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ABSTRACT
Sequential recommenders that capture users’ dynamic intents by
modeling sequential behavior, are able to accurately recommend
items to users. Previous studies on sequential recommendations
(SRs) mostly focus on optimizing the recommendation accuracy,
thus ignoring the diversity of recommended items. Many existing
methods for improving the diversity of recommended items are
not applicable to SRs because they assume that user intents are
static and rely on post-processing the list of recommended items to
promote diversity. We consider both accuracy and diversity by re-
formulating SRs as a list generation task, and propose an integrated
approach with an end-to-end neural model, called intent-aware
diversified sequential recommendation (IDSR). Specifically, we in-
troduce an implicit intent mining (IIM) module for SR to capture
multiple user intents reflected in sequences of user behavior. We
design an intent-aware diversity promoting (IDP) loss function to
supervise the learning of the IIM module and guide the model to
take diversity into account during training. Extensive experiments
on four datasets show that IDSR significantly outperforms state-
of-the-art methods in terms of recommendation diversity while
yielding comparable or superior recommendation accuracy.
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Figure 1: An example showing sequential recommendations
with (bottom) and without (top) diversification.

1 INTRODUCTION
Conventional recommendation methods, e.g., collaborative filter-
ing (CF) based methods [36] or matrix factorization (MF) based
models [21], assume that user intents are static. They ignore the dy-
namic and evolving characteristics of user behavior [28]. Sequential
recommenders have been introduced to address these character-
istics with the aim of predicting the next item(s) by modeling the
sequence of a user’s previous behavior [31].

Many early studies on sequential recommendation (SR) are based
on Markov chains (MCs) [35], which cannot handle long sequences
[15, 16]. Recurrent neural network (RNN) and transformer based
neural models have attracted a lot of attention [14, 18] as an al-
ternative. Over the years, many factors have been considered that
influence the performance of sequential recommenders, e.g., per-
sonalization [32], repeat consumption [34], context [33], and col-
laboration [41]. Previous work that focuses on these factors usually
aims to improve recommendation accuracy only. However, it has
been shown that diversity is also an important metric to consider
in recommender systems, as users may prefer more diverse lists of
recommended items [49].

This is especially true in SR as users may have multiple intents,
e.g., different topics or categories of items. For example, as shown in
Figure 1, although the user shows most interest in cartoon movies
from her historic watching behavior, occasionally she also watches
family and action movies. An effective recommendation strategy
should provide a diverse list of recommended items so as to sat-
isfy all these intents. Concretely, in the case of Figure 1, we would
like to recommend a list of cartoons and action as well as family
movies simultaneously instead of cartoons only. Furthermore, user
intents are occasionally exploratory, which means that they do not
have a specific goal in mind. A homogeneous list of recommenda-
tions cannot satisfy such users, which may lead to a boring user
experience [37].
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Diversification has been well studied in conventional recommen-
dation scenarios [43] as well as in web search [1, 26, 29]. Current
approaches to diversified recommendation mainly focus on how
to re-rank the items in a list of recommendations based on a given
diversity metric with general recommendation models. Such ap-
proaches do not constitute an optimal solution for SRs. First, some
assume that user intents are static and they require that user intents
are prepared beforehand, which is unrealistic in most SR scenar-
ios [7]. Second, most belong to the post-processing paradigm and
achieve recommendation accuracy and diversity in two separate
steps, i.e., (1) scoring items and generating a candidate item set with
a recommendation model; and (2) selecting a diverse list of recom-
mendations based on both the item scores and some implicit/explicit
diversity metrics [23, 43]. Because the recommendation models are
not aware of diversity during training and it is hard to design opti-
mal diversity strategies for different recommendation models, their
performance is unsatisfactory.

In this paper, we address the task of SR by taking into account
both recommendation accuracy and diversity. Previous methods
focusing on accuracy adopt a strategy where items are ranked by
a score, which cannot capture the relationship among the recom-
mended items. Instead, we reformulate SR as a list generation task
so as to model the relationship among recommended items and pro-
pose an end-to-end intent-aware diversified sequential recommen-
dation (IDSR) model. IDSR employs an implicit intent mining (IIM)
module to automatically capture multiple latent user intents re-
flected in sequences of user behavior, and an intent-aware diversity
promoting (IDP) decoder to directly generate accurate and diverse
lists of recommendations for the latent user intents. In order to su-
pervise the learning of the IIM module and force the model to take
recommendation diversity into account during training, we design
an IDP loss function that evaluates recommendation accuracy and
diversity based on the generated lists of recommended items.

More specifically, a sequence encoder is first used to encode
user behavior into representations. Then, the IIM module employs
multiple attention areas to mine users’ multiple intents with each
attention area capturing a particular latent user intent. Finally, an
intent-aware recommendation decoder is used to generate a list of
recommendations by selecting one item at a time. When selecting
the next item, IDSR also takes the items already selected as input so
that it can track to what extent each latent user intent is satisfied.
During training, we fuse the IDP loss function to learn to mine
and track user intents, and recommend diversified items. In order
to supervise the learning of diversity, ideally we have a ground
truth diverse list of recommended items. However, in practice, we
only have the next one ground truth item, which is not enough to
define diversity supervision. To address this, we devise a self-critic
strategy for the IDP loss. The idea is that, under the premise that the
ground truth item can be recommended correctly, we reward our
list generation strategy whenever it generates a more diverse rec-
ommendation list than the baseline strategy (i.e., the conventional
rank-by-score strategy) evaluated by some diversity metrics. All
parameters are learned in an end-to-end back-propagation training
paradigm within a unified framework.

We conduct extensive experiments on four benchmark datasets.
IDSR outperforms the state-of-the-art baselines on those datasets in

terms of both accuracy metrics, i.e., Recall and MRR, and a diversity
metric, i.e., intra-list distance (ILD).

Our contributions in this paper can be summarized as follows:
• We propose an intent-aware diversified sequential recommenda-
tion (IDSR) method. To the best of our knowledge, this is the first
end-to-end list generation based neural framework that considers
diversification for SRs.
• Wedevise an implicit intentmining (IIM)module to automatically
mine latent user intents from user behavior and an intent-aware
recommendation decoder to generate diverse lists of recommen-
dations.
• We present an IDP loss function to supervise IDSR in terms of
both accuracy and diversity.
• We carry out extensive experiments and analyses on four publicly
available benchmark datasets to verify the effectiveness of the
proposed IDSR.

2 RELATEDWORK
We discuss two types of work that is closely related to ours: sequen-
tial recommendation and diversified recommendation.

2.1 Sequential recommendation
Traditional methods for SRs are often based on Markov chains
(MCs) [51]. Previous work introducing such methods investigates
how to extract sequential patterns to learn users’ next preferences
with probabilistic decision-tree models. Following this idea, He and
McAuley [12] fuse similarity models with MCs to address the prob-
lem of sparse recommendations. MC-based methods only model
local sequential patterns with adjacent interactions, which fails to
take the whole sequence into account.

Hidasi et al. [15] introduce an RNN-based model for SRs that
consists of gated recurrent units (GRUs) and uses a session-parallel
mini-batch training process. Quadrana et al. [32] develop a hier-
archical RNN structure that takes users’ profiles into account by
considering cross-session information. Attention mechanisms have
been applied to SRs to help models explore users’ preferences [13].
Li et al. [24] propose a neural attentive session-based recommenda-
tion machine that takes the last hidden state from a session-based
RNN as the sequential behavior, and uses the other hidden states
for computing attention to capture users’ current preferences in
a given session. Xu et al. [44] propose a recurrent convolutional
neural network to capture both long-term and short-term dependen-
cies for SR. Kang and McAuley [18] apply a two-layer transformer
model [40] to SRs to capture users’ sequential behavior. Sun et al.
[38] use a bidirectional encoder representations from transformers
for SRs. Chen et al. [8] propose to apply a user memory network
with attention mechanism to store and update a user’s historical
records for SRs.

Previous studies on SRs, e.g., [4, 6, 46, 47], mostly focus on im-
proving the recommendation accuracy. The studies mentioned
above ignore the fact that users might have multiple intents re-
flected in their sequential behavior. Wang et al. [42] have proposed
a mixture-channel purpose routing networks (MCPRNs) to capture
users’ different intents in a given session. MCPRN first applies a
purpose routing network to detect multiple purposes of a user and
then models the items with a mixture-channel RNN, where each



channel RNN models the item dependencies for a specific purpose.
Finally, MCPRN integrates all channel embeddings to predict the
next item. During training, MCPRN only applies the cross-entropy
loss to supervise the model in terms of recommendation accuracy,
which means there is no supervision for the model to learn to dis-
tinguish multiple intents or generate diversified recommendations.

Unlike the studies listed above, we propose to address recommen-
dation accuracy and diversification in a unified framework, where
we propose an implicit intent mining (IIM) module to capture multi-
ple intents and an intent-aware diversity promoting (IDP) decoder
to generate the list of recommended items to satisfy those intents
gradually. We devise an IDP loss function to supervise the model to
learn different intents and generate diversified recommendations.

2.2 Diversified recommendation
Promoting diversity of recommendation or search results has long
been an important research topic. A lot of work has proposed to
tackle the task of diversified recommendation, mainly including
determinantal point process (DPP) [22] and submodular optimiza-
tion [30]. The most representative implicit approach is maximal
marginal relevance (MMR) [5]. MMR represents relevance and di-
versity by independent metrics and uses the notion of marginal
relevance to combine the two metrics with a trade-off parameter.
Qin and Zhu [30] propose an entropy regularizer to promote recom-
mendation diversity. It satisfies monotonicity and submodularity
so that the objective function can be maximized approximately by
a greedy algorithm. Chen et al. [7] propose to improve recommen-
dation diversification through a DPP [22] with a greedy maximum
a posterior inference algorithm. Sha et al. [37] introduce a submod-
ular objective function to combine relevance, coverage of user’s
intents, and the diversity between items. Learning to rank (LTR) has
also been exploited to address diversification. Cheng et al. [9] first
label each user by a set of diverse as well as relevant items with a
heuristic method and then propose a diversified collaborative filter-
ing algorithm to learn to optimize the performance of accuracy and
diversity for recommendation. The main issue of LTR based meth-
ods is that they all need diversified ranked lists as ground truth for
learning [43]; these are usually unavailable in recommendations.

The methods listed above achieve accuracy and diversity of
recommendation in two separate steps, i.e., training an offline rec-
ommendation model to score items in terms of accuracy and then
re-ranking items by taking diversity into account. We show through
experiments that our end-to-end model can achieve significantly
better performance. Besides, none of the methods listed is suitable
for SRs, where users’ sequential behavior needs to be considered.
In contrast, we consider users’ temporal preferences and optimize
for accuracy and diversity in one go.

3 INTENT-AWARE DIVERSIFIED
SEQUENTIAL RECOMMENDATIONS

3.1 Overview
Given a user 𝑢 and her/his behavior sequence 𝑆𝑢 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }
where every 𝑥𝑖 is an item that𝑢 interacted with, e.g., watchedmovie,
the goal of SRs is to provide 𝑢 with a list of recommended items 𝑅𝐿
for predicting her/his next interaction; the items are expected to be
both relevant and diverse.

Unlike existing SRmethods, we assume there are𝑀 latent intents
behind each behavior sequence, i.e., 𝐴 = {𝑎1, . . . , 𝑎𝑀 }. Then, we
seek to generate a list of recommended items 𝑅𝐿 by maximizing
the degree of satisfaction for all intents:

𝑃 (𝑅𝐿 | 𝑢, 𝑆𝑢 ) =
𝑀∑︁
𝑚=1

𝑃 (𝑎𝑚 | 𝑢)𝑃 (𝑅𝐿 | 𝑎𝑚, 𝑢, 𝑆𝑢 ), (1)

where 𝑃 (𝑎𝑚 | 𝑢) denotes the importance of intent 𝑎𝑚 to user 𝑢;
𝑃 (𝑅𝐿 | 𝑎𝑚, 𝑢, 𝑆𝑢 ) is the probability of satisfaction of 𝑅𝐿 to 𝑎𝑚 .

It is hard to directly optimize 𝑃 (𝑅𝐿 | 𝑢, 𝑆𝑢 ) due to the huge search
space. Therefore, we propose to generate 𝑅𝐿 greedily, i.e., selecting
one item at a time with the maximum score 𝑆 (𝑣):

𝑣𝑡 ← argmax
𝑣∈𝑉 \𝑅𝑡−1

𝑆 (𝑣), (2)

where 𝑣𝑡 is the item to be selected at step 𝑡 ; 𝑉 is the set of all
items; 𝑅𝑡−1 is the list of recommended items generated until step
𝑡-1; 𝑉 \ 𝑅𝑡−1 guarantees that the selected item is different from
previous generated recommendations in 𝑅𝑡−1 at step 𝑡 ; and 𝑆 (𝑣)
returns the score of item 𝑣 by

𝑆 (𝑣) ← 𝜆𝑃 (𝑣 | 𝑢, 𝑆𝑢 ) + (1 − 𝜆)
𝑀∑︁
𝑚=1

𝑃 (𝑣 | 𝑎𝑚)𝑊 (𝑅𝑡−1, 𝑎𝑚) . (3)

The score 𝑆 (𝑣) is a combination of the relevance score and the
diversification score, balanced by a hyper-parameter 𝜆; 𝑃 (𝑣 | 𝑢, 𝑆𝑢 )
is the relevance score reflecting the importance of 𝑣 for𝑢; 𝑃 (𝑣 | 𝑎𝑚)
is the degree of satisfaction of 𝑣 to 𝑎𝑚 ;𝑊 (𝑅𝑡−1, 𝑎𝑚) denotes the
likelihood that the already generated recommendation list 𝑅𝑡−1
does not satisfy 𝑎𝑚 .

Then, we propose an end-to-end intent-aware diversified sequen-
tial recommendation (IDSR) model to directly generate a diversified
list of recommended items according to Eq. (3). Themain framework
of IDSR is shown in Figure 2. As shown in Figure 2, IDSR consists
of three modules: a sequence encoder, an implicit intent mining (IIM)
module, and an intent-aware diversity promoting (IDP) decoder. First,
the sequence encoder projects users’ sequential behavior into la-
tent representations. Then, the IIM module captures users’ multiple
latent intents reflected in their sequential behavior. Finally, the IDP
decoder is employed to generate a list of recommended items ac-
cording to Eq. (3). We devise an IDP loss to train IDSR; it evaluates
the whole list of recommended items in terms of both accuracy
and diversity. Note that there is no re-ranking involved in IDSR.
Recommendation accuracy and diversity are jointly learned in an
end-to-end way. Next, we introduce the separate modules.

3.2 Sequence encoder
Since the encoder module is not the focus of this paper, we sim-
ply adapt the commonly used GRUs to verify the validity of our
proposed method [15]:

𝑧𝑡 = 𝜎
(
𝑾𝒛 [x𝑡 ,𝒉𝑡−1]

)
𝑟𝑡 = 𝜎

(
𝑾𝒓 [𝒙𝑡 ,𝒉𝑡−1]

)
𝒉̂𝑡 = tanh(𝑾ℎ [𝒙𝑡 , 𝑟𝑡 ⊙ 𝒉𝑡−1])

𝒉𝑡 = (1 − 𝑧𝑡 ) ⊙ 𝒉𝑡−1 + 𝑧𝑡 ⊙ 𝒉̂𝑡 ,

(4)

where 𝒙𝑡 denotes the embedding of item 𝑥𝑡 ;𝑾𝑧 ,𝑾𝑟 and𝑾ℎ are
weight parameters; 𝜎 denotes the sigmoid function. The input of
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Figure 2: Overview of IDSR. The blue, purple and green colors denote different user intents.

the encoder is the behavior sequence 𝑆𝑢 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 } and the
outputs are hidden representations {𝒉1,𝒉2, . . . ,𝒉𝑇 }, where 𝒉𝑖 ∈
R𝑑𝑒 . We stack those representations into a matrix 𝑯𝑆 ∈ R𝑇×𝑑𝑒 .
Like [24], we consider the last representation 𝒉𝑇 to be the user’s
global representation, which summarizes the whole sequence:

𝐹𝑢 = 𝒉𝑇 . (5)

3.3 IIM module
The IIM module is meant to mine users’ multiple intents behind
the sequence. Intuitively, a user’s multiple intents can be reflected
by different interactions in their sequential behavior. Some interac-
tions are more representative for a particular intent than others, e.g.,
the last two actions in Figure 1 reflect the user’s intent of watching
cartoon movies. Motivated by this, we fuse a multi-intent attention
mechanism where each attention function captures one particular
intent. Specifically, IIM first projects 𝑯𝑆 and 𝐹𝑢 into𝑀 spaces w.r.t.
the latent intents, respectively. Then,𝑀 attention functions are em-
ployed in parallel to produce user’s intent-specific representations
{𝑆1𝑢 , 𝑆2𝑢 , . . . , 𝑆𝑀𝑢 }:

𝑆𝑖𝑢 = Attention
(
𝐹𝑢𝑾

𝑄

𝑖
,𝑯𝑆𝑾

𝐾
𝑖 ,𝑯𝑆𝑾

𝑉
𝑖

)
, (6)

where the projection matrices for intent 𝑖 , i.e.,𝑾𝑄

𝑖
∈ R𝑑𝑒×𝑑 ,𝑾𝐾

𝑖
∈

R𝑑𝑒×𝑑 and 𝑾𝑉
𝑖
∈ R𝑑𝑒×𝑑 , are learnable parameters. We use the

scaled dot-product attention in this work [40] as:

Attention(𝑸,𝑲 , 𝑽 ) = 𝑨𝑽 = softmax
(
𝑸𝑲⊤
√
𝑑

)
𝑽 , (7)

where𝑨 denotes the attention distribution produced by each intent.
We finally apply a two-layer feed-forward network to each 𝑆𝑖𝑢 to
introduce nonlinearity:

𝐹 𝑖𝑢 = FFN(𝑆𝑖𝑢 ) = ReLU
(
𝑆𝑖𝑢𝑾

(1) + 𝒃 (1)
)
𝑾 (2) + 𝒃 (2) , (8)

where𝑾 (1) ∈ R𝑑×𝑑 ,𝑾 (2) ∈ R𝑑×𝑑 , 𝒃 (1) ∈ R𝑑 , and 𝒃 (2) ∈ R𝑑 are
trainable parameters.

3.4 IDP decoder
The IDP decoder is used to generate 𝑅𝐿 based on the intents mined
with the IIM module. To begin, we model the relevance score of 𝑣 to

user 𝑢 (i.e., 𝑃 (𝑣 | 𝑢, 𝑆𝑢 ) in Eq. (3)) with a bilinear decoding scheme
as follows:

𝑃 (𝑣𝑛 | 𝑢, 𝑆𝑢 ) =
𝑺𝒗𝒏∑ |𝑉 |
𝑗=1 𝑺𝒗𝒋

𝑆𝑣𝑛 =

𝑀∑︁
𝑚=1

𝑆𝑚𝑣𝑛

𝑆𝑚𝑣𝑛 = 𝑃 (𝑎𝑚 | 𝑢)𝑃 (𝑣𝑛 | 𝑎𝑚, 𝑢)
𝑃 (𝑣𝑛 | 𝑎𝑚, 𝑢) = softmax(𝒗⊤𝒏𝑩[𝐹𝑢 , 𝐹𝑚𝑢 ]),

(9)

where 𝑩 is a bilinear parameter; 𝒗𝒏 is the item embedding which
can be trained within the network; and 𝑆𝑚𝑣𝑛 means the relevance
score of item 𝑣𝑛 to intent 𝑎𝑚 , weighted by the importance of intent
𝑎𝑚 , i.e., 𝑃 (𝑎𝑚 | 𝑢). We can calculate 𝑃 (𝑎𝑚 | 𝑢) by:

𝑃 (𝑎𝑚 | 𝑢) =
exp(𝐹𝑢𝑾𝑤𝐹𝑚𝑢

⊤)∑𝑀
𝑗=1 exp(𝐹𝑢𝑾𝑤𝐹

𝑗
𝑢

⊤)
, (10)

where𝑾𝑤 ∈ R𝑑𝑒×𝑑 is used to transform the intent-specific repre-
sentations back to the same space with 𝐹𝑢 , so that we can generate
the weight of each intent.

To track the already selected items to date, we use another GRU
to encode 𝑅𝑡−1 = {𝑦1, 𝑦2, . . . , 𝑦𝑡−1} into {𝒉𝑦1 ,𝒉

𝑦

2 , . . . ,𝒉
𝑦

𝑡−1}. Then
we estimate the degree of “unsatisfactoriness” of 𝑅𝑡−1 to each intent
(i.e.,𝑊 (𝑅𝑡−1, 𝑎𝑚) in Eq. (3)) by calculating the matching between
𝒉
𝑦

𝑡−1 and 𝐹𝑚𝑢 as:

𝑊 (𝑅𝑡−1, 𝑎𝑚) = 1 −
𝑃 (𝑎𝑚 | 𝑢) exp(𝑤𝑚𝑡−1)∑𝑀
𝑗=1 𝑃 (𝑎 𝑗 | 𝑢) exp(𝑤

𝑗

𝑡−1)

𝑤𝑖𝑡−1 =𝑾⊤𝒚𝜎 (𝑾𝑨𝐹
𝑖
𝑢 +𝑾𝑩𝒉

𝑦

𝑡−1),
(11)

where𝑤𝑖
𝑡−1 denotes the matching between already generated rec-

ommendations and 𝐹 𝑖𝑢 . Thus𝑊 (𝑅𝑡−1, 𝑎𝑚) indicates to what extent
intent 𝑎𝑚 is unsatisfied and should be paid more attention to when
generating the next recommendation. Here, we also incorporate
the initial weight of each intent 𝑃 (𝑎 | 𝑢). We calculate 𝑃 (𝑣 | 𝑎𝑚) in
Eq. (3) with:

𝑃 (𝑣𝑛 | 𝑎𝑚) = softmax(𝒗⊤𝒏𝐹𝑚𝑢 ). (12)



Finally, we can calculate the score 𝑆 (𝑣) of each item (Eq. (3)), select
the item with the highest probability, and append it to the list of
recommended items.

3.5 IDP loss
Since our goal is to generate a list of recommended items that is
both relevant and diverse, we design our loss function to evaluate
the whole generated list 𝑅𝐿 based on the accuracy as well as the
diversity of 𝑅𝐿 :

Loss𝑅𝐿 = 𝜆𝑒L𝑅𝐿rel + L
𝑅𝐿
div, (13)

where 𝜆𝑒 is a weight parameter to balance the relative contributions
of accuracy and diversification.

Given the output list of recommended items from IDSR, i.e.,
𝑅𝐿 = {𝑦1, 𝑦2, . . . , 𝑦𝑁 } and the ground truth item 𝑦∗ (i.e., the next
consumed item), L𝑅𝐿rel is defined as:

L𝑅𝐿rel = −
|𝑉 |∑︁
𝑖=1

𝑝𝑖 log
(
𝑞0𝑖
)
, (14)

where 𝑝𝑖 indicates the ground truth probability distribution and 𝑞0
𝑖

is the prediction probability of the first item in 𝑅𝐿 . When generat-
ing the first item, IDSR only considers the relevance score without
diversification, thus we use this part to optimize the prediction accu-
racy of IDSR. With this relevance loss, we can also take the position
of the ground truth item 𝑦∗ in the ranked list into consideration.

To promote diversity, we apply a self-critic strategy. Specifically,
at each step, we select an item based on 𝑆 (𝑣) and output a list of
recommended items 𝑅𝐿 . Meanwhile, we also select an item only
based on the maximum relevance score 𝑃 (𝑣𝑖 | 𝑢, 𝑆𝑢 ) and output
a list of recommended items 𝑅rel

𝐿
. Thus we propose a pair-wise

diversity loss:

L𝑅𝐿div = 𝒘 log 1
1 + exp(𝑃𝑟 (𝑅rel

𝐿
) − 𝑃𝑟 (𝑅𝐿))

𝑃𝑟 (𝑅𝐿) =
∑︁
𝑣𝑖 ∈𝑅𝐿

log 𝑆 (𝑣𝑖 )

𝑃𝑟 (𝑅rel𝐿 ) =
∑︁
𝑣𝑖 ∈𝑅rel

𝐿

log 𝑆 (𝑣𝑖 )

𝒘 = 𝑴 (𝑅rel𝐿 ) −𝑴 (𝑅𝐿),

(15)

where 𝑆 (𝑣𝑖 ) is the final score of item 𝑣𝑖 calculated by Eq. (3); 𝑃𝑟 (𝑅𝐿)
indicates the log likelihood of generating recommendation list 𝑅𝐿 ,
so as 𝑅rel

𝐿
;𝒘 is the diversity evaluation metric score gap of the two

recommendation list 𝑅rel
𝐿

and 𝑅𝐿 , e.g., ILD in this paper. We use 𝑅rel
𝐿

as a baseline to compare with, so that we can evaluate the diversity
of the generated list of recommended items 𝑅𝐿 . If the diversity of
𝑅rel
𝐿

is larger than 𝑅𝐿 , we would punish the decoder to decrease the
probability for generating 𝑅𝐿 with the weight of𝒘 . Otherwise, we
would reward the decoder to increase probability of 𝑅𝐿 , which is
larger than the probability of generating 𝑅rel

𝐿
.

Besides the relevance and diversity losses, we also add two regu-
larization terms to our loss function. One is a disagreement regu-
larization, which is meant to enlarge the distance among multiple
intents. Specifically, the differences among multiple intent represen-
tations are reflected by different attention distributions produced

Table 1: Dataset statistics.
Dataset ML100K ML1M Tafeng Tmall
Number of users 943 6,022 1,703 25,958
Number of items 1,349 3,043 2,461 57,677
Number of interactions 93,629 959,022 42,921 623,124
Number of item categories 19 18 469 70
Avg. number of genres per item 1.7 1.6 1.0 1.0

by each intent, thus we apply a strategy to disperse the attended po-
sitions predicted by each intent. We use an alignment disagreement
regularization [25] as:

L𝑅𝐿Dis =
1
𝑀2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

��𝑨𝑖 ⊙ 𝑨𝑗
��, (16)

where 𝑨𝑖 denotes the attention distribution produced by intent 𝑖
in Eq. (7). We employ the sum of element-wise multiplication of
vector cells.

The other regularization term that we add is maximum entropy
regularization, which helps to avoid the situation that one of the
intents dominates [45, 50]:

L𝑅𝐿ME =

𝑀∑︁
𝑚=1

𝑃 (𝑎𝑚 | 𝑢) log 𝑃 (𝑎𝑚 | 𝑢) . (17)

Thus, our final IDP loss is:

IDP𝑅𝐿loss = 𝜆𝑒L𝑅𝐿rel + L
𝑅𝐿
div + L

𝑅𝐿
Dis + L

𝑅𝐿
ME . (18)

All parameters of IDSR as well as the item embeddings can be
learned in an end-to-end back-propagation training paradigm.

4 EXPERIMENTAL SETUP
We design experiments to answer the following research questions:
(RQ1) What is the performance of IDSR compared with state-of-

the-art baselines in terms of accuracy?
(RQ2) Does IDSR outperform state-of-the-art baselines in terms

of diversity?

4.1 Datasets
We use four public benchmark datasets for our experiments, two of
them are based on movies and the others are e-commerce datasets.
Table 1 lists the statistics of these four datasets:
• ML100K1 is collected from the MovieLens web site. It contains
100,000 ratings from 943 users on 1,682 movies.
• ML1M1 is a larger and sparser version of ML100K, which con-
tains 1,000,209 ratings for movies.
• Tafeng2 is collected from a grocery store and released by Kaggle,
which contains one month log data.
• Tmall3 is released by a competition that records user online
shopping behavior on an e-commerce platform, Tmall.

Note that each item/movie from both ML1M and ML100K belongs
to multiple movie genres at the same time. Each item from Tafeng
and Tmall only belongs to a single category.

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42


We follow Li et al. [24] to process the data. First, we filter out
users who have less than 5 interactions and items that are rated
less than 5 times in ML100K. For the other datasets, we only keep
users as well as items with more than 20 interactions. Then, we
sort the interactions according to the “timestamp” field to get a
behavioral sequence for each user. Finally, we prepare each data
sample using a sliding-window approach by regarding the previous
9 actions as input and the next action as output. We use the first
90% interactions for model training, the last 10% for model testing.
The validation set is split from the training set in the same way as
the test set.

Since we do not target cold-start items, we make sure that all
items in the test set have been rated by at least one user in the
training set and the test set contains the most recent actions which
happened later than those in the training and validation sets.

4.2 Methods used for comparison
A number of SR methods have been proposed in recent years. In our
modeling we focus on combining recommendation accuracy and
diversity in a unified framework. Thus we do not make comparisons
with work that is exclusively aimed at improving recommendation
accuracy, e.g., BERT4Rec [38] and SASRec [18], as such work can
be incorporated into our encoder to help improve accuracy. There
is previous work, i.e., S-DIV [19], that proposes a sequential and di-
verse recommendation model. But since in S-DIV the term “diverse”
means to incorporate more rare or tail items which is different
from our work, we do not compare with it in this paper. For a fair
comparison, we select state-of-the-art neural SR methods that use
a similar architecture as ours as baselines.
• GRU4Rec: An RNN-basedmodel for SR. GRU4Rec utilizes session-
parallel mini-batches as well as a ranking-based loss function in
the training process [15].
• NARM: An RNN-based model that applies an attention mecha-
nism to capture users’ main purposes from the hidden states and
combines it with sequential behavior as final representations of
users’ current preferences [24], which shares a similar spirits as
IDSR when calculating the relevance scores for items.
• MCPRN: The most recently proposed method that models users’
multiple purposes in a session [42]. The authors claim that they
can improve the performance over the state-of-the-art methods
in terms of both accuracy and diversity. Thus, we consider it as a
state-of-the-art baseline model.

We also report results of a popularity based method, POP, which
ranks items based on the number of interactions, because the per-
formance of POP can reflect characteristics of the datasets and is
quite effective in some scenarios [2].

Because there is no previous work specific for diversified SR,
we construct a baseline, NARM+MMR, ourselves. With carefully
tuned hyperparameters, NARM can achieve state-of-the-art perfor-
mance most of the time. MMR is a simple yet effective approach,
which is still commonly used in web search and recommendation.
Specifically, we first get the relevance scores 𝑆 (𝑣) for each item
with NARM. Then, we rerank the items using the MMR criteria:

𝑣 ← argmax𝑣𝑖 ∈𝑅𝑐\𝑅𝐿 𝜃𝑆 (𝑣𝑖 ) + (1 − 𝜃 )min𝑣𝑘 ∈𝑅𝐿 𝑑𝑘𝑖 ,

where 𝑅𝑐 is a candidate item set and 𝜃 ∈ [0, 1] is a trade-off pa-
rameter to balance the relevance and the minimal dissimilarity 𝑑𝑘𝑖

between item 𝑣𝑘 and item 𝑣𝑖 . MMR first initializes 𝑅𝐿 = ∅ and then
iteratively selects the item into 𝑅𝐿 , until |𝑅𝐿 | = 𝑁 . When 𝜃 = 0,
MMR returns diversified recommendations without considering
relevance; when 𝜃 = 1, it returns the same results as the original
baseline models. Unless specified otherwise, for all the results that
we presented in the paper, the number of recommendations (𝑁 )
equals 10.

4.3 Evaluation metrics
To evaluate accuracy, we use Recall and MRR as most previous
studies [24, 27]; to evaluate diversity, we choose ILD [49], which is
commonly used to evaluate the recommendation diversity.
• Recall: Measures whether the test item is contained in the list
of recommendations.
• MRR: Measures whether the test item is ranked at the top of the
list.
• ILD: Measures the diversity of a list of recommendations as the
average distance between pairs of recommended items:

ILD =
2

|𝑅𝐿 | ( |𝑅𝐿 | − 1)
∑︁
(𝑖, 𝑗) ∈𝑅𝐿

𝑑𝑖 𝑗 . (19)

We calculate the dissimilarity 𝑑𝑖 𝑗 between two items based on
the Euclidean distance between the item genre vectors [3].

4.4 Implementation details
We set the item embedding size and GRU hidden state sizes to 128.
We use dropout with drop ratio 𝑝 = 0.5. We initialize the model
parameters randomly using the Xavier method [11]. We optimize
the model using Adam [20], with the initial learning rate 𝛼 = 0.001,
two momentum parameters 𝛽1 = 0.9 and 𝛽2 = 0.999, and 𝜖 = 10−8.
The mini-batch size is set to 512. We set the parameter 𝜆𝑒 = 1.0
for the ML100K, ML1M and Tmall datasets and 𝜆𝑒 = 0.1 for Tafeng
after fine-tuning the parameter on the validation set. We test the
model performance on the validation sets for every epoch and select
the best model to report results on the test sets accordingly. The
code used to run our experiments is available online.

5 RESULTS
5.1 Performance in terms of accuracy
To answer RQ1, we compare IDSR with the baselines in terms of
Recall and MRR; see Table 2.

First, note that the neural attentive recommendation machine
(NARM) has a similar encoding architecture as IDSR, thus we can
see that NARM and IDSR are comparable in terms of recommenda-
tion accuracy (Recall andMRR). However, IDSR can help to improve
the diversity (see Section 5.2) of the list of recommendations with-
out much sacrifice of accuracy, i.e., a 0.87% and 1.70% decrease
in terms of Recall and MRR on the ML1M dataset, and of 0.65%
and 1.01% on the Tmall dataset, respectively, none of which are
significant. Although IDSR tries to diversify the recommendations,
it still assigns high probability to the most relevant items without
considering much of the diversification in the first few decoding
steps. In addition, the IDP loss also considers recommendation ac-
curacy, which can help the model to capture users’ main intents.
When users have multiple intents, NARM shows bias towards the
main intent, which will lead to unsatisfactory recommendations.



Table 2: Performance of recommendation models. The results from the best baseline and the best performer in each column
are underlined and boldfaced, respectively. Statistical significance of pairwise differences of IDSR vs. the best baseline is de-
termined by a paired 𝑡-test (△ for p-value ≤ .05).

Model
ML100K ML1M Tafeng Tmall

Recall (%) MRR (%) ILD Recall (%) MRR (%) ILD Recall (%) MRR (%) ILD Recall (%) MRR (%) ILD
POP 4.02 1.21 1.501 9.11 2.02 1.233 2.01 1.09 1.233 9.56 4.11 .8817
GRU4Rec 6.23 2.09 1.527 11.67 4.02 1.307 4.11 1.42 1.267 12.11 5.41 .8789
NARM 9.68 3.18 1.518 15.02 5.39 1.289 4.71 1.69 1.214 14.41 7.51 .8343
MCPRN 9.27 2.99 1.561 14.89 5.26 1.301 4.57 1.60 1.248 14.19 7.27 .8864
NARM+MMR 9.53 2.77 1.583 14.72 4.89 1.325 4.33 1.41 1.263 14.00 6.28 .8917
IDSR 9.79 3.22 1.666△ 14.89 5.30 1.383△ 4.97△ 1.96△ 1.318△ 14.32 7.43 .9468△

For example, IDSR shows better performance than NARM on the
Tafeng dataset. The improvements of IDSR over NARM in terms
of Recall and MRR are 5.61% and 16.23% on the Tafeng dataset,
respectively. We believe that this is due to the fact that Tafeng
records users’ behavior in a grocery store, where users tend to have
multiple intents, and buy items with different categories when they
are shopping. Compared with MCPRN, we can see that IDSR shows
better performance in terms of both Recall and MRR on all datasets
than MCPRN. The IIM module considers not only users’ multiple
intents but also the importance of each intent, which can help to
improve the recommendation accuracy.

Second, we note that after re-ranking with MMR, the accuracy
of NARM drops dramatically, especially in terms of MRR. This
indicates that although post-processing with MMR can improve
the diversity of recommendation list, it hurts the accuracy a lot.
Because most of the candidate items generated by NARM have
similar genres/characteristics. When the diversity scores for the
relevant items are lower than the irrelevant ones, the irrelevant
items will get higher final scores than the relevant items, which
results in a worse performance in terms of accuracy. Besides, we
found that the re-ranking process is time-consuming, while our
model is much more efficient.

In summary, IDSR can achieve comparable or superior perfor-
mance compared with state-of-the-art methods in terms of recom-
mendation accuracy. It is also worth noting that we can incorporate
any other effective mechanisms into our framework to further im-
prove the recommendation accuracy such as SASRec [18]. However,
this is beyond the scope of this work.

5.2 Performance in terms of diversity
To answer RQ2, we report the diversity scores, i.e., ILD, on all
datasets in Table 2. We can see that IDSR consistently outperforms
all baselines. The improvements of IDSR over MCPRN are 6.71%
and 6.33% in terms of ILD on ML100K and ML1M, respectively. As
to the e-commerce datasets, the improvements are 5.58% and 6.81%
on the Tafeng and Tmall datasets, respectively. Although MCPRN
models users’ multiple intents, there is no supervision signal for the
model to learn to distinguish different intents in order to generate
diverse recommendations. However, in IDSR, we have the diversity
loss and disagreement regularization term in the IDP loss, which
helps the model to learn to distinguish different intents and satisfy
each of them during the recommendation list generation process.

Table 3: Performance of IDSR with different number of in-
tents.

Dataset Metric 1-head 2-head 3-head 4-head

ML100K
Recall (%) 9.99 9.83 9.79 9.41
MRR (%) 3.29 3.19 3.22 2.99
ILD 1.57 1.62 1.67 1.67

ML1M
Recall (%) 15.26 14.93 14.89 14.01
MRR (%) 5.55 5.36 5.30 5.02
ILD 1.29 1.29 1.38 1.40

Tafeng
Recall (%) 5.35 5.16 4.97 4.97
MRR (%) 1.79 2.02 1.96 1.84
ILD 1.26 1.26 1.32 1.34

Tmall
Recall (%) 14.51 14.36 14.32 14.21
MRR (%) 7.49 7.38 7.43 7.23
ILD 0.82 0.90 0.95 0.95

Clearly, IDSR significantly outperforms NARM+MMR. For ex-
ample, the improvements of IDSR over NARM+MMR are 4.34% and
6.18% on Tafeng and Tmall, respectively. Since MMR is heuristically
defined, we find that MMR relies heavily on the performance of
NARM. When the candidate items from NARM all have similar
genres, the performance of MMR method is limited. In contrast,
IDSR avoids this issue by learning to diversify the recommendation
list through optimizing the IDP loss in Eq. (18).

6 ANALYSIS
In this section, we perform a number of analyses of the factors that
impact the performance of IDSR:
• What is the impact of the number of latent intents on IDSR, i.e,
IDSR with a single head or multiple heads?
• How does the trade-off parameter 𝜆 affect the performance of
IDSR?
• What is the effect of the disagreement regularization loss L𝑅𝐿Dis
in Eq. (18)?
• Does the IIM module in IDSR capture users’ multiple intents?

6.1 Impact of the number of latent intents
We examine the performance of IDSR with different numbers of
latent intents/attention heads in Table 3.

We can see that when the number of heads is set to one, the
performance is inferior in terms of diversity on all datasets. The



(a) Performance in terms of Recall. (b) Performance in terms of MRR. (c) Performance in terms of ILD.

(d) Performance in terms of Recall. (e) Performance in terms of MRR. (f) Performance in terms of ILD.

Figure 3: Performance of IDSR on four datasets with the parameter 𝜆 in Eq. (3) changing from 0 to 1.

reason is that the model will only focus on the main intent when
generating recommendations.

As for accuracy, we can see that with the number of heads in-
creasing, the performance in terms of MRR and Recall is getting
worse in general. On the e-commerce dataset, i.e., Tmall, the dif-
ferences in terms of Recall and MRR when we change our model
from single head to multiple heads are smaller than those on the
MovieLens dataset, e.g., ML1M. The improvement of IDSR with
4-heads over 1-head in terms of ILD on Tmall is larger than that on
ML1M. This may be because users are more likely to have multiple
intents when they do online shopping than when choosing movies
to watch next. Another reason is that the time gap between adjacent
interactions in the MovieLens datasets is larger than that in the
e-commerce datasets, so historical behavior and multiple intents
do not have much impact on users’ current behavior.

Table 3 shows that adding more heads will hurt the accuracy
much and also increases the number of parameters for training,
thus we choose to use three heads in our experiments which are
tuned on the validation set.

6.2 Influence of the trade-off parameter 𝜆
In order to investigate the impact of the trade-off parameter 𝜆 on
IDSR, we test the performance of IDSR on all datasets by ranging 𝜆
from 0 to 1 with a step size of 0.1. The results are shown in Figure 3.

The accuracy metrics, i.e., Recall and MRR, show upward trends
when 𝜆 increases from 0 to 1. When 𝜆 = 0, IDSR shows the worst
performance. However, a noticeable increase is observed when
𝜆 changes from 0 to 0.1: the setting with 𝜆 = 0 means that we
only consider diversity without accuracy, thus the model cannot

be trained well to recommend relevant items. IDSR shows its best
performance in terms of accuracy metrics with 𝜆 at around 0.2 and
0.5 on the ML100K and ML1M datasets. Similar trends can be found
on e-commerce datasets in terms of MRR and Recall.

Regarding recommendation diversity, IDSR achieves the best
performance in terms of ILD when 𝜆 = 0.0 on all datasets since we
maximize diversity only in this case. When 𝜆 changes from 0 to 1,
ILD naturally decreases on all datasets. On the e-commerce datasets,
there are more fluctuations than on the MovieLens datasets, espe-
cially on Tmall. The performance of IDSR in terms of ILD decreases
sharply from 0 to 0.1.

6.3 Effect of disagreement regularization
In order to look into the effect of the disagreement regularization
loss L𝑅𝐿Dis is IDSR, we modify the IDP loss as:

IDP𝑅𝐿loss = 𝜆𝑒L𝑅𝐿rel + L
𝑅𝐿
div + 𝜆DisL

𝑅𝐿
Dis + L

𝑅𝐿
ME, (20)

where L𝑅𝐿Dis is weighted by the parameter 𝜆Dis . We test the perfor-
mance of IDSR with 𝜆Dis = 0.0, 0.5 and 1.0, respectively. The results
are shown in Table 4.

We can see that L𝑅𝐿Dis can help to boost the performance of IDSR
in terms of diversity when 𝜆Dis changes from 0.0 to 1.0. This indi-
cates that the IIM module can effectively capture different latent
intents by applying L𝑅𝐿Dis . To further show the effect of the IIM
module with different weights of L𝑅𝐿Dis , we randomly select one
sequence from the test set of ML100K and visualize the attention
weights of different positions with multiple intents when 𝜆Dis = 0.0,
0.5 and 1.0 in Figure 4.



Table 4: Performance of IDSR with different weights of dis-
agreement regularization.

Dataset Metric 𝜆Dis = 0.0 𝜆Dis = 0.5 𝜆Dis = 1.0

ML100K
Recall (%) 9.95 9.78 9.79
MRR (%) 3.23 3.13 3.21
ILD 1.58 1.61 1.67

ML1M
Recall (%) 15.14 14.97 14.89
MRR (%) 5.48 5.32 5.30
ILD 1.29 1.30 1.38

Tafeng
Recall (%) 5.71 5.19 4.97
MRR (%) 2.15 1.93 1.96
ILD 1.24 1.28 1.32

Tmall
Recall (%) 14.57 14.43 14.32
MRR (%) 7.50 7.45 7.43
ILD 0.84 0.91 0.95

(a) 𝜆Dis = 0.0. (b) 𝜆Dis = 0.5 (c) 𝜆Dis = 1.0
Figure 4: Weight distributions of multiple intents with dif-
ferent values of 𝜆Dis .

From Figure 4, it is obvious when 𝜆Dis = 0.0, the three intents
share similar attention weights distributions, which fails to extract
this user’s different intents and thus leads to worse performance
in terms of diversity than that when 𝜆Dis = 0.5. As 𝜆Dis changes
from 0.0 to 1.0, the differences between the three intents become
more distinct. To sum up, the IIM module can effectively capture
different latent intents with a disagreement regularization loss, as
indicated by various weights for items in a sequence.

6.4 Case study
In this subsection, we show an example from the test set of ML100K
to illustrate the different recommendation results by IDSR and
NARM; see Figure 5.

Figure 5 (top) shows 7 movies that the user watched recently and
the top 5 recommendations generated by IDSR and NARM, respec-
tively. The ground truth item is marked with a red box. According
to the user’s historical views, we see that the user likes Children
and Comedy recently. But the user also shows interest in Adven-
ture, Animation, Action, Crime, Drama, Romance and Thriller. The
items recommended by NARM are mainly in the Children genre,
e.g., cartoon movies, which is close to the recent intents of this user.
In contrast, IDSR accommodates multiple intents and diversifies
the list of recommended movies with Drama, Crime, Romance and
Thriller. IDSR also recognizes the most important intent and gives
a high rank to the ground truth movie. This confirms that IDSR
cannot only mine users’ multiple intents, but generate a diversified
list of recommended items to cover those intents.

Figure 5: An example of recommendation results generated
by IDSR and NARM.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed the intent-aware diversified sequen-
tial recommendation (IDSR) model to improve diversification for
sequential recommendation (SR). We have devised an implicit in-
tent mining (IIM) module to capture users’ multiple intents and
an intent-aware diversity promoting (IDP) decoder to generate a
diverse list of recommendations covering those intents. We have
also designed an intent-aware diversity promoting (IDP) loss to
supervise the model to simultaneously consider accuracy and di-
versification during training. We have conducted experiments on
four datasets and have found that IDSR significantly outperforms
the state-of-the-art baselines in terms of recommendation diver-
sity while maintaining competitive accuracy scores. In addition,
we have discussed the impact of the trade-off parameter and the
number of intents as well as the disagreement regularization on
our model’s performancee, and included a case study to compare
the items recommended by IDSR vs. those recommended by the
baseline model.

As to future work, we plan to apply IDSR to other recommen-
dation scenarios, e.g., shared-account recommendations, where
the observed behavior may be generated by multiple users with
more distinct intents [17, 28]. We also hope to improve the recom-
mendation accuracy by incorporating other useful SR models into
IDSR [39, 44]. In IDSR, there is a trade-off parameter controlling
the balance between accuracy and diversity, i.e., 𝜆, which needs to
be pre-defined. This is a one-fits-all method that provides recom-
mendations to all users with a constant accuracy-diversity balance.
However, individuals have different needs for diversity, thus it is
important to provide recommendations with an adaptive degree of
diversity [10, 48]. We aim to investigate how to learn the trade-off
parameter from users’ behavior so as to address this need.



CODE AND DATA
To facilitate reproducibility of the results in this paper, we are
sharing the code and data used to obtain those results at https:
//bitbucket.org/WanyuChen/idsr/.
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