
A Unified Generative Retriever for Knowledge-Intensive
Language Tasks via Prompt Learning

Jiangui Chen
Ruqing Zhang∗

CAS Key Lab of Network Data
Science and Technology, ICT, CAS
University of Chinese Academy of

Sciences
Beijing, China

{chenjiangui18z,zhangruqing}@ict.ac.cn

Jiafeng Guo†
CAS Key Lab of Network Data

Science and Technology, ICT, CAS
University of Chinese Academy of

Sciences
Beijing, China

guojiafeng@ict.ac.cn

Maarten de Rijke
University of Amsterdam

Amsterdam, The Netherlands
m.derijke@uva.nl

Yiqun Liu
Department of Computer Science and
Technology, Tsinghua University

Beijing, China
yiqunliu@tsinghua.edu.cn

Yixing Fan
CAS Key Lab of Network Data

Science and Technology, ICT, CAS
University of Chinese Academy of

Sciences
Beijing, China

fanyixing@ict.ac.cn

Xueqi Cheng
CAS Key Lab of Network Data

Science and Technology, ICT, CAS
University of Chinese Academy of

Sciences
Beijing, China
cxq@ict.ac.cn

ABSTRACT
Knowledge-intensive language tasks (KILTs) benefit from retriev-
ing high-quality relevant contexts from large external knowledge
corpora. Learning task-specific retrievers that return relevant con-
texts at an appropriate level of semantic granularity, such as a
document retriever, passage retriever, sentence retriever, and entity
retriever, may help to achieve better performance on the end-to-end
task. But a task-specific retriever usually has poor generalization
ability to new domains and tasks, and it may be costly to deploy a
variety of specialised retrievers in practice.

We propose a unified generative retriever (UGR) that combines
task-specific effectiveness with robust performance over different
retrieval tasks in KILTs. To achieve this goal, we make two major
contributions: (i) To unify different retrieval tasks into a single
generative form, we introduce an n-gram-based identifier for rele-
vant contexts at different levels of granularity in KILTs. And (ii) to
address different retrieval tasks with a single model, we employ a
prompt learning strategy and investigate three methods to design
prompt tokens for each task. In this way, the proposed UGR model
can not only share common knowledge across tasks for better gen-
eralization, but also perform different retrieval tasks effectively by
distinguishing task-specific characteristics.
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We train UGR on a heterogeneous set of retrieval corpora with
well-designed prompts in a supervised and multi-task fashion. Ex-
perimental results on the KILT benchmark demonstrate the effec-
tiveness of UGR on in-domain datasets, out-of-domain datasets,
and unseen tasks.1
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1 INTRODUCTION
Knowledge-intensive language tasks (KILTs), such as fact check-
ing [41] and slot filling [27], have gained much attention in recent
years. They require that knowledge from large external corpora is
surfaced [34]. Practical solutions to these tasks usually combine a
search system with a machine reader [34]. Given an input query,
the search component retrieves a limited subset of relevant contexts
from a given corpus. Then, the reader component examines the
retrieved information to perform the end task. High-quality rele-
vant contexts retrieved by the search component are the foundation
to support end tasks. Importantly, the granularity of relevant con-
texts required by KILTs varies from task to task, e.g., documents,

1The code can be found at https://github.com/ict-bigdatalab/UGR.
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Figure 1: Overview of the unified generative retriever (UGR), a Seq2Seq model that consumes queries and produces identifiers
of relevant contexts. We design n-gram-based identifiers for relevant contexts at different granularities to unify different
retrieval tasks. We employ a prompt learning strategy and design prompt tokens for each task to capture task specifications.

passages, sentences, and entities. For instance, for fact checking
one needs to retrieve a set of documents [34] or passages [41] to
verify the truthfulness of a claim. Open-domain question answering
requires that we find a set of candidate sentences containing cor-
rect answer spans from the corpus [11, 22, 26, 46]. And for entity
linking one needs to search the target entity from a knowledge
source based on the given mention and its context [16, 19].
Retrieval tasks. Retrieval tasks that support KILTs can be grouped
into four types: document retrieval, passage retrieval, sentence re-
trieval, and entity retrieval. Therefore, how to effectively perform
different retrieval tasks at different levels of granularity becomes a
critical challenge for KILT practitioners. Without loss of generality,
previous efforts on search for KILTs come in two kinds: (i) The
first one simply employs a single document retriever to support the
downstream readers for all the KILTs, ignoring the different levels
of granularity of relevant contexts each task actually needs [8, 32].
This method can share useful features or knowledge by training
a universal document retriever across different KILTs. However,
the returned documents are often too coarse-grained to support
many KILTs [34]. (ii) The second one focuses on learning specific re-
trievers for different retrieval tasks to support KILTs. This includes
document retrievers [29, 34], passage retrievers [2, 23], sentence
retrievers [22, 26, 46], and entity retrievers [14, 44]. Although task
specification contributes to improved retrieval performance, such
retrievers often have poor generalization abilities to out-of-domain
data and unseen tasks [32, 34]. A possible reason is that a task-spe-
cific retriever may overemphasize the specific knowledge and data
bias in each task. Furthermore, deploying multiple task-specific
retrievers over the same corpus, i.e., Wikipedia in KILTs, may be
prohibitive in terms of memory or computational costs. Can we
develop a search system that has the merits of both types of approach
while avoiding their disadvantages?

A unified generative retriever. Building on the vision expressed
in [33], we propose to train a single generative model to perform
a variety of information retrieval (IR) tasks, a model that directly
generates the identifiers of a set of relevant contexts given an input
query. Such a generative retrieval model for KILTs can not only
share common knowledge across different tasks, like the universal
document retriever, but it also returns relevant contexts at an appro-
priate level of granularity for different tasks, like the task-specific
retrievers. There have so far been some studies in this direction,

but they only applied the idea of designing a generative IR system
for a specific retrieval task [see, e.g., 2, 5, 8, 40].

In this work, we put the idea of a generative IR model into
practice for KILTs. We introduce the unified generative retriever
(UGR), a single retriever that can perform robustly across a variety
of retrieval tasks in KILTs (see Figure 1). We need to solve two
major challenges when building such a generative model: (i) How
to unify different retrieval tasks that return relevant contexts at
different levels of granularity, into a single generative form? And
(ii) how to properly learn different retrieval tasks with a single
model so that it can capture task specifications while obtaining the
shared knowledge?

To solve the first challenge, we propose n-gram-based identifiers
to unify different retrieval tasks that target different relevant con-
texts, i.e., documents, passages, sentences, and entities. The idea
is to leverage the important n-grams in a context as its possible
identifiers without the need for appropriate metadata and human
annotation. We first concatenate the query and its relevant context
together, and use BERT [24] to encode the concatenated text. Then,
we directly sample important n-grams from an n-gram distribution
as the identifier by summing up and re-normalizing the vanilla
[CLS]-token attention weights over distinct n-grams. At inference
time, we exploit an FM-Index [12] with constrained beam search
[8] to ensure that each generated n-gram occurs at least once in the
corpus. Moreover, we introduce an interactive scoring function on
multiple generated n-grams to break ties among candidate contexts
whose highest scoring n-gram is the same.

To solve the second challenge, we focus on training the retriever
in a supervised and massively multi-task fashion. Specifically, mo-
tivated by prompt learning [30], we propose to plug a task-specific
instruction, i.e., the prompt, into the query as the model input. Con-
cretely, we carefully investigate three methods to design a prompt
token for each retrieval task to keep specialized knowledge and al-
leviate the blurring-out problem [37]. Then, we train our model via
a standard Seq2Seq objective [38], i.e., maximizing the likelihood
of the output identifier with teacher forcing, over a training mix-
ture consisting of the four retrieval tasks specified in well-designed
prompts. This way, on the one hand, multi-task supervision steers
our model to explore the common knowledge for better generaliza-
tion instead of overemphasizing task-specific knowledge. On the
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other hand, the task-specific prompts help our model to perform a
specific retrieval task.
Empirical findings.We conduct an empirical study on the com-
prehensive KILT benchmark [34] with eleven datasets that require
retrieval at four levels of granularity. Our experimental results show
that compared with prevailing baselines, UGR yields better retrieval
performance on in-domain datasets, out-of-domain datasets and
unseen tasks. In addition, the contexts retrieved by UGR contribute
to new state-of-the-art downstream results on multiple datasets
when paired with existing reader models.

2 RELATEDWORK
Knowledge-intensive language tasks. Knowledge-intensive lan-
guage tasks (KILTs) require access to extensive world knowledge
due to their nature. For instance, a dialogue system needs to find
the proper answer from a knowledge source for a given context [9].
Existing methods for KILT typically contain a search component
and a reader component [4, 22, 26, 41, 46]. The search component
retrieves relevant contexts from large knowledge sources, and the
reader component produces final results by capturing the rela-
tionship between the input and the retrieved information. Various
KILT datasets have been proposed, with different formats and as-
sumptions [9, 26, 27, 41]. The knowledge sources they depend on
range from different versions of Wikipedia to entirely different
corpora. To enable comparisons on end-to-end tasks, a comprehen-
sive benchmark, knowledge-intensive language task (KILT) [34], has
been proposed. It formulates several KILTs in a common format
and grounds them in the same snapshot of Wikipedia, and spans
five KILT tasks: fact checking, open domain question answering,
slot filling, entity linking, and dialogue.
Information retrieval for KILT. Retrieving relevant contexts
from a large corpus is a crucial step for KILTs. Existing work can be
grouped into two lines. First, some prior work proposes to search a
set of relevant documents with respect to the given query [4, 29, 34,
36]. While such methods benefit from sharing knowledge among
multiple document retrieval tasks, they ignore the granularity of
relevant contexts each KILT needs. Such methods are ill-suited for
many KILTs, as the tasks require more fine-grained contexts to
produce their final answers. Another line of research develops task-
specific models to retrieve relevant contexts at different levels of
granularity [1, 23, 32, 35, 44]. However, task-specific training likely
hurts the generalization ability of the model to different tasks.

Motivated by the success of unifying NLP tasks in a single gen-
erative model (e.g., T0 [37], T5 [35] and FLAN [43]), Metzler et al.
[33] envision a generative approach to IR that encodes all informa-
tion in a corpus within the model parameters. The proposal is to
learn a Seq2Seq model to map a query to a list of relevant contexts,
typically represented by short strings called identifiers. Generat-
ing short identifiers rather than original long contexts, promises
greater ease of optimization and memorization for generative mod-
els [21], and is relatively easy to constrain beam search decoding.
Compared with modularized pipelines [14, 23, 29, 32, 36], a gen-
erative formulation has several advantages: (i) For effectiveness,
a single generative model can encode the global information in a
corpus and be easily optimized towards the global objective, while
the pipeline framework models each document independently and

has difficulty in end-to-end optimization. (ii) For efficiency, the
storage footprint and computational cost are greatly reduced by
overcoming the embedding space bottleneck and large document
index that comes with a pipeline framework.

There have been some initial explorations to operationalize a
generative vision of IR [2, 5, 6, 8, 40, 42, 47]. For example, Zhou et al.
[47] assign each document an arbitrary unique identifier and train
relations between query and identifiers. Some researchers [5, 8]
identify Wikipedia pages by their titles and induce structure in the
search space, which can be easier to memorize than unstructured
identifiers. Nonetheless, existing generative IR models have all been
proposed for a specific retrieval task, e.g., document [40], passage
[2], and entity retrieval [8]. Besides, the identifiers are designed
individually, making it difficult to adapt the model. In contrast, in
this paper, we develop a unified generative retriever for KILTs.
Prompt learning. Recently, we have witnessed the bloom of pre-
trained language models (PLMs) in many NLP tasks [7, 32, 39].
PLMs are usually pre-trained with general language modeling tasks
and then fine-tuned with different objectives on downstream tasks.
To alleviate the discrepancy between pre-training and fine-tuning,
prompt learning has been proposed [30]. Prompt learning reformu-
lates the fine-tuning data into a format identical to pre-training to
leverage the implicit knowledge stored in PLMs. Recently, the devel-
opment of text-to-text PLMs has shown that prompt learning could
achieve notable results [13, 35, 37, 43]. For example, Wei et al. [43]
fine-tune language models on a collection of datasets described via
natural language instruction templates, and substantially improved
the generalization ability of the model. In this work, we formulate
the four retrieval tasks in the form of prompt learning, and design
specific prompts for each task.

3 OUR APPROACH
In this section, we introduce the unified generative retriever (UGR)
that performs robustly across a variety of retrieval tasks for KILTs.

3.1 Retrieval task description
In this work, we make use of the KILT benchmark [34], where all
tasks require a retriever to fetch relevant contexts from a knowledge
source, i.e., the same snapshot of Wikipedia, to support the final
downstream task. The retrieval tasks in KILT can be categorized
into four classes according to the level of granularity of relevant
contexts: document retrieval, passage retrieval, sentence retrieval,
and entity retrieval. To put the idea of generative IR into practice
for KILTs, we formulate the four retrieval tasks as a unified Seq2Seq
problem, i.e., directly generating identifiers of relevant contexts
with respect to the given query.

Formally, let C = {𝐶1,𝐶2, . . . } denote a knowledge corpus used
for a retrieval task, 𝐶𝑖 = {𝑐1, 𝑐2, . . . , 𝑐 |𝐶 | } denotes a textual context,
which could be a document, a passage, a sentence, or an entity, and
𝑅𝑖 = {𝑟1, 𝑟2, . . . , 𝑟 |𝑅 | } denotes the identifier of context 𝐶𝑖 . Given
a query 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞 |𝑄 | } with |𝑄 | tokens, different retrieval
tasks can be uniformly formulated as a Seq2Seq problem,

𝑟𝑘 = 𝑀𝑜𝑑𝑒𝑙 (𝑄, 𝑟1, 𝑟2, . . . , 𝑟𝑘−1;𝜃 ), (1)
where Model denotes the generative retriever accomplished by
decoding relevant context identifiers given an input query and 𝜃
denotes the model parameters.
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3.2 Overview of the approach
Based on the above task formulation, we develop a novel unified
generative retriever (UGR) to serve a variety of retrieval tasks in
KILTs. To implement such a unified approach, we need to address
two major challenges: (i) how to unify different retrieval tasks into
a single generative form (Section 3.3), and (ii) how to properly
specialize for different retrieval tasks when using a single model
(Section 3.4). In what follows, we will introduce the two parts in
detail, as well as the training and inference process (Section 3.5).
The overall architecture of UGR is illustrated in Figure 1.

3.3 N-gram-based identifiers
In this section we propose how to represent relevant contexts gener-
ated in different retrieval tasks, i.e., documents, passages, sentences,
and entities, in a unified way. A good identifier should have the fol-
lowing properties: (i) It should capture the semantic information of
its associated context and equip the identifier space with semantic
structure. (ii) It should be cost-efficient to be created, ideally with-
out the need for additional human supervision or the availability
of special metadata. And (iii) it should be as unique as possible to
distinguish different contexts.

To satisfy the above requirements, we present n-gram-based
identifiers to represent different contexts in a fully unsupervised
way. The key idea is to use the important n-grams occurring in
a context as its identifiers without the need for any structure in
the search space. An example of unified n-gram-based identifiers
is shown in Figure 2. During the training phase, the importance
of each n-gram is estimated based on BERT’s [CLS]-token atten-
tion [24], which includes three main steps: (i) n-gram importance,
(ii) n-gram distribution, and (iii) important n-gram sampling.
N-gram importance. We first concatenate the query 𝑄 (note
that a query is given in the training phase) and its relevant con-
text 𝐶 with special delimiter tokens as a single input sequence,
i.e., [CLS]+𝑄+[SEP]+𝐶+[SEP], and feed it into the original BERT
model to get a 𝑑-dimensional hidden vector of [CLS], denoted as
h[CLS]. Then, we obtain the attention weight 𝑎ℎ

𝑖
of the 𝑖-th token

(i.e., 1-gram) 𝑐𝑖 in context𝐶 from the ℎ-th attention head for [CLS]
in BERT’s final layer, i.e.,

𝑎ℎ𝑖 = softmax ©«
𝑊 ℎ
𝑞𝑢𝑒𝑟𝑦h[CLS] ·𝑊 ℎ

𝑘𝑒𝑦
h𝑖√︁

𝑑/𝐻
ª®¬ , (2)

where𝐻 is the number of self-attention heads and𝑊 ℎ
𝑞𝑢𝑒𝑟𝑦 ∈ R𝑑/ℎ×𝑑 ,

𝑊 ℎ
𝑘𝑒𝑦

∈ R𝑑/ℎ×𝑑 are the learnedmatrices;h𝑖 denotes a𝑑-dimensional
hidden vector of the 𝑖-th token 𝑐𝑖 . The final token importance 𝑎𝑖 is
computed by averaging the [CLS]-token attention weights across
𝐻 attention heads, i.e., 𝑎𝑖 = 1

𝐻

∑𝐻
ℎ=1 𝑎

ℎ
𝑖
. Then, the importance

for the n-gram 𝑀𝑗 spanning from 𝑐 𝑗 to 𝑐 𝑗+𝑛−1 of 𝐶 is denoted as
𝑤 𝑗 =

1
𝑛

∑𝑗+𝑛−1
𝑖=𝑗

𝑎𝑖 , where 𝑛 is the length of𝑀𝑗 .

N-gram distribution. Generally, an n-gram may appear multiple
times within a context. To mitigate this issue, we first add up the
n-gram importance of the same n-gram𝑀𝑗 over different positions
in 𝐶 , i.e., 𝜋𝑀𝑗

=
∑
𝑀𝑖=𝑀𝑗

𝑤𝑖 , 𝑀𝑖 ∈ 𝐶 . Then, inspired by the term
saturation function in BM25 [36], we compute the distinct n-gram

importance score as, 𝜋𝑀𝑗
=

𝜋𝑀𝑗

𝜌+𝜋𝑀𝑗

, where 𝜌 is a hyperparameter

Steven Paul Jobs (February 24, 1955 – October 5, 2011) 
was an American entrepreneur, industrial designer, 
business magnate, media proprietor, and investor.
[…] In 1985, Jobs was forced out of Apple after a long 
power struggle with the company's board and its then-CEO 
John Sculley […]
In 2003, Jobs was diagnosed with a pancreatic 
neuroendocrine tumor. He died of respiratory arrest 
related to the tumor on October 5, 2011 at the age of 56.

ID for document retrieval 

1. was an American entrepreneur, 
industrial designer  

2. Jobs was forced out of Apple 
3. He died of respiratory arrest 

related

Jobs was born in San Francisco to a Syrian father and a 
German-American mother. He was adopted shortly after his 
birth. Jobs attended Reed College in 1972 before 
withdrawing that same year. In 1974, he traveled through 
India seeking enlightenment and studying Zen Buddhism. 
[…] The Macintosh introduced the desktop publishing 
industry in 1985 with the addition of the Apple LaserWriter, 
the first laser printer to feature vector graphics.

ID for passage retrieval 
1. Jobs was born in San Francisco 

2. he traveled through India 
seeking enlightenment 

3. first laser printer to feature 
vector

He worked closely with English designer Jony Ive to 
develop a line of products that had larger cultural 
ramifications, beginning with the "Think different" 
advertising campaign and leading to the Apple Store, App 
Store, iMac, iPad, iPod, iPhone, iTunes, and iTunes Store.

ID for sentence retrieval 
1. designer Jony Ive 

2. "Think different" advertising

Steve Jobs 
Steven Paul Jobs (February 24, 1955 – October 5, 2011) 
was an American entrepreneur, industrial designer, 
business magnate, media proprietor, and investor […]

ID for entity retrieval 

1. Steve Jobs
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Figure 2: Examples of n-gram-based identifiers for different
contexts in different retrieval tasks.We sample the important
n-grams occurring in a context according to the importance
of each n-gram as its identifiers.

controlling the shape of the saturation curve. Finally, the n-gram
distribution in context 𝐶 is obtained by normalizing the distinct
n-gram importance of all the n-grams in 𝐶 , i.e.,

𝑝 (𝑀𝑗 |𝐶) =
exp(𝜋𝑀𝑗

)∑
𝑀𝑗 ∈𝐶 exp(𝜋𝑀𝑗

) . (3)

Important n-gram sampling. Given a context 𝐶 , we sample 𝑣
important n-grams as its identifiers according to 𝑝 (𝑀𝑗 |𝐶). Accord-
ing to the experiments in Section 5.3, only 0.04% of the documents
collide over the same n-grams in the training phase with 10 10-
grams on the Wikipedia English corpus. Assuming their essential
topics are almost the same, it is reasonable if (very) few documents
share the same identifiers. In this work, we ignore the negligible
identifier repetition problem at the training phase following [2].
As to the inference phase, recall that the KILT benchmark sets the
number of most ground-truth relevant contexts as 1; we solve the
repetition problem for the inference phase in Section 3.5.2.

3.4 Prompt engineering
Different retrieval tasks may compete with one another and thus
“blur out” features learned by individual tasks [17]. To mitigate this
issue, we plug a task-specific prompt into the query as the model
input. Such a prompt could give better descriptions of each task and
stimulate themodel’s capacity to perform a specific task. Concretely,
we design three types of prompts, i.e., discrete, continuous and
hybrid prompts, to encode task-specific knowledge:
• Discrete prompts: Inspired by recent successes in applying dis-
crete prompts in many natural language processing tasks [35, 37,
43], we manually create cloze templates based on the characteris-
tics of each retrieval task. In discrete prompts, prompt tokens are
entirely composed of natural language without additional train-
ing. The discrete prompts designed for four different retrieval
tasks are shown in Table 1.
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Table 1: Discrete prompts for four different retrieval tasks.

Retrieval task Discrete prompt
Document retrieval Find the relevant document:
Passage retrieval Find the relevant passage:
Sentence retrieval Find the relevant sentence:
Entity retrieval Find the relevant entity:

• Continuous prompts: To reduce human efforts for manually
annotating templates so as to obtain discrete prompt, we pro-
pose to automatically learn prompts in continuous space [31].
In continuous prompts, a prompt is a trainable dense vector
instead of natural language text instructions used in discrete
prompts. We utilize a bidirectional long-short term memory net-
work (LSTM) [18] as the prompt encoder to learn the prompt
embedding [31].

• Hybrid prompts: In practice, directly learning a good continu-
ous prompt that can effectively describe the retrieval task, is not
easy since there is no prior information about the retrieval task
other than training data. Therefore, we propose a hybrid prompt
[15] to combine the discrete and continuous prompts. Specifically,
we add anchor texts, e.g., “document,” in prompts instead of using
a prompt encoder to generate a purely continuous vector. This
enforces the model to squeeze the essential information from the
input for different retrieval tasks.

After prompt engineering, the descriptions of each retrieval task
are mapped to specific well-designed prompts. Then, we guide the
generative model to learn the common and shared knowledge on a
mixture of different retrieval tasks phrased as prompts. Besides, the
task-specific prompts stimulate the model capacity in distinguish
different retrieval tasks and achieving good generalization.

3.5 Training and inference
We introduce a multi-task training strategy that augments the
model’s ability with different corpora and the inference process
to efficiently find matching contexts that contain the generated
n-grams.

3.5.1 Multi-task training. In the multi-task training process, each
training sample is represented as 𝑢𝑡

𝑖
= (𝑆𝑡

𝑖
, 𝑄𝑡
𝑖
, 𝑅𝑡
𝑖
), where 𝑡 is the

retrieval task, i.e., document retrieval, passage retrieval, sentence
retrieval, or entity retrieval. 𝑆𝑡

𝑖
is the task-specific prompt for the

𝑖-th input query of task 𝑡 , 𝑄𝑡
𝑖
is the 𝑖-th input query of task 𝑡 , and

𝑅𝑡
𝑖
is the identifier of the 𝑖-th relevant context of task 𝑡 . For each

context, its identifier 𝑅𝑡
𝑖
can be defined by 𝑣 important n-grams.

The model that we propose, UGR, is built on a transformer-based
Seq2Seq model, BART [28]. We train UGR with a standard Seq2Seq
objective, i.e., maximizing the likelihood of the output identifier
strings with teacher forcing, and the parameters of the model are
optimized in an end-to-end manner by the cross entropy loss, i.e.,

L = argmax
𝜃

∑︁
𝑡

∑︁
𝑖

∑︁
𝑘

log 𝑝 (𝑟𝑡
𝑘
| 𝑟𝑡

<𝑘
, 𝑆𝑡𝑖 , 𝑄

𝑡
𝑖 ;𝜃 ), (4)

where 𝜃 denotes the model parameters.

3.5.2 Inference process. For all four retrieval tasks, we construct
an FM-index [12], which provides information on all the contexts in
the given corpus, i.e., Wikipedia. This forces each generated string
to be a valid identifier, i.e., n-grams occurring in all the contexts.

Specifically, an FM-index is an index combining the Burrows-
Wheeler Transform (BWT) [3] with a few small auxiliary data
structures. The core of an FM-index consists of F and L from BWT,
where F is an array of runs and L is the string’s BWT. Because the
relative rank of F and L stays the same, we employ an FM-index
to identify the list of possible token successors with constrained
beam search [8]: (i) Given the starting token, we first use F to find
the contiguous range of rows corresponding to the token. (ii) Then,
we switch to L to examine the same range of rows to obtain the list
of the next valid tokens. And (iii) the valid tokens in F are selected
based on the same ranks in L. By iteratively repeating the above
procedure, we can find a valid n-gram with arbitrary size.

A shortcoming with n-gram-based identifiers is that different
contexts may contain the same important n-grams in document
retrieval, passage retrieval and sentence retrieval. Besides, consider-
ing all generated n-grams can better capture the information within
a context. Entity retrieval does not have this problem, since we use
the unique document titles as identifiers of relevant entities [8].

Therefore, inspired by [2], given a query in the test data, we first
obtain all the candidate contexts that contain the n-grams generated
by beam search and then introduce an interactive scoring function
to rank the candidate contexts, which combines the contribution of
several different n-grams contained in the same context.

Formally, let 𝐹 (𝑀, C) denote the frequency of the n-gram𝑀 in
the corpus C used for the retrieval task. The unconditional n-gram
probabilities can be computed as 𝑝 (𝑀) = 𝐹 (𝑀,C)∑

𝑀∈C |𝑀 | . Then, given
an input query 𝑄 , we obtain the weight of𝑀 by

𝑤 (𝑀,𝑄) = max
(
0, log

𝑝 (𝑀 | 𝑆,𝑄) (1 − 𝑝 (𝑀))
𝑝 (𝑀) (1 − 𝑝 (𝑀 | 𝑆,𝑄))

)
, (5)

where 𝑝 (𝑀 | 𝑆,𝑄) is the probability of the generative model decod-
ing𝑀 conditioned on the query𝑄 and its prompt 𝑆 . Given multiple
generated n-gram identifiers 𝑅, we can obtain its corresponding
contexts and the score of each context 𝐶 for 𝑄 as:

𝑊 (𝐶,𝑄) =
∑︁
𝑅∈𝐾𝐶

𝑤 (𝑅,𝑄)𝛼 · cover(𝑅, 𝐾), (6)

where 𝛼 is a hyperparameter, 𝐾 is the set of all generated n-grams
for 𝑄 and 𝐾𝐶 is the subset of n-grams in 𝐾 that appear in 𝐶 .
cover(𝑅, 𝐾) is defined as, cover(𝑅, 𝐾) = 1 − 𝛽 + 𝛽 · | set(𝑅)\𝑉 (𝐾 ) |

| set(𝑅) | ,

where 𝛽 is a hyperparameter, set(𝑅) is the set of tokens in 𝑅, and
𝑉 (𝐾) is the union of all tokens in 𝐾 with top-𝑔 highest scores. In
this work, we select the context 𝐶 with the highest score𝑊 (𝐶,𝑄)
as the relevant context for the test query 𝑄 .

4 EXPERIMENTAL SETUP
Next, we introduce our experimental settings, including datasets,
baseline methods, evaluation metrics, and implementation details.

4.1 Datasets
We conduct a series of experiments on the KILT benchmark [34].
Detailed statistics of the benchmark datasets are shown in Table 2.
A listing of retrieval datasets grouped by retrieval task is provided
in Table 3, including document retrieval (DR), passage retrieval
(PR), sentence retrieval (SR), and entity retrieval (ER). For each
retrieval task, we construct the datasets that are in the training
mixture (i.e., in-domain datasets) and are not seen during training
(i.e., out-of-domain datasets), respectively.
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Table 2: Statistics of datasets in the KILT benchmark. ‘–’ de-
notes that the task does not provide ground-truth documents
in the training set.

Label Dataset Train size Dev size Test size

FEV FEVER [41] 104,966 10,444 10,100
AY2 AIDA CoNLL-YAGO [19] 18,395 4,784 4,463
WnWi WNED-WIKI [16] – 3,396 3,376
WnCw WNED-CWEB [16] – 5,599 5,543
T-REx T-REx [10] 2,284,168 5,000 5,000
zsRE Zero Shot RE [27] 147,909 3,724 4,966
NQ Natural Questions [26] 87,372 2,837 1,444
HoPo HotpotQA [46] 88,869 5,600 5,569
TQA TriviaQA [22] 61,844 5,359 6,586
ELI5 ELI5 [11] – 1,507 600
WoW Wizard of Wikipedia [9] 63,734 3,054 2,944

4.2 Baselines
To verify the effectiveness of UGR, we first implement variants
of the model: (i) BART𝑠𝑝 is a basic BART𝑙𝑎𝑟𝑔𝑒 model that uses
all datasets in each retrieval task listed in Table 2 for training. It
takes the query as input and the n-gram-based identifiers as output.
(ii) BART𝑠𝑝

ℎ𝑝
extends BART𝑠𝑝 by adding a hybrid prompt to the

query as the model input. (iii) BART𝑚𝑡 removes the prompt learn-
ing strategy used in UGR, which can be regarded as an adaption of
multi-task learning to generative retrieval.

We adopt several baselinemethods for comparison: (i)BM25 [36]
is a classical probabilistic retrieval model. (ii) GENRE [8] performs
retrieval by generating the document titles for DR. (iii) SEAL [2]
generates passage identifiers to retrieve relevant passages for PR.
(iv)MT-DPR [32] jointly trains a DPR model [23] on an extensively
selected retrieval datasets for SR. (v) BLINK [34] combines BLINK
[44] and the flair [1] retrieval solution that ranks pages according to
entities in the input for ER. We take the best results of these models
for the corresponding retrieval task from the original papers.

4.3 Evaluation metrics
Following previous work [2, 8, 29, 32, 34] and the official KILT
instructions,2 we use R-precision (%) as the evaluation metric for
all four retrieval tasks. R-precision is calculated as 𝑟

𝑅
, where 𝑅 is

the number of contexts inside each provenance set and 𝑟 is the
number of relevant contexts among the top-𝑅 retrieved contexts.
For downstream evaluation, we adopt specific metrics for different
downstream tasks. Specifically, as suggested in the KILT resource
paper [34], we use Accuracy (ACC) for FEV, AY2, WnWi, WnCw, T-
REx and zsRE; Exact Match (EM) for NQ, TQA and HoPo; ROUGE-L
for ELI5; and F1 for WoW. Following previous work [2, 32, 44], we
report all performance results on the dev sets since the KILT leader-
board limits the frequency of the submission for test performance.

4.4 Implementation details
In this section, we describe implementation details of UGR.
• Model architecture: UGR is based on the transformer-based
encoder-decoder architecture, where the hidden size is 1024, the
feed-forward layer size is 4096, the number of transformer layers

2https://eval.ai/challenge/689/leaderboard

Table 3: Datasets for different retrieval tasks in KILT. For
each retrieval task, we include some datasets in the training
mixture, while some are reserved as held-out datasets.

Task Training-mixture datasets Held-out datasets

DR FEV, T-REx, NQ, HoPo, TQA, WoW zsRE, ELI5
PR FEV, T-REx, WoW zsRE
SR NQ, HoPo, TQA ELI5
ER AY2 WnWi, WnCw

is 12, and the number of self-attention heads is 16, for both the
encoder and decoder. The total number of parameters is 406M.
We implement UGR in PyTorch based on the fairseq library.3

• Identifier construction: During the training phase, we use the
original BERT𝑏𝑎𝑠𝑒 [24] to encode the concatenated text. The
length 𝑛 of n-grams used is 10 and the number of n-grams 𝑣 is
10 for DR and PR, while 𝑛 is 10 and 𝑣 is 5 for SR. The value of 𝜌
in the saturation function is 0.01. For ER, since entity names are
unique and their length is short, we directly use the entity name
as the identifier, i.e., 𝑛 is the length of an entity name and 𝑣 is 1.

• Prompt engineering: For discrete prompts, we directly add the
natural language prompts listed in Table 1 to the input query
in specific tasks as the model input. For continuous and hybrid
prompts, the length of prompt tokens is set to 6 and the hidden
size of the LSTM is set to 1024. The anchor texts in the hybrid
prompt are “document”, “passage”, “sentence”, and “entity” for
DR, PR, SR and ER, respectively.

• Training hyperparameters: We initialize the parameters of
the encoder-decoder architecture from the official checkpoint of
BART𝑙𝑎𝑟𝑔𝑒 [28]. We use a learning rate of 3𝑒−5 and the Adam
optimizer [25] with the warmup technique, where the learning
rate increases over the first 10% of batches, and then decays lin-
early to zero. The label smoothing is 0.1, the weight decay is 0.01,
and the gradient norm clipping is 0.1. We train in batches of 8192
tokens on four NVIDIA Tesla A100 40GB GPUs. Following [31],
we first only train the prompt encoder, and then train the gen-
erative model while fixing the prompt encoder. We refer to our
UGR model with discrete prompt, continuous prompt and hybrid
prompt as UGR𝑑𝑝 , UGR𝑐𝑝 and UGRℎ𝑝 , respectively.

• Inference hyperparameters: We use the C++ implementa-
tion of an FM-index in sdsl-lite.4 We build an FM-index on the
Wikipedia English corpus, which is the knowledge source for
the four retrieval tasks. At inference time, we adopt constrained
beam search to decode the identifier with 10 timesteps and 15
beams. The value of 𝛼 is set to 2.0, 𝛽 is set to 0.8, and 𝑔 is set to 5.

5 EXPERIMENTAL RESULTS
Our experiments are organized around five research questions:
(RQ1) How does UGR perform compared to strong retrieval base-
lines on both in-domain and out-of-domain datasets? (RQ2) How
is the adaptability of UGR to unseen tasks? (RQ3) How does the
n-gram-based identifier affect retrieval performance? (RQ4) Can
relevant contexts retrieved by UGR improve the performance of
downstream tasks in KILT? (RQ5) How does UGR perform com-
pared to traditional retrieval methods and generative methods in
3https://github.com/pytorch/fairseq
4https://github.com/simongog/sdsl-lite

https://eval.ai/challenge/689/leaderboard
https://github.com/pytorch/fairseq
https://github.com/simongog/sdsl-lite
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Table 4: R-precision (%) for four retrieval tasks on in-domain datasets. Best results aremarked in boldface. ∗ indicates statistically
significant improvements over all baselines (p-value < 0.05).

DR PR SR ER
Model FEV T-REx NQ HoPo TQA WoW FEV T-REx WoW NQ HoPo TQA AY2
BM25 50.13 58.60 25.83 43.95 29.44 27.50 40.10 51.60 18.40 14.20 38.40 16.20 3.47
Previous SOTA 84.68 79.68 60.25 51.82 71.11 56.32 67.59 58.24 35.82 42.66 50.70 39.98 89.39

Task-specific retriever for each DR, PR, SR and ER task

BART𝑠𝑝 82.48 72.23 63.17 55.91 69.78 55.48 67.64 58.49 36.08 42.17 52.65 39.40 90.56
BART𝑠𝑝

ℎ𝑝
83.41 73.76 64.09 54.23 70.83 56.27 67.82 58.36 36.34 43.36 52.51 40.55 90.83

Multi-task retriever for all DR, PR, SR and ER tasks

BART𝑚𝑡 82.13 71.52 62.25 52.88 66.45 54.55 66.50 56.76 34.93 40.52 53.38 41.19 89.67
UGR𝑑𝑝 85.41∗ 80.75∗ 64.89∗ 57.73∗ 72.36∗ 59.91∗ 68.34 59.25∗ 36.60 44.49∗ 54.87∗ 42.11∗ 91.94∗
UGR𝑐𝑝 85.88∗ 80.93∗ 65.21∗ 57.24∗ 72.65∗ 60.46∗ 69.72∗ 59.81∗ 37.18∗ 44.75∗ 55.31∗ 42.26∗ 93.01∗
UGRℎ𝑝 86.29∗ 81.21∗ 65.47∗ 58.74∗ 73.04∗ 61.22∗ 69.91∗ 60.17∗ 37.74∗ 45.29∗ 55.86∗ 42.44∗ 93.13∗

Table 5: R-precision (%) for four retrieval tasks on out-of-
domain datasets. Best results are marked in boldface. ∗ indi-
cates statistically significant improvements over all baselines
(p-value < 0.05).

DR PR SR ER
Model zsRE ELI5 zsRE ELI5 WnWi WnCw
BM25 66.43 8.23 52.98 0.28 0.35 1.74
Previous SOTA 90.46 11.26 74.50 1.46 85.26 68.57

Task-specific retriever for each DR, PR, SR and ER task

BART𝑠𝑝 94.58 12.49 78.27 2.11 86.69 69.57
BART𝑠𝑝

ℎ𝑝
95.62 12.83 78.85 3.03 86.94 70.10

Multi-task retriever for all DR, PR, SR and ER tasks

BART𝑚𝑡 90.15 10.47 75.82 1.59 84.23 67.75
UGR𝑑𝑝 97.52∗ 13.54∗ 78.26 3.15 87.81∗ 70.72∗
UGR𝑐𝑝 98.08∗ 13.81∗ 78.89 3.77∗ 88.49∗ 70.96∗
UGRℎ𝑝 98.66∗ 14.60∗ 79.25∗ 4.97∗ 88.83∗ 71.40∗

terms of computational cost? In the following subsections we an-
swer our research questions.

5.1 Evaluation on in-domain and out-of-domain
datasets

To answerRQ1, we compare UGRwith baselines on both in-domain
datasets and out-of-domain datasets.

5.1.1 In-domain performance. We train our model over the mixture
of training datasets listed in Table 2 and evaluate the performance
on the dev datasets of each specific task. Table 4 shows the results.
We observe that: (i) The traditional retrieval model BM25 is a strong
baseline that performs well on most retrieval tasks. (ii) For previous
SOTA models, the document-focused retriever GENRE achieves
promising results on DR by sharing useful features across differ-
ent datasets. However, it is difficult to adapt it to other retrieval
tasks due to its designed mechanism (e.g., requiring unique titles
for contexts in GENRE). Existing task-specific retrievers (i.e., SEAL,
MT-DPR and BLINK) obtain good performance by effectively learn-
ing the task-specific characteristics. Nonetheless, these methods
have poor generalization abilities, as shown in Table 5, since they
are trained for a single specific task.

When we look at variants of UGR, we find that: (i) BART𝑠𝑝
achieves better results than BART𝑚𝑡 . This indicates that fine-tun-
ing PLM on the simply mixed datasets, is not effective as it ignores
the task-specific characteristics. (ii) BART𝑠𝑝

ℎ𝑝
outperforms BART𝑠𝑝 ,

showing that prompt learning utilizes the signals shared by each
task and distinguishes different tasks, thereby improving the per-
formance on each retrieval task.

Finally, we observe that UGRℎ𝑝 significantly outperforms all
baseline methods. Specifically, (i) The improved results of UGR
compared to BART𝑚𝑡 demonstrate the effectiveness of the prompt
learning strategy. That is, by introducing task-specific prompts,
UGR effectively learns general knowledge across tasks, while han-
dling them based on the characteristics of different tasks. (ii) Among
the three variants of UGR, UGR with hybrid prompts outperforms
UGR with discrete and continuous prompts, showing that it is effec-
tive to use natural language to control the learning of continuous
prompt tokens to describe the retrieval task being addressed. Over-
all, the improvements of UGR over previous SOTA on in-domain
performance suggests that generative methods for IR deserve fur-
ther exploration.

5.1.2 Out-of-domain performance. We also evaluate the generaliza-
tion ability of UGR to out-of-domain datasets. Specifically, we train
UGR on the mixture datasets and test it on the held-out datasets
listed in Table 2. Table 5 lists the results. We find that: (i) BART𝑠𝑝
and BART𝑠𝑝

ℎ𝑝
perform better than BART𝑚𝑡 , but worse than UGR.

This shows that UGR is able to capture knowledge of each task in
multi-task learning. (ii) UGRℎ𝑝 outperforms the baselines on all
out-of-domain datasets. This result demonstrates the generaliza-
tion ability of UGR on new domains compared to existing methods.
Each specific task is described by the corresponding prompt tokens,
which facilitates knowledge transfer among different datasets un-
der the same task. Moreover, by jointly training on multiple tasks,
UGR is able to improve the generalization robustness.

5.2 Adaptability to unseen tasks
To answer RQ2, we explore the zero-shot and few-shot learning
capability of UGR on unseen tasks. Concretely, for the four retrieval
tasks, we select three of them for mixed training and evaluate UGR
on the dev set of the remaining one. Following [45], we average
the prompt tokens of three training tasks as that of the unseen task
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Table 6: R-precision (%) on unseen tasks under zero-shot setting. Each task in the first line is an unseen task and we train UGR
on the other three tasks. We also evaluate the performance under few-shot setting by providing little data in the four tasks.
Best results are marked in boldface.

DR PR SR ER
Model FEV T-REx NQ HoPo TQA WoW FEV T-REx WoW NQ HoPo TQA AY2
BM25 50.13 58.60 25.83 43.95 29.44 27.50 40.10 51.60 18.40 14.20 38.40 16.20 3.47

Multi-task retriever for the other three tasks under a zero-shot setting

BART𝑚𝑡 66.38 64.14 32.61 40.21 32.78 40.84 43.52 30.19 15.66 18.99 30.18 28.44 5.67
UGR𝑑𝑝 69.81 68.84 36.41 44.83 42.05 45.93 49.19 34.07 18.07 21.55 36.65 31.20 13.45
UGR𝑐𝑝 70.54 68.41 36.66 46.21 42.57 45.95 50.45 34.62 18.61 21.79 38.41 31.82 15.27
UGRℎ𝑝 72.25 70.34 38.48 46.02 44.43 46.28 51.24 36.21 20.37 22.36 39.06 32.51 18.23

Multi-task retriever for the other three tasks under a few-shot setting

BART𝑚𝑡 79.92 73.45 57.47 48.50 55.94 51.27 55.17 45.44 25.00 35.46 41.73 35.64 78.89
UGR𝑑𝑝 81.49 74.01 57.81 49.01 58.97 52.81 58.33 49.81 27.93 37.41 45.01 38.72 83.61
UGR𝑐𝑝 82.60 73.94 58.29 49.96 59.41 54.07 61.08 48.36 28.45 38.05 46.33 39.55 83.93
UGRℎ𝑝 82.46 75.10 61.37 50.48 61.10 55.60 62.91 51.28 29.08 38.26 46.81 40.14 85.58

for UGR𝑐𝑝 and UGRℎ𝑝 . And for UGR𝑑𝑝 , the prompt tokens of the
unseen task are shown in Table 1. Under the few-shot setting, we
randomly pick 1,000 instances from each task, and fine-tune UGR
on each unseen task. We pick the last checkpoint to evaluate the
performance on the original dev set.

The results are displayed in Table 6. We find that: (i) Under the
zero-shot setting, UGR achieves competitive results to the strong
baseline BM25. This indicates that the information of other tasks can
improve the adaptability of the model to unseen tasks via multi-task
prompt learning. (ii) Under the few-shot setting, UGRℎ𝑝 adapts
well to unseen tasks to achieve a strong performance, showing
that it has learned common retrieval knowledge. And (iii) with
limited fine-tuning examples, UGRℎ𝑝 outperforms previous SOTA
baselines on some datasets. For the NQ dataset onDR, UGR achieves
comparable quality to previous SOTA (i.e., 61.37% vs 60.25%) with
full supervised learning. This demonstrates that UGR is able to
utilize the limited information from unseen tasks to facilitate the
generalization ability to unseen retrieval tasks.

5.3 Analysis of n-gram-based identifiers
To answerRQ3, in this section, we conduct analyses on the n-gram-
based identifier.
Impact of important n-gram sampling strategy. To assess
whether the proposed n-gram sampling is effective for DR, PR,
and SR in the training phrase, we compare it with a random sam-
pling strategy, which randomly samples multiple n-grams from the
context. Recall that we do not need to sample n-grams for ER. We
sample ten 10-grams for DR and PR, five 10-grams for SR, and train
the UGRℎ𝑝 under the same setting described in Section 4.4. We
write UGR𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 and UGR𝑟𝑎𝑛𝑑𝑜𝑚 for the models that use im-
portant n-gram sampling and random sampling, respectively. Due
to space limitations, we only show the results on selected datasets
for each task, i.e., DR (FEV, TQA), PR (T-REx, WoW), and SR (NQ,
HoPo). See Table 7.

We observe that UGR𝑟𝑎𝑛𝑑𝑜𝑚 performs worse than UGR𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡
by a large margin on most retrieval tasks. The n-grams sampled
in a random way are not able to effectively represent the essential
semantics of contexts, making it difficult for the model to learn
the mapping relationship between query and relevant contexts.

Table 7: Comparison of UGRℎ𝑝 with the proposed important
n-gram sampling strategy and random sampling strategy.
Best R-precision (%) results are marked in boldface.

DR PR SR

Model FEV TQA T-REx WoW NQ HoPo

UGR𝑟𝑎𝑛𝑑𝑜𝑚 80.41 65.67 54.38 20.42 33.14 48.95
UGR𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 86.29 73.04 60.17 37.74 45.29 55.86
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Figure 3: R-precision (%) performance and repetition rate (%)
of the UGRℎ𝑝 method with different lengths 𝑛 and different
numbers of n-grams 𝑣 .

This result further validates the effectiveness of our strategy on
sampling important n-grams from the relevant contexts.
Impact of the length and number of n-grams. Next, we analyze
the impact of the length 𝑛 and the number of n-grams 𝑣 for UGRℎ𝑝 .
Due to space limitations, we only show the performance on the FEV
dataset for DR; qualitatively similar observations can been made for
PR and SR. We report the performance in terms of R-precision as
well as the repetition rate of n-grams, which denotes the percentage
of the number of contexts with repeated n-grams among the total
number of contexts. We first fix 𝑣 to ten, and test the performance
of UGRℎ𝑝 over different lengths of n-grams, varying 𝑛 in {5, 10, 15}.
Then we fix 𝑛 to ten, and test the effect of different values of 𝑣 , i.e.,
{5, 10, 15}. See Figure 3.

We observe that by setting the length of the n-grams to 5 or 15,
UGRℎ𝑝 seems to either represent insufficient semantic information
or to represent noisy information that may hurt the identifier gen-
eration. For short n-grams, UGRℎ𝑝 has a high repetition rate with
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Table 8: Downstream results for four retrieval tasks on the KILT dev sets. The metrics used are accuracy (%) for fact checking,
slot filling, and entity linking (EL); exact match (%) for QA; and F1 score (%) for dialogue. Best results are marked in boldface.

Fact checking Slot filling Dialogue Open domain QA EL
Model FEV T-REx WoW NQ HoPo TQA AY2

DR PR DR PR DR PR DR SR DR SR DR SR ER
Previous SOTA+FiD 86.74 88.29 76.53 82.41 15.33 17.54 48.68 51.84 36.92 40.06 70.08 71.65 89.39
UGRℎ𝑝+FiD 87.36 89.83 79.40 83.91 15.52 18.47 51.83 54.05 38.37 41.68 71.54 72.32 93.13

other identifiers (e.g., 4.36% for 10 5-grams), which may hurt the
distinctiveness among documents. Longer n-grams may more likely
lead to error accumulation of generation. UGRℎ𝑝 with 𝑣 set to 15
performs worse than 𝑣 = 10, which shows that too many identifiers
may introduce noisy information that may hurt retrieval perfor-
mance. Therefore, it is important to achieve a trade-off between
the length and number of n-grams and the performance.

5.4 Downstream performance
To answer RQ4, we pair UGRℎ𝑝 with a representative and widely-
used downstream reader model for KILT, i.e., Fusion-in-Decoder
(FiD) [20], following the setup in [2]. For comparison, we pair previ-
ous SOTA retrieval models for each KILT task with FiD. Specifically,
the reader component takes a query and the first five relevant con-
texts retrieved by the UGRℎ𝑝 model and the SOTA retrieval models
respectively as input, to generate the final answer. The results are
displayed in Table 8.

We observe that: (i) Coarse-grained contexts do not support
downstream tasks that need fine-grained contexts in the reader
component. For example, in the slot filling task, the drop rate of
UGRℎ𝑝+FiD with retrieved documents as input of the reader com-
pared to retrieved passages is about 4.51%. (ii) Compared with
previous SOTA, UGRℎ𝑝+FiD achieves significantly better perfor-
mance on all the datasets. This result further demonstrates that by
introducing n-gram-based identifiers and prompt learning, UGR
can effectively make use of shared information to retrieve more
precise contexts for specific downstream tasks.

5.5 Memory and inference efficiency
Finally, to answer RQ5, we compare UGR with traditional retrieval
models (MT-DPR and BLINK) and advanced generative retrieval
models (GENRE and SEAL), in terms of memory and inference time.
The memory footprint is the disk space required by each model.
For the inference time, we compute the average time UGR takes
to run four retrieval tasks, and directly use the time each baseline
takes to run the specific retrieval task. Table 9 lists the results.

We find that: (i) Compared with traditional retrieval models,
generative retrieval models have more model parameters, but a
smaller memory footprint and faster inference speed. The reason is
that traditional retrieval models need to store the dense representa-
tions for the whole corpus besides the model parameters, while the
parameters of generative retrieval models scale linearly with the
vocabulary size, not document count. Moreover, the inference time
of generative retrieval models is directly proportional to the beam
size with a limited overhead by constrained decoding. (ii) Com-
pared with GENRE, UGR has a larger memory footprint and higher
inference time, since UGR constructs the FM-index to constrain the
generation process, which is larger than the prefix tree adopted

Table 9: Comparisons on memory footprint, number of
model parameters, and inference time.

Model Task Memory Parameters Time
MT-DPR SR 70.9 GB 220M 15.34 ms
BLINK ER 24.2 GB 220M 12.71 ms
GENRE DR 2.1 GB 406M 5.81 ms
SEAL PR 8.8 GB 406M 10.16 ms
UGR ALL 8.8 GB 406M 10.58 ms

in GENRE. Besides, the document identifier designed in GENRE is
unique, saving time in the de-duplication process. (iii) Compared
with SEAL, UGR achieves comparable inference time. The reason
may be that UGR is an all-around model for a diversity of retrieval
tasks, while SEAL can only be used for one specific retrieval task.

6 CONCLUSION
Wehave proposed UGR, a novel Unified Generative Retriever, which
can robustly serve different retrieval tasks for knowledge-intensive
language tasks. To unify retrieval tasks, we formulated the retrieval
problem as a conditional generation problem and introduced an
n-gram-based identifier for relevant contexts at different levels of
granularity. To learn different retrieval tasks with a single model, we
mapped the descriptions of tasks to a few prompt tokens for keep-
ing task specifications. Empirical results on the KILT benchmark
demonstrated the superiority of the proposed method.

Efficiently integrating knowledge from different retrieval tasks
in UGR has the potential to save significant time and computational
resources in both academic and industrial environments. However,
UGR needs a complex scoring function to solve the identifier rep-
etition problem; we encourage future work that explores other
effective and efficient semantic identifiers for generative retrieval.
Beyond KILT, training a more general unified generative retrieval
model to serve different retrieval applications under multiple cor-
pora and modalities seems a promising future direction.
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