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Sequential recommenders capture dynamic aspects of users’ interests by modeling sequential behavior. Pre-

vious studies on sequential recommendations mostly aim to identify users’ main recent interests to optimize

the recommendation accuracy; they often neglect the fact that users display multiple interests over extended

periods of time, which could be used to improve the diversity of lists of recommended items. Existing work

related to diversified recommendation typically assumes that users’ preferences are static and depend on

post-processing the candidate list of recommended items. However, those conditions are not suitable when

applied to sequential recommendations. We tackle sequential recommendation as a list generation process

and propose a unified approach to take accuracy as well as diversity into consideration, called multi-interest,

A preliminary version of this article appeared in the proceedings of CIKM 2020 [10]. In this extension, we (1) propose

another interest extractor, i.e., dynamic routing, in the implicit interest mining module, and another type of disagreement

regularization, i.e., output disagreement regularization, in our interest-aware, diversity promoting loss; (2) investigate the

performance of our multi-interest, diversified, sequential recommendation model with different interest extractors in im-

plicit interest mining, i.e., multi-head attention vs. dynamic routing; (3) investigate the performance of multi-interest, di-

versified, sequential recommendation with various latent interests numbers; (4) explore the influence of the parameter λ

on the performance of multi-interest, diversified, sequential recommendation; (5) investigate the performance of multi-

interest, diversified, sequential recommendation with different types of disagreement regularization; (6) investigate the

impact of maximum entropy regularization on the performance of multi-interest, diversified, sequential recommendation;

(7) provide a case study to show the recommendations generated by multi-interest, diversified, sequential recommendation;

(8) analyze the computational complexity of the baseline model as well as our proposal; and (9) survey more related work

and conduct a more detailed analysis of the approach and experimental results.
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diversified, sequential recommendation. Particularly, an implicit interest mining module is first used to mine

users’ multiple interests, which are reflected in users’ sequential behavior. Then an interest-aware, diversity

promoting decoder is designed to produce recommendations that cover those interests. For training, we intro-

duce an interest-aware, diversity promoting loss function that can supervise themodel to learn to recommend

accurate as well as diversified items. We conduct comprehensive experiments on four public datasets and the

results show that our proposal outperforms state-of-the-art methods regarding diversity while producing

comparable or better accuracy for sequential recommendation.
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1 INTRODUCTION

Methods for conventional recommendation, e.g., collaborative filtering–based methods [44], often
mix all of a user’s historical behaviors and suppose that user preferences are static. Such methods
ignore the sequential signals underlying user behavior and thus cannot capture users’ dynamic
preferences [35]. Sequential recommendation has been proposed to tackle those characteristics; it
is aimed at predicting a user’s next interaction based on modeling his previous sequential interac-
tions [39].
Previous research into sequential recommendation (SR) is typically based on neural mod-

els, e.g., recurrent neural network (RNN) [16], convolutional neural network (CNN) [47],
or transformer [24] based. Recently, many factors have been taken into consideration to help im-
prove the performance of sequential recommendation, e.g., personalization [40], repeat consump-
tion [42], context [41], and collaboration [49]. Most of those factors are assumed to help improve
the accuracy of recommendations only, while ignoring the diversity of the recommendation list.
However, research has shown that diversity is an important factor that may influence the perfor-
mance of a recommender system, since users may prefer more diverse recommendations [58].

Users may have multiple interests in terms of different categories or themes of items, especially
when we consider behavior sequences that span long periods of time. For example, Figure 1 shows
the sequential watching behavior of a user who has expressed most interest in “Animation,” “Ac-
tion,” and “Adventure” (on the left-hand side); the most recent watched movie also belongs to those
categories. According to previous approaches that target at recommendation accuracy, the list of
recommendations should be full of movies in the three genres, e.g., the list of recommendations
shown in the center in Figure 1. However, this strategy ignores the fact that the user has also
watched “Family,” “Drama,” and “Sci-Fi” movies occasionally. We hypothesize that it will be more
effective to provide the user with recommendations that can potentially satisfy all these interests
rather than to focus on one particular interest only. Concretely, in Figure 1, we recommend a list
including movies covering all those categories simultaneously as in the list on the far right-hand
side. Additionally, users are often exploratory and they may not have a specific goal in mind. If
users are always provided with homogeneous lists of recommendations, then they may get bored
and are not satisfied [45].

There has been much research into diversification in conventional recommendation tasks [52]
and web search scenarios [1, 31, 36]. These approaches typically aim to improve the diversity of
recommendations by reranking the items in a candidate list of recommended items produced by
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Fig. 1. An example of a user’s past movie watching behavior (left) together with two kinds of sequential

recommendation: without diversification (right) and with diversification (far right).

general recommendationmodels. However, those approaches are not suitable for sequential recom-
mendations (SRs). On the one hand, they regard user interest as static and fixed beforehand, which
is unworkable in most SR scenarios [9]. On the other hand, these reranking approaches achieve
accuracy and diversification of a list of recommended items in separate steps. They first generate
a candidate list of recommended items with a general recommendation model. Then, items in the
candidate list are reranked based on their relevance scores as well as diversity scores [27, 52]. Thus,
the reranking performance relies heavily on the candidate list of recommended items. However,
since the general recommendation models are merely focused on accuracy during training, it is
difficult to design an optimal reranking strategy for different approaches. Besides, these general
recommendation models typically represent each user by a fixed-length vector [28]; such vectors
are hard to use for modeling users’ multiple interests reflected in their historical behavior, as the
dimensionality of the vector is much smaller than the number of items in whole dataset.
In this article, we consider accuracy and diversity for SR simultaneously. We formulate SR as

a sequence to list process and model a user’s previous sequential behavior and the relationship
among recommended items in a unified framework. To this end, we propose an end-to-endmulti-

interest, diversified, sequential recommendation (MDSR)model. An implicit interest min-

ing (IIM)module is first introduced to capture a user’s multiple latent interests from their histori-
cal sequential behavior and then an interest-aware, diversity promotin (IDP) decoder is applied
to produce a list of recommended items to cover those interests. We also design an IDP loss func-
tion to supervise the learning of the IIM module and an IDP decoder so as to let the model take
recommendation accuracy as well as diversity into consideration while training.
More specifically, we first encode a user’s past sequential behavior into latent representations

with a general sequence encoder, i.e., a gated recurrent unit (GRU). Then, the IIM module ex-
tracts users’ multiple interests. We study two strategies for the IIM module: (1) a dynamic rout-
ing algorithm from a capsule network where each high-level capsule represents a latent interest
and (2) a multi-head attention mechanism where each head models a particular latent user inter-
est. Finally, we design an IDP decoder to generate a list of recommended items. It selects recom-
mended items one by one to gradually satisfy the multiple interests and thus promote diversity
of the whole list of recommended items. When deciding which item, to recommend next, the IDP
decoder takes previous recommended items as input and evaluates to what extent each interest is
satisfied by the items that have already been recommended. To train the entire model, we propose
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an IDP loss function that consists of four parts: (1) a cross-entropy loss to help the model learn
to recommend accurate items; (2) a diversity loss based on a self-critic strategy; since we do not
have a ground-truth list as a supervision signal for diversity, we design a self-critic strategy to
help the IDP decoder learn to generate diversified recommendations; specifically, we reward our
model when the generated recommendation list is more diverse than the list produced by the con-
ventional strategy (the rank-by-score strategy); otherwise, we punish the model; (3) disagreement
regularization to distinguish different interests; and (4) maximum entropy regularization to avoid
cases where one interest dominates.
To assess the performance of MDSR, we perform comprehensive experiments on four public

datasets, i.e., two movie recommendation dataset and two e-commerce datasets. The experimen-
tal results show that multi-interest, diversified, sequential recommendation (MDSR) outperforms
state-of-the-art baselines in terms of both accuracy as well as diversity metrics.
To summarize, in this article:

• We tackle the problem of sequential recommendation by simultaneously considering recom-
mendation accuracy as well as diversity, and we propose an MDSR method that is the first
end-to-end list generation-based neural framework for SR.
• We design an implicit interest mining module with two different interest extractors, i.e.,
multi-head attention and dynamic routing, to extract latent multiple user interests from user
behavior.
• We design an interest-aware, diversity promoting decoder to generate diversified recommen-
dations and an interest-aware, diversity promoting loss function to supervise the learning
of our model.
• We conduct extensive experiments on movie recommendation datasets and e-commerce rec-
ommendation datasets to prove the effectiveness of MDSR and analyze the impact of each
component of MDSR.

2 RELATEDWORK

In this section, we survey related work on (1) sequential recommendation, (2) diversified recom-
mendation, (3) capsule networks, and (4) attention mechanisms.

2.1 Sequential Recommendation

Early approaches for SR are typically based on Markov chains [62], which are not suitable when
dealingwith long sequences [7]. Recently, neural models have been shown to be effective for the se-
quential recommendation task. Hidasi et al. [17] first introduce recurrent neural networks (RNNs)
into SR and propose a session-parallel training mechanism. Following this work, variant models
based on RNNs have been proposed for SR. Hidasi et al. [18] propose a parallel RNN structure
to model sessions with clicks and features of the interacted items. Quadrana et al. [40] introduce
a hierarchical RNN model to capture users’ cross-session information. Besides these RNN-based
proposals, there is work based on other neural network structures. Xu et al. [54] capture long-term
and short-term dependencies among user behavior with a recurrent convolutional neural network.
Memory networks have also been applied in SR. Chen et al. [11] store users’ historical behavior in
a user memory network and apply an attention mechanism to capture a user’s current preference
for SR. The transformer model has also been applied to the sequential recommendation task. Kang
and McAuley [24] use a two-layer transformer structure [48] to model a user’s previous sequen-
tial behavior. Tang and Wang [47] propose an approach for top-N sequential recommendation by
modeling recent actions as an “image” among time.
The studies mentioned so far all aim to improve the accuracy of a list of recommended items.

They typically use an overall representation of each user, i.e., a vector with a fixed length, which is
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not enough to express usermultiple interests [28]. Recently,Wang et al. [51] have proposedmixed-

channel purpose routing networks (MCPRNs), whichmodel the interacted items in a sequence
with a mixture-channel RNN so as to capture users’ multiple interests; all channel representations
are integrated together to recommend the next item. For supervising the training process, this
model only uses the cross-entropy loss that is aimed at improving the recommendation accuracy.
There are no signals that help the model to learn to distinguish these interests and generate a
diversified recommendation list.
The aforementioned approaches all apply the rank-by-score strategy and output the recommen-

dation list by ranking items according to their scores, which is different from our list-generation
process and not able to capture the relationship among recommended items in the list. Our own
recent work [10] also models users’ multiple intents behind their sequential behavior. However,
in this article we propose another interest extractor, i.e., dynamic routing, in the IIM module, to
capture a user’s multiple interests. We also investigate the performance of our multi-interest, di-
versified, sequential recommendation model with different interest extractors in implicit interest
mining (IIM), i.e., multi-head attention vs. dynamic routing, and find that MDSR shows better
performance in terms of accuracy with multi-head attention than with dynamic routing in IIM
module.
In this article, we address the recommendation accuracy and diversification for SR simultane-

ously and propose an end-to-end framework. An IIM module is first applied to explore a user’s
multiple interests and an IDP decoder is then used to produce diversified recommendations to sat-
isfy those interests. We also design an interest-aware, diversity promoting (IDP) loss, that included
accuracy and diversity losses, to supervise the learning process of the model that we propose.

2.2 Diversified Recommendation

It has been found that striving for recommendation accuracy might result in homogeneous recom-
mendations, since the items with high accuracy tend to have similar content and/or genres [37].
Recommendation diversification and search results diversification have long been a vital research
topic. There are generally two solution directions for recommendation diversity: aggregated di-

versity and individual diversity. The former is meant to increase the exposure of long-tail items
so as to achieve global recommendation diversity for all items [6, 25, 37], while the later aims to
improve the diversity of items recommended to an individual user. In this work, we focus on the
latter one.
The most widely used approach to diversification ismaximalmarginal relevance (MMR) [8],

which is a reranking algorithm. First, maximal marginal relevance (MMR) builds a similarity ma-
trix between each pair of candidate items and then it iteratively selects K items with maximum
marginal relevance to form the final list of recommended items. The maximummarginal relevance
is composed of relevance and diversity scores. The relevance score can be determined by a general
recommendation model while the diversity score can be calculated based on the similarity matrix.
In this way, MMR can return a diversified list of recommended items. Qin and Zhu [38] design an
objective function that contains an entropy regularizer to improve the diversity of recommenda-
tions. They prove the monotonicity and submodularity of the objective function and use a greedy
algorithm to optimize it. Sha et al. [45] also design an objective function that takes relevance as
well as diversity of candidate items into consideration. Some learning to rank (LTR) approaches
have also been proposed and applied to the task of diversifying recommendations. Cheng et al.
[12] introduce a diversified collaborative filtering model to learn to generate accurate as well as
diversified recommendations. However, those learning to rank (LTR)-based approaches need a
ground-truth diversified recommendation list for learning, which is unavailable in most recom-
mendation scenarios. Hu et al. [21] propose a personalized session-based recommendation model
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with shallow wide-in-wide-out networks. They take the user embedding and the user-related ses-
sions as inputs to generate recommendations. This work aims to provide different user-session
context with different recommendations and the diversity evaluation in this work is to measure
the mean non-overlap ratio between each pair of recommendation lists. Thus it is different from
our individual diversification task. Kim et al. [25] propose a sequential and diverse recommenda-
tion model that predicts a ranked list containing general as well as tail items, i.e., S-DIV.
Current approaches typically achieve recommendation diversification based on reranking a can-

didate item, set produced by a general recommendation model. Instead, our proposed MDSR can
integrate the sequential behavior modeling and diversified recommendations generation in an end-
to-end model. Our experimental results below demonstrate that MDSR performs competitively.
Wang et al. [50] provide a review on the challenges and recent progress of sequential recommender
systems. They also point that leveraging knowledge from different domains can help to generate
more diverse recommendations, which can be a direction for our future work.
A preliminary version of our work [10] also aims to improve recommendation diversity in an

end-to-end approach to SR, i.e., an intent-aware, diversified, sequential recommendation

(IDSR) model. We improve upon our prior work by incorporating a new interest extractor in the
implicit interest mining module, i.e., dynamic routing, and a new type of disagreement regulariza-
tion in our interest-aware, diversity promoting loss, i.e., output disagreement regularization.

2.3 Capsule Networks

A capsule is a group of neurons whose activity vector indicates the instantiation parameters of
a certain type of entity [19]. The length of the activity vector is used to represent the probabil-
ity that the entity exists. Often two-levels of capsules are used, where the active capsules at the
low-level make predictions for the instantiation parameters of the high-level capsules. When most
predictions agree, a high-level capsule can be activated. Instead of using backpropagation, dynamic
routing has been proposed to learn the weights by connecting low-level and high-level capsules in
an iterative way using the Expectation-Maximization algorithm [20]. Sabour et al. [43] show that
capsule networks can help to learn representations containing richer information than convolu-
tional neural networks (CNNs) in computer vision. Capsule networks with dynamic routing also
show their effectiveness in capturing multiple labels or aspects in text sequences. Yang et al. [55]
investigate the effectiveness of capsule networks applied to text classification tasks. Xia et al. [53]
explore capsule-based architectures to extract semantic features from utterances and aggregate
them to discriminate diversely expressed intents. Zhao et al. [60] propose a framework to opti-
mize the routing processes and show competitive performance in multi-label text classification
tasks. Li et al. [28] introduce capsules and dynamic routing into a recommender system to capture
users’ multiple interests in e-commerce recommendations.
In this work, we apply capsule networks with dynamic routing to extract representations of a

user’s multiple interests in an IIM module. Our work differs from the research described above,
since the prior work aggregates interests for making accurate recommendations, while we use
interest representations to generate diverse as well as accurate recommendations.

2.4 Attention Mechanisms

Attention mechanisms have been widely used in recommender systems to help capture users’
main interests based on which to improve recommendation accuracy. Li et al. [29] propose a neu-
ral attentive session-based recommendation machine (NARM) that employs the last hidden
state from the session-based RNN to attend to the previous interactions to identify users’ main in-
terests. Recently, self-attention mechanisms and transformer-based architectures have also been
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Table 1. Summary of the Main Notation Used in the Article

Notation Description

xt the embedding of item, xt
Fu user’s global representation
F iu user’s ith interest representation

ht
hidden representation at timestep t in GRU of sequence
encoder

h
y
t−1

hidden representation at timestep t − 1 in GRU of IDP
decoder

S (vi ) the final score of item, vi generated by Equation (2)
M (RL ) the diversity score of recommendation list RL in IDP loss

Ai the attention distribution produced by interest i in
Equation (6)

Wz ,Wr ,Wh parameters in GRU of sequence encoder

W Q
i ,W

K
i ,W

V
i

parameters in multi-head attention-based IIM

Mi j bilinear mapping matrix in dynamic routing-based IIM
bi j the routing logit in dynamic routing-based IIM
B bilinear mapping matrix in IDP decoder

W w transform matrix in IDP decoder
Wy ,WA,WB parameters in the attention mechanism of IDP decoder

λ
hyper-parameter controlling the balance between relevance
score and diversity score in Equation (2)

λe
hyper-parameter controlling the contribution of accuracy
loss in Equation (16)

applied to recommender systems [48]. Kang and McAuley [24] apply a multi-head self-attention
mechanism to capture users’ main interests based on their sequential behavior, and Sun et al. [46]
introduce a bidirectional representation learning method based on the transformers for SR and
achieve satisfied performance for sequential recommendation. They all help to improve recom-
mendation performance in terms of accuracy.
However, the studies listed above apply attention mechanisms to capture users’ main interests

instead of multiple interests. Both our work in this article and the intent-aware, diversified, se-
quential recommendation (IDSR) model proposed in Reference [10] apply a multi-head attention
mechanism to help extract multiple interests behind users’ sequential behavior with each attention
distribution indicating a particular user interest, which is then used to help generate diversified
recommendations covering those interests.

3 MULTI-INTEREST, DIVERSIFIED SEQUENTIAL RECOMMENDATIONS

3.1 Overview

In this section, we introduce our proposedmodel, MDSR, in detail. Table 1 summarizes themain no-
tation used in the article. Let a useru and their sequential behavior denoted asXu = {x1,x2, . . . ,xT }
be given, where each xi indicates an item, thatu interactedwith, such as an add-to-cart or purchase
action in an e-commerce scenario. We aim to provide the user with a list of recommended items to
predict the item, that they may interact with next. We hope to capture the user’s multiple interests
reflected in Xu and thus the list of recommended items should be accurate as well as diverse so as
to cover those interests.
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Most existing approaches for SR focus on modeling a user’s main interest and represent the user
with a fixed-length vector. In this article, it is supposed that there are M latent interests reflected
by each user behavior sequence, i.e., A = {a1, . . . ,aM }. We hope to recommend a list of items to
satisfy all of those interests, which can be formulated as

P (RL | u,Xu ) =
M∑

m=1

P (am | u)P (RL | am ,u,Xu ), (1)

where P (am | u) indicates the importance of interest am to user u; P (RL | am ,u,Xu ) denotes the
probability that evaluates towhat extent the interestam is satisfied by the current recommendation
list RL .
Theoretically, finding an exact solution to maximizing P (RL | u,Xu ) is an NP-hard problem

because of the huge search space [3, 8]. However, we can approximate it by designing a greedy
selection algorithm. The idea, is that we can first initialize RL as an empty set and then in each
step we select one item, and add it to RL , where the selected item, at step t can be obtained by a
scoring function:

vt = argmax
v ∈V \Rt−1

S (v ),

S (v ) = λP (v | u,Xu ) + (1 − λ)
M∑

m=1

P (v | am )W (Rt−1,am ),
(2)

whereV denotes the set of all items;Rt−1 is the list of recommended items produced by the previous
t − 1 steps; v ∈ V \ Rt−1 ensures that the final list of recommended items contains no repeated
items. The score S (v ) contains two parts, which are controlled by a hyper-parameter λ; P (v |
u,Xu ) denotes the relevance score of item, v to u based on the current behavior sequence; P (v |
am ) indicates the relevance of item, v to interest am ;W (Rt−1,am ) evaluates to what extent the
recommended items in Rt−1 cannot satisfy interest am . Before calculating the relevance score (left
part of Equation (2)) and the diversity score (right part of Equation (2)), we do normalization across
all candidate items.
Based on Equation (2), we propose an end-to-end neural framework, i.e., MDSR, to model the

user’s sequential behavior and generate diversified recommendations simultaneously. We show a
graphical representation of the main framework in Figure 2. There are three major components
in MDSR, i.e., a sequence encoder, an IIM module, and an IDP decoder. More specifically, we first
apply a sequence encoder to those sequential interactions and generate a hidden state of each
timestep. Then we propose an IIM module to extract users’ multiple interests and output latent
representations of those interests, which are shown with different colors in Figure 2. The IDP
decoder is finally used to produce recommendations according to Equation (2) by selecting items
to satisfy and cover those interests gradually. For training, we design an IDP loss to supervise
the model to learn to generate accurate as well as diversified recommendations. In the following
sections, we give detailed introductions of each component.

3.2 Sequence Encoder

Although the sequence encoder is the base of the whole framework, it is not the focus of our
model. We choose the most commonly used one as our sequence encoder, i.e., a gated recurrent
unit (GRU) [17]. It should be noted that other sequence encoders can also be adopted in our model.
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Fig. 2. Framework of MDSR. Blue, purple, and green represent different user interests.

The sequence encoder in this article can be formulated as

zt = σ
(
Wz [x t ,ht−1]

)
rt = σ

(
Wr [x t ,ht−1]

)
ĥt = tanh(Wh[x t , rt � ht−1])
ht = (1 − zt ) � ht−1 + zt � ĥt ,

(3)

where x t is the embedding of xt ;Wz ,Wr andWh denote the weight parameters in GRU. These
hidden representations, i.e., {h1,h2, . . . ,hT }, are then stacked into a matrix HS ∈ RT×de . Follow-
ing [29], the last behavior often plays an important role in predicting a user’s next interaction.
Thus, we regard the last hidden representation hT as the user’s global representation:

Fu = hT . (4)

3.3 IIM Module

The IIM module aims to extract users’ multiple interests as reflected in their behavior sequences.
Intuitively, different interactions in a user’s sequential behavior can express their different inter-
ests. Some interactions are more representative for a certain interest than others. For example,
the second and last two actions in Figure 1 are more obvious in reflecting the user’s interest in
“Animation,” “Action,” and “Adventure” than other interactions. Motivated by this observation, we
explore two methods to extract a user’s multiple interests, i.e., multi-head attention and dynamic
routing.

3.3.1 Multi-Head Attention-based IIM. We apply a multi-interest attention mechanism where
each attention function explores one certain interest. First, we projectHS and Fu intoM spaces.M
attention functions are then employed in parallel to calculate the user’sM interest representations
{F 1u , F 2u , . . . , FMu }:

F iu = Attention
(
FuW

Q
i ,HSW

K
i ,HSW

V
i

)
, (5)

whereW Q
i ∈ Rde×d ,W K

i ∈ Rde×d , andW V
i ∈ Rde×d are learnable parameters. The scaled dot-

product attention [48] is applied as

Attention(Q,K ,V ) = AV = softmax

(
QK�√

d

)
V , (6)

where A is the attention distribution of each interest.
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3.3.2 Dynamic Routing-based IIM. The dynamic routing method, which was first introduced
in CapsNet [43], is widely used for representation learning of capsules. It learns the weights on
the connections between capsules using the Expectation-Maximization algorithm. In this work,
we regard the item, embeddings of user sequences as low-level capsules and multiple interests as
high-level capsules. The goal is to learn the high-level representations as well as low-level capsules
iteratively. In each iteration, the routing logit bi j , which represents the log prior probability that
capsule i is coupled to capsule j, can be calculated by the inner product of the corresponding

vectors of capsule i and j, i.e., x i and F ju as follows:

bi j = (F ju )
�Mi jx i , (7)

where Mi j is a bilinear mapping matrix. We can then calculate the total input to the high-level
capsule j as a weighted sum of all low-level capsules:

zj =
T∑
i=1

ci jMi jx i , (8)

where ci j denotes the weight for linking low-level capsule i and high-level capsule j. The weights
between capsule i and all high-level capsules should add up to 1. Thus, we use a softmax with
routing logit bi j to calculate ci j :

ci j =
exp(bi j )∑M

m=1 exp(bim )
. (9)

As we expect the length of the output vector of a capsule to indicate the probability of the corre-
sponding entity being present in the current input, a non-linear “squashing” function [43] is pro-
posed to ensure that short vectors get shrunk to nearly zero length and long vectors get shrunk to
a length close to 1. Thus, the vector of high-level capsule j is calculated based on zj as follows:

F ju = squash(zj ) =

�
�
�
zj
�
�
�

2

1 +
�
�
�
zj
�
�
�

2
· zj
�
�
�
zj
�
�
�

. (10)

To calculate the high-level capsule representation F ju , we need to calculate a probability distribution

with the inner production of F ju and x i (see Equation (7)), which means the calculation of F ju relies
on itself. Thus, dynamic routing is proposed to solve this problem in an iterative way. The dynamic
routing algorithm is listed in Algorithm 1. The values of bi j are initialized as zeros and the routing
process is typically repeated three times to converge. After routing, we can get the representations
of high-level capsules, i.e., multiple interest representations {F 1u , F 2u , . . . , FMu }.
To stabilize and accelerate training, we apply layer normalization [5] on the inputs of multi-

head attention as well as dynamic routing. Unlike batch normalization [22], the data used in layer
normalization are independent of other samples in the same batch. Supposing the input is a vector
x that contains all features of a sample, the operation is defined as

LayerNorm(x) = α � x − μ√
σ 2 + ϵ

+ β, (11)

where � indicates an element-wise product, μ and σ are the mean and variance of x, α , and β
denote learned scaling factors and bias term.
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ALGORITHM 1: Dynamic routing.

Input: R: iteration times;
{x1,x2, . . . ,xT }: item, embeddings in a user sequence;

Output: {F 1u , F 2u , . . . , FMu }: multiple interest representations;
1: for each low-level capsule i and high-level capsule j, initialize bi j = 0;
2: for iter, in range (R) do

3: for each low-level capsule i: ci j =
exp(bi j )∑M

m=1 exp(bim )
.

4: for each high-level capsule j: zj =
∑T

i=1 ci jMi jx i .

5: for each high-level capsule j: F ju = squash(zj ).

6: for each low-level capsule i and each high-level capsule j: bi j = bi j + (F ju )
�Mi jx i .

7: end for

8: return {F 1u , F 2u , . . . , FMu }.

3.4 IDP Decoder

The IDP decoder is designed to generate the list of recommended items with the latent interests
extracted by the IIM module of the previous section. According to Equation (2), we first calculate
the relevance score of item, x as follows:

P (xn | u,Xu ) =
Sxn∑ |V |
j=1 Sxj

Sxn =
M∑

m=1

Smxn

Smxn = P (am | u)P (xn | am ,u)
P (xn | am ,u) = softmax(x�nB[Fu , Fmu ]),

(12)

where B denotes a bilinear parameter; xn is the embedding of the item, xn ; and Smxn denotes the
relevance score of item, xn to interest am . When calculating Smxn , we also consider the importance
of a particular interest am , i.e., P (am | u), which can be generated by

P (am | u) = exp(FuW
wFmu

�)∑M
j=1 exp(FuW

wF ju
�
)
, (13)

whereW w ∈ Rde×d .
We apply another GRU to encode the already generated recommendations Rt−1 = {y1,y2, . . . ,

yt−1} into {hy1 ,hy2 , . . . ,hyt−1}. Thus, we can then evaluate to what extent each interest is unsatisfied

by Rt−1, which is denoted asW (Rt−1,am ) in Equation (2):

W (Rt−1,am ) = 1 − P (am | u) exp(wm
t−1)∑M

j=1 P (aj | u) exp(w j
t−1)

w i
t−1 =W

�
yσ (WAF

i
u +WBh

y
t−1),

(14)

wherew i
t−1 indicates the matching between Rt−1 and F iu . The larger value ofW (Rt−1,am ) indicates

that interest am is more unsatisfiesd than other interest by the already generated recommendation
list and thus should be given more attention when making next recommendation. P (x | am ) in
Equation (2) can be calculated by:

P (xn | am ) = softmax
(
x�nFmu

)
. (15)
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After selecting the item, with the maximum score based on Equation (2), we can finally add it to
the list of recommended items.

3.5 IDP Loss

Different from previous work where trained was based only on cross-entropy loss, we design our
loss function considering not only accuracy but also diversity of the generated list of recommended
items RL :

LRL = λeLRL
rel
+ LRL

div
, (16)

where λe is a parameter controlling the weight of diversity as well as relevance losses.

3.5.1 Relevance Loss. The relevance loss evaluates if the list of recommended items contains
the ground-truth item. Thus, we adopt the conventional cross-entropy loss as:

LRL
rel
= −

|V |∑
i=1

pi log
(
q0i
)
, (17)

where RL is the recommendation list by MDSR, y∗ and pi denotes the ground-truth item, and
probability distribution, respectively. q0i indicates the prediction probability conducted by MDSR
when generating the first recommendation, where MDSR does not consider the diversity score.
In this way, MDSR can also consider the ranking position of the ground-truth item, in the list of
recommended items.

3.5.2 Diversity Loss. Since we do not have a ground-truth list for training themodel, we employ
a self-critic strategy, which can achieve diversity in an unsupervised manner. More specificcally,
every step we generate a recommended item, with the scoring function, i.e., Equation (2), and
output a list of recommended itemsRL , we also generate an item, onlywith themaximum relevance
score P (vi | u,Xu ) and yield a list of recommended items Rrel

L
at the same time. Then we can

calculate the diversity loss by

LRL
div
= w log

1

1 + exp(Pr (Rrel
L
) − Pr (RL ))

Pr (RL ) =
∑

vi ∈RL
log S (vi )

Pr (Rrel
L ) =

∑
vi ∈Rrel

L

log S (vi )

w = M (Rrel
L ) −M (RL ),

(18)

where Pr (RL ) and Pr (R
rel
L ) denotes the log likelihood for generating the lists of recommended items

RL and Rrel
L , respectively. w is the gap between the diversity values of the two recommendation

list Rrel
L and RL . The diversity value can be calculated by a specific diversity evaluation metric. We

adopt intra-list distance (ILD) in this article.

The motivation for the design of LRL
div

is the following: We treat Rrel
L

as a baseline; when we
generate a recommendation list that is more diverse than the baseline, we would reward our model
to increase the probability of generating RL ; when the generated list RL is less diverse than Rrel

L
,

we would punish our model with the loss.
In addition to the relevance and diversity losses, two regularization terms are also added to our

loss function. Next, we introduce those regularization terms.
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3.5.3 Disagreement Regularization. We devise the disagreement regularization to make sure
that the multiple interests extracted by the IIM module are different from each other. We consider
two strategies.
The first strategy concerns the disagreement on the attention distributions by different interests.

We adopt a strategy to enlarge the distance between the attention distributions predicted by each
interest. To do so, we use an alignment disagreement regularization [30] as follows:

LRL
Dispos

=
1

M2

M∑
i=1

M∑
j=1

�
�
�
Ai � Aj �

�
�
, (19)

where Ai is the attention distribution of interest i . For the multi-head attention-based IIM, Ai

can be produced by Equation (6). For the dynamic routing-based IIM, we calculate Ai by doing a
softmax operation on similarities between interest capsule i and low-level capsules.
The second strategy is designed to enlarge the dissimilarities between the outputs of multiple

interest representations, i.e., F iu . We achieve this by minimizing the cosine similarity between each
interest F iu :

LRL
Disout

=
1

M2

M∑
i=1

M∑
j=1

F iu · F ju
�
�
�
�

F iu
�
�
�
�

�
�
�
�

F ju
�
�
�
�

. (20)

3.5.4 Maximum Entropy Regularization. The second regularization is maximum entropy regu-
larization, which can avoid the situation that one of the interests dominates [56, 59]:

LRL
ME
=

M∑
m=1

P (am | u) log P (am | u). (21)

Thus, our final IDP loss is as follows:

IDPRL
loss
= λeLRL

rel
+ LRL

div
+ LRL

Dis
+ LRL

ME
. (22)

Here, we could add hyper-parameters to control theweights of different regularization terms in our
loss. However, this would increase the complexity of optimizing the model due to the additional
hyper-parameters’ fine-tuning. Thus, for simplicity, we set all weights to 1 and find that different
weights would not influence much. All parameters of MDSR can be trained in an end-to-end back-
propagation process. The training process of MDSR is shown in Algorithm 2.
For each user sequence Xu , we first initialize the lists of recommendation items RL and Rrel

L
as

empty sets in step 3 and step 4. Then, we use a GRU as our sequence encoder to generate hidden
representations HS and a global user representation Fu in step 5, step 6 and step 7. Next, we
extract the user’s multiple interest representations with our IIM module in step 8. Here, we can
use either a multi-head attention or dynamic routing-based IIMs. After that, we can generate the
first recommendation item, only based on relevance score in step 9 and add it into RL and Rrel

L
. In

the IDP decoder, we select one item, at a time with a maximum score S (v ) and add it RL in step 18
and step 20. S (v ) in step 16 is a combination of relevance as well as diversity scores. At the same
time, we also select one item, only with the maximum relevance score S rel (v ) and add it to Rrel

L

in step 19 and step 21, which is then used for calculating the diversity loss LRL
div
. Note that we

only need to generate Rrel
L in the training phase. Finally, we can calculate our designed IDP loss in

step 27 based on Equation (22) and use back propagation to optimize the network parameters.

4 EXPERIMENTAL SETUP

We aim to answer the following two research questions with our experiments:
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ALGORITHM 2: Training process of the MDSR model.

Input: K : length of recommendation list;
X : user behavior sequences set;
V : item, set
Epochs: training iterations;

Output: trainable parameters in MDSR;
1: for epoch in range (Epochs) do
2: for Xu ∈ X do

3: RL = ∅; // initialize RL as an empty set
4: Rrel

L
= ∅; // initialize Rrel

L
as an empty set

5: ht = GRU(ht−1,x t ), x t ∈ Xu ; // sequence encoder
6: HS = {h1,h2, . . . ,hT };
7: Fu = hT // user’s global representation;
8: F iu = multi-head attention(HS ) or dynamic routing(HS ); // IIM module
9: v0 = argmaxv ∈V P (vn | u,Xu ) with Equation (12) and Equation (13);
10: RL = RL ∪v0
11: Rrel

L
= Rrel

L
∪v0

12: for k in range (1, K) do
13: for v ∈ V \ RL do

14: S rel (v ) = use Equation (12) and Equation (13)
15: Sdiv (v ) = use Equation (14) and Equation (15)
16: S (v ) = λS rel (v ) + (1 − λ)Sdiv (v );
17: end for

18: vk = argmaxv ∈V \RL S (v ) // IDP decoder;

19: vrel
k
= argmaxv ∈V \RL S

rel (v ) // IDP decoder;
20: RL = RL ∪vk ;
21: Rrel

L = Rrel
L ∪vrel

k
;

22: end for

23: LRL
rel
= −∑ |V |i=1 pi log

(
q0i
)

// relevance loss

24: LRL
div
= w log 1

1+exp(Pr (Rrel
L
)−Pr (RL )) // diversity loss

25: LRL
Dis
= LRL

Dispos
or LRL

Disout
// disagreement regularization

26: LRL
ME
=
∑M
m=1 P (am | u) log P (am | u) // maximun entropy regularization

27: IDPRL
loss
= λeLRL

rel
+ LRL

div
+ LRL

Dis
+ LRL

ME
; // IDP loss

28: use back propagation to optimize the parameters
29: end for

30: end for

31: return parameters in MDSR.

(RQ1) Can MDSR beat the state-of-the-art baselines in terms of accuracy?
(RQ2) Does MDSR outperform state-of-the-art baselines regarding diversity?

4.1 Datasets

We conduct our experiments on four datasets, i.e., two movie recommendation datasets and two
e-commerce datasets. We report detailed statistics of those datasets in Table 2.
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Table 2. Dataset Statistics

Dataset ML100K ML1M Tafeng Tmall

Number of users 943 6,022 1,703 25,958
Number of items 1,349 3,043 2,461 57,677
Number of interactions 93,629 959,022 42,921 623,124
Number of item, categories 19 18 469 70
Avg. number of genres per item, 1.7 1.6 1.0 1.0

• ML100K1 andML1M1 are both collected from theMovieLensweb site. ML1M ismuch larger
and sparser than ML100K.
• Tafeng2 contains one-month user shopping logs in a grocery store.
• Tmall3 is collected by an online shopping website, Tmall, which also includes users’ shop-
ping behavior.

As for the category information, it needs to be pointed out that a movie in the ML1M and ML100K
datasets may belong to several genres while a single item, in the Tafeng and Tmall datasets is only
related to one category at the same time.
We process the data following Li et al. [29]. In ML100K, users with fewer than 5 interactions

and items that are clicked less than 5 times are filtered out. For other datasets, users and items
that have fewer than 20 interactions are filtered out; to keep the sequential characteristics of the
datasets, we sort user behavior according to the “timestamp” field. To generate the sequences, we
adopt a sliding-window strategy that uses the past 9 interactions as input and predicts the 10th
interaction. The first 80% of each dataset is used for training the model while the last 10% is for
testing and the remaining 10% is for validation. We also ensure that the items in test set have been
interacted with by at least one user in the training set.

4.2 Methods Used for Comparison

Diversity in recommendations can be divided into two types: individual diversity and aggregate
diversity [2, 37]. The individual diversity is a measure of average dissimilarity of items recom-
mended to an individual user while the aggregate diversity is the total number of distinct items
recommended across all users [37]. As the authors of S-DIV [25] point out, S-DIV focuses on the
aggregate diversity and recommends general as well as tail items. However, in our article the main
concern is individual diversity. Thus, we do not compare with S-DIV. What’s more, S-DIV applies
the content information of an item, which is not used in our model. The item, content is beneficial
for diversity, because by mapping items into a content (latent) space, the items are not limited
to specific item, IDs but generalized to certain broad contexts with high variability. We would
like to incorporate the content information in our future work. Besides, in this article we aim to
improve accuracy as well as diversity for SR in an end-to-end framework. Thus, we do not com-
pare with models that only focus on improving accuracy for SR. For example, BERT4Rec [46] and
SASRec [24] are recently proposed methods for SR that can also be integrated into our sequence
encoder component to help improve the recommendation accuracy.
We choose state-of-the-art neural SR methods that share a similar structure as ours as baselines

to compare with in Table 3.

• GRU4Rec: GRU4Rec is the first work that introduces RNNs into SR and proposes a session-
parallel training mechanism [17].

1https://grouplens.org/datasets/movielens/.
2https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset.
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42.
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Table 3. An Overview of the Models Discussed in the Article

Model Description Source

GRU4Rec The first work that introduces RNNs into SR and propose a
session-parallel training mechanism.

[17]

NARM A sequential recommendation model that applies an attention
mechanism upon an RNN.

[29]

MCPRN A method that captures users’ multiple intents in a session
with mixture-channel recurrent networks.

[51]

NARM+MMR A re-ranking model for generating diversified recommenda-
tions for SR. It applies MMR to re-rank the candidate items gen-
erated by NARM.

[10]

IDSR Our previously proposed method that improves sequential
recommendation diversification in an end-to-end framework.

[10]

MDSRMA MDSR model using Multi-head Attention method in IIM
module to extract users’ multiple interests.

This article.

MDSRDR MDSR model using Dynamic Routing method in IIM module to
extract users’ multiple interests.

This article.

• NARM: A sequential recommendation model that applies an attention mechanism on top
of an RNN. It combines the attentive hidden states and the final hidden state to represent a
user’s current preference and thus makes accurate recommendations [29].
• MCPRN: MCPRN models users’ multiple interests in a session with mixture-channel re-
current networks [51]. It has been shown that MCPRN is able to improve the performance
regarding both accuracy and diversity.
• NARM+MMR: Besides the baselines obtained from prior work listed above, we also con-
struct a baseline ourselves, i.e.,NARM+MMR, which reranks the predicted list of NARM in
a post-processing step. More precisely, NARM first generates a candidate recommendation
set, i.e., Rc , and each item, in the set is accompanied with its relevance score S (vi ) predicted
by NARM. Then, MMR is applied to rerank the items in the candidate set so as to generate a
diversified recommendation list. The criteria used in MMR to sort these items is as follows:

v ← argmax
vi ∈Rc \RL

θS (vi ) + (1 − θ ) min
vk ∈RL

dki ,

where dki is the distance between item, vk and item, vi ; θ ∈ [0, 1] is a hyper-parameter that
needs to be carefully tuned. We first initialize the recommendation list RL as an empty set
and then select one item, based on Equation (23) and add it to RL at every step iteratively
until |RL | = N . The hyper-parameter controls the diversity of the final recommendation list,
e.g., when θ = 1, the output list RL is the same as the one generated by NARM; when θ = 0,
the output list RL is aimed to maximize its diversity and ignore relevance.
• IDSR: This is our own recent work [10], which models users’ multiple intents and aims to
improve recommendation diversity in an end-to-end structure for SR.

As to our proposed model MDSR in this article, we consider two variants:

• MDSRMA:MDSRMA is a variant of MDSR that uses amulti-head attentionmethod in the IIM
module to extract users’ multiple interests.
• MDSRDR: MDSRDR is a variant of MDSR that uses a dynamic routing method in the IIM
module to extract users’ multiple interests.

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 20. Publication date: August 2021.



Multi-interest Diversification for End-to-end Sequential Recommendation 20:17

4.3 Evaluation Metrics

For accuracy, we apply Recall and MRR following [29, 33]. For diversity, intra-list distance
(ILD) [58] is used as the evaluation metric, which is regularly applied in recommendation diversi-
fication task.

• Recall: The value is determined by whether the ground-truth item, is included in the list of
recommended items. If the ground-truth item, is in the list, then the value is 1; otherwise, it
equals 0.
• MRR: The value of determined by the position of the ground-truth item, in the list of rec-
ommended items. The higher the position, the larger the value.
• ILD: The value is determined by the average distance between pairs of items in the recom-
mendation list. It can be formulated as

ILD =
2

|RL |( |RL | − 1)
∑

(i, j )∈RL
di j . (23)

The dissimilaritydi j between two items is calculated as Euclidean distance between the item,
genre vectors [4].

4.4 Implementation Details

For the hyper-parameters of the MDSR model, the size of the item, embedding is set to 128; the
GRU hidden state size is 128; the parameter λe is set to 1.0 for the two movie datasets and the
Tmall datasets, and 0.1 for the Tafeng dataset. For the training process, we set the mini-batch size
to 512, use the Xavier method [14] to initialize the model parameters, and optimize the model
using Adam [26] where the initial learning rate α = 0.001, two momentum parameters β1 = 0.9
and β2 = 0.999, and ϵ = 10−8. For validation, we show the model performance for every epoch on
the validation set and save the model after it achieves the best performance. For testing, we show
the results on the test set with the savedmodel. In this article, we consider top-10 recommendation,
i.e., K = 10. We put the code for realizing our model online.4

5 RESULTS

5.1 Performance in Terms of Accuracy

For RQ1, we compare MDSR with the models listed in Table 3 in terms of accuracy. The results are
listed in Table 4.
First, since the NARM has a similar encoding structure as MDSR, we can see that the perfor-

mance of MDSRMA and MDSRDR is comparable or even superior to NARM regarding recommen-
dation accuracy, i.e., Recall and MRR. Although MDSR tries to diversify the recommendations,
at the first generating steps, it still assigns high probability to these relevant items. Additionally,
the IDP loss also considers recommendation accuracy, which helps MDSR to capture users’ ma-
jor interests. When users have multiple interests, as NARM shows bias toward the main interest,
the recommendations may be unsatisfactory to those users. For example, MDSRMA outperforms
NARM on the Tafeng dataset, where the improvements in terms of Recall and MRR are 10.19% and
10.06%, respectively. We think that this may be because that Tafeng collects users’ behavior in a
grocery store, where users typically have multiple interests when shopping, and buy items with
different categories. It also can be found that MDSRMA and MDSRDR show better performance
in terms of accuracy on all of the four datasets than MCPRN. Compared with MCPRN, the IIM

4https://bitbucket.org/WanyuChen/idsr/src/master/.
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Table 4. Performance of All Discussed Models in This Article

Dataset Metric GRU4Rec NARM MCPRN NARM+MMR IDSR MDSRMA MDSRDR

ML100K
Recall (%) 6.23 9.68 9.27 9.53 9.79 9.88 9.62
MRR (%) 2.09 3.18 2.99 2.77 3.22 3.53� 3.35
ILD 1.527 1.518 1.561 1.583 1.666 1.646 1.669�

ML1M
Recall (%) 11.67 15.02 14.89 14.72 14.89 15.72 15.18
MRR (%) 4.02 5.39 5.26 4.89 5.30 6.23� 5.97
ILD 1.307 1.289 1.301 1.325 1.383 1.486 1.500�

Tafeng
Recall (%) 4.11 4.71 4.57 4.33 4.97 5.19� 4.94
MRR (%) 1.42 1.69 1.6 1.41 1.96� 1.86 1.80
ILD 1.267 1.214 1.248 1.263 1.318 1.364� 1.344

Tmall
Recall (%) 12.11 14.41 14.19 14.00 14.32 14.78 14.89

MRR (%) 5.41 7.51 7.27 6.28 7.43 7.86 7.95�

ILD 0.879 0.834 0.886 0.892 0.946� 0.926 0.936

The results of the best baseline and the best model in each row are underlined and in bold, respectively. Statistical

significance of pairwise differences of best model vs. the best baseline is determined by a paired t -test (� for p-value

≤ 0.05).

module in MDSR cares not only users’ multiple interests but also the weight of each interest,
which is effective in improving the recommendation accuracy.

Second, it is obvious that after re-ranking, the accuracy of NARM drops dramatically when we
compare the performance of NARM and NARM+MMR. This demonstrates that the reranking algo-
rithm, i.e., MMR, hurts the accuracy of recommendation although it can improve the diversity to
some extent. This may be because the candidate items recommended by NARM often share similar
genres or categories. When the diversity scores for the relevant items are lower than the irrelevant
items, the irrelevant items will have higher scores than these relevant ones, which thus results in
a worse accuracy performance. Moreover, the reranking algorithm, i.e., MMR, is computationally
expensive, since it needs to compare each pair of items in the generated list of recommendations
and the candidate set.
MDSRMA has the same structure as IDSR except that MDSRMA uses layer normalization and

removes the feedforward layer. However, MDSRMA shows better performance than IDSR in terms
of MRR and Recall on most of our datasets, which demonstrates the effectiveness of applying the
layer normalization strategy. MDSRMA is better at capturing users’ main interests than MDSRDR.
For instance, MDSRMA shows better performance thanMDSRDR on theML100K,ML1M and Tafeng
datasets in terms of Recall and MRR. We will give a detailed analysis of the performance of the
two variants of the MDSR model in Section 6.1.
In summary, MDSR shows comparable or superior performance as the baseline models in terms

of recommendation accuracy. It should be noticed that we can add other effective structures into
the MDSR framework to improve the recommendation accuracy, e.g., SASRec [24]. However, this
can be explored as our future work.

5.2 Performance in Terms of Diversity

For RQ2, we show the diversity scores, i.e., ILD, on all of the four datasets in Table 4. We see
that MDSR outperforms all baselines. Specifically, the improvements of MDSRDR over mixture-
channel purpose routing network (MCPRN) are 6.92%, 15.30%, and 5.64% in terms of ILD on the
ML100K, ML1M, and Tmall datasets, respectively, while MDSRMA beats MCPRN with a 9.29% im-
provement on the Tafeng dataset. Although MCPRN models users’ multiple interests, there is no
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supervision signal to help the model learn to discriminate those multiple interests and produce
diverse recommendations. However, in MDSR, the diversity loss and disagreement regularization
term in the IDP loss can guide the model to learn to distinguish different interests and satisfy them
gradually.
MDSR significantly outperformsNARM+MMR. For example, the improvements ofMDSRDR over

NARM+MMR are 5.43% and 13.21% on ML100K and ML1M, respectively. We can also find that
MMR depends heavily on the recommendation results of NARM. When the items in the candidate
set generated by NARM show similar categories, the reranking performance of MMR method is
limited. However, MDSR can avoid this problem, since it can learn to diversify the recommenda-
tions by optimizing the designed IDP loss in Equation (22).

MDSRDR outperforms IDSR on the ML100K, ML1M, and Tafeng datasets in terms of ILD while
it loses by 1% on the Tmall dataset, which is not significant. Comparing MDSRMA and MDSRDR,
we can see that MDSRDR also shows better performance than MDSRMA in terms of ILD on most
datasets. Dynamic routing acts like a soft-clustering algorithm: It can group a user’s sequential
behaviors into several clusters with each cluster representing a certain latent interest of the user.
In this way, it can help to distinguish between users’ different interests.

6 ANALYSIS

In this section, we conduct several experiments to analyze the performance of MDSR in more
depth. Specifically, we seek to answer the following questions mainly:

• What is the performance of the two strategies in the IIM module, i.e., multi-head attention

and dynamic routing?
• What is the influence of the number of latent interests in MDSR?
• How does the tradeoff parameter λ influence the performance of MDSR?

• What is the effect of different disagreement regularization terms LRL
Dis

in Equation (22), i.e.,

LRL
Dispos

and LRL
Disout

?

• What is the effect of the maximum entropy regularization loss LRL
ME

in Equation (22)?
• Does the IIM module in MDSR capture users’ multiple interests?

6.1 Impact of Different Multiple Interest Extractors

We visualize the performance of MDSR with two strategies for the IIM module for top K recom-
mendation (with K = 10, 15, 20, 50) in Figure 3.

We see that with the increases in K , i.e., from 10 to 50, the performance of both MDSRMA and
MDSRDR improves in terms of accuracy and diversity. Specifically, on the MovieLens datasets
shown in Figure 3(a) (ML100K) and Figure 3(b) (ML1M), MDSRMA shows better performance than
MDSRDR in terms of accuracy but a worse performance than MDSRDR in terms of diversity. It
should be noted that the gap between the two models in terms of MRR is larger than in terms of
ILD. For example, when K = 10 and K = 50, the improvements of MDSRMA over MDSRDR are
5.37% and 4.71% in terms of MRR, respectively, while the improvements of MDSRDR over MDSRMA

are 1.43% and 0.79% in terms of ILD, neither of which is significant. This demonstrates that the
multi-head attention mechanism is better at capturing users’ main interests.
However, on the e-commerce datasets shown in Figure 3(c) (Tafeng) and Figure 3(d) (Tmall),

MDSRMA and MDSRDR have comparable performance in terms of accuracy as well as diversity.
This is because users tend to have multiple interests and purchase items from different categories
in e-commerce instead of having a main purpose in mind. This finding is in accordance with the
analysis in Section 5.1.
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Fig. 3. Performance of MDSR with different interest extractors on the top K recommendation task, with

K = 10, 15, 20, 50, on four datasets.

6.2 Impact of the Number of Latent Interests

Next, we show the performance of MDSR when the number of latent interests ranges from 2 to 6
in Figure 4.
We can see that both MDSRMA and MDSRDR show upward trends in accuracy when the number

of interests increases from 2 to 3, except for MDSRMA on the Tmall dataset. MDSRMA achieves
its best performance in terms of accuracy with 3 interests and then begins to decrease when the
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Fig. 4. Performance of the MDSR models on four datasets with different numbers of latent interests.

number of interests increases from 3 to 6 on the ML100K, ML1M, and Tafeng datasets. On the
Tmall dataset, when increasing the number of interests, the performance of MDSRMA gets worse
constantly. MDSRDR achieves its best performance in terms of accuracy on the ML100K, ML1M,
and Tmall datasets when the number of interests is 3 or 4. But on the Tafeng dataset, its best
performance is achieved when the number of interests is 5. This might be related to the fact that
the Tafeng dataset has considerably more categories than the other datasets, i.e., 467 vs. 17, 18 and
70. Users are likely to have more interests especially on the dataset with more categories of items,
thus modeling multiple interests can help to increase the recommendation accuracy.
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The diversity score achieved by MDSRMA increases slightly when assuming more interests on
theML100K,ML1M, and Tmall datasets. But, on the Tafeng dataset, it achieves its best performance
with 3 interests, which is consistent with its accuracy performance. As for MDSRDR, the number
of interests has little influence on its performance in terms of ILD, which demonstrates that it has
better stability than MDSRMA in terms of recommendation diversification.
In general, Figure 4 shows that increasing the number of interests will hurt accuracy. Therefore,

we choose to set the number of latent interests to three in our experiments that are tuned on the
validation set.

6.3 Influence of the Tradeoff Parameter λ

To see the impact of the tradeoff parameter λ on MDSR, we show the results of MDSRMA and
MDSRDR on all datasets by ranging λ from 0 to 1 with a step size of 0.1. The results are plotted in
Figure 5.
Both models show upward trends generally when λ increases from 0 to 1 on the MovieLens

datasets in terms of Recall and MRR. When λ = 0, MDSR shows the worst performance. An obvi-
ous increase is observed when λ increases from 0 to 0.1. λ = 0 denotes that we focus on diversity
and ignore accuracy, thus the accuracy is worst. Similar trends can be observed on the e-commerce
datasets regarding MRR and Recall, except that MDSRDR drops slightly when λ increases from 0.9
to 1 on the Tafeng dataset. This indicates that considering diversity can also help to improve the
accuracy performance, especially on a dataset with a large number of categories. Since users tend
to have more kinds of interests when faced with more categories of items, diversified recommen-
dations may increase the probability of containing items that users want.
Both models achieve the best performance in terms of ILD when λ = 0.0 on all of the four

datasets as we consider the recommendation diversification only. When λ increases from 0 to 1,
the ILD scores drops on all datasets. There are more fluctuations on the e-commerce datasets than
on the MovieLens datasets, especially on Tafeng. The performance of MDSR in terms of ILD drops
sharply from 0 to 0.1.
To sum up, increasing the value of λ will improve the performance in terms of accuracy while

hurting diversity, especially when it changes from 0 to 0.1. We set it to 0.2 on the ML100K, ML1M
and Tafeng datasets and to 0.5 on the Tmall dataset for overall performance evaluation.

6.4 Effect of Different Disagreement Regularizations

To analyze the influence of the disagreement regularization losses, i.e., LRL
Dispos

and LRL
Disout

, we com-

pare the following IDP loss variants:

L0 = λeLRL
rel
+ LRL

div
+ LRL

ME

Lout = λeLRL
rel
+ LRL

div
+ LRL

Disout
+ LRL

ME

Lpos = λeLRL
rel
+ LRL

div
+ LRL

Dispos
+ LRL

ME
,

(24)

where L0, Lout , and Lpos denote the IDP loss without disagreement regularization, with output
disagreement regularization, and with position disagreement regularization, respectively. The re-
sults are shown in Table 5.
Comparing L0 with Lout or Lpos on all datasets, we can see that, in general, LRL

Dis
can help

to boost the performance of MDSR in terms of diversity. This indicates that the IIM module

can capture multiple latent interests effectively by applying the LRL
Dis

loss. Specifically, MDSRMA

with the Lpos loss always shows better performance than with the Lout loss in terms of ILD. It
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Fig. 5. Performance of the MDSR models on four datasets where the parameter λ in Equation (2) ranges

from 0 to 1 with a step size of 0.1.

indicates that, as for the multi-head attention mechanism, the disagreement regularization can
help to distinguish those interests more effectively when applied to positions than to outputs.
As for MDSRDR, the dynamic routing algorithm plays a role similar to the clustering algorithm,

which can distinguish users’ different interests intrinsically. Thus even without LRL
Dis

, MDSRDR

still shows better performance than MDSRMA with L0 and with Lout on most datasets in terms
of ILD. But, we can see that there are still small improvements in terms of ILD after applying
Lout or Lpos to MDSRDR. This is because the dynamic routing algorithm is similar to the k-means
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Table 5. Performance of MDSR on Four Datasets with/without Different Types

of Disagreement Regularization

Metric Model L0 Lout Lpos
Recall (%)

MDSRMA 10.32 10.19 9.87

MDSRDR 10.01 9.61 9.63

MRR (%)
MDSRMA 3.56 3.50 3.53

MDSRDR 3.49 3.35 3.38

ILD
MDSRMA 1.58 1.61 1.65

MDSRDR 1.63 1.67 1.64

(a) ML100K

Metric Model L0 Lout Lpos
Recall (%)

MDSRMA 16.10 15.67 15.72

MDSRDR 15.92 15.17 13.26

MRR (%)
MDSRMA 6.36 6.21 6.22

MDSRDR 6.26 5.97 5.22

ILD
MDSRMA 1.32 1.46 1.48

MDSRDR 1.48 1.50 1.50

(b) ML1M

Metric Model L0 Lout Lpos
Recall (%)

MDSRMA 5.61 5.19 5.19

MDSRDR 4.83 4.94 4.79

MRR (%)
MDSRMA 2.06 1.79 1.86

MDSRDR 1.93 1.80 1.82

ILD
MDSRMA 1.27 1.34 1.36

MDSRDR 1.30 1.34 1.32

(c) Tafeng

Metric Model L0 Lout Lpos
Recall (%)

MDSRMA 15.05 14.99 14.78

MDSRDR 15.05 14.88 14.89

MRR (%)
MDSRMA 8.04 7.95 7.86

MDSRDR 8.01 7.95 8.00

ILD
MDSRMA 0.82 0.88 0.93

MDSRDR 0.90 0.94 0.91

(d) Tmall

algorithm [15], which is an unsupervised learning method. It aims to narrow down the distance
among items within the same cluster in an iterative way. In most of the experiments with dynamic
routing, the number of iterations is often set to 3 (we also set it to 3 in our experiments) [28].
However, the dynamic routing algorithm may not be able to converge to a good clustering re-
sult within this number of iterations. In this case, the disagreement regularization can provide
assistance to the dynamic routing algorithm by enlarging the distance between interests represen-
tations. Since the number of latent interests is small, it would not cost too much calculation when
applying the disagreement regularization.

6.5 Effect of Maximum Entropy Regularization

To analyze the influence of the maximum entropy regularization LRL
ME

on MDSR, we consider the
following IDP loss variant for comparison:

IDPRL
loss
= λeLRL

rel
+ LRL

div
+ LRL

Dis
+ λMELRL

ME
, (25)

where LRL
ME

is weighted by the parameter λME . We test the performance of MDSR variants with
λME = 0.0, 0.5, and 1.0, respectively. The results are reported in Table 6.

We can see that LRL
ME

can help improve the performance of MDSRMA in terms of both accu-
racy and diversity on all datasets. Specifically, on the e-commerce datasets, the performance of
MDSRMA gets more improvements on diversity than on accuracy. For example, when comparing
λME=1.0 with λME=0.0, MDSRMA shows 5.43% improvements in terms of ILD while 1.36% improve-
ments in terms of Recall on the Tafeng dataset. On the Tmall dataset, the improvements are 4.49%
and 0.89% in terms of ILD and Recall, respectively. This demonstrates that the maximum entropy
regularization can alleviate the issue that one interest dominates and hereby can help to improve
the diversification performance.

Similar results can be found for MDSRDR except that, on the ML100K dataset, LRL
ME

leads to
a slight drop in the accuracy performance. This might be because the maximum entropy regu-
larization forces the model to treat multiple interests equally. However, users tend to have one
main interest when choosing movies to watch next, thus MDSRDR cannot capture the main inter-
est well with the maximum entropy regularization. Additionally, the time gap between adjacent
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Table 6. Performance of MDSR on Four Datasets with Different Weights of Maximum

Entropy Regularization

Metric Model λME = 0.0 λME = 0.5 λME = 1.0

Recall (%)
MDSRMA 9.61 9.85 9.92

MDSRDR 9.92 9.64 9.42

MRR (%)
MDSRMA 3.39 3.51 3.54

MDSRDR 3.41 3.38 3.29

ILD
MDSRMA 1.61 1.65 1.64

MDSRDR 1.62 1.67 1.65

(a) ML100K

Metric Model λME = 0.0 λME = 0.5 λME = 1.0

Recall (%)
MDSRMA 13.94 15.68 15.64

MDSRDR 15.00 15.14 15.17

MRR (%)
MDSRMA 5.33 6.21 6.28

MDSRDR 5.98 5.98 6.02

ILD
MDSRMA 1.41 1.49 1.48

MDSRDR 1.44 1.50 1.49

(b) ML1M

Metric Model λME = 0.0 λME = 0.5 λME = 1.0

Recall (%)
MDSRMA 5.12 5.19 5.19

MDSRDR 4.97 4.97 4.93

MRR (%)
MDSRMA 1.88 1.85 1.89

MDSRDR 1.65 1.80 1.73

ILD
MDSRMA 1.29 1.36 1.36

MDSRDR 1.30 1.34 1.36

(c) Tafeng

Metric Model λME = 0.0 λME = 0.5 λME = 1.0

Recall (%)
MDSRMA 14.58 14.71 14.85

MDSRDR 14.72 14.87 14.93

MRR (%)
MDSRMA 7.73 7.83 7.84

MDSRDR 7.83 7.93 7.94

ILD
MDSRMA 0.89 0.93 0.93

MDSRDR 0.90 0.93 0.93

(d) Tmall

Fig. 6. An example of movies recommended by the MDSR models and NARM.

interactions on the ML100K dataset is larger than that on Tafeng and Tmall, so previous behavior
and multiple interests have less influence on users’ current interactions on the ML100K dataset.

6.6 Case Study

In this subsection, we give a case study from the test set of the ML100K dataset to show the rec-
ommendations generated by different MDSR variants; see Figure 6. The first sequence in Figure 6
shows 9movies that the user has watched, and the next two lists show the top 10 recommendations
generated by MDSRDR and MDSRMA, respectively. The last list shows the top 10 recommendations
by NARM. The ground-truth item, is marked in a red box.
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Table 7. Complexity Analysis

Model Computational complexity

MDSRMA O (nd2 +Mnd2 +Mnd + Nd2 + NMd + NMd2)
MDSRDR O (nd2 + RMnd2 + RM2nd + Nd2 + NMd + NMd2)
NARM O (nd2 + nd2 + nd )

Based on the user’s historical interactions, we see that, recently, the user mostly favors movies
with Action, Adventure, Sci-Fi, and Children genres. But the user also shows interest in Comedy,
Thriller, Musical, and Romance. The items recommended by neural attentive recommendation ma-
chine (NARM) mainly belong to the Action, Adventure and Sci-Fi genres, e.g., most of them are
actionmovies, which is close to the recent interest of this user. But NARM ignores other genres that
are also reflected in the user’s watching behavior, e.g., the ones with red boxes in Figure 6. In con-
trast, both MDSR variants accommodate multiple interests and diversify the list of recommended
movies with Action, Adventure, Sci-Fi, Children, Comedy, Thriller, Musical, and Romance genres.
This indicates that MDSR cannot only extract users’ multiple interests, but also produce diversi-
fied recommendations to cover and satisfy those interests. Besides, MDSR also identifies the most
important interest and assigns a high probability to the right one. For example, the MDSRDR model
returns the ground-truth item, at the first position in the recommendation list; for the MDSRMA

model, the ground-truth item, is ranked at the second position in the recommendation list; for the
baseline model NARM, the ground-truth item, is ranked at the first position in the recommenda-
tion list. Thus it also demonstrates that MDSR can achieve the competitive performance in terms
of recommendation accuracy with the baseline model.

6.7 Computational Complexity Analysis

In this section, we give a brief analysis of the computational complexity of our proposed MDSR
models with multi-head attention mechanism and dynamic routing algorithm as well as the base-
line model NARM in Table 7, respectively. For convenience, we make the following settings. The
dimensions of item, embeddings and hidden layers are set to d , the length of a user’s behavior
sequence is n, the number of latent interests is M , the number of recommendations is N , and the
number of iterations for dynamic routing algorithm is R. As M � d , N � d and R � d , we can
reduce some parts of the calculation.
The computation complexity of the sequence encoder module is: nd2; the Multi-head attention-

based IIM module isMnd2 +Mnd ; the Dynamic routing-based IIM module is RMnd2 +RM2nd ; the
IDP decoder is Nd2 + NMd + NMd2. It should be noted that except the GRU and the Dynamic
routing related components that need to be executed in a recurrent way, other components in the
IDP decoder and the Multi-head attention-based IIM module can be computed in a parallel way.
Comparing the computational complexity of the three models, we can find that the complexity of
MDSR is higher than NARM, which mainly comes from the IDP decoder module. We may focus
on this component and try to reduce the complexity by using self-attention mechanism instead of
GRU or applying some efficiency improving techniques in our future work.

7 CONCLUSION AND FUTURE WORK

In this article, we have regarded the sequential recommendation task as a list generation process
and proposed the MDSR model. We have introduced an IIM module to extract users’ multiple
interests and an IDP decoder to produce diversified recommendations satisfying those interests
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gradually. We have designed an IDP loss to supervise the model to consider accuracy and diversi-
fication simultaneously during training.
Comprehensive experiments have been conducted on four datasets. The results have shown that

MDSR significantly outperforms the state-of-the-art baselines regarding recommendation diver-
sity while keeping competitive accuracy performance. We have analyzed the influence of different
implementation strategies for the IIM module, the tradeoff parameter, the number of interests, as
well as different disagreement regularization and maximum entropy regularization on our model’s
performance. We have also included a case study to show how different modules affect the recom-
mendation results with a concrete example. We found that MDSRMA is superior to MDSRDR in
terms of accuracy while MDSRDR outperforms MDSRMA in terms of diversity; the disagreement
regularization can both help to improve the performance of MDSR in terms of diversity without
much sacrifice in accuracy; and the maximum entropy regularization can help to improve the per-
formance of MDSR in terms of not only accuracy but also diversity. The case study illustrates that
MDSR can not only mine users’ multiple interests but also produce diverse recommendations to
cover and satisfy those interests.
More broadly, our work can be applied to other recommendation tasks for which additional

constraints may be applicable, e.g., shared-account recommendations, where the logged behavior
may have been produced by multiple users in different periods and thus there multiple interests
might be reflected in the sequential behavior [23, 35].

There are various limitations of our work that need to be addressed in the future. First, in MDSR,
there is a tradeoff parameter controlling the importance of accuracy vs. diversity, i.e., λ, which
should be defined up front. This means that we apply a strategy to provide all users with rec-
ommendations in a constant accuracy-diversity balance. However, users may prefer recommen-
dations with different degrees of diversity. For example, in domains where repeat consumption
is prevalent, such as retail, diversification needs to be used in a very conservative manner, i.e.,
without much exploration [42]. However, for domains such as fashion recommendation, the need
for exploration is high [32]. It may be helpful for us to incorporate some external information,
e.g., category and content information, into our model to adaptively determine the number of in-
terests of each user based his historical interacted items. Second, since our model is based on a
sequence-to-list framework, the computational complexity is higher than prior work based on a
sequence-to-item framework [34]. It is more reasonable for our model to be applied in the ranking
phrase of recommender systems with a small number of candidates, which can help to reduce the
computational cost and improve the time efficiency.
As to future work, we want to explore the performance of MDSR when incorporating other

effective SR models in our sequence encoder module [47, 54]. Second, it is more reasonable to
provide recommendations according to the user’s current needs for diversity [13, 57]. Thus, we
also plan to explore different ways of learning the tradeoff parameter and making it adaptive to
each user. Third, we plan to reduce the computational cost for the training of ourmodel by applying
recent efficiency improving techniques [61].

DATA AND CODE

To facilitate the reproducibility of the reported results, this work only made use of publicly
available data and our experimental implementation is publicly available at https://bitbucket.org/
WanyuChen/idsr/src/master/.

ACKNOWLEDGMENT

We thank the editor-in-chief for her helpful suggestions.

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 20. Publication date: August 2021.

https://bitbucket.org/WanyuChen/idsr/src/master/


20:28 W. Chen et al.

REFERENCES

[1] Adnan Abid, Naveed Hussain, Kamran Abid, Farooq Ahmad, Muhammad Shoaib Farooq, Uzma Farooq, Sher Afzal

Khan, Yaser Daanial Khan, Muhammad Azhar Naeem, and Nabeel Sabir. 2016. A survey on search results diversifica-

tion techniques. Neural Comput. Appl. 27, 5 (2016), 1207–1229.

[2] Gediminas Adomavicius and YoungOk Kwon. 2012. Improving aggregate recommendation diversity using ranking-

based techniques. IEEE Trans. Knowl. Data Eng. 24, 5 (2012), 896–911.

[3] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009. Diversifying search results. In Pro-

ceedings of the 2nd ACM International Conference on Web Search and Data Mining. 5–14.

[4] Azin Ashkan, Branislav Kveton, Shlomo Berkovsky, and Zheng Wen. 2015. Optimal greedy diversity for recommen-

dation. In Proceedings of the 24th International Joint Conference on Artificial Intelligence. 1742–1748.

[5] Jimmy Ba, Jamie Kiros, and Geoffrey Hinton. 2016. Layer normalization. arXiv:1607.06450.

[6] Sujoy Bag, Abhijeet Ghadge, and Manoj Kumar Tiwari. 2019. An integrated recommender system for improved accu-

racy and aggregate diversity. Comput. Industr. Eng. 130 (2019), 187–197.

[7] Betru Basiliyos, Tilahun, Onana Charles, Awono, and Batchakui Bernabe. 2017. Deep learning methods on recom-

mender system: A survey of state-of-the-art. Int. J. Comput. Appl. 162, 10 (2017), 17–22.

[8] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, diversity-based reranking for reordering documents

and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. 335–336.

[9] Laming Chen, Guoxin Zhang, and Hanning Zhou. 2018. Fast greedy map inference for determinantal point process

to improve recommendation diversity. In Proceedings of the 32nd Annual Conference on Neural Information Processing

Systems. 5627–5638.

[10] Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, and Maarten de Rijke. 2020. Improving end-to-end sequential recommen-

dations with intent-aware diversification. In Proceedings of the 29th ACM International Conference on Information and

Knowledge Management. 175–184.

[11] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha. 2018. Sequential

recommendation with user memory networks. In Proceedings of the 11th ACM International Conference on Web Search

and Data Mining. 108–116.

[12] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. 2017. Learning to recommend accurate and

diverse items. In Proceedings of the 26th International Conference on World Wide Web. 183–192.

[13] Tommaso Di Noia, Jessica Rosati, Paolo Tomeo, and Eugenio Di Sciascio. 2017. Adaptive multi-attribute diversity for

recommender systems. Inf. Sci. 382–383 (2017), 234–253.

[14] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the International Conference on Artificial Intelligence and Statistics (AI&Statistics’10). 249–256.

[15] John A. Hartigan and M. Anthony Wong. 1979. A k-Means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.)

28, 1 (1979), 100–108.

[16] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based rec-

ommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management.

843–852.

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based recommendations

with recurrent neural networks. In Proceedings of the 4th International Conference on Learning Representations. 1–10.

[18] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. 2016. Parallel recurrent neural net-

work architectures for feature-rich session-based recommendations. In Proceedings of the 10th ACM Conference on

Recommender Systems. 241–248.

[19] Geoffrey Hinton, Alex Krizhevsky, and Sida Wang. 2011. Transforming auto-encoders. In Proceedings of the Interna-

tional Conference on Artificial Neural Networks 2011. 44–51.

[20] Geoffrey E. Hinton, Sara Sabour, and Nicholas Frosst. 2018. Matrix Capsules with EM routing. In Proceedings of the

Sixth International Conference on Learning Representations.

[21] Liang Hu, Longbing Cao, Shoujin Wang, Guandong Xu, Jian Cao, and Zhiping Gu. 2017. Diversifying personalized

recommendation with user-session context. In Proceedings of the 26th International Joint Conference on Artificial Intel-

ligence (IJCAI’17). 1858–1864.

[22] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing inter-

nal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning. 448–456.

[23] Jyun Yu Jiang, Cheng Te Li, Yian Chen, and Wei Wang. 2018. Identifying users behind shared accounts in online

streaming services. In Proceedings of the 41st International ACM SIGIR Conference on Research and Development in

Information Retrieval. 65–74.

[24] Wang-Cheng Kang and Julian J. McAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the 18th

IEEE International Conference on Data Mining. 197–206.

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 20. Publication date: August 2021.



Multi-interest Diversification for End-to-end Sequential Recommendation 20:29

[25] Yejin Kim, Kwangseob Kim, Chanyoung Park, and Hwanjo Yu. 2019. Sequential and diverse recommendation with

long tail. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2740–2746.

[26] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980. Retrieved from

https://arxiv.org/abs/1412.6980.

[27] Matev Kunaver and Toma Porl. 2017. Diversity in recommender systems a survey. Knowl.-Based Syst. 123, 1 (2017),

154–162.

[28] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang, Guoliang Kang, Qiwei Chen, Wei Li, and

Dik Lun Lee. 2019. Multi-interest network with dynamic routing for recommendation at tmall. In Proceedings of the

28th ACM International Conference on Information and Knowledge Management. 2615–2623.

[29] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. Neural attentive session-based

recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 1419–

1428.

[30] Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu, and Tong Zhang. 2018. Multi-head attention with disagreement

regularization. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2897—2903.

[31] Shangsong Liang, Emine Yilmaz, Hong Shen, Maarten de Rijke, andW. Bruce Croft. 2017. Search result diversification

in short text streams. ACM Trans. Inf. Syst. 36, 1 (2017), 8.

[32] Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma, and Maarten de Rijke. 2020. Explainable fashion rec-

ommendation with joint outfit matching and comment generation. IEEE Trans. Knowl. Data Eng. 32, 8 (Aug. 2020),

1502–1516.

[33] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: Short-term attention/memory priority model

for session-based recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 1831–1839.

[34] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu. 2020. Disentangled self-supervision

in sequential recommenders. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. 483–491.

[35] MuyangMa, Pengjie Ren, Yujie Lin, Zhumin Chen, Jun Ma, and Maarten de Rijke. 2019. π -Net: A parallel information-

sharing network for cross-domain shared-account sequential recommendations. In Proceedings of the 42nd Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval. 685–694.

[36] Richard Mccreadie, Rodrygo L. T. Santos, Craig Macdonald, and Iadh Ounis. 2018. Explicit diversification of event

aspects for temporal summarization. ACM Trans. Inf. Syst. 36, 3 (2018), 25.

[37] Katja Niemann andMartinWolpers. 2013. A new collaborative filtering approach for increasing the aggregate diversity

of recommender systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. 955–963.

[38] Lijing Qin and Xiaoyan Zhu. 2013. Promoting diversity in recommendation by entropy regularizer. In Proceedings of

the 22nd International Joint Conference on Artificial Intelligence. 2698–2704.

[39] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-aware recommender systems. Comput.

Surv. 51, 4, Article 66 (2018), 36 pages.

[40] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi. 2017. Personalizing session-based

recommendations with hierarchical recurrent neural networks. In Proceedings of the 11th ACM Conference on Recom-

mender Systems. 130–137.

[41] Lakshmanan Rakkappan andVaibhav Rajan. 2019. Context-aware sequential recommendationswith stacked recurrent

neural networks. In Companion Proceedings of the 2019 World Wide Web Conference. 3172–3178.

[42] Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten de Rijke. 2019. RepeatNet: A repeat aware

neural recommendation machine for session-based recommendation. In Proceedings of the 33rd AAAI Conference on

Artificial Intelligence. 4806–4813.

[43] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. 2017. Dynamic routing between capsules. In Proceedings of the

31st Annual Conference on Neural Information Processing Systems. 3856–3866.

[44] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommen-

dation algorithms. In Proceedings of the 10th International Conference on World Wide Web. 285–295.

[45] Chaofeng Sha, Xiaowei Wu, and Junyu Niu. 2016. A framework for recommending relevant and diverse items. In

Proceedings of the 25th International Joint Conference on Artificial Intelligence. 3868–3874.

[46] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential recom-

mendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management. 1441–1450.

[47] Jiaxi Tang andKeWang. 2018. Personalized Top-N sequential recommendation via convolutional sequence embedding.

In Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 565–573.

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 20. Publication date: August 2021.

https://arxiv.org/abs/1412.6980


20:30 W. Chen et al.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Ł ukasz Gomez, Aidan Nand Kaiser, and

Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural Information

Processing Systems. 5998–6008.

[49] Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Ma Jun, and Maarten de Rijke. 2019. A collaborative session-

based recommendation approach with parallel memory modules. In Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval. 345–354.

[50] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet Orgun. 2019. Sequential recom-

mender systems: Challenges, progress and prospects. In Proceedings of the 28th International Joint Conference on Arti-

ficial Intelligence (IJCAI’19). International Joint Conferences on Artificial Intelligence Organization, 6332–6338.

[51] ShoujinWang, LiangHu, YanWang, QuanZ. Sheng,MehmetOrgun, and LongbingCao. 2019.Modelingmulti-purpose

sessions for next-item recommendations via mixture-channel purpose routing networks. In Proceedings of the 28th

International Joint Conference on Artificial Intelligence. 3771–3777.

[52] Qiong Wu, Yong Liu, Chunyan Miao, Yin Zhao, Lu Guan, and Haihong Tang. 2019. Recent advances in diversified

recommendation. arXiv:1905.06589. Retrieved from https://arxiv.org/abs/1905.06589.

[53] Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang, and Philip Yu. 2018. Zero-shot user intent detection via capsule

neural networks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 3090–3099.

[54] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S.Sheng S.Sheng, Zhiming Cui, Xiaofang Zhou, and Hui

Xiong. 2019. Recurrent convolutional neural network for sequential recommendation. In Companion Proceedings of

the 2019 World Wide Web Conference. 3398–3404.

[55] Min Yang, Wei Zhao, Jianbo Ye, Zeyang Lei, Zhou Zhao, and Soufei Zhang. 2018. Investigating capsule networks with

dynamic routing for text classification. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing. 3110–3119.

[56] Yazhou Yao, Fumin Shen, Jian Zhang, Li Liu, Zhenmin Tang, and Ling Shao. 2019. Extracting privileged information

for enhancing classifier learning. IEEE Trans. Image Process. 28, 1 (Jan. 2019), 436–450.

[57] Ting Yu, Junpeng Guo, Wenhua Li, Harry Jiannan Wang, and Ling Fan. 2019. Recommendation with diversity: An

adaptive trust-aware model. Decis. Supp. Syst. 123 (2019), 113073.

[58] Mi Zhang and Neil Hurley. 2008. Avoiding monotony: Improving the diversity of recommendation lists. In Proceedings

of the ACM Conference on Recommender Systems. 123–130.

[59] Xiao Zhang, Changlin Mei, Degang Chen, and Jinhai Li. 2016. Feature selection in mixed data: A method using a novel

fuzzy rough set-based information entropy. Pattern Recogn. 56 (2016), 1–15.

[60] Wei Zhao, Haiyun Peng, Steffen Eger, Erik Cambria, and Min Yang. 2019. Towards scalable and reliable capsule net-

works for challenging NLP applications. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics. 1549–1559.

[61] Chang Zhou, Jianxin Ma, Jianwei Zhang, Jingren Zhou, and Hongxia Yang. 2020. Contrastive learning for debiased

candidate generation in large-scale recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD’21). 14 pages.

[62] Andrew Zimdars, David Maxwell Chickering, and Christopher Meek. 2001. Using temporal data for making recom-

mendations. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence. 580–588.

Received December 2020; revised April 2021; accepted June 2021

ACM Transactions on Information Systems, Vol. 40, No. 1, Article 20. Publication date: August 2021.

https://arxiv.org/abs/1905.06589

