
l WcUs ), (6)

where Wc ∈ RD×D contains the weights. After computing the
affinity matrix, we consider it as a feature and use it to transform
the short-term attention space into the long-term attention space
with:

Hl = tanh(WlUl + (WsUs +Wths ,T )CT) (7)

αl = softmax(wT
hlH

l ) (8)

and vice versa:

Hs = tanh(WsUs +Wths ,T + (WlUl )C) (9)

αs = softmax(wT
hsH

s ), (10)

where Wl , Ws , Wt ∈ RK×D , whl , whs ∈ RK are weight parame-
ters for long-term and short-term preferences, respectively. Here,
αl ∈ R

N and αs ∈ RT are the attention probabilities for the events
in historical and current interactions, respectively.

It should be noted in Eq. 7 and Eq. 9 that besides the collection of
the hidden states in current session, i.e., Us , we explicitly consider
the final hidden state in the current session, i.e., hs ,T , shown as the
red arrows in Fig. 3. Importantly, hs ,T summarizes the complete
sequential behavior, which contains different information from
Us when exploring user’s short-term preferences [19, 21]. Both
NARM [19] and STAMP [21] have shown that the explicit use of
hs ,T improves the performance of session-based recommendations.



Based on the attention weights, the co-dependent representa-
tions of a user’s long-term and short-term preferences can be cal-
culated as the weighted sum of their interactions representations:

Uco−l =
∑N
n=1 α

n
l Xn, (11)

and
Uco−s =

∑T
t=1 α

t
s hs ,t . (12)

In order to take hs ,T into consideration, we use Ulong = Uco−l ,
Ushort = [Uco−s ; hs ,T ] to represent the final representations of a
user’s long-term and short-term preference. And then, for a given
candidate item xi , the scoring function that produces a prediction
can be a trilinear combination:

ẑlui = vTi BlUlong ẑsui = vTi BsUshort ẑui = σ (BT[ẑlui ; ẑ
s
ui ]), (13)

where Bl ∈ RE×D , Bs ∈ RE×2D and B ∈ R1×2, E is the dimension
of each item embedding. The trilinear combination incorporates the
user’s long-term preferences as well as their short-term preferences
towards an item. Moreover, ẑui represents the unnormalized cosine
similarity between the user’s preference and the i-th candidate
item. We use ẑu ∈ RV to denote the vector that consists of ẑui (i ∈
[1, . . . ,V ]), where V is the number of candidate items. It is then
processed by a softmax function:

ŷu = softmax(ẑu ), (14)

where ŷu denotes the output vector of our model, which represents
a probability distribution over the candidate items, and each element
ŷui denotes the probability of the item vi being the next purchase.

We adopt the cross-entropy loss as our loss function:

L(ŷu ) = −
∑V
i=1 yu log(ŷu ), (15)

where yu is the true distribution.
Finally, a Back-Propagation Through Time (BPTT) method with

a fixed number of time steps is adopted to train our DCN-SR model
based on Eq. 15.

4 MODEL ANALYSIS
To provide insights into DCN-SR, we discuss its connection to
previous work on session-based recommendation. By choosing ap-
propriate settings, DCN-SR can subsume several existing methods,
including session-based recommendations with recurrent neural
networks (GRU4Rec) and an attention-based model, i.e., the Neural
Attentive Recommendation Machine (NARM).

4.1 DCN-RS vs. GRU4Rec
GRU4Rec is an RNN-based approach that uses the final hidden state
to represent a user’s preference:

hT = GRUsess(vT , hT−1), (16)

and predict the score for a candidate item vi as:

ẑui = σ (vTi hT ). (17)

As shown in Fig. 1, when we do not consider the user’s historical
interactions and different actions, DCN-SR will reduce to an RNN-
based approach. To show how our model degenerates to GRU4Rec,
we set the historical interactions empty and the weight parameter
whs = 0; then, in the co-attention component, the affinity matrix C,
Uco−l andUco−s will be 0. The user’s preferences will be equal to the

final hidden state of the session, i.e., Ushort = [Uco−s ; hs ,T ] = hs ,T .
And the prediction score is calculated as:

ẑui = σ (ẑsui ) = σ (vTi Ushort ) = σ (vTi hs ,T ). (18)

This is the same as the prediction function (Eq. 17) of GRU4Rec.
However, by enabling a user’s historical interactions, DCN-SR is
able to collect valuable information for her long-term preference. In
addition, with the weight parameter whs , DCN-SR can adaptively
select important items in the current session to capture the user’s
short-term interest, which can bring improved performance in the
task of sequential recommendation as shown in our experiments.

4.2 DCN-SR vs. NARM
Both DCN-SR and NARM apply an attention mechanism to capture
a user’s main interest. In NARM, the attention mechanism takes
the last hidden state hT from the RNN as the sequential behavior,
which denotes the global encoder of the current session:

cд = hT . (19)

It then uses the hidden states of previous clicks in the current
session for computing attention scores, which is a local encoder
combining different parts of the sequence:

cl =
∑T
i=1 αihi , (20)

where α is the weighted factor calculated by:

αi = vTσ (A1hi + A2hT ), (21)

where σ is an activation function, and A1 and A2 are used to trans-
form hi and hT into a latent space.

By concatenating the global and local encoder, NARM adopts a
unified representation c to model the user’s short-term preference:

c = [cд ; cl ] = [hT ;
∑T
i=1 αihi ]. (22)

The prediction score for a candidate item vi is calculated as:

ẑui = vTi Bc, (23)

where B is a latent parameter.
To see the connection between DCN-SR and NARM, we set the

user’s historical interactions empty and ignore different actions in
RNN. Thus DCN-SR can be reduced to:

C = tanh(UT
l WcUs ) = 0, (24)

and
Hs = tanh(WsUs +Wths ,T +WlUlC)

= tanh(WsUs +Wths ,T ).
(25)

Because Us is a set of hidden states in RNN, i.e., Us = {hs ,1, hs ,2,
. . . , hs ,T }, we divide Eq. 25 for each hidden state as:

Hs
i = tanh(Wshs ,i +Wths ,T ). (26)

Then, the attention weight for each event in the current interactions
is calculated by:

α is = softmax(wT
hsH

s
i )

= softmax(wT
hs tanh(Wshs ,i +Wths ,T )).

(27)



We can see that the attention weights calculated in our model
are the same as NARM. Based on these attention weights, we can
rewrite a user’s final short-term preference as:

Ushort = [Uco−s ; hs ,T ] =
[ T∑
i=1

α ishs ,i ; hs ,T

]
. (28)

The prediction score is generated by:

ẑui = σ (ẑsui ) = σ (vTi BsUshort ). (29)

According to these derivations, we see that by choosing proper
activation functions in Eq. 27 and 29, DCN-SR and NARM have the
same representations of users’ preferences and prediction function.

Based on our analysis, we see that DCN-SR is a very general
model for session-based recommendation. On the one hand, by
introducing different settings (i.e., parameters and activation func-
tions) DCN-SR can be seen as a generalization of many existing
models. On the other hand, DCN-SR enables us to explore more
information from users’ historical interactions and the dynamic
correlations between long-term and short-term preferences.

5 EXPERIMENTAL SETUP
We design experiments to examine the effectiveness of DCN-SR and
focus on the following research questions: (RQ1) Does DCN-SR out-
perform state-of-the-art baselines for session-based recommenda-
tion? (RQ2) Does the Contextual GRU, which incorporates different
user actions, contribute to the performance of DCN-SR? (RQ3) How
is the performance of DCN-SR impacted by sessions with different
lengths? (RQ4) How does the performance of DCN-SR vary across
users with different numbers of historical interactions? (RQ5) How
can we visualize the co-attention mechanism?

5.1 Model summary
As DCN-SR considers users’ long-term and short-term preferences,
we mainly compare our method with personalized session-based
recommendation models, i.e., HRNN and SHAN. In addition, we
also consider some traditional models, i.e., FPMC and Item-pop, as
well as neural models with or without an attention mechanism, i.e.,
NARM, STAMP and GRU4Rec. These are our baselines:
Item-pop A method that ranks items based on the number of

interactions, which is a non-personalized approach [1].
FPMC A state-of-the-art hybrid model for sequential recommenda-

tion, based onMarkov chains and collaborative filtering. Both se-
quential behaviors and general taste are taken into account [25].

GRU4Rec An RNN-based model for session-based recommenda-
tion, which contains GRUs and utilizes session-parallel mini-
batches as well as a pair-wise loss function for training [13].

NARM An RNN-based model that applies an attention mechanism
to capture users’ main purposes from the hidden states and
combines it with sequential behavior as final representations
of users’ current preferences [15].

STAMP A memory-based model with attention mechanism that
explicitly considers correlations between each click and the last
click in a session. It combines the weighted events and the last
click to model users’ current preferences [21].

Table 1: Dataset statistics.

Dataset Tmall Tianchi
#of users 822 14,080
#of items 5,823 40,886
#of interactions 157,709 3,782,379
#of action types 4 4
Average interactions per user 192.13 272.03
Average interactions per item 27.03 93.68
# interactions in training set 147,735 2,897,330
# interactions in test set 9,974 885,049

HRNN A hierarchical RNN for personalized session-based recom-
mendation which uses a session- and a user-level RNN to model
users’ short- and long-term preferences [23].

SHAN A personalized session-based recommendation method that
adopts a hierarchical attention network, in which the first atten-
tion layer learns users’ long-term preferences while the second
one outputs the final user representation as a combination of
the user’s long-term and short-term preferences [35].

5.2 Datasets and experimental setup
Datasets. We use two publicly available real-world datasets to

evaluate our models and the baselines. Tmall is a dataset released
by Taobao.1 It contains records of online transactions, with 884
users, 9,531 brands and 182,880 interactions. Customer action types
include click, collect, cart, and purchase. Tianchi is a dataset pro-
vided by Alibaba.2 It is based on user-commodity behavior data of
Alibaba’s M-Commerce platforms. It contains 23,291,027 interac-
tions of 20,000 customers on 4,758,484 items within a month plus
category information of each item. Customer actions include click,
collect, cart, and purchase.

For the Tmall dataset, we filter out users with fewer than 3
interactions and items that appear less than 3 times [36]. For the
Tianchi dataset, we filter out users with fewer than 20 interactions
and items with fewer than 50 interactions. The characteristics of
the datasets after preprocessing are summarized in Table 1.

Settings and parameters. For evaluation, we divide the Tmall
and Tianchi datasets into training and test sets according to the
users’ search time. The training set consists of all but the last 7
days of interactions; the test set contains the remaining 7 days of
interactions. As collaborative filtering methods cannot recommend
an item that has not appeared before, we filter out interactions from
the test set with items that do not appear in the training set.

For the Tmall and Tianchi datasets, we treat user records in one
day as a session to model short-term preferences, following [20, 35].
For the Tmall dataset, although there is no detailed time information
beyond one day, the sequential information of user behaviors on
items still exists, so we can also model it with an RNN [20].

Unless specified differently, for all the results that we presented,
the number of recommendations (N ) equals 10 [12, 15]. We use
Recall@10 and MRR@10 to evaluate the performance of models [19,
21]. Recall@10 is used to evaluate the recall of the recommender
1http://102.alibaba.com/competition/addDiscovery/index.htm
2https://tianchi.aliyun.com/getStart/information.htm?spm=
5176.100067.5678.2.30a8b6d933N6Rr&raceId=231522

http://102.alibaba.com/competition/addDiscovery/index.htm
https://tianchi.aliyun.com/getStart/information.htm?spm=5176.100067.5678.2.30a8b6d933N6Rr&raceId=231522
https://tianchi.aliyun.com/getStart/information.htm?spm=5176.100067.5678.2.30a8b6d933N6Rr&raceId=231522


system, i.e., whether the test item is contained in the top 10 list.
MRR@10 measures the ranking accuracy of the recommender sys-
tem, i.e., whether the test item is ranked at the top of the list.

We optimize the hyperparameters using Adam [17] with the
initial learning rate set to 0.01, and the mini-batch size fixed at
512. The dimension of the item embeddings is set to 50 and we use
one GRU layer with 100 hidden units. Optimization is done on a
validation set, which is partitioned from the training set with the
same procedure as the test set [3].

6 RESULTS AND DISCUSSION
6.1 Overall performance
To answer RQ1, we examine the recommendation performance of
the baselines and DCN-SR. See Table 2.

Table 2: Performance of recommendation models. The re-
sults produced by the best baseline and the best performer
in each column are underlined and boldfaced, respectively.
Statistical significance of pairwise differences of DCN-SR vs.
the best baseline is determined by a t-test (▲ for α = .01, or △

for α = .05).

Tmall Tianchi
Model Recall@10 MRR@10 Recall@10 MRR@10
Item-pop .1058 .0455 .0022 .0011
FPMC .1813 .1227 .0594 .0377
GRU4Rec .5852 .5613 .1117 .0875
NARM .7237 .6781 .3155 .1909
STAMP .7246 .6872 .3185 .1955
HRNN .6894 .6617 .1971 .1801
SHAN .7101 .6687 .2208 .1843
DCN-SR .7433△ .7132▲ .3283△ .2034▲

Let us first consider the baselines. From Table 2, we see that
neural-based approaches outperform traditional methods, i.e., Item-
pop and FPMC. As to non-personalized session-based approaches,
i.e., GRU4Rec, NARM and STAMP, we see that NARM and STAMP
both improve over GRU4Rec, which indicates the utility of using
an attention mechanism. This result can also be proved by compar-
ing the results of the personalized models, i.e., HRNN and SHAN,
where SHAN with a hierarchical attention structure shows better
performance than HRNN. The results of HRNN are higher than
of a simple RNN-based approach such as GRU4Rec, which means
that incorporating users’ historical and recent interactions together
can help to boost the recommendation performance. STAMP and
NARM show better results than SHAN. The explicit use of the
last hidden state seems to improve the performance for session-
based recommendations, as the last behavior in a short session
can reveal users’ current consumption motivations better. STAMP
outperforms other baselines in terms of Recall@10 and MRR@10.
Hence, we use STAMP as our baseline in later experiments.

Next, we compare the baselines against the DCN-SR model. Per-
sonalized and non-personalized models, i.e., SHAN and STAMP,
both lose against DCN-SR in terms of Recall@10 andMRR@10. This
shows that using the co-attention network helps to improve the

recommendation performance. This may be due to two factors: one
is that with the co-attention network, DCN-SR can capture the mu-
tual dependence between users’ historical and recent interactions
and learn dynamic representations of users’ long- and short-term
preferences; the other is that DCN-SR integrates both a user’s long-
and short-term preferences to predict their next interactions.

The improvements of DCN-SR over the best baseline model in
terms of Recall@10 are 2.58% on the Tmall dataset and 3.08% on the
Tianchi dataset. MRR@10 improvements are 3.78% on the Tmall
dataset and 4.05% on the Tianchi dataset. Significant improvements
against the best performing baseline are observed for the DCN-SR
model at the α = .01 level in terms of MRR@10 on both datasets.
For Recall@10, we observe significant improvements at the α = .05
level on both datasets. The fact that improvements in terms of
MRR@10 are bigger than in terms of Recall@10 suggests that the
main effect of DCN-SR’s architecture is to boost the ranking of
relevant items rather than the number of relevant items found.

6.2 The Contextual GRU network
For RQ2, in order to demonstrate the utility of the CGRU network,
which considers users’ actions as search context in a short session,
we examine the recommendation performance of DCN-SR under
different settings, i.e., DCN-SRGRU (with a simple GRU network)
vs. DCN-SRCGRU (with the Contextual GRU network). Table 3 con-
trasts their performance against the best baseline model (STAMP),
with different numbers of recommended items N .

DCN-SRGRU , which lacks users’ action information, still beats
the best baseline model, i.e., STAMP, which indicates that the dy-
namic co-attention network helps to improve the performance of
sequential recommendations. DCN-SRCGRU consistently achieves
improvements over DCN-SRGRU , which demonstrates the utility of
the Contextual GRU network. Improvements of DCN-SRGRU over
STAMP are significant at the α = .05 level in terms of MRR and
Recall, on both datasets. For DCN-SRCGRU , we observe significant
improvements at the α = .05 level in terms of Recall, and at the
α = .01 level in terms of MRR on the two datasets.

Regarding different numbers of recommendations, we see that
the overall performance in terms of Recall and MRR increases when
N ranges from 5 to 15, as a large value ofN increases the probability
of including a user’s preferred item in the list.

The improvements of DCN-SRCGRU in terms of MRR are more
significant than those in terms of Recall, as indicated by the rel-
ative improvements over DCN-SRGRU with different numbers of
recommendations. We further conduct paired t-tests, verifying that
these improvements are statistically significant for α = .05 in terms
of Recall and α = .01 in terms of MRR. These improvements can
prove that incorporating the information contained in users’ differ-
ent actions helps to learn more accurate representations of users’
short-term preferences.

6.3 Session length
In order to understand the scalability of sequential recommendation
models when applied with sessions of different lengths, we divide
the sessions in the datasets into short (no more than 5 queries),
medium (6 to 15 queries) and long sessions (more than 15 queries)



Table 3: Recommendation performance with different numbers of recommended items N . The results produced by the best
performer in each row are boldfaced. Statistical significance of pairwise differences is determined by a t-test (▲ for α = .01
and △ for α = .05 when comparing DCN-SRCGRU or DCN-SRGRU vs. STAMP; • for α = 0.01 and ◦ for α = 0.05 when comparing
DCN-SRCGRU vs. DCN-SRGRU ).

Tmall Tianchi
N STAMP DCN-SRGRU DCN-SRCGRU STAMP DCN-SRGRU DCN-SRCGRU

5 Recall@5 .7148 .7256△ .7272△◦ .2685 .2744△ .2752△◦

MRR@5 .6859 .6964△ .6999▲• .1895 .1939△ .1955▲•

10 Recall@10 .7246 .7395△ .7433△◦ .3184 .3278△ .3283△◦

MRR@10 .6872 .7016△ .7132▲• .1955 .2016△ .2034▲•

15 Recall@15 .7314 .7470△ .7501△◦ .3473 .3575△ .3581△◦

MRR@15 .6878 .7032△ .7147▲• .1985 .2046△ .2067▲•

on the test set and report separate results in Fig. 4. We do not Item-
pop and FPMC in the comparison, as their performance is worse
than that of the RNN-based models, especially with short sessions.

From Fig. 4 we can see that as the session length increases, the
performance of all models improves on the Tmall dataset while it de-
creases on the Tianchi dataset. The DCN-SR model always achieves
the highest scores, on both datasets, across different session lengths.
Specifically, for Recall@10, as shown in Fig. 4a and Fig. 4c, among
the baselines, NARM and STAMP perform better than the model
without attention mechanism, i.e., GRU4Rec, across all three session
lengths. As for the personalized methods, although both have a hi-
erarchical structure, SHAN shows better performance than HRNN
across all session lengths, which demonstrates the utility of an
attention mechanism that combines long- and short-term prefer-
ences. STAMP outperforms NARM except when applied with short
sessions; this may be due to the fact that short sessions contain
less information than long sessions, thus RNN-based model, i.e.,
NARM, can provide positional and sequential information as a sup-
plementary for recommendation, while STAMP lacks information
for predicting users’ preferences with few interactions.

For MRR@10, a similar trend is shown in Fig. 4b and 4d. Particu-
larly, DCN-SR shows larger improvements over STAMP in terms of
MRR@10 than Recall@10, which is consistent with our findings in
Table 2. For the Tmall dataset, the improvements are 9.03%, 4.54%
and 1.83% in terms ofMRR@10, for short, medium and long sessions,
respectively, vs. improvements of 8.02%, 3.21% and 1.72% in terms
of Recall@10. For Tianchi dataset, the improvements are 7.33%,
6.42% and 3.82% in terms of MRR@10, for short, medium and long
sessions, respectively, vs. 5.02%, 3.69% and 1.74% for Recall@10.

The improvements of DCN-SR over STAMP are more obvious for
short sessions than for long sessions. This may be because (1) we
consider the users’ historical interactions with the co-attention
network, which can provide us with users’ long-term preferences
when making recommendations for short sessions; (2) the CGRU
network incorporates users’ action information, which supplies
additional information on users’ consumption motivations.

6.4 The length of historical interactions
To answer RQ4, we evaluate the sequential recommendation mod-
els that we consider with different volumes of users’ historical inter-
actions. This time, we group results by the length of users’ historical

interactions, which is denoted as H . That is, we use both datasets
and partition the users into eight groups: H < 100, H ∈ [100, 200),
H ∈ [200, 300), H ∈ [300, 400), H ∈ [400, 500), H ∈ [500, 600),
H ∈ [600, 700], and H > 700. In order to see the impact of the
length of a user’s historical interactions on the recommendation
performance, we compare the performance of DCN-SR with five
baseline models except Item-pop and FPMC; see Fig. 5.

DCN-SR achieves the best performance for all of the eight groups
on both datasets. For the Tmall dataset, when the number of users’
historical interactions increases, the performance of all models
begins to fluctuate at first but shows an upward trend overall. In
particular, as the number of interactions increases, the performance
of DCN-SR, SHAN and HRNN improves more noticeably than of
STAMP and NARM. For example, SHAN shows better performance
than STAMP and NARM in terms of Recall@10 and MRR@10 when
the number of interactions is more than 700. The performance
gap between DCN-SR and STAMP in terms of MRR@10 increases
when the number of interactions increases from the seventh group
([600, 700]) to the eighth group (> 700).

For the Tianchi dataset, the performance of all models decreases
in terms of both metrics as we consider longer histories. The results
for DCN-SR, SHAN and HRNN decline more slowly than for the
STAMP and NARM model, which is consistent with our findings in
Fig. 5a and 5b. E.g., the improvements of DCN-SR over STAMP are
9.03%, 14.27%, 18.19% and 32.51% under the fifth (H ∈ [400, 500)),
sixth (H ∈ [500, 600)), seventh (H ∈ [600, 700]), and eighth (H >
700) groups in terms of Recall@10. This shows the effectiveness of
using personalization strategies, i.e., users’ long-term preferences,
to improve the recommendation performance.

6.5 Co-attention visualization
To illustrate the role of the co-attention mechanism, we present
examples of two users in Fig. 6. For each, we randomly choose two
sessions from the test set on the Tianchi dataset, as the Tianchi
dataset contains category information for items, which helps us
assess the association between interactions. In Fig. 6, the depth of
the color indicates the importance of an event, the darker the color
the more important an event is. The red numbers above the bar are
the categories of the corresponding items.

DCN-SR is capable of highlighting a number of factors in predict-
ing a user’s next interaction as shown in Fig. 6. First, although the
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Figure 4: Effect on the performance of six models in terms of Recall@10 and MRR@10 of different session lengths.
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Figure 5: Effect on the performance of six models in terms of Recall@10 and MRR@10 with different numbers of historical
interactions, tested on the Tmall and Tianchi datasets.
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Figure 6: Co-attention visualization. The depth of color indicates the importance of an event. The red number above the bar
is the category of the corresponding item.

two sessions of a single user share the same historical interactions,
the weights of these historical interactions differ. For example, for
User A, the first event in the historical interactions plays a more
important role in Session1 than in Session2. Also, items that have
the same category as the target item have larger attention weights
than others. The category of an item can partially reflect the inter-
est of the user, thus it indicates that the co-attention mechanism
captures the user’s dynamic interests to some extent.

Second, the interactions in a session also have different weights
for predicting a user’s preference, which proves that DCN-SR can
select important events and ignore unintended interactions. In ad-
dition, interactions close to the end of the session often have larger
importance, which is especially clear in Session1 for User B. This

confirms our intuition that incorporating a user’s last interaction in
the co-attention mechanism can help to improve the performance.

Third, there are some important interactions in a session that
are not near the user’s last click. For example, in Session2 for User
A, the sixth event is more important than the last event. This may
be due to the user’s interests drift. However, DCN-SR can also pick
them up and give them high weights.

Therefore, based on the visualization results, we claim that the
co-attention mechanism is able to capture important events both in
users’ historical interactions as well as their current interactions.

7 CONCLUSIONS AND FUTUREWORK
We propose a dynamic co-attention network for session-based rec-
ommendation, DCN-SR. DCN-SR applies a co-attention network to



capture the dynamic relations between a user’s long-term and short-
term interactions and generate co-dependent representations of the
user’s long-term and short-term preferences. It not only exploits
the combination of long-term and short-term knowledge, but also
considers dynamic aspects of the relation between a user’s long-
term and short-term preferences. For modeling a user’s short-term
interests, we design a Contextual GRU network to take a user’s ac-
tions into account, as different types of action, e.g., “click,” “collect”
and “buy,” can help to reflect users’ next consumption motivations.

Our experimental results confirm the effectiveness and robust-
ness of DCN-SR with different session lengths and varying num-
bers of users’ historical interactions. DCN-SR outperforms the best
performing state-of-the-art model STAMP across different session
lengths, especially for short sessions. As to users with different num-
bers of historical interactions, DCN-SR shows more competitive
recommendation performance on all users than the state-of-the-art
baseline model STAMP. In addition, the improvements of DCN-SR
are higher on users with more historical interactions.

As to future work, on the one hand, we plan to investigate the
use of information contained in different action sequences, e.g.,
click-click-buy, and click-click-collect, as sequential actions can
provide more context information than single actions [2, 7, 31]. On
the other hand, we plan to extend the DCN-SR model with more
auxiliary information, such as content information, to generate
more informative representations of items [9, 29, 39].
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