
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Block-aware Item Similarity Models for Top-𝑁
Recommendation

YIFAN CHEN∗, National University of Defense Technology, China

YANG WANG, Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, Hefei

University of Technology, China

XIANG ZHAO, National University of Defense Technology, China

JIE ZOU, University of Amsterdam, The Netherlands

MAARTEN DE RIJKE, University of Amsterdam & Ahold Delhaize, The Netherlands

Top-𝑁 recommendations have been studied extensively. Promising results have been achieved by recent

item-based collaborative filtering methods. The key to item-based collaborative filtering lies in the estimation

of item similarities. Observing the block-diagonal structure of the item similarities in practice, we propose a

block-diagonal regularization over item similarities for item-based collaborative filtering. The intuitions behind

block-diagonal regularization are: (1) with block-diagonal regularization, item clustering is embedded into the

learning of item-based collaborative filtering methods; (2) block-diagonal regularization induces sparsity of

item similarities, which guarantees recommendation efficiency; and (3) block-diagonal regularization captures

in-block transitivity to overcome rating sparsity. By regularizing the item similarity matrix of item similarity

models with block-diagonal regularization, we obtain a block-aware item similarity model. Our experimental

evaluations on a large number of datasets show that the block-diagonal structure is crucial to the performance

of top-𝑁 recommendation.

CCS Concepts: • Information systems→ Recommender systems.

Additional Key Words and Phrases: item collaborative filtering; item similarity model; top-𝑁 recommendation

ACM Reference Format:
Yifan Chen, Yang Wang, Xiang Zhao, Jie Zou, and Maarten de Rijke. 2020. Block-aware Item Similarity

Models for Top-𝑁 Recommendation. ACM Transactions on Information Systems 1, 1 (July 2020), 26 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Given a user profile with a record of purchases or ratings, the top-𝑁 recommendation task is to

recommend a small set of 𝑁 items from a large item collection [15], in order to effectively and

∗
Corresponding author.

This work is partially supported by NSFC under grants Nos. 61872446, 71690233 and PNSF of Hunan under grant No.

2019JJ20024. Yang Wang is supported by NSFC No. 61806035, U1936217 and The Key Research and Technology Development

Projects of Anhui Province (No. 202004a05020043). Maarten de Rijke is partially supported by the Innovation Center for

Artificial Intelligence (ICAI). All content represents the opinion of the authors, which is not necessarily shared or endorsed

by their respective employers and/or sponsors.

Authors’ addresses: Yifan Chen, National University of Defense Technology, Changsha, China, yfchen@nudt.edu.cn; Yang

Wang, Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, Hefei University of Technology,

China, yangwang@hfut.edu.cn; Xiang Zhao, National University of Defense Technology, Changsha, China, xiangzhao@

nudt.edu.cn; Jie Zou, University of Amsterdam, Amsterdam, The Netherlands, j.zou@uva.nl; Maarten de Rijke, University

of Amsterdam & Ahold Delhaize, Amsterdam, The Netherlands, m.derijke@uva.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

1046-8188/2020/7-ART

https://doi.org/10.1145/1122445.1122456

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Yifan Chen et al.

efficiently help the user identify the services and products that best fit his/her taste. A well-designed

top-𝑁 recommendation algorithm should predict the recommendation scores for each user on each

item in the pool of products, so as to recommend the top-𝑁 items with the highest scores.

Collaborative filtering (CF) has been successfully employed for top-𝑁 recommendations [47]. CF-

based methods include latent space models [15] and neighborhood-based methods [17]. Although

latent space models can be utilized to generate an ordered list of items, they were originally

designed for rating prediction tasks and therefore they are sub-optimal for top-𝑁 recommendation.

Neighborhood-based methods (user-based or item-based) identify similar users or items. Compared

with other models, they deliver better performance for top-𝑁 recommendation [1, 17, 30, 42], and

item-based methods outperform user-based methods [11].

Early item-based collaborative filtering (ICF) methods employ statistical measures, e.g., Pearson

coefficient or cosine similarity, to estimate item similarities [17, 48]. Recommendations by such

heuristic-based approaches are efficient but have inferior performance. Item similarity models (ISMs)

are a later proposal. The sparse linear method (SLIM) [42] makes high-quality recommendations

and ensures efficiency of recommendation by learning a sparse item similarity matrix. One inherent

limitation of SLIM is that it can only model relations between items that have been co-rated by at

least some users; their performance downgrades when ratings are sparse. To address this issue, the

factored item similarity model (FISM) [30] factorizes the similarity matrix into low-rank matrices,

so that transitive relations between items can be well captured. However, the item similarity matrix

generated by FISM is dense. To ensure sparsity while enforcing low-rankness, the low-rank sparse

linear method (LorSLIM) [10] uses rank regularization for the item similarity matrix, where the

learned similarity matrix is empirically shown to have a block-diagonal structure.

1.1 Motivation for block-diagonal structure
The block-diagonal structure is critical to top-𝑁 recommendation: it captures latent item groups,
which are subsets of items so that items contained in them are more similar to each other than to

items in other subsets. Latent item groups are used in a wide spectrum of real-world collaborative

filtering applications. For instance, in themovie domain, “Inception”would be similar to “Interstellar”

as both are science fiction and suspense movies, whereas its degree of similarity to “Titanic” is low

as the latter belongs to the categories of romantic and disaster movies. In many real-world datasets,

the item collection is increasingly large, making the top-𝑁 recommendation task increasingly

hard. As shown by [4], training recommender systems globally for all items can leave many items

badly-modeled and thus under-served. Rather than learning globally, we propose block-diagonal
regularization (BDR) to enforce a block-diagonal structure in the item similarity matrix, so that

similarities with a block can be better modeled locally.

Low-rankness enforced by LorSLIM can be seen as an indirect way of enforcing a block-diagonal

structure. Theoretically, the block-diagonal matrix can only be generated under rigid conditions [39].

In practice, learned item similarity matrices are far from being block-diagonal [20, 38]. Even if the

similarity matrix is block-diagonal, we cannot require it to exactly have a pre-specified number of

blocks.

An alternative way of capturing latent item groups is to group items into sub-groups based on

rating information. While clustering is prevalent in the context of collaborative filtering (CF) [11, 54,

56, 58–60], it has been less studied for item-based collaborative filtering (ICF). Recent work [2, 11, 12]

studies user clustering for ICF. In these publications, users are clustered into subgroups based on

ratings and a local ICF model is estimated for each cluster; hence, clustering and the estimation of

local models are treated as separate procedures.

Different from these methods, the model proposed in this paper forms a multi-task learning

framework, where item clustering and item similarity learning are optimized in an alternating

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Block-aware Item Similarity Models for Top-𝑁 Recommendation 3

? ? ?

? ?

? ? ?

? ? ? ?

? ? ?

? ? ?

X X
X X X
X X

X
X X
X X

(a) Rating matrix (b) Without BDR (c) With BDR

rank 1 2 3 4 5

(d) Recommendation

Fig. 1. Example to show the effect of BDR. Figure 1(a) is a rating matrix from the movie recommendation
domain, where the rows and columns represent movies and users, respectively. If a user has rated a movie,
the corresponding entry is marked with “✓”, otherwise with “?”; Figure 1(b) represents the item similarity
matrix obtained by an ICF method without BDR, where the non-zero entries are grayed; Figure 1(c) is the
learned item similarity matrix with BDR when 𝑐 = 2; Figure 1(d) is the sorted list of recommendations of
unrated movies. The item similarity matrix in Figure 1(c) has a block-diagonal structure, with two blocks
inside the rectangles with thick borders. Sparsity is achieved as off-block similarities are penalized. Transitive
relations are also recovered within the block (the blue grids).

manner. The two tasks mutually enhance each other: the optimized item similarities help to better

categorize items and items within the same group are tend to be more similar than in different

groups.

1.2 Our contributions
In this paper, we propose block-diagonal regularization (BDR) in order to obtain a block-diagonal

structure in the item similarity matrices of item similarity models (ISMs) methods. BDR encourages

the learned item similarity matrix to be, or to be close to, a 𝑐-block diagonal, where 𝑐 is the number

of blocks. BDR integrates item clustering into the learning of item similarities, where off-block

similarities are penalized. The block-diagonal structure achieved by BDR is adaptively optimized

during the training process.

Although many recent top-𝑁 recommendation methods are neural-based approaches [18, 25,

37, 57], doubts have been raised about the reproducibility of these methods; many are being

outperformed by relatively simple heuristic methods [16]. Interestingly, the neural-based methods

fail to consistently outperform SLIM.We view these findings as a justification to continue to improve

linear top-𝑁 recommendation methods. We formulate block-aware item similarity model (BISM)

based on SLIM, where we penalize the item similarity matrix by BDR in order to capture the

block-diagonal structure. Figure 1 gives an illustrative example of how BDR works for ISMs. BISM

is empirically shown to outperform SLIM consistently and significantly, and the superiority over

other state-of-the-art baselines is established.

We demonstrate that with BDR, the learned item similarity matrix of ISMs enjoys the following

properties: (1) block-diagonality: BDR captures latent item groups for fine-grained ICF; (2) sparsity:
BDR ensures efficiency when performing top-𝑁 recommendation; and (3) transitivity: BDR captures

transitive relations between items that are essential for good performance in sparse datasets.

Our main contributions in this paper are the following:

(1) we propose block-diagonal regularization (BDR) to capture the block-diagonal structure in

item similarity matrices so as to improve item-based collaborative filtering (ICF);

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Yifan Chen et al.

Table 1. Notation.

Notation Description

𝑚 number of users

𝑛 number of items

𝑐 number of latent item groups

𝑅 ∈ R𝑚×𝑛 user rating matrix

𝑆 ∈ R𝑛×𝑛 item similarity matrix

𝐿𝑆 ∈ R𝑛×𝑛 the laplacian matrix of 𝑆

𝐹 ∈ R𝑛×𝑐 the auxiliary matrix of BDR

𝑠𝑖 𝑗 the similarity between item 𝑖 and 𝑗

R+𝑢 the set of items rated by user 𝑢

𝑟𝑢𝑖 the score of item 𝑖 rated by user 𝑢

𝑟𝑢𝑖 the predicted score of rating 𝑟𝑢𝑖

(2) we apply BDR to item similarity models (ISMs) and formulate block-aware item similarity

model (BISM), whose effectiveness is theoretically guaranteed; and

(3) we conduct extensive experiments to assess block-aware item similarity model (BISM), which

is shown to outperform the state-of-the-art.

2 PRELIMINARIES
Before introducing our techniques, we describe the notation used in the paper. All vectors are

column vectors and represented by bold lowercase letters (e.g., 𝒙). All matrices and constants are

represented by uppercase letters (e.g., 𝑋) and Greek letters (e.g., 𝛼), respectively. Given a matrix 𝑋 ,

𝑥𝑖 𝑗 represents the entry at the 𝑖-th row and 𝑗-th column. ∥𝑋 ∥1 =
∑

𝑖, 𝑗

��𝑥𝑖 𝑗 �� and ∥𝑋 ∥𝐹 = (∑𝑖, 𝑗 𝑥
2

𝑖 𝑗)1/2
are the ℓ1-norm and ℓ𝐹 -norm of matrix 𝑋 , respectively. We write 𝐼 to denote the identity matrix.

We write𝑚 and 𝑛 for the number of users and items, respectively. 𝑅 ∈ R𝑚×𝑛 represents user

ratings, either explicit or implicit. Item similarity matrices are denoted by 𝑆 ∈ R𝑛×𝑛 , where 𝑠𝑖 𝑗
represents the similarity between item 𝑖 and 𝑗 . We summarize the notation used in this paper in

Table 1. Given 𝑆 , ICF methods predict the score of user 𝑢 for target item 𝑖 by:

𝑟𝑢𝑖 =
∑︁
𝑗 ∈R+𝑢

𝑠 𝑗𝑖 , (1)

where R+𝑢 indicates the set of items rated by 𝑢. To learn the item similarity matrix 𝑆 , SLIM [42]

formulates the following model:

min

𝑆

1

2

∥𝑅 − 𝑅𝑆 ∥2𝐹 + 𝛼 ∥𝑆 ∥1 +
𝛽

2

∥𝑆 ∥2𝐹 such that ∀𝑖, 𝑗, 𝑠𝑖 𝑗 ≥ 0 and 𝑠𝑖𝑖 = 0. (2)

3 THE PROPOSED METHOD
In this section, we propose a regularization method to achieve block-diagonality in item similarity

matrices for ICF methods. In Section 3.1, we introduce the BDR and present theoretical findings of

BDR. We then discuss negative effects of BDR and provide our solution in Section 3.2. Finally, we

apply BDR to SLIM and introduce a BISM in Section 3.3.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Block-aware Item Similarity Models for Top-𝑁 Recommendation 5

3.1 Block-diagonal regularization
Block-diagonality. We recall some basic results from spectral graph theory [13]. Let 𝑆 be an item

similarity matrix. We define the Laplacian matrix of 𝑆 , denoted by 𝐿𝑆 , as:

𝐿𝑆 = Diag(𝐴1) −𝐴, (3)

where 𝐴 = 𝑆+𝑆𝑇
2

. Diag(𝒙) forms a diagonal matrix from 𝒙 with its 𝑖-th element on the diagonal

being 𝑥𝑖 . We use 1 ∈ R𝑛 to denote a vector whose elements are all 1. It is easy to see that 𝐿𝑆
is positive semidefinite as 𝒙𝑇𝐿𝑆𝒙 ≥ 0,∀𝒙 ∈ R𝑛 . We recall the following theorem to capture the

connection between the Laplacian matrix and clusters of items.

Theorem 3.1 ([41]). Let 𝑆 be an item similarity matrix. The multiplicity 𝑐 of the eigenvalue 0 of
the Laplacian matrix 𝐿𝑆 is equal to the number of connected components of the graph underlying 𝑆 .

Theorem 3.1 indicates that if rank (𝐿𝑆) = 𝑛 − 𝑐 , then 𝑆 provides an ideal assignment for items

by partitioning items into 𝑐 groups. To capture latent item groups, we can require that the item

similarity matrix 𝑆 learned by ICF methods follows this rank constraint, so that we learn 𝑆 with a

𝑐-block-diagonal structure. However, the rank constraint brings great difficulty for optimization.

Besides, having exactly 𝑐 blocks is not always desirable for 𝑆 , as in many cases, item groups are not

non-overlapping. Instead, we introduce regularization to 𝑆 , in order to enforce the rank of 𝐿𝑆 , in

place of the rank constraint.

We first recall Ky Fan’s Theorem [19]:

𝑐∑︁
𝑖=1

𝜎𝑖 = min

𝐹

𝑛∑︁
𝑖, 𝑗

∥𝒇 𝑖 − 𝒇 𝑗 ∥22𝑠𝑖 𝑗 , such that 𝐹 ∈ R𝑛×𝑐 , 𝐹𝑇 𝐹 = 𝐼 , (4)

where 𝜎𝑖 denotes the 𝑖-th smallest eigenvalue of 𝐿𝑆 ; 𝐹 is an auxiliary matrix and 𝒇 𝑖 is the 𝑖-th row

of 𝐹 . As 𝐿𝑆 is positive semidefinite, e.g., 𝜎𝑖 ≥ 0, we can enforce

∑𝑐
𝑖=1 𝜎𝑖 to be zero, so as to achieve

the 𝑐-block-diagonal structure. Thus, the BDR is given as:

∥𝑆 ∥𝐵 = min

𝐹𝑇 𝐹=𝐼

𝑛∑︁
𝑖, 𝑗

∥𝒇 𝑖 − 𝒇 𝑗 ∥22𝑠𝑖 𝑗 . (5)

Sparsity. Besides block-diagonality, BDR can also increase sparsity as the block-diagonal structure

is also sparse. To see this, we establish Theorem 3.2.

Theorem 3.2. BDR is a weighted ℓ1-norm regularization if 𝑆 ≥ 0.

Proof. Suppose 𝒙1, 𝒙2, . . . , 𝒙𝑛 are the eigenvectors for 𝐿𝑆 , which are in ascending order of

eigenvalues. For all 𝑖, 𝑗 , if 𝑖 = 𝑗 , we have: ∥𝒙𝑖 − 𝒙 𝑗 ∥22 = 0, else we have 𝒙𝑇𝑖 𝒙 𝑗 = 0 and 𝒙𝑇𝑖 𝒙𝑖 = 1, and

we can derive ∥𝒙𝑖 − 𝒙 𝑗 ∥22 as:
∥𝒙𝑖 − 𝒙 𝑗 ∥22 = 𝒙𝑇𝑖 𝒙𝑖 + 𝒙𝑇𝑗 𝒙 𝑗 − 2𝒙𝑇𝑖 𝒙 𝑗 = 2. (6)

As 𝑆 ≥ 0, we can rewrite the block-diagonal regularization as:

∥𝑆 ∥𝐵 =

𝑛∑︁
𝑖, 𝑗

∥𝒇 𝑖 − 𝒇 𝑗 ∥22𝑠𝑖 𝑗 =
𝑛∑︁
𝑖, 𝑗

��𝑑𝑖 𝑗𝑠𝑖 𝑗 �� = ∥𝐷 ◦ 𝑆 ∥1,
where 𝐷 is a Euclidean distance matrix with 𝑑𝑖 𝑗 = ∥𝒇 𝑖 −𝒇 𝑗 ∥22. Therefore, BDR is a weighted ℓ1-norm

regularization and 𝑑𝑖 𝑗 can be formulated as:

𝑑𝑖 𝑗 =

{
2 −∑𝑛

𝑙=𝑐+1 (𝑥𝑖𝑙 − 𝑥 𝑗𝑙)2, 𝑖 ≠ 𝑗

0, otherwise. □
(7)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Yifan Chen et al.

(a) 𝑆𝑙 (b) 𝑆𝑔 (c) 𝑆 = 𝑆𝑙 + 𝑆𝑔

Fig. 2. BDR with 𝑐 = 3.

Transitivity. We also show that the learned item similarity matrix 𝑆 regularized by BDR can

capture transitivity. We first rewrite Eq. (2) by introducing an auxiliary matrix 𝑆 ′:

min

𝑆,𝑆′

1

2

∥𝑅 − 𝑅𝑆 ∥2𝐹 +
𝛾

2

∥𝑆 − 𝑆 ′∥2𝐹 + _∥𝑆 ′∥𝐵 . (8)

Eq. (8) is equivalent to Eq. (2) as long as 𝛾 is large enough. We first show that 𝑆 ′ is learned to

capture transitive relations among blocks. By fixing 𝑆 , the closed-form solution of 𝑆 ′ to Eq. (8) can

be derived:

𝑆 ′ = 𝑆 − _𝐷. (9)

We then propose Theorem 3.3 to show the transitivity, indicating that if 𝑠 ′𝑖 𝑗 and 𝑠 ′
𝑗𝑘

are no less

than a certain value, then 𝑠 ′
𝑖𝑘
can be ensured to be non-negative. This implies that the relation is

extended from 𝑖 to 𝑘 based on connections between 𝑖, 𝑗 and 𝑗, 𝑘 .

Theorem 3.3. Given 𝑠 ′𝑖 𝑗 ≥ 0 and 𝑠 ′
𝑗𝑘
≥ 0, if 𝑠 ′𝑖 𝑗 > 𝑠𝑖 𝑗 − 1

4
𝑠𝑖𝑘 and 𝑠 ′

𝑗𝑘
> 𝑠 𝑗𝑘 − 1

4
𝑠𝑖𝑘 , then 𝑠 ′𝑖𝑘 ≥ 0.

Proof. According to Eq. (9), we have:

𝑠 ′𝑖 𝑗 = 𝑠𝑖 𝑗 − _𝑑𝑖 𝑗
𝑠 ′
𝑗𝑘

= 𝑠 𝑗𝑘 − _𝑑 𝑗𝑘

𝑠 ′
𝑖𝑘

= 𝑠𝑖𝑘 − _𝑑𝑖𝑘 .
(10)

As 𝐷 is a Euclidean distance matrix, the triangle inequality holds:√︁
𝑑𝑖𝑘 ≤

√︃
𝑑𝑖 𝑗 +

√︃
𝑑 𝑗𝑘 . (11)

Therefore, we have

𝑠 ′
𝑖𝑘
≥ 𝑧𝑖𝑘 − _

(√︃
𝑑𝑖 𝑗 +

√︃
𝑑 𝑗𝑘

)
2

= 𝑧𝑖𝑘 − _
(√︂

1

_
(𝑧𝑖 𝑗 − 𝑠 ′𝑖 𝑗) +

√︂
1

_
(𝑧 𝑗𝑘 − 𝑠 ′𝑗𝑘)

)
2

> 0. □

Since 𝑆 is equal or close to 𝑆 ′ if 𝛾 is large enough, the learned 𝑆 can also capture transitive relations.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Block-aware Item Similarity Models for Top-𝑁 Recommendation 7

3.2 Global item similarities
In the previous section we established basic theoretical properties of BDR. However, directly

penalizing 𝑆 by BDR can trigger an adversarial effect: some columns of 𝑆 will be entirely zero-value.

The reason behind this is that if the pre-defined value 𝑐 is larger than the intrinsic number of latent

item groups, some lonely items that do not show much affiliation with any of the groups could be

sacrificed. Recall the example rating in Figure 1. If we set 𝑐 = 3, the third column of 𝑆 is learned to

be all-zero, as shown in Figure 2(a). This is justifiable as the BDR tries to encourage three blocks,

where the third item is itself a block, so that every off-diagonal entry within the third column is

encouraged to be zero. While this conforms to three blocks, it is not desirable for recommendation

purposes as the movie in gray cannot be recommended.

To address the adversarial effect noted above, besides learning an item similarity matrix regular-

ized by BDR, we introduce another item similarity matrix, which is not penalized by BDR. Since the

one penalized by BDR captures latent item groups, we denote it by 𝑆𝑙 , namely local item similarity

matrix (Figure 2(a)). Similarly, we denote the one without the regularization of BDR by 𝑆𝑔, namely

global similarity matrix (Figure 2(b)). The effect of learning a combination of 𝑆𝑔 and 𝑆𝑙 is two-fold:

(1) it compensates for the negative effect of BDR that some columns of 𝑆𝑙 will learn to be entirely

zero-value; and (2) it captures similarities among different blocks. As shown in Figure 2(c), the

combination of 𝑆𝑙 and 𝑆𝑔 can capture the underlying relations among items.

3.3 Block-aware item similarity model
Based on the above discussions, we can formulate the proposed BISM by the following equation:

min

𝑆𝑙 ,𝑆𝑔,𝐹

1

2

∥𝑅 − 𝑅(𝑆𝑙 + 𝑆𝑔)∥2𝐹 + 𝛼 ∥𝑆𝑔∥1 +
𝛽

2

(
∥𝑆𝑙 ∥2𝐹 + ∥𝑆𝑔∥2𝐹

)
+ _∥𝑆𝑙 ∥𝐵

such that 𝑆𝑙 , 𝑆𝑔 ≥ 0, diag(𝑆𝑙) = diag(𝑆𝑔) = 0 and 𝐹𝑇 𝐹 = 𝐼 .

(12)

Let us explain BISM in some detail. (1) The first term in the objective forms the loss function by

ICF, as given in Eq. (1). The difference with Eq. (1) is that we construct the item similarity 𝑠𝑖 𝑗 as the

linear summation of 𝑠𝑙𝑖 𝑗 and 𝑠
𝑔

𝑖 𝑗
. (2) We penalize 𝑆𝑙 by BDR to capture the block-diagonal structure

behind item similarities. The structure of 𝑆𝑙 is close to 𝑐-block-diagonal if _ is large enough. (3) The

ℓ1-norm regularization is introduced to 𝑆𝑔 to encourage sparsity. The ℓ1-norm is not used for 𝑆𝑙

since the BDR can encourage sparsity. (4) Both 𝑆𝑙 and 𝑆𝑔 are penalized by the ℓ𝐹 -norm to avoid

overfitting. (5) The constraint on the diagonal of 𝑆𝑙 and 𝑆𝑔 is proposed to avoid the trivial solution

that 𝑆𝑙 + 𝑆𝑔 = 𝐼 . (6) We follow Eq. (2) and require both 𝑆𝑙 and 𝑆𝑔 to be non-negative, in order to

learn meaningful similarities.

4 OPTIMIZATION
BISM learns the combination of a local similarity matrix 𝑆𝑙 and a global similarity matrix 𝑆𝑔.

Recall from the definition in Eq. (5) that BDR for ISMs involves another variable 𝐹 , which is an

auxiliary variable introduced to adaptively optimize BDR according to item similarities. Therefore,

we introduce an alternating minimization algorithm to optimize BISM.

4.1 Fixing 𝑆𝑙 , 𝑆𝑔 and update 𝐹

When fixing 𝑆𝑙 , Eq. (12) is reduced to the following problem:

min

𝐹
Tr

(
𝐹𝑇𝐿𝑆𝑙 𝐹

)
such that 𝐹𝑇 𝐹 = 𝐼 , (13)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Yifan Chen et al.

where 𝐿𝑆𝑙 is the Laplacian matrix of 𝑆𝑙 (see Eq. (3)). A closed-form solution for 𝐹 can be obtained

as the 𝑐 eigenvectors corresponding to the 𝑐 smallest eigenvalues of 𝐿𝑆𝑙 .

4.2 Fixing 𝐹 and update 𝑆𝑙 , 𝑆𝑔

We then optimize Eq. (12) with fixed 𝐹 . Due to the independence of columns of 𝑆𝑙 and 𝑆𝑔, we can

rewrite Eq. (12) by decoupling it into a set of 𝑛 independent optimization problems:

min

𝒔𝑙
𝑖
,𝒔
𝑔

𝑖

1

2

∥𝒓𝑖 − 𝑅(𝒔𝑙𝑖 + 𝒔
𝑔

𝑖
)∥2

2
+ 𝛼 ∥𝒔𝑔

𝑖
∥1 +

𝛽

2

(
∥𝒔𝑙𝑖 ∥22 + ∥𝒔

𝑔

𝑖
∥2
2

)
+ _

𝑛∑︁
𝑗=1

𝑑𝑖 𝑗𝑠
𝑙
𝑖 𝑗

such that 𝒔𝑙𝑖 , 𝒔
𝑔

𝑖
≥ 0, 𝑠𝑙𝑖𝑖 = 𝑠

𝑔

𝑖𝑖
= 0,

(14)

where 𝒓𝑖 , 𝒔𝑙𝑖 and 𝒔
𝑔

𝑖
are the 𝑖-th column of 𝑅, 𝑆𝑙 and 𝑆𝑔 , respectively, and 𝑑𝑖 𝑗 = _∥𝒇 𝑖 − 𝒇 𝑗 ∥22. Learning

𝑆𝑙 and 𝑆𝑔 can easily be parallelized given the 𝑛 independent problems in Eq. (14). Due to the

non-negative constraint on 𝒔𝑙𝑖 and 𝒔𝑔
𝑖
, we apply the multiplicative update method [34] for efficient

updating. The multiplicative update method is an iterative updating method that ensures that

during each iteration, the variables to be updated are non-negative.

We derive the update rule for 𝒔𝑙 . We denote 𝐽 as a shorthand for the objective function in Eq. (14)

regarding 𝒔𝑙 only, which is written as follows:

𝐽 =
1

2

∥𝒓𝑖 − 𝑅(𝒔𝑙𝑖 + 𝒔
𝑔

𝑖
)∥2

2
+ 𝛽

2

∥𝒔𝑙𝑖 ∥22 + _
𝑛∑︁
𝑗=1

𝑑𝑖 𝑗𝑠
𝑙
𝑖 𝑗 (15)

Then the partial derivative over 𝒔𝑙 is:

𝜕𝐽

𝜕𝒔𝑙
= 𝑅𝑇𝑅(𝒔𝑙 + 𝒔𝑔) − 𝑅𝑇 𝒓𝑖 + 𝒅𝑖 + 𝛽𝒔𝑙 , (16)

where 𝒅𝑖 is the 𝑖-th column of 𝐷 . Applying the Karush-Kuhn-Tucker first-order optimality condi-

tions [14] to 𝐽 , we derive

𝒔𝑙 ≥ 0,
𝜕𝐽

𝜕𝒔𝑙
≥ 0, 𝒔𝑙 ◦ 𝜕𝐽

𝜕𝒔𝑙
= 0, (17)

where ◦ is the element-wise multiplication between two matrices of the same dimension. This leads

to the following update rule:

𝒔𝑙𝑖 ← 𝒔𝑙𝑖 ◦
𝑅𝑇 𝒓𝑖[

𝑅𝑇𝑅(𝒔𝑙
𝑖
+ 𝒔𝑔

𝑖
) + 𝒅𝑖 + 𝛽𝒔𝑙𝑖

] , (18)

where
[·]
[·] denotes the element-wise matrix division operator. The update rule for 𝒔𝑔 can be similarly

derived:

𝒔𝑔
𝑖
← 𝒔𝑔

𝑖
◦ 𝑅𝑇 𝒓𝑖[

𝑅𝑇𝑅(𝒔𝑙
𝑖
+ 𝒔𝑔

𝑖
) + 𝛼 + 𝛽𝒔𝑔

𝑖

] . (19)

We summarize the resulting algorithm in Algorithm 1.

Time complexity of Algorithm 1. For optimizing 𝒔𝑙 and 𝒔𝑔 , we compute 𝑅𝑇𝑅 and 𝑅𝑇 𝒓𝑖 in an offline

fashion. Due to the sparsity of 𝑅𝑇𝑅, updating of each iteration by Eq. (18) and (19) has complexity

of 𝑂 (𝑛𝑧), where 𝑧 is the average number of non-zeros in the rows of 𝑅𝑇𝑅.

When optimizing 𝐹 , we only need the 𝑐 eigenvectors corresponding to the 𝑐 smallest eigenvalues,

with complexity 𝑂 (𝑛2𝑐). This is superior compared with clustering-based methods since applying

clustering on rating matrix 𝑅 has complexity 𝑂 (𝑚𝑛𝑐), which is prohibitive with a large number

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Block-aware Item Similarity Models for Top-𝑁 Recommendation 9

Algorithm 1: Alternating minimization

1 while not converge do
2 𝐹 ← 𝑐 eigenvectors corresponding to the 𝑐 smallest eigenvalues;

3 while not converge do
4 for 𝑖 = 1, . . . 𝑛 do
5 𝒔𝑙𝑖 ← 𝒔𝑙𝑖 ◦

𝑅𝑇 𝒓𝑖
[𝑅𝑇𝑅 (𝒔𝑙𝑖+𝒔𝑔𝑖)+𝒅𝑖+𝛽𝒔𝑙𝑖]

;

6 𝒔𝑔
𝑖
← 𝒔𝑔

𝑖
◦ 𝑅𝑇 𝒓𝑖
[𝑅𝑇𝑅 (𝒔𝑙𝑖+𝒔𝑔𝑖)+𝛼+𝛽𝒔𝑔𝑖]

;

of users. Besides, packages like ARPACK
1
provide additional benefit to calculate the eigenvectors

when 𝑆𝑙 is sparse, which can further reduce the complexity in optimizing 𝐹 .

Convergence analysis of Algorithm 1. We prove that the alternating minimization optimization

in Algorithm 1 will converge. We first show that the update rule for 𝒔𝑙𝑖 ensures convergence. The
convergence of 𝒔𝑔

𝑖
can be proved in a similar manner.

Theorem 4.1. The objective function 𝐽 in Eq. (15) is non-increasing under the update rule Eq. (18).
𝐽 is invariant under the update rule if and only if 𝒔𝑙𝑖 is at a stationary point.

Proof. The objective function 𝐽 in Eq. (15) is bounded from below by zero. We only need to

show that the objective 𝐽 is non-increasing under the update rule Eq. (18). We follow a similar

procedure as described in [5] based on auxiliary functions. We write 𝐽 𝑗 (𝒔), 𝐽 ′𝑗 (𝒔), and 𝐽 ′′𝑗 (𝒔) for the
objective function, the first and second order derivatives of 𝐽 over the 𝑗-th element of 𝒔 ∈ R𝑛 :

𝐽 𝑗 (𝒔) =
1

2

∥𝒓𝑖 − 𝑅(𝒔 + 𝒔𝑔𝑖)∥
2

2
+ 𝛽

2

𝑠2𝑗 + _𝑑𝑖 𝑗𝑠 𝑗 , (20)

where 𝑠 𝑗 is the 𝑗-th element of 𝒔. 𝐽 ′𝑗 (𝒔) and 𝐽 ′′𝑗 (𝒔) can be written as:

𝐽 ′𝑗 (𝒔) =
[
𝑅𝑇𝑅(𝒔 + 𝒔𝑔

𝑖
) − 𝑅𝑇 𝒓𝑖

]
𝑗
+ 𝛽𝑠 𝑗 + _𝑑𝑖 𝑗 (21)

𝐽 ′′𝑗 (𝒔) =
[
𝑅𝑇𝑅

]
𝑗 𝑗
+ 𝛽. (22)

The auxiliary function is defined as:

𝐺 (𝑠 𝑗 , 𝑠0𝑗) = 𝐽 𝑗 (𝒔0) + 𝐽 ′𝑗 (𝒔0) (𝑠 𝑗 − 𝑠0𝑗) +

[
𝑅𝑇𝑅(𝒔0 + 𝒔𝑔

𝑖
)
]
𝑗
+ 𝛽𝑠0𝑗 + 𝑑𝑖 𝑗

2𝑠0
𝑗

(𝑠 𝑗 − 𝑠0𝑗)2. (23)

We show that the minimization based on the auxiliary function is equivalent to the update rule in

Eq. (18):

𝑠1𝑗 = argmin

𝑠 𝑗
𝐺 (𝑠 𝑗 , 𝑠0𝑗) = 𝑠0𝑗 −𝑠0𝑗

𝐽 ′𝑗 (𝒔0)[
𝑅𝑇𝑅(𝒔0 + 𝒔𝑔

𝑖
)
]
𝑗
+ 𝛽𝑠0

𝑗
+ 𝑑𝑖 𝑗

= 𝑠0𝑗 ·

[
𝑅𝑇 𝒓𝑖

]
𝑗[

𝑅𝑇𝑅(𝒔0 + 𝒔𝑔
𝑖
)
]
𝑗
+ 𝛽𝑠0

𝑗
+ 𝑑𝑖 𝑗

. (24)

We then write 𝐽𝑖 𝑗 (𝑠) by a Taylor series expansion:

𝐽 𝑗 (𝒔) = 𝐽 𝑗 (𝒔0) + 𝐽 ′𝑗 (𝒔0) (𝑠 𝑗 − 𝑠0𝑗) +
1

2

𝐽 ′′𝑗 (𝒔0) (𝑠 𝑗 − 𝑠0𝑗)2. (25)

1
https://www.caam.rice.edu/software/ARPACK/

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

https://www.caam.rice.edu/software/ARPACK/

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Yifan Chen et al.

It is immediate that 𝐺 (𝑠0𝑗 , 𝑠0𝑗) = 𝐽 𝑗 (𝒔0). To prove 𝐺 (𝑠 𝑗 , 𝑠0𝑗) ≥ 𝐽 𝑗 (𝒔), we need to show:[
𝑅𝑇𝑅(𝒔0 + 𝒔𝑔

𝑖
)
]
𝑗
+ 𝛽𝑠0𝑗 + 𝑑𝑖 𝑗

𝑠0
𝑗

≥
[
𝑅𝑇𝑅

]
𝑗 𝑗
+ 𝛽, (26)

which immediately holds as 𝑑𝑖 𝑗 ≥ 0. Thus we have:

𝐽 𝑗 (𝒔1) ≤ 𝐺 (𝑠1𝑗 , 𝑠0𝑗) ≤ 𝐺 (𝑠0𝑗 , 𝑠0𝑗) = 𝐽 𝑗 (𝒔0). (27)

Therefore, we have shown that ∀𝑗 , 𝐽 𝑗 (𝒔) is non-increasing under the update rule. The equal sign in

Eq. (27) holds if and only if 𝑠1𝑗 = 𝑠0𝑗 , which indicates that 𝐽 is invariant under the update rule if and

only if 𝒔𝑙𝑖 is at a stationary point. □

Theorem 4.1 guarantees the convergence of 𝒔𝑙 under the update rule in Eq. (18). The convergence

of 𝒔𝑔 can be similarly guaranteed. We write 𝑆 =
{
𝑆𝑙 , 𝑆𝑔

}
for the combination of 𝑆𝑙 and 𝑆𝑔 . We write

𝐽 (𝐹, 𝑆) as the objective function of Eq. (12). Thus 𝑆 (𝑡+1) is optimal w.r.t. 𝐽 (𝐹 (𝑡+1) , 𝑆). We then prove

the convergence of Algorithm 1.

Theorem 4.2. The sequence
{
𝑆 (𝑡) , 𝐹 (𝑡)

}
generated by Algorithm 1 has at least one limit point. Any

limit point {𝑆∗, 𝑃∗} is a stationary point of Eq. (12).

Proof. As 𝐹 (𝑡+1) and 𝑆 (𝑡+1) are optimal w.r.t. 𝐽 (𝐹, 𝑆 (𝑡)) and 𝐽 (𝐹 (𝑡+1) , 𝑆), and 𝑆 is 𝛽-strongly

convex w.r.t. 𝐽 (𝑆, 𝐹 (𝑡+1)), according to Eq. (22), we have

𝐽 (𝐹 (𝑡+1) , 𝑆 (𝑡+1)) ≤ 𝐽 (𝐹 (𝑡+1) , 𝑆 (𝑡)) − 𝛽

2

∥𝑆 (𝑡+1) − 𝑆 (𝑡) ∥2𝐹

≤ 𝐽 (𝐹 (𝑡) , 𝑆 (𝑡)) − 𝛽

2

∥𝑆 (𝑡+1) − 𝑆 (𝑡) ∥2𝐹 .
(28)

Summing over Eq. (28), we have:

+∞∑︁
𝑡=1

𝛽

2

∥𝑆 (𝑡+1) − 𝑆 (𝑡) ∥2𝐹 ≤ 𝐽 (𝑆 (0) , 𝐹 (0)), (29)

which implies

𝑆 (𝑡+1) − 𝑆 (𝑡) → 0. (30)

Based on Eq. (30), as 𝐹 (𝑡+1) is obtained as the 𝑐 eigenvectors of 𝐿𝑆 (𝑡) , we have:

𝐹 (𝑡+1) − 𝐹 (𝑡) → 0. (31)

Therefore, the sequence

{
𝑆 (𝑡) , 𝐹 (𝑡)

}
has at least one limit point. According to [23, Corollary 2], any

limit point of the sequence is a stationary point of Eq. (12). □

5 EXPERIMENTAL SETUP
In this section, we introduce our experimental setup.

5.1 Research questions
Our research questions are:

(RQ1) What is the overall performance of BISM in comparison to state-of-the-art linear and neural-

based methods for top-𝑁 recommendation?

(RQ2) How do BISM and the baselines perform when recommending different numbers of items to

users?

(RQ3) What is the impact of BDR on the learned item similarity matrix and the performance of

top-𝑁 recommendation?

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Block-aware Item Similarity Models for Top-𝑁 Recommendation 11

Table 2. Descriptive statistics of the datasets: #user, #item and #rating denote the number of users, items and
ratings, respectively. Density is calculated as #rating/(#user×#item).

Name #user #item #rating Density

Amazon 5,653 11,944 86,149 0.13%

BookX 5,671 5,367 86,354 0.28%

Yahoo 7,594 8,641 106,593 0.16%

MovieLens 6,040 3,706 1,000,209 4.47%

Pinterest 55,187 9,916 1,500,809 0.27%

(RQ4) What is the impact of regularization parameters on the performance of BISM?

5.2 Datasets
We evaluate the performance of BISM on five benchmark datasets. Table 2 lists descriptive statistics

of the datasets.

• Amazon:2 A dataset based on the Amazon product catalogue [40]; we select one of the

categories, Sports & Outdoors, which contains transactions between different product items

and users indicated with multivariate rating values.

• BookX :3 A subset of the Book-Crossing dataset, containing implicit feedback from users,

which was collected by [62] from the Book-Crossing community.

• Yahoo:4 A small sample of the Yahoo!Movies community’s preferences for various movies,

rated on a scale from A+ to F.

Following the common setting for evaluating top-𝑁 recommendation, we binarize the ratings if it

is explicit. We also adopt two datasets for a fair comparison against DeepICF and NAIS [25, 57]:

• MovieLens:5 The MovieLens 1M Dataset released by the GroupLens research project.

• Pinterest: The implicit feedback data is constructed by [21] for evaluating content-based

image recommendation.

5.3 Evaluation methodology
We evaluate themethods using leave-one-out cross-validation (LOOCV): we hold out one interaction

of each user as the test data and use the remaining interactions as training set. The validation

set consists of a randomly drawn interaction for each user from the training set. This evaluation

method is widely utilized for top-𝑁 recommendations [3, 27, 46].

To perform top-𝑁 recommendation for a user, the widely used method is to rank all items that

the user has not rated and the first 𝑁 items are recommended to her. Since ranking all items can

be time-consuming during evaluation, existing work tries to manually and randomly construct a

relatively small set of candidate items for each user [25, 26, 57]. While sampling candidate items

ensures the efficiency of evaluation, it can introduce randomness for testing [45]. The performance

of top-𝑁 recommender systems varies when candidate items are constructed differently. Therefore,

we first evaluate the top-𝑁 recommendation performance by recommending from all unrated items,

which is a comparably difficult task. For a fair comparison with the state-of-the-art neural methods,

NAIS [25] and DeepICF [57], we also evaluate by sampling 100 candidate items (we use the same

candidate set of items as those two papers) to compare BISM.

2
http://jmcauley.ucsd.edu/data/amazon/

3
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

4
https://webscope.sandbox.yahoo.com/catalog.php

5
https://grouplens.org/datasets/movielens/

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

http://jmcauley.ucsd.edu/data/amazon/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://webscope.sandbox.yahoo.com/catalog.php
https://grouplens.org/datasets/movielens/

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Yifan Chen et al.

We use hit rate (HR) and average reciprocal hit-rank (ARHR) [17, 17, 30] to evaluate the perfor-

mance:

𝐻𝑅 =
#ℎ𝑖𝑡

#𝑢𝑠𝑒𝑟
, 𝐴𝑅𝐻𝑅 =

1

#𝑢𝑠𝑒𝑟

#ℎ𝑖𝑡∑︁
𝑖=1

1

𝑝𝑜𝑠 (𝑖) . (32)

where #users is the total number of users, #hits is the number of hits in the top-𝑁 recommendations

across all users, and 𝑝𝑜𝑠 (𝑖) is the position of the test item in the ranked list of recommendations

for the 𝑖-th hit. ARHR is a weighted version of HR, which takes the ranking position of the test

item 𝑖 in the list of recommendations into account. Note that when evaluating using LOOCV, HR

and ARHR can be regarded as Recall and mean reciprocal rank (MRR), respectively. We also use

normalized discounted cumulative gain (nDCG) [25] as evaluation metric:

𝐷𝐶𝐺@𝑁 =

𝑁∑︁
𝑖=1

𝑟𝑒𝑙𝑖

log
2
(𝑖 + 1) ,

where 𝑟𝑒𝑙𝑖 indicates whether the item at position 𝑖 is relevant. The objective of nDCG is to compare

any given ranked list of items with a benchmark that represents the optimal ranking:

𝑛𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺@𝑁

𝐼𝐷𝐶𝐺@𝑁
,

where the idealized discounted cumulative gain (IDCG) with cut at𝑁 , i.e., the best possible𝐷𝐶𝐺@𝑁 ,

is used to normalize discounted cumulative gain (DCG) value so that 𝑛𝐷𝐶𝐺@𝑁 is within [0, 1].

5.4 Methods used for comparison
Baselines. We compare BISM with the following baselines, including both linear and neural

methods.
6
Besides, to show whether learning global similarities is helpful or not, we also implement

localized item similarity model (LISM), the simplified version of BISM, which learns local similarities

only.

• Bayesian personalized ranking (BPR) [46]: A ranking/retrieval criteria-based method. We train

a latent space model with the pair-wise loss function;

• Factored item similarity model (FISM) [30]: An ISM that factorizes item similarity matrix into

two low-rank matrices. We use the implementation in [25] for the experiments, which takes

advantage of advanced learning algorithms.

• Item-based 𝑘 nearest neighbors approach (item𝑘NN) [17]: An early ICF method that heuris-

tically computes item similarities. We choose cosine as the similarity function and apply

shrinkage to the similarities;

• Sparse linear method (SLIM) [42]: An ISM that learns a sparse item similarity matrix;

• SLIMlocal : A SLIM with item clustering. Items are clustered into 𝑐 groups based on the rating

matrix, where for each group we learn a local SLIM. For each user, the predicted score of a

target item is calculated by the local SLIM of the group that the item belongs to.

• Embarrassingly shallow autoencoders (EASE) [49]: a simplified version of SLIM. EASE drops

the ℓ1-norm and the non-negative constraint in SLIM. Due to the simplification, closed-form

solution is available for EASE;

6
We exclude LorSLIM [10], the low-rank sparse linear model, from our experimental comparisons. We failed to generate

a set of reasonable recommendations using LorSLIM on all datasets and we were also unable to reproduce the results

obtained using LorSLIM as reported in [10]. The source code of LorSLIM on MovieLens with 100k ratings (ML-100k) is

evaluated with 336 items, rather than all 1,682 items. For a fair comparison, we evaluate BISM in the same setting, which

provides much better results than reported in their paper, i.e., HR@10 = 0.574, ARHR@10 = 0.265 against HR@10 = 0.397,

ARHR@10 = 0.207. A similar issue exists with the lorSLIMappro method proposed in [31], which approximates the nuclear

norm used in lorSLIM. Therefore, we exclude the two methods from our experiments.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Block-aware Item Similarity Models for Top-𝑁 Recommendation 13

• Pure Singular-Value-Decomposition (PureSVD) [15]: A latent space model designed for top-𝑁

recommendation;

• Weighted regularized matrix factorization (WRMF) [29]: A latent space model specially for

implicit datasets;

• Multinomial variational auto-encoder (mVAE) [37]: A state-of-the-art neural method for

top-𝑁 recommendation. It utilizes variational auto-encoder (VAE) and assume multinomial

likelihood function to capture implicit feedback;

• Neural attentive item similarity model (NAIS) [25]: A neural-based ISM that utilizes the

attention mechanism to capture similarities between the target item and user rated items. We

compare with both implementations with different choices of attention function. NAISconcat
denotes the use of 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 , which simply concatenates 𝒑𝑖 and 𝒒 𝑗 to learn the attention weight

𝑤𝑖 𝑗 . NAISprod denotes the use of 𝑓𝑝𝑟𝑜𝑑 , which feeds the element-wise product of 𝒑𝑖 and 𝒒 𝑗

into the attention network.

• Deep item-based collaborative filtering (DeepICF) [57]: A neural-based ISM that accounts for

the nonlinear and higher-order relationships among items;

Implementation details. We use LibRec [24] to run the experiments for item𝑘NN, SLIM, BPR and

WRMF. We use the source code implementation in [25] to run experiments for FISM and NAIS
7

(both NAISconcat and NAISprod), the implementation in [37] for mVAE
8
and that in [57] for DeepICF

9
.

As shown by [25, 57], both NAIS and DeepICF suffer from slow convergence and poor performance

when all model parameters are initialized randomly. Therefore, we follow their solution to pretrain

item embeddings of NAIS and DeepICF by FISM. Following the experimental settings of [25, 57], we

train NAISconcat , NAISprod and DeepICF with binary cross-entropy loss and the optimizer Adagrad.

We implement BISM and LISM in PyTorch. Instead of following the auto-gradient optimization,

we update parameters manually according to the Algorithm 1. We also implement PureSVD and

SLIMlocal .

Parameters. The parameters of all methods are explored within the parameter space. We select

parameters based on the best performance in terms of HR@10 on the validation set. For BISM we

tune the ℓ1, ℓ𝐹 -norm regularization parameter 𝛼, 𝛽 , block-diagonal regularization parameter _ and

the number of item groups 𝑐 (explored within {1, 2, . . . , 10}).
The parameters tuned for the baselines are the following: (1) For BPR we tune the parameter of

the latent dimension 𝑘 . (2) For FISMrmse and FISMauc we tune the neighbor agreement parameter 𝛼

(explored within {0.1, 0.2, . . . , 1}), ℓ𝐹 -norm regularization parameter 𝛽 , the ℓ2-norm regularization

of item bias _ and the latent dimension 𝑘 . (3) For item𝑘NNwe tune the number of nearest neighbors

𝑘 . (4) For SLIM we tune the ℓ1-norm regularization parameter 𝛼 and the ℓ𝐹 -norm regularization

parameter 𝛽 . (5) For SLIMlocal we tune the ℓ1-norm and ℓ𝐹 -norm regularization parameter 𝛼 and

𝛽 . (6) For PureSVD we tune the parameter of the latent dimension 𝑘 . (7) For WRMF we tune the

confidence level 𝛼 (explored within {0.1, 0.2, . . . , 1}) and the latent dimension 𝑘 . (8) For DeepICF

we choose a three-layer perceptron for the deep neural network structure with 𝑘, 100, 50 as the

number of neurons, where 𝑘 is also the latent dimension of user/item embeddings. We tune the

parameter 𝑘 of the latent dimension. For DeepICF we tune the neighborhood agreement 𝛼 . Both 𝛼

and 𝛽 are explored within {0.1, 0.2, . . . , 1}. (9) For mVAE we tune the Kullback–Leibler (KL) term

regularization parameter 𝛽 . (10) For NAIS we follow the paper to fix the neighborhood agreement

as 𝛼 = 0, which empirically leads to the best performance. We tune parameter for the latent

7
https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model

8
https://github.com/dawenl/vae_cf

9
https://github.com/linzh92/DeepICF

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model
https://github.com/dawenl/vae_cf
https://github.com/linzh92/DeepICF

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Yifan Chen et al.

Table 3. Comparison of top-𝑁 recommendation methods on Amazon and BookX datasets. The best result is
shown in boldface and the best result achieved by the baselines (except BISM and LISM) is underlined. We
conducted two-sided tests for the null hypothesis that the best and the second best have identical average
values. Asterisks indicate the best score if the improvement over the second best is statistically significant;
we use an asterisk ∗ if 𝑝 < 0.05 and two asterisks ∗∗ if 𝑝 < 0.01.

Method 𝛼 𝛽 _ 𝑘 𝑐 HR@10 ARHR@10 nDCG@10

A
m
az
on

BPR [46] – – – 500 – 0.0603 0.0238 0.0328

FISM [25] 0.5 0.01 10 100 – 0.0686 0.0244 0.0346

item𝑘NN [17] – – – – 10 0.0663 0.0251 0.0355

SLIM [42] 0.01 1 – – – 0.0528 0.0230 0.0298

SLIMlocal 10.0 0.01 – – 5 0.0692 0.0291 0.0384

PureSVD [15] – – – 20 – 0.0475 0.0171 0.0226

WRMF [29] 4 – – 100 – 0.0666 0.0267 0.0360

EASE [49] – 100 – – – 0.0800 0.0345 0.0451

DeepICF [57] 0 – 10 100 – 0.0513 0.0176 0.0262

mVAE [37] – 0.5 – – – 0.0570 0.0222 0.0278

NAISconcat [25] 0 0.5 10 100 – 0.0402 0.0144 0.0197

NAISprod [25] 0 0.5 10 100 – 0.0435 0.0167 0.0228

LISM 0.01 100 100 – 7 0.0849* 0.0358 0.0472

BISM 1 100 10 – 9 0.0867** 0.0372** 0.0488**

B
oo

kX

BPR [46] – – – 500 – 0.1047 0.0520 0.0564

FISM [25] 0.5 0.01 10 500 – 0.1095 0.0543 0.0673

item𝑘NN [17] – – – – 10 0.0908 0.0409 0.0555

SLIM [42] 0.1 1 – – – 0.1135 0.0599 0.0720

SLIMlocal 1.0 0.01 – – 2 0.1001 0.0472 0.0582

PureSVD [15] – – – 500 – 0.0920 0.0504 0.0610

WRMF [29] 3 – – 200 – 0.1126 0.0554 0.0710

EASE [49] – 100 – – – 0.1247 0.0638 0.0781

DeepICF [57] – – 0.1 500 – 0.0741 0.0324 0.0451

mVAE [37] – 0.7 – – – 0.0813 0.0388 0.0483

NAISconcat [25] – – 0.1 500 – 0.0779 0.0359 0.0429

NAISprod [25] – – 0.1 500 – 0.0827 0.0335 0.0446

LISM 0.01 100 10 – 2 0.1315** 0.0654* 0.0809**

BISM 10 100 10 – 6 0.1333** 0.0663** 0.0819**

dimension 𝑘 and set the attention factor 𝑎 = 𝑘 . We tune 𝑘 , the latent dimension (or the number of

neighbors), from {10, 20, 50, 100, 200, 500}. All the parameters for regularization are explored from

{0.01, 0.1, 1, 10, 100}.

6 EXPERIMENTAL RESULTS
We answer the research questions listed in Section 5.1 based on the experimental results.

6.1 RQ1: Top-𝑁 recommendation performance
To answer RQ1, we compare BISM with state-of-the-art baselines, both linear and neural. The

overall results of all methods on the Amazon, BookX, MovieLens and Yahoo datasets are reported in

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Block-aware Item Similarity Models for Top-𝑁 Recommendation 15

Table 4. Comparison of top-𝑁 recommendation methods on MovieLens and Yahoo datasets.

Method 𝛼 𝛽 _ 𝑘 𝑐 HR@10 ARHR@10 nDCG@10

M
ov

ie
Le

ns

BPR [46] – – – 500 – 0.2353 0.0977 0.1284

FISM [25] 0.5 1 10 100 – 0.2001 0.0725 0.0994

item𝑘NN [17] – – – – 200 0.1740 0.0705 0.0944

SLIM [42] 0.01 1 – – – 0.2122 0.0907 0.1289

SLIMlocal 0.1 10 – – 2 0.2334 0.0990 0.1304

PureSVD [15] – – – – 20 0.2142 0.0920 0.1219

WRMF [29] 2 – – – 20 0.2339 0.0967 0.1331

EASE [49] – 100 – – – 0.2542 0.1093 0.1431

DeepICF [57] – – 0.1 100 – 0.2382 0.0968 0.1298

mVAE [37] – 0.9 – – – 0.2318 0.0926 0.1219

NAISconcat [25] – – 0.1 100 – 0.2139 0.0831 0.1100

NAISprod [25] – – 0.1 100 – 0.2172 0.0872 0.1183

LISM 0.01 100 1 – 7 0.2571 0.1107 0.1437

BISM 0.1 100 10 – 1 0.2602* 0.1104 0.1460

Ya
ho

o

BPR [46] – – – 500 – 0.3460 0.1675 0.2055

FISM [25] 0.5 1 1 50 – 0.2541 0.1167 0.1486

item𝑘NN [17] – – – – 500 0.3368 0.1611 0.2038

SLIM [42] 0.01 1 – – – 0.3934 0.2011 0.2479

SLIMlocal 1.0 0.10 – – 2 0.3791 0.1910 0.2352

PureSVD [15] – – – – 10 0.2385 0.1029 0.1307

WRMF [29] 6 – – – 20 0.3458 0.1574 0.2031

EASE [49] – 100 – – – 0.4076 0.2089 0.2555

DeepICF [57] – – 1 50 – 0.3069 0.1343 0.1735

mVAE [37] – 0.9 – – – 0.3745 0.1762 0.2065

NAISconcat [25] – – 1 50 – 0.3028 0.1379 0.1668

NAISprod [25] – – 1 50 – 0.3080 0.1385 0.1681

LISM 0.01 100 1 – 5 0.4058 0.2058 0.2515

BISM 0.1 100 0.1 – 6 0.4101 0.2091 0.2560

Table 3 and 4. In both tables, we report and compare HR@10, ARHR@10 and nDCG@10. For each

method, the results and the parameter settings corresponding to the best HR@10 on the validation

set are reported.

We discuss the results per dataset. First, the Amazon dataset has the largest number of items, the

smallest number of users, and the most sparse feedback. Therefore, the overall accuracy for the

Amazon dataset is low. EASE is the best performing baseline. BISM and LISM outperform EASE and

the difference with BISM is significant. Besides, SLIMlocal also shows good performance. While SLIM

is outperformed by FISM, SLIMlocal beats FISM by clustering items. Therefore, the effectiveness of

capturing latent item groups is well confirmed on the Amazon dataset. The neural-based methods

generally show poor performance on this dataset. The best performance is achieved by DeepICF,

which is outperformed by SLIM.

Second, on the BookX dataset, while results are similar to Amazon, the overall performance

is better. While SLIM outperforms FISM and WRMF, its performance is still inferior to that of

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Yifan Chen et al.

Table 5. Top-𝑁 recommendation from 100 candidate items of compared methods at embedding size 16.

Method MovieLens Pinterest

HR@10 nDCG@10 HR@10 nDCG@10

FISM [25] 0.6647 0.3949 0.8740 0.5522

NAISconcat [25] 0.6972 0.4196 0.8844 0.5720

NAISprod [25] 0.6969 0.4194 0.8844 0.5722
DeepICF [57] 0.6881 0.4113 0.8806 0.5631

EASE [49] 0.7096 0.4495 0.8150 0.5439

LISM 0.7146 0.4445 0.8648 0.5581

BISM 0.7190 0.4459 0.8702 0.5632

EASE. Although SLIMlocal fails to perform better than SLIM, both BISM and LISM show significant

improvement over SLIM. This shows that while capturing latent item groups is helpful for recom-

mendation, the generated item similarity matrix via the static way of clustering is sub-optimal

or even harmful. Again, the neural-based methods show poor performance. The effectiveness of

neural-based methods is conditioned on the number of training samples. However, both Amazon

and BookX datasets are very sparse, which means that they are less qualified to train these complex

models.

Next, the overall performance on the MovieLens dataset is high since this dataset has the least

sparse ratings. While EASE is still the best performed baseline, the second best performed baseline

is the neural model DeepICF. Due to dense ratings, this is the only case when the neural-based

methods can outperform linear ones. Again, BISM and LISM improves over DeepICF and EASE

and the improvement w.r.t. HR@10 is significant. And finally, on the Yahoo dataset, while it is also

relatively sparse, the overall performance is the best among all the datasets. The superiority of

ISMs is clearly visible on this dataset. SLIM outperforms mVAE substantially (5.0% w.r.t. HR@10

and 14.1% w.r.t. ARHR@10), and BISM improves over SLIM significantly (4.5% w.r.t. HR@10 and

3.8% w.r.t. ARHR@10). Although BISM still performs better than EASE, the improvement is not

significant.

The experiments discussed so far show that linear methods generally show better performance

than neural methods for top-𝑁 recommendation. The poor performance of mVAE can be explained

by the suggestion in [49] that the zero constraint of the diagonal of item similarities may be more

effective on sparse data than neural methods. For other neural methods (NAIS and DeepICF),

where the zero constraint has been considered, we conduct further experiments to analyze their

relatively poor performance. For a fair comparison, we follow the same experimental settings used

for NAIS and DeepICF. To be more specific, rather than ranking all items to perform the top-𝑁

recommendation, we follow the setting of sampling 99 negative items together with 1 positive item

for a user to form the candidate items. We run experiments on the two datasets (MovieLens and

Pinterest). The authors open-source the two datasets, the split and the sampled negative items. Our

comparison can therefore be conducted under the exact same experimental settings. We run BISM

and LISM on these two datasets and compare with the results reported in [25, 57]. Since EASE is

the best performing baseline, it is also taken as a baseline to compare.

Results are recorded in Table 5. On the MovieLens dataset, the effectiveness of neural methods is

clearly demonstrated. However, they fail to outperform EASE. While BISM and LISM reach higher

HR@10 scores than EASE, in terms of nDCG@10 EASE performs slightly better. On the Pinterest

dataset, however, EASE cannot achieve comparable performance. While BISM and LISM perform

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Block-aware Item Similarity Models for Top-𝑁 Recommendation 17

better than EASE, they also fail to outperform neural methods, except that BISM beats DeepICF

w.r.t. nDCG@10.

We summarize the above experimental analysis and conclude as follows: (1) the effectiveness

of BDR is well demonstrated since BISM and LISM outperform baseline methods on all datasets

except for the Pinterest and the outperformance is significant generally; (2) comparing with the

state-of-the-art linear baseline method EASE, BISM show better performance in most cases, which

further confirms the effectiveness of BDR; and (3) neural methods show their effectiveness on

the MovieLens and Pinterest datasets, which have comparably more data samples, indicating that

neural methods generally require more data to be well trained;

6.2 RQ2: Top-𝑁 recommendation with different 𝑁
To better illustrate the gains achieved by BISM over competing approaches, we show the HR and

ARHR scores of all algorithms for different values of 𝑁 (i.e., 5, 10, 15, 20) on the Amazon, BookX,

MovieLens and Yahoo datasets. For ease of illustration, we separate the comparison of BISM with

linear and with neural methods. Figures 3 and 4 show the comparison of results. Overall, BISM

consistently outperforms other methods w.r.t. all metrics and on all datasets.

Figure 3 compares BISM with linear methods. We discuss the results per dataset: (1) As shown

in Figure 3(a) (top-left), on the Amazon dataset, BISM performs the best, followed by LISM and

EASE. Besides, FISM, item𝑘NN and WRMF show similar performance. While FISM is inferior than

item𝑘NN and WRMF when 𝑁 = 5, it outperforms item𝑘NN and WRMF when 𝑁 is larger. As

for ARHR@𝑁 in Figure 3(b) (top-left), item𝑘NN and WRMF outperform FISM constantly. The

superiority of BDR is well demonstrated since both BISM and LISM improve over other compared

methods, regardless of the length of recommendation lists. (2) On the BookX dataset, as shown in

Figure 3(a) (top-right), while both BISM and LISM outperform other methods, BISM is outperformed

by LISM when 𝑁 = 15 and 20. Besides, SLIM and LorSLIM show their effectiveness. Except for

𝑁 = 20, they outperform other methods except BISM and LISM. This trend can also be observed for

ARHR@𝑁 in Figure 3(b) (top-right). (3) On theMovieLens dataset (Figure 3(a) and 3(b) (bottom-left)),

while the best results are also generated by BISM, LISM and EASE, comparable results are achieved

by WRMF, BPR, SLIM, LorSLIM and PureSVD. Besides BISM, LISM and EASE, WRMF and BPR

achieves the best result on HR@𝑁 and ARHR@𝑁 , respectively. (4) On the Yahoo dataset, results of

BISM, LISM and EASE are similar, followed by SLIM, which outperforms other baselines.

Figure 4 compares BISM with neural methods. The superiority of BISM and LISM are better

illustrated, especially w.r.t. ARHR@𝑁 . We also discuss the results per dataset: (1) On the Amazon

dataset, besides BISM and LISM, DeepICF performs the best w.r.t. HR@𝑁 (the top-left of Figure 4(a))

and NAISprod performs the best w.r.t. ARHR@𝑁 (the top-left of Figure 4(b)). (2) On the BookX

dataset, while mVAE is significantly outperformed by BISM and LISM, it outperforms other neural

methods (the top-left of Figure 4(a) and 4(b)). (3) On the MovieLens dataset, DeepICF and mVAE

show comparable performance and outperform other methods, though still being outperformed

by BISM and LISM. (4) On the Yahoo dataset, mVAE is a promising method. When 𝑁 = 20, mVAE

can achieve comparable results to BISM and LISM. While BISM performs better than LISM w.r.t.

HR@5 and HR@10, it has been outperformed by LISM w.r.t. other metrics.

To summarize, despite the differences shown when performing top-𝑁 recommendation with

different values of 𝑁 , methods with BDR (BISM and LISM) always generate better results regardless

of metrics and the length of the list of recommended items.

6.3 RQ3: Impact from the latent item groups
We further analyze the impact of BDR on the retrieval performance to answer RQ4. We first

conduct a qualitative evaluation. We visualize the learned item similarity matrix by different

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Yifan Chen et al.

0.000

0.025

0.050

0.075

0.100

0.125

N=5 N=10 N=15 N=20

Amazon

0.00

0.05

0.10

0.15

N=5 N=10 N=15 N=20

BookX

0.0

0.1

0.2

0.3

N=5 N=10 N=15 N=20

MovieLens

0.0

0.1

0.2

0.3

0.4

0.5

N=5 N=10 N=15 N=20

Yahoo

BISM

LISM

EASE

FISM

itemkNN

WRMF

BPR

SLIMlocal

SLIM

pureSVD

H
R

@
N

(a) Performance of 𝑁 = 5, 10, 15, 20 w.r.t. HR@𝑁

0.00

0.01

0.02

0.03

0.04

N=5 N=10 N=15 N=20

Amazon

0.00

0.02

0.04

0.06

N=5 N=10 N=15 N=20

BookX

0.00

0.03

0.06

0.09

0.12

N=5 N=10 N=15 N=20

MovieLens

0.00

0.05

0.10

0.15

0.20

N=5 N=10 N=15 N=20

Yahoo

BISM

LISM

EASE

FISM

itemkNN

WRMF

BPR

SLIMlocal

SLIM

pureSVD

A
R

H
R

@
N

(b) Performance of 𝑁 = 5, 10, 15, 20 w.r.t. ARHR@𝑁

Fig. 3. Comparison with linear methods for different values of 𝑁 .

models. However, in real applications, the block-diagonal structure is not easily visible. Therefore,

we consider the qualitative evaluation on a smaller dataset, i.e., ML-100k
10
.

To see the structure difference of item similarity matrix by different ISMs, we visualize the matrix

in Figure 5, using ML-100k dataset. As shown by Figure 5(a), SLIM cannot capture latent item

groups as the structure of item similarity matrix is not block-diagonal. The matrix learned by

LorSLIM captures the main component in the top left of Figure 5(b), which can be regarded as a

single block. Besides the block discovered by LorSLIM, LISM further captures a block in the bottom

right of Figure 5(c), within which the transitive relations have also been recovered.

10
https://grouplens.org/datasets/movielens/100k/

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

https://grouplens.org/datasets/movielens/100k/

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Block-aware Item Similarity Models for Top-𝑁 Recommendation 19

0.000

0.025

0.050

0.075

0.100

0.125

N=5 N=10 N=15 N=20
Amazon

0.00

0.05

0.10

0.15

N=5 N=10 N=15 N=20
BookX

0.0

0.1

0.2

0.3

N=5 N=10 N=15 N=20
MovieLens

0.0

0.1

0.2

0.3

0.4

0.5

N=5 N=10 N=15 N=20
Yahoo

BISM
LISM
mVAE
DeepICF
NAISp
NAISc

H
R

@
N

(a) Performance of 𝑁 = 5, 10, 15, 20 w.r.t. HR@𝑁

0.00

0.01

0.02

0.03

0.04

N=5 N=10 N=15 N=20
Amazon

0.00

0.02

0.04

0.06

N=5 N=10 N=15 N=20
BookX

0.00

0.03

0.06

0.09

0.12

N=5 N=10 N=15 N=20
MovieLens

0.00

0.05

0.10

0.15

0.20

N=5 N=10 N=15 N=20
Yahoo

BISM
LISM
mVAE
DeepICF
NAISp
NAISc

A
R

H
R

@
N

(b) Performance of 𝑁 = 5, 10, 15, 20 w.r.t. ARHR@𝑁

Fig. 4. Comparison with neural methods for different values of 𝑁 .

To further see the impact of BDR on the top-𝑁 recommendation performance, we also evaluate

BISM and LISM with different values of 𝑐 . EASE is taken as the baseline for compare, which does

not consider item grouping. The results are plotted as line-point figures in Figure 6, where we use

the same parameter settings as Table 3 and 4 but vary 𝑐 from 1 to 20 with step 1. Clearly, learning

different numbers of item groups has an impact on the performance of top-𝑁 recommendation.

We find the following. (1) On the Amazon dataset, as shown in Figure 6(a), LISM outperforms

EASE significantly and BISM further improves over LISM. While LISM shows better performance

when 𝑐 is small, BISM performs better when 𝑐 is large. This is due to the learning of global

similarities, which overcomes the negative effect of BDR. The effectiveness of item grouping is well

demonstrated on the Amazon dataset, which has the largest candidate items. (2) On the BookX

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Yifan Chen et al.

(a) SLIM (b) lorSLIM (c) LISM with 𝑐 = 2

Fig. 5. Item Similarity Matrix on ML-100k.

0.080

0.082

0.084

0.086

5 10 15 20

c

H
R

@
1

0

BISM

EASE

LISM

(a) Amazon

0.126

0.128

0.130

0.132

5 10 15 20

c

H
R

@
1

0

BISM

EASE

LISM

(b) BookX

0.254

0.255

0.256

0.257

0.258

5 10 15 20

c

H
R

@
1

0

BISM

EASE

LISM

(c) MovieLens

0.404

0.406

0.408

0.410

5 10 15 20

c

H
R

@
1

0

BISM

EASE

LISM

(d) Yahoo

Fig. 6. Top-𝑁 recommendation performance when learning different numbers of item groups.

dataset, as shown in Figure 6(b), while both LISM and BISM outperform EASE significantly, LISM

and BISM show similar performance, except that BISM reaches the top when 𝑐 = 6. The negative

effect of BDR is not shown on the BookX dataset, indicating that the intrinsic number of item

groups may be large. (3) On the MovieLens dataset, as shown in Figure 6(c), the value of 𝑐 shows

greater impact on the performance. Both LISM and BISM are unstable, especially when 𝑐 is small.

BISM gradually stabilizes with the growth of 𝑐 , whereas LISM keeps fluctuating. BDR has a higher

impact on LISM and BISM in the MovieLens dataset. This may be that the MovieLens dataset has

the least number of items, resulting in the sensitivity to item grouping. (4) On the Yahoo dataset, as

shown in Figure 6(d), LISM fail to outperform EASE due to the negative effect of BDR. By learning

global similarities, the negative effect can be overcome, where BISM outperforms EASE.

To conclude, on different datasets, the number of item groups has various impact. The perfor-

mance of BISM and LISM vary with different number of latent item groups. BISM generally shows

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Block-aware Item Similarity Models for Top-𝑁 Recommendation 21

λ=0.01 λ=0.1 λ=1 λ=10 λ=100

0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100

0.01

0.1

1

10

100

A
m

a
z
o

n

0.06

0.07

0.08

HR@10

λ=0.01 λ=0.1 λ=1 λ=10 λ=100

0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100

0.01

0.1

1

10

100

B
o

o
k
X

0.11

0.12

0.13

HR@10

λ=0.01 λ=0.1 λ=1 λ=10 λ=100

0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100

0.01

0.1

1

10

100

M
o
v
ie

L
e

n
s

0.240

0.245

0.250

0.255

0.260

HR@10

λ=0.01 λ=0.1 λ=1 λ=10 λ=100

0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100 0.010.1 1 10100

0.01

0.1

1

10

100

Y
a

h
o

o

0.38

0.39

0.40

0.41

HR@10

α

β

Fig. 7. Impact of block-aware similarity regularizations. The color intensity corresponds to HR@10.

better and more stable performance than LISM by also learning global similarities. Compared with

BISM, which is less sensitive to 𝑐 , we need to carefully tune 𝑐 to reach the peak performance of LISM.

Compared with 𝑐 = 1, 𝑐 > 1 generally leads to better performance, which means that capturing

multiple latent item groups helps to improve performance.

6.4 RQ4: The effect of regularization
Finally, we evaluate the impact of regularization parameters on the performance of BISM. Recall

that the learning process for BISM is controlled by several regularization terms. To avoid the impact

from the number of item groups in this experiments, we fix 𝑐 = 5 for all datasets and perform

a grid-search of the parameters 𝛼, 𝛽 and _ that control the ℓ1, ℓ𝐹 -norm regularizations and BDR,

respectively. We visualize the results with heat maps in Figure 7, where 𝛼 is shown on the 𝑥-axis

and 𝛽 on the 𝑦-axis, and different settings of _ are shown with different facets.

Specifically, for the Amazon dataset (the first row of Figure 7), as we have mentioned, when

𝛽 = 100, the performance of BISM is insensitive to 𝛼 and _. However, when 𝛽 is relatively small,

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Yifan Chen et al.

larger value of 𝛼 generally leads to better performance. BDR can show its effectiveness on the

Amazon dataset as long as we set larger value for 𝛽 . A similar result is shown on the BookX dataset

(the second row of Figure 7), which also prefers larger value of 𝛽 but BISM is less sensitive to _, the

best value of 𝛼 is around 1. Similar heat map distributions are shown for the MovieLens dataset

(the third row of Figure 7). Different from the Amazon and BookX datasets, on the MovieLens

dataset the performance of BISM varies slightly when we change the value of _: a large value _

with a small value of 𝛼 or a small value of _ with a large value of 𝛼 generally works better. This is

understandable because both 𝛼 and _ control the regularization of sparsity. The last row of Figure 7

of the Yahoo dataset shows a small difference compared with the Amazon, BookX and MovieLens

datasets. BISM shows better performance when 𝛽 = 10 instead of 𝛽 = 100.

In short, the parameter spaces of all the datasets have shown similar patterns: larger values of

𝛽 generally lead to better performance and when 𝛽 is large enough, BISM is insensitive to 𝛼 and

_. The insensitivity of _ can easily be understood. BDR is dynamically optimized along with the

learning of item similarities. This means that no matter what prior value is set for _, BDR can adapt

to the right scale for regularization.

7 RELATEDWORK
To better appreciate our research findings, we position them w.r.t. the literature.

7.1 Item collaborative filtering
ICF methods are widely studied for the top-𝑁 recommendation. ISMs learn item similarities from

data to demonstrate strong performance. Ning and Karypis [42] have proposed SLIM, by learning

a sparse item similarity matrix. Low-rankness has been introduced to SLIM in order to recover

transitive relations. To achieve low-rankness while ensuring sparsity, Cheng et al. [10] proposed

LorSLIM, which introduces a rank regularization term to SLIM. Kang and Cheng [31] improves

LorSLIM with a better rank approximation.

However, LorSLIM is challenging to be optimized due to the rank constraint. In comparison, by

factorizing item similarity matrix into low-rank matrices, the low-rankness is naturally captured [30,

33]. Kabbur et al. [30] have proposed FISM to factorize the item similarity matrix into two low-

dimensionalmatrices. Due to the successful application of deep learning in information retrieval [51],

recent works propose to extend FISM by neural networks. He et al. [25] proposed NAIS to aggregate

item similarities by the attention mechanism. Xue et al. [57] studied DeepICF to model non-linear

and higher-order relations among items.

A recent trend is to extend linear ICF to non-linear by using auto-encoders. The auto-encoders

are item-side: they encode from and decode to user rating vectors of all items, which can be regarded

as a generalization of ICF. Wu et al. [53] learn to recover the rating matrix through denoising

auto-encoders. Liang et al. [37] introduce variational auto-encoders for top-𝑁 recommendations.

However, the recommendations generated by these models have weak interpretability. Similar to

FISMs, they also failed to achieve sparsity.

Other ICF methods consider different aspects to improve top-𝑁 recommendations. Ning and

Karypis [43] and Chen et al. [6, 8] utilize side information to overcome rating sparsity. Kang et al.

[32] and Hu et al. [28] address rating sparsity for top-𝑁 recommendation by leveraging graphs [9].

Wang et al. [52] and Zhao and Guo [61] investigate ranking loss functions.

7.2 Local models
Clustering has been well studied for CF models [4, 7, 22, 35, 44, 56, 58, 60]. These methods cluster

users or items based on user ratings into subgroups and estimate a local model for each cluster.

Results from all subgroups are aggregated to generate recommendations. Christakopoulou and

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Block-aware Item Similarity Models for Top-𝑁 Recommendation 23

Karypis [12] propose local latent factor models, where the assignments of the users to subsets are

constantly updated. Wang et al. [50] propose a probabilistic model to cluster items as topics. Wu

et al. [54] propose a mixture model to infer memberships of users or items to subgroups. Lee et al.

[36] describe an iterative way for estimation where first the latent factors representing the anchor

points are estimated and then based on the similarities of observed entries to the anchor points,

the latent factors are re-estimated.

A few number of research specifically investigate clustering for ICF methods. Christakopoulou

and Karypis [11] explore user subsets to learn user-specific local ISMs, which is combined with

a global ISM. Al-Ghossein et al. [2] study online recommendation, where a user’s membership

is adaptively updated during incremental learning. However, these models only investigate user

subsets rather than item groups. Clustering and the estimation of local models in these methods

are also treated as separate tasks.

Unlike these methods, we propose to cluster items for ICF. We introduce BDR to encourage a

block-diagonal structure to ICF methods, which embeds the clustering into the learning.

7.3 Subspace clustering
Learning block-diagonal representations has originally been studied for subspace clustering [20,

38, 55]. While these methods can be utilized to generate a block-diagonal item similarity matrix,

they fail to provide desirable item similarities for the top-𝑁 recommendation task. This is because

the ultimate goal of these methods is for subspace clustering. These methods rely on the self-
expressiveness property [20, 38, 55], which states that each data point in a union of subspaces

can be well represented by a linear combination of other points in the dataset, i.e., 𝑅 = 𝑅𝑆 . In

comparison, ISMs address top-𝑁 recommendation. Rather than perfectly expressing 𝑅 by 𝑅𝑆 under

the self-expressiveness constraint, ISMs minimize ∥𝑅 − �̃�∥2
𝐹
and generate the prediction �̃� by 𝑅𝑆 .

In this paper, we apply BDR to ISMs and propose the BISM. Besides learning block-diagonal

representations, BISM improves over these methods for top-𝑁 recommendations in the following

manner: (1) BISM makes up a combination of local and global similarity matrices to overcome

the adversarial effect on top-𝑁 recommendation caused by BDR (discussed in Section 3.2); (2) the

optimization by these subspace clusteringmethods requires intermediate terms, which can introduce

bias for the learned item similarity matrix; in comparison, BISM directly penalizes the item similarity

matrix by BDR;

8 CONCLUSION
In this paper, we have proposed a block-diagonal regularization (BDR) to capture the block-diagonal

structure in item similarities for item-based collaborative filtering (ICF) methods, so as to improve

the top-𝑁 recommendation performance. We have applied BDR to item similarity models (ISMs)

and formulate the proposed block-aware item similarity model (BISM), with a theoretical guarantee

of block-diagonality, Besides, our method theoretically ensures that the learned item similarities are

sparse and capture transitive relations within blocks. Experimental evaluations on a large number

of datasets show the effectiveness of BDR for ICF methods.

Despite its effectiveness, one limitation of BDR is that it can only be applied to item similarity

model currently. Since item similarity models is not scalable when there is a large number of items,

in future work, we will extend BDR to factored item similarity model, which is more scalable.

CODE AND DATA
To facilitate the reproducibility of the reported results, this work only made use of publicly available

data and our experimental implementation is publicly available at https://github.com/yifanclifford/

BISM.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

https://github.com/yifanclifford/BISM
https://github.com/yifanclifford/BISM

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Yifan Chen et al.

REFERENCES
[1] Fabio Aiolli. 2013. A Preliminary Study on a Recommender System for the Million Songs Dataset Challenge. In

Proceedings of the 4th Italian Information Retrieval Workshop (IIR ’13). Pisa, Italy, 73–83. http://ceur-ws.org/Vol-

964/paper12.pdf

[2] Marie Al-Ghossein, Talel Abdessalem, and Anthony Barré. 2018. Dynamic Local Models for Online Recommendation.

In Companion of the 27th World Wide Web Conference (WWW ’18). Lyon, France, 1419–1423. https://doi.org/10.1145/

3184558.3191586

[3] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A Generic Coordinate Descent Framework

for Learning from Implicit Feedback. In Proceedings of the 26th International Conference on World Wide Web (WWW
’17). Perth, Australia, 1341–1350. https://doi.org/10.1145/3038912.3052694

[4] Alex Beutel, Ed Huai-hsin Chi, Zhiyuan Cheng, Hubert Pham, and John R. Anderson. 2017. Beyond Globally Optimal:

Focused Learning for Improved Recommendations. In Proceedings of the 26th International Conference on World Wide
Web (WWW ’17). Perth, Australia, 203–212. https://doi.org/10.1145/3038912.3052713

[5] Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. 2008. Non-negative Matrix Factorization on Manifold. In

Proceedings of the 8th IEEE International Conference on Data Mining (ICDM ’08). IEEE, Pisa, Italy, 63–72. https:

//doi.org/10.1109/ICDM.2008.57

[6] Yifan Chen, Pengjie Ren, Yang Wang, and Maarten de Rijke. 2019. Bayesian Personalized Feature Interaction Selection

for Factorization Machines. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’19). ACM, Paris, France, 665–674. https://doi.org/10.1145/3331184.3331196

[7] Yifan Chen, Yang Wang, Xiang Zhao, Hongzhi Yin, Ilya Markov, and Maarten de Rijke. 2020. Local Variational

Feature-Based Similarity Models for Recommending Top-N New Items. ACM Trans. Inf. Syst. 38, 2 (2020), 12:1–12:33.
https://doi.org/10.1145/3372154

[8] Yifan Chen, Xiang Zhao, and Maarten de Rijke. 2017. Top-N Recommendation with High-Dimensional Side Information

via Locality Preserving Projection. In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’17). ACM, Shinjuku, Tokyo, Japan, 985–988. https://doi.org/10.1145/

3077136.3080697

[9] Yifan Chen, Xiang Zhao, Xuemin Lin, Yang Wang, and Deke Guo. 2019. Efficient Mining of Frequent Patterns on

Uncertain Graphs. IEEE Trans. Knowl. Data Eng. 31, 2 (2019), 287–300. https://doi.org/10.1109/TKDE.2018.2830336

[10] Yao Cheng, Li’ang Yin, and Yong Yu. 2014. LorSLIM: Low Rank Sparse Linear Methods for Top-N Recommendations.

In Proceedings of the 14th IEEE International Conference on Data Mining (ICDM ’14). IEEE, Shenzhen, China, 90–99.
https://doi.org/10.1109/ICDM.2014.112

[11] Evangelia Christakopoulou and George Karypis. 2016. Local Item-Item Models For Top-N Recommendation. In

Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, Boston, MA, USA, 67–74. https:

//doi.org/10.1145/2959100.2959185

[12] Evangelia Christakopoulou and George Karypis. 2018. Local Latent Space Models for Top-N Recommendation. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (SIGKDD ’18).
ACM, London, UK, 1235–1243. https://doi.org/10.1145/3219819.3220112

[13] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92. American Mathematical Soc.

[14] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. 2009. Nonnegative Matrix and Tensor Factoriza-
tions - Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley.

[15] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n

recommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ’10). ACM, Barcelona,

Spain, 39–46. https://doi.org/10.1145/1864708.1864721

[16] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress?

A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on
Recommender Systems, RecSys 2017, Copenhagen, Denmark, September 16-20, 2019. 101–109. https://doi.org/10.1145/

3298689.3347058

[17] Mukund Deshpande and George Karypis. 2004. Item-based top-N Recommendation Algorithms. ACM Trans. Inf. Syst.
22, 1 (Jan. 2004), 143–177. https://doi.org/10.1145/963770.963776

[18] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for Recommendation Systems. In The 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI,
USA, July 08-12, 2018. 515–524. https://doi.org/10.1145/3209978.3209991

[19] Ky Fan. 1949. On a theorem of Weyl concerning eigenvalues of linear transformations I. Proceedings of the National
Academy of Sciences 35, 11 (1949), 652–655. MISSING

[20] Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan. 2014. Robust Subspace Segmentation with Block-Diagonal

Prior. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’14). IEEE, Columbus,

OH, USA, 3818–3825. https://doi.org/10.1109/CVPR.2014.482

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

http://ceur-ws.org/Vol-964/paper12.pdf
http://ceur-ws.org/Vol-964/paper12.pdf
https://doi.org/10.1145/3184558.3191586
https://doi.org/10.1145/3184558.3191586
https://doi.org/10.1145/3038912.3052694
https://doi.org/10.1145/3038912.3052713
https://doi.org/10.1109/ICDM.2008.57
https://doi.org/10.1109/ICDM.2008.57
https://doi.org/10.1145/3331184.3331196
https://doi.org/10.1145/3372154
https://doi.org/10.1145/3077136.3080697
https://doi.org/10.1145/3077136.3080697
https://doi.org/10.1109/TKDE.2018.2830336
https://doi.org/10.1109/ICDM.2014.112
https://doi.org/10.1145/2959100.2959185
https://doi.org/10.1145/2959100.2959185
https://doi.org/10.1145/3219819.3220112
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/3209978.3209991
MISSING
https://doi.org/10.1109/CVPR.2014.482

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Block-aware Item Similarity Models for Top-𝑁 Recommendation 25

[21] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning Image and User Features for Recom-

mendation in Social Networks. In ICCV. IEEE, 4274–4282. MISSING

[22] Thomas George and Srujana Merugu. 2005. A Scalable Collaborative Filtering Framework Based on Co-Clustering. In

Proceedings of the 5th IEEE International Conference on Data Mining (ICDM ’05). IEEE, Houston, Texas, USA, 625–628.
https://doi.org/10.1109/ICDM.2005.14

[23] Luigi Grippo and Marco Sciandrone. 2000. On the convergence of the block nonlinear Gauss–Seidel method under

convex constraints. Operations research letters 26, 3 (2000), 127–136. MISSING

[24] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java Library for Recommender Systems. In

UMAP (CEUR Workshop Proceedings, Vol. 1388). CEUR-WS.org. MISSING

[25] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018. NAIS: Neural

Attentive Item Similarity Model for Recommendation. IEEE Trans. Knowl. Data Eng. 30, 12 (2018), 2354–2366. MISSING

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative

Filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). Perth, Australia, 173–182.
https://doi.org/10.1145/3038912.3052569

[27] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast Matrix Factorization for Online Rec-

ommendation with Implicit Feedback. In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016, Raffaele Perego, Fabrizio Sebastiani,

Javed A. Aslam, Ian Ruthven, and Justin Zobel (Eds.). ACM, 549–558. https://doi.org/10.1145/2911451.2911489

[28] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging Meta-path based Context for Top-N

Recommendation with A Neural Co-Attention Model. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (SIGKDD ’18). ACM, London, UK, 1531–1540. https://doi.org/10.1145/3219819.

3219965

[29] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM ’08). IEEE, Pisa, Italy, 263–272. https://doi.org/10.1109/

ICDM.2008.22

[30] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: factored item similarity models for top-N recommender

systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(SIGKDD ’13). ACM, Chicago, IL, USA, 659–667. https://doi.org/10.1145/2487575.2487589

[31] Zhao Kang and Qiang Cheng. 2016. Top-N Recommendation with Novel Rank Approximation. In Proceedings of
the 2016 SIAM International Conference on Data Mining (SDM ’16). SIAM, Miami, Florida, USA, 126–134. https:

//doi.org/10.1137/1.9781611974348.15

[32] Zhao Kang, Chong Peng, Ming Yang, and Qiang Cheng. 2016. Top-N Recommendation on Graphs. In Proceedings
of the 25th ACM International Conference on Information & Knowledge Management (CIKM ’16). ACM, 2101–2106.

https://doi.org/10.1145/2983323.2983649

[33] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (SIGKDD ’08). ACM, Las

Vegas, Nevada, USA, 426–434. https://doi.org/10.1145/1401890.1401944

[34] Daniel D. Lee and H. Sebastian Seung. 2000. Proceedings of the 14th Advances in Neural Information Processing

Systems. In NIPS (NIPS ’00). MIT Press, Denver, CO, USA, 556–562. http://papers.nips.cc/paper/1861-algorithms-for-

non-negative-matrix-factorization

[35] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2014. Local collaborative ranking.

In Proceedings of the 23rd International World Wide Web Conference (WWW ’14). Seoul, Republic of Korea, 85–96.
https://doi.org/10.1145/2566486.2567970

[36] Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio. 2016. LLORMA: Local Low-Rank Matrix

Approximation. J. Mach. Learn. Res. 17 (2016), 15:1–15:24. MISSING

[37] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational Autoencoders for Col-

laborative Filtering. In Proceedings of the 27th World Wide Web Conference (WWW ’18). Lyon, France, 689–698.
https://doi.org/10.1145/3178876.3186150

[38] C. Lu, J. Feng, Z. Lin, T. Mei, and S. Yan. 2019. Subspace Clustering by Block Diagonal Representation. IEEE Trans.
Pattern Anal. Mach. Intell. 41, 2 (2019), 487–501. https://doi.org/10.1109/TPAMI.2018.2794348

[39] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. 2012. Robust and Efficient

Subspace Segmentation via Least Squares Regression. In Proceeding of the 12th European Conference on Computer Vision
(ECCV ’12). Florence, Italy, 347–360. https://doi.org/10.1007/978-3-642-33786-4_26

[40] Julian J. McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: understanding rating dimensions with

review text. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys ’13). ACM, Hong Kong, China,

165–172. https://doi.org/10.1145/2507157.2507163

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

MISSING
https://doi.org/10.1109/ICDM.2005.14
MISSING
MISSING
MISSING
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1145/3219819.3219965
https://doi.org/10.1145/3219819.3219965
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1137/1.9781611974348.15
https://doi.org/10.1137/1.9781611974348.15
https://doi.org/10.1145/2983323.2983649
https://doi.org/10.1145/1401890.1401944
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization
https://doi.org/10.1145/2566486.2567970
MISSING
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1109/TPAMI.2018.2794348
https://doi.org/10.1007/978-3-642-33786-4_26
https://doi.org/10.1145/2507157.2507163

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Yifan Chen et al.

[41] Bojan Mohar. 1991. The Laplacian Spectrum of Graphs. In Graph Theory, Combinatorics, and Applications. Vol. 2. Wiley,

871–898. MISSING

[42] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In Proceedings
of the 11th IEEE International Conference on Data Mining (ICDM ’11). IEEE, Vancouver, BC, Canada, 497–506. https:

//doi.org/10.1109/ICDM.2011.134

[43] Xia Ning and George Karypis. 2012. Sparse linear methods with side information for top-n recommendations. In

RecSys. ACM, 155–162. https://doi.org/10.1145/2365952.2365983

[44] MarkO’Connor and JonHerlocker. 1999. Clustering Items for Collaborative Filtering. In SIGIRworkshop on Recommender
Systems. ACM. MISSING

[45] Steffen Rendle. 2019. Evaluation Metrics for Item Recommendation under Sampling. CoRR abs/1912.02263 (2019).

arXiv:1912.02263 http://arxiv.org/abs/1912.02263

[46] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized

Ranking from Implicit Feedback. In UAI. 452–461. MISSING

[47] Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). 2015. Recommender Systems Handbook. Springer.
[48] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th International World Wide Web Conference (WWW ’10). Hong
Kong, China, 285–295. https://doi.org/10.1145/371920.372071

[49] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In Proceedings of the 28th World Wide Web
Conference (WWW ’19). San Francisco, CA, USA, 3251–3257. https://doi.org/10.1145/3308558.3313710

[50] Keqiang Wang, Wayne Xin Zhao, Hongwei Peng, and Xiaoling Wang. 2016. Bayesian Probabilistic Multi-Topic Matrix

Factorization for Rating Prediction. In Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI ’16). New York, NY, USA, 3910–3916. MISSING

[51] Yang Wang, Xuemin Lin, Lin Wu, and Wenjie Zhang. 2017. Effective Multi-Query Expansions: Collaborative Deep

Networks for Robust Landmark Retrieval. IEEE Trans. Image Processing 26, 3 (2017), 1393–1404. https://doi.org/10.

1109/TIP.2017.2655449

[52] ZengmaoWang, YuhongGuo, and BoDu. 2018. Matrix completionwith Preference Ranking for Top-N Recommendation.

In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI ’18). Stockholm,

Sweden, 3585–3591. https://doi.org/10.24963/ijcai.2018/498

[53] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative Denoising Auto-Encoders for

Top-N Recommender Systems. In Proceedings of the 9th ACM International Conference on Web Search & Data Mining
(WSDM ’16). ACM, San Francisco, CA, USA, 153–162. https://doi.org/10.1145/2835776.2835837

[54] Yao Wu, Xudong Liu, Min Xie, Martin Ester, and Qing Yang. 2016. CCCF: Improving Collaborative Filtering via Scalable

User-Item Co-Clustering. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining
(WSDM ’16). ACM, San Francisco, CA, USA, 73–82. https://doi.org/10.1145/2835776.2835836

[55] Xingyu Xie, Xianglin Guo, Guangcan Liu, and Jun Wang. 2018. Implicit Block Diagonal Low-Rank Representation.

IEEE Trans. Image Processing 27, 1 (2018), 477–489. https://doi.org/10.1109/TIP.2017.2764262

[56] Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. 2012. An exploration of improving collaborative recommender systems

via user-item subgroups. In Proceedings of the 21st World Wide Web Conference (WWW ’12). Lyon, France, 21–30.
https://doi.org/10.1145/2187836.2187840

[57] Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, and Richang Hong. 2019. Deep Item-based Collaborative

Filtering for Top-N Recommendation. ACM Trans. Inf. Syst. 37, 3 (2019), 33:1–33:25. https://doi.org/10.1145/3314578

[58] Gui-Rong Xue, Chenxi Lin, Qiang Yang,Wensi Xi, Hua-Jun Zeng, Yong Yu, and Zheng Chen. 2005. Scalable Collaborative

Filtering using Cluster-based Smoothing. In Proceedings of the 28th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’05). ACM, Salvador, Brazil, 114–121. https://doi.org/10.1145/1076034.

1076056

[59] Hilmi Yildirim and Mukkai S. Krishnamoorthy. 2008. A Random Walk Method for Alleviating the Sparsity Problem

in Collaborative Filtering. In Proceedings of the 2nd ACM Conference on Recommender Systems (RecSys ’08). ACM,

Lausanne, Switzerland, 131–138. https://doi.org/10.1145/1454008.1454031

[60] Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma, and Shi Feng. 2013. Localized matrix factorization for

recommendation based on matrix block diagonal forms. In Proceedings of the 22nd International World Wide Web
Conference (WWW ’13). Rio de Janeiro, Brazil, 1511–1520. https://doi.org/10.1145/2488388.2488520

[61] Feipeng Zhao and Yuhong Guo. 2016. Improving Top-N Recommendation with Heterogeneous Loss. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence (IJCAI ’16). New York, NY, USA, 2378–2384. http:

//www.ijcai.org/Abstract/16/339

[62] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving Recommendation Lists

through Topic Diversification. In Proceedings of the 14th international conference on World Wide Web (WWW ’05). Chiba,
Japan, 22–32. https://doi.org/10.1145/1060745.1060754

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2020.

MISSING
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1145/2365952.2365983
MISSING
https://arxiv.org/abs/1912.02263
http://arxiv.org/abs/1912.02263
MISSING
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/3308558.3313710
MISSING
https://doi.org/10.1109/TIP.2017.2655449
https://doi.org/10.1109/TIP.2017.2655449
https://doi.org/10.24963/ijcai.2018/498
https://doi.org/10.1145/2835776.2835837
https://doi.org/10.1145/2835776.2835836
https://doi.org/10.1109/TIP.2017.2764262
https://doi.org/10.1145/2187836.2187840
https://doi.org/10.1145/3314578
https://doi.org/10.1145/1076034.1076056
https://doi.org/10.1145/1076034.1076056
https://doi.org/10.1145/1454008.1454031
https://doi.org/10.1145/2488388.2488520
http://www.ijcai.org/Abstract/16/339
http://www.ijcai.org/Abstract/16/339
https://doi.org/10.1145/1060745.1060754

	Abstract
	1 Introduction
	1.1 Motivation for block-diagonal structure
	1.2 Our contributions

	2 Preliminaries
	3 The proposed method
	3.1 Block-diagonal regularization
	3.2 Global item similarities
	3.3 Block-aware item similarity model

	4 Optimization
	4.1 Fixing Sl,Sg and update F
	4.2 Fixing F and update Sl,Sg

	5 Experimental Setup
	5.1 Research questions
	5.2 Datasets
	5.3 Evaluation methodology
	5.4 Methods used for comparison

	6 Experimental Results
	6.1 RQ1: Top-N recommendation performance
	6.2 RQ2: Top-N recommendation with different N
	6.3 RQ3: Impact from the latent item groups
	6.4 RQ4: The effect of regularization

	7 Related Work
	7.1 Item collaborative filtering
	7.2 Local models
	7.3 Subspace clustering

	8 Conclusion
	References

