Automatic Wrapper Generation
for Web Search Engines

Boris Chidlovskii', Jon Ragetli®*, and Maarten de Rijke?**

! Xerox Research Centre Europe
6, Chemin de Maupertuis, 38240 Meylan, France
chidlovskii@xrce.xerox.com
2 ILLC, University of Amsterdam
PIL. Muidergracht 24, 1018 TV Amsterdam, The Netherlands

{ragetli,mdr}@uins.uva.nl

Abstract. To facilitate effective search on the World Wide Web, sev-
eral ‘meta search engines’ have been developed which do not search the
Web themselves, but use available search engines to find the required in-
formation. By means of wrappers, meta search engines retrieve relevant
information from the HTML pages returned by search engines. In this
paper we present an algorithm to create such wrappers automatically,
based on an adaptation of the string edit distance. Our algorithm per-
forms well; it is quick, it can be used for several types of result pages
and it requires a minimal amount of interaction with the user.

1 Introduction

As the amount of information available on the World Wide Web continues to
grow, conventional search engines expose limitations when assisting users in
searching information. To overcome these limitations, mediators and meta search
engines (MSEs) have been developed [2,6-8]. Instead of searching the Web them-
selves, MSEs exploit existing search engines to retrieve relevant information and
combine it in a way which better satisfies the user’s needs. This relieves the
user from having to contact those search engines manually and knowing their
native query languages; knowledge of the MSE’s query language suffices. The
MSE combines the results of the connected search engines and presents them in
a uniform way.

MSEs are connected to search engines by means of so-called wrappers: soft-
ware modules that take care of the source-specific aspects of the MSE. For every
search engine connected to the MSE, there is a wrapper which translates a
user’s query into the native query language and format of the search engine.
The wrapper also extracts the relevant information from the HTML result page
of the search engine. We will refer to the latter as ‘wrapper’ and do not discuss
the query translation (see [5] for a good overview). An HTML result page from

* Supported by the Logic and Language Links project funded by Elsevier Science.
** Supported by the Spinoza project ‘Logic in Action.’

File Edit View Go Communicator Help

Search results for query: wrapper

Number One Wrapper Generator

Description: Welcome to the wrapper generating organisation.
1000; hitp:/fwwrw wrapper.org/

Buy our candy bar wrapper collection
774, htp:fferaror.candy.com/wrappers/

Maestro’s Candy Bar Wrapper Collection

Description: Yes, I devote my otherwise useless life to collecting wrappers.
http:/fwww freehomepages.com/~maestrof

il
e [| [Eevmap 2

Fig. 1. Sample result page

a search engine contains zero or more answer items; an answer item is a group
of coherent information making up one answer to the query. A wrapper extracts
each answer item from the textual content and attributes of certain tags on the
page as a tuple consisting of attribute/value pairs. For example, from the result
page in Fig. 1 three tuples can be extracted, the first of which is displayed in
Fig. 2. Like most result pages, the page in Fig. 1 shows variation in the items,
as the second item lacks a description and the third a relevance ranking.

Manually programming wrappers is a cumbersome and tedious task [4], and
since the presentation of the search results of search engines often changes, it has
to be done frequently. Hence, there have been various attempts to automate this
task [3,10,11,13, 14]. The approach we describe is based on a simple incremental
grammar induction algorithm. As input, it requires one result page of a search
engine, from which the first answer item is labeled: the start and end of the item
need to be indicated, as well as the attributes to be extracted. After this, the
incremental learning of the item grammar starts, and using an adapted version
of the edit distance measure, further answer items on the page are found and
updates to the grammar are performed. Once this process is ready, the algorithm
returns a wrapper for the entire page after some post-processing.

The key features of our approach are limited user interaction (labeling only
one answer item) and good performance: for many search engines it generates
working wrappers, and it does so very quickly. In the following sections, we will
first discuss our wrapper generating algorithm. After this, experimental results

(url = "http://www.wrapper.org",

title = "Number One Wrapper Generator",

description = "Welcome to the wrapper generating organisation",
relevance = "1000")

Fig. 2. An item extracted

<HTML><HEAD><TITLE>Search results for query: wrapper</TITLE></HEAD>|
<BODY bgcolor = "white" text= "black">
<H3>Search results for query: wrapper</H3>
<dl>
"BEGIN~ <dt> “URL~ =~
“TITLE" Number One Wrapper Generator "~

<dd><i>Description:</i> "DESCR" Welcome to the wrapper
generating organisation. ~~

<I> “REL" 1000 "~ </I>;
http://www.wrapper.org/ “END"
</d1>
<dl>
<dt>
Buy our candy bar wrapper collection

</d1>
</BODY></HTML>

Fig. 3. Labeled HTML source of result page

will be described, and we compare our method to other approaches. Finally, we
conclude and discuss future work.

2 The Wrapper Generator

In this section we discuss the input and output of the Wrapper Generator (WG),
after which we give an overview of its algorithm. In the next section we will go
into more detail. All known approaches for automatically generating wrappers
require as input some labeled HTML pages: all or some of the attributes to be
extracted from the page have to be marked — manually, or automatically by a
labeling program. As it is hard to create labeling programs for the heterogeneous
set of search engines an MSE must be connected to, and the labeling is a boring
and time-consuming job, we have restricted the labeling for our algorithm to a
single answer item only. Figure 3 shows the labeled source of the HTML page
in Fig. 1. The labeling consists of an indication of the begin and end of the first
answer item ("BEGIN”~ and “END~, respectively), the attribute names (e.g. "URL"),
and the end of the attributes (~7).

The output of the WG is a wrapper, whose task is to output zero or more
tuples consisting of relevant information. Each element of the tuple is an at-
tribute/value pair; the attribute names are provided by the human who labeled
the page. Figure 2 shows the first tuple extracted from the result page in Fig. 1.

Our wrapper generation algorithm, shown in Fig. 4, works as follows. First,
the result page is abstracted to a sequence of tokens, after which an item gram-
mar is initialized. Then, using this item grammar, other items on the page are

1. AP := abstract(LP)
2. (G := initialize(AP)

REPEAT
3. [:= find-next-item(AP, &)
4. IF T #0
THEN G := incorporate-item(G, I)
UNTIL [=0

5. GP:= grammar-whole-page(G, AP)
6. W := translate-to-wrapper(GP)
7. return W

AP is the abstracted page

LP is the HTML page labeled by the user

G is the item grammar

I is an item on the abstracted page

GP is a grammar for the whole page in an abstract format
W is the same grammar, translated into a working wrapper

Fig. 4. The wrapper generating algorithm

found, and the grammar itself is updated to cover those items. Once all the items
have been found, the grammar is extended to cover the entire page, and finally
translated into a working wrapper.

Steps 2, 3 and 4 show that the grammar building algorithm is incremental:
the grammar G is updated whenever a new item is encountered. The fact that
the algorithm itself finds the items on the page saves the user the burden of
labeling every item on the page, a feature that other approaches (e.g. [3,13,14])
lack. Another feature is that the user does not have to indicate the begin and
end of the item precisely. When an item has been indicated more narrow than
it actually is, step 5 takes care of finding the real item size. In Fig. 3 the item is
indeed indicated too narrow; the fragment of HTML between <DL> and </DL>
is repeated on the page, instead of the smaller item indicated there.

3 Details of the Algorithm

For presentational purposes we do not describe the steps in the same order as
the algorithm performs them. The paragraphs describe steps of the algorithm as
well as underlying theory.

Step 1: Abstract. In the abstract step, the entire HTML page is transformed
into a string of tokens. Each tag is abstracted to one token for that tag,' and
everything else on the page is abstracted to the token C (for Content). By
representing each token by a symbol, we can now view the HTML page as a
string of symbols. This allows us to use an algorithm for comparing strings, as
described below, to find the items on the page other than the labeled first one.

! This abstraction generalizes over the contents of the tag. E.g. both tags and are abstracted to .

The Item Grammar. The item grammar is an important foundation of the WG
algorithm. It both represents the structure of the items already encountered on
the page, and it is used to find the next item on the page. It is defined as follows:

Definition 1 (Item Grammar).

1. A symbol is an item grammar.

2. If G1 and G2 are item grammars, then G1 G2 is an item grammar, meaning
G concatenated to Go.

3. If G is an item grammar without substrings of the form ‘S]’, where S can
be any string, [G] is an item grammar.

Since an HTML page is abstracted into a string of symbols, the item grammar
represents sequences of content and HTML tags. The square brackets represent,
optionality; e.g. a[b]c covers both the strings abc and ac. The third clause of the
definition prevents optional parts from being nested. By including or discarding
optional parts, the item grammar defines sequences of HTML and content that
can appear on the result page. Although item grammars are less expressive than
regular grammars, they are expressive enough to grasp variations in the item
structure.

Step 2: Initialize. In the initialize step, the item grammar is initialized by
making it equal to the string of symbols that represents the first, labeled item
on the page. The user has labeled the attributes in the first item with a name;
the algorithm remembers their position and name.

Edit Distance. The simple form of the item grammar makes it possible to
use the grammar to find other items on the page in find-next-item, using an
adapted form of edit distance. We will first recall the edit distance algorithm for
strings [1]. Next, we discuss our adapted form of edit distance.

Definition 2 (Edit distance). The edit distance D(s;, s2) between two strings
of symbols s; and so is the minimal number of insertions or deletions of symbols,
needed to transform s; into ss.

For example, D(abcd, abide) = 3, because in order to transform abcd into abide
at least three insertion or deletion operations have to be performed: delete the
¢ in abed, and insert an ¢ and an e. Algorithms calculating the edit distance
can also return the difference between the two strings in the form of a so called
alignment. This difference is used in incorporate-itemto indicate how to adapt
the item grammar on the basis of the new item (see the next subsection). As an
example, for abcd and abide the alignment is the following:

abec—d-
ab—1ide

Here we omit the details of the edit distance and alignment algorithm and refer
the interested reader to [1,15].

Let G; denote the item grammar constructed for the first ¢ items. In steps 3
and 4 of our algorithm (Fig. 4), we calculate the distance between a grammar

item grammar a b — d item grammar a b [¢] d item grammara b - d
string abcd string abc — string a— ¢ d
new item gr. ab[c] d new item gr. a b [c] [d] new item gr. a [b] [] [0] d
(a) (b) (c)
Fig. 5. Three alignments

G, and a string representing the ¢ + 1-th item, in order to construct the item
grammar (41 covering all 2 4+ 1 items. Therefore, we have adapted a method to
calculate edit distance to work for an item grammar and a string instead of only
for strings. The adaptation amounts to first simplifying the item grammar by
removing all brackets, while remembering their position. Now the edit distance
between the item and the simplified grammar can be calculated as usual: both
are strings of symbols. Using the alignment and the remembered position of the
brackets, the new grammar is calculated, as will be described next.?

Step 4: Incorporate-item. The algorithm detects and processes different cases in
the alignment between G; and 7 + 1-th item. Since the full algorithm description
is extensive and space is limited, we can only illustrate how it works by means
of some examples (Fig. 5). A more elaborate description is given in [15].

In Fig. 5 (a), the original item grammar does not contain a ¢, while the string
to be covered does. Therefore, the new item grammar has an optional ¢ in it, so
that it covers both abd and abed. Now suppose the string abc has to be covered
by the new item grammar, as in Fig. 5 (b). The reason for making the d optional
is that the new string shows that it does not occur in every string. Note that
the new item expression now covers the strings ab, abc, abd and abed, which is
a larger generalization than the simple memorization of all the examples.

The situation in Fig. 5 (c) is less straightforward, as the new item grammar
a[b][c][b]d is a large generalization; besides the original examples abd and acd it
covers ad, abed, abbd, acbd and abcbd as well. The reason for this large general-
ization is that based on the examples we can conclude at least that the b and ¢
are optional. Moreover, they may also occur at the same time and in any order.

Step 3: Find-next-item. Incorporate-item generates an item grammar for a
set of items on the page. The WG also uses the item grammar for finding these
items. The finding mechanism is iterative, it starts with the first labeled item and
uses grammar G; to find ¢ + 1-th item. The finding of the items is crucial for our
algorithm, as it allows us to have only one item labeled on the search result page.
We have implemented three different strategies for finding the answer items, but
as space is limited we only describe the one that works for most sources: the
Local Optimum Method (LOM). The other two are simpler and mostly quicker
methods, but even with the LOM wrappers are generated quickly; see Section 4.

2 We have also adapted the edit distance algorithm to deal with labeled attributes in
the grammar, that correspond with unlabeled content in the item.

1. Dnewlocal = 998, Dlocal = 999, Dbest := 1000
2. iy, te:=0
3. local-best-item := (), best-item :=
WHILE Diocai < Dpest and not at end of page
4. Dpest := Diocal
5. best-item := local-best-item
6. ip := next occurrence begin tag(s)
WHILE Dnewlocal < Dlocal
7. Diocal = Dnewlocal
8. local-best-item := (ip,i.)
9. i. := next occurrence end tag(s)
10. Drewiocal := D(item grammar, (ip,ic))
11. IF Dpyest > Threshold THEN best-item := ()
12. return best-item and Djpest

® Dyewlocal stores the distance of the item grammar to the part of the page
between the latest found occurrence of the begin and end tag(s)

® Diocal stores the distance of the item grammar to local-best-item

® Dyesi stores the distance of the item grammar to best-item

® iy, ic are the indexes of the begin and end of a (potential) item

e local-best-item stores the potential item starting at ¢, that has the lowest
distance to the item grammar of the potential items starting at i

e best-item stores the potential item that has the smallest distance to the
item grammar so far

Fig. 6. The Local Optimum Method

All our methods for finding items are based on an important assumption: all
items on the page have the same begin and end tag(s). Consequently, the task
of finding items on the page is reduced to finding substrings (below the last
found or labeled item) that have the same start and end delimiters. The user
can decide for how many tags this assumption holds by setting the parameter
SeparatorLength. If SeparatorLength is increased, it will be easier to find the
items on the page; the chance of finding for example a sequence of two tags is
smaller than that of finding one tag. However, setting the parameter too high
will result in not finding all items.

The LOM finds items on the page that are [ocal, i.e., below and close to the
item that was found last, and optimal in the sense that their distance to the item
grammar is low. Figure 6 shows the algorithm. In the first three steps, a number
of variables are initialized. The outer while loop makes the start of potential
items vary, while the inner while loop does the same for the end of the potential
items. Thus, several combinations of begin and end tags are considered, and the
one that is not far below the previous found item (local) and has a low distance
to the grammar (optimal) is selected to be incorporated into the grammar.

In step 11, if the distance of the best candidate item to the item grammar
exceeds Threshold, the algorithm will return) instead of the item, thus prevent-
ing the grammar from adjustment, and the process of finding the items stops

(see Fig. 4). Threshold depends on two parameters: HighDistance and Variation.
HighDistance is the maximum distance from the grammar evaluated among all
items incorporated previously. The initial value of HighDistance is set by user,
and it is incremented whenever a new incorporated item has a distance higher
than HighDistance. Variation is set by user as well, but it does not change during
the process of finding the items. Combined together in Threshold, HighDistance
and Variation form a flexible way for finding and incorporating new items.

Step 5: Making o Grammar for the Entire Page. Once the WG has found all
the items on the page, and adjusted the item grammar accordingly, the item
grammar can only extract the useful information from one item — not yet from
the entire page. Here we recall that HTML pages for which a wrapper is gener-
ated, are assumed to contain a sequence of items, possibly mixed with irrelevant
information. Above and below the sequence there might be irrelevant data as
well. This assumption translates in a natural way into a skeleton for a wrapper:

1. skip the top of the page
WHILE there is another item
2. parse item
3. skip irrelevant data if present

It is not necessary to recognize the irrelevant data at the bottom of the page
explicitly; the wrapper stops when it does not recognize any further items. For
step 2, parsing the items, we already have the item grammar. But, as mentioned
before, the user might have labeled the first item smaller than it actually is.
By the assumption that all the items on the page have the same begin and end
tags, the found items (and the resulting item grammar) will also be too small.
Therefore, the item grammar will be extended by finding common prefixes and
suffixes of the HTML between the found items.

Two parts of the wrapper are still missing: a part that skips the top of the
page, and a part that skips irrelevant data within the item list. For skipping
the top of the page and recognizing the start of the list of items, the smallest
fragment of HTML just above the first item is taken that does not occur higher
on the page as well. For skipping the useless HTML between the items in the
list, another kind of item grammar is constructed — the trash grammar. The
indices of the (extended) items that were found have been stored, so this process
is a straightforward repetition of incorporate-item. Once this trash grammar
has been constructed, it is appended to the end of the item grammar. When the
item and trash grammars have been generated, the WG will detect repetitive
patterns in them and generalize them accordingly. This kind of generalization is
appropriate, as certain fragments can re-occur arbitrarily often on result pages,
like author names with enclosing tags.

After all these processing steps the WG translates the abstract grammar
into a working wrapper. In our implementation this is a JavaCC parser [12], for
the Knowledge Brokers meta search engine developed at Xerox Research Centre
Europe is programmed in Java. However, our WG is not restricted to generate
JavaCC parsers; the translation step can easily be replaced.

Table 1. Experimental results

Successfully generated wrappers

source URL size| NI |time
(kB)| * |(sec)

ACM www.acm.org/search 12 10] 8.0

Elsevier Science www.elsevier.nl/homepage/search.htt 11| 11} 2.6

NCSTRL www.ncstrl.org 9| 8(32.5

IBM Patent Search www.patents.ibm.com/boolquery.html 19| 50| 5.3

IEEE computer.org/search.htm 26| 20| 3.7

COS U.S. Patents patents.cos.com 17| 25| 5.4

Springer Science Online| www.springer-ny.com/search.html 36({100(32.1

British Library Online | www.bl.uk 5| 10| 2.6

LeMonde Diplomatique | www.monde-diplomatique.fr/md/index.html 6| 4| 2.5

IMF www.imf.org/external /search/search.html 10| 50| 5.3

Calliope sSs.imag.fr** 22| 71| 4.1

UseNix Association www.usenix.org/Excite/AT-usenixquery.htmlf 16| 20| 4.3

Microsoft www.microsoft.com/search 26| 10| 4.5

BusinessWeek bwarchive.businessweek.com 13| 20| 3.9

Sun WWW.sun.com 20(10| 3.7

AltaVista www.altavista.com 19| 10| 4.1

Sources for which the algorithm failed to generate a wrapper

source URL

Excite wWww.excite.com

CS Bibliography www.informatik.uni-trier.de/"ley/db/index.html

(Univ. Trier)

Library of Congress leweb.loc.gov

FtpSearch shin.belnet.be:8000/ftpsearch

CS Bibliography liinwww.ira.uka.de/bibliography/index.html

(Univ. Karlsruhe)

IICM www.iicm.edu

* NI is the number of items.
** Only accessible to members of the Calliope library group.

4 Experimental Results

We have tested our wrapper generator on 22 search engines, a random selection
of sources to which Knowledge Brokers had already been connected manually.
It was quite successful, as it created working wrappers for 16 of the 22 sources
(73%). For 2 other sources the generated incorrect wrappers could easily be cor-
rected. Since working wrappers were created with only one answer item labeled,
good generalizations are made when the item grammar is induced: labeling only
one item of one page is sufficient to create wrappers for many other items and
pages of the same source. Table 1 summarizes the experimental results; the times
were measured on a modest computer (PC AMD 200MMX/32 Mb RAM).

The time needed to generate a wrapper is very short; the maximum time is
32.5 seconds, the average 7.8 seconds. Together with the small amount of labeling
that has to be done, this makes our approach very rapid. In general, it is not
the case that it takes more time to create a wrapper for larger pages than for
smaller ones. A large page may contain a lot of irrelevant data at the top, where
no items are sought, thus not increasing the time to create a wrapper. The same
holds for pages with more items versus pages with less items. For a page with
a lot of items that has very simple structure (for example when the begin and

end delimiters only occur for real items) a wrapper can be learned more quickly
than for a more complex page with less items.

Increasing the SeparatorLength parameter (see Section 3) speeds up our al-
gorithm, as fewer fragments of HTML are considered. For NCSTRL, the time
to generate a wrapper is shown with a SeparatorLength of 1 (32.5 seconds), as
1 is the default SeparatorLength. However, with a SeparatorLength of 2, it takes
22.5 seconds, with 3 it takes 21.4 seconds, and with 4 17.1 seconds.

Robustness of the Wrappers. An important aspect of the generated wrappers is
the extent to which the result pages of the search services may change without
the wrapper breaking down. For our wrappers, little is allowed to change in the
list with search results, because the wrapper for that list is generated by making
not too large generalizations. But even if the wrappers are not very robust, it is
easy to create a new one whenever the search engine’s result pages change, since
the algorithm is fast and requires limited user interaction.

Incorrect Wrappers. The wrapper generated for Excite did not work because the
code to extract the URL from tags was not general enough
and did not recognize the unquoted URL in the Excite answer page. After man-
ually correcting the wrapper, it worked properly. A similar correction produced
a working wrapper for IICM. For the Library of Congress, the fact that the
WG only distinguishes between tags and textual content caused it to fail, as the
attributes on the result pages were only separable by textual separators.

The WG did not create a working wrapper for the Computer Science Bibli-
ography (Univ. of Trier) and FtpSearch because the right items were not found
due to too much variation in the items, causing the distance between the item
grammar and the item found to be too high. Increasing the parameters High-
Distance or Variation could not change this, because then fragments of HTML
that did not correspond to an item were incorrectly incorporated in the gram-
mar. The problem with the Computer Science Bibliography (Univ. of Karlsruhe)
concerned the detection of repetitions in the item expression. Complex repeti-
tions on the page make the wrapper generator create a repetitive part with only
optional parts. This would cause the wrapper to enter an infinite loop. Another
reason was that not all information belonging to an answer item was located
with the item itself; some of it was shown in a header above a number of results.

5 Comparison to Other Approaches

In [9], Hammer et al. present a simple approach to semi-automatically generating
wrappers that lies in between hand-coding the wrappers and creating them fully
automatically: specifying them at a high level.

Kushmerick et al. [13] present a template-based approach for building wrap-
pers for HTML sources. They use recognizers to label the page automatically.
That is very useful, as their algorithm requires entirely labeled pages .

In [3], Ashish and Knoblock present quite a different approach to generating
wrappers, focusing on making static HTML pages queriable. Their wrappers
are constructed without labeling, but by structuring the page, using certain

assumptions about how the nesting hierarchy within a page is reflected in the
layout. Their algorithm is not well-suited for making wrappers for our domain
(pages with search results), because there are no general heuristics applicable
to multiple search engines. Soderland [16] also uses lay-out cues to construct
wrappers. Furthermore, Soderland’s system uses a semantic lexicon which makes
the approach very different from ours. Besides automatically generated pages,
his domain consists of less structured hand-crafted pages.

Muslea et al. [14] discuss the automatic generation of hierarchical wrappers.
A drawback of their approach is that the user has to label several pages entirely,
albeit in a graphical interface. The hierarchical wrappers do not suffer from the
problem we mentioned with respect to the Computer Science Bibliography at the
Univ. of Karlsruhe, that attributes belonging to several different items cannot be
extracted. The hierarchical form of the wrappers makes it possible to decompose
the problem of generating wrappers for entire result pages into smaller problems.
While our approach is bottom-up, the approach of Muslea et al. is top-down.

The approach of Hsu et al. [10, 11] is similar to ours. Their finite-state trans-
ducers, called single-pass SoftMealy extractors resemble the grammars that we
generate. Their abstraction of textual content on the pages is a more fine-grained.
This makes their approach more widely applicable than to HTML pages. Ex-
perimental results show that their approach does not need many labeled items,
albeit more than ours. It seems that their approach is better in handling differ-
ences in the order of the attributes, but we have not fully tested this. Further
investigation — both empirical and analytical — of the differences between the
two approaches should make this clear.

6 Conclusion and Further Work

We have presented an approach to automatically generate wrappers, which uses
grammar induction based on an adapted form of edit distance. Our wrapper gen-
erator is language independent, because it relies on the structure of the HTML
code to build the wrappers. Experimental results show that our approach is accu-
rate — 73% of the wrappers generated is correct (allowing minor modifications:
82%). Furthermore, our generator is quick, as the average time to generate a
wrapper is less than 8 seconds.

The major advantage of our approach is the small amount of labeling by the
user: labeling only one item suffices. The other items are found by the wrapper
generator itself. Comparing our algorithm to others, we conclude that it creates
good wrappers with little user interaction. The approach of Hsu et al. [10,11]
seems to create better wrappers, but at the price of more extensive user input.

Although the Wrapper Generator performs well, several improvements and
extensions are possible. For example, a program with a graphical interface can
simplify the labeling, that is currently performed with a text editor. One of
the assumptions underlying our wrapper generator is that all attributes can
be separated by HTML tags, but not all result pages satisfy this assumption.
By making finer-grained abstractions, we should be able to generate wrappers

for such pages. On the other hand, the HTML separability causes the wrapper
generator not to rely on specific textual content on the pages. That makes this
approach natural language independent.

If many search engines for one domain have to be connected to a meta
searcher, it is worthwhile to create recognizers [13] that find and label the at-
tributes automatically. Finally, we have deliberately investigated the power of
our method with minimal user input, but further research is needed to clarify
the trade-off between user interaction and quality of the generated wrappers.

References

1. Aho, Alfred V. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 255—300, Elsevier, 1990.

2. Andreoli, J.-M., Borghoff, U., Chevalier, P-Y., Chidlovskii, B., Pareschi, R., and
Willamowski, J. The Constraint-Based Knowledge Broker System. Proc. of the
13th Int’l Conf. on Data Engineering, 1997.

3. Ashish, N., and Knoblock, C. Wrapper Generation for Semi-structured Internet
Sources. SIGMOD Record 26(4):8-15, 1997.

4. Chidlovskii, B., Borghoff, U., Chevalier, P.-Y. Chevalier. Toward Sophisticated
Wrapping of Web-based Information Repositories. Proc. 5th RIAO Conference,
Montreal, Canada, pages 123-135, 1997.

5. Florescu, D., Levy, A., and Mendelzon, A. Database techniques for the World-Wide
Web: A Survey. SIGMOD Record 27(3):59-74, 1998.

6. Garcia-Molina, H., Hammer, J., and Ireland, K. Accessing Heterogeneous Infor-
mation Sources in TSIMMIS. AAAT Symp. Inform. Gathering, pages 61-64, 1995.

7. Gauch, S., Wang, G., Gomez, M. ProFusion: Intelligent Fusion from Multiple Dis-
tributed Search Engines. J. Universal Computer Science, 2(9): 637-649, 1996.

8. Gravano, L., Papakonstantinou, Y. Mediating and Metasearching on the Internet.
Data Engineering Bulletin 21(2), pages 28-36, 1998.

9. Hammer, J. Garcia-Molina, H., Cho, J., Aranha, R., and Crespo, A. Extracting
Semistructured Information from the Web. Proceedings of the Workshop on Man-
agement of Semistructured Data, 1997.

10. Hsu, C.-N., and Chang, C.-C. Finite-State Transducers for Semi-Structured Text
Mining. Proc. IJCAI-99 Workshop on Text Mining, 1999.

11. Hsu, C.-N., and Dung, M.-T., Generating finite-state transducers for semistruc-
tured data extraction from the web. Information Systems, 23(8):521-538, 1998.

12. JavaCC - The Java parser generator. URL: http://www.metamata.com/JavaCC/.

13. Kushmerick, N., Weld, D.S., and Doorenbos, R., Wrapper Induction for Informa-
tion Extraction. Proc. IJCAI-97. 729-737, 1997.

14. Muslea, I., Minton, S., Knoblock, C. STALKER. AAAI Workshop on AI & Infor-
mation Integration, 1998.

15. Ragetli, H.J.N. Semi-automatic Parser Generation for Information Extraction from
the WWW. Master’s Thesis, Faculteit WINS, Universiteit van Amsterdam, 1998.

16. Soderland, S. Learning to Extract Text-based Information from the World Wide
Web. Proc. KDD-97, pages 251-254, 1997.

