
39

Joint Neural Collaborative Filtering for Recommender

Systems

WANYU CHEN, National University of Defense Technology, China and University of Amsterdam,

The Netherlands

FEI CAI and HONGHUI CHEN, National University of Defense Technology, China

MAARTEN DE RIJKE, University of Amsterdam, The Netherlands

We propose a Joint Neural Collaborative Filtering (J-NCF) method for recommender systems. The J-NCF

model applies a joint neural network that couples deep feature learning and deep interaction modeling with a

rating matrix. Deep feature learning extracts feature representations of users and items with a deep learning

architecture based on a user-item rating matrix. Deep interaction modeling captures non-linear user-item

interactions with a deep neural network using the feature representations generated by the deep feature

learning process as input. J-NCF enables the deep feature learning and deep interaction modeling processes

to optimize each other through joint training, which leads to improved recommendation performance. In

addition, we design a new loss function for optimization that takes both implicit and explicit feedback, point-

wise and pair-wise loss into account.

Experiments on several real-world datasets show significant improvements of J-NCF over state-of-the-art

methods, with improvements of up to 8.24% on the MovieLens 100K dataset, 10.81% on the MovieLens 1M

dataset, and 10.21% on the Amazon Movies dataset in terms of HR@10. NDCG@10 improvements are 12.42%,

14.24%, and 15.06%, respectively. We also conduct experiments to evaluate the scalability and sensitivity of

J-NCF. Our experiments show that the J-NCF model has a competitive recommendation performance with

inactive users and different degrees of data sparsity when compared to state-of-the-art baselines.

CCS Concepts: • Information systems → Collaborative filtering; Recommender systems;

Additional Key Words and Phrases: Neural recommendation, collaborative filtering

ACM Reference format:

Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. 2019. Joint Neural Collaborative Filtering for

Recommender Systems. ACM Trans. Inf. Syst. 37, 4, Article 39 (August 2019), 30 pages.

https://doi.org/10.1145/3343117

This researchwas partially supported by theNational Natural Science Foundation of China under No. 61702526, theDefense

Industrial TechnologyDevelopment Program under No. JCKY2017204B064, Ahold Delhaize, the China Scholarship Council,

and the Association of Universities in the Netherlands (VSNU). All content represents the opinion of the authors, which is

not necessarily shared or endorsed by their respective employers and/or sponsors.

Authors’ addresses: W. Chen, Science and Technology on Information Systems Engineering Laboratory, National Uni-

versity of Defense Technology, Changsha, 410073, China, Informatics Institute, University of Amsterdam, Amsterdam,

The Netherlands; email: wanyuchen@nudt.edu.cn; F. Cai (corresponding author) and H. Chen, Science and Technology

on Information Systems Engineering Laboratory, National University of Defense Technology, 410073, Changsha, China;

emails: {caifei, chenhonghui}@nudt.edu.cn; M. de Rijke, Informatics Institute, University of Amsterdam, Amsterdam, The

Netherlands; email: derijke@uva.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1046-8188/2019/08-ART39 $15.00

https://doi.org/10.1145/3343117

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

https://doi.org/10.1145/3343117
mailto:permissions@acm.org
https://doi.org/10.1145/3343117

39:2 W. Chen et al.

1 INTRODUCTION

Recommender systems are an effective solution to help people cope with an increasingly complex
information landscape. Collaborative Filtering (CF) approaches have been widely investigated and
used for personalized recommendation [2, 54]. Many traditional CF techniques are based onMatrix
Factorization (MF) [54]. They characterize users and items by latent factors that are extracted from
the user-item rating matrix. In the latent space, traditional CF methods, such as the Latent Factor
Model (LFM) [28], often predict a user’s preference for an item with a linear kernel, i.e., a dot
product of their latent factors, which may not be able to capture the complex structure of user-
item interactions well.
Recently introduced Deep Learning (DL)-based approaches to recommender systems overcome

shortcomings of conventional approaches to recommender systems, such as dynamic user pref-
erences and intricate relationships within the data itself, and are able to achieve high recommen-
dation quality. Today’s DL-based approaches to recommender systems mostly use DL to explore
auxiliary information, e.g., textual descriptions of items or audio features of music, which is then
used to model item features [25, 48, 49]. For the user-item rating matrix, recent work mostly con-
tinues to use traditional MF-based approaches. Restricted Boltzmann Machines (RBMs) [39] seem
to have been the first model to use neural networks to model the user-item rating matrix and
obtain competitive results over traditional methods; it is a two-layer network rather than a deep
learning structure. Another recent approach, Collaborative Denoising Auto-Encoder (CDAE) [52],
is mainly designed for rating prediction with a one-hidden-layer neural network. Neural Col-
laborative Filtering (NCF) [16] uses deep neural networks for learning the interaction function
from data with multi-layer perceptrons, yet it does not explore users’ and items’ features that are
known to be helpful in improving CF recommendation performance. CDAE and NCF only exploit
implicit feedback for recommendations instead of explicit rating feedback. Deep Matrix Factoriza-
tion (DMF) [22] models the user-item rating matrix with a neural network that maps the users’ and
items’ features into a low-dimensional space with non-linear projections; it uses an inner prod-
uct to compute interactions between users and items and applies the same linear kernel (i.e., dot
product) as LFM [28].

We hypothesize that DL should be able to effectively capture both non-linear and non-trivial
user-item relationships as well as users’ (items’) characteristics with multi-layer projections [54].
We propose a Joint Neural Collaborative Filtering (J-NCF) model that enables two processes—
feature extraction and user-item interaction modeling—to be trained jointly in a unified DL struc-
ture. The J-NCF model contains two main networks for recommendation. The first network uses
the rating information of a user (an item) as the network input and outputs a vector representation
for the user (the item). Then, using the connection of a user’s and an item’s vectors as input, the
second neural network models the user-item interactions and outputs the prediction of the corre-
sponding rating of the user and item. Thus, these two networks can be coupled tightly and trained
jointly in a unified structure. Interaction modeling can optimize the feature learning process and
more accurate feature representations can, in turn, improve the user-item interaction prediction.
We take both implicit and explicit feedback, point-wise and pair-wise loss into account to enhance
the prediction performance. In contrast, previous neural approaches such as CDAE, NCF, and DMF
are all optimized onlywith point-wise loss functions and leave dealingwith pair-wise loss as future
work.
To the best of our knowledge, in the area of recommender systems ours is the first attempt to

use a joint neural network to tightly couple feature learning and interaction modeling with the
rating matrix. J-NCF allows these two processes to optimize each other through joint training and
thereby improve the recommendation performance.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:3

Our experiments on real-world datasets, including the MovieLens dataset and the Amazon
Movies dataset, show that J-NCF outperforms the state-of-the-art baselines in prediction accuracy,
with improvements of up to 8.24% on the MovieLens 100K dataset, 10.81% on the MovieLens 1M
dataset, and 10.21% on the Amazon Movies dataset in terms of HR@10. NDCG@10 improvements
are 12.42% on the MovieLens 100K dataset, 14.24% on the MovieLens 1M dataset, and 15.06% on
the Amazon Movies dataset, respectively, over the best baseline model. In addition, we investigate
the scalability and sensitivity of J-NCF with different degrees of sparsity and different numbers of
users’ ratings. Our experimental results indicate that J-NCF achieves competitive recommendation
performance when compared to the best state-of-the-art model.
Our contributions in this article are:

(1) We design a Joint Neural Collaborative Filtering model (J-NCF) for recommendation,
which enables deep feature learning and deep user-item interaction modeling to be cou-
pled tightly and jointly optimized in a single neural network.

(2) We design a new loss function that explores the information contained in both point-wise
and pair-wise loss as well as implicit and explicit feedback.

(3) We analyze the recommendation performance of J-NCF as well as baseline models and
find that J-NCF consistently yields the best performance. J-NCF also shows competitive
improvements over the best baseline model when applied with inactive users and different
degrees of data sparsity.

We summarize related work in Section 2. Our approach, J-NCF, is described in Section 3. Section 4
presents our experimental setup. In Section 5, we report our results to demonstrate the recom-
mendation performance of J-NCF. We also investigate the scalability and sensitivity of our model
as well as other baselines in Section 6. Finally, we conclude our work in Section 7, where we also
suggest future research directions.

2 RELATEDWORK

In Section 2.1, we first look back to traditional approaches to recommender systems that focus
on modeling the similarity between users (items) for recommendation. Then, as applying deep
learning techniques into recommender systems is gaining momentum due to its state-of-the-art
performance and high-quality recommendations, in Section 2.2, we summarize recent work on
deep learning–based recommender systems that can provide a better understanding of users’ de-
mands, items’ characteristics, as well as historical interactions between them by extracting the
features of items with auxiliary information, e.g., the content of movies.

2.1 Traditional Recommender Systems

In many commercial systems, “best bet” recommendations are shown, but the predicted rating
values are not. This is usually referred to as a top-N recommendation task, where the goal of the
recommender system is to find a few specific items that are supposed to be most appealing to
the user. A similar prediction schema, denoted as Top Popular (Item-pop), recommends the top-N
items with the highest popularity (largest number of ratings).
Most top-N recommender systems are based on collaborative filtering [2], where recommenda-

tions rely on past behavior (ratings) from users, regardless of domain knowledge [44]. We group
these CF approaches into two categories, i.e., neighborhood-based methods [31, 40] and latent
factor-based models [24, 28]. Neighborhood-based models share the typical merits of CF, which
concentrate on exploring the similarity among either users or items. For instance, two users are
similar because they have rated similarly the same set of items. A dual concept of similarity can be
defined among items. Latent factor-based approaches generally model users and items as vectors

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:4 W. Chen et al.

in the same “latent factor” space by means of a reduced number of hidden factors. In such a space,
users and items are directly comparable: the rating of a user u on an item i is predicted by the
proximity (e.g., inner-product) between the related latent factor vectors.
For neighborhood-based models, algorithms that are centered around user-user similarity typi-

cally predict the rating by a user based on the ratings expressed by other users similar to her about
such item. However, algorithms centered around item-item similarity compute the user preference
to an item based on their own ratings to similar items. The similarity between item i and item j is
measured as the tendency of users to rate items i and j similarly. It is typically based either on the
cosine, the adjusted cosine, or (most commonly) the Pearson correlation coefficient [40]. The kNN
(k-nearest-neighborhood) approach is a representative enhanced neighborhood model [1] that
considers only thek items rated by useru that are themost similar to the item i when predicting the
rating rui . kNN-based approaches discard items that are poorly correlated to the target item, thus
decreasing noise for improving the quality of recommendations. Neighborhood-based approaches
are similar to the item-item model for user personalization, which is different from our approach
based on the user-item model [40]. Thus, we focus on the latent factor modeling approach.

Most research on latent factor modeling is based on factoring the user-item rating matrix, which
is known as Singular Value Decomposition (SVD) [28]. SVD factorizes the user-item rating matrix
to a product of two lower rank matrices, one containing the “user factors,” the other containing
the “item-factors.” Then, with an inner product and biases (bui), the user’s preference towards an
item can be generated, i.e.,

ŷui = bui + zuzi
T, (1)

where zu and zi denote the “user factors” and “item-factors,” respectively.
Since the conventional SVD is undefined in the presence of unknown values, i.e., missing ratings,

several solutions have been proposed. Earlier work addresses this issue by filling the missing rat-
ings with a baseline estimation [41]. However, this leads to a very large, dense user rating matrix,
where the factorization process becomes computationally infeasible. Recent work learns factor
vectors directly on known ratings through a suitable objective function thatminimizes a prediction
error. The proposed objective functions are usually regularized to avoid overfitting [35]. Typically,
gradient descent is applied to minimize the objective function. An advantage of SVD-based ap-
proaches is that they can provide recommendations for new users after giving their ratings towards
some items without reconstructing the parameters of the models. Thus, for a new user, SVD-based
approaches can provide recommendations immediately according to their current ratings.
Another model based on SVD, SVD++ [27], incorporates both explicit and implicit feedback and

shows improved performance over many MF models. This is consistent with our motivation of
combining explicit and implicit feedback in J-NCF. However, applying traditional MF methods to
sparse ratings matrices can be a non-trivial challenge with high computational costs for decom-
posing the rating matrix.
Many traditional recommender systems apply a linear kernel with an inner product of user and

item vectors to model user-item interactions. Linear functions may not be able to give an accu-
rate description of the characteristics of users (items) and user-item interactions: previous work
has pointed out that non-linearities have potential advantages for improving the performance of
recommender systems with extensive experiments [29, 42, 52].

2.2 Deep Learning-based Recommender System

DL-based recommender systems can be divided into two categories, i.e., single neural network
models and deep integration models, depending on whether they rely solely on deep learning

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:5

techniques or integrate traditional recommendation models with deep learning [3, 15, 23, 32, 34,
44, 51, 54, 56].

For the first category, RBM [33, 39, 46] is an early neural recommender system. It uses a two-
layer undirected graph to model tabular data, such as users’ explicit ratings of movies. RBM targets
rating prediction, not top-N recommendation, and its loss function considers only the observed rat-
ings. It is technically challenging to incorporate negative sampling into the training of RBMs [52],
which would be required for top-N recommendation. AutoRec [42] uses an Auto-Encoder for rat-
ing prediction. It only considers the observed ratings in the loss function, which does not guaran-
tee good performance for top-N recommendation. To prevent the Auto-Encoder from learning an
identity function and failing to generalize to unseen data, Denoising Auto-Encoders (DAEs) [29]
have been applied to learn from intentionally corrupted inputs. Most of the publications listed so
far focus on explicit feedback and, hence, fail to learn users’ preferences from implicit feedback.
CDAE [52] extendsDAEs: its input is a user’s partially observed implicit feedback. Unlike ourwork,
both DAEs and CDAE use an item-item model for personalization that represents a user with their
rated items [40], and the outputs are the item scores decoded from the learned user’s representa-
tion. Our work is a kind of user-itemmodel that learns users’ as well as items’ representations first
and then calculates the relevance between them. The proposed J-NCF model is a user-item model
that personalizes by modeling user-item interactions. Also, CDAE applies a linear kernel to model
the relationship between users and items, whereas J-NCF applies a non-linear kernel.
Several Convolutional Neural Network (CNN)-based recommendation models have been pro-

posed [25, 47, 48]. They primarily use CNNs to extract item features with auxiliary information,
e.g., review text or contextual information, which we will incorporate in our future work. As for
Recurrent Neural Networks, they are used in recommender systems that address the temporal
dynamics of ratings and sequential features [20, 45].

Most closely related to ourmodel is Neural Collaborative Filtering (NCF) [16]. It uses multi-layer
perceptrons to model the two-way interaction between users and items, which is meant to capture
the non-linear relationship between users and items. Letvuser

u andv item
u denote the side information

(e.g., the feature information), then, the prediction rule of NCF is formulated as follows:

ŷui = f
(
U T · vuser

u ,V
T · v item

u | U ,V ,θ
)
, (2)

where the function f (·) defines the multilayer perceptron, and θ are the parameters of the net-
work. However, NCF randomly initializes the representation of users and items with just a one-hot
identifier of user u and item i, respectively, which only explores the users’ and items’ features in a
limited manner. J-NCF adopts a joint neural network structure to capture both user and item fea-
tures and user-item relationships, as we hypothesize that the two parts can be optimized through
tight coupling and joint training. In addition, NCF only exploits implicit feedback for item recom-
mendations and ignores explicit feedback.
An extension based on NCF is CCCFNet (Cross-domain Content-boosted Collaborative Filter-

ing neural Network) [30]. The basic building block of CCCFNet is also a dual network (for users
and items, respectively). It models the user-item interactions in the last layer with the dot product.
Unlike our work, it applies content information with a neural network to capture the user’s prefer-
ences and item features. In addition, DeepFM (Deep Factorization Machine) [14] is an end-to-end
model that seamlessly integrates factorization machine and MLP. However, it also applies content
information and thus models higher-order feature interactions via a deep neural network and low-
order interactions via a factorization machine. In contrast, J-NCF adopts the rating information to
explore both user and item features, which are easier to collect.
As to deep integration models, Collaborative Deep Learning (CDL) [49] is a hierarchical

Bayesian model that integrates stacked DAEs into traditional probabilistic MF. It differs from our

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:6 W. Chen et al.

work in two ways: (1) it extracts deep feature representations of items from the content informa-
tion that we do not explore, and (2) it uses a linear kernel to model relations between users and
items with the dot product of user and item vectors.
A well-known integration model is DeepCoNN (Deep Cooperative Neural Network) [55], which

adopts two parallel convolutional neural networks to model user behavior and item properties
from review texts. In the final layer, a factorization machine is applied to capture their interactions
from rating predictions. It alleviates the sparsity problem and enhances model interpretability by
exploiting a rich semantic representation of the reviews, which could be investigated in J-NCF as
future work.
Wide & Deep learning [12] and DeepFM [14] are two state-of-the-art recommendation works

with deep learning techniques. While they focus on incorporating various features of users and
items, we aim at exploring deep learning methods for pure collaborative filtering systems. Another
integration model that is directly relevant to our work is Deep Matrix Factorization (DMF) [22].
It uses a deep MF model with a neural network that maps users and items into a common low-
dimensional space. It follows the LFM, which uses the inner product to compute interactions be-
tween users and items. This may partially explain why using deep layers does not help to improve
the performance of DMF (see Reference [22, Section 4.4]). Unlike DMF, we apply multi-layer per-
ceptrons to model user-item interactions using a combination of user and item feature vectors as
input. This does not only help our model to be more expressive in modeling user-item interactions
than linear products, but it also helps to improve the accuracy of user and item feature extraction.
On top of the previous work discussed above, our proposed model J-NCF combines feature

learning and interaction modeling into an end-to-end trainable neural network, which enables the
two processes to be optimized jointly. Besides this, we design a new loss function that combines
point-wise and pair-wise losses to explore the integration of different types of information, i.e.,
both implicit and explicit feedback.

3 APPROACH

The proposed model, J-NCF, has a joint structure with a layer used for modeling users’ and items’
features (the DF network) and a higher layer used for modeling user-item interactions (the DI
network). These two layers can be trained in a joint manner to give a predicted score of a user’s
interactions with an item with minimum prediction error. We first describe the notation used and
then detail J-NCF. We also describe the loss function that we use for optimization.

3.1 Problem Formulation and Notation

First, we describe the task of top-N recommendation that we study in this article. Suppose that
there are M users and N items, denoted as U = {user1, . . . , userM } and I = {item1, . . . , itemN }.
R ∈ RM×N denotes the rating information, whereRui is the rating given by user useru to item itemi .
The task for top-N recommendation is to return a list containing a set of items for an individual
user to maximize the user’s satisfaction.
The main notation we use in this article is listed in Table 1.

3.2 Joint Neural Collaborative Filtering

The joint architecture of the proposed J-NCF model is shown in Figure 1. The model contains two
main networks: a DF network for modeling features and a DI network for modeling interactions
between items and users, where the output of the first network serves as the input of the second.
The DF network is used for modeling users’ and items’ features. It contains two parallel neural

networks coupled in the last layer, one network for users (Netuser), and another for items (Netitem).
We give the ratings of a user and an item as inputs to Netuser and Netitem, respectively, which are

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:7

Table 1. Main Notation Used in the Article

Notation Description

U the set of users
I the set of items
Rui an explicit rating of user u to item i
vu a vector containing a user’s ratings; serves as input to Netuser
vi a vector containing an item’s ratings; serves as input to Netitem
M the number of unique users
N the number of unique items
Wx

u the weight matrix for the xth layer in Netuser
bxu the bias for the xth layer in Netuser
f xu the activation function for the xth layer in Netuser
X the number of layers in DF network
W

y

ui the weight matrix for the yth layer in the DI network
aui a combination of user and item vectors; serves as input to the DI network
b
y

ui the bias for the yth layer in the DI network
f
y

ui the activation function for the yth layer in the DI network
Y the number of layers in the DI network
ŷui the predicted score of the interaction between user u and item i
V + the set of items that a user rates
V − the set of items that are not rated by a user
α a tradeoff parameter controlling the contributions of the point-wise loss and

pair-wise loss

defined as vu = 〈yu1, . . . ,yuN 〉 and vi = 〈y1i , . . . ,yMi 〉, where

yui =

{
0, for unknown ratings,
Rui , when explicit feedback is available.

(3)

We think of ratings as non-trivial explicit feedback fromusers, as different ratings indicate different
levels of users’ preferences towards items. Obviously, there are many unknown ratings between
users and items indicating non-preference of a user towards an item. Following References [16, 22],
we regard these unknown ratings as a kind of implicit feedback and mark them as zeros. When
pursuing a top-N recommendation task, we are interested only in a correct item ranking and care
less about the exact rating scores. This grants us some flexibility, like considering all missing values
in the user rating matrix as zeros [13]. Thus, we can take both explicit and implicit feedback into
consideration with Equation (3).
Then, with multi-layer perceptrons (MLP), the initial high-dimensional rating vectors of users

and items are mapped to lower-dimensional vectors. Since Netuser and Netitem only differ in their
inputs, we focus on illustrating the process for Netuser ; the same process is applied for Netitem with
similar layers. The MLP model in the DF network is defined as:

z1u = f 1u
(
W1

uvu + b
1
u

)
z2u = f 2u

(
W2

uz
1
u + b

2
u

)
...

zu = f Xu
(
WX

u z
X−1
u + bXu

)
,

(4)

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:8 W. Chen et al.

Fig. 1. Structure of the J-NCF model. Black arrows indicate the forward propagation for calculating the

predictions. Red arrows indicate the back-propagation for optimizing the parameters.

where Wx
u, b

x
u, and f xu denote the weight matrix, the bias vector, and the activation function for

the xth layer. Here, we use a ReLU as the activation function, as it has been shown to be more
expressive than others and can effectively deal with the vanishing gradient problem [16, 22]. X
indicates the number of layers used in the DF network. The output of the final layer zu is a deep
representation of the user features; likewise, zi is the deep representation for the item features.
As to modeling user-item interactions, traditional LFM methods have been widely used. Such

methods are based on the dot product of user and item vectors, which models a user’s preference
with a linear kernel. To investigate the differences between non-linear and linear functions in
modeling user-item interactions, we propose two ways to obtain fused users’ and items’ feature
vectors aui as the input of the DI network:

aui =

⎧⎪⎪⎨⎪⎪⎩
[
zu
zi

]
, concatenation, or

zu � zi, multiplication.
(5)

The first way is to concatenate the two input vectors zu and zi, which we regard as a non-linear
fusion. The second way is to use the element-wise product of vectors, which uses a linear kernel
to generate user-item interactions. Based on these two ways of fusing the input vectors zu and zi,
we propose two versions of J-NCF, which we discuss in detail in our experiments.
Generating aui is the first step for modeling user-item interactions. However, it is insufficient for

modeling the complex relationship between users and items. Thus, we adopt intermediate hidden

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:9

layers to which aui is fed to obtain a multi-layer non-linear projection of user-item interactions:

z1ui = f 1ui
(
W1

uiaui + b
1
ui

)
z2ui = f 2ui

(
W2

uiz
1
ui + b

2
ui

)
...

zui = f Yui
(
WY

uiz
Y−1
ui + b

Y
ui

)
,

(6)

where W
y

ui, b
y

ui, and f
y

ui denote the weight matrix, the bias vector and the activation function for
the yth layer in the DI network. A ReLU is applied again as the activation function. Y indicates
the number of layers used in the network. The output of the network is the predicted score of the
interaction between user u and item i:

ŷui = σ
(
hTzui

)
, (7)

where the sigmoid function σ can restrict the output in (0,1). h can be learned through the training
process with back-propagation to control the weight of each dimension in zui.

3.3 Loss Function

Objective functions for training recommender systems can be divided into three groups: point-
wise, pair-wise, and list-wise. Point-wise objectives aim at obtaining accurate ratings, which is
more applicable in rating prediction tasks [24]. Pair-wise objectives are usually focused on users’
preferences towards pairs of items and are usually considered more suitable for top-N recommen-
dation [16, 17, 24, 37]. List-wise objectives are focused on users’ interests towards a list of items,
which are also used in some deep learning algorithms. We briefly summarize the three groups of
loss functions.
We use �(·) to denote a loss function and Ω(θ) to represent a regularization term that controls

the model complexity and encodes prior information such as sparsity, non-negativity, or graph
regularization.
For a point-wise loss function, the general calculation is:

L =
∑
u ∈U

∑
i ∈I
�point-wise (yui , ŷui) + λΩ(θ). (8)

There are several types of point-wise loss function. E.g., squared loss is more suitable for explicit
feedback than implicit feedback, as it is calculated with:

�squ =
∑
u ∈U

∑
i ∈I

wui (yui − ŷui)2, (9)

wherewui is a hyper-parameter denoting the weight of training instance (u, i). The use of squared
loss is based on the assumption that observations are generated from a Gaussian distribution;
however, it may not tally well with implicit data [38]. For implicit feedback, there is a point-wise
loss function mainly used for classification tasks [16, 22] named log loss [24] that can perform
better with implicit feedback than squared loss:

�log = −
∑
u ∈U

∑
i ∈I

yui log ŷui + (1 − yui) log(1 − ŷui). (10)

Pair-wise loss considers the relative order of the prediction for pairs of items, which is a more
reliable kind of information for top-N recommendation. Hidasi and Karatzoglou [19] investigate
several popular pair-wise loss functions, i.e., TOP1, BPR-max, and TOP1-max. We give a brief

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:10 W. Chen et al.

introduction of them. TOP1 is the regularized approximation of the relative rank of the relevant
item, which can be calculated as:

�TOP1 =
1

|NS |
∑
j ∈NS

σ (ŷuj − ŷui) + σ
(
ŷ2uj
)
, (11)

where ŷuj and ŷui denote the prediction scores for a negative item j and a positive item i , respec-
tively; NS is the set of negative samples. The first part of TOP1 aims to ensure that the target
score is higher than the score of the negative samples, while the second part pushes the score of
the negative samples down. As for BPR-max and TOP1-max, they have been proposed by Hidasi
and Karatzoglou [19] to overcome the vanishing gradients as the number of negative samples in-
creases. The idea is to have the target score compared with the most relevant sample score, which
is the maximum score among the samples. As the maximum operation is non-differentiable, soft-
max scores are used to preserve differentiability. By summing over the individual losses weighted
by the corresponding softmax scores sj , TOP1-max can be calculated as:

�TOP1-max =
∑
j ∈NS

sj
(
σ (ŷuj − ŷui) + σ

(
ŷ2uj
))
. (12)

And the BPR-max loss function can be calculated as:

�BPR-max = − log
∑
j ∈NS

sjσ (ŷui − ŷuj). (13)

For list-wise loss, many deep learning–based methods combine cross-entropy loss with softmax,
which introduces list-wise properties into the loss. We refer to it as softmax+cross-entropy (XE)
loss, which can be calculated with the following function:

�XE = − log si = − log eŷui∑
j ∈NS

eŷuj
. (14)

Most deep learning–based models only use the point-wise loss function for optimization and leave
the pair-wise loss function for futurework [16, 22]. Point-wise loss only uses the rating information
and ignores the information contained in the relative order of pairs of items. Pair-wise loss, in
contrast, ignores the information of a user’s individual preference for a certain item. Thus, unlike
previous work, NCF and DMF, our proposed J-NCF model considers both point-wise and pair-wise
loss for the top-N recommendation task and combines them into a new loss function:

L = αLpair-wise + (1 − α)Lpoint-wise, (15)

where α is used to control the weights of the two parts.
For point-wise loss, we adopt the log loss (Equation (10)), which can integrate both implicit and

explicit feedback. As to pair-wise loss, combining with different pair-wise losses yields different
new loss functions, i.e., point-wise+TOP1, point-wise+BPR-max, and point-wise+TOP1-max. We
analyze the performance of these different combined loss functions with experiments in Section 5.
Acknowledging that explicit and implicit feedback both contain information about a user’s pref-

erence towards items, we combine both kinds of feedback in our loss function for optimization and
rewrite Equation (15) in detail as

L = αLpair-wise + (1 − α) (−Yui log ŷui − (1 − Yui) log(1 − ŷui)), (16)

where Yui =
yui

Max (Ru)
and Max (Ru) denotes the largest rating score of user u given to items, so

different values ofyui have a different influence on the loss. For example, if the largest rating score
of a user u given to items is 4, when he rates an item i with 2, we can generate Yui =

yui
Max (Ru)

= 2
4 .

We refer to our loss function Equation (16) as a “hybrid” loss function.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:11

ALGORITHM 1: Joint Neural Collaborative Filtering.

Input: Epochs: training iterations;

R: the original rating matrix;

U : user set;

I : item set;

Output: Wx
u (x = 1, . . . ,X): Weight matrix of Netuser ;

bxu (x = 1, . . . ,X): Bias of Netuser ;

Wx
i (x = 1, . . . ,X): Weight matrix of Netitem;

bxi (x = 1, . . . ,X): Bias of Netitem;

W
y
ui
(y = 1, . . . ,Y): Weight matrix of DI network;

b
y
ui
(y = 1, . . . ,Y): Bias of DI network.

1: randomly initializeWu,Wi,Wui, bu, bi, and bui;

2: yui ← use Equation (3) with R;
3: V + ← all none-zero interaction pairs;

4: for epoch in range(Epochs) do

5: random shuffle of V +

6: for 〈u, i〉 ∈ V + do
7: sample the set of negative samples NS

8: for j ∈ NS do

9: vu, vi, vj ← yui with Equation (3);

10: zu, zi, zj ← use Equation (4) with vu, vi, vj as inputs;

11: aui, auj ← use Equation (5) with zu, zi, zj;

12: ŷui , ŷuj ← use Equation (6) and Equation (7);

13: L← use Equation (16) with yui , ŷui and ŷuj as inputs;
14: use back-propagation to optimize the parameters;

15: end for

16: end for

17: end for

18: return Wu,Wi,Wui, bu, bi and bui.

We have developed the joint neural network structure of the J-NCF model. The training process
of J-NCF is shown in Algorithm 1. We first initialize the parameters in the network and modify the
rating matrix from step 1 to 3. Then, in steps 9 and 10, we generate deep feature representations
for both users and items with the DF network. In steps 11 and 12, we calculate the predicted scores
for the user-item interactions with the DI network. Finally, we use the hybrid loss function in
Equation (16) and back-propagation to optimize the network parameters with steps 13 and 14.

4 EXPERIMENTAL SETUP

We design experiments on a variety of datasets to examine the effectiveness of J-NCF. We first
explain the research questions and the models we use for comparison in Section 4.1. The datasets
and experiments are described in Section 4.2.

4.1 Model Summary and Research Questions

We conduct experiments with the aim of answering the following research questions:

RQ1 Does our proposed J-NCF method outperform state-of-art collaborative filtering baselines
for recommender systems?

RQ2 How is the performance of J-NCF impacted by different choices for the pair-wise loss in
Equation (16)?

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:12 W. Chen et al.

RQ3 Does the hybrid loss function Equation (13), which combines point-wise and pair-wise
loss, help to improve the performance of J-NCF?

RQ4 Are deeper layers of hidden units in the DF network and DI network helpful for the rec-
ommendation performance of J-NCF?

RQ5 Does the combination of explicit and implicit feedback help to improve the performance
of J-NCF?

RQ6 How does the performance of J-NCF vary across users with different numbers of interac-
tions?

RQ7 Is J-NCF sensitive to different degrees of data sparsity?
RQ8 How does J-NCF perform on a large and sparse dataset?
RQ9 How do the training and inference times of J-NCF compare against those of other neural

models?

We compare J-NCF against a number of traditional collaborative filtering baselines and against
state-of-the-art deep learning–based models:

Item-pop This method ranks items based on the number of interactions, which is a non-
personalized approach to determine recommendation scores [2].

BPR This method uses a pair-wise loss function to optimize an MF model based on implicit
feedback. We use it as a strong baseline for traditional collaborative filtering method [37].

NCF This is a state-of-the-art neural network–based method for recommender systems. It aims
to capture the non-linear relationship between users and items. Unlike J-NCF, it simply
uses one-hot vectors representing users and items as the input for modeling user-item
interactions. And it only uses implicit feedback and a point-wise loss function [16].

DMF This method usesmulti-layer perceptrons for ratingmatrix factorization. Unlike our work,
after projecting users and items into low dimensional vectors, it applies an inner product
to calculate interactions between users and items, which is a linear kernel. It uses a point-
wise loss function for optimization [22].

In addition, following the choices that we identified in Equation (5), we consider two versions of
J-NCF:

J-NCFm This is J-NCF using element-wise multiplication for combining a user and an item feature
vector as the input for the DI layer, which has a linear kernel inside.

J-NCFc This is J-NCF using concatenation for combining a user and an item feature vector as the
input for the DI layer, which is a non-linear way.

We list all the models to be discussed in Table 2.

4.2 Datasets and Experimental Setup

4.2.1 Datasets. We use three publicly available datasets to evaluate our models and the
baselines:

(1) MovieLens, which contains several rating datasets from the MovieLens web site. The
datasets are collected over various periods of time, depending on the size of the set [16, 22].
We use two sets for our experiments, i.e., MovieLens 100K (ML100K) containing 100,000
ratings from 943 users on 1,682 movies, and MovieLens 1M (ML1M) containing more than
1M ratings from 6,040 users on 3,706 movies.1

1https://grouplens.org/datasets/movielens/.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

https://grouplens.org/datasets/movielens/

Joint Neural Collaborative Filtering for Recommender Systems 39:13

Table 2. An Overview of the Models Discussed in the Article

Model Description Source
Item-pop A typical recommendation approach, which ranks items based on

the number of interactions.
[2]

BPR A recommendation method using a pair-wise loss function to
optimize an MF model based on implicit feedback.

[37]

NCF A state-of-the-art neural-based method for recommender systems. [16]
DMF A method using multi-layer perceptrons for rating matrix

factorization.
[22]

J-NCFm A J-NCF model using element-wise multiplication for combining a
user and an item feature vector as the input for the DI layer.

This article

J-NCFc A J-NCF model using concatenation for combining a user and an
item feature vector as the input for the DI layer.

This article

J-NCFpoint A J-NCF model with only point-wise loss based on Equation (10). This article
J-NCFpair A J-NCF model with only pair-wise loss based in Equation (11). This article
J-NCFhybrid A J-NCF model with our designed loss function in Equation (13). This article
J-NCFex A J-NCF model with both explicit and implicit feedback in the input

and the loss function.
This article

J-NCFim A J-NCF model with only implicit feedback in the input and the loss
function.

This article

(2) Amazon Movies (AMovies), which contains 4,607,047 ratings for movies from Amazon,
which is bigger and sparser than the MovieLens datasets and used widely in the recom-
mender systems literature for evaluation [22, 54].2

(3) Amazon Electronics (AEle), which is a larger and sparser dataset than the other datasets
used in our article. It contains 7,824,482 ratings of users on different electronics. We use
it to test the performance of our model when applied on a large and sparse dataset.3

For the two MovieLens datasets, we do not process them, because they are already filtered. For
the AMovies dataset, following References [16, 22], we filter the dataset so that, similar to the
MovieLens data, only users with at least 20 interactions and items with at least 5 interactions are
retained. For the larger dataset AEle, we only do minor filtering on the data, i.e., filtering the users
with less than 2 interactions and items with less than 5 interactions. To answer RQ1 to RQ7,
we use the ML100K, ML1M, and AMovies datasets to evaluate our models and baselines. As for
RQ8 to RQ9, we test the models on all of the datasets. The characteristics of the datasets after
preprocessing are summarized in Table 3.
To answer RQ5, we plot distributions of users with different numbers of interactions in the

ML100K, ML1M, and AMovies datasets in Figure 2. The x-axis denotes the number of ratings while
the y-axis indicates the number of users corresponding to the ratings. We see that the majority of
users in the three datasets only have a few ratings, which we regard as “inactive users,” and few
“active users” have far more ratings. E.g., in the ML100K dataset, 61.72% of the users have fewer
than 100 ratings, 32.66% have between 100 and 300 ratings, and only 5.6% of the users have more
than 300 ratings.
As we will see below, the models being considered in this article achieve different scores when

used on datasets with different characteristics, i.e., number of users and number of items (see

2http://jmcauley.ucsd.edu/data/amazon/.
3http://jmcauley.ucsd.edu/data/amazon/.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/

39:14 W. Chen et al.

Table 3. Dataset Statistics

Dataset #Users #Items #Ratings #Density(%)
ML100K 943 1,682 100,000 6.3047
ML1M 6,040 3,706 1,000,209 4.4685
AMovies 15,067 69,629 877,736 0.0837
AEle 1,221,341 157,003 4,486,501 0.00234

“Density” is the density of each dataset (i.e., #Density = #Ratings/

(#Uses × #Items)).

Fig. 2. Distribution of users with varying numbers of interactions in the ML100K, ML1M, and AMovies

datasets, respectively.

Section 5). Thus, for RQ6, to evaluate the performance of our model on datasets with different
degrees of sparsity, we keep the number of users and items the same. Namely, following Reference
[24], for each of the three datasets, i.e., ML100K, ML1M, and AMovies, we create three versions at
different sparsity levels with the following steps:

Step 1 We start by randomly choosing a subset of users and items from the original dataset.
This dataset is represented with a ‘−1’ suffix.

Step 2 We randomly choose a rating record and make a judgment if the numbers of users
as well as items are unchanged of the sub-dataset after removing this record. If un-
changed, we remove this record; otherwise, repeat Step 2.

Step 3 After several repetitions of Step 2, the first sparser version of the dataset with the ‘−2’
suffix is created.

Step 4 Repeat Step 2 and Step 3 based on the dataset with a ‘−2’ suffix, the second sparser
version of the dataset with the ‘−3’ suffix is created in the same way.

The characteristics of the datasets are summarized in Table 4.

4.2.2 Experimental Setup. For evaluation, we use a leave-one-out strategy that has been used
widely in DL-based recommender systems [16, 17, 22]. The training set consists of all but the last
interaction of every user; the test set contains the latest interaction of every user. When testing,
it is time-consuming to give ranking predictions to all items for every user. Thus, following He
et al. [16], Hong-Jian et al. [22], we randomly sample 100 items with which the user has not inter-
acted and then give the test item ranking predictions among the 100 samples. Although using this
sampling strategy during evaluation may overestimate the performance of all algorithms, Bellogin
et al. [4] and Hidasi and Karatzoglou [19] have pointed out that the comparison among algorithms
still remains fair.
The majority of the recommender system literature applies error metrics for evaluation, i.e.,

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Such classical error criteria
do not really measure the top-N recommendation performance [13]. An extensive evaluation of

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:15

Table 4. Dataset Statistics with Different Degrees of Sparsity

Dataset #Users #Items #Ratings #Density(%)
ML100K-1 943 1,682 69,999 4.4132
ML100K-2 943 1,682 39,999 2.2522
ML100K-3 943 1,682 9,999 0.6304
ML1M-1 3,706 6,040 850,208 3.7982
ML1M-2 3,706 6,040 350,207 1.5645
ML1M-3 3,706 6,040 167,870 0.7499
AMovies-1 7,402 12,080 87,807 0.0982
AMovies-2 7,402 12,080 37,823 0.0423
AMovies-3 7,402 12,080 18,867 0.0211

several state-of-the-art recommender algorithms suggests that algorithms optimized for minimiz-
ing RMSE do not necessarily perform as expected in terms of the top-N recommendation task [13,
18]. Experimental results also show that improvements in terms of RMSE often do not translate
into accuracy improvements [18]. Thus, here we choose to use accuracy metrics to examine the
recommendation performance [16]. Specifically, we use HR and NDCG to evaluate the perfor-
mance of our models. Hit Ratio (HR) is used to evaluate the precision of the recommender system,
i.e., whether the test item is contained in the top-N list. The Normalized Discount Cumulative Gain

(NDCG) measures the ranking accuracy of the recommender system, i.e., whether the test item is
ranked at the top of the list.
As for parameters, we optimize the hyperparameters by running 100 experiments at randomly

selected points of the parameter space. Optimization is done on a validation set, which is parti-
tioned from the training set with the same procedure as the test set [11]. As for the loss function,
we test the parameter α from 0 to 1 with a step size of 0.1 in our experiment. For the neural
networks, we randomly initialize model parameters with a Gaussian distribution (mean of 0 and
standard deviation of 0.01), optimizing the model with mini-batch Adam [26]. The batch size and
learning rate are set to 256 and 0.0001. For the baselines, we set the parameters of DMF as well as
NCF following References [16, 22], respectively. For DMF and NCF, we set the batch size to 256
and the learning rate to 0.0001 and 0.001. For the DF network in the DMF model, we apply two
layers and the sizes of them are [128, 64]. For the DI network in the NCF model, we employ three
hidden layers with sizes [128, 64, 8]. For the DF and DI networks in J-NCF, without special men-
tion, we employ three layers in the DF network with the sizes of [256, 128, 64] and two layers in DI
network with sizes of [128, 8]. Thus, the embedding sizes of users as well as items are same in all
baseline models as well as J-NCF. We also keep the size of the last hidden layer of the DI network
in J-NCF the same as NCF, which may determine the model capability. We also test our model as
well as the baseline models with different numbers of layers to see if deep layers are beneficial
to the overall performance of these models. Unless specified, for all the results presented in this
article, the number of recommendations (N) is equal to 10 [16, 22].

5 RESULTS AND DISCUSSION

5.1 Overall Performance

To answer RQ1, we examine the recommendation performance of the baselines and the J-NCFm
and J-NCFc models (see Table 5).
Let us first consider the baselines. From Table 5, we see that DMF achieves a better performance

than the other baselines in terms of HR@10 and NDCG@10. Hence, we only use DMF as the best

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:16 W. Chen et al.

Table 5. Performance of Recommendation Models

ML100K ML1M AMovies
Model HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10
Item-pop .3832 .2018 .4513 .2315 .5925 .3493
BPR .5762 .3021 .6097 .3711 .6288 .3903
NCF .6066 .3488 .6498 .3951 .6782 .4135
DMF .6309 .3616 .6748 .4221 .7151 .4616
J-NCFm .6627� .3877� .7127� .4485� .7666� .5098�

J-NCFc .6829� .4065� .7377� .4822� .7881� .5311�

The results produced by the best baseline and the best performer in each column are underlined and

boldfaced, respectively. Statistical significance of pairwise differences of J-NCFm and J-NCFc vs. the best

baseline) is determined by a t -test (�/� for α = .01, or �/� for α = .05).

baseline for comparisons in later experiments. Bayesian Personalized Ranking (BPR) clearly shows
higher improvements over the Item-pop baseline in terms of NDCG@10 than in terms of HR@10,
which shows that pair-wise loss has a strong performance for ranking prediction. The NCF and
DMF models both show better performance than the two traditional CF models, which indicates
the utility of DL techniques in improving recommendation performance.
Next, we compare the baselines against the J-NCF models. NCF and DMF both lose against the

J-NCF models in terms of HR@10 and NDCG@10. This shows that a joint neural network struc-
ture that tightly couples deep feature learning and deep interaction modeling helps to improve the
recommendation performance. Regarding the J-NCF models, independent of the choice of com-
bining the users’ and items’ vectors, J-NCF achieves a better performance than the DMF baseline,
resulting in HR@10 improvements ranging from 5.04% to 8.24% on the ML100K dataset, 5.62% to
10.81% on the ML1M dataset, and 7.21% to 10.21% on the AMovies dataset. NDCG@10 improve-
ments range from 7.22% to 12.42% on the ML100K dataset, 6.25% to 14.24% on the ML1M dataset,
and 10.44% to 15.06% on the AMovies dataset. Significant improvements against the baseline in
terms of HR@10 and NDCG@10 are observed for both J-NCFc and J-NCFm at the α = .01 level,
except for J-NCFm on the ML100K dataset, for which we observe significant improvements at the
α = .05 level in terms of HR@10 and NDCG@10. The higher improvements in NDCG@10 over
HR@10 may be due to the fact that we incorporate pair-wise loss in our loss function, which
motivates us to conduct a further investigation to answer RQ3.
Comparing J-NCFc and J-NCFm, we see that J-NCFc achieves the best performance, with im-

provements of 3.05%, 3.51%, and 2.81% in terms of HR@10, and 4.85%, 7.51%, and 4.18% in terms
of NDCG@10 over J-NCFm on the three datasets, respectively. The complex relationship between
users and items can be described better with a non-linear kernel than linear kernel, which is con-
sistent with the findings in References [16, 33].

5.2 Impact of Different Loss Functions

As we have mentioned in Section 3.3, there are several kinds of pair-wise loss functions that
can be incorporated in Equation (15). When J-NCF combines the point-wise loss, i.e., log loss,
with TOP1, TOP1-max, and BPR-max pair-wise losses, it gives rise to the J-NCFTP , J-NCFTMP , and
J-NCFBMP models, respectively. Additionally, list-wise loss, i.e., softmax+cross-entropy (XE), can
also be applied with J-NCF, which gives rise to the J-NCFXE model. To investigate the impact of var-
ious loss functions on J-NCF, we examine the recommendation performance of J-NCFTP , J-NCFTMP ,
J-NCFBMP , as well as J-NCFXE models where the parameter α in Equation (15) ranges from 0 to 1
with a step size of 0.1. Figure 3 shows the results.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:17

Fig. 3. Performance of the J-NCF models applied with different loss functions where the parameter α in

Equation (15) ranges from 0 to 1 with a step size of 0.1.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:18 W. Chen et al.

As for the overall performance, we can see that when applied with a list-wise loss function,
J-NCFXE has the worst performance among the four models. The other three models, which com-
bine pair-wise and point-wise losses, show relatively similar results in terms of HR@10 and
NDCG@10. When α = 0, it results in J-NCFpoint . When α = 1, it leads to J-NCF, a model with
only corresponding pair-wise loss functions. It is obvious that solely based on point-wise loss, J-
NCF has better performance in terms of HR@10 while worse performance regarding NDCG@10
than J-NCF with only pair-wise loss. This can be explained by the fact that pair-wise loss can help
J-NCF learn to rank items in right positions.
In Figure 3(a), the performance of all models increases from α = 0.2 to α = 0.7 before a short-

term decrease and then a dramatic drop after reaching the peak at α = 0.7. The performance of
J-NCFTP , J-NCFTMP , and J-NCFBMP is comparable in terms of HR@10. As for NDCG@10, shown in
Figure 3(b), J-NCFTP shows better performance than the other twomodels and achieves the highest
point at α = 0.9.

Regarding the performance on the ML1M dataset, similar trends can be found in Figure 3(c)
and Figure 3(d) as in Figure 3(a) and Figure 3(b), respectively. For the AMovies dataset shown in
Figure 3(e) and Figure 3(f), J-NCFBMP shows slightly better performance than both J-NCFTP and
J-NCFTMP in terms of HR@10, while the performance of J-NCFBMP and J-NCFTP is similar in terms
of NDCG@10, which is a little better than that of J-NCFTMP .
As discussed in Reference [19], the BPR-max and TOP1-max loss functions have been proposed

to overcome vanishing gradients as the number of negative samples increases. Since we use a small
number of negative samples in our article, the performance is relatively similar between the three
models J-NCFTP , J-NCFTMP , and J-NCFBMP . As BPR-max and TOP1-max losses need additional
softmax calculations for all negative samples, we apply the TOP1 pair-wise loss in Equation (15)
for J-NCF in the experiments on which we report below.

5.3 Utility of Hybrid Loss Function

For RQ3, to further investigate the utility of the hybrid loss function (Equation (15)), we examine
the recommendation performance of the J-NCFc models under different settings, i.e., J-NCFpoint
with only point-wise loss based on Equation (10) (we incorporate explicit feedback in the same
way as Equation (16)), J-NCFpair with only pair-wise loss based on Equation (11), and J-NCFhybrid
with our designed loss function from Equation (16). Figure 4 shows the results.

The overall performance in terms of HR and NDCG increases when the size of the top-N recom-
mended list ranges from 1 to 10, as a large value of N increases the probability of including a user’s
preferred item in the recommendation list. J-NCFhybrid consistently achieves improvements over
DMF as well as the two models with a single loss function across positions, which demonstrates
the utility of our newly designed loss function. Based on the ML100K dataset, J-NCFhybrid improves
by 2.68% and 7.61%, respectively, over J-NCFpoint and J-NCFpair in terms of HR@10; improvements
of NDCG@10 over J-NCFpoint and J-NCFpair are 3.99% and 2.36%, respectively.
Comparing J-NCFpoint and J-NCFpair , we find that J-NCFpoint beats J-NCFpair in terms of HR,

while J-NCFpair shows more competitive performance in terms of NDCG than J-NCFpoint . This
confirms the findings in References [17, 37] that a pair-wise ranking-aware learner has a strong
performance for ranking prediction. This finding motivates us to incorporate both point-wise loss
and pair-wise loss into the hybrid loss function. Clearly, J-NCFc-based models, i.e., J-NCFpoint ,
J-NCFpair , and J-NCFhybrid , show a better performance than DMF, which also proves that the joint
neural structure is effective, i.e., deep interaction modeling can optimize neural matrix factoriza-
tion and thus improve the recommendation performance.
Comparing the left- and right-hand sides of Figure 4, we see that the improvements of

J-NCFhybrid in terms of NDCG are more significant than those in terms of HR, as indicated by the

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:19

Fig. 4. Performance of Top-N item recommendation where N ranges from 1 to 10. The left and right plots

show the performance in terms of HR@N and NDCG@N, respectively.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:20 W. Chen et al.

Table 6. Performance of J-NCFc and DMF with Different Numbers of Layers in Terms of HR@10

and NDCG@10

HR@10 NDCG@10
DF-1 DF-2 DF-3 DF-4 DF-5 DF-1 DF-2 DF-3 DF-4 DF-5

ML100K

DI-1 .6242 .6511 .6713 .6955 .7213 .3581 .3721 .3971 .4123 .4313
DI-2 .6351 .6642 .6829 .7183 .7388 .3694 .3899 .4067 .4277 .4426
DI-3 .6493 .6712 .7144 .7309 .7479 .3811 .4001 .4197 .4388 .4535
DI-4 .6571 .6832 .7277 .7411 .7523 .3945 .4183 .4311 .4481 .4618

DI-5 .6501 .6799 .7254 .7408 .7501 .3903 .4111 .4287 .4433 .4587
DMF .6285 .6309 .6301 .6297 .6298 .3598 .3616 .3614 .3607 .3598

ML1M

DI-1 .6451 .6671 .7121 .7389 .7619 .3622 .3911 .4399 .4893 .5301
DI-2 .6531 .6999 .7377 .7531 .7814 .3889 .4233 .4822 .5211 .5525
DI-3 .6766 .7198 .7589 .7728 .7929 .4195 .4601 .5177 .5437 .5777
DI-4 .7134 .7472 .7683 .7834 .8088 .4581 .5101 .5389 .5663 .5906

DI-5 .7099 .7411 .7653 .7821 .8021 .4517 .5078 .5333 .5644 .5878
DMF .6673 .6748 .6738 .6722 .6725 .3955 .4221 .4201 .4197 .4199

AMovies

DI-1 .6611 .6922 .7481 .7911 .8188 .4041 .4533 .5004 .5413 .5622
DI-2 .6872 .7378 .7881 .8101 .8411 .4327 .4911 .5311 .5597 .5803
DI-3 .6989 .7633 .8078 .8378 .8787 .4632 .5204 .5501 .5714 .6102
DI-4 .7414 .7999 .8293 .8612 .8893 .5137 .5461 .5644 .5966 .6198

DI-5 .7379 .7922 .8201 .8589 .8821 .5111 .5402 .5599 .5934 .6145
DMF .7478 .7515 .7491 .7483 .7479 .4551 .4616 .4612 .4603 .4591

The results produced by the bestperforming setting on each dataset are boldfaced.

relative improvements over DMF with different sizes of the recommendation list. In Figure 4(a),
J-NCFhybrid shows a 8.78% improvement over DMF in terms of HR at cutoff N = 6, a 5.91% im-
provement at N = 8 and an 8.24% improvement at N = 10 on the ML100K dataset. In Figure 4(b),
the improvements in terms of NDCG at cutoff N = 6, N = 8, and N = 10 are 19.01%, 15.72%, and
12.42%, respectively. J-NCFc with the hybrid loss function cannot only recommend the correct item
to a user, but is also competitive in terms of ranking it at the top of the list.

5.4 Number of Layers in the Networks

In J-NCFc , we not only learn features of users and items through the DF neural network with
multiple hidden layers, but also model user-item interactions with multi-layer perceptrons in the
DI network. Thus, it is crucial to see whether DL is helpful in our model. We conduct experiments
to examine the performance of J-NCFc with various numbers of layers in the DF and DI networks,
respectively. In addition, we also test the performance of the best baseline model, i.e., DMF, with
different DF networks. The results are shown in Table 6. The i in DF-i and DI-i in Table 6 denotes
the number of layers in the DF network and DI network of J-NCFc , respectively.

As shown in Table 6, in terms of HR@10, we can see that with the number of layers increasing,
the recommendation performance of J-NCF is improved, which verifies the effectiveness of DL
techniques for recommender systems.
Comparing the number of layers in the DI and DF networks, we can find that stacking more

layers in the DF network of J-NCFc seems more helpful than in the DI network in enhancing
the recommendation performance. For example, based on the ML100K dataset, the improvements
of the configuration (DF-3, DI-2) over (DF-2, DI-2) are 2.82% and 4.31% in terms of HR@10 and
NDCG@10, while the improvements are 1.05% and 2.62% for (DF-2, DI-3) over (DF-2, DI-2). When

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:21

we stack more than 4 layers in the DI network (e.g., DI-5), the performance of J-NCFc no longer
increases. However, stacking more layers in the DF network (e.g., DF-5) still seems helpful, and the
best results produced for each dataset are all based on J-NCFc with the (DF-5, DI-4) configuration.
This may be because deep layers are more helpful in extracting users’ as well as items’ features and
thus enhance the user-item interaction predictions. It motivates us to incorporate more auxiliary
information for exploring users’ and items’ features with deep learning techniques in future work.
As for NDCG@10, a similar phenomenon can be found. However, when comparing the scores of

HR@10 and NDCG@10 under the same configurations, we can find that deeper layers can lead to
more obvious improvements in terms of NDCG@10 than HR@10 on all of the three datasets. The
best performance of J-NCF with (DF-5, DI-4) outperforms the worst performance of J-NCF with
(DF-1, DI-1) by 20.52%, 25.37%, and 34.52% in terms of HR@10 on the three datasets, respectively.
However, the improvements are 28.96%, 63.05%, and 53.37% in terms of NDCG@10 on the three
datasets.
As for the baseline model DMF shown in the bottom rows in Table 6, when applied with

DF-1, J-NCFc with DI-1 loses to DMF on all datasets. Similar results can be found with DF-2, except
on the ML100K dataset. This can be explained by the fact that the simple concatenation of users’
and items’ embeddings with only one MLP layer in J-NCFc is not efficient for modeling user-item
interactions. When applied with more DI layers, J-NCFc has better performance than DMF with
the same number of DF layers. Additionally, we can find that DMF achieves the best performance
with DF-2, and deeper layers do not seem useful for the DMF model, which corresponds to the
results in Reference [22]. However, J-NCFc achieves further improvements when stacking more
layers in either the DI or DF network or both.

5.5 Impact of Feedback

In J-NCF, we consider different kinds of user feedback. On the one hand, we use the interaction
matrix as the input of the networkwith Equation (3), which contains not only implicit feedback but
also explicit feedback. On the other hand, our loss function in Equation (16) employs a normalized
strategy in the form of Yui =

yui
Max (Ru)

, where Max (Ru) denotes the largest rating score of user

u given to items, to incorporate the explicit feedback. To answer RQ5, we conduct experiments
to investigate whether the combination of explicit and implicit feedback works for J-NCF with
different settings, i.e., J-NCFex with both kinds of feedback in the input and the loss function as
well as J-NCFim with only implicit feedback by labeling 1 for the interactions and 0 for unknown
ratings in the input and the loss function. Figure 5 shows the recommendation performance of
J-NCFex , J-NCFim, DMF, and NCF across different numbers of training iterations, respectively.
First, from Figure 5, we can see that J-NCFex with both kinds of feedback achieves a compet-

itive performance across all iterations in terms of HR@10 and NDCG@10 on the three datasets.
It indicates that the combination of explicit and implicit feedback in the input and the specially
designed loss function of J-NCF does help to improve the recommendation performance. Second,
as the number of training iterations increases, the recommendation performance of all models is
improved and then degraded after reaching a peak. More iterations may lead to overfitting, which
hurts the recommendation performance. However, comparing J-NCFmodel with the baselines, i.e.,
DMF and NCF, we find that J-NCF converges to the best performance faster than other models. For
example, on the ML100K dataset, the best result of J-NCF is generated after the first 9 effective iter-
ations, while DMF and NCF need more training iterations to obtain the best results, i.e., 16 and 14
iterations, respectively. The same phenomenon can be observed on the other two datasets. The op-
timal number of updates needed for J-NCF, DMF, and NCF are around 10, 17, and 19 on the ML1M
dataset, and 14, 18, and 19 on the AMovies dataset, respectively. Third, comparing the performance
in terms of HR@10 and NDCG@10, we find that J-NCFex shows larger improvements over J-NCFim

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:22 W. Chen et al.

Fig. 5. Recommendation performance across different numbers of iterations. The left and right plots show

the performance in terms of HR@10 and NDCG@10, respectively.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:23

Table 7. Recommendation Performance across Users Who Are Ranked

by the Number of Activities

HR@10 NDCG@10
DMF J-NCFm J-NCFc DMF J-NCFm J-NCFc

ML100K
10% .7001 .7400� .8015� .4358 .4786� .5001�

50% .6813 .7349� .7568� .4200 .4379� .4602�

90% .6279 .6585� .6772� .3813 .3897� .4092�

ML1M
10% .7548 .7927� .8511� .5111 .5417� .5952�

50% .7211 .7532� .7982� .4855 .5266� .5587�

90% .6601 .6981� .7277� .4217 .4432� .4751�

AMovies
10% .7851 .8611� .9191� .5349 .5998� .6611�

50% .7519 .7855� .8411� .5033 .5466� .5821�

90% .7013 .7411� .7732� .4597 .5038� .5301�

The results produced by the best performing recommender system in each row are boldfaced.

Statistical significance of pair-wise differences of J-NCFm and J-NCFc vs. DMF is determined

by a t -test (�/� for α = .01, or �/� for α = .05).

in terms of NDCG@10 than HR@10. For example, the improvements are 3.72%, 5.22%, and 4.89%
in terms of HR@10, on the ML100K, ML1M, and AMovies datasets, respectively, vs. improvements
of 4.61%, 5.58%, and 5.31% in terms of NDCG@10. This confirms our hypothesis that incorporating
both explicit and implicit feedback can improve the ranking precision for recommendation.

6 SCALABILITY AND SENSITIVITY

To answer RQ6 to RQ9, we study the scalability and sensitivity of J-NCF as well as the best base-
line DMF when applied in different settings, i.e., with users with various numbers of ratings in
Section 6.1, and with datasets with different levels of sparsity in Section 6.2. In addition, we also
investigate the performance of the deep learning–based approaches, i.e., J-NCF, DMF, and NCF,
when applied with a large and sparse dataset in Section 6.3. Moreover, the training and inference
time needed for these models on all datasets is discussed in Section 6.4.

6.1 Model Scalability with User Ratings

In Figure 2, we have shown that in every dataset most users only have a few ratings, thus it is
meaningful to investigate how the performance of J-NCF and DMF varies with different numbers
of user ratings. Following Reference [36], we look at the performance for users of varying degrees
of activity, measured by percentile. For example, in Table 7, we first rank the users according to
their numbers of their activities. 10% shows the mean performance across the bottom 10% of users,
who are least active; the 90%mark shows the mean performance for all but the top 10%most active
users.
As shown in Table 7, J-NCFc outperforms the best baseline model DMF for users across all ac-

tivity levels, i.e., both the “inactive” users who constitute the majority and the relatively few “very
active” users who give more ratings. In addition, J-NCFc always achieves the best performance
in terms of HR@10 and NDCG@10. To test the robustness of J-NCF under different settings, i.e.,
J-NCFc and J-NCFm, we conduct t-tests between the two versions of J-NCF with DMF, respectively.
Significant improvements against the baseline DMF in terms of HR@10 and NDCG@10 are ob-
served for both J-NCFm and J-NCFc at the α = .01 level across all activity levels, except for J-NCFm
on the ML100K dataset with 50% and 90% users, for which we observe significant improvements
at the α = .05 level in terms of HR@10 and NDCG@10.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:24 W. Chen et al.

Specifically, J-NCF shows larger improvements over the DMFmodel for “inactive” users than for
“very active” users. For example, when incorporating users with more interactions, i.e., from 50%
to 90%, the improvements change from 11.08% to 7.85% in terms of HR@10, and 9.57% to 7.32% in
terms of NDCG@10 on theML100K dataset. Thismay be because the “very active” users havemany
interactions with the items that have few ratings and collaborative filtering lacks information for
recommending items based only on the rating matrix. This naturally suggests a line of future work
in which one would extend J-NCF with more auxiliary information, such as content information,
to explore more accurate relationships between items.
To conclude and answerRQ6, the J-NCFmodels can beat the best baselinemodel for users across

all activity levels. J-NCFc shows the best performance in all datasets. In addition, for “inactive”
users, J-NCF shows larger improvements over DMF than for “very active” users.

6.2 Sensitivity to Data Sparsity

To investigate the sensitivity of J-NCF to different levels of data sparsity, we examine the rec-
ommendation performance on datasets with different levels of sparsity, as presented in Table 4.
Figure 6 shows the results. The overall performance of all models on the AMovies dataset is bet-
ter than that on the other two datasets. That is to say, the recommendation performance may be
influenced by the size of a dataset. Thus, to investigate the model sensitivity across datasets with
different degrees of sparsity, it is essential to keep the number of users and items in the same scale
for the datasets.
From Figure 6, in particular, for theML100K dataset, theML1Mdataset, and theAMovies dataset,

we see that the J-NCF models outperform the baseline model DMF across all sub datasets with dif-
ferent degrees of sparsity in terms of HR@10 and NDCG@10. In addition, we find that when the
density of those datasets goes down, the performance of all models decreases. Thus, it is interesting
to investigate the robustness of J-NCF when it is applied to sparse datasets. We find that when ap-
plied on small datasets, e.g., subsets ofML100K, our best model, i.e., J-NCFc , shows higher improve-
ments against DMF on sparser datasets. For example, J-NCFc achieves 4.91% and 9.12% improve-
ments over DMF in terms of HR@10 and NDCG@10 on the ML100K-1 subset (Density = 4.413%),
while the improvements on theML100K-3 subset (Density = 0.630%) are 7.77% and 12.02% in terms
of HR@10 andNDCG@10, respectively. However, when applied on larger datasets withmore users
and items, i.e., subsets of ML1M and AMovies, J-NCFc shows higher improvements against DMF
on denser datasets. For instance, J-NCFc achieves 11.13% improvements over DMF in terms of
HR@10 on the ML1M-1 subset (Density = 3.7982%), while the improvements on the ML1M-3 sub-
set (Density = 0.7499%) are 6.53% in terms of HR@10. These results may indicate that when the
dataset becomes larger and sparser, it will be more difficult for models to improve their recom-
mendation performances, which motivates us to conduct a further investigation to answer RQ8
(see Section 6.3 below).
In addition, comparing the left- and right-hand side plots in Figure 6, we find that J-NCFc shows

a better performance in terms of NDCG@10 than HR@10. For example, the improvements of
J-NCFc over DMF are 9.19%, 8.28%, and 15.11% in terms of HR@10 on ML100K-1, ML100K-2, and
ML100K-3 datasets, respectively, while the improvements are 10.11%, 10.65%, and 20.55% in terms
of NDCG@10. This result is consistent with our findings in Section 5.3.
Thus, in answer to RQ7, the J-NCF models outperform the best baseline model DMF across

all datasets with different degrees of sparsity in terms of both metrics. Specifically, when applied
on large datasets, i.e., ML1M and AMovies, J-NCFc shows higher improvements against DMF on
denser datasets. In addition, the improvements of J-NCFc over DMF in terms of NDCG@10 are
larger than in terms of HR@10.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:25

Fig. 6. Recommendation performance across datasets with different levels of sparsity. The left and right

plots show the performance in terms of HR@10 and NDCG@10, respectively.

6.3 Performance with a Large and Sparse Dataset

For RQ8, to see if our model is able to work well on a large and sparse dataset, we examine our
model as well as two baseline models, i.e., NCF and DMF, on the Amazon Electronic (AEle) dataset,
which is larger and sparser than the MovieLens and Amazon Movies datasets. Figure 7 shows the
performance of the three models with different sizes of top-N recommended lists.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:26 W. Chen et al.

Fig. 7. Performance of Top-N item recommendation where N ranges from 1 to 10, tested on AEle dataset.

Table 8. Training and Prediction Time Needed for Baseline Models as Well as J-NCF on All Datasets

Training Prediction
Total time(s) Average epoch(s) Total time(s) Average ranking(s)

ML100K
NCF 46.344 1.943 1.389 0.00147
DMF 180.017 9.587 1.558 0.00165
J-NCF 116.023 10.925 1.607 0.00170

ML1M
NCF 494.038 17.751 8.251 0.00137
DMF 5,451.671 320.687 12.376 0.00205
J-NCF 3,539.059 340.048 13.858 0.00229

AMovies
NCF 977.265 25.836 25.599 0.00170
DMF 39,249.657 2,180.537 34.955 0.00232
J-NCF 31,414.628 2,206.084 37.818 0.00251

AEle
NCF 61,812.187 326.828 2,919.005 0.00239
DMF 788,138.604 43,785.478 4,360.187 0.00357
J-NCF 723,586.192 45,224.137 4,775.443 0.00391

It is clear that J-NCF outperforms DMF as well as NCF in terms of HR and NDCG across different
numbers of recommendations. With the size of top-N recommended lists ranging from 1 to 10, the
overall performances of all models increase, which is consistent with the conclusion in Section 5.3.
Comparing the results shown in Figure 7(a) and Figure 7(b), the improvements of J-NCF over DMF
in terms of NDCG are more significant than those in terms of HR. For example, when N = 5 and
N = 10, the improvements of J-NCF over DMF in terms of HR are 5.88% and 4.62%, while the
improvements are 6.12% and 5.82% in terms of NDCG, respectively. To conclude and answer RQ8,
J-NCF can also work well with large and sparse datasets, especially in ranking items correctly.

6.4 Training and Inference Time

To answer RQ9, we investigate the scalability of J-NCF regarding training and inference time
in Table 8. As shown in Table 8, in the “Training” part, “Total time” denotes the time needed
for training the model to the best performance. And the “Average epoch” means the average train-
ing time for a single epoch in the training process. In the “Prediction” part, “Total time” denotes

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:27

the prediction time needed for the whole test set. Since the test set contains the latest interaction of
every user, the “Average ranking” indicates the time needed for providing a ranked list containing
top-10 recommendations for a single user.
As we can see in Table 8, when the size of the dataset becomes larger, the time needed for both

training and prediction gets increased significantly for all models. NCF consistently costs the least
time among the three models for both training and prediction processes on all datasets. For the
training process, the average training time for one epoch of J-NCF is slightly higher than DMF.
However, the total training time for J-NCF is less than for DMF. It can be explained by the fact
that J-NCF needs fewer iterations to obtain the best results than DMF, as indicated in Section 5.5.
Thus, J-NCF costs less time for training to the best performance than DMF. For the prediction
process, although the total time needed for J-NCF and DMF is more than NCF, the three models
cost roughly similar amounts of time for providing a top-10 ranked list for a single user, which is
around a few milliseconds.

7 CONCLUSIONS AND FUTURE WORK

We have proposed a joint neural collaborative filtering model, J-NCF, for recommender systems.
J-NCF uses a unified deep neural network to tightly couple two important parts in a recommender
system, i.e., deep feature learning of users and items, and deep modeling of user-item interactions.
For the user and item feature extraction, we use a deep neural network with matrix factorization
and a combination of explicit and implicit feedback as input. Then, we adopt another neural net-
work for modeling user-item interactions using the feature vectors as inputs. Thus, J-NCF enables
the two parts to be optimized with each other through a joint training process. To make J-NCF
fit the top-N recommendation task, we design a new loss function that incorporates information
from both pair-wise and point-wise loss.
The experimental results confirm the effectiveness of J-NCF. In addition, we have also exper-

imentally investigated the performance of J-NCF under various settings, e.g., with different loss
functions, with varying numbers of layers in the networks, and with using different feedback as
inputs. The results confirm the effectiveness of our hybrid loss function and demonstrate that
J-NCF performs better with more layers in the networks and using the combination of implicit
and explicit feedback as input.
In addition, we have investigated the robustness of J-NCF with different degrees of data sparsity

and different numbers of user ratings. J-NCF outperforms the best baseline model DMF for users
across all activity levels, especially for “inactive users” who constitute the majority of users in the
datasets. As for datasets with different levels of sparsity, in general, J-NCF shows more compet-
itive recommendation performance on all datasets than the state-of-the-art baseline model DMF.
Moreover, we have also tested the J-NCF model with a large and sparse dataset, i.e., AEle, and the
results show that J-NCF also outperforms state-of-the-art baseline models on the dataset.
As to future work, first, we plan to extend J-NCF with more auxiliary information [5, 6, 50, 55],

such as the content information of items as well as reviews, to get a more informed expression of
users as well as items. As collaborative filtering usually suffers from limited performance due to
the sparsity of user-item interactions [43], auxiliary information could be used to boost the perfor-
mance. It would also be interesting to explore heterogeneous information in a knowledge base to
improve the quality of recommender systems with deep learning [53]. Second, we plan to explore
the context information of a user in a session with recurrent neural networks to deal with dynamic
aspects recommender systems [7–9, 21]. In addition, an attention mechanism could be applied to
J-NCF, which can filter out uninformative content and select the most representative items while
providing good interpretability [10]. Finally, as we have found that J-NCF is computationally more

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:28 W. Chen et al.

expensive than NCF, we plan to optimize the structure and implementation details of our model
to make it more efficient.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers for their helpful comments and valuable
suggestions.

REFERENCES

[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Yongquan Yang. 2016. Automated web usage data mining and recom-

mendation system using K-Nearest Neighbor (KNN) classification method.Appl. Comput. Inform. 12, 1 (2016), 90–108.

[2] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 6 (2005), 734–749.

[3] Basiliyos Tilahun Betru, Charles Awono Onana, and Batchakui Bernabe. 2017. Deep learning methods on recom-

mender system: A survey of state-of-the-art.Int. J. Comput. Appl. 162, 10 (2017), 17–22.

[4] Alejandro Bellogin, Pablo Castells, and Ivan Cantador. 2011. Precision-oriented evaluation of recommender systems:

An algorithmic comparison. In Proceedings of the ACM Conference on Recommender Systems (RecSys’11). ACM, 333–

336.

[5] Fei Cai and Maarten de Rijke. 2016. Learning from homologous queries and semantically related terms for query auto

completion. Inform. Proc. Manag. 52, 4 (2016), 628–643.

[6] Fei Cai and Maarten de Rijke. 2016. A survey of query auto completion in information retrieval. Found. Trends Inform.

Retr. 10, 4 (2016), 273–363.

[7] Fei Cai, Shangsong Liang, and Maarten de Rijke. 2016. Prefix-adaptive and time-sensitive personalized query auto

completion. IEEE Trans. Knowl. Data Eng. 28, 9 (Sep. 2016), 2452–2466.

[8] Fei Cai, Ridho Reinanda, and Maarten de Rijke. 2016. Diversifying query auto-completion. ACM Trans. Inform. Syst.

34, 4 (June 2016), 25:1–25:33.

[9] Sotirios P. Chatzis, Panayiotis Christodoulou, and Andreas S. Andreou. 2017. Recurrent latent variable networks for

session-based recommendation. In Proceedings of theWorkshop on Deep Learning for Recommender Systems (DLRS’17).

38–45.

[10] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive collabo-

rative filtering: Multimedia recommendation with item- and component-level attention. In Proceedings of theInterna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’17). ACM, 335–344.

[11] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. 2018. Attention-based hierarchical neural query sugges-

tion. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’18). ACM, 1093–1096.

[12] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg

Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal

Shah. 2016. Wide & deep learning for recommender systems. In Proceedings of theWorkshop on Deep Learning for

Recommender Systems (DLRS 2016). ACM, 7–10.

[13] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on Top-N rec-

ommendation tasks. In Proceedings of theACM Conference on Recommender Systems (RecSys’10). ACM, 39–46.

[14] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A factorization-machine

based neural network for CTR prediction. In Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI’17). AAAI Press, 1725–1731.

[15] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In Proceedings

of theInternational ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’17). ACM,

355–364.

[16] XiangnanHe, Lizi Liao, Hanwang Zhang, LiqiangNie, XiaHu, and Tat-SengChua. 2017. Neural collaborative filtering.

In Proceedings of theInternational World Wide Web Conferences (WWW’17). ACM, 173–182.

[17] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recom-

mendation with implicit feedback. In Proceedings of theInternational ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval (SIGIR’16). ACM, 549–558.

[18] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. Evaluating collaborative filtering

recommender systems. ACM Trans. Inform. Syst. 22, 1 (2004), 5–53.

[19] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based rec-

ommendations. In Proceedings of the International Conference on Information and Knowledge Management (CIKM’18).

ACM, 843–852.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

Joint Neural Collaborative Filtering for Recommender Systems 39:29

[20] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based recommendations

with recurrent neural networks. In Proceedings of the International Conference on Learning Representations (ICLR’16).

[21] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. 2016. Parallel recurrent neural

network architectures for feature-rich session-based recommendations. In Proceedings of the ACM Conference on

Recommender Systems (RecSys’16). ACM, 241–248.

[22] Xue Hong-Jian, Dai Xinyu, Zhang Jianbing, Huang Shujian, and Chen Jiajun. 2017. Deep matrix factorization models

for recommender systems. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’17).

3203–3209.

[23] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep structured

semantic models for web search using clickthrough data. In Proceedings of theInternational Conference on Information

and Knowledge Management (CIKM’13). ACM, 2333–2338.

[24] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: Factored item similarity models for Top-N recommender

systems. In Proceedings of the Conference on Knowledge Discovery and Data Mining (KDD’13). ACM, 659–667.

[25] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. 2016. Convolutional matrix factoriza-

tion for document context-aware recommendation. In Proceedings of theACM Conference on Recommender Systems

(RecSys’16). 233–240.

[26] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. Retrieved from: arXiv preprint

arXiv:1412.6980.

[27] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceed-

ings of the Conference on Knowledge Discovery and Data Mining (KDD’08). ACM, 426–434.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 8 (2009), 30–37.

[29] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via marginalized denoising auto-encoder. In

Proceedings of the International Conference on Information and Knowledge Management (CIKM’15). ACM, 811–820.

[30] Jianxun Lian, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. 2017. CCCFNet: A content-boosted collaborative

filtering neural network for cross domain recommender systems. In Proceedings of the International World Wide Web

Conferences (WWW’17). ACM, 817–818.

[31] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com recommendations: Item-to-item collaborative filter-

ing. IEEE Internet Comput. 7, 1 (2003), 76–80.

[32] Juntao Liu and Caihua Wu. 2017. Deep learning based recommendation: A survey. In Proceedings of theInternational

Conference on Information Science and Applications (ICISA’17). 451–458.

[33] Xiaomeng Liu, Yuanxin Ouyang, Wenge Rong, and Zhang Xiong. 2015. Item category aware conditional restricted

Boltzmann machine based recommendation. In Proceedings of the International Conference on Neural Information

Processing (ICONIP’15). 609–616.

[34] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur Rahman, Pinar Karagoz, Alex Braylan, Bran-

don Dang, Heng-Lu Chang, Henna Kim, Quinten McNamara, Aaron Angert, Edward Banner, Vivek Khetan, Tyler

McDonnell, An Thanh Nguyen, Dan Xu, Byron C. Wallace, Maarten de Rijke, and Matthew Lease. 2018. Neural in-

formation retrieval: At the end of the early years. Inform. Retr. J. 21, 2–3 (June 2018), 111–182.

[35] Arkadiusz Paterek. 2007. Improving regularized singular value decomposition for collaborative filtering. In Proceed-

ings of the Conference on Knowledge Discovery and Data Mining (KDD’07).

[36] Gopalan Prem, Jake M. Hofman, and David M. Blei. 2013. Scalable recommendation with Poisson factorization. Re-

trieved from: arXiv preprint arXiv:1311.1704.

[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of theConference on Uncertainty in Artificial Intelligence (UAI’09). 452–

461.

[38] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic matrix factorization. In Proceedings of the Conference on

Neural Information Processing Systems (NIPS’07). Curran Associates Inc., 1257–1264.

[39] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted Boltzmann machines for collaborative

filtering. In Proceedings of theInternational Conference on Machine Learning (ICML’07). 791–798.

[40] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommen-

dation algorithms. In Proceedings of the International World Wide Web Conferences (WWW’01). ACM, 285–295.

[41] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Thomas Riedl. 2000. Application of dimension-

ality reduction in recommender system–A case study. In Proceedings of the ACM WebKDD Workshop.

[42] Suvash Sedhain, Aditya Menon, Scott Sanner, and Lexing Xie. 2015. AutoRec: Autoencoders meet collaborative fil-

tering. In Proceedings of the International World Wide Web Conferences (WWW’15). ACM, 111–112.

[43] Lei Shi, Wayne Xin Zhao, and Yi-Dong Shen. 2017. Local representative-based matrix factorization for cold-start

recommendation. ACM Trans. Inform. Syst. 36, 2 (Aug. 2017), 22:1–22:28.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

39:30 W. Chen et al.

[44] Xiaoyuan Su and Taghi M. Khoshgoftaar. 2009. A survey of collaborative filtering techniques. Adv. Artific. Intell. 2009

Article 421425 (2009), 19 pages. https://doi.org/10.1155/2009/421425.

[45] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU: Multi-task learning for deep text recom-

mendations. In Proceedings of the ACM Conference on Recommender Systems (RecSys’16). 107–114.

[46] Tran The Truyen, Dinh Q. Phung, and Svetha Venkatesh. 2009. Ordinal Boltzmann machines for collaborative filter-

ing. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’09). 548–556.

[47] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep content-based music recommendation.

In Proceedings of the Conference on Neural Information Processing Systems (NIPS’13). 2643–2651.

[48] Chong Wang and David M. Blei. 2011. Collaborative topic modeling for recommending scientific articles. In Proceed-

ings of the Conference on Knowledge Discovery and Data Mining (KDD’11). 448–456.

[49] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning for recommender systems. In Pro-

ceedings of the Conference on Knowledge Discovery and Data Mining (KDD’15). ACM, 1235–1244.

[50] Suhang Wang, Yilin Wang, Jiliang Tang, Kai Shu, Suhas Ranganath, and Huan Liu. 2017. What your images reveal:

Exploiting visual contents for point-of-interest recommendation. In Proceedings of the International World Wide Web

Conferences (WWW’17). 391–400.

[51] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering. In

Proceedings of theInternational ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19).

[52] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for

Top-N recommender systems. In Proceedings of the Conference on Web Search and Data Mining (WSDM’16). ACM,

153–162.

[53] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative knowledge base

embedding for recommender systems. In Proceedings of the Conference on Knowledge Discovery and Data Mining

(KDD’16). ACM, 353–362.

[54] Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep learning based recommender system: A survey and new perspec-

tives. Retrieved from: arXiv preprint arXiv:1707.07435.

[55] Lei Zheng, Vahid Noroozi, and Philip S. Yu.2017. Joint deep modeling of users and items using reviews for recom-

mendation. In Proceedings of the Conference on Web Search and Data Mining (WSDM’17). ACM, 425–434.

[56] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A neural autoregressive approach to collabo-

rative filtering. In Proceedings of the International Conference on Machine Learning (ICML’16). 764–773.

Received September 2018; revised April 2019; accepted July 2019

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. Publication date: August 2019.

https://doi.org/10.1155/2009/421425

