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Factorization machines are a generic supervised method for a wide range of tasks in 
the field of artificial intelligence, such as prediction, inference, etc., which can effectively 
model feature interactions. However, handling combinations of features is expensive 
due to the exponential growth of feature interactions with the order. In nature, not 
all feature interactions are equally useful for prediction. Recently, a large number of 
methods that perform feature interaction selection have attracted great attention because 
of their effectiveness at filtering out useless feature interactions. Current feature interaction 
selection methods suffered from the following limitations: (1) they assume that all users 
share the same feature interactions; and (2) they select pairwise feature interactions only. 
In this paper, we propose novel Bayesian variable selection methods, targeting feature 
interaction selection for factorization machines, which effectively reduce the number of 
interactions. We study personalized feature interaction selection to account for individual 
preferences, and further extend the model to investigate higher-order feature interaction 
selection on higher-order factorization machines. We provide empirical evidence for the 
advantages of the proposed Bayesian feature interaction selection methods using different 
prediction tasks.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Factorization machines (FMs) [50,51] are a generic supervised learning approach that combines the advantages of support 
vector machines (SVMs) [61] with factorization models [31]. FMs account for interactions between features with factorized 
parameters [5,58]; such interactions are defined as combinations of individual features [13]. For example, in a movie recom-
mendation scenario, the features for the movie “Spider-Man” can be “comics”, “marvel” and “avengers”. Accordingly, feature 
interactions can be seen as combinations such as, e.g., “(comics, marvel)”, “(comics, avengers).”

* Corresponding author at: School of Computer Science and Information Engineering, Hefei University of Technology, China.
E-mail addresses: yfchen@nudt.edu.cn (Y. Chen), yangwang@hfut.edu.cn (Y. Wang), p.ren@uva.nl (P. Ren), eric.mengwang@gmail.com (M. Wang), 

derijke@uva.nl (M. de Rijke).
https://doi.org/10.1016/j.artint.2021.103589
0004-3702/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2021.103589
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103589&domain=pdf
mailto:yfchen@nudt.edu.cn
mailto:yangwang@hfut.edu.cn
mailto:p.ren@uva.nl
mailto:eric.mengwang@gmail.com
mailto:derijke@uva.nl
https://doi.org/10.1016/j.artint.2021.103589


Y. Chen, Y. Wang, P. Ren et al. Artificial Intelligence 302 (2022) 103589
FMs are widely applied in the field of artificial intelligence (e.g., predictive analytics, inference, etc.), ranging from recom-
mendation [52], computational advertising [23] and search ranking [39] to toxicogenomics prediction [75]. FMs have been 
well studied for recommendation tasks, by exploiting historical interactions between users and items [50]. Specifically, FMs 
can incorporate additional information associated with users or items, including content descriptions [76], context informa-
tion [54], social networks [6,10], and sequential dependencies [33]. While the wide availability of auxiliary data provides rich 
sources to reveal the user preferences, it increases the dimensionality of the feature space [9]. The curse of dimensionality 
is particularly severe for FMs, because FMs consider feature interactions. The complexity of FM models grows exponentially 
with the order of feature interactions. However, not all feature interactions are helpful [12]. Incorporating non-informative 
and noisy feature interactions will impacts the accuracy and increases the difficulty of interpreting outcomes [73].

To address the above problem, feature interaction selection (FIS) has been proposed to filter out useless feature interactions. 
Existing feature interaction selection (FIS) methods can be divided into two classes: wrapper methods [40] and embedded 
methods [12,73]. Wrapper methods evaluate subsets of feature interactions by training a model with each subset and scoring 
on a held-out set. Although wrapper methods are more flexible as they do not depend on the model, they suffer from poor 
scalability. Embedded methods perform FIS during model training, which are more efficient and effective. Sparse factorization 
machines (SparseFM) [47,73,79] are examples of embedded methods; they exploit sparsity regularization [63,67] to achieve 
FIS. However, SparseFM requires the expensive cross-validation.

To avoid the expensive cross-validation [63], we opt for Bayesian variable selection (BVS) methods. To achieve FIS, BVS 
typically assumes the variables follow sparsity prior distributions [3]. The sparsity prior ensures that when the variable is 
small, it is more likely to be zero. Therefore, the less important or noisy feature interactions can be filtered out. However, 
the fundamental issue of sparsity prior is that they assign zero probability to the event that a variable equals zero. Instead, 
we employ spike-and-slab priors (SSPs) [2,17,43], to distinguish between useful and harmful interactions. SSPs explicitly 
assign non-zero probabilities to events [64].

To these ends, we propose Bayesian feature interaction selection (BFIS) methods to address the problem of FIS for FMs. In 
our previous work [8], we have studied pairwise feature interaction selection for FMs. Higher-order feature interactions are 
also considered for FMs [4], in order to understand the complex and non-linear underlying structure in data. Therefore, in 
this paper, we make substantial improvements over the preliminary version in [8] by extending pairwise FIS to high-order. 
Compared with pairwise FIS, the essential requirements for a well designed model for higher-order feature interaction 
selection (H-FIS) are the following:

• Heredity: the model should capture dependencies between feature interactions of increasingly orders. The heredity 
between first- and second-order feature interactions that has been studied in [8] does not necessarily hold for higher-
order feature interactions.

• Enumeration: the model needs to enumerate all feature interactions comprehensively and without repetition. Brute-force 
enumeration is costly and a systematic way will be necessary.

• Efficiency1: the model should be able to be trained efficiently. It is time-consuming to select high-order feature interac-
tions since it involves combinational search.

Contributions By systematically considering these requirements for FIS on higher-order factorization machines (HOFMs), 
this paper is a substantial extension of our previously published work [8]:

(1) We investigate feature interaction selection (FIS) for higher-order factorization machines (HOFMs). higher-order feature 
interaction selection (H-FIS) is an effective way to reduce the number of higher-order feature interactions, thereby 
improving prediction quality.

(2) We propose a Bayesian variable selection (BVS) method to capture the heredity between feature interactions of increas-
ingly higher orders.

(3) We conduct variational inference with reparameterization and form inference networks to efficiently and effectively 
optimize the model. The efficiency of H-FIS is proved through training on large-scale datasets.

(4) We carry out extensive experiments on benchmark datasets to validate the effectiveness of our model in term of han-
dling higher-order feature interactions.

Roadmap The rest of paper is structured as follows. We first introduce preliminaries in Section 2. We discuss pairwise 
feature interaction selection in Section 3. Based on that, we extend the idea of exploiting pairwise feature interactions to 
select higher-order feature interactions in Section 4. We introduce our experimental settings in Section 5 and report and 
analyze our experimental results in Section 6. Section 7 discusses related work. We conclude the paper in Section 8.

1 Note that “efficiency” means the training efficiency of performing H-FIS on FMs rather than producing efficient FMs.
2
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Table 1
Summary of symbols and notation.

Notation Description

Se
ts

an
d

nu
m

be
rs

U Set of users
F Set of features
X Collection of feature vectors, i.e., X = {x}
Y Collection of labels, i.e., Y = {y(x)}
D Collection of dataset, i.e., D = X ∪Y
M Number of users, i.e., M = |U |
D Number of features, i.e., D = |F |
K Dimension of feature embedding

Ba
ye

si
an

va
ri

ab
le

s

wi First-order feature interaction weight for feature i
wui Personalized first-order feature interaction weight of user u

for feature i
wuij Personalized feature interaction weight of user u for 

interaction 〈i, j〉
w(t)

j1,..., jt
The weight for the t-th order interaction 〈 j1, . . . , jt 〉

sui The selection variable of user u for feature i
w̃i The weight of feature i
sui j The selection variable of user u for interaction 〈i, j〉
w̃i j The weight of interaction 〈i, j〉
s j1,..., jt The selection variable for interaction 〈 j1, . . . , jt 〉
w̃(t)

j1,..., jt
The weight of interaction 〈 j1, . . . , jt 〉

Pa
ra

m
et

er
s

v(t)
i ∈RK The t-th order latent representation of feature i for 

factorizing weights. We write v i = v(2)
i

zi ∈RK The latent representation of feature i for interaction 
selection

b0 The global bias of FM (HOFM)
bu The personalized bias of user u
πui The personalized selection parameter of user u for feature i
π j1,..., jt The selection parameter for interaction 〈 j1, . . . , jt 〉

2. Preliminaries

We denote U and F as the set of users and features, respectively. Note that user identifiers are also one of the features, 
i.e., U ⊂ F . The number of users and features are denoted by M = |U | and D = |F |, respectively. We use D = X ∪ Y to 
represent the collection of data, where X and Y are respectively the collection of feature vectors (input) and the collection 
of labels (output). Each feature vector x ∈ RD in X is associated with a label y(x) ∈ Y . We use xi to represent the i-th 
element of x. We summarize notations in Table 1.

We briefly introduce factorization machines (FMs) [50,51]. Given a real-valued feature vector x ∈ RD , FMs predict the 
target score by:

ŷFM(x) = b0 +
D∑

i=1

wi xi +
D∑

i=1

D∑
j=i+1

wijxi x j, (1)

where b0 is the global bias, wi is the first-order coefficient and wij is the second-order coefficient. Instead of learning wij
directly, FMs factorize it as wij = v T

i v j , where v i ∈ RK is the embedding of feature i. K is the dimension of the latent 
space.

We also introduce HOFMs [4,29], which extend FMs to consider higher-order feature interactions. Given x, higher-order 
factorization machines (HOFMs) predict the score by:

ŷHOFM(x) = b0 +
∑
i∈F

wi xi +
H∑

t=2

∑
j1<···< jt∈F

w(t)
j1,..., jt

x j1 · · · x jt , (2)

where ŷHOFM(x) indicates the predicted score by HOFM given feature x; H is the maximum order of feature interactions; w0

and wi are the global bias and the regression coefficient; and w(t)
j1,..., jt

is the coefficient for the tth-order feature interaction 
〈 j1, . . . , jt〉, which is further factorized:

w(t)
j1,..., jt

= sum(v(t)
j1

◦ v(t)
j2

◦ · · · ◦ v(t)
jt

), (3)

where v(t)
j1

, . . . , v(t)
jt

∈ RK are the tth-order embeddings of feature j1, . . . , jt , respectively. Note that HOFM is equivalent to 
FM if H = 2.
3
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3. Pairwise feature interaction selection

In this section, we introduce our proposed method for pairwise FIS. Existing FIS-based methods, including SparseFMs, 
overwhelmingly select a common set of interactions for all users in a non-personalized manner, on the assumption that 
the same feature interactions are equally powerful to predict any user’s behavior. This assumption may not be valid, as it 
overlooks the personal characteristics of users’ behavior, especially for recommendation tasks. To this end, we account for 
the individuality in FIS by investigating personalized feature interaction selection (P-FIS) [8]. Unlike FIS, personalized feature 
interaction selection (P-FIS) aims to achieve adaptive FIS for each individual user. Although we can train a particular sparse 
factorization machine for each user, this is problematic for at least two reasons: (1) it is both time and storage inefficient 
since we would need to maintain a model for each user; and (2) it is less effective because estimating a model separately 
for each user fails to take advantage of collaborative filtering. Therefore, we propose a Bayesian personalized feature interaction 
selection (BP-FIS) mechanism for FMs.

In the following, we describe Bayesian personalized feature interaction selection (BP-FIS) for personalized feature interaction 
selection (P-FIS) on FMs with details. We introduce personalized factorization machine (PFM) with personalized feature 
interaction weights and we propose Bayesian personalized feature interaction selection (BP-FIS) in Section 3.1. For the 
efficiency of training, we first conduct variational inference in Section 3.2 and devise an efficient optimization algorithm in 
Section 3.3.

3.1. The proposed model

3.1.1. Personalized factorization machine
To incorporate P-FIS for FMs, we reformulate Eq. (1) as a personalized FM via feature interaction parameters:

ŷPFM(x) = wu +
D∑

i=1

wui xi +
D∑

i=1

D∑
j=i+1

wuijxi x j, (4)

where wu, wui, wuij are the personalized coefficients of user u; wui and wuij reflect the preferences of user u over the 
first- and second-order feature interactions. While the FM in Eq. (1) can also account for personalization by taking user ID 
as features, it fails to personalize every interaction, as required by P-FIS.

3.1.2. Personalized feature interaction selection
Next, we recall the definition of BP-FIS by applying Bayesian variable selection (BVS) to feature interaction selection. BVS 

attempts to estimate the marginal posterior of a variable as the probability that the variable should be selected. Various 
BVS methods have been proposed [15]; spike-and-slab priors (SSPs) [70] have been widely studied. A variable w following 
SSPs is sampled from a linear combination of two distributions:

w ∼ πN (μ,σ 2) + (1 − π)δ0,

where N (μ, σ 2) is the slab prior, which is modeled as a Gaussian distribution with mean μ and variance σ 2; δ0 is the 
spike prior, which is modeled using a Dirac delta mass function centered at zero. The Dirac delta function is a generalized 
distribution used to model the density of an idealized point mass as a function equal to zero everywhere except for zero and 
whose integral over the entire real line is equal to one. SSPs assign non-zero probability for the event w = 0 (P (w = 0) =
1 −π ). Therefore, SSP is the ideal distribution for variable selection. However, the presence of the Dirac delta function δ0 in 
the SSPs complicates inference. SSPs have been reformulated by Titsias and Lázaro-Gredilla [64] in the following manner:

s ∼ Bernoulli(π), w̃ ∼ N (0,1), w = w̃ · s. (5)

This introduces two additional variables, w̃ and s, where w̃ represents the weight of the variable and s indicates whether 
to select the variable. The SSP in Eq. (5) is amenable to approximate inference [64].

Based on the discussion above, we formulate Bayesian personalized feature interaction selection (BP-FIS). A graphical model 
of BP-FIS is shown in Fig. 1. Each rating y(x) of feature x in the dataset is generated by the procedure that is detailed in 
Algorithm 1. Here, we use F , U , X and Y to denote the set of features, the set of users, the set of feature vectors, and the 
set of labels, respectively. We define M = |U |, as the number of users; N = |X | = |Y| as the number of data samples.

In the first part of the algorithm (line 1–10), we generate personalized feature interaction weights wui and wuij for 
all users. We reformulate wui by sui · w̃i and wuij by sui j · w̃i j as suggested by [64], so that we can take advantage of 
collaborative filtering by learning a single set of feature interaction weights W̃ = {w̃i} ∪{w̃i j} for all users and operationalize 
BP-FIS by learning the personalized interaction selection variable S = {sui} ∪ {sui j}. The generation of sui j is conditioned on 
sui and su j , which captures the hereditary relation between the first- and second-order interactions; see Section 3.1.3 for 
details on sui and sui j .

In the second part of Algorithm 1 (line 11–13), we calculate the rating prediction by Eq. (4) and generate the rating y(x), 
i.e., the true label of x following P (y | ŷ(x)).
4
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Fig. 1. Graphical model of Bayesian personalized feature interaction selection (BP-FIS). Nodes represent random variables and edges represent dependencies 
between variables.

Algorithm 1: Generation procedure of BP-FIS.

1 for each feature i ∈F do
2 draw 1st-order interaction weight w̃i ∼ N (0, 1);
3 for each user u ∈ U do
4 draw 1st-order interaction selection sui ∼ Bernoulli(π1);
5 wui = sui · w̃i ;

6 for each feature pair i, j ∈F do
7 draw 2nd-order interaction weight w̃i j ∼ N (0, 1);
8 for each user u ∈ U do
9 draw 2nd-order interaction selection sui j ∼ P (sui j | sui , su j, π2);

10 wuij = sui j · w̃i j ;

11 for each feature vector x ∈ X do
12 calculate the rating prediction ŷ(x) by Eq. (4);
13 draw y(x) ∼ P (y | ŷ(x));

The distribution of y(x) determines the likelihood function for optimization. For example, if we assume y(x) to follow a 
Gaussian distribution N ( ŷ(x), 1), we can derive the square loss:

∑
x∈X

1

2
(y(x) − ŷ(x))2. (6)

If y(x) follows a Bernoulli distribution Bernoulli(p(x)), where p(x) = sigmoid( ŷ(x)), the logistic log-likelihood can be de-
rived: ∑

x∈X
(y(x) log p(x) + (1 − y(x)) log (1 − p(x))) . (7)

The likelihood functions in Eq. (6) and (7) correspond to the squared loss and cross entropy loss, which are widely used in 
collaborative filtering [36]. Besides, a ranking loss can also be derived, e.g., a pairwise ranking loss [53] or a listwise ranking 
loss [76]. However, deriving the proper likelihood function for optimization is beyond the scope of this paper. In this work, 
we employ the Gaussian likelihood of Eq. (6) for optimization.

3.1.3. Hereditary spike-and-slab priors
Although we learn the personalized parameters in Eq. (4) for each user separately, there are two problems. On the one 

hand, selecting interactions directly based on Eq. (4) fails to take advantage of collaborative filtering. On the other hand, 
Eq. (4) raises optimization challenges due to the large number of parameters (O(M D2)).

To address the above problems, we reformulate wui as sui · w̃i (line 5) and wuij as sui j · w̃i j (line 10) in the generation 
procedure in Section 3.1. In order to model sui and sui j , we propose the hereditary spike-and-slab prior (HSSP), which extends 
SSP by capturing heredity constraints [14] between first- and second-order interactions. The underlying intuition is that 
there are natural hereditary constraints among the first- and second-order interactions [41], i.e., feature i and feature j are 
the “parents” of feature interaction 〈i, j〉. The hereditary constraints help to dramatically decrease the number of candidate 
interactions.

The hereditary spike-and-slab prior (HSSP) is based on two hereditary constraints: strong heredity and weak heredity. 
Based on FMs, we define them as follows:
5
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Definition 1 (Strong heredity). Given a FM, strong heredity is the constraint that if the first-order interactions i and j are selected for 
the FM, the second-order interaction of their combination, i.e., 〈i, j〉 will also be selected.

According to strong heredity, we have:

if sui = 1 or su j = 1 then sui j = 1.

Definition 2 (Weak heredity). Given a FM, weak heredity is the constraint that if one of the first-order interactions i or j is selected 
for FM, then the second-order interaction of their combination 〈i, j〉 will have a non-zero probability to be selected.

According to weak heredity, we have:

if sui = 1 or su j = 1 then P (sui j = 1) > 0.

Based on the definitions of strong heredity and weak heredity, we derive the HSSP by modifying the priors for sui j of SSP:

P (sui = 1) = P (su j = 1) = π1

P (sui j = 1 | sui su j = 1) = 1 (Strong heredity)

P (sui j = 1 | sui + su j = 1) = π2 (Weak heredity)

P (sui j = 1 | sui + su j = 0) = 0,

where π1, π2 ∈ [0, 1] are constant values.
Note that we assume sui follow Bernoulli(π1). One may argue that since π1 is a constant, it fails to reveal the person-

alization of user u. It is worth noting that Bernoulli(π1) is the prior of sui . Since we presume no prior knowledge of user’s 
selection preference, we assume equal probability πi for all users. The posterior of sui , i.e. p(sui | X ), is different for all 
users, which reflects the personalization of selection.

3.2. Variational inference

To optimize BP-FIS, we maximize the posterior P (W̃ , S | X , Y), such that S = {sui} ∪ {
sui j

}
and W̃ = {

w̃i
} ∪ {

w̃i j
}

. 
However, exact inference for P (W̃ , S | X , Y) requires an infeasible combinatorial search over O(2M D2

) possible models. 
To speed up the process, we conduct variational inference to approximate the posterior P (W̃ , S | X , Y) by a variational 
distribution Q (W̃ , S). The closeness between the posterior and the variational distribution is measured by Kullback–Leibler 
(KL)-divergence, i.e., KL(Q (W̃ , S) ‖ P (W̃ , S |X , Y)). The KL-divergence can be derived as follows:

KL(Q (W̃ , S) ‖ P (W̃ , S | X ,Y))

= −EQ

[
log P (W̃ , S,X ,Y) − log Q (W̃ , S)

]
+ log P (X ,Y),

(8)

where L = EQ

[
log P (W̃ , S,X ,Y) − log Q (W̃ , S)

]
is the evidence lower bound (ELBO); log P (R, X ) is the marginal likeli-

hood that does not depend on Q (W̃ , S). Eq. (8) indicates that minimizing the KL-divergence is the same as maximizing the 
ELBO. To maximize the ELBO, we first discuss the variational distribution Q (W̃ , S).

Variational distribution To ensure the quality of approximation, we assume that the hereditary constraints also hold in the 
variational distributions. Therefore, Q (W̃ , S) can be factorized as follows:

Q (W̃ , S) =
D∏

i=1

D∏
j=i+1

Q (w̃i)Q (w̃i j)
∏
u∈U

Q (sui)Q (sui j | sui, su j). (9)

The factorized distributions are formulated as follows:

Q (wi | μi,σi) = N (μi,σi)

Q (wij | μi j,σi j) = N (μi j,σi j)

Q (sui | πui) = Bernoulli(πui)

Q (sui j | sui su j = 1) = sui j

Q (sui j | sui + su j = 1,πui j) = Bernoulli(πui j)

Q (sui j | sui + su j = 0) = 1 − sui j,

(10)

where ρ = {μi, σi} ∪ {
μi j, σi j

}
and π = {πui} ∪ {

πui j
}

are the variational parameters.
6
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Evidence lower bound Given the variational distribution Q (W̃ , S | ρ, π), the ELBO can be derived as follows:

L =EQ

[
log P (W̃ , S,X ,Y) − log Q (W̃ , S | ρ,π)

]
=

∑
x∈X

EQ
[
log P (y(x) | ŷ(x))

] −KL
(

Q (W̃ , S | ρ,π) ‖ P (W̃ , S)
)

,

where EQ [·] stands for the expectation w.r.t. Q (W̃ , S | ρ, π). In the ELBO, KL(Q (W̃ , S | ρ, π) ‖ P (W̃ , S)) can be analyti-
cally derived:

KL(Q (W̃ , S | ρ,π) ‖ P (W̃ , S)) =
D∑

i=1

KL
(

Q (w̃i) ‖ Q (w̃i)
) D∑

u=1

KL (Q (sui) ‖ P (sui))+

D∑
i=1

D∑
j=i+1

KL
(

Q (w̃i j) ‖ Q (w̃i j)
) M∑

u=1

KL
(

Q (sui j | sui, su j) ‖ P (sui j | sui, su j)
)
,

where

KL
(

Q (w̃i) ‖ P (w̃i)
) = 1

2

(
1 + logσ 2

i − μ2
i − σ 2

i

)
KL

(
Q (w̃i j) ‖ P (w̃i j)

) = 1

2

(
1 + logσ 2

i j − μ2
i j − σ 2

i j

)
KL (Q (sui) ‖ P (sui)) = πui log

πui

π1
+ (1 − πui) log

1 − πui

1 − π1

(11)

and

KL
(

Q (sui j | sui, su j) ‖ P (sui j | sui, su j)
) =(

πui + πu j − 2πui j
)(

πui j log
πui j

π2
+ (1 − πui j) log

1 − πui j

1 − π2

)
.

(12)

However, it is problematic to derive EQ
[
log P (y(x) | ŷ(x))

]
. To address this, we approximate the expectation with Monte 

Carlo estimation as follows:

∑
x∈X

EQ
[
log P (y(x) | ŷ(x))

] ≈ 1

L

L∑
l=1

∑
x∈X

1

2

(
y(x) − ŷ(x)(l)

)2
, (13)

where ŷ(x)(l) is calculated by Eq. (4) with the l-th sampling W (l) . We write log P (y(x) | ŷ(x)(l)) as a Gaussian log-likelihood 
as we assume y(x) to follow N ( ŷ(x), 1) (Eq. (6) in Section 3.1).

Reparameterization When sampling wui and wuij , we apply the reparameterization trick [28]:

ε1, ε2 ∼ Uniform(0,1), ε1, ε2 ∼ N (0,1)

sui = �ε1 ≥ πui�

sui j = sui su j + (1 − sui su j)(sui + su j)�ε2 ≥ πui j�

w̃i = μi + ε1σi

w̃ i j = μi j + ε2σi j

wui = w̃i · sui

wuij = w̃i j · sui j .

(14)

In this way, the stochasticity in the sampling process is isolated, while the gradient with respect to ρ = {μi, σi} ∪ {
μi j, σi j

}
is back-propagated through the sampled wui and wuij . Unfortunately, the above procedure fails to take the gradient of 
π = {πui} ∪ {

πui j
}

due to the discrete nature of S = {sui} ∪ {
sui j

}
. We follow [65] to take gradients specifically for discrete 

variables. To take the gradient for πui , we marginalize out πui :

EQ
[
log P (y(x) | ŷ(x))

] = πuiEQ \{sui}
[
log P (y(x) | ŷ(x), sui = 1)

]+
(1 − π )E

[
log P (y(x) | ŷ(x), s = 0)

]
.
ui Q \{sui} ui

7
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The gradient of log P (y(x) | ŷ(x)(l) \ {πui}) over πui is:

∇πui = EQ \{sui}
[
log P (y(x) | ŷ(x), sui = 1)

] −EQ \{sui}
[
log P (y(x) | ŷ(x), sui = 0)

]
= 1

L

L∑
l=1

log P (y(x) | ŷ(x)(l), sui = 1) − log P (y(x) | ŷ(x)(l), sui = 0).

The gradient of πui j can be computed in a similar way.

3.3. Optimization

To further speed up the variational inference, we factorize the variational parameter πui j as πui · πu j . We only need to 
preserve {πui} for each user, decreasing the learning parameters from O(M D2) to O(M D). For {w̃i j}, we introduce feature 
embeddings V ∈RD×K and replace the variational parameters for w̃i j as follows:

μi j = μ(v i, v j) and σi j = σ(v i, v j),

where μ(·) and σ(·) are the transformation functions, and v i, v j ∈ RK are the embeddings for feature i, j, respectively. 
Note that we can have different definitions for μ(·) and σ(·). Inspired by [20,72], we define the transformations as follows:

μ(v i, v j) = μT fφ(v i ◦ v j) and σ(v i, v j) = σ T fφ(v i ◦ v j), (15)

where ◦ is the element-wise product operation; and fφ(·) is the transformation parameterized by φ. Note that μ(·) and 
σ(·) can be either linear transformations, e.g., fφ(v) = v , or non-linear transformations, e.g., fφ(·) is a neural network. The 
variational parameter for W̃ is ρ = {φ,μ,σ , V }.

Learning As the reparameterization procedures for estimating gradients of ρ and π are different, we propose to optimize 
the variational parameter π and ρ alternatively. Specifically, at iteration t , by fixing ρ(t−1) , we train π(t) to update the 
probabilities that a user will select the specific feature interactions. Then, by fixing π(t) , rather than training ρ(t) based 
on ρ(t−1) , we train ρ(t) from scratch. This is because when π is updated, we have different user preferences of feature 
interactions, where ρ should be optimized accordingly. According to empirical studies, adapting ρ fitting for π(t−1) to π(t)

could adversely bias the learning.

Prediction Once the model has been trained, we can generate predictions via point estimation in Eq. (16):

E
[

ŷ(x)
] = wu +

D∑
i=1

E [wui] xi +
D∑

i=1

D∑
j=i+1

E
[

wuij
]

xi x j, (16)

where E [wui] = πuiμi and E 
[

wuij
] = [πuiπu j + (1 − πuiπu j)(πui + πu j)πuiπu j]μi j .

4. Higher-order feature interaction selection

Beyond recommendation, FMs are also widely applied in other sparse predictive analytics, where higher-order feature 
interactions are considered. Since the number of feature interactions grows exponentially with the order, to harness HOFMs, 
efficient algorithms have been proposed to enumerate feature interactions [4,29]. Even though enumerations may be ef-
ficient, they can be time-consuming in practice. Therefore, higher-order feature interactions are approximated by neural 
networks (NNs) [18,35]. Existing NN-based approximations fail to distinguish useful from harmful feature interactions. They 
can only approximate the prediction with a combination of all feature interactions. Although attention modules are now 
being employed [59,62,72], a recent study has shown that attention weights may be inconsistent with the importance of 
features [21,57]. AutoFIS [38] and AutoHash [74] are proposed recently to perform higher-order interaction selection. How-
ever, they actually perform field interaction selection rather than feature interaction selection. Please note that there are 
large number of features compared to a limited number of fields (on the Avazu dataset, #feature=1,544,488 and #field=22). 
We target FIS for HOFMs – our goal is to filter out irrelevant higher-order feature interactions, explicitly and systematically.

In this section, we propose Bayesian higher-order feature interaction selection (BH-FIS) that extends the idea of FIS to 
higher-order factorization machines (HOFMs). Different from BP-FIS, we do not consider the personalization of selection for 
higher-order feature interactions. Models that consider higher-order feature interactions are mostly designed for prediction 
tasks [18,20,49], where personalization is not necessary. However, it is straight-forward to combine BP-FIS with Bayesian 
higher-order feature interaction selection (BH-FIS) to select both personalized and higher-order feature interactions.

BH-FIS is fundamentally different from existing FIS methods:
8
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Fig. 2. Graphical representation of H-FIS: the generation of y(x) is conditioned on the global bias w0, first-order coefficients {wi} and higher-order feature 
interactions {w(t)

j1,..., jt
}, (for t = 2, . . . , H).

• Independence: in BH-FIS we apply BVS to select feature interactions, which is then factorized into separate variables. 
Therefore, the interaction selection is independent with the learning of interaction weights. The independence ensures 
the effect of interaction selection. In comparison, in both AutoFIS and AutoHash, the selection is deeply coupled with 
the learning;

• Discreteness: BH-FIS introduced SSP to select feature interactions. SSP performs the true feature selection by assigning 
non-zero probability to the event that a variable equals zero. In contrast, most other methods uses sparsity priors 
for variable selection that assigns zero probability to the event. Therefore, SSP involves discrete variables, whereas the 
selection variables in both AutoFIS and AutoHash are not discrete: AutoFIS achieves selection by learning the importance 
of interactions with generalized regularized dual averaging (GRDA). The selection is achieved by sparsity regularizations 
(	1-norm), which is similar to SparseFM; AutoHash uses Gumbel-softmax trick to approximate the discrete variables. 
The gradients are unable to back-propagate due to the involvement of discrete variables. Thus, the learning of BH-FIS is 
harder than AutoFIS and AutoHash.

In the following, we propose BH-FIS in Section 4.1. To ensure the efficiency, we conduct variational inference, where 
the coefficient is reparameterized with factored parameters (Section 4.2). We provide a systematic way to enumerate 
higher-order feature interactions comprehensively and non-repetitively and then optimize the model via inference networks 
(Section 4.3).

4.1. The proposed model

Multi-field inputs To enable learning with multi-field input features, an embedding layer is applied given D feature embed-
dings [35]. With x as input, the embedding layer will output |F | embeddings, each of which is the representation of a field: 
for a univalent field, the corresponding feature embedding is taken as the field representation; for a multivalent field, the 
sum of feature embeddings is generated.

High-order feature interaction selection To perform FIS on HOFM, we propose Bayesian higher-order feature interaction selection
(BH-FIS), i.e., a Bayesian variable selection (BVS) method [2,17,43]. The Bayesian generative model of BH-FIS is illustrated in 
Fig. 2. We explain the model with more details, where each w(t)

j1,..., jt
(t ≥ 2) is associated with a spike-and-slab prior (SSP) 

[70] for FIS:

w(t)
j1,..., jt

∼ π(t)N (0, λ−1) + (1 − π(t))δ0, (17)

where N (0, λ−1) is the slab prior, modeled as a zero-centered Gaussian distribution; δ0 is the spike prior, with a zero-
centered Dirac delta mass function; and π(t) ∈ (0, 1) is a hyper-parameter to indicate the probability that the variable 
w(t)

j1,..., jt
will be selected. Compared with sparsity priors [3], SSP assigns non-zero probability 1 − π(t) to the event that 

w(t)
j1,..., jt

= 0. We consider w0 as a parameter and assign Gaussian distribution as the prior for wi to avoid over-fitting:

wi ∼ N (0, λ−1).

The distribution of y(x), conditioned on ŷ(x), i.e., P (y(x) | ŷ(x)), determines the loss function for optimization. For example, 
if we assume a Gaussian distribution, the square loss can be derived; otherwise, if we assume a Bernoulli distribution, cross 
entropy loss can be formulated. Since deriving the proper loss function for optimization is domain-specific, we refer to the 
discussion of P (y(x) | ŷ(x)) in the experiments (Section 5.4).

While H-FIS selects the higher-order feature interactions, it is challenging to perform inference, due to the following: 
(1) there are a large number of feature interactions, especially when interactions are higher-order; and (2) the SSP further 
complicates the problem due to the presence of the Dirac delta function δ0. Therefore, we conduct variational inference to 
address the issue, as discussed in Section 4.2.
9
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4.2. Variational inference

To solve the Dirac delta function δ0 in Eq. (17), we follow [64] to reformulate the SSPs as follows:

w(t)
j1,..., jt

= w̃(t)
j1,..., jt

· s j1,..., jt

w̃(t)
j1,..., jt

∼ N (0, λ−1)

s j1,..., jt ∼ Bernoulli(π(t)),

where two additional variables are introduced: w̃(t)
j1,..., jt

measures the weight of 〈 j1, . . . , jt〉; s j1,..., jt determines whether 
to select 〈 j1, . . . , jt〉. The superscript (t) is maintained for w̃(t)

j1,..., jt
to indicate that different orders of feature interactions 

are modeled respectively and removed for s j1,..., jt to show that the hereditary relations between the selection of different 
orders of feature interactions are captured (as discussed in Section 4.2.1).

Exact inference for the model is infeasible due to the large number of variables. Therefore, we conduct variational 
inference. In particular, we approximate the posterior distributions P (w̃(t)

j1,..., jt
| X , Y) and P (s j1,..., jt | X , Y) by variational 

distributions Q (w̃(t)
j1,..., jt

) and Q (s j1,..., jt ), respectively. The essential component of variational inference lies in the definition 
of variational distributions, which will be discussed below.

4.2.1. Variational distributions
Following the mean-field assumption, we define Q (w̃(t)

j1,..., jt
) as a Gaussian distribution with respective parameters:

Q (w̃(t)
j1,..., jt

) = N (μ
(t)
j1,..., jt

,σ
(t)
j1,..., jt

).

In order to reduce the parameter size, we further factorize μ(t)
j1,..., jt

and σ (t)
j1,..., jt

:

μ
(t)
j1,..., jt

= fμ(v(t)
j1

◦ · · · ◦ v(t)
jt

) (18)

σ
(t)
j1,..., jt

= fσ (v(t)
j1

◦ · · · ◦ v(t)
jt

), (19)

where ◦ is the element-wise product between vectors; fμ(·) and fσ (·) are functions parameterized by μ and σ that 
transform a vector from RK to R.

While we can define Q (s j1,..., jt ) similarly by respective variational parameters, the definition fails to capture hereditary 
relations.

Heredity has been shown to be effective [8]. We argue that heredity should also exist among higher-order feature inter-
actions, e.g., the selection of 〈 j1, . . . , jt〉 should depend on the selection of 〈 j′1, . . . , j′t−1〉 where j′1, . . . , j′t−1 ∈ { j1, . . . , jt}. 
However, the positive relation between the selection of first- and second-order interactions introduced in Section 3 does 
not necessarily hold in higher-order scenarios, where negative relations may also exist. For example, it may be unnecessary 
to preserve the interaction 〈user = Alice, movie = T itanic, genre = Romance, tag = Love Story〉 if 〈user = Alice, movie =
T itanic,genre = Romance〉 is selected since they carry similar semantics.

Motivated by the dependency between 〈 j1, . . . , jt〉 and {〈 j′1, . . . , j′t−1〉 | j′1, . . . , j′t−1 ∈ { j1, . . . , jt}} (both positive and neg-
ative), we define Q (s j1,..., jt ) as a Bernoulli distribution with respective parameters:

Q (s j1,..., jt ) = Bernoulli(π j1,..., jt ),

where π j1,..., jt is factorized by shared embeddings:

π j1,..., jt = sigmoid
(

fφ(z j1 ◦ · · · ◦ z jt )
)
. (20)

Similarly, fφ(·)2 is a function parameterized by φ that transforms a vector from RK to R. It can be seen that this defi-
nition captures the heredity in higher-order feature interactions. The dependency between 〈 j1, . . . , jt〉 and 〈 j′1, . . . , j′t−1〉
(∀ j′1, . . . , j′t−1 ∈ { j1, . . . , jt}) is captured since Q (s j1,..., jt ) and Q (s j′1,..., j′t−1

) are conditioned on the same embeddings 
z j′1 , . . . , z j′t−1

.

The above defines the inference model for BH-FIS as summarized in Fig. 3, where we define V (t) = {v(t)
1 , . . . , v(t)

D } and 
Z = {z1, . . . , zD}.

2 We devise inference networks to instantiate fμ, fσ and fφ in Section 4.3.1.
10
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Fig. 3. Graphical representation of inference model: w(t)
j1,..., jt

is reformulated into w̃(t)
j1,..., jt

and s j1,..., jt . Heredity is captured by the dependency between 
s j1,..., jt and s j1,..., jt−1 . w̃(t)

j1,..., jt
is conditioned on separate feature embedding V (t) while s j1,..., jt is conditioned on shared embedding Z .

4.2.2. Evidence lower bound
As previously discussed, exact inference for variational distribution is not feasible. To this end, we propose to approximate 

the posterior distributions, by maximizing the ELBO. For ease of presentation, we define � = {V (2), . . . , V (H),μ, σ } and 
� = {Z , φ}, which yields the following:

L(Q ) =EQ

[
log P (W̃ , S,X ,Y) − log Q �(W̃ ) − log Q �(S)

]
. (21)

In the next section, we will discuss with details on how to maximize the ELBO.

4.3. Optimization

In this section, we discuss how to optimize the ELBO in Eq. (21). Motivated by the idea of auto-encoding variational 
Bayes (AEVB) [28], we interpret the ELBO via a reconstruction loss and two KL-divergence losses:

LQ = LRe +LK L(S) +LK L(W̃ ), (22)

where

LRe = EQ [log P (Y | S, W̃ )] (23)

LKL(S) = KL (Q �(S) ‖ P (S)) (24)

LKL(W̃ ) = KL(Q �(W̃ ) ‖ P (W̃ )). (25)

The KL-divergence losses LKL(S) and LKL(W̃ ) can be derived analytically. Therefore, in the following, we focus on how to 
derive LRe , which is further formulated below:

LRe =
∑
x∈X

EQ
[
log P (y(x) | ỹ(x))

]
. (26)

To derive P (y(x) | ŷ(x)), we need to calculate ŷ(x). According to Eq. (2), we infer W̃ and S , which will be discussed in 
Section 4.3.1 by devising inference networks.

4.3.1. Inference networks
Based on Eq. (18), (19) and (20), we propose inference networks: fμ and fσ with V (2), . . . , V (H) as embeddings and fφ

with Z as embeddings. Note that fμ and fσ do not share any parameters with fφ to ensure that the selection of feature 
interactions is independent from the learning of factorization machines. This is a fundamental difference with attention-
based methods [62,72], where attention weights are not independent from the model. Given a feature interaction, we can 
evaluate the corresponding variable via inference networks. Fig. 4 shows how w(3)

2,3,5 is inferred given the 3rd-order feature 
interaction 〈2, 3, 5〉.

Concretely speaking, We first reparameterize the sampling of w(t)
j1,..., jt

:

ε ∼ Uniform(0,1), ε ∼ N (0,1), (27)

s j1,..., jt = �ε ≥ π j1,..., jt �, (28)
11
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Algorithm 2: Reparam.
Input : Feature embeddings for selection: [z1, . . . , zn]
Input : Feature embeddings for weight: [v1, . . . , vn]
Output: The value of coefficients: [w1, . . . , wn]

1 [π1, . . . , πn] ← fφ([z1, . . . , zn]);
2 [μ1, . . . , μn] ← fμ([v1, . . . , vn]);
3 [σ1, . . . , σn] ← fσ ([v1, . . . , vn]);
4 [ε1, . . . , εn] ← Uniform(0, 1);
5 [ε1, . . . , εn] ← N (0, 1);
6 for i = 1, . . . , n do
7 si = �εi ≥ πi�;
8 w̃i ← μi + σk · εi ;
9 wi ← si · w̃i ;

10 return [w1, . . . , wn];

Fig. 4. An illustrative view of how inference networks infer the 3rd-order feature interaction 〈2, 3, 5〉 (shortened to w in the figure). The feature embeddings 
are drawn with cuboids of different colors (refer to the legend). We deepen the color of the selected embeddings. To evaluate w = w̃ · s, two independent 
inference networks are designed, to generate w̃ and s respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

w̃(t)
j1,..., jt

= μ
(t)
j1,..., jt

+ ε · σ (t)
j1,..., jt

, (29)

w(t)
j1,..., jt

= w̃(t)
j1,..., jt

· s j1,..., jt , (30)

where �·� is the binary operator that outputs 1 if the condition inside is met, and 0 otherwise. We summarize the reparam-
eterization in Algorithm 2.

While we can optimize � via back-propagation through the inference network, we cannot back-propagate gradients 
to optimize �, due to the discrete nature of S . One straightforward solution is to rely on a Naïve Monte Carlo gradient 
estimator [7]. Unfortunately, this estimation suffers from large variance [46]. Inspired by [65], we propose to optimize � by 
marginalizing out the variable of interest.

To generate the prediction ŷ(x) for the sake of deriving LRe in Eq. (26), combining with Eq. (2), we also need a systematic 
way to enumerate all feature interactions, which will be discussed in the following section.

4.3.2. Feature interaction enumeration
To do FIS, a comprehensive and non-repetitive enumeration will be required. Blondel et al. [4] and Trofimov and 

Novikov [66] proposed efficient enumeration methods. However, they can only be applied when all feature interactions 
are evaluated. For H-FIS, we will filter out non-candidate feature interactions, while evaluating ŷ(x) with a partially selected 
set of feature interactions.

One widely applied strategy is the outer-product,3 which is easily parallelized to enumerate feature interactions [18,
35,58]. Therefore, we propose to explore the outer-product for higher-order feature interaction enumeration. However, one 
limitation of outer-products lies in the generation of repetitive interactions. To address this problem, we resort to masking 
techniques.

4.3.3. Masking
To formally discuss masking, we denote Ct

n as the number of t-combinations from n elements:

Ct
n = n(n − 1) · · · (n − t + 1)

t(t − 1) · · · 1
. (31)

3 An example of the outer-product (denoted by �) is: {i1, i2} � { j1, j2} = [〈i1, j1〉, 〈i1, j2〉; 〈i2, j1〉, 〈i2, j2〉].
12
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Fig. 5. An illustrative example of interaction enumeration. We abbreviate the input [user = Alice, movie = T itanic, genre = Romance, tag = Love Story] as 
[A, T , R, L].

We define three mask matrices, Mt , M ′
t and Mn

t , which are respectively used for masking input features, (t − 1)th-order 
interactions and tth-order interactions:

Mt = [
t−1︷ ︸︸ ︷

0, . . . ,0,

n−t+1︷ ︸︸ ︷
1, . . . ,1],

M ′
t = [1, . . . ,1︸ ︷︷ ︸

Ct−1
n−1

,0, . . . ,0︸ ︷︷ ︸
Ct−2

n−1

], (32)

and Mn
t is a (n − t + 1) × Ct−1

n−1 matrix, with the i-th row:

Mt
n(i) = [

C i−1
t+i−2︷ ︸︸ ︷

1, . . . ,1,0, . . . ,0︸ ︷︷ ︸
Ct−1

n−1

]. (33)

Based on the above, we develop an iterative enumeration procedure with outer-product and masking. For ease of un-
derstanding, we illustrate the procedure by an example in Fig. 5. In particular, given input [user = Alice, movie =
T itanic, genre = Romance, tag = Love Story] ([A, T , R, L] for short), we perform outer-product between {A, T , R} and 
{T , R, L}. Since not all generated pairs are valid, we apply masking to obtain all the 2nd-order feature interactions, i.e.,

{〈A, T 〉, 〈A, R〉, 〈T , R〉, 〈A, L〉, 〈T , L〉, 〈R, L〉}, (34)

which are used for 2nd-order FIS. We then compute the outer-product between {〈A, T 〉, 〈A, R〉, 〈T , R〉} and {R, L}. With 
masking, the 3rd-order feature interactions can be enumerated {〈A, T , R〉, 〈A, T , L〉, 〈A, R, L〉, 〈T , R, L〉}, which are used for 
3rd-order FIS. The 4th-order interaction 〈A, T , R, L〉 can be constructed by the outer-product between 〈A, T , R〉 and {L}.

Since the designed enumeration is based on the outer-product, it can be easily parallelized. The enumeration also helps 
to share computations: when computing z j1 ◦ · · · ◦ z jt , the previous computation of z j1 ◦ · · · ◦ z jt−1 can be reused.

To theoretically guarantee the comprehensiveness and non-repetitiveness, we propose Theorem 1. F t
i is formulated for 

the set of tth-order feature interactions constructing from the first i features, i.e., { j1, . . . , ji}, where 
∣∣F t

i

∣∣ = Ct
i . We only 

need to prove that given F t−1
n , we can correctly generate F t

n based on the designed enumeration procedure.
13
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Algorithm 3: Evaluate ŷ.
Input : Input feature: x
Input : Feature embeddings: Z , V (1), . . . , V (m)

Output: Predicted score: ŷ
1 Z ′ ← Z ;
2 for t = 1, . . . , H do V ′

t ← V (t);
3 W (1) ←Reparam(Z ′, V ′

k );
4 for t = 2, . . . , H do
5 Z ′ ← [

(Z ◦ Mt ) � (Z ′ ◦ M ′
t )

] ◦ Mt
n;

6 for i = t, . . . , H do
7 V ′

i ← [
(V (i) ◦ Mt ) � (V ′

i ◦ M ′
t )

] ◦ Mt
n;

8 W (t) ←Reparam(Z ′, V ′
t );

9 ŷ ← calculated by Eq. (2);
10 return ŷ;

Theorem 1. Given F t−1
n , we can generate F t

n by applying outer-product and maskings, i.e.,

F t
n = [{ j1, . . . , jn} ◦ Mt �F t−1

n ◦ M ′
t

] ◦ Mt
n,

where ◦ and � denote the element-wise product and outer-product, respectively. The generation ensures the comprehensiveness and 
non-repetitiveness.

Proof. According to the multi-linearity property [5], we have:

F t
i = F t

i−1 ∪ ({ ji} �F t−1
i−1 ), F t

i−1 ∩ ({ ji} �F t−1
i−1 ) = ∅,

based on which we can derive the following:

F t
n =

n−t⋃
i=0

{ jt+i} �F t−1
t+i−1

=
n−t⋃
i=0

{ jt+i} �F t−1
n−1 ◦ Mt

n(i + 1)

=
[
{ jt, . . . , jn} �F t−1

n−1

]
◦ Mt

n

= [{ j1, . . . , jn} ◦ Mt �F t−1
n ◦ M ′

t

] ◦ Mt
n. �

Based on the idea of feature interaction enumeration, we summarize the overall procedure of evaluating ŷ(x) in Algo-
rithm 3.

4.3.4. Complexity
We analyze the complexity of the proposed BH-FIS.

Time complexity We analyze the time complexity of Algorithm 3. When evaluating ŷ for one sample, only |F | features 
are considered rather than D so that |F | � D . The major complexity comes from the outer-product. To calculate the 
embeddings of tth-order feature interactions, we perform the outer-product for t − 1 times, the complexity of which is 
O(|F |t−1 K ). The overall complexity is the summation of the above complexities with t = 2, . . . , H , i.e., O(|F |H K ). The 
time complexity is polynomial in |F |. In practice, it is efficient to train since the outer-product operation can be well 
parallelized.

Space complexity As shown in Section 4.2.2, the parameters of BH-FIS are � = {V (2), . . . , V (H),μ, σ } and � = {Z , φ}. In 
total, there are H feature embeddings, along with three additional inference networks parameterized by μ, σ and φ, re-
spectively. Since the networks take the embeddings as input, the size of the input layer is K . For the worst case, the number 
of neurons in each hidden layer is the same as the input layer. Therefore, the space complexity is O(H D K + 3K L), where 
H is the maximum order, D is the number of features, K is the embedding size and L is the maximum number of layers 
among the networks. Although we analyze μ and σ separately, they actually share the hidden layers, so that the complexity 
of 3K L can be further reduced. The biggest contribution to the space complexity comes from the embedding part since K
and L are generally small.

The space complexity of BH-FIS has the same scale as HOFM. Although the complexity grows linearly with H , in many 
practical scenarios, setting H = 3 is enough to ensure the expressiveness of methods modeling higher-order feature interac-
tions. When H is large, to reduce the complexity, similar to HOFM, we also consider learning shared embeddings to model 
different orders of feature interactions in our experiment. The space complexity with shared embeddings is O(2D K + 3K L).
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Table 2
Statistics of the datasets.

Dataset #Users #Items #Fields #Features #Ratings #Rating
#User

ML1M 6,040 3,706 7 13,234 1,000,209 165.60
ML20M 138,493 26,744 3 26,744 39,169,568 282.83

MLHt 2,113 10,197 3 49,205 855,598 404.92
LastFM 1,892 17,632 4 29,200 341,104 180.29
Delicious 1,867 69,223 4 77,735 372,609 199.58

Avazu – – 22 1,544,488 40,428,967

4.3.5. Prediction
Once the parameters � = {

μ, V (2), . . . , V (H)
}

, � = {φ, Z} are optimized, we can directly take the variational distributions 
as the posterior of variables. To predict the output ŷ(x), we conduct the point estimation of variables, where the posterior 
means are taken as the value of variables:

EQ
[

ŷ(x)
] = w0 +

D∑
i=1

wi +
H∑

t=2

∑
j1<···< jt∈F

EQ

[
w(t)

j1,..., jt

]
,

where

EQ

[
w(t)

j1,..., jt

]
= EQ

[
w̃(t)

j1,..., jt

]
·EQ

[
s j1,..., jt

]
= fμ(v(t)

j1
◦ · · · ◦ v(t)

jt
) · fφ(z j1 ◦ · · · ◦ z jt ).

5. Experimental setup

We conduct an extensive empirical evaluation of BP-FIS and BH-FIS, respectively, to show the advantages of FIS in 
selecting pairwise and higher-order feature interactions. We carried out the experiments on two different tasks for a com-
prehensive evaluation:

• Top-N recommendation: Given a user, to predict the scores of the user to the items in the candidate item list. Items are 
then ranked based on the descending order of the predicted score and the top-N items are recommended to the user. 
BP-FIS is evaluated on the top-N recommendation task.

• Click-through rate prediction: Given an ad with features, to predict whether the ad will be clicked or not. click-through 
rate (CTR) prediction is defined as a binary classification problem. CTR prediction is also used to evaluate BH-FIS since 
modeling higher-order feature interactions has been shown to improve the performance of prediction.

5.1. Research questions

We seek to answer the following research questions:

(RQ1) Does P-FIS help to improve the performance of FMs on the top-N recommendation task? Specifically, how well does 
BP-FIS perform against state-of-the-art FMs?

(RQ2) How does the embedding size impact the ability of BP-FIS to improve the performance of FMs? How does the 
alternating optimization procedure affect the performance of P-FIS?

(RQ3) Does applying H-FIS on HOFMs improve the performance of prediction? Compared with counterparts, how efficient 
is BH-FIS?

(RQ4) What is the impact of the order of feature interactions and embedding size on the effectiveness of BH-FIS? What is 
the significance of the feature interactions of different orders selected by BH-FIS?

We answer RQ1 and RQ2 by performing the top-N recommendation task and address RQ3 and RQ4 with CTR prediction.

5.2. Datasets

The experiments are conducted on six datasets, two of which are constructed from MovieLens datasets [19]. See Table 2.
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• ML1M – This is the MovieLens dataset with one million movie ratings.4 Besides rating information, ML1M also contains 
rich additional information including user profiles (gender, age, occupation, zip) and movie genres;

• ML20M – This is the MovieLens dataset containing 20 million ratings.5 Compared with ML1M, ML20M lacks the ad-
ditional information. Instead, we sort items by users according to time and form the fields as user, item and latest 
historical items.

Three of the datasets are constructed by HetRec 2011.6 These datasets contain social networking, tagging, and resource 
consuming (Web page bookmarking and music artist listening) information from sets of around 2,000 users. There three 
datasets are specially utilized to evaluate top-N recommendation.

• MLHt – This dataset is an extension of ML10m.7 It links the movies of the MovieLens dataset with their corresponding 
web pages at the Internet Movie Database (IMDb)8 and Rotten Tomatoes movie review systems.9 MLHt contains users 
with both rating and tagging information.

• LastFM – This dataset contains social networking, tagging, and music artist listening information from Last.fm,10 the 
online music system.7Each user has a list of most listened music artists, tag assignments, and friend relations within 
the social network.

• Delicious – This dataset contains social networking, bookmarking, and tagging information from the Delicious11 social 
bookmarking system.7Each user has bookmarks, tag assignments, and contact relations within the social network.

Finally, we also use one benchmark dataset that is used for evaluating CTR prediction.

• Avazu – This dataset contains users’ mobile behaviors including whether a displayed mobile ad is clicked by a user or 
not.12 It has 22 feature fields spanning from user/device features to ad attributes (we discard the useless field id that 
has a unique value for each sample). We remove the infrequent features and treat them as a single feature “unknown,” 
where we set a threshold to 5.

All datasets but Avazu are used to evaluate top-N recommendation since Avazu lacks user identifier. Avazu is used to 
evaluate CTR prediction. By regarding user identifier as one of the features (fields), ML1M and MLHt are also used to evaluate 
CTR prediction. We follow the common setting of evaluating top-N recommendation with implicit feedback [25,71]: treat 
ratings of at least 3 as positive (y = 1 if rating ≥ 3) and treat all other ratings as missing (y = 0).

5.3. Methods used for comparison

Personalized FIS To evaluate the effectiveness of BP-FIS for FMs, we apply P-FIS on both linear and non-linear FMs. This 
yields two methods for comparison. They differ in the definition of fφ(·) in Eq. (15): fφ(·) is an identity transformation for 
PFIS and a stack of fully connected network layers for PNFIS. We evaluate PFIS and PNFIS on the top-N recommendation 
task since they both consider personalization during FIS.

• PFIS, which applies P-FIS on top of FM [50,51], and
• PNFIS, which applies P-FIS on top of NFM [20]. NFM is the state-of-the-art neural extension of factorization machines.

High-order FIS Similarly, to evaluate BH-FIS, we also compare with different variations of HOFMs:

• HFIS, which applies H-FIS on top of HFM. HFM is the original version of HOFM proposed by Blondel et al. [4]. It learns 
a separate set of feature embeddings for each order of feature interactions;

• SFIS, which applies H-FIS on top of SFM. SFM is simplified version of the HOFM with shared feature embeddings [4] by 
removing the kernels;

• HNFIS, which applies H-FIS on top of HNFM. HNFM extends HFM to neural methods based on the idea of NFM; and
• SNFIS, which applies H-FIS on top of SNFM. SNFM extends SFM to neural methods based on the idea of NFM.

4 https://grouplens .org /datasets /movielens /1m/.
5 https://grouplens .org /datasets /movielens /20m/.
6 http://ir.ii .uam .es /hetrec2011.
7 https://grouplens .org /datasets /hetrec -2011/.
8 http://www.imdb .com.
9 http://www.rottentomatoes .com.

10 http://www.last .fm.
11 http://www.delicious .com.
12 https://www.kaggle .com /c /avazu -ctr-prediction.
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Since HOFMs capture explicit feature interactions only, we also combine them with deep neural networks (DNNs) to capture 
implicit feature interactions. This design is widely applied for CTR prediction, e.g., DeepFM is the combination of FM with 
DNN.

• HDeepFIS, which applies H-FIS on top of HDeepFM. HDeepFM is the combination of HFM and DNN, and
• SDeepFIS, which applies H-FIS on top of SDeepFM. SDeepFM is the combination of SFM and DNN.

HFIS and SFIS are evaluated by the CTR prediction task. For a fair comparison with baselines of the CTR prediction task, 
we also incorporate DNN to capture implicit feature interactions, where we evaluate HDeepFIS and SDeepFIS.

Baselines We also compare with the following baselines:

• AFM: The attentional factorization machine (AFM) [72] learns the importance of pairwise feature interactions from data 
via an attention network.

• SparseFM: The sparse factorization machine (SparseFM) learns sparse 1st- and 2nd-order interactions [47,73,79]. We 
implement SparseFM, where all feature embeddings are penalized by group Lasso regularizations.

• CIN: The compressed interaction network (CIN) [35] is the state-of-the-art method for CTR prediction, which approxi-
mate higher-order feature interactions explicitly. To account for implicit feature interactions, CIN is combined with DNN 
to form xDeepFM.

• AutoInt: The automatic feature interaction learning (AutoInt) [59] is the state-of-the-art method for CTR prediction, 
which captures the importance of higher-order feature interactions via self-attention mechanism. AutoInt+ combines 
CIN with DNN.

• AutoFIS: The recent work that performs field interaction selection on top of higher-order factorization machines [38]. 
AutoFIS is applied both on FM and DeepFM, which forms AutoFM and AutodeepFM, respectively.

• LightFM: The LightFM [32] is a hybrid matrix factorization model representing users and items as linear combinations 
of their content features’ latent factors.

• GPFM: The GPFM [44] is the non-linear and non-parametric context-aware collaborative filtering (CF) method. It models 
the utility function using the Gaussian process (GP) framework. GPPW is the pairwise preference model of GPFM.

The methods mentioned above (in bold face) are compared in our experiments. We summarize these methods in Table 3. 
Implementation details are provided in Appendix A.

5.4. Evaluation protocol

MLHt, ML1M, ML20M, LastFM and Delicious are used to evaluate top-N recommendation. Note that LastFM and Delicious 
contains implicit ratings only. While MLHt, ML1M and ML20M contain explicit ratings, we convert them into implicit for 
the sake of effectiveness of training and the consistence of evaluation. The implicit ratings generally tell whether an item is 
relevant or not. While other information like dwell time can tell the grade of relevance, it is not applicable in our datasets. 
Therefore, we use binary relevance metrics to evaluate top-N recommendation.

We adopt the leave-one-out evaluation, which has been widely used in the literature [26,45]. For each user, we randomly 
hold-out one of her interactions as the test set and utilize the remaining data for training. Since it is too time-consuming 
to rank all items for every user during evaluation, we follow the common strategy of randomly sampling items that are not 
interacted with by the user, ranking the test item among 100 items [31,36]. hit rate (HR) and average reciprocal hit rank 
(ARHR) are widely utilized to evaluate the performance of top-N recommendation.

The recommendation quality is measured using HR and ARHR, which are defined as follows:

HR = #Hit

#User
, ARHR = 1

#User

#Hit∑
i=1

1

posi
,

where #User is the total number of users, and #Hit is the number of users whose item in the test set is recommended (i.e., 
a hit) in the size-N recommendation list. Moreover, posi is the position of the item in the ranked recommendation list, if an 
item of a user is among the list. ARHR is a weighted version of HR and it measures how strongly an item is recommended; 
the weight is the reciprocal of the hit position in the recommendation list. Note that both HR and ARHR belong to binary 
relevance metrics. The graded relevance metrics are not applicable.

To evaluate CTR prediction, we employ two metrics: area under the ROC curve (AUC) and binary cross-entropy loss 
(logLoss). They evaluate the performance from two different perspectives: AUC measures the probability that a positive 
instance will be ranked higher than a randomly chosen negative one. It only takes into account the order of predicted 
instances and is insensitive to the class imbalance problem. In contrast, logLoss measures the distance between the predicted 
score and the true label for each instance:

logLoss = − 1

|X |
∑

y(x) log ŷ(x) + (1 − y(x)) log
(
1 − ŷ(x)

)
. (35)
x∈X
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Table 3
Summary of compared methods.

Method Higher-order FIS Non-linear +DNN

FM

AFM – – – –
DeepFM – – –

√
FM – – – –
LightFM – – – –
NFM – –

√
–

SparseFM –
√

– –

H
O

FM
HDeepFM

√
– –

√
HFM

√
– – –

HNFM
√

–
√

–
SDeepFM

√
– –

√
SFM

√
– – –

SNFM
√

–
√

–

Ba
se

lin
e

AutoInt
√

–
√

–
AutoInt+

√
–

√ √
CIN

√
–

√
–

AutoFM
√ √

– –
AutoDeepFM

√ √
–

√
xDeepFM

√
–

√ √

BP
-F

IS PFIS –
√

– –
PNFIS –

√ √
–

BH
-F

IS

HDeepFIS
√ √

–
√

HFIS
√ √

– –
HNFIS

√ √ √
–

SDeepFIS
√ √

–
√

SFIS
√ √

– –
SNFIS

√ √ √
–

“Higher-order” indicates whether higher-order feature interactions are mod-
eled. “FIS” indicates whether the method select feature interactions. “Non-
linear” shows whether non-linear transformations are applied. “+DNN” shows 
if DNN is combined with the method during prediction.

We use logLoss to train the methods for the CTR prediction task.

6. Experimental results

We group our experimental results by task, getting started with top-N recommendation.

6.1. Top-N recommendation

RQ1 To answer RQ1 for top-N recommendation, we compare PFIS and PNFIS with FM and NFM, respectively. We also com-
pare with three baseline methods: AFM, SparseFM, LightFM. We report the recommendation performance of the compared 
models in Table 4, in terms of HR@1, HR@10 and ARHR@10. Table 4 shows that PFIS and PNFIS consistently outperform the 
other methods. This illustrates the effectiveness of BP-FIS for improving the performance of both linear and non-linear FMs 
for top-N recommendation.

We analyze the results by separating the comparison between linear and non-linear models. Among the linear models, 
SparseFM outperforms FM and AFM on the LastFM and Delicious datasets. This supports the need for conducting FIS for 
FMs. However, SparseFM fails to beat FM on MLHt. In contrast, PFIS achieves improvements over FM constantly on the same 
dataset. This shows that selecting or weighing a single set of feature interactions for all users overlook the personalization 
over features, and conducting P-FIS is required. Except for HR@1 on LastFM and Delicious, the improvement achieved by 
PFIS is significant, especially HR@10 on MLHt, where PFIS improves over FM by 17.286%. This demonstrates the efficacy of 
BP-FIS. On the Delicious dataset, LightFM performs well. It even outperforms PFIS for HR@1, though the improvement is not 
significant. This might suggest that the interactions among user features bring more noise than information on the Delicious 
dataset.

The comparison between the non-linear models, i.e., NFM and PNFIS, shows similar results. PNFIS steadily achieves better 
performance than NFM on all datasets and all metrics, which shows that the improvement achieved by BP-FIS is orthogonal 
to the non-linear modeling of interactions.

Results on ML1M and ML20M are reported in Table 5. Similarly, we compare linear and non-linear methods separately. 
For linear methods, PFIS performs the best and the improvement is significant. This further confirms that performing FIS is 
necessary and validates the proposed BP-FIS model. Similar results are reveals when comparing non-linear methods. PNFIS 
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Table 4
Comparison of top-N recommendation methods.

Method λ drop K HR@1 HR@10 ARHR@10

M
LH

t

AFM 2 0.1 64 0.1138 0.4273 0.1969
FM 0.1 – 64 0.2371 0.6028 0.3398
SparseFM 0.01 – 64 0.2294 0.6052 0.3351
LightFM 0.01 – 64 0.0856 0.3834 0.1619
PFIS – – 128 0.2401† 0.7070‡ 0.3932‡

NFM – 0.2 256 0.2180 0.6257 0.3389
PNFIS – – 128 0.2519‡ 0.6831‡ 0.3814‡

La
st

FM

AFM 8 0.7 256 0.2166 0.6126 0.3332
FM 0.1 – 64 0.1894 0.6403 0.3215
SparseFM 0.05 – 256 0.2118 0.6542 0.3449
LightFM 0.01 – 64 0.2204 0.5598 0.3151
PFIS – – 256 0.2209 0.6798‡ 0.3581‡

NFM – 0.6 64 0.2150 0.6798 0.3563
PNFIS – – 256 0.2257 0.6910 0.3660

D
el

ic
io

us

AFM 2 0.1 64 0.0274 0.1169 0.0494
FM 0.1 – 64 0.0202 0.1147 0.0440
SparseFM 0.1 – 128 0.0229 0.1212 0.0465
LightFM 0.01 – 64 0.0295 0.1141 0.0502
PFIS – – 128 0.0278 0.1240‡ 0.0509†

NFM – 0.1 64 0.0229 0.1065 0.0426
PNFIS – – 128 0.0268 0.1289‡ 0.0504‡

Boldface scores indicate the best results for linear and non-linear FMs on each metric. We 
conduct two-sided tests for the null hypothesis that the best and the second best have 
identical average values. † and ‡ indicate that the best score is significantly better than the 
second best score with p-value < 0.1 and < 0.05, respectively.

Table 5
Top-N recommendation performance on ML1M and ML20M.

Method
ML1M ML20M

HR@1 HR@10 ARHR@10 HR@1 HR@10 ARHR@10

FM 0.2072 0.7394 0.3620 0.4181 0.9264 0.5887
AFM 0.2380 0.7382 0.3877 0.3673 0.9242 0.5522
SparseFM 0.2171 0.7511 0.3754 0.1047 0.8038 0.2818
LightFM 0.0411 0.2643 0.0937 0.2154 0.8576 0.5034
PFIS 0.2437‡ 0.7710‡ 0.3988‡ 0.4263‡ 0.9315† 0.5970†

GPFM 0.1676 0.5903 0.2775 – – –
GPPW 0.1702 0.6054 0.2846 – – –
NFM 0.2148 0.7607 0.3776 0.1872 0.8654 0.3816
PNFIS 0.2388‡ 0.7652 0.3955† 0.4154‡ 0.9154‡ 0.5778‡

The implementation efficiency of GPFM and GPPW is low, and the training cannot be com-
pleted in a feasible time. For ML20M, we fix the embedding size as 16 for all the compared 
methods. Since ML20M contains large number of users, performing P-FIS can be time-
consuming. Instead, we follow the idea of [11] to cluster users into groups and perform 
FIS for each user group.

is significantly better than NFM, demonstrating the effectiveness of FIS on non-linear FMs. NFM is also superior to GPFM 
and GPPW. This is justifiable since NFM is recently proposed and has achieved state-of-the-art performance. However, PNFIS 
cannot outperform PFIS, showing that FIS on linear FMs is more effective.

To have a complete analysis of the strengths and weakness of our proposal, we also consider evaluating the top-N
recommendation performance by graded metrics. Currently, items in the test set are considered to be relevant or not relevant, 
which is binary. The graded metrics distinguish the degree of relevance. Given the explicit ratings, we can conduct evaluation 
with graded metrics. We follow [22] to evaluate the top-N recommendation performance on nDCG. nDCG is defined as

nDCG@N = DCG@N

IDCG@N
, (36)

where

DCG@N =
N∑

i=1

2reli − 1

log2(i + 1)
, (37)

and IDCG@N is ideal value of DCG@N . Typically in recommendation, reli is binary that
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Table 6
Performance Comparison on graded 
metric (nDCG).

Method nDCG@10

FM 0.4682
AFM 0.4465
SparseFM 0.4699
NeurFM 0.4653
PFIS 0.4706
PNFIS 0.4700

reli =
{

1 rui ≥ σ ,

0 otherwise,
(38)

where σ is the binary threshold. (We set σ = 3 as we discussed in Section 5.2.) With explicit ratings, we define the graded 
relevance:

reli =
{

ri − σ + 1 rui ≥ σ ,

0 otherwise.
(39)

Based on this, we compare PFIS and PNFIS with baselines on ML1M by nDCG. Results are reported in Table 6. Similar 
to the results in Table 5, PFIS and PNFIS outperform other methods and PFIS reach the top. This further confirms the 
effectiveness of performing BP-FIS on FMs.

RQ2 To answer RQ2 for top-N recommendation, we analyze the performance of all models with different embedding sizes. 
Specifically, we plot figures to show results w.r.t. HR@1, HR@5, HR@10, ARHR@5 and ARHR@10 of all models on the MLHt 
dataset, as shown in Fig. 6. Generally, we can see that PFIS and PNFIS achieve a better performance than the other models. 
This demonstrates the robustness of BP-FIS as it consistently improves the performance of FMs, regardless of the embedding 
size and evaluation metric.

Specifically, for the setting K = 64, almost all models show a competitive performance. This is because the space for the 
performance improvement is limited when K = 64 on the MLHt dataset. P-FIS has an insignificant effect on FMs due to the 
restricted embedding size. In contrast, for the setting K = 128, while FM, SparseFM and NFM achieve comparable results, 
PFIS and PNFIS significantly outperform them. This means that the effect of BP-FIS can be better expressed by increasing 
the embedding size for FMs. Interestingly, while PFIS performs better than PNFIS for most metrics, the performance gain 
achieved by PNFIS is more remarkable on HR@1. Similar performance levels are seen when K = 256, except that PNFIS does 
not outperform PFIS. This might be because PNFIS has far more parameters than PFIS when the embedding size is large, 
which brings extra difficulty to avoid overfitting.

To analyze alternative training procedures of BP-FIS, we show the performance of PFIS and PNFIS after each iteration in 
Fig. 7. A general trend could be revealed by Fig. 7 that the recommendation performance of both PFIS and PNFIS grows 
initially and fluctuate successively. Although PNFIS can mostly achieve better performance than PFIS, it also shows higher 
variation.

When K = 64, PFIS outperforms PNFIS w.r.t. HR@1 and performs competitively with PNFIS w.r.t. HR@5 and HR@10. 
When K = 128, we can witness a relatively stable growth in PFIS, especially for HR@5 and HR@10. While a certain level of 
convergence can be witnessed for HR@5 and HR@10, PNFIS still fluctuates more than PFIS during the training procedure. 
These observations might suggest that the training of BP-FIS shows better robustness for linear FMs than non-linear ones. 
PNFIS is more unstable in terms of HR@5 and HR@10 when K = 256, the performance of which drops sharply during the 9th

iteration. Thus, more iterations do not help a lot for improving the performance but might harm the performance. Another 
observation is that the training procedure of PFIS and PNFIS varies with different embedding sizes. Training PFIS and PNFIS 
with K = 128 provides the most stable procedure. This shows that a proper selection of embedding size can further extend 
the potential of BP-FIS.

6.2. CTR prediction

We also answer RQ3 and RQ4 for the CTR prediction task.

RQ3 To answer RQ3 for the CTR prediction task, we first show the outcomes of our experiment on the Avazu dataset; see 
Table 7. To capture implicit feature interactions, a separate DNN module is typically incorporated; results for the addition 
of this ingredient are also included in the table (in the rightmost column of Table 7). To compare with baselines, we take 
the results reported in [59] since we follow exactly the same experimental settings. Note that that a slightly higher AUC 
or lower logLoss at 0.001-level is regarded significant for CTR prediction task, which has also been pointed out in existing 
works [13,18,58,59].
Y. Chen, Y. Wang, P. Ren et al. Artificial Intelligence 302 (2022) 103589
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Fig. 6. Performance comparison w.r.t. different embedding sizes. ARHR@1 is actually HR@1.

Fig. 7. Training procedure of PFIS and PNFIS on LastFM dataset.
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Table 7
Comparison of CTR prediction on the Avazu dataset.

+DNN

Method AUC logLoss Method AUC logLoss

Baseline

FM 0.7706 0.3856 DeepFM 0.7751 0.3829
AFM 0.7718 0.3854 – – –
NFM 0.7708 0.3864 – – –
CIN 0.7758 0.3829 xDeepFM 0.7770 0.3823
AutoInt 0.7752 0.3824 AutoInt+ 0.7774 0.3811
AutoFM 0.7778 0.3818 AutoDeepFM 0.7754 0.3828

HOFM
SFM 0.7732 0.3850 SDeepFM 0.7769 0.3823
HFM 0.7746 0.3855 HDeepFM 0.7631 0.3910

BH-FIS
SFIS 0.7828 0.3787 SDeepFIS 0.7829 0.3783
HFIS 0.7862 0.3768 HDeepFIS 0.7858 0.3773

The embedding size and the order of feature interactions are fixed as 16 and 3, respectively. The best 
results are in boldface and the second best are underlined, both with or without DNN. We underline 
the best baseline results (except BH-FISs) if the best is achieved by BH-FISs.

Table 8
Comparison of training and evaluation time.

Order +DNN

Method Train Eval Method Train Eval

2nd

SparseFM 8.02 18 – – –
AutoFM 4.70 8 AutoDeepFM 8.40 18
SFIS 8.28 30 SDeepFIS 8.53 30
HFIS 7.80 28 HDeepFIS 9.43 28

3rd
AutoFM 20.68 49 AutoDeepFM 24.31 58
SFIS 24.80 67 SDeepFIS 26.75 69
HFIS 25.35 69 HDeepFIS 26.38 67

4th
AutoFM – – AutoDeepFM – –
SFIS 126.93 327 SDeepFIS 134.23 347
HFIS 126.58 329 HDeepFIS 137.27 348

“Train” means the training time, measured in minutes; “Eval” means the evalua-
tion time, measured in seconds. Please note that this is not a rigorous comparison 
due to the difference in the implementation details.

As shown in Table 7, the best performance of AUC and logLoss are both achieved by BH-FIS methods. HFIS and HDeepFIS 
perform better than SFIS and SDeepFIS, respectively. Without DNN, AutoFM is the best performed baseline. However, it 
has been significantly outperformed by SFIS and HFIS. With DNN, AutoDeepFM is outperformed by AutoInt+. Similarly, it 
still fails to perform equally better as SDeepFIS and HDeepFIS. In short, on the Avazu dataset, although the state-of-the-art 
baselines beat HOFMs, they can be outperformed by incorporating BH-FIS, especially on AUC metric.

We also conduct efficiency analysis. We compare both the training time and evaluation time of BH-FIS methods against 
the counterparts for different orders of interactions (the baseline methods that employ FIS, i.e., SparseFM and AutoFIS). For 
both training and evaluation, we report the time of one epoch. Specifically, (1) for BH-FIS, it is the time of training feature 
interaction selection; (2) for AutoFIS, it is the time of searching; and (3) for SparseFM, it is the time of training since the 
selection is embedded into the learning.

Results are reported in Table 8. Please note that BH-FIS performs a harder task than SparseFM and AutoFIS since BH-FIS 
involves discrete variables during training. Therefore, the comparison is actually unfair for BH-FIS. As shown in Table 8, 
when FMs are limited to 2nd-order, BH-FIS methods generally require more time to train and evaluate, except that HFIS is 
more efficient in training than SparseFM. When modeling 3rd-order interactions, AutoFIS models are constantly efficient than 
BH-FIS methods (SparseFM models 2nd-order feature interactions only). Please note that AutoFIS selects field interactions 
rather than feature interactions, where the number of fields is much smaller than the number of features. Nevertheless, the 
training and evaluation time of both methods are on the same scale. While the growth of time is exponential for BH-FIS, 
which is confirmed by the time complexity analysis, it provides the possibility to model and select even higher-order feature 
interaction. In comparison, AutoFIS cannot select more than 3rd-order interactions.

In short, although BH-FIS is less efficient than SparseFM and AutoFIS, the training and evaluation time of BH-FIS is on 
the same scale as the counterparts. This demonstrates that BH-FIS does not bring extra complexity. Actually, this efficiency 
of selection is achieved through variational inference.

Next, we report the experimental results on MLHt and ML1M in Table 9 and 10, respectively. We conduct two-sided 
significance tests to compare BH-FISs with HOFMs and the best performing baselines, respectively. To conduct the test on 
AUC, we follow [16] to compare the two ROC curves. Among each group, the compared methods are further split into two 
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Table 9
Comparison of CTR prediction on the ML1M dataset.

Method
Train Valid Test

H K LogLoss LogLoss AUC LogLoss AUC

Ba
se

lin
e

FM 2 64 0.3844 0.3868 0.8381 0.3798 0.8418
AFM 2 64 0.3846 0.3876 0.8376 0.3817 0.8398
NFM 3 8 0.3040 0.3246 0.8907 0.3210 0.8911
CIN 2 8 0.2857 0.3329 0.8883 0.3297 0.8878
AutoInt 2 16 0.3044 0.3251 0.8907 0.3242 0.8894
DeepFM 2 8 0.2633 0.3229 0.8959 0.3203 0.8967
xDeepFM 4 8 0.2659 0.3199 0.8967 0.3170 0.8969
AutoInt+ 2 8 0.2863 0.3157 0.8978 0.3139 0.8977

H
O

FM

SFM 5 64 0.2626 0.3162 0.8988 0.3150 0.8987
HFM 4 32 0.2752 0.3158 0.8973 0.3139 0.8975
SDeepFM 4 64 0.2926 0.3175 0.8961 0.3157 0.8959
HDeepFM 6 64 0.2945 0.3180 0.8961 0.3157 0.8963

BH
-F

IS

SFIS 4 64 0.2646 0.3149 0.8989 0.3119†‡ 0.8991†‡

HFIS 6 64 0.2775 0.3162 0.8973 0.3125 0.8979†

SDeepFIS 4 64 0.2561 0.3163 0.8985 0.3149 0.8977†

HDeepFIS 3 64 0.2678 0.3160 0.8976 0.3133† 0.8975†

We boldface the best result on the test set. We also underline the best results achieved by base-
lines (except BH-FISs). We conduct two-sided significant tests for the null hypothesis that the 
compared results have identical average values. The improvement is regarded as significant if the 
p-value is no larger than 0.05. † indicates a significant improvement of BH-FIS over the HOFM 
counterpart and ‡ indicates a significant improvement over the best baseline.

Table 10
Comparison of CTR prediction on the MLHt dataset. Same conventions as in Table 9.

Method
Train Validation Test

H K LogLoss LogLoss AUC LogLoss AUC

Ba
se

lin
e

FM 2 32 0.4203 0.4252 0.8157 0.4218 0.8195
AFM 2 32 0.4201 0.4248 0.8157 0.4222 0.8184
NFM 2 8 0.3684 0.3802 0.8582 0.3750 0.8627
CIN 6 8 0.3083 0.3707 0.8707 0.3688 0.8726
AutoInt 3 8 0.3268 0.3649 0.8721 0.3637 0.8741
DeepFM 2 8 0.3100 0.3675 0.8736 0.3646 0.8763
xDeepFM 2 8 0.3208 0.3665 0.8721 0.3642 0.8744
AutoInt+ 2 8 0.3354 0.3645 0.8715 0.3613 0.8753

H
O

FM

SFM 6 64 0.3310 0.3673 0.8702 0.3634 0.8735
HFM 6 64 0.3297 0.3663 0.8721 0.3643 0.8737
SDeepFM 4 64 0.3556 0.3714 0.8651 0.3683 0.8680
HDeepFM 6 8 0.3329 0.3705 0.8684 0.3679 0.8711

BH
-F

IS

SFIS 4 32 0.3005 0.3605 0.8775 0.3586† 0.8790†

HFIS 6 64 0.2922 0.3565 0.8794 0.3546†‡ 0.8809†‡

SDeepFIS 5 32 0.2979 0.3613 0.8774 0.3581†‡ 0.8795†‡

HDeepFIS 5 64 0.3070 0.3577 0.8777 0.3555†‡ 0.8796†‡

sub-groups: methods with/without DNN. We only record the best results performed by each method in the table, i.e., the 
results by the trained model with the least logLoss on the validation set. The results on the validation set are reported 
to show how well the performance of the selected model on the validation reflects the performance on the test set. The 
training logLosses are also recorded in the table to show how well the data can be fitted.

On the ML1M dataset (in Table 9), all BH-FISs improve over their HOFM counterparts. SFIS and HDeepFIS significantly 
outperform SFM and HDeepFM on both metrics. HFIS and SDeepFIS outperform HFM and SDeepFM on both metrics and 
the improvement w.r.t. AUC is significant. This confirms the effectiveness of H-FIS for HOFM on CTR prediction tasks. SFIS 
performs the best on both metrics and the improvement over the best baseline AutoInt+ is significant. While HFIS also 
outperforms AutoInt+, the improvement is not significant. This seems counter-intuitive since BH-FIS with order-aware em-
beddings performs better than with shared embeddings for the rating prediction task on the same dataset. The effectiveness 
of SFIS comes both from SFM and H-FIS. Actually, the training error of SFM is low, though the validation and test error is 
high, meaning that SFM is a potentially good model. By selecting higher-order feature interactions, FIS helps to avoid over-
fitting, where the potential capability of SFM has been well exploited. SDeepFIS and HDeepFIS fail to outperform AutoInt+, 
showing that adding DNN to BH-FIS may not be helpful. We claim that since HOFM and BH-FIS can already model the 
feature interactions well, it is unnecessary to add extra DNN to capture implicit feature interactions.
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Fig. 8. Pairwise comparison of CTR prediction on the ML1M dataset w.r.t. logLoss. We put a label under the line of BH-FISs if the improvement is significant. 
† and ‡ indicate the significance with p-value less than 0.05 and 0.01, respectively.

On the MLHt dataset, as shown in Table 10, all four BH-FIS variants significantly outperform their HOFM counterparts, 
which further confirms the effectiveness of H-FIS. Besides BH-FIS methods, the best logLoss is achieved by AutoInt+ and the 
best AUC is achieved by DeepFM. This shows the effectiveness of modeling implicit feature interactions via DNNs for the 
baseline methods. BH-FISs outperform the two baselines on the respective metrics. Except for SFIS, the improvements over 
the baselines are also significant, among which HFIS performs the best. HFIS also has the smallest training loss and the best 
performance on the validation set. This demonstrates that HFIS can well fit the MLHt dataset for the CTR prediction task 
and can generalize during test time. In short, adding DNN is effective only for pairwise FMs and NN-based approximation 
methods, where higher-order feature interactions are not well modeled.

To sum up, (1) all BH-FISs improve over the HOFM counterparts, and for most cases the improvement is significant, 
showing the effectiveness of H-FIS for CTR prediction; (2) while BH-FIS with respective embeddings is the best performed 
method on the MLHt dataset, which is similar to that on the ML1M dataset, SFIS achieves the best performance on the 
ML1M dataset. The effectiveness of SFIS comes both from SFM and H-FIS; and (3) although +DNN helps to improve the 
prediction accuracy for the baseline methods, it does not improve HOFM and BH-FIS, which already manage to model 
feature interactions effectively.

RQ4 To answer RQ4 for the CTR prediction task, we show the impact of parameters, i.e., the maximum order of feature 
interactions H and the embedding size K , where H is grid-searched from 3, 4, 5, 6 and K from 8, 16, 32, 64. For each value 
of H and K , BH-FISs are compared with their HOFM counterparts. We show the results of pairwise comparison by plotting 
line-point figures in Fig. 8, 9, 10 and 11. Significant testing is performed to see if the improvement of BH-FISs over HOFMs 
is significant or not.

We first study Fig. 8 and 9 to analyze the experimental results on the ML1M dataset. In Fig. 8, the logLosses on the test 
set are compared for all methods. The first row of Fig. 8 shows the comparison when modeling 3rd-order feature interactions 
(H = 3). HFIS outperforms HFM, and except for K = 32, the improvement is significant. Similar results are shown when 
comparing SFIS and SFM: except for K = 64, the improvement achieved by SFIS is significant. With DNN, HDeepFIS and 
SDeepFIS consistently outperform HDeepFM and SDeepFM, respectively, and significantly so. The lowest logLoss is achieved 
by SFIS when K = 64. Next, we look at the second row of Fig. 8, where H = 4. Similar results are shown, except that 
SDeepFIS is outperformed by SDeepFM when K = 8. When H = 5, SFIS is not a better performing method than SFM if 
K = 32 or K = 64. SDeepFIS is also outperformed by SDeepFM when K = 32. Similarly when H = 6 (the last row of Fig. 8), 
BH-FISs significantly improve over HOFMs except for SFIS when K = 8 and K = 32. The effectiveness of H-FIS is well 
demonstrated since it improves the performance of HOFMs significantly for most cases. A general trend to be witnessed is 
that logLoss decreases when K and H increase, which is intuitive since an increase in K and H means an increase in model 
expressiveness. Fig. 9 shows the performance w.r.t. AUC. Similarly, AUC increases with the growth of K and H . Different 
from the logLoss in Fig. 8, it is more difficult for HOFM to outperform BH-FIS, where the effectiveness of BH-FIS is better 
demonstrated.
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Fig. 9. Pairwise comparison of CTR prediction on the ML1M dataset w.r.t. AUC. We put a label above the line of BH-FISs if the improvement is significant. †
and ‡ indicate the significance with p-value less than 0.05 and 0.01, respectively.

Fig. 10. Pairwise comparison of CTR prediction on the MLHt dataset w.r.t. logLoss.

Some trends can be observed: (1) BH-FISs are more likely to outperform HOFMs as H and K increase. This is because an 
increase in H and K increases the model complexity and BH-FIS helps to avoid overfitting; (2) the performance of BH-FISs 
also improves generally with the growth of H , showing that selecting feature interactions is more effective when modeling 
higher-order feature interactions; and (3) with the growth of H , H-FISs without DNNs show better performance than with 
DNNs, indicating that modeling higher-order feature interactions complements DNNs or even provides better modeling than 
DNNs.
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Fig. 11. Pairwise comparison of CTR prediction on the MLHt dataset w.r.t. AUC.

Table 11
Case study on interaction selection.

Order Field Interactions Feature Interactions

2nd

〈Gender, Genres〉
〈female, Romance〉
〈female, Drama〉
〈male, Action〉

〈User, Genres〉
〈Alice, Comedy〉
〈Alice, Crime〉
〈Bob, Fantasy〉

3rd

〈Gender, Occupation, Genres〉
〈female, college/grad student, Thriller〉
〈female, self-employed, Animation〉
〈male, programmer, Fantasy〉

〈User,Genres,Genres〉
〈Alice, Action, Comedy〉
〈Alice, Action, Adventure〉
〈Bob, Animation, Fantasy〉

Compared with the results on the ML1M dataset, the superiority of BH-FIS is much more evident on the MLHt dataset 
(Fig. 10 and 11). BH-FISs significantly outperform HOFMs in most parameter settings. Interestingly, HDeepFIS achieves the 
best results in most cases when H is small; when H increases, HDeepFIS can be gradually outperformed by HFIS; when 
H = 6, all the best results are generated by HFIS. Different from the baseline methods, which always benefit from adding 
DNNs, adding DNNs is only useful for H-FIS when H is small. This observation is consistent with our observations on the 
ML1M dataset. When H is large, H-FIS can already model higher-order feature interactions well and therefore adding extra 
DNNs does not contribute.

To sum up, (1) BH-FISs consistently outperform HOFMs, showing the effectiveness of H-FIS; (2) when modeling higher-
order feature interactions, the effectiveness of BH-FIS becomes more evident; and (3) adding DNNs is helpful only when 
modeling lower-order feature interactions, which suggests that BH-FISs can already well capture feature interactions when 
higher-order is modeled.

We further conduct a case study on the ML1M dataset to show the selected feature interactions. ML1M contains 7 
fields: “User”, “Movie”, “Gender”, “Age”, “Occupation”, “Zip” and “Genres”. Each field contains multiple unique features. We 
compare the field interactions selected by AutoFIS and AutoHash with the feature interactions selected by BH-FIS.

Results are shown in Table 11, which is categorized by different orders and only two of each order is shown. First look 
at the interaction selection on 2nd-order. We report two of the field interactions selected by AutoFIS, i.e., 〈Gender, Genres〉
and 〈Gender, Genres〉. Since AutoFIS identifies field interactions only, it fails to tell what makes the interaction important. In 
comparison, BH-FIS can further identify the feature interactions, where each feature belongs to one of the field. As shown 
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in Table 11, BH-FIS finds that the interaction between “female” and “Romance” is important, which justifies why the in-
teraction between “Gender” and “Genres” is important. We then look at the interaction selection on 3rd-order. Similarly, 
AutoFIS identifies field interaction like 〈Gender, Occupation, Genres〉 but fails to explain. BH-FIS selects the feature inter-
actions to provide detailed explanation. It is worth noting that the field interaction 〈U ser, Genres, Genres〉 is unable to be 
identified by AutoFIS, because each field appears in the interaction once. “Genres” is a multivalent field, which can take 
multiple features. For example, the movie “Titanic” is both a “Romance” and “Drama”. BH-FIS can identify the interaction 
〈Alice, Action, Adventure〉, which suggests the interaction 〈U ser, Genres, Genres〉.

In short, BH-FIS can identify feature interactions under the field interactions, which provide detailed explanation for the 
prediction. It can also find features within the same field which cannot be discovered by AutoFIS and AutoHash.

7. Related work

In this section, we survey related work on factorization machines, feature interactions and feature selection, respectively.

7.1. Factorization machines

FMs have been widely studied and are commonly used in practical systems for their effectiveness and flexibility. Early 
studies [50,54] showed the generality of FMs. In contrast to matrix factorization (MF) [60] or tensor factorization (TF) [55], 
which model interactions between categorical variables only, FMs provide a generic way to model interactions between any 
real valued features. Rendle [50] showed that FMs can mimic many of the most successful factorization models (including 
MF, parallel factor analysis, and SVD++ [31]).

Recently, successive variants of FMs have been developed [1,4,5,24,37,39]. They have achieved promising performance in 
different recommendation scenarios [20,44,47,48,76]. Juan et al. [24] proposed the field-aware factorization machine (FFM) 
to factorize the interactions of fields (the category of features). Blondel et al. [4] presented the HOFM, which provides an 
efficient algorithm to train FMs with higher-order interactions. Besides rating prediction, FMs have also been optimized 
for the top-N recommendation task. Yuan et al. [76] introduced boosted factorization machines (BoostFMs) to incorporate 
contextual information into FMs for context-aware recommendation (CAR) [42,44,54]. Xiao et al. [72] proposed the atten-
tional factorization machine (AFM), which uses an attention network to learn the importance of each feature interaction. To 
investigate the linear expressiveness limitation of FMs, He and Chua [20] proposed neural factorization machines (NFMs), 
which perform non-linear transformations on the latent space of second-order feature interactions.

Despite the effectiveness of modeling various feature interactions, existing FM variants suffer from the high-
dimensionality issue which limits their application in high-dimensional scenarios. While FIS has been primarily investigated 
by SparseFMs [47,73,79], they focus on selecting pair-wise feature interactions only, which limits their generality.

On top of previous work on FMs we supplement a comprehensive study of FIS for FMs: we consider BP-FIS for FMs and 
further investigate BH-FIS for HOFMs.

7.2. Feature interaction

Besides the interaction between users and items, many prediction tasks also consider feature interactions. linear regres-
sion (LR) is a linear approach, which can only model first-order interactions on the linear combination of individual features. 
factorization machines (FMs) [50] learn second-order feature interactions from inner products of vector. Higher-order feature 
interactions have also been considered, with the development of efficient evaluation algorithms [4,29].

Higher-order feature interactions are approximated by NNs [18,35]. For example, NFM [20] stacks deep neural networks 
on top of the output of second-order feature interactions to model higher-order features, which is an implicit manner to 
pursue higher-order feature interactions. Similarly, the product-based neural network (PNN) [49], the factorization machine 
supported neural network (FNN) [78], DeepCrossing [58], Wide&Deep [13] and DeepFM [18] all relied on feed-forward 
neural networks (NNs) to model higher-order feature interactions. Some of them are proposed to model higher-order feature 
interactions explicitly. Deep&Cross [68] and CIN [35] take outer product of features at the bit- and vector-wise level. Some 
tree-based methods [69,80,82] combine the power of embedding-based models and tree-based models to capture high-order 
feature interactions.

Existing NN-based approximations failed to distinguish useful from harmful feature interactions. They can only approxi-
mate the prediction with the combination of all feature interactions. Although attention modules are now being employed 
to distinguish feature interactions [59,62,72], a recent study has shown that attention weights may be inconsistent with the 
importance of features [21,57].

On top of previous work on feature interaction, our work makes up a parallelizable way to exactly model high-order 
feature interactions, with H-FIS to ensure efficiency and avoid overfitting.

7.3. Feature selection

An effective approach to alleviate the higher-dimensionality issue of FMs is feature selection. Cheng et al. [12] pro-
posed to select feature interactions though a greedy interaction feature selection algorithm based on gradient boosting. Xu 
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et al. [73] applied group Lasso [77] to user and item feature embeddings to select interactions between user and item 
features. Zhao et al. [79] proposed to select meta-graph based features. Similarly, they also applied group Lasso for feature 
selection. Mao et al. [40] proposed to select context features for FMs. They first choose features based on predictive power. 
Then, they subsample the set of features selected in the first step.

Feature selection has also been well investigated for feature-based recommender systems (FRSs), which often utilize 
high-dimensional auxiliary information. Ronen et al. [56] proposed to select content features. Their algorithm selects the 
most informative features by computing relevance scores based on pluggable feature similarity functions. Koenigstein and 
Paquet [30] proposed to select content features for Xbox movies by incorporating sparsity priors on feature parameters. 
Different feature weighing methods have also been proposed to select context features [81]. Li et al. [34] studied personal-
ized feature selection for unsupervised learning; they learn a specific model for each user, which is only applicable with a 
limited number of users.

On top of previous work on feature selection, we systematically study feature interaction selection (FIS) for FMs, which 
is a challenging but important task.

8. Conclusion

In this paper, we studied the problem of feature interaction selection to improve the performance of factorization ma-
chines (FMs). We propose novel Bayesian generative models, a Bayesian variable selection method, to select personalized 
and higher-order feature interactions. For the efficiency of optimization, inference models have been developed with fac-
tored parameters. Specifically, we propose BP-FIS to select personalized pairwise feature interactions. On top of BP-FIS, we 
further propose BH-FIS, which addressed the problem of selecting higher-order feature interactions. To efficiently optimize 
BH-FIS, we reparameterize the sampling procedure and formulate inference networks. We also devise an iterative procedure 
with outer-product and masking to enumerate higher-order feature interactions comprehensively and non-repetitively.

Extensive empirical evaluations are carried out on three tasks in the field of artificial intelligence, to show that our 
proposed methods outperform FMs and state-of-the-art baselines on five datasets. We have found that (1) our proposed 
BP-FIS and BH-FIS can effectively improve the performance of FMs for recommendation and prediction; (2) the improve-
ment achieved by incorporating FIS for FMs is significant, especially when FMs have large parameters spaces; (3) while 
incorporating non-linear layers on top of embeddings is effective, the combination with DNNs for BH-FIS is not helpful, es-
pecially when higher-order feature interactions are modeled; and (4) the superiority of FIS is more evident when modeling 
higher-order feature interactions, where the NN-based approximated baselines fail to reproduce the superiority.
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Appendix A. Implementation details

We implement PFIS, PNFIS, HFIS, SFIS, HNFIS, SNFIS, HDeepFIS, SDeepFIS based on PyTorch.13 We also implement 
SparseFM, HFM, SFM, HNFM, SNFM, HDeepFM, SDeepFM since there are no ready-to-use implementations. We use the 
TensorFlow14 implementation in [20] to perform experiments for FM and NFM. We run LightFM using the python library.15

LightFM is similar to FM. The difference is that LightFM only consider the interaction between user features and item fea-
tures. The interactions among user features or item features are ignored. Since our motivation is to study FIS on generic FMs, 
we learn to select feature interactions rather than selecting feature interactions manually according to domain knowledge. 
We run GPFM and GPPW using the source code implementation by the author [44].16 While GPFM and GPPW consider 

13 https://pytorch .org/.
14 https://www.tensorflow.org/.
15 https://github .com /lyst /lightfm.
16 http://trungngv.github .io /gpfm/.
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non-linear transformation over FMs, they lag behind state-of-the-art methods, e.g. NFM. Besides, training GPFM and GPPW 
is time-consuming. Training one model of GPFM on ML1M takes about a week. Therefore, we only show results of GPFM 
and GPPW on the ML1M dataset. For other compared methods, we run experiments using DeepCTR.17

For the network structure of NFM, HNFM, SNFM, PNFIS and HNFIS and SNFIS, we follow [20] and set identical dimensions 
for hidden layers. We use one hidden layer, which has been shown to generate the best performance empirically [20]. We 
use ReLU as the activation function. For CIN and AutoInt, we also consider the order H , which indicates the number of 
layers in the neural network. This is because each layer of CIN and AutoInt models feature interactions explicitly and with 
more layers higher-order feature interactions can be modeled. For models that are combined with DNNs, we fix the DNN as 
a two-layer perceptron with 200 and 100 neurons per layer, respectively.

We set π1 = π2 = 0.5 for PFIS and PNFIS as we presume no prior knowledge about the selection. Similarly, we also 
set π(t) = 0.5 for H(S)FIS, HNFIS, SNFIS, HDeepFIS and SDeepFIS. Other hyper-parameters of each model are tuned by grid-
search on the validation set. We tune the 	2-norm regularization parameter for FM in 1e−6, 5e−6, . . . , 1e−1. Similarly, we 
tune the 	2,1-norm regularization parameter for SparseFM in 1e−6, 5e−6, . . . , 1e−1. For NFM, we fix the dropout rate of the 
hidden layers as 0.8 and tune the dropout rate for Bi-interaction layer in 0.1, 0.2, . . . , 1.0. For AFM, we use dropout for the 
embedding layer, which is searched from 0.1, 0.2, . . . , 1.0. As suggested by the author, we tune the 	2-norm regularization 
parameter for the attention layer in 0, 0.5, 1, 2, 4, 8, 16. For both HOFMs and H-FISs models, we consider feature interactions 
from 2nd-order to 6th-order (H = 2, 3, . . . , 6). Feature embeddings are randomly initialized following N (0, 0.01). We tune 
the parameter K (the latent dimension of feature embeddings) differently for different tasks, where for recommendation we 
tune K from 64, 128, 256 and for prediction we tune from 8, 16, 32, 64. The main reason behind is that for prediction tasks 
(rating prediction and CTR-prediction), higher-order feature interactions are considered, where the time complexity of the 
compared methods are higher than that in the top-N recommendation task. Therefore, we limit the maximum embedding 
size in prediction tasks as 64 to ensure the efficiency.

For a fair comparison, we have the following identical experimental settings for all compared methods. All models are 
optimized using Adam [27]. Adam computes individual adaptive learning rates for different parameters. Therefore, we do 
not need to tune the learning rate. In practice, setting the initial learning rate as 0.001 provides a good default value. We set 
the maximum training epochs to 50. We apply early-stop for all methods, where we stop training if no further performance 
gain is observed for 4 successive epochs.
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