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1
Introduction

Information access systems play a vital role in connecting people to information that is
crucial for decision-making and taking actions in the world [267]. Such systems have
been embedded into the capillaries of human society, especially search engines and
recommender systems [137]. Additionally, large language model (LLM)-based chatbots
are increasingly emerging as a new gateway for individuals to access information [137,
214, 279].

Static workflows have been widely used in information access systems to fulfill
users’ information needs [227]. Figure 1.1 provides an example of a static workflow
for information access, where a user query is first processed by a retriever to obtain
candidate documents, followed by a re-ranker that refines the ranked results. The
workflow can end at this stage, presenting the user with the final ranked list, often
referred to as the “ten blue links” [141]. In recent years, the workflow has been further
extended by introducing a response generator (e.g., LLMs [136]), which generates a
natural response to the user grounded in both the user query and documents, a.k.a.
retrieval-augmented generation (RAG) [4, 134]. However, this “one-size-fits-all” static
workflow limits the ability of information access systems to address real-world user
queries in complex scenarios that demand adaptive and case-by-case handling [227].

Agents offer a promising solution to the limitations of static workflows. In the
context of artificial intelligence (AI), an agent is an autonomous entity that makes
decisions and takes actions on users’ behalf [220]. The idea of agents traces back
to the 1950s with the emergence of symbolic AI [220]. More recently, agents have
attracted significant attention, benefiting from capabilities of LLMs [47]. Agentic
workflows are structured interaction sequences of autonomous agents [288]. Due to
their autonomous decision-making abilities, agents can determine adaptive execution
paths that dynamically respond to each user request, ultimately achieving better results
in terms of effectiveness or efficiency [227].

This thesis explores agentic workflows for information access. To the best of our
knowledge, there is only limited work on formally defining agentic workflows for
information access. In this thesis, we consider an agentic workflow for information
access to be a workflow in which one or multiple autonomous agents dynamically
adjust execution paths to each user query. Agentic workflows, with their query-adaptive
execution paths, stand in contrast to static workflows, which follow a fixed execution
process for all user queries. We consider prior studies in information access that develop

1
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Retrieval Re-ranking Response 
generation

ResponseQuery

Figure 1.1: Example of a static workflow for information access.

autonomous agents to enable query-adaptive execution paths as contributions to the
broader landscape of agentic workflow research in information access.

Prior work has studied various components within agentic workflows for information
access. This thesis focuses on three key components: mixed-initiative strategy planning,
ranking strategy planning, and ranking result reflection.

First, we look at mixed-initiative strategy planning. As modern information access
processes become increasingly interactive, systems must be capable of engaging in
complex multi-turn conversations to meet users’ information needs [12]. Furthermore,
mixed-initiative is a key aspect of modern information access, where both the user and
the system can take the initiative at different points in a conversation [203]. An effective
information access system can ask clarifying questions in response to users’ ambiguous
queries [7, 11, 218, 284], elicit user preferences [204, 219], ask for feedback [246, 250],
and so on. Because system initiative-taking at a wrong time could come at the risk
of user frustration, hence hurting the overall user experience [263, 264, 305, 306], it
is important for an information access system to plan an appropriate mixed-initiative
strategy in response to a user query [27, 286], i.e., predict the right moment to take the
initiative. Existing work has extensively studied clarification need prediction agents,
which aim to predict the right time to ask a clarifying question [9, 11, 16, 263, 264, 273].

Second, we examine ranking strategy planning. Existing research has explored
various ranking strategies that dynamically adapt to each user query, optimizing both ef-
ficiency and effectiveness, e.g., adaptive retrieval [116], where an agent decides whether
to bypass retrieval entirely or select between single-step and multi-step retrieval based on
the complexity of the user query. This thesis focuses on dynamic per-query re-ranking
depth prediction [58, 135, 262, 285]. Re-ranking is a crucial step in refining retrieval
results by re-ordering candidate documents in descending order of query–document
relevance. Compared to retrievers, re-rankers are typically more precise in predict-
ing query–document relevance but they come at a significantly higher computational
cost [139]. A common practice in re-ranking is to apply a fixed re-ranking depth for all
queries, i.e., a pre-determined number of top-retrieved documents are always passed to
the re-ranking process. However, individual queries might need a shorter or a longer
list of re-ranking candidates [36], i.e., a fixed re-ranking depth can lead to unnecessary
computational cost for queries that need fewer candidates, while limiting the poten-
tial effectiveness for queries that benefit from a deeper re-ranking process. Dynamic
per-query re-ranking depth prediction tackles the limitations of using fixed depths by
predicting a dynamic re-ranking depth on a per-query basis (with a depth of zero mean-
ing bypassing re-ranking entirely), potentially enhancing both efficiency [58, 135, 262]
and effectiveness [285]. In this sense, a method for dynamic per-query re-ranking depth
prediction can be seen as an agent that enables agentic workflows.

Third, we turn to ranking result reflection. Reflection is a critical component

2
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Figure 1.2: Example of an agentic workflow for information access.

in agentic workflows [267]; it enables systems to iteratively evaluate and refine their
outputs [227, 267]. In information access scenarios, it is important to reflect not
only on the quality of final generated responses but also on the quality of ranking
results, as poor rankings can significantly degrade the subsequent response generation
quality [277]. Therefore, it is crucial to effectively measure ranking result quality. If
the ranking is predicted to be low-quality, the system can adjust the execution path to
avoid passing the retrieved documents to the response generation phase, and instead
iteratively refine the ranking quality, e.g., by reformulating the user query or leveraging
alternative retrieval corpora [277]. This thesis focuses specifically on ranking result
reflection. While various research directions exist for automatically evaluating ranking
quality, this thesis is dedicated to exploring query performance prediction (QPP) [39]
as a means of reflecting on ranking quality. QPP has been extensively studied in the
information retrieval (IR) community for decades [15, 56, 102, 209, 223, 224, 239,
300]; it aims to predict the ranking quality of a search system for a query without
relying on human-labeled relevance judgments [180]. Effective QPP has been used
to adjust execution paths to optimize ranking quality on a per-query basis, e.g., query
routing [215], selective query expansion [13], retriever selection [122], and IR system
configuration selection [70, 244]. In this sense, a QPP method can be viewed as an
agent that enables agentic workflows.

There are important limitations in the above three key components. In mixed-
initiative strategy planning, a narrow system-initiative scope is considered in pre-
dicting the timing of system-initiative taking. While clarification need prediction
has been widely studied, clarification is only one of many possible system-initiative
actions [10, 29, 286], yet research on predicting the timing for other system-initiative
actions has received little attention.

In ranking strategy planning, only limited research explores dynamic per-query
re-ranking depth prediction in LLM-based re-ranking. Recently proposed LLM-
based re-rankers [153, 195, 196, 198, 234, 293, 302] with billions of parameters [304]
lead to a substantial increase in latency, making their deployment in real-world appli-
cations challenging. While dynamic per-query re-ranking depth prediction offers a
promising solution for achieving a good effectiveness/efficiency trade-off in LLM-based

3
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re-ranking, research in this area remains scarce.
In ranking result reflection, there are two key issues in using QPP:

(1) Little research explores QPP in conversational search. As mentioned earlier,
modern information access systems should be capable of engaging in complex
multi-turn conversations. This means that ranking result reflection must assess
how well ranking results align with users’ conversational queries. While QPP has
been studied extensively in ad-hoc search, research on QPP in the emerging area
of conversational search [182] is limited.

(2) Little research explores improving QPP accuracy by leveraging LLMs’ capa-
bilities. For QPP to be effective in ranking result reflection, it must provide highly
accurate assessments of ranking results, ensuring that refinements are triggered
at the right time. While LLMs have demonstrated state-of-the-art performance
across various tasks in IR and natural language processing (NLP) [297, 301], no
prior work has explored leveraging LLMs for enhancing QPP accuracy yet. It is
unclear how LLMs can be effectively used to improve QPP accuracy.

This thesis aims to optimize agentic workflows for information access by improving the
three critical components listed above: mixed-initiative strategy planning, ranking strat-
egy planning, and ranking result reflection. Specifically, we enhance these components
by addressing the four key limitations identified above.

1.1 Research Outline and Questions

This thesis aims to answer the following overarching question:

“What key aspects of agentic workflows for information access should be
optimized, and how can we effectively optimize these aspects?”

To address this question, this thesis identifies and addresses four limitations in three
critical components of agentic workflows for information access. The thesis is structured
into three parts and four chapters. Each part corresponds to one of the three components,
and each chapter addresses a specific limitation. Figure 1.2 illustrates the themes across
all chapters.

The first part of the thesis focuses on the mixed-initiative strategy planning compo-
nent. This part contains a single chapter that focuses on resolving the issue of a narrow
scope in system-initiative actions for predicting the timing of system initiative-taking.

The second part focuses on the ranking strategy planning component. This part
consists of one chapter that aims to fill the research gap in dynamic per-query re-ranking
depth prediction in the context of LLM-based re-ranking.

The third part focuses on the ranking result reflection component, comprising two
chapters. One aims to fill the research gap in QPP in the emerging area of conversational
search, while the other examines the under-explored area of LLM-enhanced QPP.
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1.1. Research Outline and Questions

1.1.1 Mixed-initiative strategy planning

In the first part of the thesis, we focus on optimizing the mixed-initiative strategy
planning component. It comprises Chapter 2, which aims to resolve the issue of a
narrow scope of system-initiative actions in predicting the timing of system initiative-
taking.

We broaden the scope of system-initiative actions by defining and modeling a new
task, system initiative prediction (SIP). The SIP task is to predict the timing of system
initiative that covers a broad range of specific system initiative-taking actions. Due
to its broad coverage of specific system initiative-taking actions, SIP operates as a
high-level strategic decision, potentially offering two primary benefits for downstream
tasks within information access systems. First, SIP can capture knowledge shared
across different system-initiative actions. The shared knowledge can be leveraged to
enhance the prediction of a specific system-initiative action through transfer learning.
For example, a model pre-trained on SIP can be further fine-tuned on the downstream
task of clarification need prediction [11] to improve its performance. Second, SIP can
narrow the decision space of some downstream tasks, thereby improving their accuracy;
for instance, in action prediction, an action like requesting feedback is triggered only
if the system decides to take the initiative. Given these potential compelling benefits,
the next step is to explore modeling SIP and empirically validate its usefulness for
downstream tasks. This leads us to the following research question:

RQ1 How can we effectively model system initiative prediction (SIP), and how does
this prediction benefit downstream tasks?

To address this question, we first conduct an empirical analysis revealing structural
dependencies between system-initiative decisions and other factors in multi-turn con-
versations. Motivated by these insights, we introduce a multi-turn system-initiative
predictor (MuSIc) that builds on conditional random fields (CRFs), a class of proba-
bilistic graphical models known for effectively capturing structural dependencies while
offering strong interpretability and transparency. We further explore how SIP can ben-
efit two downstream tasks: clarification need prediction and action prediction. For
the former, we propose a SIP-to-clarification transfer learning method, which trans-
fers knowledge gained from SIP to improve clarification need prediction performance.
For action prediction, we introduce a SIP-aware hierarchical framework, where action
prediction depends on SIP outcomes. Experimental results show that MuSIc achieves
state-of-the-art SIP performance, and significantly improves both clarification need pre-
diction and action prediction tasks. Additionally, a visual analysis highlights MuSIc’s
strong interpretability and transparency.

1.1.2 Ranking strategy planning

The second part of this thesis focuses on optimizing the ranking strategy planning
component. It comprises Chapter 3, which aims to fill the research gap in dynamic per-
query re-ranking depth prediction in LLM-based re-ranking. This thesis identified two
key dimensions of the research gap. On the one hand, despite the growing importance
of LLM-based re-ranking [153, 195, 196, 198, 234, 293, 302], in this scenario, there
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remains a lack of systematic empirical analysis examining the potential advantages
of adopting dynamic re-ranking depths over fixed ones in this context. On the other
hand, effective methods for predicting dynamic re-ranking depths, specifically for LLM-
based re-ranking, have not been clearly established. Existing studies predict dynamic
re-ranking depths for non-LLM-based re-ranking by developing candidate pruning
methods [58, 135, 262] or using ranked list truncation (RLT) [285] methods. This thesis
focuses on RLT methods, and explores to what extent RLT methods can effectively
predict dynamic re-ranking depths in the scenario of LLM-based re-ranking. The above
considerations motivate the following research question.

RQ2 In the context of LLM-based re-ranking, what are the potential benefits of using
dynamic per-query re-ranking depths over fixed ones, and to what extent can RLT
methods effectively predict dynamic re-ranking depths?

To address this question, we begin by conducting a systematic empirical analysis to
identify the limitations of fixed re-ranking depths and explore the potential advantages
of dynamic re-ranking depths in the context of LLM-based re-ranking. Our analysis
reveals that dynamic re-ranking depths not only enhance re-ranking efficiency but also
improve re-ranking effectiveness. Next, we carry out a comprehensive study to examine
how effectively RLT methods adapt to predicting dynamic re-ranking depths in the
context of LLM-based re-ranking. Our leading experimental result indicates that RLT
methods do not show a clear advantage over using a fixed re-ranking depth.

1.1.3 Ranking result reflection

In the third part of the thesis, we focus on the ranking strategy planning component. It
comprises Chapters 4 and 5. Both chapters focus on QPP: Chapter 4 aims to fill the
research gap in QPP for emerging conversational search, while Chapter 5 explores the
underexplored area of LLM-enhanced QPP.

Chapter 4 decomposes the research gap in QPP for conversational search into two
main aspects: the lack of evaluation of existing QPP methods in conversational search
and the absence of effective adaptation strategies for these methods in this setting.
While QPP methods for traditional ad-hoc search have been studied extensively, their
applicability to the emerging field of conversational search remains largely unexplored.
Conversational search introduces several distinct characteristics compared to ad-hoc
search, such as conversational user queries [61, 62, 115] and a greater emphasis on
the ranking quality of top-ranked results [286]. Given this research gap, it is critical
to examine how well existing ad-hoc QPP methods generalize to the conversational
search context. However, adapting these methods is not straightforward. The primary
challenge arises from the context-dependent nature of conversational queries, which
frequently include omissions, coreferences, and ambiguities [182]. Many QPP methods
rely heavily on the input query [15, 45, 65, 67, 102, 283], yet they are designed for
self-contained queries in ad-hoc search and lack the necessary capabilities to interpret
context-dependent conversational queries effectively. The above concerns motivate our
third research question:

RQ3 How can QPP methods originally designed for ad-hoc search be effectively
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adapted to conversational search, and how well do QPP methods for ad-hoc
search perform in conversational search?

To answer this question, we start by adapting existing QPP methods that rely on input
queries for conversational search. Specifically, we feed self-contained query rewrites,
generated by off-the-shelf query rewriting models, into these methods. Using this
adaptation approach, we conduct a comprehensive study to evaluate how well QPP
methods designed for ad-hoc search perform in conversational search. Below, we
highlight a few key findings from our experiments. Our extensive results indicate that
feeding query rewrites into QPP methods is an effective strategy for adapting them to
conversational search. Additionally, predicting an IR evaluation metric with a shallow
cut-off is generally more challenging than predicting one with a deep cut-off.

In Chapter 5, we focus on improving QPP accuracy by leveraging LLMs. While
LLMs have demonstrated state-of-the-art performance across various tasks in IR and
NLP [297, 301], limited research has explored how to use LLMs for enhancing QPP
accuracy. In particular, it is unclear how LLMs can be effectively used to improve the
accuracy of QPP methods. Hence, we address the following research question:

RQ4 How can LLMs be used to effectively enhance QPP accuracy?

To answer this question, we propose a framework for modeling QPP using automat-
ically generated relevance judgments (QPP-GenRE), which decomposes QPP into
independent subtasks of predicting the relevance of each document in a ranked list to
the query, and then predicts different IR evaluation measures based on the relevance
predictions. QPP-GenRE leverages the strong performance of LLMs in generating
relevance judgments [249], with prior research demonstrating that LLMs can achieve
accuracy comparable to human labelers [242]. To further enhance the quality of gener-
ated relevance judgments, we propose to fine-tune open-source LLMs on human-labeled
relevance judgments.

Moreover, since predicting IR evaluation metrics considering recall typically re-
quires identifying all relevant documents in the entire corpus, we propose an approx-
imation strategy for QPP-GenRE; it predicts relevance for a limited subset of ranked
documents and uses their relevance judgments to estimate recall-based IR metrics,
circumventing the computational expense of traversing the entire corpus to find all
relevant documents.

Additionally, to mitigate the efficiency issue that comes with calling LLMs, we
introduce a relevance judgment caching mechanism that improves efficiency by reusing
previously predicted relevance judgments. Extensive experiments show that QPP-
GenRE achieves state-of-the-art QPP accuracy in assessing both lexical and neural
retrievers across ad-hoc and conversational search scenarios. Also, fine-tuning sig-
nificantly improves LLMs’ performance in relevance judgment prediction, as well as
the accuracy of QPP based on these judgments. The proposed caching mechanism
markedly reduces the number of LLM calls for relevance prediction. Besides improved
QPP accuracy, QPP-GenRE demonstrates strong interpretability, allowing QPP errors
to be analyzed based on errors in generated relevance judgments.
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1.2 Main Contributions

This section summarizes the main contributions of this thesis, from multiple perspectives:
theoretical, algorithmic, empirical and resource-related.

1.2.1 Theoretical contributions

1. A formulation of the task of system initiative prediction (SIP) (Chapter 2).

2. A formulation of ranked list truncation (RLT) for dynamic per-query re-ranking
depth prediction (Chapter 3).

3. A formulation of query performance prediction (QPP) in the scenario of conver-
sational search (Chapter 4).

1.2.2 Algorithmic contributions

4. A multi-turn system-initiative predictor (MuSIc) that captures structural depen-
dencies between system initiative-taking decisions and other factors (Chapter 2).

5. A SIP-to-clarification transfer learning method, which transfers knowledge gained
from the SIP task to the clarification need prediction task (Chapter 2).

6. A framework for SIP-aware hierarchical action prediction, where action prediction
depends on SIP (Chapter 2).

7. An algorithm for adapting RLT methods to predict re-ranking depths on a per-
query basis (Chapter 3).

8. An algorithm for adapting QPP methods, designed for ad-hoc search, to the
conversational search scenarios (Chapter 4).

9. A framework for modeling QPP using automatically generated relevance judg-
ments (QPP-GenRE), which decomposes QPP into independent subtasks of
predicting the relevance of each item in a ranked list to the query, and then pre-
dicts different IR evaluation measures based on the predicted relevance judgments
(Chapter 5).

10. An approximation strategy for QPP-GenRE to predict IR evaluation measures
that consider recall, by predicting relevance for only a limited set of ranked
documents and then using their relevance judgments to estimate recall-based
measures (Chapter 5).

11. A relevance judgment caching mechanism that increases QPP-GenRE efficiency
by reusing previously predicted relevance judgments (Chapter 5).
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1.2.3 Empirical contributions

12. An empirical analysis that uncovers structural dependencies between system
initiative-taking decisions and various factors in multi-turn conversations (Chap-
ter 2).

13. A systematic performance comparison of MuSIc against other methods for the
SIP task (Chapter 2).

14. A visual analysis of MuSIc’s interpretability and transparency to explicitly illus-
trate the structural dependencies it captures.

15. A performance comparison of clarification need prediction using SIP-to-clarification
transfer learning against typical clarification need prediction (Chapter 2).

16. A performance comparison of SIP-aware hierarchical action prediction against
typical action prediction (Chapter 2).

17. An empirical analysis in the context of LLM-based re-ranking that reveals how
fixed re-ranking depths lead to unnecessary computational costs and degrade
re-ranking quality, motivating the need for re-ranking depth prediction on a
per-query basis (Chapter 3).

18. A comprehensive experiment designed to evaluate the performance of RLT meth-
ods in predicting re-ranking depths across various configurations in the context
of LLM-based re-ranking (Chapter 3).

19. A comprehensive experiment to demonstrate the performance of QPP methods,
originally designed for ad-hoc search, across various configurations of conversa-
tional search (Chapter 4).

20. A systematic performance comparison of QPP-GenRE, which uses fine-tuned
LLMs for relevance prediction, against other QPP methods in assessing lexical
and neural rankers across ad-hoc and conversational search scenarios (Chapter 5).

21. A comprehensive performance comparison of LLMs in relevance judgment pre-
diction under fine-tuning and few-shot prompting settings, evaluating two families
of open-source LLMs across different model sizes (Chapter 5).

22. An analysis of QPP-GenRE’s performance in predicting a metric considering re-
call with respect to the number of documents used in the proposed approximation
strategy (Chapter 5).

23. An efficiency comparison of QPP-GenRE with the proposed relevance judgment
caching mechanism and QPP-GenRE without it (Chapter 5).

24. An analysis of QPP-GenRE’s interpretability that shows QPP errors can be
analyzed based on errors in generated relevance judgments (Chapter 5).
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1.2.4 Resources contributions

25. An open-source repository that provides implementations of MuSIc and SIP-
aware hierarchical action prediction, within a unified Python/PyTorch framework
(Chapter 2). For further details, visit: https://github.com/ChuanMeng/
SIP.

26. An open-source repository that offers an implementation of eight RLT methods,
along with a full pipeline for adapting them to predicting re-ranking depths,
within a unified Python/PyTorch framework (Chapter 3). For further details, visit:
https://github.com/ChuanMeng/RLT4Reranking.

27. An open-source repository that provides an implementation of seventeen QPP
methods, along with a full pipeline for adapting them to conversational search
scenarios, within a unified Python/PyTorch framework (Chapter 4). For further
details, visit: https://github.com/ChuanMeng/QPP4CS.

28. An open-source repository that provides scripts for fine-tuning open-source
LLMs to generate relevance judgments, as well as an implementation of QPP-
GenRE, within a Python/PyTorch framework (Chapter 5). For further details,
visit: https://github.com/ChuanMeng/QPP-GenRE.

1.3 Thesis Overview

This section provides an overview of the thesis and offers recommendations for reading
directions. The thesis is structured into an introduction chapter, four research chapters
grouped into three thematic parts, and a conclusion chapter.

Each research chapter addresses one of the thesis-level research questions introduced
in Section 1.1, along with additional chapter-specific research questions. The thesis-level
research questions shape the overarching narrative of the work, while the chapter-specific
questions focus on the individual contributions within each chapter.

The first chapter, which you are currently reading, introduces the subject of this
thesis: optimizing agentic workflows for information access. It also presents the research
questions that this thesis seeks to answer, outlines its key contributions, and provides
context on its origins.

Part I titled Mixed-Initiative Strategy Planning contains Chapter 2, which resolves
the issue of a narrow scope of system-initiative actions in predicting the timing of
system initiative-taking. Chapter 2 expands the scope of system-initiative actions by
defining and modeling a new task, system initiative prediction (SIP).

Part II titled Ranking Strategy Planning consists of Chapter 3, which explores
dynamic per-query re-ranking depth prediction in LLM-based re-ranking, an area
with limited prior research. Chapter 3 conducts a systematic empirical analysis that
motivates the need for dynamic per-query re-ranking depths, and explores how to model
the prediction in this context.

Part III titled Ranking Result Reflection comprises Chapter 4 and Chapter 5, which
examine two underexplored areas: QPP in conversational search and LLM-enhanced
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QPP. Chapter 4 adapts QPP methods, originally designed for ad-hoc search, to conver-
sational search scenarios, and systematically investigates the performance of existing
QPP methods in conversational search. Chapter 5 enhances QPP accuracy by leveraging
LLMs’ capabilities.

Finally, the thesis concludes with Chapter 6, summarizing the key findings and
discussing potential future research directions.

The four research chapters in this thesis are self-contained, allowing them to be read
independently. These chapters are based on previously published work, and to maintain
fidelity to the original research, alternate versions have not been created. As a result,
some notations and conventions may vary slightly across chapters.

1.4 Origins

We list the publications on which the research chapters were based. This thesis is built
on four publications [175–177, 180].

Chapter 2 is based on the following paper:

• C. Meng, M. Aliannejadi, and M. de Rijke. System initiative prediction for
multi-turn conversational information seeking. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pages
1807–1817, 2023.

CM: Conceptualization, Methodology, Data curation, Software, Formal analysis,
Writing – original draft; MA and MdR: Supervision, Conceptualization, Writing -
review & editing.

Chapter 3 is based on the following paper:

• C. Meng, N. Arabzadeh, A. Askari, M. Aliannejadi, and M. de Rijke. Ranked
list truncation for large language model-based re-ranking. In Proceedings of
the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 141–151, 2024.

CM: Conceptualization, Methodology, Data curation, Software, Formal analysis,
Writing – original draft; NA and AA: Writing - review & editing; MA and MdR:
Supervision, Conceptualization, Writing - review & editing.

Chapter 4 is based on the following paper:

• C. Meng, N. Arabzadeh, M. Aliannejadi, and M. de Rijke. Query performance
prediction: From ad-hoc to conversational search. In Proceedings of the 46th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 2583–2593, 2023.

CM: Conceptualization, Methodology, Data curation, Software, Formal analysis,
Writing – original draft; NA: Software, Formal analysis, Writing - review &
editing; MA and MdR: Supervision, Conceptualization, Writing - review &
editing.
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Chapter 5 is based on the following paper:

• C. Meng, N. Arabzadeh, A. Askari, M. Aliannejadi, and M. de Rijke. Query
performance prediction using relevance judgments generated by large language
models. ACM Transactions on Information Systems (TOIS), to appear.

CM: Conceptualization, Methodology, Data curation, Software, Formal analysis,
Writing – original draft; NA and AA: Software, Writing - review & editing; MA
and MdR: Supervision, Conceptualization, Writing - review & editing.

The writing of the thesis also benefited from work on other publications [1–3, 18–20, 23–
25, 146, 159, 170–174, 178, 179, 183, 233]:

• C. Meng, F. Tonolini, F. Mo, N. Aletras, E. Yilmaz, and G. Kazai. Bridging
the gap: From ad-hoc to proactive search in conversations. In Proceedings of
the 48th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2025.

• F. Mo, C. Meng, M. Aliannejadi, and J.-Y. Nie. Conversational search: From
fundamentals to frontiers in the LLM era. In Proceedings of the 48th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
2025.

• A. Askari, R. Petcu, C. Meng, M. Aliannejadi, A. Abolghasemi, E. Kanoulas,
and S. Verberne. SOLID: Self-seeding and multi-intent self-instructing LLMs
for generating intent-aware information-seeking dialogs. In Findings of the
Association for Computational Linguistics: NAACL 2025, pages 6390–6410,
2025.

• C. Meng, G. Faggioli, M. Aliannejadi, N. Ferro, and J. Mothe. QPP++ 2025:
Query performance prediction and its applications in the era of large language
models. In European Conference on Information Retrieval, pages 319–325, 2025.

• L. Lu, C. Meng, F. Ravenda, M. Aliannejadi, and F. Crestani. Zero-shot and
efficient clarification need prediction in conversational search. In European
Conference on Information Retrieval, pages 389–404, 2025.

• Z. Abbasiantaeb, C. Meng, L. Azzopardi, and M. Aliannejadi. Improving the
reusability of conversational search test collections. In European Conference on
Information Retrieval, pages 196–213, 2025.

• N. Arabzadeh, C. Meng, M. Aliannejadi, and E. Bagheri. Query performance
prediction: Theory, techniques and applications. In Proceedings of the Eighteenth
ACM International Conference on Web Search and Data Mining, pages 991–994,
2025.

• Z. Abbasiantaeb, C. Meng, L. Azzopardi, and M. Aliannejadi. Can we use large
language models to fill relevance judgment holes? In Joint Proceedings of the 1st
Workshop on Evaluation Methodologies, Testbeds and Community for Information
Access Research (EMTCIR 2024) and the 1st Workshop on User Modelling in
Conversational Information Retrieval (UM-CIR 2024), 2024.
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• N. Arabzadeh, C. Meng, M. Aliannejadi, and E. Bagheri. Query performance
prediction: Techniques and applications in modern information retrieval. In Pro-
ceedings of the 2024 Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval in the Asia Pacific Region, pages
291–294, 2024.

• S. MacAvaney, A. Roegiest, A. Lipani, A. Parry, B. Engelmann, C. K. Kreutz,
C. Meng, E. Frayling, E. Yang, F. Schlatt, G. Faggioli, H. Scells, I. Atanassova,
J. Friese, J. Bevendorff, J. Sanz-Cruzado, J. Trippas, K. Pathak, K. Dhole, L. Az-
zopardi, M. Fröbe, M. Bertin, N. Prasad, S. Zerhoudi, S. Wang, S. Chatterjee,
T. Jänich, U. Kruschwitz, X. Wang, and Z. Long. Report on the collab-a-thon at
ECIR 2024. SIGIR Forum, 58(1):1–11, 2024.

• A. Askari, C. Meng, M. Aliannejadi, Z. Ren, E. Kanoulas, and S. Verberne.
Generative retrieval with few-shot indexing. arXiv preprint arXiv:2408.02152,
2024.

• C. Meng. Query performance prediction for conversational search and beyond.
In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 3077–3077, 2024.

• N. Arabzadeh, C. Meng, M. Aliannejadi, and E. Bagheri. Query performance
prediction: From fundamentals to advanced techniques. In European Conference
on Information Retrieval, pages 381–388, 2024.

• Z. Abbasiantaeb, C. Meng, D. Rau, A. Krasakis, H. A. Rahmani, and M. Alian-
nejadi. LLM-based retrieval and generation pipelines for TREC interactive
knowledge assistance track (iKAT) 2023. In Proceedings of the Thirty-Second
Text REtrieval Conference (TREC 2023), 2023.

• A. Askari, M. Aliannejadi, C. Meng, E. Kanoulas, and S. Verberne. Expand,
highlight, generate: RL-driven document generation for passage reranking. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 10087–10099, 2023.

• C. Meng, M. Aliannejadi, and M. de Rijke. Performance prediction for conversa-
tional search using perplexities of query rewrites. In Proceedings of the QPP++
2023: Query Performance Prediction and Its Evaluation in New Tasks Workshop
co-located with the 45th European Conference on Information Retrieval, pages
25–28, 2023.

• C. Meng, P. Ren, Z. Chen, Z. Ren, T. Xi, and M. de Rijke. Initiative-aware
self-supervised learning for knowledge-grounded conversations. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 522–532, 2021.

• W. Sun, C. Meng, Q. Meng, Z. Ren, P. Ren, Z. Chen, and M. de Rijke. Con-
versations powered by cross-lingual knowledge. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 1442–1451, 2021.
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• C. Meng, P. Ren, Z. Chen, W. Sun, Z. Ren, Z. Tu, and M. de Rijke. DukeNet: A
dual knowledge interaction network for knowledge-grounded conversation. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1151–1160, 2020.

• C. Meng, P. Ren, Z. Chen, C. Monz, J. Ma, and M. de Rijke. RefNet: A reference-
aware network for background based conversation. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 8496–8503, 2020.
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Mixed-Initiative Strategy
Planning
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2
Predicting the Timing of System Initiative

Research on mixed-initiative strategy planning has extensively explored the clarification
need prediction task, which focuses on determining when an information access system
should ask a clarifying question. However, clarification is just one of many possible
system-initiative actions, and comparatively little attention has been given to predicting
the timing of other actions. To address this limitation, this chapter introduces the system
initiative prediction (SIP) task, which expands beyond the narrow focus of clarification
need prediction. SIP aims to predict the timing of high-level system-initiative behaviours
that cover a broad range of specific system-initiative actions. By operating at a higher
level, SIP has the potential to enhance downstream tasks in mixed-initiative strategy
planning. Given these potential advantages, it is crucial to explore how to effectively
model SIP and assess its impact on downstream applications. Thus, this chapter seeks
to answer the following thesis-level research question:

RQ1 How can we effectively model system initiative prediction (SIP), and how does
this prediction benefit downstream tasks?

2.1 Introduction

An essential part of conversational information seeking (CIS) is to identify the right
moment for a CIS system to take the initiative [27, 286], given that system initiative-
taking risks frustrating the user and hurting the user experience [263, 264, 286, 305, 306].
Various system-initiative actions can be taken by a CIS system to take the initiative,
e.g., asking a clarifying question or requesting feedback [246, 250]. Existing work has
extensively studied the clarification need prediction task, that is, predicting when to ask
a clarifying question in an information-seeking conversation [9, 11, 16, 263, 264, 273].
However, as shown in Figure 2.1, asking a clarifying question is only one of several
possible system-initiative actions [10, 29, 286].
Task and motivation. We define system initiative prediction (SIP) task, which is
to predict whether the CIS system should take the initiative at the next turn in an
information-seeking conversation. To the best of our knowledge, no existing studies

This chapter was published as C. Meng, M. Aliannejadi, and M. de Rijke. System initiative prediction
for multi-turn conversational information seeking. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, pages 1807–1817, 2023.
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0% 20% 40% 60% 80% 100%
MSDialog

WISE
CQ IR RC RV RQ FQ OQ

Figure 2.1: Distribution of system-initiative actions in two realistic CIS training datasets,
WISE and MSDialog. CQ: clarifying question (called clarify in WISE); IR: information
request (called request in WISE); RV: revise; RC: recommendation (ask users if they
would like something); OQ: original question; RQ: repeat question; and FQ: follow up
question.

explicitly model this problem. Compared to clarification need prediction, SIP is a
high-level decision. SIP has three benefits for CIS systems: (i) SIP can improve the
controllability of the overall initiative level of the system to balance utility and user
experience [228]. (ii) SIP can enable knowledge sharing among various system-initiative
actions; the shared knowledge learned through SIP can be transferred to improve the
prediction of a specific system-initiative action by transfer learning, e.g., by fine-tuning
a model, pre-trained on SIP, on clarification need prediction. And (iii) SIP can boost
the prediction performance of downstream tasks that depend on SIP by narrowing their
decision space; e.g., in action prediction, where the system selects an action from a large
action space, certain actions, such as requesting feedback, are performed only if the
SIP result is initiative. One could argue that existing action prediction methods [280]
are sufficiently effective for SIP. However, our experiments show that using action
prediction methods for SIP leads to suboptimal results, but conversely, SIP significantly
improves downstream action prediction.

Our empirical analysis of two CIS datasets [200, 207] reveals that a system’s
initiative-taking decision at the next turn is not isolated but depends on the user’s previ-
ous initiative-taking decision. Figure 2.2a shows that the system is more likely to take
the initiative immediately after the user has taken the initiative in a conversation; thus,
capturing the dependencies between adjacent user–system initiative-taking decisions is
critical for modeling SIP.

A natural way to capture such structural dependencies is to use probabilistic graphi-
cal models, such as conditional random fields (CRFs) [128]. We propose to use linear-
chain CRFs [128, 236] to model SIP for three reasons: (i) they have been shown to be
effective in capturing dependencies between adjacent output decisions [236]; (ii) lin-
ear-chain CRFs for SIP can guarantee the best initiative-taking decision at the next turn
by decoding the optimal sequence of initiative-taking decisions in context (1 : T − 1
in Figure 2.3a) and the next turn (T in Figure 2.3a), instead of outputting the decision
at the next turn independently [128, 236]; and (iii) due to CRFs’ graphical nature,
they have been shown to exhibit better interpretability and transparency than other
methods [89, 125], such as emergent large language models (LLMs) [49, 245, 297].
Challenges. When adopting linear-chain CRFs to the SIP task we face two challenges:
(i) They cannot be directly applied to SIP because we face an input-incomplete sequence
labeling problem. Linear-chain CRFs are designed for sequence labeling problems that
have a one-to-one correspondence between input observations and output decisions. As
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Figure 2.2: The probability of system initiative-taking (sys-in) conditioned on the user’s
initiative-taking decision at the preceding turn (pre-user-in) and the number of times the
system has taken the initiative (# pre-sys-in) on the WISE and MSDialog training sets.

shown in Figure 2.3a, to output initiative-taking decisions in context and at the next
turn, linear-chain CRFs need to be given a complete input sequence of utterances in
context and at the next turn. However, given the nature of SIP, as shown in Figure 2.3b,
the system utterance at the next turn is unobservable, leading to an input-incomplete
sequence labeling problem. And (ii) linear-chain CRFs do not explicitly model multi–
turn features. Our empirical analysis shows that an initiative-taking decision depends
on multi-turn features. We define a multi-turn feature as a variable that varies across
turns. Consider, e.g., the number of times the system has taken the initiative; Figure 2.2b
shows that a system is much less likely to take the initiative once again if it has already
taken the initiative before. But linear-chain CRFs do not consider this feature as it is
beyond the dependency between adjacent initiative decisions.
Approach. To address the challenges, we cast SIP as an input-incomplete sequence
labeling problem and propose a multi-turn system initiative predictor (MuSIc). We
propose (i) prior-posterior inter-utterance encoders to adapt linear-chain CRFs to the
input-incomplete sequence labeling problem and eliminate the need to be given the
unobservable system utterance, and (ii) a multi-turn feature-aware conditional random
field (CRF) layer to explicitly capture the impact of multi-turn features on an initiative–
taking decision by conditioning the dependencies between adjacent initiative-taking
decisions on multi-turn features. MuSIc can use an arbitrary number of multi-turn
features; we consider three essential ones: (i) role transition direction, (ii) the number
of times the system has taken the initiative, and (iii) the distance to the last system
initiative turn.
Experiments. We annotate the initiative-taking decision at each turn on two multi-
turn CIS datasets, WISE [207] and MSDialog [199]. Experiments on both datasets
show that MuSIc achieves state-of-the-art performance on SIP, outperforming strong
clarification need prediction, action prediction, and LLM-based (LLaMA [245]) base-
lines (see Section 2.6.1). We get two more insights: (i) LLMs do not show promising
performance on SIP where scaling up LLMs is not an effective way to solve SIP; and
(ii) probabilistic graphical modeling is still competitive and effective for this task and
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Figure 2.3: A comparison between a sequence labeling problem (a) and an input-
incomplete sequence labeling problem (b). 1 : T denote turn numbers and T is the next
system turn.

it should not be ignored in the era of LLMs. Furthermore, a visual analysis indicates
that the transition matrices learned through the MuSIc exhibit meaningful transition
patterns and explicitly show how MuSIc models the dependencies, showing great in-
terpretability and transparency (see Section 2.6.2). We explore how SIP can enhance
two key downstream tasks (see Section 2.6.4): clarification need prediction and action
prediction. For clarification need prediction, we propose a SIP-to-clarification trans-
fer learning approach, which fine-tunes a model (e.g., MuSIc) pre-trained on SIP on
the clarification need prediction task. We found that by using this approach, MuSIc
achieves the state-of-the-art clarification need prediction performance on ClariQ [9, 11],
indicating that the knowledge shared among various system-initiative actions learned
through SIP can be used to improve the prediction of a specific system-initiative action.
For action prediction, we construct a SIP-aware action prediction framework where
action prediction is fed with SIP results returned by MuSIc. The action prediction
performance is significantly improved, indicating the effectiveness of SIP in benefiting
downstream tasks.
Contributions. Our main contributions in this chapter are as follows:

• We introduce the task of system initiative prediction (SIP) for CIS, which has not
been explicitly modeled in prior work.

• We propose a multi-turn system-initiative predictor (MuSIc), which formalizes SIP as
an input-incomplete sequence labeling problem and jointly considers dependencies
between adjacent user–system initiative-taking decisions and the impact of multi-turn
features on an initiative-taking decision.

• We conduct experiments on two multi-turn CIS datasets, showing state-of-the-art
performance of MuSIc on SIP.

• We propose a SIP-to-clarification transfer learning approach, which fine-tunes a model,
pre-trained on SIP, on the clarification need prediction task. By using this approach,
MuSIc achieves state-of-the-art performance on clarification need prediction, setting
a new benchmark on the ClariQ dataset.

• We propose a SIP-aware action prediction framework, where downstream action
prediction depends on SIP outcomes. By using MuSIc-predicted SIP results, this
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hierarchical framework significantly enhances the performance of action prediction.

2.2 Related Work

This chapter builds on two strands of research: conversational information seeking (CIS)
and conditional random fields (CRFs).

2.2.1 Conversational information seeking
We focus on modeling mixed-initiative CIS systems [59, 92, 171–173, 286].
Mixed initiative. Mixed initiative is a key aspect in CIS [203]: the user and system can
both take the initiative at different times in a conversation. Mixed-initiative CIS systems
can ask clarifying questions [7, 11, 218, 284], elicit user preferences [204, 219], ask
for feedback [246, 250], initiate a conversation [258] and so on. Existing work focuses
on when a CIS system should take the initiative [27] and response generation/selection
given a decided system-initiative action [7, 43, 218, 265, 284]. We focus on the former.
In this direction, Avula et al. [27] run a user study to investigate it. The user study into
when to take the initiative [27] has been explored. This chapter differs as we explicitly
model when to take the initiative. Besides, much work has studied the prediction of
when to perform a specific system-initiative action, asking a clarifying question (a.k.a.
clarification need prediction) [9, 11, 16, 263, 264, 273].
Clarification need prediction. Zou et al. [305, 306] show that asking a clarifying
question is not always necessary, and inappropriate requests for clarification can hurt
user experience. Xu et al. [273] propose a binary classification model to identify whether
clarification is needed given the conversational context. Aliannejadi et al. [9, 11] fine-
tune pre-trained language models fed with user queries to return a clarification need
score. Wang and Ai [263, 264] propose a binary classification model that further takes
into account clarifying question and answer candidates returned by retrieval models.
Arabzadeh et al. [16] utilize the coherency of items retrieved for the user query: the
more coherent the retrieved items are, the less ambiguous the query is, and the need for
clarification decreases.

This chapter differs from these studies, as SIP covers a broader range of system-
initiative actions, while these studies are limited to one initiative type (i.e., asking a
clarifying question). As we have seen in Figure 2.1, real-world CIS datasets include
diverse system-initiative actions, which are neglected in the studies listed above.
System action prediction. Radlinski and Craswell [203] define a system action space
and emphasize the need for system action prediction in CIS, i.e., a CIS system should
predict an appropriate action from an action space at the right time. Azzopardi et al.
[28] define a more detailed taxonomy of user/system actions in CIS. Ren et al. [207]
propose a model that can predict one action per turn. Schneider et al. [217] conduct
user study to reveal action flow patterns in CIS. Ghosh et al. [95] first identify the user
action used in the previous user utterance and then use that to benefit the system action
prediction. In this chapter, we are concerned with the more challenging multi-action
system action prediction task, i.e., the system performs multiple actions concurrently
per turn [291]. Beyond CIS, multi-action system action prediction has been well
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studied for task-oriented conversations, where it is typically formulated as a multi-label
classification [107, 138, 269] or sequence generation problem [117, 138, 225, 260]. Ye
et al. [280] propose a sequence generation-based method, called Co-Gen, achieving
leading performance in terms of response generation and action prediction.

This chapter differs from action prediction because SIP is a higher-level decision on
which the action prediction depends.

2.2.2 Linear-chain conditional random fields

Linear-chain CRFs are discriminative probabilistic graphical models for sequence
labeling problems that assign output decisions to all of the observations in a sequence
jointly [128]. The output decisions are arranged in a sequence/linear chain where
adjacent output decisions are dependent according to the first-order Markov assumption,
enabling linear-chain CRFs to effectively capture dependencies between adjacent output
decisions [236]. We focus on neural linear-chain CRFs [112, 113], where parameters can
be trained end-to-end. They have been widely used for sequence labeling tasks, e.g., POS
tagging [112], named entity recognition [112, 129] and dialogue act recognition [46,
68, 126, 205, 221].

None of the work listed above can be directly applied to SIP due to the input-
incomplete sequence labeling problem. Another line of research captures the depen-
dencies between adjacent output decisions by dynamically generating transition matri-
ces [100, 113, 231, 235]. MuSIc differs as it explicitly incorporates multi-turn features
into the adjacent dependencies. While some work [42, 221] injects features (e.g.,
emotion shifts) into the adjacent dependencies for sequence labeling, MuSIc is for
input-incomplete sequence labeling and considers CIS-specific features that have not
been studied yet.

2.3 Task Definition

Consider an information-seeking conversation X = (x1, x2, . . . , x|X|−1, x|X|) with
a sequence of |X| utterances, where x is an utterance uttered by either a user or
system. The conversation X comes with a sequence of ground-truth initiative-taking
decisions Y = (y1, y2, . . . , y|X|−1, y|X|), i.e., each utterance x in the conversation has
a corresponding initiative-taking decision y ∈ {Initiative, Non-initiative}. Given the
context X1:T−1 = (x1, x2, . . . , xT−1), where T − 1 is a user turn, the system initiative
prediction (SIP) task is to predict the system’s initiative-taking decision yT at the next
turn T . We formulate SIP as an input-incomplete sequence labeling problem: we
model the conditional probability P (Y1:T | X1:T−1) of the sequence of initiative-taking
decisions in the context Y1:T−1 and at the next turn yT given the sequence X1:T−1 of
utterances in the context. Only the system’s initiative-taking decision yT at the next
turn T is used for evaluation.

22



2.4. Method

Multi-turn feature-aware CRF layer

BERT utterance encoder

Prior-posterior inter-utterance encoders

User utterance
turn 1

System utterance
turn 2

User utterance
turn T-1

System utterance
Turn T (unobservable)

I I N I

only during training
…

… used for evaluation

Figure 2.4: Overview of MuSIc. Its target is to predict the optimal sequence of initiative-
taking decisions in the context 1 : T − 1 and at the next turn T given the utterances over
turns 1 : T − 1. I/N at the top denotes Initiative/Non-initiative.

2.4 Method

2.4.1 Limitations of linear-chain conditional random fields

Linear-chain CRFs predict a sequence of output decisions based on emission and
transition scores (see [112, 129] for details), and have two main limitations when
applied “as is” to SIP: (i) They model P (Y1:T | X1:T ) to output the sequence Y1:T :
they use the sequence X1:T of utterances in the context and at the next turn to calculate
emissions scores over {Initiative, Non-initiative} over turns 1 : T ; there is a one-to-one
correspondence between X1:T and emission scores over turns 1 : T . However, xT , the
utterance at the next turn, is unobservable for SIP (see Figure 2.3b), leading to the
absence of the emission scores at turn T . (ii) They use a transition matrix that contains
transition scores from one initiative-taking decision to itself (e.g., Initiative to Initiative)
or the other (e.g., Initiative to Non-initiative) to capture dependencies between adjacent
initiative-taking decisions. An initiative-taking decision yt+1 is also impacted by a
multi-turn feature st:t+1 that changes across turns, e.g., the number of times the system
has taken the initiative (see Figure 2.2b). However, the transition matrix is unique and
shared across all turns; thus, the transition scores cannot be adjusted across turns to
capture the impact of a multi-turn feature st:t+1 effectively.

2.4.2 Overview of MuSIc

We propose MuSIc for SIP, which consists of three parts: (i) a BERT utterance encoder,
(ii) prior-posterior inter-utterance encoders, and (iii) a multi-turn feature-aware CRF
layer. See Figure 2.4. The BERT utterance encoder is used to encode each utterance
into a latent representation. Prior-posterior inter-utterance encoders enable MuSIc to
model the input-incomplete sequence labeling by approximating the absent emission
scores at turn T . We model P (Y1:T | X1:T ) during training (see Figure 2.5a) as we
can access the unobservable system utterance xT at the next turn T ; we pass X1:T

through the BERT encoder and a posterior inter-utterance encoder to calculate emission
scores over turns 1 : T ; we define them as posterior emission scores. Similarly, we
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Figure 2.5: Prior-posterior inter-utterance encoders and multi-turn feature-aware CRF
layer during (a) training and (b) inference. The system utterance at the next turn T can
be accessed by the posterior inter-utterance encoder only during training.

pass X1:T−1 through BERT and a prior inter-utterance encoder; we use the output of
the prior inter-utterance encoder to calculate prior emission scores that are forced to
approximate the posterior emission scores at T via an MSE loss. During inference
(see Figure 2.5b), we model P (Y1:T | X1:T−1) and regard the approximate (prior)
emission scores as the absent emission scores at turn T , eliminating the need to be
given the unobservable system utterance xT . The multi-turn feature-aware CRF layer
incorporates three multi-turn features and conditions transition scores (dependencies)
between adjacent initiative-taking decisions on multi-turn features. We extend the single
transition matrix in linear-chain CRFs to multiple ones, corresponding to different
multi-turn features. For a pair of adjacent initiative-taking decisions between turn t and
t + 1, we adjust the transition score between them by selecting the transition matrix
corresponding to the multi-turn features from turn t to t+ 1.
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2.4.3 BERT utterance encoding
We use a BERT encoder [71] to encode an utterance xt (t = 1, . . . , T during training,
t = 1, . . . , T − 1 during inference) into an utterance representation Hxt ∈ R|xt|×d,
after which an average pooling operation [40] is used to get a condensed representation
hxt ∈ R1×d, where |xt| and d denote the number of tokens in xt and the hidden size,
respectively.

2.4.4 Prior-posterior inter-utterance encoding

We have a prior inter-utterance encoder that takes as input {hxt}T−1
t=1 , returning prior

utterance representations {hxt
pri}

T−1
t=1 , as shown in Figure 2.5. Also, we have a posterior

inter-utterance encoder that takes as input {hxt}Tt=1 during training ({hxt}T−1
t=1 during

inference), outputting posterior utterance representations {hxt
pos}Tt=1 during training

({hxt
pos}T−1

t=1 during inference).1

2.4.5 Multi-turn feature-aware conditional random field layer
During training, we feed the unobservable system utterance xT to MuSIc and model
the conditional probability P (Y1:T | X1:T ) of the sequence Y1:T of initiative-taking
decisions in the context and at the next turn given the sequence X1:T of utterances in
the context and at the next turn.

We consider three multi-turn features S = {srt:t+1, snt:t+1, sdt:t+1}T−1
t=1 as additional

input:

(1) srt:t+1 represents the role transition direction from turn t to t + 1, i.e., srt:t+1 =
u2s/s2u means that the role transition is from the user to the system/the system to
the user from turn t to t+ 1.

(2) Given srt:t+1 = u2s (“user to system”),2 snt:t+1 represents the number of times the
system takes the initiative before the next system turn at t+ 1. Table 2.1 shows that
the average number of system initiative utterances in a conversation in training sets
is less than 1. To make full use of the sparse training data, we only consider the
cases snt:t+1 = 0 and > 0, which means that the system has not taken the initiative
and has taken the initiative once or more before the next system turn at t + 1,
respectively.

(3) Given srt:t+1 = u2s (again, “user to system”) and snt:t+1 > 0, sdt:t+1 represents
the distance to the last system initiative turn from the next system turn at t + 1.
Similarly, to make full use of the sparse data, we only consider sdt:t+1 = 2 and
> 2,3 which means that the distance to the last system initiative turn from the next
system turn at t+ 1 is 2 and more than 2 turns, respectively.

1We implement inter-utterance encoders by BiLSTMs, which got better performance than Transformers in
our preliminary experiments.

2We consider other features only given “user to system” for simplicity;“user to system” is more critical as
the role transition from turn T − 1 to T is always from “user to system”.

3We also experimented with more fine-grained cases, such as snt:t+1 = 1, 2, 3, 4 and sdt:t+1 = 4, 6, 8,
but no further improvements were obtained.
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After considering the three multi-turn features, MuSIc models:

P (Y1:T | X1:T ,S) =
exp(ψ(X1:T , Y1:T ,S))∑

Ỹ1:T
exp(ψ(X1:T , Ỹ1:T ,S))

,

ψ(Y1:T , X1:T ,S) =

T∑
t=1

e(yt, X1:T ) +

T−1∑
t=1

g(yt, yt+1, s
r
t:t+1, s

n
t:t+1, s

d
t:t+1),

(2.1)

where Ỹ1:T denotes one of all possible sequences of initiative-taking decisions, e(yt, X1:T )
is the emission scoring function to calculate the posterior emission scores based on
X1:T , and g(yt, yt+1, s

r
t:t+1, s

n
t:t+1, s

d
t:t+1) is the transition score function to calculate

the transition scores conditioned on multi-turn features S.
Computing emission scores. e(yt, X1:T ) calculates the posterior emission scores

{ext
pos}Tt=1 based on the posterior utterance representations {hxt

pos}Tt=1; see Figure 2.5a.
The calculation at each turn is modeled as:

e(yt, X1:T ) = ext,yt
pos ∈ R1×1

ext
pos = MLP(hxt

pos) ∈ R1×2,
(2.2)

where t = 1, 2, . . . , T , ext
pos ∈ R1×2 are posterior emission scores over {Initiative,

Non-initiative}, and MLP(·) denotes a multilayer perceptron (MLP). In parallel, we
calculate the prior emission scores e

xT−1

pri ∈ R1×2 based on the last output (at turn
T − 1) of the prior inter-utterance encoder hxT−1

pri (see Figure 2.5a):

e
xT−1

pri = MLP(h
xT−1

pri ) ∈ R1×2. (2.3)

The prior emission scores exT−1

pri ∈ R1×2 would learn to approximate the posterior emis-
sion scores exT

pos ∈ R1×2 at turn T (see Figure 2.5a and Equation 2.8). The parameters
of the MLP in Equation 2.2 and Equation 2.3 are not shared.

Computing transition scores. Linear-chain CRFs do not condition a transition
score on any multi-turn features:

g(yt, yt+1) = Gyt,yt+1
∈ R1×1, (2.4)

where G ∈ R2×2 is a transition matrix shared across all turns, and Gyt,yt+1 is the
transition score from the decision yt to yt+1. Our transition scoring function, denoted
as g(yt, yt+1, s

r
t:t+1, s

n
t:t+1, s

d
t:t+1), does condition the computation of the transition

scores between adjacent initiative-taking decisions on the multi-turn features srt:t+1,
snt:t+1, and sdt:t+1. We define separate transition matrices corresponding to different
combinations of multi-turn features. For a pair of adjacent initiative-taking decisions
between turn t and t+ 1, we select the transition matrix corresponding to the multi-turn
features from turn t to t+1. If the transition score is only conditioned on the multi-turn
feature role transition direction srt:t+1, it is calculated as:

g(yt, yt+1, s
r
t:t+1) = (1− I(srt:t+1)) ·Gs2u

yt,yt+1
+ I(srt:t+1) ·Gu2s

yt,yt+1
, (2.5)
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where I(srt:t+1) is an indicator function that equals 1 if srt:t+1 = u2s and 0 otherwise,
and Gs2u ∈ R2×2 and Gu2s ∈ R2×2 are transition matrices corresponding to “from
system to user” and “from user to system,” respectively.

Given srt:t+1 = u2s, if the transition score is further conditioned on the feature
snt:t+1, the number of times the system takes the initiative before the next system turn at
t+ 1, it is calculated as:

g(yt, yt+1, s
r
t:t+1, s

n
t:t+1)) = (1− I(srt:t+1)) ·Gs2u

yt,yt+1
+

I(srt:t+1) · [(1− I(snt:t+1)) ·Gu2s,n=0
yt,yt+1

+ I(snt:t+1) ·Gu2s,n>0
yt,yt+1

],
(2.6)

where I(snt:t+1) is an indicator function that equals 1 if snt:t+1 > 0 and 0 otherwise, and
Gu2s,n=0 ∈ R2×2 and Gu2s,n>0 ∈ R2×2 are transition matrices corresponding to “the
system has not take the initiative” and “the system has taken the initiative once or more”
before the next system turn at t+ 1, respectively.

Given srt:t+1 = u2s and snt:t+1 > 0, if the transition score is further conditioned on
the feature sdt:t+1, the distance to the last system’s initiative turn from the next system
turn at t+ 1, it is calculated as:

g(yt, yt+1, s
r
t:t+1, s

n
t:t+1, s

d
t:t+1)) = (1− I(srt:t+1)) ·Gs2u

yt,yt+1
+

I(srt:t+1) · {(1− I(snt:t+1)) ·Gu2s,n=0
yt,yt+1

+

I(snt:t+1) · [(1− I(sdt:t+1)) ·Gu2s,n>0,d=2
yt,yt+1

+

I(sdt:t+1) ·Gu2s,n>0,d>2
yt,yt+1

]},

(2.7)

where I(sdt:t+1) is an indicator function that equals 1 if sdt:t+1 > 2 and 0 otherwise,
and Gu2s,n>0,d=2 ∈ R2×2 and Gu2s,n>0,d>2 ∈ R2×2 are transition matrices for
“the distance to the last system’s initiative turn is 2 turns” and “the distance to the
last system’s initiative turn is more than 2 turns” from the next system turn at t + 1,
respectively.

Training objectives. Our final loss function is defined as L = Lcrf + Lmse . We
not only minimize the negative log-likelihood of the sequence Y1:T of ground-truth
initiative-taking decisions in the context and at the next turn, but also force e

xT−1

pri to
learn to approximate exT

pos via an MSE loss (see Figure 2.5a):

Lcrf = − logP (Y1:T | X1:T ,S)

Lmse = −(e
xT−1

pri − exT
pos)

2.
(2.8)

Inference phase. MuSIc models the conditional probability P (Ỹ1:T | X1:T−1,S)
of a possible sequence Ỹ1:T of initiative-taking decisions in the context (1 : T − 1) and
at the next turn T only given the sequence X1:T−1 of utterances in the context (see
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Figure 2.5b):

P (Ỹ1:T | X1:T−1,S) =
exp(ψ(X1:T−1, Ỹ1:T ,S))∑

Ỹ1:T
exp(ψ(X1:T−1, Ỹ1:T ,S))

,

ψ(Ỹ1:T , X1:T−1,S) =

T∑
t=1

e(ỹt, X1:T−1) +

T−1∑
t=1

g(ỹt, ỹt+1, s
r
t:t+1, s

n
t:t+1, s

d
t:t+1),

(2.9)

where e(ỹt, X1:T−1) = e
xT−1,ỹT

pri if t = T and ext,ỹt
pos otherwise (see Figure 2.5b). The

optimal sequence Y ∗
1:T of initiative-taking decisions in context and at the next turn is

decoded by the Viterbi algorithm [254]:

Y ∗
1:T = argmaxỸ1:T

P (Ỹ1:T | X1:T−1,S). (2.10)

2.5 Experimental Setup

2.5.1 Research questions

This chapter expands on the thesis-level research question RQ1 by examining the
following chapter-specific research questions:

RQ1.1 To what extent does MuSIc improve performance on the SIP task compared to
state-the-art baselines?

RQ1.2 What is the effect of multi-turn features on the performance of MuSIc?

RQ1.3 To what extent does knowledge shared among various system-initiative actions
learned through SIP benefit the clarification need prediction task?

RQ1.4 To what extent does the SIP task benefit the downstream action prediction task?

2.5.2 Datasets

We consider two multi-turn CIS datasets with annotations of actions for utterances,
WISE [207] and MSDialog [199, 200, 278]. Based on the action annotations, we
annotate the initiative-taking decision for each utterance. WISE is collected through
crowdsourcing; it consists of mixed-initiative conversations between two workers
playing the role of user and system. All utterances are annotated with actions. We use
the data split from [207]. MSDialog consists of mixed-initiative conversations between
users who ask for technical help and expert users or staff (i.e., system) who help to
solve problems. This dataset has two versions: the complete set and a labeled subset.
Each utterance in the labeled subset is annotated with actions; we use the data split of
the labeled subset from [200].
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Table 2.1: Statistics of the WISE and MSDialog datasets after preprocessing; conv. is
short for “conversation.”

WISE MSDialog

train valid test train valid test

# conversations 705 200 1,000 1,760 220 219
# utterances 12,184 3,811 18,828 6,305 752 747
# system utterances 5,949 1,868 9,246 2,938 352 354
# system initiatives 691 324 1,457 1,085 131 143
Max. # turns/conversation 38 38 42 10 10 10
Avg. # turns/conversation 17.28 19.06 18.83 3.58 3.42 3.41
Max. # actions/system turn 3 2 3 6 6 7
Avg. # actions/system turn 1.02 1.02 1.02 1.67 1.77 1.80
Avg. # system initiatives/conv. 0.98 1.62 1.46 0.62 0.60 0.65
Avg. # clarifying questions/conv. 0.87 1.23 1.17 0.15 0.18 0.15

2.5.3 Pre-processing

Following [251, 263, 264], we merge consecutive utterances from either the user or
system into one utterance by concatenation; their corresponding actions are merged by a
union operation too. See Table 2.1 for the statistics of the datasets. The average numbers
of turns in both datasets are less than the numbers in the original papers [200, 207] due
to the merging operation.

2.5.4 Annotation of initiative-taking decision labels

For both datasets, we derive the initiative annotations by mapping the manual anno-
tations of actions to initiative or non-initiative labels. An utterance is annotated as
initiative if it is annotated with any of the actions showing initiative4 and non-initiative
otherwise.

2.5.5 Baselines

We compare MuSIc with recently proposed LLM-based baselines, and three other
groups of state-of-the-art baselines for the SIP task: (i) clarification need prediction,
(ii) system action prediction, and (iii) linear-chain CRF-based methods.

Regarding LLM-based baselines, we consider LLaMA-7B/13B/33B/65B [245]
using in-context learning [35, 74] as the LLM-based baselines. Mao et al. [166] prompt
LLMs for conversational query rewriting and we adapt their designed prompt to SIP. We
prepend the SIP task instruction at the beginning of the prompt, followed by two groups
of demonstrations: (i) a few complete conversations randomly sampled from the training
set, and (ii) utterances in the context X1:T−1 prior to the next turn T . Ground-truth

4The WISE dataset has different taxonomies for user and system actions; system actions showing initiative
have been shown in Figure 2.1; user actions showing initiative are reveal, request, and revise. MSDialog has
the same taxonomy for user and system actions; actions showing initiative have been shown in Figure 2.1.
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system-initiative decisions are prepended to the corresponding system utterances in the
demonstrations. Given the prompt, LLaMA generates the system-initiative decision
at the next system turn T . WISE is a Chinese language dataset; however, the original
LLaMA has a limited ability to encode and decode Chinese text [57]. Cui et al. [57]
release Chinese-LLaMA-Plus-7B and -13B at the time of writing. These LLaMA
variants use the extended Chinese vocabulary and are further trained on Chinese data.
We report the performance of both [57] on WISE.

We train and test two clarification need prediction models on SIP:

• CtxPred (BERT) uses a BERT encoder to encode the context and predict whether to
take the initiative at the next turn [9, 11, 273].

• Risk-aware Conversational Search agent with Q-learning (RCSQ) is fed with
the context, clarifying question and answer candidates returned by retrievers, and
is trained with a user simulator by reinforcement learning [263, 264]. To adapt it
to SIP,5 we replace the clarifying question and answer candidates with initiative
and non-initiative system utterance candidates retrieved by bi-encoders;6 we also
replace Q-learning with supervised learning using the annotations of initiative-taking
decisions. We follow the original implementation for the rest.

We also compare MuSIc with the state-of-art system action prediction method Co-
Gen [280]. Co-Gen generates actions and responses concurrently — the two generators
share a common latent space. We consider two variants of Co-Gen:7

• Co-Gen (action prediction) is trained with action and response generation; the
model outputs actions based on which we derive initiative-taking decisions using our
action-initiative mapping.

• Co-Gen (SIP) is trained with SIP and response generation; the action generator in the
original paper directly learns SIP to output the initiative-taking decision at the next
turn.

Linear-chain CRF-based methods cannot be directly applied to SIP as they need to be
given the unobservable utterance at the next turn. Based on the same BERT utterance
encoder and prior-posterior inter-utterance encoders as in MuSIc, we implement the
following:

• VanillaCRF only uses a unique transition matrix (see Equation 2.4).

• VanillaCRF+features feeding the three multi-turn features into the prior-posterior
inter-utterance encoders by encoding the multi-turn features as one-hot vectors at
each turn and concatenating the vectors with the BERT utterance representation.

5We use the code from the author: https://github.com/zhenduow/conversationalQA
6We implement the bi-encoders based on BERT, as MuSIc and most of the baselines use BERT.
7We use the code released by the author and adapt Co-Gen to SIP by making three changes: (i) we replace

the GRU encoder with a BERT encoder like MuSIc has; (ii) Co-Gen requires a state vector (belief state and
database records) that does not exist in CIS, so we replace the state vector with one-hot vectors encoding
the current multi-turn features; and (iii) we remove reinforcement learning in Co-Gen as the rewards (task
completion) do not exist in both CIS datasets.
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2.6. Results and Analysis

• DynamicCRF uses adjacent input observations xt, xt+1 to generate a dynamic tran-
sition matrix Gxt,xt+1 to model the dependency between the corresponding output
decisions yt, yt+1 [100, 113, 231, 235]. xT is unseen so GxT−1,xT cannot be com-
puted. Like the calculation of the prior/posterior emissions scores in MuSIc, we use
the output of the prior inter-utterance encoder hxT−1

pri to generate a prior transition
matrix GxT−1 for the output decisions yT−1, yT ; GxT−1 approximates a posterior
matrix GxT−1,xT generated by the output of the posterior encoder hxT−1

pos ,hxT
pos via an

MSE loss.

2.5.6 Evaluation metrics

Because SIP is a binary classification problem, we use macro-averaged F1, precision,
recall, and accuracy.

2.5.7 Implementation details

For all models except LLaMA, we use BERT encoders (BERT-base) on all datasets,
set the hidden size to 768, batch whole conversations instead of individual turns, set
the overall learning rate to 0.00002, use the Adam optimizer [124], and pick the best
checkpoint in terms of F1 on the validation set.8 For all CRF-based methods, our
preliminary experiments showed that higher learning rates for transition matrices lead to
better performance; we set the learning rate of transition matrices to 0.001. For LLaMA
with all sizes, we randomly sample 2 complete conversations from the training set of
WISE/MSDialog as demonstrations since other numbers lead to degraded performance.
Note that all methods need to predict initiative-taking decisions for all system turns in
all conversations in a dataset.

2.6 Results and Analysis

2.6.1 Performance comparison

To answer RQ1.1, we present the performance of MuSIc alongside all baseline methods
on the WISE and MSDialog datasets in Tables 2.2 and 2.3, respectively. We have five
observations.

First, LLaMA-7B/13B gets the worst result on WISE; on MSDialog, LLaMA-13B
outperforms CtxPred (BERT), and is comparable to VanillaCRF and DynamicCRF,
showing the effectiveness of LLMs. However, LLaMA with a larger parameter size
even performs worse in most cases, e.g., 7B vs. 13B on WISE and 33B vs. 65B on
MSDialog. This problem is also known as inverse scaling [168]. McKenzie et al. [168]
identify four potential causes of it and highlight that there’s still much to uncover in
understanding it. Further investigation of this problem on SIP is left for future work.

Second, MuSIc and the linear-chain CRF-based methods outperform CtxPred
(BERT). In terms of F1, VanillaCRF outperforms CtxPred (BERT) by 0.59% and

8We found that F1 can better show the ability of a model to deal with the class imbalance problem
according to experimental results on the WISE and MSDialog validation sets.
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Table 2.2: Performance comparison of SIP on the WISE dataset. Significant im-
provements over the best baseline results are marked with ∗ (t-test, p < 0.05). The
significance test is only performed on accuracy because it gives a score for each individ-
ual example, while other metrics evaluate the performance over all examples. At the
time of writing, only LLaMA-7B and LLaMA-13B have Chinese versions available.

Methods F1 Precision Recall Accuracy

LLaMA-7B 46.96 46.69 47.57 75.45
LLaMA-13B 26.91 55.01 54.28 26.96

CtxPred (BERT) 68.47 69.66 67.52 84.16
RCSQ 70.11 71.57 68.96 85.07

Co-Gen (action prediction) 67.65 69.89 66.14 84.40
Co-Gen (SIP) 69.47 71.37 68.09 85.01

VanillaCRF 69.06 71.38 67.46 85.04
DynamicCRF 69.21 71.25 67.75 84.97
VanillaCRF+features 69.32 71.85 67.61 85.25

MuSIc 71.40 73.53 69.84 85.98∗

2.14% on WISE and MSDialog, respectively. The gains indicate that it is beneficial for
SIP to capture dependencies between adjacent initiative-taking decisions.

Third, both MuSIc and VanillaCRF+features outperform VanillaCRF and Dynamic-
CRF, indicating that it is beneficial for SIP to take into account the impact of multi-turn
features on an initiative-taking decision. Also, in terms of F1, MuSIc outperforms
VanillaCRF+features by more than 3% on both datasets, underlining the importance of
introducing such impact in the CRF layer.

Fourth, Co-Gen (action prediction) performs poorly, indicating that SIP cannot
be effectively inferred from the predicted system actions. This could be due to the
large action space, making the model prone to action prediction errors, which would
propagate to SIP. It also implies the potential of SIP to reduce the decision space of
action prediction, which we discuss in response to RQ1.4. Co-Gen (SIP) outperforms
Co-Gen (action prediction), suggesting that sharing a common latent space between SIP
and response generation is beneficial, however, MuSIc does not use that information.

Fifth, MuSIc outperforms RCSQ, which uses system initiative and non-initiative
utterance candidates returned by retrieval models, whereas MuSIc does not have access
to such information. MuSIc outperforms RCSQ in terms of F1 by 2.51% and 2.89% on
WISE and MSDialog, respectively, confirming the effectiveness of MuSIc.

2.6.2 Visualisation of transition matrices

We show MuSIc’s transition matrices Gs2u, Gu2s,n=0, Gu2s,n>0,d=2 and Gu2s,n>0,d>2

on WISE and MSDialog in Figure 2.6. We see different patterns in each transition
matrix, indicating that different transition patterns are associated with different cases:
(i) Gu2s,n=0 shows that the user’s initiative tends to transition to the system’s initiative
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Table 2.3: Performance comparison of SIP on the MSDialog dataset. Significant
improvements over the best baseline results are marked with ∗ (t-test, p < 0.05).
The significance test is only performed on accuracy because it gives a score for each
individual example, while other metrics evaluate the performance over all examples.

Methods F1 Precision Recall Accuracy

LLaMA-7B 60.22 60.40 60.13 62.15
LLaMA-13B 62.54 62.73 63.21 62.99
LLaMA-33B 58.11 58.24 58.53 58.76
LLaMA-65B 55.30 62.33 60.44 55.93

CtxPred (BERT) 60.17 60.25 60.12 61.86
RCSQ 63.68 63.86 64.38 64.12

Co-Gen (action prediction) 53.76 55.23 54.35 58.47
Co-Gen (SIP) 63.13 63.62 62.97 65.25

VanillaCRF 62.31 63.24 62.17 64.97
DynamicCRF 62.01 61.95 62.20 62.99
VanillaCRF+features 63.29 64.19 63.10 65.82

MuSIc 65.37 65.79 65.19 67.23∗

when the system has not taken the initiative before. This corresponds to cases where
the system tends to take the initiative for the first time to ask a clarifying question after
the user has asked a question. (ii) Gu2s,n>0,d=2 shows that the user’s initiative tends
to transition to the system’s non-initiative if the system has taken the initiative at the
last system turn. In other words, the system is less likely to take the initiative in two
consecutive system turns if the user takes the initiative in the middle. (iii) According to
Gu2s,n>0,d>2, we see that compared to Gu2s,n>0,d=2, if the system has not taken the
initiative at the last system turn, the possibility of system initiative increases, especially
when the user takes the initiative (on MSDialog). This corresponds to cases where the
system takes the initiative once again to ask for feedback after answering a question
from the user. The complexities of the patterns described above indicate that MuSIc
effectively captures the impact of multi-turn features on an initiative-taking decision.

2.6.3 Effect of different multi-turn features

To answer RQ1.2, we evaluate MuSIc with multi-turn features on WISE and MSDialog.
We consider four settings: (i) (r, n, d) is our final model considering all features
(Equation 2.7); (ii) (r, n) does not consider the distance to the last system’s initiative
turn (Equation 2.6); (iii) (r) does not consider the number of times the system has
taken the initiative (Equation 2.5); (iv) – does not consider any feature, degrading to
VanillaCRF (Equation 2.4). See Table 2.4. All proposed multi-turn features contribute
to the success of MuSIc as removing any of them decreases performance. On WISE, the
MuSIc performance shows the biggest drop (0.92%) in terms of F1 score after removing
role transition direction ((r) vs. –). On MSDialog, MuSIc’s F1 score shows the biggest
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Figure 2.6: MuSIc’s transition matrices learned on WISE and MSDialog. N and I
denote non-initiative and initiative, respectively. Gs2u corresponds to “from system
to user.” Gu2s,n=0, Gu2s,n>0,d=2 and Gu2s,n>0,d>2 correspond to “from user to
system.” Gu2s,n=0 further corresponds to “the system has not taken the initiative
before.” Gu2s,n>0,d=2 and Gu2s,n>0,d>2 all correspond to “the system has taken the
initiative once or more.” The former further corresponds to “the distance to the last
system initiative turn is 2 turns from the next system turn”, while the latter corresponds
to “the distance to the last system’s initiative turn is more than 2 turns from the next
system turn.” See Section 2.4.5 for more information about each transition matrix.
Transition scores are normalized across columns. Darker colors indicate higher scores.

drop (1.96%) after removing the number of times the system has taken the initiative ((r,
n) vs. (r)).

2.6.4 Benefits of system initiative prediction on downstream tasks

We have demonstrated the effectiveness of MuSIc on SIP. Next, we illustrate two
applications of SIP.
Improving clarification need prediction via transfer learning. To answer RQ1.3,
we investigate the benefits of SIP to clarification need prediction (CNP) [9, 11, 16,
263, 264, 273]. Specifically, we explore how and to what extent knowledge shared
among system-initiative actions learned through SIP on a dataset (MSDialog) can be
reused to improve clarification need prediction on the single-turn ClariQ dataset [9, 11].
To achieve this, we propose a SIP-to-clarification transfer learning approach, which
fine-tunes a model pre-trained on SIP on clarification need prediction. To evaluate the
effectiveness of this strategy, we adopt MuSIc and the two strong clarification need
prediction baselines CtxPred (BERT) [9, 11, 273] and RCSQ [263, 264] in two settings:
(i) a clarification-only setting (CNP, ClariQ), where we only train models on the ClariQ
training dataset, and (ii) a SIP-to-clarification transfer learning setting (SIP, MS. → CNP,
ClariQ), where we first get the best checkpoints pre-trained on SIP on the MSDialog
training set and then fine-tune them on the ClariQ training dataset. We also introduce
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Table 2.4: Effect of multi-turn features in MuSIc. Notation for features explained in
Section 2.6.3. ∗ means (r, n, d) is significantly better than (–).

features WISE (%) MSDialog (%)

F1 Prec. Recall Acc. F1 Prec. Recall Acc.

r, n, d 71.40 73.53 69.84 85.98∗ 65.37 65.79 65.19 67.23∗
r, n 70.71 73.00 69.08 85.75 64.80 64.96 64.70 66.38
r 69.98 72.03 68.49 85.31 62.84 63.10 62.72 64.69
– 69.06 71.38 67.46 85.04 62.31 63.24 62.17 64.97

Table 2.5: Performance on clarification need prediction on ClariQ. (CNP, ClariQ)
indicates models in the clarification-only setting, where we only train the models on
the ClariQ training dataset; (SIP, MS. → CNP, ClariQ) indicates models in the SIP
to-clarification transfer learning setting, where we further fine-tune the best checkpoints,
pre-trained on SIP, on the ClariQ training dataset; MuSIc (CNP, MS. → CNP, ClariQ),
pre-trained on the SIP examples only containing clarifying questions on the MSDialog
training dataset. Significant improvements over the best baseline results are marked
with ∗ (t-test, p < 0.05).

Method ClariQ (%)

F1 Prec. Recall Acc.

MiniLm-ANC 54.38 54.12 54.95 77.05

CtxPred (CNP, ClariQ) 50.59 50.66 50.59 78.69
RCSQ (CNP, ClariQ) 58.19 58.73 57.78 81.97
MuSIc (CNP, ClariQ) 61.26 64.64 59.67 85.25

CtxPred (SIP, MS. → CNP, ClariQ) 56.84 56.84 56.84 80.33
RCSQ (SIP, MS. → CNP, ClariQ) 61.26 64.64 59.67 85.25
MuSIc (CNP, MS. → CNP, ClariQ) 63.03 69.74 60.61 86.89
MuSIc (SIP, MS. → CNP, ClariQ) 65.03 78.16 61.56 88.52∗

MiniLm-ANC [16], an unsupervised learning method for clarification need prediction.
We follow [16] to binarize the graded clarification need scores ranging from 1 (no
need for clarification) to 4 (clarification is necessary) on ClariQ. Unlike [16], where
scores are split in the middle, we only regard score 1 as not asking a clarifying question
because the author of ClariQ states that clarification is still needed for scores 2 and 3
but not as much as score 4.9 We present the results in Table 2.5.

MuSIc outperforms strong baselines on the single-turn ClariQ dataset in the super-
vised setting; it outperforms MiniLm-ANC and RCSQ (CNP, ClariQ) that use retrieved
documents by 6.88% and 3.07% in terms of F1 score, respectively. Transferring knowl-
edge from SIP to clarification need prediction (i.e., SIP-to-clarification transfer learning)
benefits both MuSIc and the baseline models: performance increases with knowledge
shared among system-initiative actions acquired from SIP. MuSIc (SIP, MS. → CNP,

9https://github.com/aliannejadi/ClariQ
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Table 2.6: Performance on the downstream task. Methods used: mlc (multi-label clas-
sification), sg (sequence generation), and Co-Gen (state-of-the-art action prediction).
+ MuSIc: inject the initiative-taking decision predicted by MuSIc; + oracle: inject
ground-truth initiative-taking decisions. Significant improvements over results of meth-
ods without using SIP results are marked with ∗ (t-test, p < 0.05).

Method WISE (%) MSDialog (%)

F1 Prec. Recall Acc. F1 Prec. Recall Acc.

mlc 21.59 25.80 20.24 48.78 18.23 20.41 18.06 48.83
+ MuSIc 23.05 25.87 22.71 51.98∗ 19.61 24.00 18.53 50.11∗
+ oracle 24.78 27.53 24.82 54.69 21.77 29.08 19.84 56.51

sg 21.92 22.77 23.01 54.28 19.36 21.65 19.31 45.87
+ MuSIc 23.28 25.92 24.07 56.68∗ 21.12 22.94 21.00 49.87∗
+ oracle 29.40 29.29 32.09 61.50 27.88 31.43 26.61 53.71

Co-Gen 24.17 24.14 25.77 55.02 21.34 22.98 20.95 48.94
+ MuSIc 26.26 28.95 26.86 58.54∗ 23.38 24.39 23.08 51.76∗
+ oracle 30.49 31.49 32.23 62.32 28.37 29.14 28.27 57.47

ClariQ) shows an increase (3.77%) in terms of F1 compared to MuSIc (CNP, ClariQ),
significantly exceeding all baselines in the transfer learning setting and achieving
state-of-the-art performance on ClariQ.

Because the MSDialog training set contains system utterances of clarifying ques-
tions, pre-training on SIP on the MSDialog dataset already includes the pre-training
of clarification need prediction. Is the improvement of transfer learning because the
model learns knowledge shared among various system-initiative actions on the SIP task
or because the model is just augmented with more training examples of clarification
need prediction on MSDialog? In order to determine this, we introduce MuSIc (CNP,
MS. → CNP, ClariQ), which is only pre-trained on clarification need prediction on the
MSDialog training dataset, i.e., pre-trained on the partial SIP training examples contain-
ing clarifying questions. The performance of MuSIc (SIP, MS. → CNP, ClariQ) shows
an increase (2%) in terms of F1 score compared to the performance of MuSIc (CNP,
MS. → CNP, ClariQ), confirming that shared knowledge of various system-initiative
actions learned through SIP benefits the model.
Improving downstream action prediction. To answer RQ1.4, we propose a SIP-aware
action prediction framework where action prediction is fed with the initiative-taking
decision predicted by MuSIc. In our scenario, the system can take multiple actions
per turn. Multi-action system action prediction is typically modeled as multi-label
classification [107, 138, 269] or sequence generation [117, 138, 225, 260]. We adopt
two typical models for both types and a state-of-art system action prediction method,
Co-Gen [280]: (i) following [107, 138, 269], we construct a multi-label classification
model by using a BERT encoder to encode the context and feeding the [CLS] token to an
MLP followed by sigmoid activation function to perform binary classification for each
action; (ii) following [117, 138, 225, 260], we construct a sequence generation model
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by using BERT to encode the context and feeding the [CLS] token to a GRU decoder
to sequentially decode actions step by step; and (iii) Co-Gen is a sequence generation
model, and we use Co-Gen (action prediction) (see Section 2.5.5) to generate actions. To
inject initiative-taking decisions into these models, we first embed an initiative-taking
decision (annotated during training and predicted by MuSIc during inference) to a
768-dimensional vector. For the models under (i) and (ii) we concatenate the vector
with the [CLS] token and feed the concatenation to an MLP/GRU decoder. For Co-Gen,
we concatenate the vector with the context representation (see [280]).

For evaluation, we adopt the same metrics as the previous sections except for
accuracy. Here, accuracy is measured by the Hamming score (a.k.a. the intersection
over the union) [98] that is widely used in multi-label classification evaluation [200].
Table 2.6 shows the results. The performance of three action prediction models fed with
the initiative-taking decision predicted by MuSIc (+ MuSIc) is significantly improved
compared to models without using SIP results. We think that this is because SIP, when
effective, can reduce the action space of the downstream action prediction models.
However, the downstream action prediction model cannot solve the SIP task (see
Section 2.6.1). It shows that action prediction cannot replace SIP, reiterating the
effectiveness of SIP in benefiting downstream tasks.

2.6.5 Error analysis

We conduct an error analysis of SIP. We group system initiative utterances in the test
sets of WISE and MSDialog according to their annotated system-initiative actions;
utterances in each group share the same system-initiative action. See Figure 2.7. MuSIc
can still perform well on some system-initiative actions that only take up a limited
proportion of the training sets. E.g., on MSDialog, the percentage of CQ is far less than
the percentage of IR in the training set, but the performance of MuSIc is comparable
in terms of CQ and IR in the test set. SIP enables knowledge sharing among various
system-initiative actions, benefiting individual system-initiative actions. For revise
(RV), there are only 4 and 3 system utterances of this type in the WISE training and test
sets, respectively, numbers that are too small to properly evaluate the performance.

2.7 Conclusions and Future Work

In this chapter, we have introduced the task of system initiative prediction (SIP), which
is to predict whether a CIS system should take the initiative at the next turn. This chapter
examined the following thesis-level research question RQ1:

RQ1 How can we effectively model system initiative prediction (SIP), and how does
this prediction benefit downstream tasks?

To answer this question, regarding the modeling of SIP, our empirical analysis found
that it is natural to utilize probabilistic graphical models for SIP, but we faced two
main challenges: solving the input-incomplete sequence labeling problem and explicitly
modeling multi-turn features. To solve the challenges, we proposed MuSIc, which has
(i) prior-posterior inter-utterance encoders to adapt CRFs to input-incomplete sequence
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Figure 2.7: SIP accuracy over utterance groups (utterances in one group share the same
system-initiative action) in the test sets and percentages of system-initiative actions
in the training sets. CQ: clarifying question (called clarify in WISE); IR: information
request (called request in WISE); RV: revise; RC: recommendation (ask users if they
would like something); OQ: original question; RQ: repeat question; and FQ: follow up
question.

labeling by eliminating the need to be given the unobservable system utterance at the
next turn, and (ii) a multi-turn feature-aware CRF layer to jointly consider dependencies
between adjacent user–system initiative-taking decisions and the impact of multi-turn
features on an initiative-taking decision. Next, we have explored how SIP can enhance
two downstream tasks: clarification need prediction and action prediction. For the
former, we have proposed a SIP-to-clarification transfer learning approach, which fine-
tunes a model, pre-trained on SIP, on the clarification need prediction task. For the
latter, we have introduced a SIP-aware action prediction framework, where downstream
action prediction depends on SIP outcomes.

Experiments on two CIS datasets show that MuSIc outperforms various baselines in-
cluding LLMs and achieves state-of-the-art performance on SIP. We get two additional
insights: (i) LLMs do not show promising performance on SIP and just scaling up LLMs
is not an effective way to solve SIP; and (ii) probabilistic graphical modeling is still
competitive, effective and it should not be ignored in the era of LLMs. A visual analysis
shows how the learned transition matrices exhibit MuSIc’s interpretability and trans-
parency. Regarding the applications of SIP to downstream tasks, SIP-to-clarification
transfer learning significantly improves clarification need prediction performance; this
indicates that the knowledge shared among various system-initiative actions learned
through SIP can be used to improve the prediction of a specific system-initiative action.
By applying this approach, MuSIc achieves state-of-the-art performance in clarification
need prediction, setting a new benchmark on the ClariQ dataset. SIP-aware action
prediction uses MuSIc-predicted SIP results, leading to significant performance gains
in downstream action prediction.

Regarding limitations and future directions of this chapter, MuSIc does not utilize
retrieved documents to improve SIP. Recent research into query performance prediction
(QPP) on conversational search [174, 176] has shown that QPP can model retrieved
documents and has the potential to help a CIS system take appropriate action at the next
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turn [174, 176]. We plan to incorporate QPP-based features into our model. Clearly,
splitting out SIP as a separate task adds complexity to CIS systems. Pre-training a
model on SIP to learn knowledge shared among system-initiative actions and then
fine-tuning the model on other tasks does not change the model architecture, but only
increases training time without affecting inference time. Our proposed SIP-aware
action prediction framework models SIP and action prediction as a two-stage process,
which carries additional computational costs at inference time. We plan to improve the
efficiency in the future, e.g., by modeling SIP and action prediction jointly in one stage.

In the next chapter, we will consider optimizing ranking strategy planning within
the agentic workflow for information access. Specifically, we will explore dynamic
per-query re-ranking depth prediction in the context of LLM.
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Ranking Strategy Planning
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3
Predicting Dynamic Re-Ranking Depths

for LLM-based Re-Ranking

Research on ranking strategy planning has explored a key aspect: dynamic per-query
re-ranking depth prediction [58, 135, 262, 285], which has been shown to improve both
efficiency [58, 135, 262] and effectiveness [285] in non-large language model (LLM)-
based re-ranking. Recently, LLM-based re-rankers [153, 195, 196, 198, 234, 293,
302] have achieved state-of-the-art re-ranking performance but at the cost of high
query latency, limiting their practical use. While dynamic per-query re-ranking depth
prediction can potentially help balance effectiveness and efficiency in LLM-based
re-ranking, little research has explored this direction. Although using dynamic per-
query re-ranking depths has been studied in non-LLM-based settings, its impact on
efficiency and effectiveness in LLM-based re-ranking has not been systematically
analyzed. Moreover, there is no established approach for modeling dynamic per-query
re-ranking depth prediction in this context. Ranked list truncation (RLT) has been shown
to be effective for dynamic per-query re-ranking depth prediction in non-LLM-based
re-ranking [285], making RLT approaches a promising direction to explore in this new
setting. This chapter targets the following thesis-level research question:

RQ2 In the context of LLM-based re-ranking, what are the potential benefits of using
dynamic per-query re-ranking depths over fixed ones, and to what extent can RLT
methods effectively predict dynamic re-ranking depths?

3.1 Introduction

Ranked list truncation (RLT), a.k.a. query cut-off prediction [51, 133], has been studied
for over two decades [21, 163] and recently attracted lots of attention in the information
retrieval (IR) community [30, 31, 139, 155, 259, 268]. The task of RLT is to determine
how many items in a ranked list should be returned such that a user-defined metric is
optimized [31]. The user-defined metric typically considers the balance between the
utility of search results and the cost of processing search results [259]. RLT is crucial

This chapter was published as C. Meng, N. Arabzadeh, A. Askari, M. Aliannejadi, and M. de Rijke.
Ranked list truncation for large language model-based re-ranking. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 141–151, 2024.

43



3. Predicting Dynamic Re-Ranking Depths for LLM-based Re-Ranking
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Figure 3.1: A schematic diagram of RLT in the “retrieve-then-re-rank” setup.

in various IR applications where it is money- or time-consuming to review a returned
item [268]. E.g., in patent search [150] or legal search [243, 259], providing a ranked
list with an overwhelming number of items is too costly for patent experts or litigation
support professionals [21].
A new angle. Existing studies mainly focus on RLT for single-stage retrieval, i.e.,
optimizing a user-defined metric (e.g., F1) of a retrieved list by truncating it at a certain
position. In this chapter, we focus on RLT for re-ranking, i.e., RLT in a “retrieve-
then-re-rank” setup, as shown in Figure 3.1. In this setup, we still truncate a given
retrieved list but focus on enhancing trade-offs between effectiveness and efficiency in
re-ranking; truncating the retrieved list directly translates to a reduction in re-ranking
depth. RLT for re-ranking is important because: (i) RLT can improve re-ranking
efficiency by sending variable-length lists of candidates to a re-ranker on a per-query
basis; re-rankers are typically computationally expensive [139] and particularly, recently
proposed LLM-based re-rankers [153, 195, 196, 198, 234, 293, 302] with billions of
parameters lead to a substantial increase in computational overhead [304], making
it hard to apply them in practice; applying a fixed re-ranking cut-off to all queries
is a common practice in the literature; however, individual queries can be answered
effectively by a shorter or a longer list of re-ranking candidates [36], so RLT can avoid
unnecessary re-ranking costs by dynamically trimming the retrieved list; and (ii) RLT
has the potential to improve re-ranking effectiveness; indeed, feeding a long retrieved
list that includes many irrelevant items to a re-ranker instead can result in inferior
re-ranking quality than a shorter retrieved list [285].

Despite its importance, limited research has explored the application of RLT methods
in the “retrieve-then-re-rank” setup [58, 135, 262, 285]. E.g., Zamani et al. [285] only
use one RLT method to truncate retrieved lists from BM25 to improve the performance
of BERT-based re-ranking [185]. Put differently, there is a lack of systematic and
comprehensive studies into the use of RLT methods that have originally been introduced
to optimize retrieval, in the context of re-ranking, especially newly emerged LLMs-
based re-ranking.
Research goal. In this chapter, we begin with a systematic analysis of the advantages
of dynamic per-query re-ranking depths over fixed ones in LLM-based re-ranking,
highlighting the importance of using dynamic per-query re-ranking depths in this new
context. Next, we examine to what extent established findings on RLT for retrieval are
generalizable to the “retrieve-then-re-rank” setup. Specifically, we study the following
findings from the literature on RLT: (i) Supervised RLT methods generally perform
better than their unsupervised counterparts (e.g., set a fixed cut-off for all queries) [30,
139, 259, 268]. (ii) Distribution-based supervised RLT methods (i.e., directly predict
a distribution among all candidate cut-off points) perform better than their sequential
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labeling-based counterpart (i.e., predict whether to truncate at each candidate point) [30,
259, 268]. (iii) Jointly learning RLT with other tasks (e.g., predicting the relevance of
each item in the retrieved list) results in better RLT quality [259]. (iv) When truncating a
retrieved list returned by a neural-based retriever, incorporating its embeddings improves
RLT quality [155].
Reproducibility challenge. We highlight the main challenges of applying RLT methods
from optimizing retrieval to optimizing re-ranking: (i) the new “retrieve-then-re-rank”
setup leads to a new optimization goal for RLT methods, i.e., improving the trade-offs
between effectiveness and efficiency in the re-ranking process; more importantly, a
specific trade-off can be considered as the optimization goal to meet the requirements of
a specific scenario, e.g., effectiveness is more important than efficiency in professional
search than web-search; and (ii) the re-ranking setup introduces the type of re-ranker
as a factor that influences RLT quality; also, it is important to investigate the impact
of the interaction between retrievers and re-rankers on RLT; thus, it is important to
explore RLT performance under different pipelines of widely-used retrievers, e.g.,
lexical, leaned sparse [87] and dense [153] retrievers, and different re-rankers, e.g.,
LLM-based [153] or pre-trained language model-based re-rankers [187].
Scope. We consider the challenges and examine each established finding from the
literature on RLT in three settings: (i) we begin by checking if RLT methods optimiz-
ing for different trade-offs between effectiveness and efficiency of a state-of-the-art
LLM-based re-ranker, RankLLaMA [153], with a lexical first-stage retriever; next, to
study the impact of retriever types on RLT methods, we assess RLT methods for the
LLM re-ranker with other types of retrievers, i.e., learned sparse (SPLADE++ [87]), and
dense (RepLLaMA [153]) retrievers; and finally, to study the impact of the choice of
re-rankers on RLT methods, we assess RLT methods for a widely-used pre-trained lan-
guage model-based re-ranker, monoT5 [187]. We perform all experiments on the TREC
2019 and 2020 deep learning (TREC-DL) tracks [52, 53] and consider 8 RLT methods
and pipelines involving 3 retrievers and 2 re-rankers, leading to various configurations.
Lessons. Our systematic analysis of dynamic per-query re-ranking depths in LLM-based
re-ranking demonstrates that an effective per-query depth selection can significantly
enhance both efficiency and effectiveness (see Section 3.2). Our experiments (see
Section 3.5) reveal that findings on RLT do not generalize well to the “retrieve-then-re-
rank” setup. E.g., we found supervised RLT methods do not show a clear advantage
over using a fixed re-ranking depth; potential fixed re-ranking depths are able to closely
approximate the effectiveness/efficiency trade-offs achieved by supervised RLT methods.
Moreover, we found the choice of retriever has a substantial impact on RLT for re-
ranking: with an effective retriever like SPLADE++ or RepLLaMA, a fixed re-ranking
depth of 20 can already yield an excellent effectiveness/efficiency trade-off; increasing
the fixed depth does not significantly improve effectiveness. An error analysis (see
Section 3.5.4) reveals that supervised RLT methods tend to fail to predict when not to
carry out re-ranking; moreover, they seem to suffer from a lack of training data.
Contributions. Our main contributions in this chapter are as follows:

• We conduct an empirical analysis to identify the limitations of fixed re-ranking
depths and explore the potential advantages of using dynamic re-ranking depths on a
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Figure 3.2: Cumulative distribution function of oracle cut-offs for RepLLaMA–
RankLLaMA (a, b) and BM25–RankLLaMA (c, d) on TREC-DL 19 and 20. The
oracle cut-offs are the minimum re-ranking cut-offs that yield the highest nDCG@10
values.

per-query basis in the context of LLM-based re-ranking.

• We reproduce a comprehensive set of RLT methods in a “retrieve-then-re-rank” per-
spective.

• We conduct an empirical analysis with a state-of-the-art LLM-based re-ranker, reveal-
ing that setting fixed re-ranking cut-offs results in unnecessary computational costs
and diminishes re-ranking quality.

• We conduct extensive experiments on 2 datasets, 8 RLT methods, and pipelines
involving 3 retrievers and 2 re-rankers, allowing a comprehensive understanding of
how RLT methods generalize to the new perspective.

3.2 Motivation

In the literature, applying a fixed re-ranking cut-off to all queries is a common prac-
tice [152, 153, 195, 196, 198, 234, 293, 302]; however, individual queries may need a
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Figure 3.3: nDCG@10 values for RepLLaMA–RankLLaMA (a, b) and BM25–
RankLLaMA (c, d) w.r.t. re-ranking cut-offs on TREC-DL 19 and 20.

shorter or a longer list of re-ranking candidates [36]. We conduct an empirical anal-
ysis to demonstrate how RLT holds the potential to enhance both the effectiveness
and efficiency in re-ranking compared to fixed cut-offs. To do so, we analyze two
“retrieve-then-re-rank” pipelines on the TREC-DL 19 and 20 datasets. We use an LLM-
based re-ranker (RankLLaMA [153]) in both pipelines, but for first-stage retrieval, we
employ a lexical retriever (BM25) in one pipeline and an LLM-based dense retriever
(RepLLaMA [153]) in the other.

3.2.1 Query-specific cut-offs improve efficiency

We study an oracle setup in which we define the oracle as the minimum re-ranking cut-
offs yielding the highest nDCG@10 values. we find that individual queries have different
oracle cut-offs with a wide range. Thus, a fixed cut-off either wastes computational
resources or compromises re-ranking quality for queries that need a deeper cut-off.
Figure 3.2 illustrates the cumulative distribution of oracle cut-offs for both pipelines
on both datasets. Interestingly, about 30% of queries do not need re-ranking with
RepLLaMA as the retriever, and approximately 5% with BM25; thus, calling expensive
re-rankers can be omitted for these queries.
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3.2.2 Query-specific cut-offs improve effectiveness
Figure 3.3 illustrates the comparison of re-ranking quality between using oracle and
fixed cut-offs. We find that oracle cut-offs always perform statistically significantly
(paired t-test, p < 0.05) better than all fixed cut-offs in terms of nDCG@10. Hence,
a deeper re-ranking cut-off does not consistently result in improvement and can even
be detrimental to re-ranking quality. Our finding is consistent with Zamani et al.
[285]. While one might argue that the re-ranking results with a deeper cut-off might be
underestimated because of the limited number of judged items within the top 10 ranks,
i.e., judged@10 [196], we find that RankLLaMA’s judged@10 values for using a fixed
cut-off at 1,000 and oracle cut-offs are similar, e.g., 95.35% vs.96.05% and 97.41% vs.
97.41% when RepLLaMA as the retriever on TREC-DL 19 and 20, respectively.

RLT methods truncate the retrieved list (i.e., trim re-ranking candidates) on a per-
query basis, suggesting that effective RLT has the potential to improve re-ranking
efficiency and effectiveness.

3.3 Preliminaries and Task Definition

We first revisit the original task definition of RLT and then demonstrate how it extends
to the re-ranking setting.

3.3.1 Original definition of ranked list truncation
Given a user query q, a collection C containing |C| items, and a retrieved list L =
[d1, d2, . . . , d|L|] with |L| (|L| ≪ |C|) items induced by a first-stage retriever over C in
response to q. An RLT approach f aims to predict a truncation point k that maximizes
a target metric that is about the retrieved list L itself [30, 139, 155, 259, 268], formally:

k = f([x1, x2, . . . , x|L|]) ∈ {1, 2, . . . , |L|}, (3.1)

where [x1, x2, . . . , x|L|] are item features corresponding one-to-one with the items in
the retrieved list L = [d1, d2, . . . , d|L|]. Typically, x includes the retrieval score [30]
and item statistics [139, 259, 268]. As for the target metric, F1@k and DCG@k have
been widely used in prior studies [30, 31, 139, 155, 259, 268]. E.g., F1@k is calculated
as:

F1@k =
2 · P@k ·R@k
P@k +R@k

,

P@k =
1

k

k∑
i=1

I(yi = 1), R@K =
1

NL

k∑
i=1

I(yi = 1),

(3.2)

where yi ∈ {0, 1} is the relevance label for item di in the truncated retrieved list,
and NL denotes the number of relevant items in the retrieved list L. Note that the
original discounted cumulative gain (DCG) metric [114] is a monotonic metric since
its value always increases with the value of k; it cannot evaluate RLT properly because
the optimal solution would be to avoid truncation entirely [30]. Therefore, the DCG
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metric employed in RLT penalizes non-relevant items, rendering it a non-monotonic
metric [30, 31, 155, 259, 268]:

DCG@k =

k∑
i=1

yi
log2(i+ 1)

, (3.3)

where yi ∈ {1,−1}; yi = −1 if item di is irrelevant to the query.

3.3.2 Ranked list truncation for re-ranking
In the “retrieve-then-re-rank” setup, we no longer focus on optimizing the retrieved list
L, but we aim to test the capability of the RLT in optimizing the trade-offs between
effectiveness and efficiency in re-ranking. As shown in Figure 3.1, the truncated
retrieved list L1:k = [d1, . . . , dk], serving as re-ranking candidates, is further forwarded
to a re-ranker that returns a re-ranked list L̂1:k. We append the partial list Lk+1:|L| from
the retrieved list L that is not re-ranked to L̂1:k.

The target metric should evaluate the ranking quality of the re-ranked list L̂1:k

(with Lk+1:|L|) in terms of an IR evaluation metric (e.g., nDCG@10), and measure the
computational cost of re-ranking.

3.4 Reproducibility Methodology

We state our research questions, the experiments designed to address them, and our
experimental setup.

3.4.1 Research questions and experimental design
This chapter expands on the thesis-level research question RQ2 by introducing the
following chapter-specific research questions:

RQ2.1 Do RLT methods generalize to the context of LLM-based re-ranking with a
lexical first-stage retriever when optimized for different effectiveness/efficiency
trade-offs?

To address RQ2.1, we first quantify the trade-off between re-ranking effectiveness
and efficiency, and then optimize RLT methods to model different trade-offs between
effectiveness and efficiency, simulating different requirements and scenarios; then, we
evaluate their predicted truncation positions in terms of effectiveness and efficiency in
LLM-based re-ranking with a lexical retriever.

RQ2.2 Do RLT methods generalize to the context of LLM-based re-ranking with
learned sparse or dense first-stage retrievers when optimized for the different
trade-offs, and how does it compare to the case of a lexical retriever?

For answering RQ2.2, we still optimize RLT methods for different trade-offs of the
LLM-based re-ranker used in RQ2.1, but study their performance given learned sparse
or dense retrievers, and compare the results with those of using a lexical retriever.
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RQ2.3 Do RLT methods generalize to the context of pre-trained language model-based
re-ranking, and how does it compare to the case of an LLM-based re-ranker?

We address RQ2.3 by evaluating the truncation points predicted by RLT methods
w.r.t. effectiveness and efficiency in the context of a widely-used pre-trained language
model-based re-ranker, and compare the results with those of the LLM-based re-ranker.

3.4.2 Experimental setup

RLT approaches. We reproduce a variety of unsupervised and supervised RLT meth-
ods [30, 31, 139, 155, 259, 268].

We consider the following unsupervised RLT methods.

• Fixed-k [139] applies a fixed re-ranking cut-off to all queries; we follow common
practice and consider cut-offs that are widely used in the literature about re-ranking,
namely 10 [152], 20 [152, 195, 196], 100 [75, 153, 195, 196, 198, 234, 293, 302–304],
200 [153], 1,000 [211].

• Greedy-k [139] uses the fixed truncation position k that maximizes the target metric
value on a training set.

• Surprise [31] first calibrates retrieval scores by using generalized Pareto distributions
in extreme value theory [192], and truncates a ranked list using a score threshold.

We consider the following supervised RLT methods:

• BiCut [139] is a sequential labeling-based method; it uses a bidirectional long short-
term memory (LSTM) to encode item features over a ranked list, and optimizes the
LSTM make a binary prediction (continue or truncate) at each position in a ranked
list.

• Choppy [30] is a distribution-based method, which directly predicts the distribution
among all candidate cut-off points, using a transformer encoder [253] to encode item
features over a ranked list and predicts the distribution.

• AttnCut [268] is also distribution-based, encoding item features using a bidirectional
LSTM and a transformer encoder.

• MtCut [259] is also distribution-based and similar to AttnCut, but jointly trains the
RLT task with two auxiliary tasks: predicting the relevance of each item in the ranked
list and increasing the margin between relevant and irrelevant items. We use the
MMoECut variant due to its superior performance.

• LeCut [155] is another distribution-based and similar to AttnCut, but can only work
with a neural-based retriever and incorporates its query–item embeddings as one of the
item features. Ma et al. [155] further optimize LeCut with an learning-to-rank (LtR)
model jointly. We omit this phase for a fair comparison since other methods are
trained without signals from an external LtR model.
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Figure 3.4: Average efficiency-effectiveness trade-off (EET) values across TREC-DL
20 queries w.r.t. re-ranking cut-offs. We use nDCG@10 in effectiveness σ. β values 0,
1 and 2 represent prioritizing effectiveness, balancing effectiveness and efficiency, and
emphasizing efficiency, respectively.

We also include Oracle, which truncates the retrieved list at the earliest position
maximizing re-ranking quality per query.
Optimizing effectiveness/efficiency trade-offs. The leading challenge of adapting
RLT methods in the context of re-ranking is to optimize RLT methods with a specific
trade-off between effectiveness and efficiency. To solve this challenge, we need to
score each truncation point (i.e., re-ranking candidate cut-off) under different effec-
tiveness/efficiency trade-offs. To do so, we quantify different trade-offs using the EET
metric [261] and then compute EET scores at a specific trade-off for all re-ranking
candidate cut-offs.

EET is defined for as the weighted harmonic mean of effectiveness σ and efficiency
γ measures:

EET =
(1 + β2) · (γ · σ)

β2 · σ + γ
, (3.4)

where β is a hyperparameter to control the relative importance of effectiveness and
efficiency, where β = 0 only considers effectiveness and as it increases more attention
is paid to to efficiency. EET requires instantiation of σ and γ based on the specific use
case [261]. We follow [261] to instantiate efficiency γ using “exponential decay”:

γ = exp(α · k), (3.5)

where k ∈ {1, 2, . . . , |L|} is a truncation point (i.e., re-ranking candidate cut-off) in
the given retrieved list L, and α < 0 is a hyperparameter to control how rapidly
the efficiency measure decreases; we set α to -0.001. We instantiate effectiveness σ
as the re-ranking gain with a cut-off k, which is quantified by the difference of re-
ranking performance with a cut-off k minus the performance without re-ranking; the
performance is in terms of an IR evaluation metric (e.g., nDCG@10).

Therefore, we can adjust β in Equation 3.4 and α in Equation 3.5 in EET to quantify
different effectiveness/efficiency trade-offs in re-ranking, so as to generate EET value
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distributions across all cut-off candidates under different trade-offs. As illustrated in
Figure 3.4, we consider three trade-offs between effectiveness and efficiency: β=0
(emphasizing effectiveness), 1 (weighting effectiveness and efficiency equally), and 2
(prioritizing efficiency). With the help of EET value distributions under the three trade-
offs, we optimize all distribution-based RLT methods (Choppy [30], AttnCut [268],
MtCut [259], LeCut [155]) and Greedy-k for the three trade-offs.

However, the sequential labeling-based RLT method BiCut [139] cannot optimize a
EET value distribution. During training, BiCut optimizes the probability of “continue”
and “truncation” at each position in a ranked list via the following loss:

L =

|L|∑
i=1

(ηI(yi = 0)
pi

1− r
+ (1− η)

1− pi
r

I(yi = 1)), (3.6)

where yi ∈ {0, 1} is the relevance label for an item at a position it, h pi is the “continue”
probability at a position i, and r is the proportion of relevant items in the ranked list;
η ∈ [0, 1] is a hyperparameter to control the balance between “continue” and “trunca-
tion”. We optimize BiCut for different effectiveness/efficiency trade-offs by adjusting η
values, e.g., BiCut trained with a high η value tends to truncate a retrieved list earlier, re-
sulting in more efficiency. Specifically, we consider η=0.4 (emphasizing effectiveness),
0.5 (balancing effectiveness and efficiency), and 0.6 (prioritizing efficiency).1

Datasets. We experiment with 2 widely-used IR datasets, TREC 2019 and 2020 deep
learning (TREC-DL) tracks [52, 53].2 These datasets offer relevance judgments in
multi-graded relevance scales per query. TREC-DL 19 and 20 are built upon MS
MARCO V1 passage ranking collection encompassing 8.8 million passages.
Choice of retrievers. Regarding retrievers, we employ three distinct types: a lexical-
based retriever BM25 [208], a learned sparse retriever SPLADE++ (“EnsembleDis-
til”) [87] and an LLM-based dense retriever RepLLaMA (7B) [153]. To increase the
comparability and reproducibility of this chapter, we obtain retrieval results of BM25
and SPLADE++ using the publicly available resource from Pyserini3 and get retrieval
results of RepLLaMA from Tevatron;4 each retriever returns 1,000 items per query.
Choice of re-rankers. For RQ2.1, RQ2.2, we employ a state-of-the-art LLM-based
point-wise reranker, RankLLaMA (7B) [153] and use the resource from Tevatron. For
RQ2.3, we employ a widely-used pre-trained language model-based re-ranker, monoT5
(“monot5-base-msmarco”) [187] and use the resource from PyGaggle.5

Evaluation metrics. We measure re-ranking effectiveness using nDCG@10, the official
evaluation metric in TREC deep learning tracks [52, 53], and a widely employed metric
in ranking literature [153, 187, 196]. We follow [304] to evaluate re-ranking efficiency
by calculating the average re-ranking cut-off across all test set queries, i.e., the number
of the average number of re-ranking inferences per query. This consideration is driven

1We also explore η values of 0.3 and 0.7. BiCut trained with the former tends not to truncate the retrieved
list at all, while BiCut trained with the latter tends to truncate the entire retrieved list.

2We also conducted experiments on Robust04 and draw a similar conclusion as TREC-DL 19 and 20; due
to space constraints, we show the result on Robust04 in our repository.

3https://github.com/castorini/pyserini
4https://github.com/texttron/tevatron
5https://github.com/castorini/pygaggle
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by the fact that the re-rankers we employ in this chapter are point-wise, and the time
spent in point-wise re-ranking is directly proportional to the length of a re-ranking
cut-off (i.e., the length of a truncated retrieved list) [158]. We additionally gauge the
efficiency by measuring per-query latency; all latency measurements exclude the time
to load data and models. We do not consider the latency of first-stage retrieval. Note
that RLT methods are lightweight with significantly fewer parameters compared to
state-of-the-art re-rankers; the latency introduced by RLT methods can be neglected in
the ”retrieve-then-re-rank” setup.
Implementation details. We pass the top-1000 retrieved items to all RLT methods
per query because 1,000 is typically the deepest re-ranking depth in the literature [153,
186, 211]. Note that Suprise [31] only depends on retrieval scores and uses a score
threshold for truncation; the score threshold, set based on Cramer-von-Mises statistic
testings [64], is not a tunable hyperparameter; thus, Suprise cannot be tuned for different
effectiveness/efficiency trade-offs.

For all supervised RLT methods, we use identical item features to eliminate con-
founding factors from the input; each item is represented by its retrieval score, length,
unique token count, and the cosine similarity between its tf-idf/doc2vec [132] vector
and the vectors of its adjacent items. We follow [259, 268] to use gensim6 for comput-
ing tf-idf and doc2vec vectors for each item; The dimension of the tf-idf vectors on
the MS MARCO V1 collection is 846,221; we follow [259] to set the dimension of
doc2vec vectors as 128. LeCut relies on query-item embeddings from a neural retriever
as extra item features; thus, we provide LeCut with the concatenation of query and
item embeddings from RepLLaMA. Note that we follow the original publications to set
hyperparameters: for BiCut, we set # Bi-LSTM layers to 2 and the LSTM hidden size
to 128; we train BiCut via Adam [124] with a learning rate of 1× 10−4; for Choppy,
we set # transformer layers to 3, # transformer heads to 8, and transformer hidden
size to 128; we train Choppy via Adam with a learning rate of 1× 10−3; for AttnCut,
we set # Bi-LSTM layers to 2, the LSTM hidden size to 128, # transformer heads to
4, and the transformer hidden size to 128; MtCut and LeCut share almost the same
hyperparameters with AttnCut; we train AttnCut, MtCut and LeCut via Adam with a
learning rate of 3× 10−5. We train all supervised RLT methods for 100 epochs using a
batch size of 64 on TREC-DL 19, then infer them on TREC-DL 20, and vice versa. All
methods are trained/inferred on an NVIDIA A100 GPU (40GB).

3.5 Results and Discussions

3.5.1 Towards large language model-based re-ranking
To answer RQ2.1, we evaluate RLT methods (optimized for the three effectiveness/effi-
ciency trade-offs) in the context of an LLM-based re-ranker (RankLLaMA [153]) with
a lexical retriever (BM25). We report the results on TREC-DL 19 and 20 in Table 3.1;
we also plot the result on TREC-DL 20 in Figure 3.5. We have three observations.

First, compared to unsupervised RLT methods, supervised RLT one only shows an
advantage at achieving better re-ranking effectiveness at a less re-ranking cost in the

6https://radimrehurek.com/gensim
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Figure 3.5: A comparison of RLT methods in predicting re-ranking cut-off points for
BM25–RankLLaMA on TREC-DL 20. β = 0 (η = 0.4), β = 1 (η = 0.5), and
β = 2 (η = 0.6) represent effectiveness emphasis, balance, and efficiency emphasis,
respectively.

scenario emphasizing effectiveness; nevertheless, alternative fixed re-ranking depths
can deliver results on par with those obtained through supervised methods. (i) In
the scenario where effectiveness is prioritized (β = 0 and η = 0.4), supervised RLT
methods achieve better re-ranking effectiveness while maintaining less re-ranking cost.
For instance, Choppy (β = 0) and AttnCut (β = 0) show no significant difference
from Fixed-k (1,000) in terms of nDCG@10 on TREC-DL 20, but with only 69% and
86% of the re-ranking cost of Fixed-k (1,000), respectively. (ii) In the other scenarios
where efficiency received more attention (β = 1/2 and η = 0.5/0.6), supervised
methods do not show an obvious advantage than unsupervised counterparts. E.g., while
AttnCut (β = 2) and MtCut (β = 2) manage to achieve nDCG@10 values comparable
to Fixed-k (100) using roughly half the re-ranking cost on TREC-DL 20, Greedy-k
(β = 2) attains very similar results as AttnCut and MtCut. (iii) Moreover, as illustrated
in Figure 3.5, other potential fixed ranking depths (excluding 10, 20, 100, 200 and
1,000) can yield results comparable to those of supervised methods across all scenarios.

Second, in scenarios balancing efficiency and effectiveness or prioritizing efficiency,
distribution-based supervised RLT methods (Choppy, AttnCut, and MtCut) outperform
the sequential labeling-based method (BiCut); however, in the scenario emphasizing
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Table 3.1: A comparison of RLT methods in predicting re-ranking cut-off points for
BM25–RankLLaMA on TREC-DL 19 and 20. Query latency is measured in seconds.
The best nDCG@10 value in each column is marked in bold, and the second best
is underlined. Significant differences with Fixed-k (100), Fixed-k (200) and Fixed-k
(1,000) are marked with ∗, § and †, respectively (paired t-test, p < 0.05).

Method TREC-DL 19 TREC-DL 20

Avg. k nDCG@10 Lat. Avg. k nDCG@10 Lat.

w/o re-ranking - 0.506∗§† - - 0.480∗§† -

Fixed-k (10) 10 0.557∗§† 0.30 10 0.532∗§† 0.30
Fixed-k (20) 20 0.651∗§† 0.60 20 0.612∗§† 0.60
Fixed-k (100) 100 0.730 2.98 100 0.697§† 2.98
Fixed-k (200) 200 0.739 5.95 200 0.719∗† 5.96
Fixed-k (1,000) 1,000 0.747 29.77 1,000 0.762∗§ 29.78
Surprise 712 0.743 21.20 721 0.748∗§† 21.46

Greedy-k (β = 0) 987 0.746 29.39 992 0.762∗§ 29.54
BiCut (η = 0.4) 386 0.719 11.48 538 0.745† 16.01
Choppy (β = 0) 843 0.744 25.10 690 0.748∗§ 20.56
AttnCut (β = 0) 904 0.747 26.92 862 0.760∗§ 25.67
MtCut (β = 0) 844 0.741 25.12 745 0.747∗§† 22.20

Greedy-k (β = 1) 242 0.737 7.21 140 0.703§† 4.17
BiCut (η = 0.5) 184 0.729† 5.48 362 0.716† 10.77
Choppy (β = 1) 141 0.733 4.19 90 0.696§† 2.67
AttnCut (β = 1) 211 0.720§† 6.29 95 0.689§† 2.83
MtCut (β = 1) 138 0.714§† 4.12 131 0.696† 3.90

Greedy-k (β = 2) 242 0.737 7.21 68 0.682§† 2.03
BiCut (η = 0.6) 131 0.693∗§† 3.89 341 0.705† 10.15
Choppy (β = 2) 119 0.732 3.54 53 0.661∗§† 1.57
AttnCut (β = 2) 64 0.692∗§† 1.91 64 0.681§† 1.90
MtCut (β = 2) 62 0.687∗†§ 1.85 52 0.665§† 1.56

Oracle 157 0.785∗§† 4.67 229 0.804∗§† 6.80

effectiveness, BiCut shows a slight advantage. For instance, as shown in Figure 3.5,
BiCut incurs lower costs to achieve nDCG@10 comparable to distribution-based meth-
ods when effectiveness is emphasized; however, in other scenarios (β = 1/2 and
η = 0.5/0.6), the point denoting BiCut is below the dashed line denoting potential fixed
re-ranking depths, while the points representing other supervised methods are on the
line, indicating a worse effectiveness/efficiency balance achieved by BiCut.

Third, the supervised method (MtCut) learning RLT in a multi-task manner does
not show a clear advantage over other supervised methods across all three trade-offs.
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Figure 3.6: A comparison of RLT methods in predicting re-ranking cut-off points for
Splade++–RankLLaMA on TREC-DL 20.

3.5.2 The impact of retriever types on ranked list truncation

To answer RQ2.2, we assess RLT methods (optimized for the three effectiveness/effi-
ciency trade-offs) in the context of an LLM-based re-ranker (RankLLaMA [153]) with
other novel retrievers; we explore learned sparse (SPLADE++ [87]) and dense (Re-
pLLaMA [153]) retrievers. We present the results for SPLADE++–RankLLaMA and
RepLLaMA–RankLLaMA on TREC-DL 19 and 20 in Tables 3.2 and 3.3, respectively.
we plot both pipelines’ results for TREC-DL 20 in Figures 3.6 and 3.7. Note that LeCut
is only compatible with pipelines featuring a dense retriever. We have four observations.

First, different from the findings in Section 3.5.1, the unsupervised method Fixed-k
(20) consistently achieves the best effectiveness/efficiency trade-off compared to su-
pervised methods for both pipelines across all scenarios. Although some supervised
methods achieve higher nDCG@10 values than Fixed-k (20), the nDCG@10 improve-
ment is not statistically significant, e.g., for SPLADE++–RankLLaMA, MtCut (β = 2)
outperform Fixed-k (20) by 0.006 in terms of nDCG@10 at a comparable cost on TREC-
DL 20; however, this difference is too marginal. We believe Fixed-k (20) performs well
due to the superior retrieval capabilities of SPLADE++ and RepLLaMA. Both tend to
retrieve more relevant items at the top ranks, making a shallow fixed re-ranking cutoff
both effective and efficient.
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Table 3.2: Comparison of RLT methods in predicting re-ranking cut-off points for
SPLADE++–RankLLaMA on TREC-DL 19 and 20. Query latency measured in seconds.
The best nDCG@10 value in each column is marked in bold, and the second best is
underlined. Significant differences with Fixed-k (20) are marked with ∗ (paired t-test,
p < 0.05).

Method TREC-DL 19 TREC-DL 20

Avg. k nDCG@10 Lat. Avg. k nDCG@10 Lat.

w/o re-ranking - 0.731∗ - - 0.720∗ -

Fixed-k (10) 10 0.740∗ 0.30 10 0.741∗ 0.30
Fixed-k (20) 20 0.773 0.60 20 0.778 0.60
Fixed-k (100) 100 0.769 2.98 100 0.771 2.98
Fixed-k (200) 200 0.769 5.95 200 0.769 5.96
Fixed-k (1,000) 1,000 0.768 29.77 1,000 0.768 29.79
Surprise 702 0.766 20.90 684 0.768 20.38

Greedy-k (β = 0) 65 0.770 1.94 42 0.772 1.25
BiCut (η = 0.4) 1,000 0.768 29.77 1,000 0.768 29.79
Choppy (β = 0) 904 0.768 26.92 1,000 0.768 29.79
AttnCut (β = 0) 999 0.768 29.74 999 0.768 29.76
MtCut (β = 0) 999 0.768 29.74 1,000 0.768 29.79

Greedy-k (β = 1) 65 0.770 1.94 21 0.775 0.63
BiCut (η = 0.5) 2 0.731∗ 0.06 1 0.720∗ 0.00
Choppy (β = 1) 68 0.771 2.03 102 0.766 3.03
AttnCut (β = 1) 46 0.771 1.38 53 0.771 1.58
MtCut (β = 1) 120 0.775 3.56 996 0.768 29.67

Greedy-k (β = 2) 18 0.769 0.54 21 0.775 0.63
BiCut (η = 0.6) 2 0.731∗ 0.06 1 0.720∗ 0.00
Choppy (β = 2) 1 0.731∗ 0.00 21 0.764 0.61
AttnCut (β = 2) 24 0.758∗ 0.70 52 0.772 1.55
MtCut (β = 2) 20 0.756∗ 0.59 26 0.784 0.77

Oracle 17 0.810∗ 0.52 28 0.820∗ 0.82

Second, similar to Section 3.5.1, distribution-based supervised methods typically
offer a better effectiveness/efficiency trade-off in re-ranking than the sequential labeling-
based method (BiCut). E.g., for SPLADE++–RankLLaMA, BiCut predicts depths
that are either too shallow (1 or 2) or too deep (1,000); for RepLLaMA–RankLLaMA,
certain distribution-based methods (e.g., Choppy) achieve similar nDCG@10 values to
BiCut but at a reduced re-ranking cost.

Third, different from Section 3.5.1, the supervised method (MtCut), which learns
RLT in a multi-task manner, exhibits a superior effectiveness/efficiency trade-off com-
pared to other methods in a specific case; however, this advantage is not consistently
observed. Specifically, as shown in Figure 3.6, in the scenario emphasizing effi-
ciency, MtCut (β = 2) achieves the highest nDCG@10 value (except for Oracle)
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Figure 3.7: A comparison of RLT methods in predicting re-ranking cut-off points for
RepLLaMA–RankLLaMA on TREC-DL 20.

for SPLADE++–RankLLaMA on TREC-DL 20 at a notably low cost. Nevertheless, as
depicted in Figure 3.7, for RepLLaMA–RankLLaMA, the points representing MtCut
consistently fall below the dashed line of Fixed-k, indicating a worse effectiveness/effi-
ciency trade-off compared to other supervised methods.

Fourth, LeCut utilizes query-item embeddings from RepLLaMA to predict re-
ranking cut-off points for RepLLaMA–RankLLaMA, leading to marginal improvements
over other supervised methods in nDCG@10. These improvements are often too
minimal to be significant; moreover, LeCut often attains these marginal improvements
at the cost of efficiency. E.g., LeCut (β = 0) achieves the highest nDCG@10 value of
0.770 on TREC-DL 20, outperforming that of Choppy (β = 0) by 0.006, yet at more
than double the cost of Choppy.

3.5.3 Towards pre-trained language model-based re-ranking

To answer RQ2.3, we evaluate RLT methods in the context of a pre-trained language
model-based re-ranker (monoT5 [187]) with a lexical retriever (BM25). Note that
using monoT5 [187] to re-rank the retrieved list returned by RepLLaMA [153] and
Splade++ [87] yields worse results; hence we only consider the pipeline of BM25–
monoT5. We report the raw result numbers on TREC-DL 19 and 20 in Table 3.4. We
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Table 3.3: Comparison of RLT methods in predicting cut-off points for RepLLaMA–
RankLLaMA on TREC-DL 19 and 20. Query latency measured in seconds. The best
nDCG@10 value in each column is marked in bold, and the second best is underlined.
Significant differences with Fixed-k (20) are marked with ∗ (paired t-test, p < 0.05).

Method TREC-DL 19 TREC-DL 20

Avg. k nDCG@10 Lat. Avg. k nDCG@10 Lat.

w/o re-ranking - 0.738∗ - - 0.720∗ -

Fixed-k (10) 10 0.742∗ 0.30 10 0.729∗ 0.30
Fixed-k (20) 20 0.765 0.60 20 0.761 0.60
Fixed-k (100) 100 0.769 2.98 100 0.767 2.99
Fixed-k (200) 200 0.768 5.96 200 0.768 5.97
Fixed-k (1,000) 1,000 0.763 29.81 1,000 0.768 29.86
Surprise 458 0.765 13.66 460 0.767 13.73

Greedy-k (β = 0) 770 0.763 22.95 31 0.764 0.93
BiCut (η = 0.4) 1,000 0.763 29.81 1,000 0.768 29.86
Choppy (β = 0) 77 0.766 2.29 187 0.764 5.60
AttnCut (β = 0) 929 0.763 27.69 573 0.770 17.10
MtCut (β = 0) 510 0.758 15.19 130 0.727∗ 3.88
LeCut (β = 0) 418 0.766 12.45 441 0.770 13.17

Greedy-k (β = 1) 50 0.767 1.49 55 0.766 1.64
BiCut (η = 0.5) 167 0.766 4.97 323 0.768 9.63
Choppy (β = 1) 107 0.766 3.18 61 0.766 1.81
AttnCut (β = 1) 458 0.765 13.67 341 0.769 10.19
MtCut (β = 1) 583 0.761 17.37 292 0.762 8.71
LeCut (β = 1) 315 0.769 9.40 316 0.769 9.42

Greedy-k (β = 2) 50 0.767 1.49 55 0.766 1.64
BiCut (η = 0.6) 154 0.766 4.58 122 0.764 3.65
Choppy (β = 2) 72 0.766 2.15 41 0.763 1.24
AttnCut (β = 2) 210 0.767 6.26 259 0.769 7.74
MtCut (β = 2) 515 0.763 15.34 214 0.764 6.38
LeCut (β = 2) 214 0.769 6.39 261 0.768 7.80

Oracle 23 0.794∗ 0.70 42 0.799∗ 1.27

also plot the results on TREC-DL 20 in Figure 3.8.
Generally, the findings obtained with pre-trained language model-based and an

LLM-based re-rankers (see Section 3.5.1) are similar. Specifically, (i) compared to
unsupervised ones, supervised methods only show an advantage in the scenario empha-
sizing effectiveness, where supervised methods achieve better re-ranking quality at a
lower cost; e.g., BiCut (η = 0.4) achieves an nDCG@10 value comparable to that of
Fixed-k (1,000) while incurring only half the cost on TREC-DL 20; however, similar to
Section 3.5.1, potential fixed re-ranking depths (excluding 10, 20, 100, 200, and 1,000)
can still yield results that are very similar to those obtained with supervised methods
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Figure 3.8: A comparison of RLT methods in predicting re-ranking cut-off points for
BM25–monoT5 on TREC-DL 20.

(see Figure 3.8); (ii) distribution-based supervised methods perform better in scenarios
balancing efficiency and effectiveness or prioritizing efficiency, while the sequential
labeling-based method (BiCut) shows a slight advantage in the scenario emphasizing
effectiveness; and (iii) the supervised method (MtCut), which learns RLT in a multi-task
manner, does not consistently show a clear advantage over other supervised methods
across all three trade-offs.

3.5.4 Error analysis
To understand the reasons behind the less-than-ideal performance of supervised RLT
methods, we compare distributions of re-ranking cut-off points predicted by Oracle
with those predicted by a supervised method. We consider two relatively effective
methods,7 MtCut (β = 2) and Choopy (β = 2), for pipelines featuring novel retrievers,
SPLADE++ and RepLLaMA on TREC-DL 20; see Figure 3.9. First, both methods
fail to predict a re-ranking cut-off of zero. For both pipelines, around 20% of queries
do not need re-ranking. Thus, enhancing supervised RLT methods’ ability to predict
when re-ranking is unnecessary is crucial. Second, both methods perform worse
when truncating RepLLaMA’s retrieved lists (see Figures 3.9c and 3.9d) compared to

7Due to space limitations, we provide error analysis for all methods in our repository.
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Table 3.4: A comparison of RLT methods in predicting re-ranking cut-off points for
BM25–monoT5 on TREC-DL 19 and 20. Query latency measured in seconds. The best
nDCG@10 value in each column is marked in bold, and the second best is underlined.
Significant differences with Fixed-k (100), Fixed-k (200) and Fixed-k (1,000) are
marked with ∗, § and †, respectively (paired t-test, p < 0.05).

Method TREC-DL 19 TREC-DL 20

Avg. k nDCG@10 Lat. Avg. k nDCG@10 Lat.

w/o re-ranking - 0.506∗§† - - 0.480∗§† -

Fixed-k (10) 10 0.553∗§† 0.14 10 0.523∗§† 0.14
Fixed-k (20) 20 0.634∗§† 0.27 20 0.604∗§† 0.27
Fixed-k (100) 100 0.706 1.37 100 0.676† 1.37
Fixed-k (200) 200 0.717 2.73 200 0.684† 2.73
Fixed-k (1,000) 1,000 0.730 13.66 1,000 0.713∗§ 13.66
Surprise 712 0.721 9.73 721 0.705∗§ 9.84

Greedy-k (β = 0) 993 0.730 13.57 991 0.713∗§ 13.54
BiCut (η = 0.4) 386 0.702 5.27 538 0.710∗§ 7.34
Choppy (β = 0) 784 0.727 10.70 866 0.711∗§ 11.82
AttnCut (β = 0) 888 0.729 12.13 931 0.712∗§ 12.72
MtCut (β = 0) 791 0.722 10.81 757 0.712∗§ 10.34

Greedy-k (β = 1) 112 0.709 1.53 162 0.678† 2.21
BiCut (η = 0.5) 184 0.711 2.51 362 0.697 4.94
Choppy (β = 1) 161 0.714 2.20 203 0.675† 2.78
AttnCut (β = 1) 198 0.701 2.70 113 0.661† 1.54
MtCut (β = 1) 145 0.690§† 1.97 131 0.681 1.79

Greedy-k (β = 2) 112 0.709 1.53 86 0.674† 1.17
BiCut (η = 0.6) 131 0.672∗§† 1.79 341 0.690 4.66
Choppy (β = 2) 117 0.711 1.59 111 0.669† 1.51
AttnCut (β = 2) 68 0.677∗§† 0.92 73 0.663† 1.00
MtCut (β = 2) 62 0.668∗§† 0.85 54 0.652† 0.73

Oracle 181 0.774∗§† 2.47 214 0.768∗§† 2.92

SPLADE++ (see Figures 3.9a and 3.9b). Especially, Choppy (β = 2) seems to underfit
for RepLLaMA (see 3.9d), suggesting a potential need for more training data.

3.6 Related Work

Our work relates to three strands of research: ranked list truncation (RLT), improving
the efficiency of neural re-ranking, and the use of LLMs as re-rankers.
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Figure 3.9: The distribution of re-ranking cut-off points on TREC-DL 20.

3.6.1 Ranked list truncation

RLT is also known as query cut-off prediction [51, 133]. For a query and a ranked list of
documents, the RLT task is to predict the number of items in the ranked list that should
be returned, to optimize a user-defined metric [31]. The task can potentially benefit IR
applications where it is money- and time-consuming to review a returned item, e.g., in
patent search [150] and legal search [243, 259]. Early work is mainly assumption-based
(hence non-neural-based). This kind of research focuses on modeling score distributions
by fitting prior distributions to them [21, 163], which helps identify the best cut-off.
However, prior assumptions on score distributions do not always hold as retrieval
settings change [139, 259]; hence we do not study this line of studies in this chapter.
Assumption-free methods, on the other hand, learn to predict the truncation position
during training and do not rely on a prior assumption. We have already introduced those
methods (BiCut, Choppy, AttnCut, MtCut and LeCut) in Section 3.4.2.

Zamani et al. [285] apply the RLT method from [30] to truncate retrieval lists
returned by BM25 for BERT-based re-ranking [185], finding that truncating the retrieval
result list to avoid including a large number of non-relevant items in the lower ranks,
achieves better re-ranking performance than using fixed cut-offs for all queries.

We differ from Zamani et al. [285] as we provide a systematic and comprehensive
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study into the use of RLT methods in the context of re-ranking, especially newly
emerged LLMs-based re-ranking.

3.6.2 Improving neural re-ranking efficiency

Improving neural re-ranking efficiency has been extensively studied. There are two
ideas to improve the efficiency [96]: (i) speed up inference of a neural re-ranker, and
(ii) reducing the number of inferences of a neural re-ranker. Approaches to (i) include
a simpler re-ranker model [108], distilling knowledge in BERT [71] into a smaller
re-ranker [93], pre-computing item representations at indexing time [157], and early-
exiting [230, 271]. Early-exiting is to use only a partial model for “easy” item [36],
which also has been studied in LtR [37, 38, 149]. Studies into (ii) are more related
to this chapter. It includes multi-stage re-ranking [167, 186, 262, 294] and candidate
pruning [58, 135, 186].

Multi-stage re-ranking first exploits faster and less effective re-rankers to discard
likely non-relevant items and sends fewer candidate items to more expensive re-rankers
in later stages. E.g., Zhang et al. [294] first use a feature-based LtR model to reorder the
items returned by BM25 and then send the top-k (applied to all queries) items returned
by the faster re-ranker to a BERT re-ranker.

Candidate pruning trims the candidate list in the first (or earlier) stage and then
forwards the pruned ranked list to the next stage re-ranking. Wang et al. [262] propose
a boosting algorithm for jointly learning pruning and ranker stages. Culpepper et al.
[58] use a cascade of binary classifiers based on random forests; each classifier is used
to predict whether to truncate the given ranked list at a specific cut-off value. Li et al.
[135] propose a score-thresholding method, which makes sure the trimmed candidate
list produces re-ranking outcomes that satisfy the user-specified error tolerance of an IR
evaluation metric.

We also differ from Asadi and Lin [22] and Tonellotto et al. [244], who investigate
improving the efficiency of candidate generation, i.e., first-stage retrieval. Specifically,
Tonellotto et al. [244] predict the number of candidate items that should be retrieved by
the candidate generation algorithm WAND [34] on a per-query basis. Our focus lies in
improving re-ranking efficiency by truncating retrieved lists; in our setup, the retriever
always returns a fixed number of items.

This chapter also differs from Ganguly and Yilmaz [90], who propose variable-depth
pooling (VDP) to reduce relevance judgment costs in collection construction; VDP
uses query performance prediction (QPP) [18–20] to predict variable cut-off depths for
ranked lists when building a pool of items for a query. In contrast, we focus on using
RLT methods in the re-ranking scenario.

3.6.3 Large language models as re-rankers

There are four paradigms of LLM-based re-ranking: pointwise [75, 153, 211, 302],
pairwise [198], listwise [152, 195, 196, 234, 238, 293], and setwise [304]. Given a
query, pointwise re-rankers produce a relevance score for each item independently,
and the final ranking is formed by sorting items by relevance score. There are two
popular ways of computing relevance scores, special token-based [33, 152, 153, 302] or
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query likelihood-based [75, 211, 303]: Special token-based methods either use LLMs’
output logits of special tokens [33, 302] to compute relevance scores, or compute them
by projecting LLMs’ representation of a special token [153]; query likelihood-based
methods regard as a relevance score the likelihood of generating the user query given
an item. Qin et al. [198] argue that outputting calibrated relevance scores for sorting is
challenging for LLMs and requires accessing the generation API, and it is unnecessary
for LLMs to compute relevance scores because re-ranking requires relative ordering.

The pairwise paradigm [198] eliminates the need for computing relevance scores;
given a query and a pair of items, a pairwise re-ranker estimates whether one item is
more relevant than the other for the query.

Listwise re-rankers frame re-ranking as a pure generation task and directly output the
reordered ranking list given a query and a ranked list return by first-stage retriever [152,
195, 196, 234, 238, 293]. Compared to pointwise and pairwise counterparts that sort
items by multiple inference passes of LLMs, listwise re-rankers have the potential
of achieving higher effectiveness by referring to multiple items simultaneously to
determine their relative ordering [195, 293].

Given the low efficiency of pairwise (multiple inference passes) and listwise (mul-
tiple decoding steps) re-rankers, the setwise paradigm [304] is meant to improve the
efficiency while retaining re-ranking effectiveness. Given a query and set of items, an
LLM is asked which item is the most relevant one to the query; these items are reordered
according to the LLM’s output logits of each item being chosen as the most relevant
item to the query, which only requires one decoding step of an LLM.

Our study provides an alternative perspective of enhancing effectiveness and effi-
ciency in LLM-based re-ranking via RLT.

3.7 Conclusions and Future Work

In this chapter, we have conducted a systematic analysis of dynamic per-query re-ranking
depths, and have reproduced numerous RLT methods in the context of LLM-based
re-ranking. Our findings contribute to answering the following thesis-level research
question:

RQ2 In the context of LLM-based re-ranking, what are the potential benefits of using
dynamic per-query re-ranking depths over fixed ones, and to what extent can RLT
methods effectively predict dynamic re-ranking depths?

For the first part of this question, our analysis demonstrates that effective per-query
re-ranking depth selection can significantly improve both efficiency and effectiveness.
From an efficiency perspective, we observe that when using a highly effective retriever,
re-ranking does not improve ranking quality for about 30% of queries. In such cases,
setting the re-ranking depth to zero allows the system to bypass costly LLM-based re-
ranking, leading to substantial computational savings. From an effectiveness perspective,
we found that increasing the re-ranking depth can sometimes degrade ranking quality.
This occurs when the re-ranker mistakenly lifts irrelevant documents to higher positions
in the ranked list. Our results suggest that dynamically adjusting the re-ranking depth to
exclude “false positive” re-ranking candidate documents has the potential to enhance
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overall retrieval effectiveness.
For the second part of this research question, our reproducibility study of RLT

methods in LLM-based re-ranking has revealed that they do not demonstrate a clear
advantage over using a fixed re-ranking depth. Also, we showed that findings on RLT
do not generalize well to this new setup. We found that (i) supervised RLT methods
do not demonstrate a clear advantage over their unsupervised counterparts; potential
fixed re-ranking depths can closely approximate the effectiveness/efficiency trade-off
achieved by supervised methods; (ii) distribution-based supervised methods achieve
better effectiveness/efficiency trade-offs than their sequential labeling-based counterpart
in most cases; the latter attains better re-ranking effectiveness at a lower cost for
pipelines using BM25 retrieval; (iii) jointly learning RLT with other tasks [259] does
not consistently yield a clear improvement; it only demonstrate a superior re-ranking
effectiveness/efficiency trade-off for SPLADE++–RankLLaMA; and (iv) incorporating
neural retriever embeddings [155] does not exhibit a clear advantage; it merely yields
marginal improvements in re-ranking effectiveness for RepLLaMA–RankLLaMA.

We also learn valuable lessons from our experiments: (i) the type of retriever
significantly affects RLT for re-ranking; with an effective retriever like SPLADE++
or RepLLaMA, a fixed re-ranking depth of 20 can already yield an excellent effec-
tiveness/efficiency trade-off; increasing the fixed depth do not significantly improve
effectiveness; using a fixed depth of 200 for retrieved lists returned by RepLLaMA, as
done by Ma et al. [153], results in unnecessary computational costs; and (ii) the type of
re-ranker (LLM or pre-trained LM-based) does not appear to influence the findings.

We identify future directions: (i) the gap between Oracle and RLT methods high-
lights the necessity of enhancing RLT methods for re-ranking; we plan to solve the
potential data scarcity issue highlighted in Section 3.5.4, and explore the use of QPP
methods for predicting query-specific re-ranking cut-offs [20]; (ii) we only consider
point-wise re-rankers; we plan to explore RLT for pair-wise and list-wise LLM-based
re-rankers [195, 196, 198, 293]; and (iii) we plan to explore RLT for re-ranking in
conversational search (CS) [182].

In the next chapter, we shift our focus to the ranking result reflection component
in agentic workflows for information access, where we explore QPP, a crucial ranking
evaluation method in the newly emerging conversational search area.
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Ranking Result Reflection
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4
Query Performance Prediction in

Conversational Search

Ranking result reflection is a key component of agentic workflows for information access.
It assesses ranking quality and, if found inadequate, triggers refinement processes [227,
277]. Accurate ranking quality prediction is critical, as it directly influences decision-
making in execution paths. Various approaches have been explored to automate ranking
quality assessment. Among them, query performance prediction (QPP) has been a
longstanding focus in the information retrieval (IR) community, where effective QPP
methods have been used to adjust execution paths and improve ranking quality. Given
its potential, this chapter and the next focus on QPP.

As information access systems increasingly operate in multi-turn conversational
settings, ranking result reflection must also evolve. While QPP has been extensively
studied in traditional ad-hoc search, limited research has studied it in the emerging area
of conversational search. Unlike ad-hoc search, conversational search is characterized
by context-dependent queries and a strong emphasis on top-ranked results, particularly
for mobile interfaces with limited screen space. Given the differences, it is unclear how
well existing QPP methods perform in this context. Also, how to adapt QPP to this
context presents an open challenge. To address these gaps, this chapter investigates the
following thesis-level question:

RQ3 How can QPP methods originally designed for ad-hoc search be effectively
adapted to conversational search, and how well do QPP methods for ad-hoc
search perform in conversational search?

4.1 Introduction

Query performance prediction (QPP) is an essential task in information retrieval (IR).
It is about estimating the retrieval quality of a search system for a given query without
relevance judgments [65, 67, 91, 105, 283, 300]. QPP has been long studied in the IR
community [56]. Numerous benefits of QPP have been identified, including selecting

This chapter was published as C. Meng, N. Arabzadeh, M. Aliannejadi, and M. de Rijke. Query
performance prediction: From ad-hoc to conversational search. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 2583–2593, 2023.
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the most effective ranking algorithm for a query [105, 106, 283] based on the difficulty
of the input query.

Recent years have seen remarkable advancements in conversational search (CS) [182],
one of the long-standing goals of IR. CS is the task of retrieving relevant documents in re-
sponse to each user query in a multi-turn conversation [61]. Significant progress has been
made across multiple CS subtasks [286], including passage retrieval [61, 62, 115, 282],
query rewriting [257, 281], mixed-initiative interactions [7, 284], response genera-
tion [171–173], and evaluation [77, 79].

Specifically, passage retrieval has been the main focus of TREC CAsT 2019–
2022 [61–63, 115, 190], where modeling long conversational context for retrieval
is shown to be challenging [8]. Moreover, research has shown that mixed-initiative
interactions can lead to improved user and system performance [7, 305]. QPP holds
significant potential to enhance CS in multiple ways. For instance, effective QPP can
help a CS system take appropriate action at the next turn, e.g., take the initiative in
asking a clarifying question or saying “I cannot answer your question” to the user,
instead of giving a low-quality or risky answer when the estimated retrieval quality for
the current user query is low [16, 210].

Despite its importance, little research has been done on QPP for CS [174]. We take
the first steps in this direction by conducting a comprehensive reproducibility study,
where we examine a variety of QPP methods that were originally designed for ad-hoc
retrieval in the setting of CS. We aim to characterize the novel challenges of QPP for
CS and highlight the unique characteristics of this field, while simultaneously assessing
the effectiveness of existing QPP methods in a conversational setting.
Challenges. We highlight three main challenges of QPP applied to CS that distinguish
it from the ad-hoc search setting:

(1) a user query in a conversation depends on the conversational context, i.e., it may
contain omissions, coreferences, or ambiguities [282]. Many QPP methods rely
heavily on the input query [15, 45, 65, 67, 102, 283], yet they are primarily de-
signed for self-contained queries in ad-hoc search. Thus, they lack the necessary
capabilities to interpret context-dependent conversational queries effectively.

(2) QPP for CS has to predict the performance of novel retrieval approaches, approaches
that are specifically designed for CS; two main groups of CS methods have been
proposed to solve the query understanding challenge in CS, i.e., query-rewriting-
based retrieval [143, 169, 252, 257, 270, 281] and conversational dense retrieval
methods [123, 142, 164, 164, 165, 201, 282]. However, it remains unclear how
existing QPP methods can effectively predict retrieval performance for these two
approaches.

(3) QPP for CS should focus on estimating the retrieval quality for the top-ranked
results rather than for a full-ranked list because CS systems need to return brief
responses to adapt to limited-bandwidth interfaces, such as a mobile screen [286].

Research goals. In this chapter, we first explore how to adapt existing QPP methods
that heavily depend on input queries to address the challenge of context-dependent
query understanding in conversational search. To bridge this gap, we propose using
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self-contained query rewrites generated by off-the-shelf query rewriting methods as
input to these QPP methods. We use this approach to predict the performance of
both query-rewriting-based retrieval and conversational dense retrieval methods (see
Sections 4.2.2 and 4.2.3). This approach ensures that these QPP methods continue to
process self-contained queries, for which these QPP methods were originally designed in
ad-hoc search. Building on this adaptation, we then conduct a systematic reproducibility
study to examine whether established findings on QPP for ad-hoc search still hold in
conversational search.

Specifically, we study the following findings from the literature on QPP for ad-hoc
search: (i) supervised QPP methods outperform unsupervised QPP methods [15, 45,
65, 67, 102, 283]; (ii) list-wise supervised QPP methods outperform their point-wise
counterparts [45, 67]; and (iii) retrieval score-based unsupervised QPP methods perform
poorly in estimating the retrieval quality of neural-based retrievers [66, 102]. By
examining each of these QPP-for-ad-hoc-search findings listed above in the setting of
CS, we aim to characterize the problem of QPP applied to CS, with novel findings and
directions for future research as additional outcomes.
Experiments. We conduct experiments on three widely-used CS datasets: CAsT-
19 [62, 115], CAsT-20 [61], and OR-QuAC [201]. Our results demonstrate that feeding
machine-generated query rewrites into QPP methods is an effective strategy for adapting
them to predict the performance of both query-rewriting-based retrieval methods (see
Section 4.4.1) and conversational dense retrieval methods (see Section 4.4.2).

Furthermore, predicting an IR evaluation metric with a shallow cut-off proves more
challenging than predicting one with a deep cut-off (see Section 4.4.3).

Regarding our reproducibility study findings in the CS setting, we observe that:
(i) supervised QPP methods distinctly outperform unsupervised counterparts only when
a large amount of training data is available; unsupervised QPP methods show strong
performance in a few-shot setting and when predicting the retrieval quality for deeper
ranked lists; (ii) point-wise supervised QPP methods outperform their list-wise coun-
terparts in most cases; however, list-wise QPP methods show a slight advantage in
a few-shot setting and when predicting the retrieval quality for deeper ranked lists;
and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in
estimating the retrieval quality of a conversational dense retrieval method, ConvDR,
either for top ranks or deeper ranked lists.
Contributions. Our main contributions in this chapter are as follows:

• We propose an approach to adapt existing QPP methods for conversational search by
using machine-generated self-contained query rewrites.

• We conduct a systematic reproducibility study to assess the effectiveness of existing
QPP methods in conversational search.

• Our extensive experiments demonstrate that using query rewrites as input to QPP
methods is an effective adaptation strategy. Additionally, we uncover important
findings and insights into QPP for CS.
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4.2 Preliminaries and Task Definition

4.2.1 From ad-hoc search to conversational search
We recap the definition of the QPP task in the context of ad-hoc search. Generally, given
a query q, a collection of documents D, an ad-hoc retrieval method M and the ranked
list with top-k ranked documents Dk

q;M = [d1, d2, . . . , dk] returned by the retriever M
over the collectionD with respect to the query q, a QPP method f estimates the retrieval
quality of the ranked list Dk

q;M with respect to the query q, formally:

ϕ = f(q,Dk
q;M , D) ∈ R , (4.1)

where ϕ indicates the retrieval quality of the ad-hoc retriever M in response to the query
q; the retrieval quality ϕ can depend on collection-based statistics.

Next, we define the task of QPP for CS. The CS task is to find relevant items for
each query in a multi-turn conversation Q = {qt}nt=1 [61], where n is the number
of turns in a conversation. Unlike traditional ad-hoc search, the query qt at turn t
may contain omissions, coreferences, or ambiguities, making it hard for ad-hoc search
methods to capture the underlying information need of the query qt [282].

Two main groups of CS methods have been proposed to solve the query understand-
ing challenge in CS, i.e., query rewriting-based retrieval [143, 169, 252, 257, 281] and
conversational dense retrieval methods [142, 164, 282].

4.2.2 Towards query rewriting-based retrieval methods
In this section, we describe our approach to modeling QPP for predicting the per-
formance of query rewriting-based retrieval methods. These methods first rewrite
the query qt into a self-contained query q′t with the conversational history Q1:t−1 =
q1, q2, . . . , qt−1, and then reuse ad-hoc search methods using the rewritten query q′t as
input. When estimating the retrieval quality of this group of CS methods, we define
QPP for CS as:

ϕt = f(q′t, D
k
q′t;M

, D) ∈ R , (4.2)

where, given the query rewrite q′t, the ranked list of documents Dk
q′t;M

retrieved by an
ad-hoc search method M for the query rewrite q′t, predicts ϕt that is indicative of the
retrieval quality of the method in response to the rewritten query q′t.

4.2.3 Towards conversational dense retrieval methods
In this section, we present our approach to modeling QPP for predicting the performance
of conversational dense retrieval methods. These methods train a query encoder to
encode the current query qt and the conversation history Q1:t−1 into a contextualized
query embedding that is used to represent the information need of the current query in
a latent space [164, 282]. However, existing QPP methods do not have such a special
module to understand the noisy raw utterances Q1:t; directly feeding the raw utterances
Q1:t into QPP methods may confuse them. Thus, when estimating the retrieval quality
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of a conversational dense retrieval method, we still feed a query rewrite q′t instead of
the raw utterances Q1:t into QPP methods, formally:

ϕt = f(q′t, D
k
Q1:t;M , D) ∈ R , (4.3)

where Dk
Q1:t;M

is the ranked list retrieved by a conversational dense retrieval method
M in response to the raw utterances Q1:t.

4.3 Reproducibility Methodology

We describe our chapter-level research questions and the experiments designed to
address them. We also describe our experimental setup.

4.3.1 Research questions

This chapter refines the thesis research question RQ3 into the following research
questions at the chapter level.

RQ3.1 Does the performance of QPP methods for ad-hoc search generalize to CS
when estimating the retrieval quality of different query rewriting-based retrieval
methods?

RQ3.2 Does the performance of QPP methods for ad-hoc search generalize to CS when
estimating the retrieval quality of a conversational dense retrieval method? Is
the QPP effectiveness influenced by the choice of query rewrites?

RQ3.3 What is the performance difference between QPP methods when predicting the
retrieval quality for top-ranked items vs. for longer-ranked lists?

4.3.2 Experimental design

Next, we describe the experiments aimed at answering our research questions. Our
main goal is to study the reproducibility of ad-hoc QPP methods in the CS setting. We
compare the performance of unsupervised and supervised QPP methods on three CS
datasets. Specifically, we conduct the following experiments:

E1 To address RQ3.1, we estimate the retrieval quality of BM25 with three query rewrit-
ing methods, namely, T5, QuReTeC, and perfect rewriting (human-rewritten) [61,
62, 115]. Note that QPP methods and BM25 always share the same query rewrites.

E2 To address RQ3.2, we study the performance of QPP methods for a conversational
dense retrieval method, ConvDR [282], on all three datasets. As ConvDR directly
models the raw conversation context, no query rewriting step is required. However,
no existing QPP methods can model raw conversations. Hence, we study the
effect of feeding different query rewrites into QPP methods when predicting the
performance of ConvDR.
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Table 4.1: Actual retrieval quality of the CS methods used in this chapter in terms of
nDCG@3.

CAsT-19 CAsT-20 OR-QuAC

T5-based query rewriter + BM25 0.330 0.170 0.218
QuReTeC-based query rewriter + BM25 0.338 0.172 0.249
Human query rewriter + BM25 0.360 0.257 0.309

ConvDR 0.471 0.343 0.614

E3 To address RQ3.3, we apply the QPP methods on evaluation metrics at different
depths. We utilize nDCG@3 and nDCG@100 and analyze how QPP performance
is affected by the ranking depth. We also consider Recall@100 to study the
effectiveness of QPP for first-stage CS rankers, where high recall is desired.

4.3.3 Experimental setup

QPP methods. We analyze a variety of unsupervised/supervised QPP methods. For
unsupervised ones, we consider clarity-based and score-based methods because they
have been widely used in the literature. We consider more score-based ones since they
have shown great effectiveness [39]. We consider one clarity-based method:

• Clarity [56] quantifies the degree of ambiguity of a query w.r.t. a collection of docu-
ments. Specifically, it measures the KL divergence between a relevance model [131]
induced from top-ranked documents and a language model induced from the collec-
tion:

Clarity(q,Dk
q;M , D) =

∑
w∈V

P (w|Dk
q;M ) log

P (w|Dk
q;M )

P (w|D)
, (4.4)

where w and V denote a term and the entire vocabulary of the collection, respectively.
The conjecture is that the larger the KL divergence is, the better the retrieval quality
is.

We consider five score-based QPP methods:

• Weighted information gain (WIG) [300] measures the divergence of retrieval scores
of top-ranked documents from those of the entire corpus: the higher the divergence is,
the better the retrieval quality is [224, 239, 283]. WIG is formulated as:

WIG(q,Dk
q;M , D) =

1

k

∑
d∈Dk

q;M

1√
|q|

(Score(q; d)− Score(q;D)), (4.5)

where Score(q; d) and Score(q;D) are the retrieval scores of document d and the
entire collection D, respectively; |q| is q’s length.

• Normalized query commitment (NQC) [224] measures the standard deviation of
retrieval scores of top-ranked documents; the standard deviation is normalized by the
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retrieval score of the entire collection D. The higher the standard deviation is, the
better the retrieval quality is assumed to be. NQC is modeled as:

NQC(q,Dk
q;M , D) =

1

Score(q;D)

√√√√1

k

∑
d∈Dk

q;M

(Score(q; d)− µ)2, (4.6)

where µ is the mean retrieval score of the top-ranked documents.

• σmax [191] is based on the standard deviation of retrieval scores of ranked documents
but finds the most suitable ranked list size k for each query. The intuition is that most
of the retrieved documents in a ranked list obtain a low retrieval score; considering
such non-relevant documents would hurt QPP effectiveness. σmax computes the
standard deviation at each point in the ranked list and selects the maximum standard
deviation so as to reduce the impact of the documents with a low retrieval score.

• n(σx%) [60], similar to σmax, also uses a dynamic number of documents to calculate
the standard deviation for each query, but only considers the documents whose
retrieval scores are at least x% of the top retrieval score. The calculated standard
deviation is normalized by query length.

• Score magnitude and variance (SMV) [239] argues that WIG and NQC mainly
consider the magnitude and the variance of retrieval scores, respectively. SMV takes
both aspects into consideration:

SMV (q,Dk
q;M , D) =

1
k

∑
d∈Dk

q;M
(Score(q; d)|ln Score(q;d)

µ |)

Score(q;D)
, (4.7)

where Score(q; d) denotes score magnitude while |ln Score(q;d)
µ |) represents score

variance.

Recent studies show that BERT-based supervised QPP methods [15, 45, 67, 102]
outperform other neural-based supervised QPP methods, such as NeuralQPP [283] and
Deep-QPP [65]. Thus, we consider three competitive BERT-based supervised QPP
methods:

• NQA-QPP [102] is the first supervised QPP method based on BERT. It feeds the
standard deviation of retrieval scores, BERT representations for the given query and
query-document pairs into a feed-forward neural network for estimating the retrieval
quality.

• BERT-QPP [15] feeds the given query and the top-ranked document into BERT,
followed by a linear layer for estimating the retrieval quality. We use the cross-
encoder version of BERT-QPP as it outperforms the bi-encoder version.

• qppBERT-PL [67] is a listwise-document method. It splits the top-ranked documents
into chunks and then uses BERT to encode all query-document pairs in each chunk; a
sequence of query-document BERT representations in a chunk is fed into an LSTM
and linear layers to predict the number of relevant documents in the chunk. A weighted
average of the number of relevant documents across all chunks is calculated as the
retrieval quality.
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Table 4.2: Data statistics of CAsT-19, CAsT-20 and OR-QuAC.

CAsT-19 CAsT-20 OR-QuAC

test test train valid test

#conversations 50 25 4,383 490 771
#conversations (judged) 20 25 – – –
#questions 479 216 31,526 3,430 5,571
#questions (judged) 173 208 – – –
#documents 38M 11M

We do not include BERT-groupwise-QPP [45]. It is another list-wise supervised QPP
method, which uses cross-query information but it cannot be directly applied in a CS
setting, as it would access the future next turn query qt+1 when estimating the difficulty
of the current query qt during inference, which is unrealistic in CS.
Query rewriting methods. We adopt the following query rewriting techniques/data in
the passage retrieval and QPP process: (i) T5 rewriter1 is fine-tuned on CANARD [76]
query rewriting dataset; (ii) QuReTeC [257] is a BERT-based term expansion query
rewriting method. We use the checkpoint released by the author;2 and (iii) Human is
the human-generated oracle query rewriting model obtained from the ground-truth data
annotations.
CS methods to be evaluated for retrieval quality. We estimate the retrieval quality of
two groups of CS methods: query rewriting-based retrieval and conversational dense
retrieval methods. For the former, we consider: (i) T5+BM25 rewrites queries using the
T5 rewriter and ranks documents using BM253; (ii) QuReTeC+BM25 [257] performs
query resolution using QuReTeC, followed by BM25 retrieval; and (iii) Human+BM25
uses the ground-truth query rewrites to rank documents using BM25. For the latter,
we consider ConvDR [282] and use the code released by the author.4 All CS methods
return the top-1000 documents per query.
Datasets. We consider three CS datasets: (i) CAsT-19 [62, 115] is constructed manually
to mimic a realistic conversation on a specific topic; in this dataset, a later query turn
often depends on its previous queries; (ii) CAsT-20 [61] is more realistic and complex
because the information needs of queries are derived from commercial search logs and
queries can refer to previous system responses; and (iii) OR-QuAC [201] is a large-scale
synthetic CS dataset built on a conversational QA dataset, QuAC [48]; there is usually
only one annotated relevant item for each query in this dataset. All three datasets
provide self-contained queries rewritten by humans for all raw queries. Table 4.2 lists
details of the datasets.
Evaluation. A common method for evaluating QPP performance is to assess the
correlation between the actual and predicted performance of a query set. We use
Pearson’s ρ linear coefficient and Kendall’s τ ranking correlation for QPP evaluation,

1https://huggingface.co/castorini/t5-base-canard
2https://github.com/nickvosk/sigir2020-query-resolution
3We use Pyserini BM25 with the default parameters k1=0.9, b=0.4.
4https://github.com/thunlp/ConvDR
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because typically both are the most commonly used correlation metrics [91, 283]. We
report the correlation based on the major metrics adopted by TREC CAsT [61, 62,
115], namely, nDCG@3 for high ranks and nDCG@100 for deeper ranked lists. As
mentioned above, we also adopt Recall@100 to investigate the performance of QPP
when evaluating first-stage CS retrievers.
Implementation details. We implement all QPP methods using Pytorch.5 For unsuper-
vised QPP methods, we use hyperparameters that have been shown to be effective by
previous studies. Following [300], k is set to 5 for WIG. As suggested by [224, 239], k
is set to 100 for NQC and SMV; following [239], we use the average retrieval score of
the top-1000 documents as the corpus score Score(q;D). Following [60], we set x to
50 for n(σx%). σmax does not use any hyperparameters. Following [224], we use the
Clarity variant that uses the sum-normalized retrieval scores (from BM25 or ConvDR
in our setting) for weighing documents when constructing a relevance model [131];
our preliminary experiments showed that this variant performed better than the original
Clarity that uses query-likelihood scores to weight documents; we induce the relevance
model using the top 100 documents and clip the relevance model at the top-100 terms
cutoff [223].

For all supervised QPP methods, we use bert-base-uncased,6 a fixed learning rate
(0.00002), and the Adam optimizer [124]. All methods are trained and inferred on an
NVIDIA RTX A6000 GPU. Following [164, 282], all training on CAsT-19 or CAsT-20
uses five-fold cross-validation; we use the data split from [282] and train all supervised
QPP methods for 5 epochs. For training on OR-QuAC, we train all QPP methods for 1
epoch on the training set of OR-QuAC; we feed QPP methods with human-rewritten
queries and train them to estimate the retrieval quality of BM25 with human-rewritten
queries. To address the data scarcity on CAsT-19 and CAsT-20, we consider a warm-up
setting where we first pre-train supervised QPP methods on the training set of OR-QuAC
for one epoch, followed by the five-fold cross-validation training for 5 epochs on CAsT.

4.4 Results and Discussions

Our experiments revolve around three main findings from the literature on QPP for
ad-hoc search: (i) supervised QPP methods outperform unsupervised QPP methods [15,
45, 65, 67, 102, 283]; (ii) list-wise supervised QPP methods outperform their point-wise
counterparts [45, 67]; and (iii) retrieval score-based unsupervised QPP methods perform
poorly in estimating the retrieval quality of neural-based retrievers [66, 102]. We study
whether the findings listed above continue to hold for QPP methods in CS.

4.4.1 Assessing query rewriting-based retrieval

Overall performance

To answer RQ3.1, we examine the results of Experiment E1, where we run QPP methods
estimating the retrieval quality of BM25 with three query rewriting methods (T5+BM25,

5https://pytorch.org/
6https://github.com/huggingface/transformers
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QuReTeC+BM25, and Human+BM25). For all supervised QPP methods on CAsT, we
further consider their variants that are first pre-trained on the training set of OR-QuAC
for one epoch before five-fold cross-validation training on CAsT. See Table 4.3. Note
that QPP methods and BM25 always share the same query rewrites. Overall, feeding
T5/QuReTeC query rewrites into QPP methods to estimate the retrieval quality of BM25
is effective, compared to the case of feeding perfect self-contained queries rewritten by
humans. We have two specific observations.

First, when applied to CS, supervised QPP methods only have a distinct advantage
over their unsupervised counterparts when training data is sufficient. Specifically, on
OR-QuAC, where training data is ample, all supervised QPP methods perform better
than unsupervised methods when assessing BM25 with all three query rewriters. NQA-
QPP achieves state-of-art performance on OR-QuAC. On CAsT-19, the performance of
unsupervised QPP methods is comparable to the performance of supervised ones only
using five-fold cross-validation. However, on CAsT-20, where the information needs of
queries are derived from commercial search logs and so query understanding is much
harder than CAsT-19, unsupervised QPP methods perform better than their supervised
counterparts only using five-fold cross-validation. Warming up on the training set of
OR-QuAC brings about improvement in supervised QPP methods in most cases. On
CAsT-19, NQA-QPP with warm-up performs better than all unsupervised methods
given T5/QuReTeC query rewrites. Nevertheless, on CAsT-20, even after warming
up, supervised methods do not have a distinct advantage. We think it is because
all supervised QPP methods need to be fed with queries and the difficulty of query
understanding on CAsT-20 limits their performance. Conversely, the prediction of score-
based unsupervised methods does not depend on the input queries, reducing the impact
of query understanding. The performance of qppBERT-PL drops after warming up on
OR-QuAC in most cases. We speculate that this is due to the distribution shift between
CAsT and OR-QuAC: qppBERT-PL predicts the number of relevant documents in each
chunk of a ranked list, and the number of relevant documents for each query in CAsT
is significantly larger than in OR-QuAC. Therefore, after warming up, qppBERT-PL’s
prediction of the relevant document count is biased towards the number of relevant
documents in OR-QuAC.

Second, in most cases, point-wise supervised QPP methods such as NQA-QPP and
BERTQPP outperform the list-wise supervised method qppBERT-PL. Without consider-
ing warming up, qppBERT-PL has a slight advantage over its point-wise counterparts.
E.g., qppBERT-PL achieves a better performance in predicting the performance of
QuReTeC+BM25, Human+BM25 on CAsT-19, and T5+BM25, QuReTeC+BM25 on
CAsT-20. qppBERT-PL’s list-wise training scheme learns from interactions between a
query and all documents in a ranked list, providing the model with more training signals
and better use of limited training data.

Turn-wise QPP effectiveness

We study the QPP effectiveness on each turn of conversation on CAsT-19; we report
the turn-wise effectiveness of 2 unsupervised (WIG, NQC) and 2 supervised methods
(NQA-QPP with warm-up, BERT-QPP with warm-up) when they assess BM25 with
T5-based and human-written query rewrites. The results are presented in Figure 4.1.
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Table 4.3: QPP quality in predicting the retrieval quality (nDCG@3) of BM25 fed with
T5-, QuReTeC-, and human-written query rewrites. QPP methods take as input the same
type of query rewrites as those used by BM25. QPP is evaluated by Pearson’s ρ and
Kendall’s τ . Warm-up indicates one epoch of pre-training on the OR-QuAC training set.
All coefficients are statistically significant (t-test, p < 0.05) except the ones in italics.
Bold and underlined denote the best and second-best values per column.

Assessing BM25 fed with different query rewrites

T5 QuReTeC Human

QPP methods P-ρ K-τ P-ρ K-τ P-ρ K-τ

C
A

sT
-1

9

Clarity 0.321 0.234 0.327 0.211 0.359 0.231
WIG 0.436 0.232 0.354 0.250 0.409 0.293
NQC 0.348 0.246 0.286 0.190 0.334 0.234
σmax 0.442 0.354 0.351 0.251 0.410 0.312
n(σx%) 0.430 0.332 0.348 0.259 0.407 0.307
SMV 0.344 0.250 0.289 0.188 0.326 0.230
NQA-QPP 0.188 0.047 -0.016 0.010 0.152 0.069
BERTQPP 0.440 0.307 0.352 0.272 0.270 0.188
qppBERT-PL 0.414 0.296 0.392 0.298 0.292 0.196
NQA-QPP (warm-up) 0.538 0.357 0.420 0.301 0.331 0.230
BERTQPP (warm-up) 0.526 0.357 0.369 0.264 0.418 0.282
qppBERT-PL (warm-up) 0.317 0.218 0.330 0.232 0.297 0.190

C
A

sT
-2

0

Clarity 0.258 0.191 0.099 0.061 0.127 0.089
WIG 0.248 0.251 0.245 0.163 0.307 0.222
NQC 0.150 0.235 0.198 0.189 0.286 0.266
σmax 0.179 0.221 0.207 0.168 0.241 0.199
n(σx%) 0.178 0.225 0.182 0.133 0.213 0.167
SMV 0.139 0.219 0.189 0.163 0.264 0.260
NQA-QPP 0.001 0.067 -0.064 -0.082 0.086 -0.011
BERTQPP 0.042 -0.009 0.172 0.145 0.194 0.110
qppBERT-PL 0.131 0.125 0.175 0.150 0.043 0.015
NQA-QPP (warm-up) 0.274 0.170 0.190 0.149 0.231 0.155
BERTQPP (warm-up) 0.207 0.171 0.403 0.301 0.336 0.227
qppBERT-PL (warm-up) 0.228 0.213 0.317 0.268 0.094 0.095

O
R

-Q
uA

C

Clarity 0.090 0.085 0.110 0.103 0.076 0.069
WIG 0.247 0.235 0.290 0.270 0.257 0.241
NQC 0.251 0.274 0.290 0.311 0.276 0.291
σmax 0.317 0.279 0.367 0.316 0.412 0.367
n(σx%) 0.181 0.172 0.229 0.209 0.245 0.193
SMV 0.204 0.239 0.239 0.273 0.194 0.232
NQA-QPP 0.781 0.566 0.792 0.591 0.809 0.621
BERTQPP 0.678 0.434 0.692 0.476 0.725 0.527
qppBERT-PL 0.594 0.507 0.617 0.526 0.618 0.525
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Figure 4.1: QPP effectiveness in predicting the retrieval quality of BM25 with T5-
generated and human-written query rewrites at each turn of conversations in CAsT-19.
Pearson’s r correlation between the actual nDCG@3 scores of the queries with the same
turn number and their estimated retrieval quality is calculated per turn.

We also introduce the turn-wise actual retrieval quality in terms of nDCG@3 in each
subfigure. As illustrated in both subfigures, all QPP methods exhibit lower performance
at the first turn and at the deeper turn 8. There is a correlation between actual retrieval
quality and QPP effectiveness: BERT-QPP effectiveness always drops as the actual
retrieval quality drops; in contrast, in the case of T5+BM25, NQA-QPP performs better
as the actual retrieval quality drops at turn 6; in the case of human+BM25, WIG and
NQC show better performance as the actual retrieval quality drops at turn 5.

4.4.2 Assessing conversational dense retrieval

Overall performance

To answer RQ3.2, we examine the results of E2. We apply QPP methods fed with
three types of query rewrites to estimate the retrieval quality of the conversational dense
retrieval method ConvDR. See Table 4.4. Note that the results of NQC, σmax and SMV
are invariant to different types of query rewrites because they only depend on retrieval
scores; Clarity is also invariant to query rewrites because we use the Clarity variant
from [224]; see Section 4.3.3 for more information about implementation details. We
have four main observations.

First, retrieval score-based methods NQC/WIG show high effectiveness in estimating
the retrieval quality of ConvDR, achieving the best performance in most cases on
CAsT-19 and CAsT-20. Compared to Table 4.3, the performance of NQC/WIG is
even better than their effectiveness in assessing BM25. It contradicts the previous
findings [66, 102]: Datta et al. [66] found that the retrieval scores from neural-based
retrievers, such as ColBERT [120], are restricted within a shorter range compared to
lexical-based retrievers, which may limit the performance of score-based unsupervised
QPP methods. We speculate that there are two reasons. First, the effectiveness of
score-based methods depends on the retrieval score distribution of a specific retriever,
regardless of whether they assess a lexical-based or a neural-based retriever. Figure 4.2
illustrates the retrieval score distributions of ConvDR and BM25 with three kinds of
query rewrites in the three datasets. The retrieval score distribution of ConvDR displays
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Figure 4.2: Distributions of retrieval scores for ConvDR and BM25 with three different
rewriters on the three datasets. For the sake of comparison, we normalize the retrieval
scores of a pipeline for all queries in a dataset by min-max normalization.

a higher variance. A higher standard deviation indicates that the score ranges vary more,
and so the top-ranked documents are more distinguishable from the rest. Thus, ConvDR
has a higher potential to be predicted more accurately using score-based QPP methods.
Second, as discussed in Section 4.4.1, score-based QPP methods do not depend on the
input queries and tend to be less impacted by the query understanding challenge in
CS. Thus, score-based unsupervised methods show more effectiveness when assessing
ConvDR compared to other supervised methods.

Second, supervised QPP methods tend to exhibit better performance when fed with
human-written query rewrites, especially on CAsT-20, where query rewriting is much
harder than CAsT-19. It highlights the importance of query rewriting quality.

Third, similar to our results for RQ3.1, supervised QPP methods distinctly outper-
form all unsupervised QPP methods on the OR-QuAC dataset where a large amount of
training data is available. NQA-QPP remains the state-of-the-art method on OR-QuAC.

Fourth, as with the results for RQ3.1, point-wise supervised methods outperform
qppBERT-PL in most cases (on CAsT-20 and OR-QuAC). On CAsT-19, qppBERT-PL
trained using five-fold cross-validation outperforms its point-wise counterparts warming
up from OR-QuAC, showing its potential in a few-shot setting.
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Table 4.4: QPP quality in predicting the retrieval quality, in terms of nDCG@3, of
ConvDR. QPP methods take three types of query rewrites as input: T5-based, QuReTeC-
based, and human-written. QPP quality is measured by Pearson’s ρ and Kendall’s τ
correlation coefficients. Warm-up means the QPP method is first pre-trained on the
training set of OR-QuAC for one epoch. All coefficients are statistically significant
(t-test, p < 0.05) except the ones in italics. The best value in each column is marked in
bold, and the second best is underlined.

Assessing ConvDR with different QPP inputs

T5 QuReTeC Human

QPP methods P-ρ K-τ P-ρ K-τ P-ρ K-τ

C
A

sT
-1

9

Clarity 0.257 0.176 0.257 0.176 0.257 0.176
WIG 0.387 0.274 0.388 0.266 0.412 0.285
NQC 0.431 0.307 0.431 0.307 0.431 0.307
σmax 0.378 0.267 0.378 0.267 0.378 0.267
n(σx%) 0.187 0.175 0.181 0.170 0.216 0.196
SMV 0.386 0.285 0.386 0.285 0.386 0.285
NQA-QPP 0.121 0.075 0.118 0.073 0.150 0.109
BERTQPP 0.167 0.107 0.220 0.145 0.298 0.193
qppBERT-PL 0.344 0.225 0.316 0.197 0.276 0.178
NQA-QPP (warm-up) 0.187 0.128 0.161 0.107 0.287 0.191
BERTQPP (warm-up) 0.282 0.187 0.234 0.157 0.371 0.251
qppBERT-PL (warm-up) 0.212 0.151 0.167 0.117 0.172 0.115

C
A

sT
-2

0

Clarity 0.126 0.088 0.126 0.088 0.126 0.088
WIG 0.377 0.277 0.377 0.263 0.384 0.264
NQC 0.339 0.261 0.339 0.261 0.339 0.261
σmax 0.282 0.219 0.282 0.219 0.282 0.219
n(σx%) 0.199 0.168 0.197 0.156 0.201 0.156
SMV 0.275 0.216 0.275 0.216 0.275 0.216
NQA-QPP -0.037 -0.037 -0.081 -0.063 0.059 0.023
BERTQPP 0.223 0.157 0.216 0.146 0.404 0.281
qppBERT-PL 0.185 0.144 0.029 0.023 0.251 0.171
NQA-QPP (warm-up) 0.315 0.218 0.240 0.178 0.374 0.267
BERTQPP (warm-up) 0.253 0.183 0.320 0.236 0.349 0.244
qppBERT-PL (warm-up) 0.218 0.164 0.140 0.115 0.348 0.268

O
R

-Q
uA

C

Clarity -0.050 -0.029 -0.050 -0.029 -0.050 -0.029
WIG 0.137 0.107 0.116 0.088 0.140 0.111
NQC 0.227 0.163 0.227 0.163 0.227 0.163
σmax 0.442 0.339 0.442 0.339 0.442 0.339
n(σx%) -0.032 -0.003 -0.073 -0.035 -0.022 0.008
SMV 0.098 0.076 0.098 0.076 0.098 0.076
NQA-QPP 0.615 0.479 0.639 0.499 0.600 0.470
BERTQPP 0.481 0.417 0.505 0.435 0.481 0.408
qppBERT-PL 0.391 0.250 0.424 0.294 0.437 0.306
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Figure 4.3: QPP effectiveness in predicting the retrieval quality of ConvDR when QPP
methods are given T5-generated and human-written query rewrites as input at each turn
of conversations in CAsT-19. Pearson’s r correlation between the actual nDCG@3
scores of the queries with the same turn number and their estimated retrieval quality is
calculated per turn.

Turn-wise QPP effectiveness

Similar to Section 4.4.1, here we report the turn-wise effectiveness of the same QPP
methods when they are fed with T5-based and human-written query rewrites to assess
ConvDR. See Figure 4.3. As shown in both subfigures, the effectiveness of the score-
based unsupervised methods (WIG/NQC) first exhibits lower performance at the first
turn, and then shows an upward trend as conversations go on. In contrast, in the middle
of conversations, the supervised QPP methods are more sensitive to the actual retrieval
quality; their effectiveness drops sharply as the actual retrieval quality drops. Especially,
NQA-QPP/BERT-QPP effectiveness shows a more dramatic drop from turn 4 to 6
when they are fed with T5-based query rewrites, compared to when they are fed with
human-written ones. It shows the importance of improving query rewriting quality
again. Interestingly, there is a sharp drop from turn 7 to 8 for all QPP methods, showing
the QPP difficulty at deeper turns.

4.4.3 Top ranks vs. deeper ranked lists

To answer RQ3.3, we report the results of E3 in Tables 4.5 and 4.6, i.e., predicting
retrieval quality, in terms of nDCG@3, nDCG@100, and Recall@100, of T5+BM25
and ConvDR. Due to space limitations, for supervised QPP methods, we only show
them in the warm-up setting. Since qppBERT-PL works better without warm-up, we
consider it both with and without a warm-up round. We have three main observations.

First, all QPP methods generally perform better when predicting the retrieval quality
for deeper-ranked lists, i.e., estimating the retrieval quality for top ranks is harder than
for deeper-ranked lists. The estimated performance by various QPP methods achieves a
higher correlation with the actual nDCG@100/Recall@100 values in comparison with
the nDCG@3 values, which is in line with [283], that found predicting NDCG@20 to
be harder than AP@1000.

Second, unsupervised QPP methods get a higher correlation with nDCG@100 and
Recall@100 on CAsT-19 and CAsT-20, showing high effectiveness in estimating the
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Table 4.5: QPP quality in predicting the retrieval quality, in terms of nDCG@3,
nDCG@100 and Recall@100, of BM25 fed with T5-based query rewrites. QPP quality
is measured by Pearson’s ρ and Kendall’s τ correlation coefficients. Warm-up means
the QPP method is first pre-trained on the training set of OR-QuAC for one epoch. All
coefficients are statistically significant (t-test, p < 0.05) except the ones in italics. The
best value in each column is marked in bold, and the second best is underlined.

Assessing T5 + BM25

nDCG@3 nDCG@100 Recall@100

QPP methods P-ρ K-τ P-ρ K-τ P-ρ K-τ

C
A

sT
-1

9

Clarity 0.321 0.234 0.326 0.257 0.214 0.187
WIG 0.436 0.232 0.608 0.429 0.579 0.426
NQC 0.348 0.246 0.548 0.397 0.545 0.444
σmax 0.442 0.354 0.574 0.433 0.494 0.399
n(σx%) 0.430 0.332 0.569 0.406 0.505 0.365
SMV 0.344 0.250 0.548 0.417 0.541 0.466
NQA-QPP (warm-up) 0.538 0.357 0.542 0.392 0.537 0.377
BERTQPP (warm-up) 0.526 0.357 0.532 0.391 0.463 0.325
qppBERT-PL (warm-up) 0.317 0.218 0.412 0.279 0.363 0.263
qppBERT-PL 0.414 0.296 0.509 0.358 0.452 0.312

C
A

sT
-2

0

Clarity 0.258 0.191 0.452 0.343 0.467 0.332
WIG 0.248 0.251 0.494 0.453 0.478 0.438
NQC 0.150 0.235 0.363 0.399 0.320 0.380
σmax 0.179 0.221 0.339 0.372 0.339 0.382
n(σx%) 0.178 0.225 0.413 0.422 0.420 0.410
SMV 0.139 0.219 0.362 0.400 0.333 0.387
NQA-QPP (warm-up) 0.274 0.170 0.471 0.362 0.466 0.370
BERTQPP (warm-up) 0.207 0.171 0.404 0.301 0.364 0.246
qppBERT-PL (warm-up) 0.228 0.213 0.367 0.305 0.312 0.287
qppBERT-PL 0.131 0.125 0.310 0.251 0.363 0.275

O
R

-Q
uA

C

Clarity 0.090 0.085 0.197 0.196 0.362 0.312
WIG 0.247 0.235 0.376 0.370 0.482 0.450
NQC 0.251 0.274 0.356 0.409 0.414 0.461
σmax 0.317 0.279 0.418 0.393 0.438 0.437
n(σx%) 0.181 0.172 0.295 0.302 0.415 0.401
SMV 0.204 0.239 0.311 0.383 0.396 0.456
NQA-QPP 0.781 0.566 0.783 0.602 0.603 0.486
BERTQPP 0.678 0.434 0.767 0.551 0.589 0.484
qppBERT-PL 0.594 0.507 0.655 0.552 0.451 0.440

retrieval quality of deeper ranked lists. On OR-QuAC, where training data is ample,
supervised QPP methods still keep the lead in terms of all metrics, in line with the
results shown in Table 4.3 and Table 4.4.
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Table 4.6: QPP quality in predicting the retrieval quality, in terms of nDCG@3,
nDCG@100 and Recall@100, of ConvDR. All QPP methods take T5-generated query
rewrites as input. QPP quality is measured by Pearson’s ρ and Kendall’s τ correlation
coefficients. Warm-up means the QPP method is first pre-trained on the training set of
OR-QuAC for one epoch. All coefficients are statistically significant (t-test, p < 0.05)
except the ones in italics. The best value in each column is marked in bold, and the
second best is underlined.

Assessing ConvDR (QPP using T5 query rewrites)

nDCG@3 nDCG@100 Recall@100

QPP methods P-ρ K-τ P-ρ K-τ P-ρ K-τ

C
A

sT
-1

9

Clarity 0.257 0.176 0.342 0.227 0.335 0.216
WIG 0.387 0.274 0.542 0.398 0.451 0.347
NQC 0.431 0.307 0.647 0.481 0.557 0.421
σmax 0.378 0.267 0.637 0.456 0.591 0.441
n(σx%) 0.187 0.175 0.358 0.292 0.362 0.288
SMV 0.386 0.285 0.619 0.471 0.556 0.423
NQA-QPP (warm-up) 0.187 0.128 0.401 0.275 0.364 0.263
BERTQPP (warm-up) 0.282 0.187 0.378 0.249 0.261 0.194
qppBERT-PL (warm-up) 0.212 0.151 0.354 0.233 0.345 0.249
qppBERT-PL 0.344 0.225 0.461 0.310 0.455 0.327

C
A

sT
-2

0

Clarity 0.126 0.088 0.270 0.195 0.264 0.178
WIG 0.377 0.277 0.549 0.389 0.465 0.320
NQC 0.339 0.261 0.544 0.404 0.463 0.357
σmax 0.282 0.219 0.496 0.364 0.440 0.328
n(σx%) 0.199 0.168 0.409 0.309 0.397 0.285
SMV 0.275 0.216 0.503 0.380 0.454 0.352
NQA-QPP (warm-up) 0.315 0.218 0.310 0.237 0.324 0.223
BERTQPP (warm-up) 0.253 0.183 0.349 0.242 0.221 0.133
qppBERT-PL (warm-up) 0.218 0.164 0.378 0.272 0.313 0.229
qppBERT-PL 0.185 0.144 0.301 0.217 0.263 0.196

O
R

-Q
uA

C

Clarity -0.050 -0.029 -0.029 -0.015 0.053 0.057
WIG 0.137 0.107 0.195 0.130 0.298 0.261
NQC 0.227 0.163 0.302 0.194 0.402 0.333
σmax 0.442 0.339 0.490 0.359 0.434 0.370
n(σx%) -0.032 -0.003 -0.001 0.010 0.102 0.106
SMV 0.098 0.076 0.170 0.109 0.313 0.277
NQA-QPP 0.615 0.479 0.644 0.475 0.446 0.323
BERTQPP 0.481 0.417 0.595 0.453 0.447 0.313
qppBERT-PL 0.391 0.250 0.449 0.277 0.455 0.383

Third, in some cases, list-wise supervised methods outperform their point-wise
counterparts when estimating the retrieval quality in terms of deeper ranked lists. E.g.,
qppBERT-PL without warm-up outperforms other point-wise methods (NQA-QPP and
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BERTQPP with warm-up) on CAsT-19 when assessing ConvDR in terms of nDCG@100
and Recall@100. Also, qppBERT-PL achieves the best performance when predicting
the performance of ConvDR in terms of Recall@100 on OR-QuAC. The gains indicate
that modeling a list of retrieved items has the potential of benefiting the retrieval quality
estimation for deeper-ranked lists.

4.5 Related Work

This chapter builds on two strands of research: query performance prediction and
conversational search.

4.5.1 Query performance prediction

The query performance prediction (QPP) task is to estimate the retrieval quality of
a search system in response to a user query without relevance judgments [39, 105].
QPP methods have shown a high correlation with the retrieval quality in the context
of ad-hoc retrieval. They can help to obtain better-performing retrieval pipelines in
different ways, including query routing [215]. Moreover, query difficulty signals have
been used to provide direct feedback to users, allowing them to reformulate queries or
seek alternative information sources if the results are expected to be poor.

Typically, QPP methods can be classified into pre- and post-retrieval methods [39].
Pre-retrieval methods estimate query performance based on the query and corpus
statistics before retrieval takes place. Post-retrieval methods use additional information
from the ranked list to predict query performance after retrieval. In this chapter, we
focus on post-retrieval QPP methods because they have shown superior performance
compared to pre-retrieval methods in most cases. Post-retrieval QPP methods include
both supervised and unsupervised methods.

Traditional QPP methods have mostly relied on an unsupervised approach where
query term frequency and corpus statistics are used as indicators for query performance
[103–106, 223, 224, 300]. More recent studies model QPP by deep learning-based
models. These studies have shown that supervised methods for QPP are more effective
than unsupervised QPP approaches in an ad-hoc retrieval setting. These supervised
methods require a significant amount of data and training instances, such as the MS
MARCO dataset [32], to perform QPP effectively [15, 67, 102, 283]. To the best of our
knowledge, QPP has mostly been limited to ad-hoc retrieval tasks. Hashemi et al. [102]
explore the ability of QPP methods to predict performance for non-factoid question
answering. Studies of the performance of QPP methods in CS, have been limited.

4.5.2 Conversational search

Conversational search (CS) is the task of retrieving relevant passages in response to
user queries in a multi-turn conversation [61, 62, 115]. A unique challenge in CS is
that a user query in a conversation is context-dependent, i.e., it may contain omissions,
coreferences, or ambiguities, making it challenging for ad-hoc search methods to
capture the underlying information need [203]. Recovering the underlying information
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need from the conversational history is crucial [164]. To address this challenge, there
are two main groups of CS methods, namely, query-rewriting-based retrieval and
conversational dense retrieval. Query-rewriting-based retrieval methods first rewrite
a query that is part of a conversation into a self-contained query and then feed it to
an ad-hoc retriever [143, 169, 252, 257, 270, 281]. Query rewriting can be conducted
by either term expansion or sequence generation. The former adds terms from the
conversational history to the current query, e.g., by designing rules [169] or training a
binary term classifier [252], while the latter directly generates the reformulated queries
using pre-trained generative language models, e.g., GPT-2 [281] and T5 [143].

Conversational dense retrieval methods train a query encoder to encode the current
query and the conversational history into a contextualized query embedding; the con-
textualized query embedding is expected to implicitly represent the information need
of the current query in a latent space [123, 142, 164, 165, 201, 282]. Lin et al. [142]
train the query encoder by optimizing a ranking loss over a large number of pseudo-
relevance judgments. Yu et al. [282] train the query encoder to mimic the embeddings
of human-written queries output by the query encoder of the ad-hoc dense retriever
ANCE [272]. Mao et al. [164] train the query encoder to denoise noisy turns in the
conversation history by contrastive learning.

Little research has been done into QPP for CS. Arabzadeh et al. [16], Roitman
et al. [210] explore QPP in single-turn CS, where they use QPP to help a CS system
take the next appropriate action given a user query. Specifically, they use QPP to
assess the retrieved answer quality to determine whether the system should return
the answer to the user. Al-Thani et al. [6], Lin et al. [143] use QPP to improve the
retrieval quality of a CS system. Lin et al. [143] use a QPP method to determine
whether the current query should be expanded with keywords from the previous turns.
Al-Thani et al. [6] use QPP methods to select the better query rewrite from different
ones. Meng et al. [174] investigate the performance of pre-retrieval QPP methods
when they estimate the retrieval quality of BM25 fed with T5-generated query rewrites.
Also, Meng et al. [174] propose to incorporate query rewriting quality to improve QPP
effectiveness. Additionally, Vlachou and Macdonald [255] explore QPP in the context
of conversational fashion recommendation, which differs from CS.

What we add to the studies listed above, is a comprehensive reproducibility study
where we reproduce various QPP methods designed for ad-hoc search systems in the
setting of multi-turn CS.

4.6 Conclusions and Future Work

In this chapter, we addressed the following thesis-level research question:

RQ3 How can QPP methods originally designed for ad-hoc search be effectively
adapted to conversational search, and how well do QPP methods for ad-hoc
search perform in conversational search?

To answer the first part of this question, we have proposed adapting existing QPP
methods that heavily rely on input queries to address the challenge of context-dependent
query understanding in conversational search. We achieve this adaptation by feeding
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machine-generated self-contained query rewrites into QPP methods. This ensures
that QPP methods remain aligned with their original design, continuing to process
self-contained queries.

Building on this adaptation, we have tackled the second part of the research question
through a systematic reproducibility study. Specifically, we have examined whether
three key findings for QPP in ad-hoc search hold in CS. We have experimented with
QPP methods designed for ad-hoc search in three CS settings: (i) predicting the retrieval
quality of BM25 while studying the impact of query rewriting; (ii) predicting the
retrieval quality of a conversational dense retrieval method, namely ConvDR; and
(iii) predicting the retrieval quality for top ranks vs. deeper-ranked lists.

Our extensive experiments reveal that using query rewrites produced by T5 [143] or
QuReTeC [257] as input to QPP methods leads to great QPP quality in predicting the
performance of both query-rewriting-based retrieval and conversational dense retrieval
methods. Our reproducibility study demonstrates that we found that the three findings
on QPP for ad-hoc search do not generalize to CS very well. Specifically, we found
(i) supervised QPP methods distinctly outperform their unsupervised counterparts only
when a large amount of training data is available, while unsupervised QPP methods
show strong performance when being in a few-shot setting and predicting the retrieval
quality for deeper ranked lists; (ii) point-wise supervised QPP methods outperform
their list-wise counterparts in most cases; however, list-wise QPP methods are more
data-efficient, show a slight advantage in predicting the retrieval quality for deeper
ranked lists; and (iii) retrieval score-based unsupervised QPP methods show high
effectiveness in estimating the retrieval quality of a conversational dense retrieval
method, ConvDR, either for top ranks or deeper ranked lists. One possible explanation
is that these methods rely on the retrieval score distribution of a retriever. ConvDR’s
scores span a wider range and exhibit greater variance compared to BM25, potentially
making it easier for these methods to differentiate between high- and low-quality
rankings. Another explanation is that these methods bypass the challenges of query
understanding in conversational search by operating directly on retrieval scores, rather
than modeling context-dependent queries.

Our experimental results also identify next directions for modeling of QPP in CS.
First, we observed that, in general, human-written rewrites (i.e., ground-truth rewrites)
leads to to higher QPP quality than machine-generated ones. This shows the important
role of query rewriting quality, highlighting the need for improved query rewriting
techniques. It also shows the need to develop a mechanism of conversational context
understanding for QPP methods to directly understand raw historical utterances. Second,
we found that QPP methods tend to struggle more when predicting an evaluation metric
with a shallow cut-off compared to deeper ones. This underscores the need to improve
QPP methods for better prediction accuracy at shallow ranks. Third, we reveal that
the data sparsity problem in CS severely reduces the performance of supervised QPP
methods. Thus, designing QPP methods using few-shot learning techniques is one
possible way.

We point to two limitations of this chapter, namely, (i) we only consider estimating
the retrieval quality of one conversational dense retrieval method, and (ii) we only use
correlation metrics to evaluate the performance of QPP methods. In future work, we
plan to (i) consider more conversational dense retrieval methods such as CQE [142] as
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well as other dense retrieval methods for CS, such as T5-based rewriter+ANCE [272],
and (ii) introduce QPP-specific evaluation metrics, such as scaled Absolute Ranking
Error (sARE) and scaled Mean Absolute Ranking Error (sMARE) [78, 80].

In the next chapter, we continue to focus on QPP as a key methodology for ranking
result reflection within agentic workflows for information access. However, we shift
our perspective to examine how using large language models (LLMs) can enhance QPP
accuracy.
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5
Query Performance Prediction with Large

Language Models

In line with the previous chapter, this chapter continues to focus on query performance
prediction (QPP), a fundamental and long-standing methodology for ranking result
reflection within agentic workflows for information access. This chapter focuses specifi-
cally on enhancing QPP accuracy. Recent advances in large language models (LLMs)
have led to state-of-the-art performance across various information retrieval (IR) and
natural language processing (NLP) tasks [178], yet their potential for improving QPP
accuracy remains unexplored. There are many possible ways to model QPP with LLMs,
yet identifying an effective approach is an open and challenging problem. To bridge
this gap, this chapter investigates the following thesis-level research question:

RQ4 How can LLMs be used to effectively enhance QPP accuracy?

5.1 Introduction

Query performance prediction (QPP), a.k.a. query difficulty prediction, has attracted
the attention of the information retrieval (IR) community throughout the years [18–
20, 39]. QPP aims to estimate the retrieval quality of a search system for a query
without using human-labeled relevance judgments [78]. Effective QPP benefits various
downstream applications [82], e.g., query variant selection [72, 216, 241], selective
query expansion [13], IR system configuration selection [70, 244], enriching query
features for learning-to-rank [160] , and query-specific pool depth prediction [90] to
reduce human relevance judgment costs.

QPP methods can be applied in various domains and scenarios [82, 178]. We are
usually concerned with the predicted retrieval quality w.r.t. various IR measures across
different scenarios, e.g., our emphasis might be on precision [77, 84] for conversational
search [3, 146] and on recall for legal search [243]. However, existing QPP approaches
typically predict only a single real-valued score that indicates the retrieval quality for a
query [91] and do not require the predicted score to approximate a specific IR evaluation

This chapter is about to appear as C. Meng, N. Arabzadeh, A. Askari, M. Aliannejadi, and M. de Ri-
jke. Query performance prediction using relevance judgments generated by large language models. ACM
Transactions on Information Systems (TOIS), to appear.
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measure [17, 224, 226, 239, 300].
These properties results in two key limitations: (i) While predicted performance

scores have been shown to correlate with some IR evaluation metrics [67, 91], relying
on a single value to represent different IR evaluation measures leads to a “one size
fits all” approach, which is problematic because the literature shows that some IR
metrics do not correlate well and the agreement varies across scenarios and queries [101,
119]. Although some studies train regression-based QPP models to predict a specific
IR evaluation measure [15, 45, 65, 102, 121], they require training separate models
to predict different measures, leading to lots of storage and running costs. (ii) A
single-score prediction limits the interpretability of QPP. It is insufficient to explain
QPP outputs or to analyze and fix inaccurate QPP results based solely on a single score.
We argue that more in-depth and interpretable insights into QPP outputs are required.
A novel QPP framework. We propose a QPP framework using automatically generated
relevance judgments (QPP-GenRE), in which we decompose QPP into independent
subtasks of automatically predicting the relevance of each item in a ranked list for a given
query. QPP-GenRE comes with various advantages: (i) It allows us to directly predict
any desired IR evaluation measure at no additional cost, using automatically generated
relevance judgments as pseudo-labels. Compared to most existing QPP methods that
only outputting a single scalar value as an indicator of a ranker’s overall performance, our
method provides a multi-dimensional assessment of system effectiveness by enabling
the calculation of various metrics from the same set of relevance judgments. Leveraging
predicted relevance judgments, our method allows the computation of metrics such as
nDCG@k, Precision@k, reciprocal rank (RR), and so on. This flexibility is particularly
advantageous because it allows us to use QPP to predict retrieval quality in terms of a
specific evaluation metric that is prioritized in different scenarios. For example, we use
predicted relevance judgments to calculate precision-oriented metrics in conversational
search, while focusing on recall-oriented metrics for tasks like legal search. (ii) The
generated relevance judgments provide an explanation beyond simply gauging how
difficult or easy a query is by offering information about why the query is predicted
as being difficult or easy; moreover, we can translate the “QPP errors” into easily
observable “relevance judgment errors,” e.g., false positives or negatives, informing
potential ways of improving QPP quality by fixing observed relevance judgment errors.
Integrating QPP-GenRE with LLM-labeled relevance judgments. QPP-GenRE can
be integrated with various approaches for judging relevance. The success of QPP-GenRE
depends fundamentally on the accuracy of relevance judgment predictions. Therefore,
it is crucial to equip QPP-GenRE with an approach capable of accurately generating
relevance judgments. Recently, numerous studies [81, 97, 151, 156, 237, 242, 248]
have shown the potential effectiveness of using LLMs to generate relevance judgments.
Notably, prior research has shown that LLMs can even achieve accuracy comparable
to human labelers [242]. Therefore, it is natural to explore equipping QPP-GenRE
with LLMs for judging relevance. However, those studies have certain limitations:
several authors have prompted commercial LLMs (e.g., ChatGPT, GPT-3.5/4, GPT-4o)
to generate relevance judgments [e.g., 44, 81, 151, 242, 247, 249, 289]; commercial
LLMs come with limitations like non-reproducibility, non-deterministic outputs and
potential data leakage between pretraining and evaluation data, impeding their value in
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scientific research [195, 196, 293]. Although MacAvaney and Soldaini [156] prompt
small-scale open-source language models (e.g., Flan-T5 [50] with 3B parameters) for
generating relevance judgments, they focus on a setting wherein the model is already
given one relevant item for each query, which does not apply to QPP as we typically
do not know any relevant item for a query in advance. In this chapter, we focus on
the use of open-source LLMs for generating relevance judgments in a realistic setting
where we lack prior knowledge of any relevant items for a query. There are only few
studies [122, 212, 247, 289] attempting to prompt open-source LLMs in this setting.
Challenges. We face two challenges when using QPP-GenRE for QPP: (i) Predicting IR
metrics that not only consider precision but also take recall into account, ideally, entails
identifying all relevant items in the entire corpus for a query; however, using an LLM
to judge the entire corpus per query is impractical due to the significant computational
overhead; (ii) our experiments reveal that directly prompting open-source LLMs in a
zero-/few-shot manner yields limited effectiveness in predicting relevance, resulting
in limited QPP quality; this aligns with recent findings indicating limited success in
prompting open-source LLMs for specific tasks [198]. Also, incorporating in-context
learning examples in few-shot prompting leads to high inference costs [144].
Solutions. To address the challenges listed above, (i) we devise an approximation
strategy to predict IR measures considering recall by only judging a few items in the
ranked list for a query and using them to estimate the metric, hence avoiding the cost of
traversing the entire corpus to identify all relevant items for a query; the approximation
strategy also enables us to investigate the impact of various judging depths in the ranked
list on QPP quality; and (ii) we enhance an open-source LLM’s ability to generate
relevance judgments by training it with parameter-efficient fine-tuning (PEFT) [69] on
human-labeled relevance judgments; unlike previous supervised QPP methods that need
to train separate models for predicting different IR evaluation measures, training LLMs
to judge relevance is agnostic to a specific IR metric.
Experiments. Experiments on datasets from the TREC 2019–2022 deep learning
(TREC-DL) tracks [52–55] show that QPP-GenRE achieves state-of-the-art QPP quality
in estimating the retrieval quality of a lexical ranker (BM25) and two neural rankers,
ANCE [272] and TAS-B [109], in terms of RR@10, a precision-oriented IR metric, and
nDCG@10, an IR metric considering recall. See Sections 5.6.1 and 5.6.2.

We also find that using LLMs to directly model QPP, i.e., asking LLMs to directly
generate values of IR evaluation metrics, performs much worse than QPP-GenRE. This
finding reveals that QPP-GenRE is a more effective way of modeling QPP using LLMs.
Furthermore, our experiments demonstrate the effectiveness of our devised approxima-
tion strategy in nDCG@10: QPP-GenRE achieves state-of-the-art QPP quality at the
shallow judging depth 10, and QPP-GenRE’s QPP quality reaches saturation when it
further judges up to 100–200 retrieved items in a ranked list. See Section 5.7.1.

Moreover, we conduct an in-depth analysis to investigate the impact of fine-tuning
and the choice of LLMs on the quality of generated relevance judgments and QPP. We
consider two families of LLMs, Llama and Mistra, with sizes ranging from 1B to 70B,
under both few-shot and fine-tuned settings. We find that fine-tuning markedly improves
the quality of relevance judgment generation and QPP for all LLMs. In particular, a
fine-tuned 3B model (Llama-3.2-3B-Instruct) provides the best trade-off between QPP
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quality and computational efficiency: it not only significantly outperforms 70B few-shot
models, but also achieves QPP quality comparable to that of fine-tuned 7B and 8B
models. This suggests that, compared to few-shot prompting, fine-tuning LLMs for
relevance prediction can yield higher effectiveness in both relevance prediction and QPP,
even with relatively small model sizes; this, in turn, implies that fine-tuning can offer
strong performance at lower inference costs. Moreover, the performance of fine-tuned
LLMs in terms of judging relevance exceeds that of a commercial LLM (GPT-3.5) [81].
See Section 5.7.2.

Additionally, to show QPP-GenRE’s compatibility with other types of relevance
prediction methods, we adapt a state-of-the-art pointwise LLM-based re-ranker, Ran-
kLLaMA [153], into a relevance judgment generator by applying a threshold to its
re-ranking scores. Our results indicate that QPP-GenRE integrated with RankLLaMA
achieves high QPP quality, at the cost of tuning a proper threshold. The high QPP
quality achieved by RankLLaMA demonstrates QPP-GenRE’s compatibility with other
types of relevance prediction methods. See Section 5.7.3.

To demonstrate the generalizability of QPP-GenRE to a new domain, we conduct
experiments of applying QPP-GenRE to conversational search in a zero-shot manner.
Specifically, we evaluate QPP-GenRE and baselines when predicting the performance
of a conversational dense retriever [282] on the CAsT-19 [62, 115] and 20 [61] datasets.
We found that QPP-GenRE consistently outperforms all baselines on both datasets,
highlighting its good capability to generalize to a new domain. See Section 5.7.4.

We also analyze QPP errors based on automatically generated relevance judgments,
and provide a case study for a specific example, demonstrating QPP-GenRE’s inter-
pretability. See Section 5.7.5.

Finally, our computational cost analysis shows that QPP-GenRE shows lower la-
tency than some supervised QPP baselines when predicting multiple measures because
multiple measures can be derived from the same set of relevance judgments. Although
QPP-GenRE shows higher latency than other QPP baselines when predicting only one
metric, QPP-GenRE’s latency is still 20 times smaller than the state-of-the-art GPT-4-
based listwise re-ranker [234]. To further enhance the efficiency of QPP-GenRE. We
have proposed a relevance judgment caching mechanism. Our experimental results
show that the mechanism can reduce LLM calls for relevance prediction by about
30%. Specifically, this mechanism reuses previously predicted relevance judgments
for the same query when predicting the performance of new rankers. As a result, this
mechanism helps conserve computational resources by avoiding recompute relevance
judgments that are shared among multiple rankers. See Section 5.7.6.
Application scenarios. Given QPP-GenRE’s high QPP quality and interpretability, it is
well-suited for some knowledge-intensive professional search scenarios, where accurate
QPP is prioritized, interpretable QPP results are preferred, and users may have a higher
tolerance level for latency than users in web search. Plus, QPP-GenRE can be used to
analyze how well a search system performs in offline settings [84], where latency is not
necessarily an issue.

One might argue, if QPP-GenRE needs to be integrated with an LLM to predict
ranking quality, why not directly use the LLM for re-ranking? However, we reveal
that QPP-GenRE integrated with LLaMA-7B already achieves high QPP quality and
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remains significantly more efficient than costly state-of-the-art LLM-based re-rankers
(e.g., the GPT-4-based listwise re-ranker [234]). Calling those expensive LLM-based
re-rankers is often unnecessary, as many initial rankings are good enough and either do
not require re-ranking or only need very shallow re-ranking depths [177]. Therefore,
sufficiently accurate QPP for initial rankings is needed to guide the decision on whether
to use the expensive re-ranker, or to determine the optimal re-ranking depth that does not
waste computational resources. Given QPP-GenRE’s substantial improvements in QPP
quality over previous QPP methods and significantly lower latency compared to those
expensive re-rankers, it is valuable to make QPP-GenRE work with state-of-the-art, yet
much more costly, LLM-based re-rankers [234] to achieve a better balance between
effectiveness and efficiency in re-ranking.

Another advantage of QPP-GenRE, which makes it applicable to real-world scenar-
ios, is that unlike traditional approaches that depend heavily on the specific properties
of rankers, our method is ranker-agnostic. E.g., conventional baselines often rely on
score distributions tied to the type of their rankers, making their predictions inher-
ently ranker-dependent. Previous work has demonstrated that the effectiveness of such
score-based QPP methods varies across different rankers due to the differences in score
distributions produced by each ranker [86]. In contrast, QPP-GenRE operates on in-
dividual query–document pairs and evaluating them independently of a ranker. This
eliminates the dependency on specific ranker characteristics and score distributions,
ensuring that our framework can be applied generally across various retrieval settings.
Furthermore, QPP-GenRE can leverage the reusability of predicted relevance judgments.
Since each query–document pair is judged only once, our method allows for predicting
the performance of multiple rankers effectively due to their potential overlaps in their
top ranked documents. This implies that QPP-GenRE can become more efficient over
time as it is used in practice.
Contributions. Our main contributions in this chapter are as follows:

• We propose a novel QPP framework using automatically generated relevance judg-
ments (QPP-GenRE), which decomposes QPP into independent subtasks of predicting
the relevance of each item in a ranked list to the query, and predicts different IR eval-
uation measures based on the relevance predictions. QPP-GenRE can effectively
harness the strong relevance prediction capabilities of LLMs, potentially leading to
improved QPP accuracy.

• We devise an approximation strategy to predict IR measures that account for both
precision and recall, avoiding the cost of traversing the entire corpus to identify all
relevant items for a query.

• We fine-tune leading open-source LLMs from the Llama and Mistral families, cov-
ering a range of model sizes, for the task of automatically generating relevance
judgments. Our results show that fine-tuning much smaller LLMs for relevance judg-
ment prediction can yield more effective relevance prediction and QPP than few-shot
prompting with much larger models.

• We conduct experiments on four datasets, showing that QPP-GenRE outperforms the
state-of-the-art QPP baselines on the TREC-DL 19–22 datasets in predicting RR@10
and nDCG@10 in terms of Pearson’s ρ and Kendall’s τ .

95



5. Query Performance Prediction with Large Language Models

5.2 Related Work

This chapter is relevant to four strands of research: query performance prediction (QPP)
(Section 5.2.1), zero/few-shot prompting and parameter-efficient fine-tuning (PEFT) for
LLMs (Section 5.2.2), LLMs for generating relevance judgments (Section 5.2.3), and
LLMs for re-ranking (Section 5.2.4).

5.2.1 Query performance prediction

Query performance prediction (QPP) has attracted lots of attention in the IR and
NLP community and has been widely studied in ad-hoc search [67, 85, 86, 226],
conversational search [83, 84], question answering [102, 213], and image retrieval [193].
This chapter focuses on QPP for ad-hoc search.

Typically, QPP methods are divided into two categories: pre- and post-retrieval
methods [39]. The former predicts the difficulty of a given query by using features of
the query and corpus, while the latter further uses features of a ranked list returned by a
ranker for the query [39]. This chapter focuses on post-retrieval QPP methods.

A large number of unsupervised and supervised post-retrieval QPP methods have
been proposed [39] for predicting the performance of lexical rankers, such as query
likelihood [127] and BM25 [208]. Unsupervised QPP methods can be classified into
clarity-based [56], robustness-based [26, 299, 300], coherence-based [14, 73], and
score-based [60, 191, 224, 239, 300]. More recently, a set of supervised QPP methods
have been proposed [15, 45, 65, 66, 102, 121, 283]. NeuralQPP [283] and Deep-
QPP [65] are optimized from scratch. NQA-QPP [102] and BERT-QPP [15] fine-tune
BERT [71] to improve QPP effectiveness. Further, Datta et al. [67] propose qppBERT-
PL, which considers list-wise-document information, while Chen et al. [45] propose
BERT-groupwise-QPP that considers both cross-query and cross-document information.
Khodabakhsh and Bagheri [121] propose a multi-task query performance prediction
framework (M-QPPF), learning document ranking and QPP simultaneously.

Post-retrieval QPP methods designed for lexical rankers struggle to predict the
retrieval quality of neural rankers [86, 102], motivating several new unsupervised
post-retrieval QPP methods designed for neural rankers. Datta et al. [66] propose
a weighted relative information gain-based model (WRIG), which assesses a neural
ranker for a given query by considering the relative difference of predicted performance
between the given query and its variants; Zendel et al. [287] assess a neural re-ranker by
measuring the entropy of scores returned by it; Faggioli et al. [85] propose neural-ranker-
specific ways of calculating regularization terms used by unsupervised post-retrieval
QPP methods; Vlachou and MacDonald [256] propose an unsupervised coherence-based
QPP method that employs neural embedding representations to assess dense retrievers;
and Singh et al. [226] propose pairwise rank preference-based QPP (QPP-PRP) for
predicting the performance of a neural ranker by measuring the degree to which a
pairwise neural re-ranker (e.g., DuoT5 [194]) agrees with the ranked list returned by
the neural ranker.

We present a novel QPP perspective: we start by automatically generating relevance
judgments for a ranked list for a query and then proceed to predict IR evaluation
measures for the ranked list. To the best of our knowledge, no prior work addresses
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QPP from this perspective.
Unlike regression-based QPP models [15, 45, 65, 102, 121], which require training

separate models to predict different IR evaluation measures, the training of LLMs for
judging relevance in the QPP-GenRE method that we propose is agnostic to a specific
IR evaluation measure, and different measures can be derived from the same set of
generated relevance judgments.

We also differ from qppBERT-PL [67], which first predicts the number of relevant
items for each chunk in a ranked list and then aggregates those numbers into a general
QPP score. However, qppBERT-PL’s output is still presented as a single scalar, which is
insufficient to accurately represent different evaluation measures; also, it is infeasible to
predict arbitrary IR measures only using the number of relevant items in a ranked list.

The work closest to QPP-GenRE, which is still different, is QPP using effectiveness
evaluation without relevance judgments (EEwRJ) [181]. The goal of EEwRJ methods
is to predict search system effectiveness in a TREC-like environment. E.g., a method
proposed by Soboroff et al. [229] randomly samples items from a pool for a query and
treats these items as relevant; the intuition is that if an item is ranked highly by many
search systems, it is likely to be pooled and therefore considered relevant. Mizzaro
et al. [181] explore applying QPP EEwRJ [181] methods to QPP. However, QPP using
EEwRJ suffers from two limitations: (i) EEwRJ requires obtaining ranked lists returned
by all search systems in a given TREC edition to predict the difficulty of a query, and
(ii) EEwRJ encounters normalization challenges when predicting the ranking quality
for a ranked list returned by a specific search system [181]. QPP-GenRE does not face
these limitations.

5.2.2 Zero/few-shot prompting and parameter-efficient fine-tuning
for large language models

While fine-tuning pre-trained language models has given rise to many state-of-the-art
results [71], fully fine-tuning LLMs for a specific task on consumer-level hardware
is typically infeasible [301] because of the large number of parameters of LLMs. As
a result, there are three prevailing ways to adapt LLMs to a specific task: zero-shot
prompting, few-shot prompting, a.k.a. in-context learning (ICL) [35, 74], and parameter-
efficient fine-tuning (PEFT) [69, 111, 144].

There is limited success in only prompting open-source LLMs for certain tasks [198].
Zero-shot prompting instructs an LLM to perform a specific task by inputting a text in-
struction. To get a promising result, zero-shot prompting is usually based on instruction-
tuned LLMs [198, 292], such as Flan-T5 [50], Flan-UL2 [240]. However, Sun et al.
[232] show that the performance of zero-shot prompting degrades considerably if an
LLM is fed an instruction that was not observable during its training. ICL inputs a
few input-target pairs (a.k.a. demonstrations) to an LLM, which would make an LLM
learn from analogy [74] without updating its parameters. However, ICL has a high
computational cost because it needs to feed input-target pairs to an LLM for each
prediction; also, ICL requires substantial manual prompt engineering because an LLM’s
performance [144] is sensitive to the formatting of the prompt (e.g., the wording and
the order of input-target pairs).

PEFT can solve the above limitations; it aims to adapt an LLM to a specific task by
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training only a small fraction of its parameters. Low-rank adaptation (LoRA), a widely-
used PEFT method [94, 145, 295], has been shown to achieve comparable performance
to full-model fine-tuning [69, 148]; LoRA adds learnable low-rank adapters to each
network layer of an LLM [111] while all original parameters of the LLM are frozen.
QLoRA [69] further reduces the memory usage of LoRA without sacrificing perfor-
mance; QLoRA first quantizes an LLM model to 4-bits before adding and optimizing
low-rank adapters. This chapter explores the possibility of training open-source LLMs
with QLoRA to generate relevance judgments.

5.2.3 Large language models for generating relevance judgments

Automatically generating relevance judgments is a long-standing goal in IR that has
been studied for multiple decades [161, 162, 188, 189, 206, 229]. Recent studies
have demonstrated promising results of using LLMs for the automatic generation of
relevance judgments [81, 242]. In this chapter we focus on studies into generating
relevance judgments with discrete classes (e.g., “Relevant” or “Irrelevant”), instead of
generating continuous relevance labels in real numbers [276]. We discuss related studies
into LLM-based automatic generation of relevance judgments from two dimensions:
(i) how LLMs are used to generate relevance judgments, and (ii) their applications.

Recent studies have explored prompting commercial LLMs (e.g., GPT-3.5 and GPT
4) or open-source LLMs in zero- or few-shot manners. Specifically, Faggioli et al. [81]
use zero- and few-shot prompting to instruct GPT-3.5 to predict the relevance of an
item to a query. Thomas et al. [242] instruct GPT-4 by zero-shot prompting, and add to
the prompt a detailed query description and consider chain-of-thought [266]. Ma et al.
[151] instruct GPT-3.5 to generate relevance judgments for a domain-specific scenario,
i.e., legal case retrieval [154]; they use prompts specifically designed for this scenario.
More recently, Upadhyay et al. [249] prompt GPT-4o in a zero-shot manner. Besides
using commercial LLMs, only few studies [122, 212, 247, 289] explore prompting open-
source LLMs to generate relevance judgments. E.g., Khramtsova et al. [122], Upadhyay
et al. [247] and Salemi and Zamani [212] prompt Flan-T5 [50], Vicuña-7B [298] and
Mistral [118], respectively, in either zero-shot or few-shot manners. MacAvaney and
Soldaini [156] focus on a special scenario where a relevant item for a given query is
already known and use Flan-T5 [50] to estimate the relevance of another item to the
query given the known relevant item.

Recent studies have explored using LLM-generated relevance judgments to benefit
(i) search system evaluation [81, 156, 242, 247], (ii) ranker selection [122], (iii) item
selection and retrieval quality evaluation in retrieval-augmented generation (RAG) [212,
289] and (iv) retriever fine-tuning [151]. Concerning (i), recent studies [2, 81, 156, 242,
247] explore evaluating search systems either entirely using LLM-generated relevance
judgments or partially using LLM-generated relevance judgments (a.k.a. filling holes).
They have demonstrated a high correlation between search system rankings based
on LLM- and human-labelled relevance judgments. As to (ii), given a pool of dense
retrievers, Khramtsova et al. [122] select a suitable one for a target corpus by estimating
their performance using LLM-generated queries and relevance judgments specific to
the target corpus. For (iii), for item selection, Zhang et al. [289] prompt LLMs to
generate relevance judgments for retrieved candidate items in RAG; the items that are
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predicted as “relevant” are used for text generation. Zhang et al. [289] observe that
items selected via relevance prediction resulted in sub-optimal text generation quality.
For retrieval quality evaluation, Salemi and Zamani [212] generate relevance judgments
for retrieved candidate items and aggregate those judgments into a score. However,
Salemi and Zamani [212] found that the aggregated score based on the LLM-generated
relevance judgments achieves a low correlation with the text generation quality of
RAG. Concerning (iv), Ma et al. [151] fine-tune a legal case retriever on a training
set augmented with LLM-generated relevance judgments. They show that fine-tuning
a legal case retriever using the generated relevance judgments results in enhanced
performance.

This chapter differs from the studies mentioned above: (i) we explore the possibility
of fine-tuning open-source LLMs for generating relevance judgments; unlike MacA-
vaney and Soldaini [156], we focus on a more practical scenario wherein no relevant
item is known in advance for each query; and (ii) we focus on QPP and predict the
ranking quality of a ranked list for a query using LLM-generated relevance judgments,
which previous studies have not explored.

5.2.4 Large language models for re-ranking

Recent studies on using LLMs for re-ranking have witnessed remarkable progress [23,
33, 75, 110, 152, 152, 153, 177, 195, 196, 211, 234, 238, 293, 302–304]. There
are four paradigms of LLM-based re-ranking: pointwise, pairwise, listwise, and set-
wise [304]. Given a query, pointwise re-rankers produce a relevance score for each
item independently, and the final ranking is formed by sorting items by relevance
score [75, 153, 211, 302]. The pairwise paradigm [198] eliminates the need for com-
puting relevance scores; given a query and a pair of items, a pairwise re-ranker es-
timates whether one item is more relevant than the other for the query. Listwise
re-rankers [152, 195, 196, 234, 238, 293] frame re-ranking as a pure generation task
and directly output the reordered ranked list given a query and a ranked list return
by first-stage retriever [152, 195, 196, 234, 238, 293]. Given the low efficiency of
pairwise (multiple inference passes) and listwise (multiple decoding steps) re-rankers,
the setwise paradigm [304] is meant to improve the efficiency while retaining re-ranking
effectiveness. Given a query and set of items, an LLM is asked which item is the most
relevant one to the query; these items are reordered according to the LLM’s output
logits of each item being chosen as the most relevant item to the query, which only
requires one decoding step of an LLM.

This chapter differs from this line of research because we generate explicit relevance
judgments with discrete classes (e.g., “Relevant” or “Irrelevant”), whereas studies into
LLMs for re-ranking aim to predict the relevance order of items. However, using LLMs
for generating relevance judgments and for re-ranking are intrinsically the same task:
relevance prediction. Thus, an LLM-based re-ranker has the potential to serve as a
relevance judgment generator.

Our main contribution in this chapter is the introduction of QPP-GenRE, a novel
QPP framework, which, in theory, can be integrated with various relevance prediction
approaches. To demonstrate the compatibility of QPP-GenRE with various relevance
prediction approaches, we adapt a state-of-the-art pointwise LLM-based re-ranker,
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items predicted as relevant to approximate
all relevant items in the corpus.

Figure 5.1: The framework of QPP-GenRE.

RankLLaMA [153], into a relevance judgment generator by applying a threshold for its
re-ranking scores; we then integrate QPP-GenRE with this adapted RankLLaMA. It is
important to note that exploring the use of other types of LLM-based re-rankers (e.g.,
pairwise and listwise) as relevance judgment generators falls outside the scope of this
chapter.

5.3 Task Definition

In this chapter, we focus on post-retrieval QPP [39]. Generally, a post-retrieval QPP
methodψ aims to estimate the retrieval quality of a ranked listL = [d1, , . . . , di, . . . , d|L|]
with |L| retrieved items induced by a ranker M over a corpus C in response to query q
without human-labeled relevance judgments, formally:

p = ψ(q, L,C) ∈ R, (5.1)

where p indicates the predicted retrieval quality of the ranker M in response to the query
q; typically, p is expected to be correlated with an IR evaluation measure, such as RR.

5.4 Method

5.4.1 Overview of QPP-GenRE
We propose QPP-GenRE, which consists of two steps: (i) generating relevance judg-
ments using LLMs, and (ii) predicting IR evaluation measures. See Figure 5.1. In
(i), we employ an LLM to generate relevance judgments for the top-n retrieved items
in the ranked list for a given query; to improve LLMs’s effectiveness in generating
relevance judgments, we fine-tune an LLM with PEFT using human-labeled relevance
judgments. In (ii), we regard the generated relevance judgments as pseudo labels to
calculate different IR evaluation measures, covering precision-oriented metrics and
metrics that consider recall.
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Instruction: Please assess the relevance of the provided passage to
the following question. Please output “Relevant” or “Irrelevant”.
Question: {question}
Passage: {passage}
Output: Relevant/Irrelevant

Figure 5.2: Prompt used by LLMs for automatic generation of relevance judgments.

5.4.2 Predicting relevance judgments with large language models

Inference

Given the ranked list L = [d1, . . . , di, . . . , d|L|] with |L| items returned by a ranker M
for a query q, an LLM is employed to automatically predict the relevance of each item
in the top-n positions of the ranked list L to the query q, formally:

r̂i = LLM(prompt(q, di)), (5.2)

where prompt(·, ·) is a prompt to instruct an LLM on the task of automatic generation
of relevance judgments, as illustrated in Figure 5.2. We follow the design proposed by
Faggioli et al. [81] to create a prompt that explicitly instructs the LLM to output either
“Relevant” or “Irrelevant”. In our preliminary experiments, we also tested the prompt
from Sun et al. [234], which asks the LLM the question, “Does the passage answer
the query?” and expects a response of either “Yes” or “No.” However, we found that
this alternative prompt produced inferior results compared to our chosen design. r̂i is
a predicted relevance value for the item di at rank i. r̂i ∈ {1, 0} , where “1” indicates
relevant and “0” irrelevant. We leave the prediction of multi-graded labels as future
work. After automatically judging the top-n items in the ranked list L, we get a list of
generated relevant judgments R̂L1:n = [r̂1, . . . , r̂i, . . . , r̂n], where r̂i is the predicted
relevance value for di in L.

Parameter-efficient fine-tuning (PEFT)

To further improve an LLM’s effectiveness in generating relevance judgments, we use
human-labeled relevance judgments to train an LLM with an effective PEFT method,
QLoRA [69]. Specifically, we first quantize an LLM model to 4-bit, add learnable low-
rank adapters to each network layer of the LLM, and then optimize low-rank adapters.
Formally, given the query q and an item di in the ranked list L, we optimize the LLM
to generate the human-labeled relevance value ri for the item di:

L(θLoRA) = − 1

M

M∑
i=1

logP (ri | prompt(q, di)), (5.3)

where θLoRA stands for learnable low-rank adapters added to the LLM;M is the number
of training examples. See Section 5.5.7 for more details.
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5.4.3 Predicting precision-oriented metrics
We compute a precision-oriented measure based on LLM generated relevant judgments
R̂L1:n for the top-n items in the ranked list L, as shown in Figure 5.1a. Note that in this
case, n = k. The following is an example to compute RR@k:

RR@k = 1/min
i
{r̂i > 0}, (5.4)

where 0 < i ⩽ k. For instance, as illustrated in Figure 5.1a, the first item in the ranked
list is predicted as irrelevant, while the second item is predicted as relevant. In this case,
the predicted RR@k value would be 0.5. RR@k would be equal to 0 if there is no
top-k item that is predicted as relevant to the query q.

5.4.4 An approximation strategy to predict metrics considering
recall

As the computation of a measure considering recall requires the information of all
relevant items in the corpus C for a given query q, we need to automatically assess every
item in corpus C, which is infeasible due to the high computational cost. To address this
issue, we devise an approximation strategy for predicting an IR measure considering
recall, which only judges the top-n (n≪ the total number of items in the corpus) items
in the ranked list L and uses the items predicted as relevant to approximate all relevant
items in the corpus, to avoid the cost of judging the entire corpus. Fröbe et al. [88], Lu
et al. [147], Moffat [184] define normalized discounted cumulative gain (nDCG) [114]
at a cutoff k as a recall-oriented IR evaluation metric because it is normalized by a
recall-oriented “best possible” ranking.1 nDCG@10 is also the most primary official
IR evaluation metric in TREC-DL 19–22 [52–55]. Thus, here we show an example of
predicting nDCG@k [114], formally:

nDCG@k = DCG@k/IDCG@k, (5.5)

where DCG@k can be computed easily using the generated relevance judgments for
the top-k items in the ranked list L, namely:2

DCG@k = r̂1 +

k∑
i=2

r̂i/ log2 i. (5.6)

IDCG@k is the ideal ranked list with k items, which requires knowing all the relevant
items in the corpusC. We approximate all relevant items in the corpus by considering the
items that are predicted as relevant at the top-n ranks in the ranked list L, and compute
IDCG@k based on that. First, we reorder the LLM-generated relevant judgments
R̂L1:n

= [r̂1, . . . , r̂i, . . . , r̂n] for the ranked list L into R̂iL1:n
= [îr1, . . . , îri, . . . , îrn]

1In this chapter, we employ nDCG@10 and believe that nDCG@10 is a metric considering recall:
Figure 5.4 illustrates that to reach saturation in predicting nDCG@10 values for ANCE and BM25, judgments
up to the top 100 and 200 retrieved items are needed, respectively. If it were a precision-based metric,
saturation could be achieved by judging around 10 items.

2Note that we consider the definition of DCG@k for binary relevance labels.
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in descending order of predicted relevance; then, we compute IDCG@k based on
R̂iL1:n , namely:

IDCG@k = îr1 +

k∑
i=2

îri/ log2 i. (5.7)

5.5 Experimental Setup

5.5.1 Research questions
This chapter expands on the thesis-level research question RQ4 by introducing the
following chapter-specific research questions.

RQ4.1 To what extent does QPP-GenRE improve QPP quality for lexical and neural
rankers in terms of RR@10, a precision-oriented IR metric, compared to state-
of-the-art baselines?

RQ4.2 To what extent does QPP-GenRE improve QPP quality for lexical and neural
rankers in terms of nDCG@10, an IR metric that not only considers precision
but also takes recall into account, compared to state-of-the-art baselines?

RQ4.3 How does judging depth in a ranked list affect the prediction of nDCG@10, an
IR metric that considers both precision and recall? In other words, how does
varying the number of top-ranked documents submitted for relevance judgments
impact QPP quality?

RQ4.4 To what extent do fine-tuning and the choice of LLMs affect the quality of
generated relevance judgments and QPP?

5.5.2 Datasets
We experiment with 4 widely-used IR datasets from the TREC 2019–2022 deep learning
(TREC-DL) tracks [52–55]. These datasets provide relevance judgments in multi-graded
relevance scales per query. TREC-DL 19, 20, 21 and 22 have 43, 54, 53 and 76 queries,
respectively. TREC-DL 19/20 and TREC-DL 21/22 are based on the MS MARCO
V1 and MS MARCO V2 passage ranking collections respectively. In the V1 edition,
the corpus comprises 8.8 million passages while the V2 edition has over 138 million
passages.

5.5.3 Retrieval approaches
We consider BM25 [208] as a lexical ranker; we also consider ANCE [272] and TAS-
B [109] as neural-based dense retrievers. To increase the comparability and repro-
ducibility of our chapter, we get the retrieval results of both rankers using the publicly
available resource from Pyserini [140].3 We get BM25’s retrieval result with top-1000

3https://github.com/castorini/pyserini
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retrieved items per query on the TREC-DL 19–22 datasets using the default parameters
(k1 = 0.9, b = 0.4). BM25’s actual nDCG@10 values are 0.506, 0.480, 0.446 and
0.269 on TREC-DL 19, 20, 21 and 22, respectively. We get the retrieval results of
ANCE and TAS-B with top-1000 retrieved items per query on TREC-DL 19–20, using
the publicly available dense vector index of ANCE on MS MARCO V1. ANCE’s actual
nDCG@10 values are 0.645 and 0.646 on TREC-DL 19 and 20, respectively; TAS-B’s
actual nDCG@10 values are 0.721 and 0.685 on TREC-DL 19 and 20, respectively.
We rely on the publicly available dense vector index of ANCE/TAS-B; at the time
of writing, there is no dense vector index of ANCE/TAS-B publicly available on MS
MARCO V2 for TREC-DL 21 and 22.4

5.5.4 Baselines

We consider three groups of baselines: unsupervised post-retrieval QPP methods,
supervised post-retrieval QPP methods, and the LLM-based QPP methods. Specifically,
we consider the following unsupervised QPP approaches that already showed high
correlation with actual retrieval performance in previous work:

• Clarity [56] computes the KL divergence between language models [131] induced
from the top-k items in a ranked list and the corpus.

• Weighted information gain (WIG) [300] calculates the difference between retrieval
scores of the top-k items in a ranked list and the retrieval score of the entire corpus.

• Normalized query commitment (NQC) [224] calculates the standard deviation of
retrieval scores of the top-k items in a ranked list to a query; the standard deviation is
normalized by the retrieval score of the entire corpus to the query.

• σmax [191] computes the standard deviation of retrieval scores from the first item to
each point in a ranked list and outputs the maximum standard deviation.

• n(σx%) [60] calculates the standard deviation for each query by considering the items
whose retrieval scores are at least x% of the top retrieval score in a ranked list.

• Score magnitude and variance (SMV) [239] considers both the magnitude of retrieval
scores (WIG) and their variance (NQC).

• UEF(NQC) [223] uses a pseudo-effective reference list to improve QPP quality; we
follow [15, 17, 67] to use NQC as a base predictor.

• RLS(NQC) [209] generates and selects both pseudo-effective and pseudo-ineffective
reference lists; we use NQC as a base predictor because Roitman [209] show that
RLS works better with NQC.

• QPP-PRP [226] measures the degree to which a pairwise neural re-ranker (DuoT5 [194])
agrees with the ranked list for the query.

4Building the dense vector index on MS MARCO V2 with over 138 million passages is resource-intensive
and beyond the scope of this chapter.
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Instruction: Evaluate the relevance of the ranked list of passages to the
given query by providing a numerical score between 0 and 1. A score of
“1” indicates that the ranked passages are highly relevant to the query,
while a score of “0” means no relevance between the passages and the
query.
Query: { }
Passage 1: { }
Passage 2: { }
. . .
Passage k: { }
Output:

Figure 5.3: Prompt used by QPP-LLM.

• Dense-QPP [17] is robustness-based and designed for dense retrievers only: it injects
noise neural representation of the given query, and then measures the similarity
between ranked lists for the original query and perturbed query representations. Note
that Dense-QPP [17] is designed for predicting the ranking quality of neural-based
retrievers; it cannot predict the ranking quality of BM25.

Since studies show that BERT-based post-retrieval supervised QPP methods [15, 45, 67,
102] perform better than their neural-based counterparts, we only consider BERT-based
supervised QPP approaches:

• NQA-QPP [102] is a regression-based method, which predicts a QPP score by using
BERT representations for the query and query-item pairs, and the standard deviation
of retrieval scores.

• BERTQPP [15] is a regression-based method, which predicts a QPP score by using
BERT representations for the query and the top-ranked item. We use the cross-encoder
version of BERTQPP because of its promising results.

• qppBERT-PL [67] first splits the ranked list into chunks, predicts the number of
relevant items in each chunk, and calculates a weighted average of the number of
relevant items in all chunks.

• M-QPPF [121] is also regression-based and models QPP and document ranking
jointly, by adopting a shared BERT layer to learn representations for query-document
pairs, and using two layers to model QPP and document ranking, respectively.

While to the best of our knowledge there is no LLM-based QPP method yet, to have a fair
comparison with LLM-based approaches, we propose two LLM-based QPP baselines.
Research on using LLMs for arithmetic tasks shows that LLaMA treats numbers as
distinct tokens and can understand and generate numerical values [145]. Inspired by
this, we prompt LLaMA-7B to directly generate a numerical score given a query and
the ranked list with k passages for the query; the prompt is shown in Figure 5.3. We
consider two variants:
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• QPP-LLM (few-shot) uses in-context learning (ICL) and inserts several demonstration
examples after the instruction in the prompt; each example is composed of a query, k
passages and the actual performance in terms of an IR evaluation measure.

• QPP-LLM (fine-tuned) fine-tune LLaMA-7B to learn to directly generate numerical
values of an IR metric, similar to the way other regression-based supervised QPP
methods are trained.

5.5.5 Evaluation

We follow established best practices [39, 56, 67, 103, 283] to evaluate QPP by measuring
linear correlation by Pearson’s ρ as well as ranked-based correlation through Kendall’s
τ correlation coefficients between the actual and predicted performance of a query set.

5.5.6 Target information retrieval evaluation measures

As for target IR metrics, we consider the two primary official IR metrics used in TREC
DL 19–22 [52–55], RR@10 (precision-oriented) and nDCG@10 (considering recall);
recent QPP studies [17, 85, 121] consider either or both of these metrics as their target
metrics. Following [67], we use relevance scale ≥ 2 as positive to compute actual binary
IR measures (e.g., RR). When calculating correlation for nDCG@10, the actual values
of nDCG@10 are calculated by human-labeled and multi-graded relevance judgments,
while the nDCG@10 values predicted by QPP-GenRE are based on its generated binary
judgments.

5.5.7 Implementation details

For all unsupervised QPP baselines, we tune the hyper-parameters for predicting the
ranking quality of a ranker (either BM25 or ANCE) on TREC-DL 19 (TREC-DL 21)
based on Pearson’s ρ correlation for predicting the ranking quality of the same ranker on
TREC-DL 20 (TREC-DL 22), and vice versa. We select the cut-off value k for Clarity,
NQC, WIG, SMV and so on from {5, 10, 15, 20, 25, 50, 100, 300, 500, 1000}. n(σx%)
has a hyper-parameter x, which we choose from the set {0.25, 0.4, 0.5, 0.6, 0.75, 0.9}.

To predict the performance of a certain ranker (any of BM25, ANCE, or TAS-B), we
train all supervised QPP baselines based on the ranked list returned by the target ranker.
To predict a certain IR evaluation measure, regression-based methods [15, 102, 121]
are trained to learn to output the target evaluation measure during training. However,
our preliminary result shows that training supervised QPP baselines, especially for
regression-based supervised methods [15, 102, 121], on the training set of MS MARCO
V1 leads to inferior QPP quality for predicting the performance of the neural rankers
(ANCE and TAS-B). We hypothesize that this is because they were originally trained
on the training set of MS MARCO V1 [109, 272], and so the ranked list returned by
them on the training set of MS MARCO V1 would have higher quality than the ranked
list returned by them on the evaluation sets; therefore, supervised QPP methods that
share the same training set as the neural rankers, tend to predict inflated performance
on the evaluation sets, leading to degraded QPP quality. To solve the issue and ensure
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Table 5.1: Correlation coefficients (Pearson’s ρ and Kendall’s τ ) between actual re-
trieval quality, in terms of RR@10, of BM25 and performance predicted by QPP-
GenRE/baselines, on TREC-DL 19 and 20. ∗ indicates statistically significant correla-
tion coefficients (p-value < 0.05). † indicates the statistically significant improvement
of QPP-GenRE compared to all the baselines (paired t-test; p-value < 0.001 with
Bonferroni correction for multiple testing). The best value in each column is marked in
bold. n denotes QPP-GenRE’s judgment depth in a ranked list.

Ranker: BM25

TREC-DL 19 TREC-DL 20

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.135 0.028 0.050 0.021
WIG 0.113 0.164 0.286∗ 0.218∗

NQC 0.194 0.117 0.152 0.191
σmax 0.195 0.164 0.200 0.211∗

n(σx%) 0.144 0.181 0.187 0.123
SMV 0.141 0.097 0.126 0.193
UEF(NQC) 0.235 0.256∗ 0.270∗ 0.211∗

RLS(NQC) 0.272 0.122 0.290∗ 0.193
QPP-PRP 0.292 0.189 0.163 0.184

NQA-QPP 0.181 0.122 0.062 0.069
BERTQPP 0.281 0.136 0.237 0.155
qppBERT-PL 0.145 0.138 0.166 0.152
M-QPPF 0.317∗ 0.208 0.335∗ 0.273∗

QPP-LLM (few-shot) 0.008 0.003 -0.081 -0.129
QPP-LLM (fine-tuned) 0.171 0.158 0.228 0.206

QPP-GenRE (n = 10) 0.538†∗ 0.486†∗ 0.560†∗ 0.475†∗

the consistency of the chapter, we train all supervised QPP methods (including QPP-
GenRE) on the development set of MS MARCO V1 (6980 queries) for predicting
the performance of BM25, ANCE or TAS-B. We train all supervised QPP methods
for 5 epochs and pick the best checkpoint for predicting the performance of a ranker
on TREC-DL 19 (TREC-DL 21) based on Pearson’s ρ correlation for predicting the
performance of the same ranker on TREC-DL 20 (TREC-DL 22) and vice versa. All
supervised QPP baselines use bert-base-uncased,5 a constant learning rate (0.00002),
and the Adam optimizer [124].

For QPP-LLM, we prompt LLaMA-7B with the top-k retrieved items, where k is set
to 10. For QPP-LLM (few-shot), we randomly sample demonstration examples from the
development set of MS MARCO V1; our preliminary experiments show that sampling
2 demonstrations works best. For QPP-LLM (fine-tuned), we fine-tune LLaMA-7B
using PEFT as QPP-GenRE fine-tunes LLMs.

5https://github.com/huggingface/transformers
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5. Query Performance Prediction with Large Language Models

Table 5.2: Continued from Table 5.1 Correlation coefficients (Pearson’s ρ and Kendall’s
τ ) between actual retrieval quality, in terms of RR@10, of BM25 and performance
predicted by QPP-GenRE/baselines, on TREC-DL 21 and 22. n denotes QPP-GenRE’s
judgment depth in a ranked list.

Ranker: BM25

TREC-DL 21 TREC-DL 22

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.183 0.161 0.253∗ 0.099
WIG 0.237 0.206∗ 0.029 0.082
NQC 0.227 0.195 0.223 0.048
σmax 0.278∗ 0.174 0.038 0.048
n(σx%) 0.127 0.140 0.169 0.113
SMV 0.240 0.189 0.227∗ 0.094
UEF(NQC) 0.231 0.111 0.216 0.065
RLS(NQC) 0.234 0.195 0.224 0.095
QPP-PRP -0.080 -0.017 0.122 0.091

NQA-QPP 0.161 0.163 0.224 0.177∗

BERTQPP 0.206 0.134 0.148 0.122
qppBERT-PL 0.339∗ 0.244∗ 0.131 0.206∗

M-QPPF 0.282∗ 0.209∗ 0.161 0.187∗

QPP-LLM (few-shot) -0.053 -0.053 -0.241 -0.155
QPP-LLM (fine-tuned) 0.030 0.099 -0.038 0.009

QPP-GenRE (n = 10) 0.524†∗ 0.435†∗ 0.350†∗ 0.262†∗

We equip QPP-GenRE with an LLM for judging relevance. We use a recent PEFT
method, 4-bit QLoRA [69], to fine-tune an LLM. To maintain a comparable setup with
the baselines, we fine-tune an LLM for 5 epochs on the development set of MS MARCO
V1. Note that we use LLaMA-7B for BM25 and ANCE, and Mistral-7B-Instruct-v0.3
for TAS-B. The training of judging relevance needs positive and negative items per
query. For positive items, we use the items annotated as relevant in qrels per query;
we randomly sample one negative item from the ranked list (1,000 items) returned by
BM25 per query. There are 6,980 queries in our training set. Each each query may have
multiple relevant items annotated in the qrels, and has one negative item we sampled. As
a result, we have 7,437 positive training examples and 6,980 negative training examples.
All experiments are conducted on an NVIDIA A100 GPU (40GB).

One might argue why we choose QLoRA fine-tuning instead of distilling an oracle
model into a smaller model. [234]. The decision is based on the following three reasons.
First, model distillation requires an existing oracle model, such as GPT-4, for relevance
prediction. However, this chapter focuses on exclusively using open-source LLMs,
avoiding using powerful commercial models like GPT-4 to ensure reproducibility and
deterministic outputs. Second, one might wonder why we did not distill larger open-
source LLMs into smaller models. As demonstrated in Figure 5.5, a 1-billion-parameter
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Table 5.3: Correlation coefficients (Pearson’s ρ and Kendall’s τ ) between actual re-
trieval quality, in terms of RR@10, of ANCE and performance predicted by QPP-
GenRE/baselines, on TREC-DL 19 and 20. ∗ indicates statistically significant correla-
tion coefficients (p-value < 0.05). † indicates the statistically significant improvement
of QPP-GenRE compared to all the baselines (paired t-test; p-value < 0.001 with
Bonferroni correction for multiple testing). The best value in each column is marked in
bold. n denotes QPP-GenRE’s judgment depth in a ranked list.

Ranker: ANCE

TREC-DL 19 TREC-DL 20

QPP method P-ρ K-τ P-ρ K-τ

Clarity -0.078 -0.012 -0.074 -0.048
WIG 0.313∗ 0.228 0.059 0.048
NQC 0.350∗ 0.200 0.145 0.112
σmax 0.384∗ 0.287∗ 0.171 0.118
n(σx%) 0.200 0.176 -0.008 0.022
SMV 0.352∗ 0.256∗ 0.182 0.161
UEF(NQC) 0.340∗ 0.260∗ 0.131 0.108
RLS(NQC) 0.359∗ 0.273∗ 0.178 0.139
QPP-PRP 0.259 0.246 0.100 -0.008
Dense-QPP 0.452∗ 0.280∗ 0.209 0.139

NQA-QPP -0.026 -0.009 -0.059 -0.080
BERTQPP 0.330∗ 0.214 0.046 -0.012
qppBERT-PL 0.092 0.025 -0.224 -0.218
M-QPPF 0.292 0.200 0.068 0.038

QPP-LLM (few-shot) -0.008 0.005 -0.226 -0.207
QPP-LLM (fine-tuned) -0.073 0.011 -0.022 0.069

QPP-GenRE (n = 10) 0.567†∗ 0.440†∗ 0.293†∗ 0.257†∗

Llama model fine-tuned using QLoRA on human-labeled relevance judgments outper-
forms a 70-billion-parameter Llama model using few-shot prompting. Therefore, if we
choose to distill the 70-billion-parameter model into a smaller model, the performance
of the distilled model would be inferior to that achieved by the 1-billion-parameter
model fine-tuned via QLoRA, because the performance of distilled model is inherently
limited by the larger model’s capabilities. Third, we have a large amount of human-
labeled relevance judgments available. Directly using these labels to fine-tune LLMs
via QLoRA allows us to make the most efficient use of this data.
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Table 5.4: Continued from Table 5.3. Correlation coefficients (Pearson’s ρ and Kendall’s
τ ) between actual retrieval quality, in terms of RR@10, of TAS-B and performance
predicted by QPP-GenRE/baselines, on TREC-DL 19 and 20.

Ranker: TAS-B

TREC-DL 19 TREC-DL 20

QPP method P-ρ K-τ P-ρ K-τ

Clarity -0.212 -0.148 0.148 0.133
WIG -0.066 -0.125 0.024 0.020
NQC 0.248 0.213 0.260 0.194
σmax 0.015 0.021 0.312∗ 0.245∗

n(σx%) -0.030 -0.079 0.080 0.086
SMV 0.249 0.205 0.263 0.198
UEF(NQC) 0.260 0.228 0.281∗ 0.213
RLS(NQC) 0.257 0.217 0.283∗ 0.217∗

QPP-PRP 0.155 0.113 0.203 0.116
Dense-QPP 0.251 0.213 0.146 0.012

NQA-QPP 0.172 0.144 -0.058 -0.075
BERTQPP 0.202 0.194 0.077 0.037
qppBERT-PL 0.276 0.269 0.004 -0.002
M-QPPF 0.277 0.236 0.103 0.022

QPP-LLM (few-shot) -0.080 0.002 0.054 -0.024
QPP-LLM (fine-tuned) 0.155 0.113 0.043 -0.020

QPP-GenRE (n = 10) 0.538†∗ 0.481†∗ 0.356†∗ 0.289†∗

5.6 Results

5.6.1 Predicting a precision-oriented evaluation measure

To answer RQ4.1, we compare QPP-GenRE and all baselines in predicting the per-
formance of BM25, ANCE and TAS-B w.r.t. a widely-used precision-oriented metric,
RR@10. Tables 5.1 and 5.2 present the results of predicting BM25 retrieval performance
on TREC-DL 19–20 and TREC-DL 21–22, respectively. Tables 5.3 and 5.4 report the
results of predicting the retrieval performance of ANCE and TAS-B, respectively, on
TREC-DL 2019 and 2020. Note that Dense-QPP is unable to predict the performance
of BM25. We have three main observations.

First, our proposed method, QPP-GenRE, outperforms all baselines in terms of both
correlation coefficients on all datasets when predicting the performance of all rankers.
In particular, we observe that QPP-GenRE outperforms QPP-PRP [226], which is a
recently proposed baseline by 84% (0.292 vs. 0.538) in terms of Pearson’s ρ when
predicting RR@10 for BM25 on TREC-DL 19.

Second, QPP-LLM (few-shot) gets the worst result compared to other approaches.
While QPP-LLM (fine-tuning) performs slightly better than QPP-LLM (few-shot), its
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Table 5.5: Correlation coefficients (Pearson’s ρ and Kendall’s τ ) between actual re-
trieval quality, in terms of nDCG@10, of BM25 and performance predicted by QPP-
GenRE/baselines, on TREC-DL 19 and 20. n denotes QPP-GenRE’s judgment depth
in a ranked list. ∗ indicates statistically significant correlation coefficients (p-value
< 0.05). † indicates the statistically significant improvement of QPP-GenRE (n=200)
compared to all the baselines (paired t-test; p-value < 0.001 with Bonferroni correction
for multiple testing). The best value in each column is marked in bold.

Ranker: BM25

TREC-DL 19 TREC-DL 20

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.091 0.056 0.358∗ 0.250∗

WIG 0.520∗ 0.331∗ 0.615∗ 0.423∗

NQC 0.468∗ 0.300∗ 0.508∗ 0.401∗

σmax 0.478∗ 0.327∗ 0.529∗ 0.440∗

n(σx%) 0.532∗ 0.311∗ 0.622∗ 0.443∗

SMV 0.376∗ 0.271∗ 0.463∗ 0.383∗

UEF(NQC) 0.499∗ 0.322∗ 0.517∗ 0.356∗

RLS(NQC) 0.469∗ 0.169 0.522∗ 0.376∗

QPP-PRP 0.321 0.181 0.189 0.157

NQA-QPP 0.210 0.147 0.244 0.210∗

BERTQPP 0.458∗ 0.207 0.426∗ 0.300∗

qppBERT-PL 0.171 0.175 0.410∗ 0.279∗

M-QPPF 0.404∗ 0.254∗ 0.435∗ 0.297∗

QPP-LLM (few-shot) -0.024 -0.031 0.167 0.138
QPP-LLM (fine-tuned) 0.313∗ 0.215 0.309∗ 0.254∗

QPP-GenRE (n = 200) 0.724†∗ 0.474†∗ 0.638†∗ 0.469†∗

QPP-GenRE (n = 10) 0.605∗ 0.482∗ 0.490∗ 0.323∗

QPP-GenRE (n = 100) 0.712∗ 0.472∗ 0.609∗ 0.457∗

QPP-GenRE (n = 1, 000) 0.715∗ 0.477∗ 0.627∗ 0.459∗

performance is still limited in most cases. This indicates that it is ineffective for an
LLM to model QPP in a straightforward way of directly predicting a score.

Third, there is no clear winner among the baselines, and the performance of baselines
shows a bigger variance than QPP-GenRE across different datasets and rankers. E.g.,
the unsupervised method WIG achieves a good result among baselines for assessing
BM25 on TREC-DL 20, while it gets nearly zero correlation coefficients on TREC-DL
22 when assessing BM25. Conversely, QPP-GenRE consistently achieves the best
performance across datasets and rankers, thus showing robust performance.
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Table 5.6: Continued from Table 5.5. Correlation coefficients (Pearson’s ρ and Kendall’s
τ ) between actual retrieval quality, in terms of nDCG@10, of BM25 and performance
predicted by QPP-GenRE/baselines, on TREC-DL 21 and 22.

Ranker: BM25

TREC-DL 21 TREC-DL 22

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.137 0.078 0.202 0.090
WIG 0.311∗ 0.281∗ 0.350∗ 0.249∗

NQC 0.134 0.221∗ 0.360∗ 0.156∗

σmax 0.298∗ 0.258∗ 0.142∗ 0.196∗

n(σx%) 0.328∗ 0.234∗ 0.336∗ 0.228∗

SMV 0.327∗ 0.236∗ 0.338∗ 0.155∗

UEF(NQC) 0.153 0.232∗ 0.311∗ 0.145
RLS(NQC) 0.272∗ 0.223∗ 0.337∗ 0.157∗

QPP-PRP 0.027 0.004 0.077 0.012

NQA-QPP 0.286∗ 0.201∗ 0.312∗ 0.194∗

BERTQPP 0.351∗ 0.223∗ 0.369∗ 0.229∗

qppBERT-PL 0.277∗ 0.182 0.300∗ 0.242∗

M-QPPF 0.265 0.226∗ 0.345∗ 0.204∗

QPP-LLM (few-shot) 0.238 0.201 -0.073 -0.077
QPP-LLM (fine-tuned) 0.264 0.198 -0.075 -0.009

QPP-GenRE (n = 200) 0.546†∗ 0.435†∗ 0.388∗ 0.251∗

QPP-GenRE (n = 10) 0.462∗ 0.350∗ 0.316∗ 0.245∗

QPP-GenRE (n = 100) 0.545∗ 0.427∗ 0.332∗ 0.246∗

QPP-GenRE (n = 1, 000) 0.547∗ 0.436∗ 0.388∗ 0.251∗

5.6.2 Predicting an evaluation measure considering recall

To answer RQ4.2, we examine the performance of QPP-GenRE along with all the
baselines on assessing BM25, ANCE and TAS-B in terms of nDCG@10. Tables 5.5 and
5.6 present the results of predicting BM25 retrieval performance on TREC-DL 19–20
and TREC-DL 21–22, respectively. Tables 5.7 and 5.8 report the results of predicting
the retrieval performance of ANCE and TAS-B, respectively, on TREC-DL 19 and
20. For QPP-GenRE, we universally set the judging depth n to 200 for all evaluation
sets. The result reveals that by judging only 200 items per query, we can achieve
state-of-the-art QPP quality in terms of nDCG@10 for all rankers on all evaluation
sets; we will investigate the impact of judging depth on QPP-GenRE’s performance in
the next section. Also, QPP-LLM (few-shot) and QPP-LLM (fine-tuning) are among
the worst-performing baselines, showing that the LLMs struggle to generate numerical
scores. Different from the results for RQ4.1, most QPP methods tend to perform better
when predicting nDCG@10 than RR@10; this observation indicates that predicting
RR@10 is a more challenging task.
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Table 5.7: Correlation coefficients (Pearson’s ρ and Kendall’s τ ) between actual re-
trieval quality, in terms of nDCG@10, of ANCE and performance predicted by QPP-
GenRE/baselines, on TREC-DL 19 and 20. n denotes QPP-GenRE’s judgment depth
in a ranked list. ∗ indicates statistically significant correlation coefficients (p-value
< 0.05). † indicates the statistically significant improvement of QPP-GenRE (n=200)
compared to all the baselines (paired t-test; p-value < 0.001 with Bonferroni correction
for multiple testing). The best value in each column is marked in bold.

Ranker: ANCE

TREC-DL 19 TREC-DL 20

QPP method P-ρ K-τ P-ρ K-τ

Clarity -0.088 -0.062 -0.091 -0.045
WIG 0.515∗ 0.368∗ 0.218 0.150
NQC 0.548∗ 0.372∗ 0.411∗ 0.290∗

σmax 0.455∗ 0.339∗ 0.403∗ 0.288∗

n(σx%) 0.388∗ 0.315∗ 0.103 0.075
SMV 0.496∗ 0.359 0.380∗ 0.283∗

UEF(NQC) 0.548∗ 0.372∗ 0.413∗ 0.290∗

RLS(NQC) 0.466∗ 0.346∗ 0.333∗ 0.271∗

QPP-PRP 0.129 0.049 0.216 0.121
Dense-QPP 0.565∗ 0.389∗ 0.419∗ 0.318∗

NQA-QPP 0.089 -0.038 0.186 0.113
BERTQPP 0.222 0.117 0.137 0.089
qppBERT-PL 0.116 0.098 -0.119 -0.046
M-QPPF 0.287 0.160 0.225 0.177

QPP-LLM (few-shot) 0.136 0.120 -0.130 -0.094
QPP-LLM (fine-tuned) 0.203 0.117 0.081 0.097

QPP-GenRE (n = 200) 0.712†∗ 0.483†∗ 0.457†∗ 0.343†∗

QPP-GenRE (n = 10) 0.624∗ 0.406∗ 0.306∗ 0.238∗

QPP-GenRE (n = 100) 0.719∗ 0.489∗ 0.456∗ 0.355∗

QPP-GenRE (n = 1, 000) 0.719∗ 0.492∗ 0.447∗ 0.321∗

5.7 Analysis

5.7.1 Judging depth analysis
RQ4.3 examines how varying the number of top-ranked documents submitted for
relevance judgments impacts QPP quality. To answer RQ4.3, as detailed in Section 5.4.4,
for predicting IDCG, we devise an approximation strategy and use the items in the top n
ranks of the ranked list L that are predicted as relevant by QPP-GenRE to approximate
all the relevant items for a query in the corpus. To investigate the impact of the value of n
on the quality of the prediction, we investigate the relationship between the QPP quality
of predicting nDCG@10 and the judgment depth to answer the following question: What
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Table 5.8: Continued from Table 5.7. Correlation coefficients (Pearson’s ρ and Kendall’s
τ ) between actual retrieval quality, in terms of nDCG@10, of TAS-B and performance
predicted by QPP-GenRE/baselines, on TREC-DL 19 and 20.

Ranker: TAS-B

TREC-DL 19 TREC-DL 20

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.153 0.049 0.162 0.087
WIG 0.228 0.146 0.227 0.169
NQC 0.330∗ 0.233∗ 0.406∗ 0.264∗

σmax 0.220 0.126 0.428∗ 0.284∗

n(σx%) -0.008 -0.031 0.002 -0.020
SMV 0.349∗ 0.253∗ 0.425∗ 0.285∗

UEF(NQC) 0.321∗ 0.246∗ 0.425∗ 0.271∗

RLS(NQC) 0.314∗ 0.246∗ 0.404∗ 0.272∗

QPP-PRP 0.220 0.126 0.267 0.237∗

Dense-QPP 0.429∗ 0.244∗ 0.126 0.012

NQA-QPP -0.020 0.060 0.031 0.024
BERTQPP 0.043 0.027 0.178 0.086
qppBERT-PL 0.304∗ 0.187 0.057 0.057
M-QPPF 0.163 0.051 0.304∗ 0.171

QPP-LLM (few-shot) -0.020 0.060 0.108 0.048
QPP-LLM (fine-tuned) 0.262 0.195 0.162 0.111

QPP-GenRE (n = 200) 0.501†∗ 0.346†∗ 0.449∗ 0.315∗

QPP-GenRE (n = 10) 0.490∗ 0.309∗ 0.421∗ 0.290∗

QPP-GenRE (n = 100) 0.501∗ 0.336∗ 0.450∗ 0.317∗

QPP-GenRE (n = 1, 000) 0.505∗ 0.348∗ 0.449∗ 0.315∗

depth of relevance judgment n do we need to consider to get a satisfactory performance
for predicting nDCG@10? In Figure 5.4, we plot the correlation coefficients between
actual nDCG@10 values and nDCG@10 values predicted by QPP-GenRE for different
judging depths in {10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000}
on TREC-DL 19 and 20. We also show exact QPP results with depths at 10, 100 and
1,000 in Tables 5.5, 5.6, 5.7 and 5.8. The tables reveal that, by judging only 10 items in
the ranked list, we can already outperform all the baselines and achieve state-of-the-art
QPP quality on half of the evaluation sets we used, e.g., assessing BM25 on TREC-DL
19/21, ANCE on TREC-DL 19, and TAS-B on TREC-DL 19. While judging deeper
in the ranked list is essential for predicting recall-oriented measures, satisfactory QPP
quality is still attainable with a relatively shallow depth. Moreover, Figure 5.4 illustrates
that judging the top 200 items in a ranked list already reaches the saturation point for
assessing BM25, i.e., there is no significant improvement by judging a higher number of
items, while judging less than 100 top items reaches the saturation point for ANCE. We
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(a) BM25 on TREC-DL 19
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(b) BM25 on TREC-DL 20
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(c) ANCE on TREC-DL 19
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(d) ANCE on TREC-DL 20

Figure 5.4: Relationship between the QPP effectiveness of predicting nDCG@10 and
the judging depth for a ranked list.

speculate that this is because ANCE has better retrieval quality than BM25, and more
relevant items would appear earlier in the ranked list of ANCE than BM25; therefore,
a shallower judging depth suffices to approximate all relevant items in the corpus.
This emphasizes the need to consider retrieval quality when determining the optimal
judgment depth for various rankers.

5.7.2 Impact of fine-tuning and the choice of large language
models

To answer RQ4.4, we analyze the impact of fine-tuning and the choice of LLMs on
the quality of generated relevance judgments and QPP. We evaluate two widely-used
families of LLMs, Llama and Mistral, spanning from 1B to 70B under two settings:
(i) trained with PEFT on human relevance labels (following the same fine-tuning
setup as in Section 5.5.7), and (ii) few-shot prompted (in-context learning).6 For the
Llama family, besides LLaMA-7B [245], our evaluation includes Llama-3.2-1B-Instruct,

6We randomly sample human-labeled demonstration examples from the same set used for fine-tuning
LLMs; each example is a triplet (query, passage, relevant/irrelevant); our experiments show that two examples
work best, one with relevant passages and one with irrelevant passages.

115



5. Query Performance Prediction with Large Language Models

Table 5.9: Relevance judgment agreement (Cohen’s κ) between TREC assessors and
each LLM, and Pearson’s ρ correlation coefficients between BM25’s actual nDCG@10
values and those predicted by QPP-GenRE integrated with each LLM on TREC-DL
19 and 20. The best value in each column is marked in bold. We do not fine-tune
Llama-3-70B-Instruct due to budget constraints.

TREC-DL 19 TREC-DL 20

LLM κ P-ρ κ P-ρ

Few-shot

Llama-3.2-1B-Instruct 0.013 0.152 0.029 0.099
Llama-3.2-3B-Instruct 0.186 0.293 0.114 0.020
Mistral-7B-Instruct-v0.3 0.224 0.271 0.174 0.499
LLaMA-7B -0.001 -0.062 -0.003 0.087
Llama-3-8B 0.018 0.042 0.027 0.087
Llama-3-8B-Instruct 0.315 0.510 0.227 0.372
Mistral-22B-Instruct 0.281 0.412 0.238 0.535
Llama-3-70B-Instruct 0.321 0.526 0.245 0.557

Fine-tuned

Llama-3.2-1B-Instruct 0.351 0.610 0.211 0.596
Llama-3.2-3B-Instruct 0.383 0.710 0.273 0.722
Mistral-7B-Instruct-v0.3 0.403 0.734 0.328 0.720
LLaMA-7B 0.258 0.715 0.238 0.627
Llama-3-8B 0.381 0.544 0.342 0.681
Llama-3-8B-Instruct 0.397 0.647 0.316 0.743
Mistral-22B-Instruct 0.407 0.682 0.276 0.640

Llama-3.2-3B-Instruct, Llama-3-8B, Llama-3-8B-Instruct, and Llama-3-70B-Instruct.
For the Mistral family, we focus on Mistral-7B-Instruct-v0.3 and Mistral-22B-Instruct
(a.k.a. Mistral-Small-Instruct-2409).

We do not report the results for a zero-shot setting because our preliminary experi-
ments show that zero-shot prompting yields pretty poor performance. Note that we do
not fine-tune Llama-3-70B-Instruct due to budget constraints.

To evaluate the performance of judging relevance, we compute Cohen’s κ metric
to measure the agreement between relevance judgments made by the TREC assessors
(i.e., relevance judgments in the qrels) and relevance judgments automatically generated
by a fine-tuned or few-shot LLM, on TREC-DL 19–22. Faggioli et al. [81] reported
the relevance judgment agreement in terms of Cohen’s κ between TREC assessors
and GPT-3.5 (text-davinci-003) on TREC-DL 21; we also consider their Cohen’s κ
value for comparison. To evaluate QPP quality, we compute the Pearson’s ρ correlation
coefficients between BM25’s actual nDCG@10 values and those predicted by QPP-
GenRE using relevance judgments generated by an LLM, on TREC-DL 19–22.7 The

7We do not report the Pearson’s ρ correlation for GPT-3.5 (text-davinci-003) because the relevance
judgments generated by Faggioli et al. [81] are not available to us.
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Table 5.10: Continued from Table 5.9. Relevance judgment agreement (Cohen’s κ) be-
tween TREC assessors and each LLM, and Pearson’s ρ correlation coefficients between
BM25’s actual nDCG@10 values and those predicted by QPP-GenRE integrated with
each LLM on TREC-DL 21 and 22.

TREC-DL 21 TREC-DL 22

LLM κ P-ρ κ P-ρ

Few-shot

GPT-3.5 (text-davinci-003) [81] 0.260 - - -
Llama-3.2-1B-Instruct 0.009 0.249 0.079 0.087
Llama-3.2-3B-Instruct 0.165 0.289 0.055 0.443
Mistral-7B-Instruct-v0.3 0.245 0.414 0.042 0.243
LLaMA-7B 0.003 -0.002 -0.010 0.214
Llama-3-8B 0.021 0.180 -0.035 0.087
Llama-3-8B-Instruct 0.238 0.462 0.049 0.388
Mistral-22B-Instruct 0.276 0.528 0.083 0.473
Llama-3-70B-Instruct 0.279 0.545 0.086 0.483

Fine-tuned

Llama-3.2-1B-Instruct 0.197 0.570 0.042 0.428
Llama-3.2-3B-Instruct 0.306 0.608 0.042 0.511
Mistral-7B-Instruct-v0.3 0.373 0.592 0.076 0.411
LLaMA-7B 0.333 0.547 0.038 0.388
Llama-3-8B 0.347 0.612 0.082 0.568
Llama-3-8B-Instruct 0.418 0.699 0.066 0.573
Mistral-22B-Instruct 0.310 0.591 0.071 0.462

judging depth is set to 1000 in a ranked list. We present the results for TREC-DL 19
and 20 in Tables 5.9 and for TREC-DL 21 and 22 in Table 5.10. Moreover, we provide
a visual representation of the results in Figure 5.5.

We have three observations. First, fine-tuning generally markedly improves the
quality of relevance judgment generation and QPP, particularly for LLMs with sizes
ranging from 1 billion to 8 billion parameters. Specifically, almost all of fine-tuned
LLMs exhibit improved relevance judgment agreement with the TREC assessors on
TREC-DL 19–22. After fine-tuning, LLaMA-7B and Llama-3-8B achieve “fair” agree-
ment with the TREC assessors on TREC-DL 19, 20 and 21,8 Llama-3-8B-Instruct
(fine-tuned) even achieves “moderate” agreement on TREC-DL 21 (a Cohen’s κ value
of 0.418). All fine-tuned LLMs (except for Llama-3.2-1B-Instruct) exhibit a higher
Cohen’s κ value than the commercial LLM, GPT-3.5 (text-davinci-003). All fine-tuned
LLMs (except for Mistral-22B-Instruct on TREC-DL 22) surpass their corresponding

8Note that unlike the qrels files for TREC-DL 19, 20, and 21 which are fully manually annotated, the
qrels file for TREC-DL 22 is constructed by first detecting near-duplicate items and manually judging only
one representative item from each near-duplicate cluster for a given query [54]; this difference may result in
variation in Cohen’s κ values of LLMs across TREC-DL 19, 20, 21, and TREC-DL 22.
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(b) TREC-DL 20
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(c) TREC-DL 21
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(d) TREC-DL 22

Figure 5.5: Pearson’s ρ correlation coefficients between BM25’s actual nDCG@10
values and those predicted by QPP-GenRE integrated with various LLMs with different
sizes, under both few-shot and fine-tuned settings, on TREC-DL 19–22. From left
to right along the x-axis, as the size of the LLMs increases, the inference efficiency
correspondingly decreases. To aid visual comparison, LLMs from the same family
share a consistent colour scheme: Llama models are shown in blue, and Mistral models
in orange. Note that, for simplicity, we only retain the results of LLMs with “instruct”
versions. We do not fine-tune Llama-3-70B-Instruct due to budget constraints.

few-shot counterpart on all datasets in terms of Pearson’s ρ. This reveals that fine-tuning
is an effective way to improve the quality of LLMs in generating relevance judgments,
which finally translates to better QPP quality.

Second, larger LLMs with over 22 billion parameters demonstrate significantly
greater effectiveness than their smaller counterparts in the few-shot setting. Specifically,
in this setting, Llama-3-70B-Instruct achieves the best overall performance. Mistral-22B-
Instruct consistently outperforms Mistral-7B-Instruct-v0.3 across all datasets. However,
a fine-tuned Llama model with only 3 billion parameters markedly outperforms both of
these larger few-shot LLMs across all datasets.

Third, Instruction-tuned LLMs generally perform better than their standard counter-
parts. Llama-3-8B-Instruct further enhances relevance judgment generation and QPP
quality over both Llama-3-8B and LLaMA-7B across most cases. Notably, Llama-
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3-8B-Instruct (few-shot) even performs better than or equally as well as LLaMA-7B
(fine-tuned) on TREC-DL 19 and 22. This finding implies that with a more effective
LLM QPP-GenRE has the potential to achieve improved QPP performance.

The above observations provide insights into the minimum requirements needed to
achieve reliable QPP quality. Our findings show that a fine-tuned 3-billion-parameter
model (Llama-3.2-3B-Instruct) offers the best trade-off between QPP quality and com-
putational overhead: it not only markedly outperforms few-shot 70-billion-parameter
LLMs, but also delivers QPP quality comparable to that of fine-tuned 7/8-billion-
parameter LLMs.

5.7.3 Predicting relevance judgments with a large language model-
based re-ranker

To show QPP-GenRE’s compatibility with other types of relevance prediction methods
instead of directly asking an LLM to explicitly generate explicit relevance judgments,
we adapt a state-of-the-art pointwise LLM-based re-ranker, RankLLaMA [153], into
a relevance judgment generator, and then integrate QPP-GenRE with the adapted
RankLLaMA. Specifically, we translate a re-ranking score into a relevance judgment by
applying a threshold: an item is deemed as “relevant” if its re-ranking score meets or
exceeds a given threshold value. We analyze Pearson’s ρ and Kendall’s τ correlation
coefficients between BM25’s actual nDCG@10 values and those predicted by QPP-
GenRE integrated with RankLLaMA w.r.t. different threshold values on TREC-DL
19 and 20. We employ RankLLaMA (7B) from Tevatron.9 RankLLaMA’s re-ranking
scores for BM25 range from -12.93 to 89.90 for TREC-DL 19 and from -14.38 to 8.82
for TREC-DL 20. Thresholds are set at intervals of 0.5. The judging depth is set to
1,000 in a ranked list.

We report the results in Figure 5.6. We find that RankLLaMA achieves the highest
QPP quality on both datasets when the threshold is 1. At this particular threshold,
RankLLaMA achieves high Pearson’s ρ values of 0.789 and 0.788 on TREC-DL 19 and
20, respectively. These values exceed those of fine-tuned LLaMA-7B, which achieves
Pearson’s ρ values of 0.715 and 0.627 on TREC-DL 19 and 20, respectively, as well
as Llama-3-8B-Instruct, which achieves Pearson’s ρ values of 0.647 and 0.743 on
TREC-DL 19 and 20, respectively (see Figure 5.9).10 This means that a state-of-the-art
pointwise LLM-based re-ranker can be adapted into an effective relevance judgment
generator. The high QPP quality achieved by RankLLaMA demonstrates QPP-GenRE’s
compatibility with other types of relevance prediction methods besides directly using
LLMs as relevance judgment generators (i.e., asking an LLM to explicitly generate
explicit relevance judgments).

However, compared to directly regarding an LLM as a relevance judgment generator,
adapting an LLM-based re-ranker into a relevance judgment generator requires tuning

9https://github.com/texttron/tevatron/tree/main/examples/rankllama
10Note that the comparison is not fair because (i) LLMs and all other supervised QPP methods used in this

chapter are trained on the development set of MS MARCO V1, while RankLLaMA [153] was trained on the
training set of MS MARCO V1, which is much larger. (ii) We employ the official version of MS MARCO V1,
while RankLLaMA [153] uses the Tevatron version of MS MARCO V1, where passages are enriched with
document titles; Lassance and Clinchant [130] reveal that using titles leads to enhanced ranking performance.
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(b) BM25 on TREC-DL 20

Figure 5.6: QPP quality of QPP-GenRE integrated with RankLLaMA [153] in pre-
dicting nDCG@10 values for BM25, w.r.t. threshold values ranged from -8 to 8, on
TREC-DL 19 and 20. An item is predicted as “relevant” if its re-ranking score meets or
exceeds a given threshold value.

an appropriate threshold. As demonstrated, re-ranking scores are not normalized and
their ranges vary across datasets. Directly using a re-ranker as a relevance judgment
generator can cause issues in real-world scenarios. Extra calibration work for re-ranking
scores might be necessary.

5.7.4 Generalization to conversational search
To assess the generalizability of QPP-GenRE to new domains, we apply it to the
conversational search scenario [179, 183] in a zero-shot manner. We evaluate QPP-
GenRE and other baselines on predicting the performance of ConvDR [282], a widely
used conversational dense retriever. Given the findings in Section 5.7.2, which show
that the fine-tuned Llama-3.2-3B-Instruct model achieves high relevance prediction
quality at low inference cost, we equip QPP-GenRE with this model fine-tuned on
MS MARCO V1 for relevance prediction. For all supervised QPP baselines, we
directly use their checkpoints trained on MS MARCO V1 for assessing ANCE (see
Section 5.6.2). Because a user query in a conversation depends on the conversational
context, i.e., a query may contain omissions, coreferences, or ambiguities, it is hard for
existing QPP methods to capture users’ information need from such context-dependent
queries. Therefore, we follow Meng et al. [176] to provide QPP methods (including
QPP-GenRE) with self-contained query rewrites as input. These rewrites are either
generated by the T5 query generator11 or written by humans. Table 5.11 presents the
performance of QPP-GenRE along with all the baselines on assessing ConvDR [282]
in terms of nDCG@3 on the CAsT-19 [62, 115] and 20 [61] datasets; QPP methods
use T5-generated query rewrites. Table 5.12 reports the results when QPP methods use
human-written query rewrites. Note that nDCG@3 is the primary evaluation metric
officially adopted by TREC CAsT [61, 62, 115]. We have two main observations.

First, QPP-GenRE significantly outperforms all QPP baselines on both datasets

11https://huggingface.co/castorini/t5-base-canard
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Table 5.11: Correlation coefficients (Pearson’s ρ and Kendall’s τ ) between actual
retrieval quality, in terms of nDCG@3, of ConvDR [282] and its performance predicted
by QPP-GenRE/baselines, on CAsT-19 and 20. Following Meng et al. [176], for QPP
methods requiring queries as input, we feed them with T5-generated query rewrites. ∗

indicates statistically significant correlation coefficients (p-value < 0.05). † indicates
the statistically significant improvement of QPP-GenRE (n=200) compared to all the
baselines (paired t-test; p-value< 0.001 with Bonferroni correction for multiple testing).
The best value in each column is marked in bold. n denotes QPP-GenRE’s judgment
depth in a ranked list.

Ranker: ConvDR (T5-generated)

CAsT-19 CAsT-20

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.257∗ 0.176∗ 0.126 0.088
WIG 0.387∗ 0.274∗ 0.377∗ 0.277∗

NQC 0.431∗ 0.307∗ 0.339∗ 0.261∗

σmax 0.378∗ 0.267∗ 0.282∗ 0.219∗

n(σx%) 0.187∗ 0.175∗ 0.199∗ 0.168∗

SMV 0.386∗ 0.285∗ 0.275∗ 0.216∗

UEF(NQC) 0.435∗ 0.312∗ 0.343∗ 0.265∗

RLS(NQC) 0.429∗ 0.311∗ 0.337∗ 0.267∗

QPP-PRP 0.350∗ 0.270∗ 0.280∗ 0.210∗

NQA-QPP 0.175 0.115 0.082 0.075
BERTQPP 0.243∗ 0.170∗ 0.236∗ 0.185∗

qppBERT-PL 0.203∗ 0.169∗ 0.181∗ 0.165∗

M-QPPF 0.242∗ 0.174∗ 0.285∗ 0.219∗

QPP-GenRE (n = 200) 0.623†∗ 0.505†∗ 0.484†∗ 0.395†∗

QPP-GenRE (n = 10) 0.617∗ 0.504∗ 0.471∗ 0.388∗

QPP-GenRE (n = 100) 0.623∗ 0.505∗ 0.485∗ 0.396∗

QPP-GenRE (n = 1, 000) 0.623∗ 0.505∗ 0.487∗ 0.398∗

when provided with either type of query input. This demonstrates the ability of QPP-
GenRE to generalize effectively to the conversational search domain. Second, QPP-
GenRE achieves higher performance when provided with human-written query rewrites
compared to T5-generated rewrites on both datasets. This finding highlights the critical
role of high-quality query rewrites in effectively adapting QPP methods to conversa-
tional search scenarios; this finding also aligns with prior research [176].

5.7.5 QPP-GenRE’s interpretability

As QPP-GenRE computes QPP based on generated relevance judgments, we analyze
QPP errors from the perspective of relevance judgment generation. Figure 5.7 shows the
QPP errors of QPP-GenRE integrated with LLaMA-7B in predicting the performance
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Table 5.12: Continued from Table 5.11. Correlation coefficients (Pearson’s ρ and
Kendall’s τ ) between actual retrieval quality, in terms of nDCG@3, of ConvDR [282]
and its performance predicted by QPP-GenRE/baselines, on CAsT-19 and 20, using
human-written query rewrites.

Ranker: ConvDR (Human-written)

CAsT-19 CAsT-20

QPP method P-ρ K-τ P-ρ K-τ

Clarity 0.257∗ 0.176∗ 0.126 0.088
WIG 0.412∗ 0.285∗ 0.384∗ 0.264∗

NQC 0.431∗ 0.307∗ 0.339∗ 0.261∗

σmax 0.378∗ 0.267∗ 0.282∗ 0.219∗

n(σx%) 0.216∗ 0.196∗ 0.201∗ 0.156∗

SMV 0.386∗ 0.285∗ 0.275∗ 0.216∗

UEF(NQC) 0.427∗ 0.310∗ 0.341∗ 0.263∗

RLS(NQC) 0.413∗ 0.308∗ 0.342∗ 0.259∗

QPP-PRP 0.345∗ 0.265∗ 0.275∗ 0.205∗

NQA-QPP 0.142 0.091 0.065 0.058
BERTQPP 0.256∗ 0.172∗ 0.262∗ 0.209∗

qppBERT-PL 0.105 0.090 0.166∗ 0.161∗

M-QPPF 0.262∗ 0.190∗ 0.313∗ 0.254∗

QPP-GenRE (n = 200) 0.645†∗ 0.529†∗ 0.678†∗ 0.551†∗

QPP-GenRE (n = 10) 0.619∗ 0.506∗ 0.659 0.534
QPP-GenRE (n = 100) 0.644∗ 0.529∗ 0.675∗ 0.547∗

QPP-GenRE (n = 1, 000) 0.645∗ 0.529∗ 0.684∗ 0.556∗

of BM25 and ANCE in terms of RR@10 on TREC-DL 19 and 20; the error is defined as
the distance between the RR@10 values predicted by QPP-GenRE and actual RR@10
values, namely “predicted RR@10 minus actual RR@10.” We find that most RR@10
values predicted by QPP-GenRE tend to be smaller than the actual RR@10 values,
indicating that QPP-GenRE performs less effectively in identifying relevant items than
irrelevant ones in the top of the ranked list. Table 5.13 shows the confusion matrices that
compare relevance judgments made by TREC assessors (i.e., relevance judgments in
qrels) and QPP-GenRE integrated with LLaMA-7B on TREC-DL 19 and 20. Table 5.14
provides a detailed breakdown of QPP-GenRE’s prediction performance for each class,
including metrics such as Precision, Recall, and F1 score. We find that QPP-GenRE
tends to wrongly predict some relevant items as irrelevant (false negatives), which
provides a further interpretation of the QPP errors we found above. Therefore, reducing
false negatives in generating relevance judgments is a potential way to improve the QPP
quality of QPP-GenRE. We leave this exploration for future work.

To show the superior interpretability of QPP-GenRE compared to other QPP base-
lines, we provide a case study shown in Tables 5.15 and 5.16. Table 5.15 lists the
predicted or ground-truth retrieval quality in terms of RR@10 of BM25 for the query
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Figure 5.7: The QPP errors of QPP-GenRE integrated with LLaMA-7B in predicting
the performance of BM25 and ANCE in terms of RR@10 on TREC-DL 19 and 20. The
distance is defined as “predicted RR@10 minus actual RR@10.” The closer a query
point is to 0 on the Y-axis, the more accurately QPP-GenRE predicts its difficulty.

Table 5.13: Confusion matrices comparing relevance judgments made by TREC asses-
sors and QPP-GenRE integrated with LLaMA-7B on TREC-DL 19 and 20.

QPP-GenRE TREC-DL 19 assessors TREC-DL 20 assessors

Relevant Irrelevant Relevant Irrelevant

Relevant 752 553 486 763
Irrelevant 1,749 6,206 1,180 8,957

Table 5.14: Performance of each class for QPP-GenRE with LLaMA-7B on the TREC-
DL 2019 and 2020 qrels.

TREC-DL 19 TREC-DL 20

Class Precision Recall F1 Precision Recall F1

Relevant 0.576 0.301 0.395 0.389 0.292 0.333
Irrelevant 0.780 0.918 0.844 0.884 0.922 0.902

“who is Robert Gra” on TREC-DL 2019. The predictions are made using widely-
used unsupervised QPP methods (WIG, NQC), supervised QPP methods (BERTQPP,
qppBERT-PL), and QPP-GenRE. We observe that the ground-truth RR@10 score for
the query is 1, while the score predicted by QPP-GenRE is 0.5. QPP-GenRE infers
RR@10 directly from the predicted relevance judgments for items in BM25’s ranked
list, we can conclude that while the top-ranked item is actually relevant to the query,
QPP-GenRE mistakenly classified it as irrelevant.

Table 5.16 provides supporting evidence by displaying the relevance judgments
assigned by human annotators and QPP-GenRE for each item in BM25’s ranked list.
We found that QPP-GenRE fails to identify the top-ranked item as relevant. Specifically,
QPP-GenRE does not identify the key part “Captain Robert Gray” in this item. This
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Table 5.15: Retrieval quality, in terms of RR@10, predicted by various QPP methods for
the BM25 retrieval of the query “who is Robert Gra” (query ID 1037798) on TREC-DL
19.

QPP Methods Retrieval quality

WIG 2.427
NQC 0.106
BERTQPP 0.172
qppBERT-PL 0.368
QPP-GenRE 0.500

Ground-truth RR@10 1.000

Table 5.16: Ranked list returned by BM25 for the query “who is Robert Gra” (query ID
1037798), human-labeled relevance judgments and ones predicted by QPP-GenRE with
LLaMA-7B on TREC-DL 19.

Rank Passage Human QPP-GenRE

1 Captain Robert Gray, May 1972. Discover-
ing the Columbia River, May 1792 ... The
Columbia River was given the name it bears
today in May 1792...

Relevant Irrelevant

2 Robert Gray. A surprise came on the Demo-
cratic side in the race for Mississippi Gov-
ernor. Robert Gray, a retired firefighter and
truck driver...

Irrelevant Relevant

3 Team Mississippi Robert Gray For Gover-
nor Official Page. Robert Gray never would
have made it without God...

Irrelevant Irrelevant

4 I’m not a politician, said Gray in a Wednes-
day interview. I’m not a person who really
wanted to run for Governor. Robert Gray is
a 46-year-old truck driver...

Irrelevant Relevant

suggests that we could potentially improve QPP-GenRE’s performance by further fine-
tuning it to predict relevance on query–item pairs specifically related to influential
historical figures.

However, all baselines lack interpretability compared to QPP-GenRE. WIG and
NQC do not directly predict values for a specific IR metric, and their scores are dif-
ficult to interpret in isolation without comparing them to the scores for other queries.
BERTQPP is trained to predict RR@10, but in this case, it returns a score of 0.3, indicat-
ing inaccurate performance prediction. Unfortunately, BERTQPP does not provide any
intermediate outputs to help understand why it made this error or how its performance
can be improved, limiting its interpretability and actionable insights. qppBERT-PL first
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Table 5.17: Inference efficiency of supervised QPP baselines and QPP-GenRE integrated
with LLaMA-7B on TREC-DL 19 to predict 1–4 different IR metrics. n denotes QPP-
GenRE’s judgment depth in a ranked list. Cases with higher latency than QPP-GenRE
(n = 10) are underlined.

Inference latency per query (ms)

QPP Method 1 2 3 4

NQA-QPP 118.40 236.80 355.20 473.60
BERTQPP 30.29 60.58 90.87 121.16
qppBERT-PL 316.80 316.80 316.80 316.80
M-QPPF 289.27 578.54 867.81 1157.08

QPP-GenRE (n = 10) 452.60 452.60 452.60 452.60
QPP-GenRE (n = 100) 1,566.25 1,566.25 1,566.25 1,566.25
QPP-GenRE (n = 200) 2,845.43 2,845.43 2,845.43 2,845.43

predicts the number of relevant items in each chunk of the ranked list and then aggre-
gates these numbers into an overall score. While it is possible to check the intermediate
predictions of the number of relevant items per chunk, this information is too coarse
to provide detailed insights. In contrast, QPP-GenRE predicts the relevance of each
individual item, offering more granular and informative insights.

5.7.6 Computational cost analysis

Table 5.17 shows the online QPP latency of QPP-GenRE integrated with LLaMA-7B
and other BERT-based supervised QPP baselines, on TREC-DL 19, on a single NVIDIA
A100 GPU. We compute the inference latency when queries are processed individually.
For QPP-GenRE, we consider judging depths at 10, 100, and 200; QPP-GenRE can use
batch acceleration for judging items for the same query because each item in a ranked
list for a query is independent of each other.12 Although QPP-GenRE is more expensive
than all baselines when predicting one measure due to the much larger parameter size
of LLaMA-7B compared to BERT, QPP-GenRE has lower latency compared to some
baselines when predicting multiple IR evaluation measures because multiple measures
can be derived from the same set of relevance judgments at no additional cost. E.g.,
while QPP-GenRE is 56% more expensive than M-QPPF for predicting one measure, it
becomes more efficient when predicting 2 or more metrics than M-QPPF. Nevertheless,
we acknowledge that QPP-GenRE has higher computational costs than supervised QPP
methods when predicting a single measure. Conversely, regression-based QPP baselines
(NQA-QPP, BERTQPP and M-QPPF) need to train separate models for different IR
evaluation metrics. Although qppBERT-PL is not optimized to learn to output one
specific IR evaluation measure, qppBERT-PL does not achieve a promising QPP quality
(see Sections 5.6.1 and 5.6.2).

We argue that QPP-GenRE’s latency is still much smaller than some high-performing

12qppBERT-PL first splits a ranked list with 100 items into 25 chunks and then predicts the number of
relevant items in each chunk. For a fair comparison, we put 25 chunks into one batch for acceleration.
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Figure 5.8: The average number of actual relevance predictions required for sequentially
predicting the performance of BM25, ANCE, and TAS-B using the relevance judgment
caching mechanism, with a judging depth of n equal to 10 or 100, on TREC-DL 19 and
20.

LLM-based re-rankers. E.g., Sun et al. [234] show that a GPT-4-based listwise re-ranker
needs 10 API calls (one call takes 3,200ms) to re-rank 100 items for a query, resulting
in 32,000ms in total, which is around 20 times worse than QPP-GenRE’s latency with a
judging depth of 100. QPP-GenRE can well fit some knowledge-intensive professional
search scenarios where QPP quality is prioritized or users may have a higher tolerance
level for latency. Besides using QPP online, QPP can also be used to analyze a search
system’s performance in an offline setting [84].

Lastly, in order to enhance the efficiency of QPP-GenRE, we propose a relevance
judgment caching mechanism. It reuses previously predicted relevance judgments
for the same query when predicting the performance of new rankers. As a result,
this mechanism helps conserve computational resources by eliminating the need to
recompute relevance judgments that are shared among multiple rankers. Figure 5.8
shows the number of actual relevance predictions required for sequentially predicting
the performance of BM25, ANCE, and TAS-B using the relevance judgment caching
mechanism, with a judging depth of n equal to 10 or 100, on TREC-DL 19 and 20.
We found that our proposed relevance judgment caching mechanism can reduce the
number of LLM calls for relevance prediction by approximately 30%. For instance,
on TREC-DL 19, with a judging depth of 10, the caching mechanism results in 21.15
LLM calls on average when sequentially predicting the performance of the three rankers
(10 for BM25, 7.06 for ANCE, and 4.09 for TAS-B). In contrast, without using this
mechanism, 30 LLM calls would be required (3 × 10).

5.8 Conclusions and Future Work

This chapter examines the following thesis-level research question:

RQ4 How can LLMs be used to effectively enhance QPP accuracy?

To answer this question, we have proposed a new QPP framework, QPP-GenRE, which
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models QPP from the perspective of predicting IR evaluation measures based on au-
tomatically generated relevance judgments. QPP-GenRE can effectively harness the
strong relevance prediction capabilities of LLMs, potentially leading to improved
QPP accuracy. We have explored using open-source LLMs for generating relevance
judgments. To further improve LLMs’ performance in relevance prediction, we have
examined training open-source LLMs with parameter-efficient fine-tuning (PEFT) on
human-labeled relevance judgments, to improve the quality of relevance judgment
generation and QPP. We have devised an approximation strategy for predicting an IR
evaluation measure considering recall, which only judges a limited number of items in
a given ranked list for a query, to avoid the cost of traversing the entire corpus to find all
relevant items; the approximation strategy also enables us to study into the impact of
various judging depths on QPP quality. Additionally, to mitigate the efficiency issue
of calling LLMs, we devised a relevance judgment caching mechanism that improves
efficiency by reusing previously predicted relevance judgments.
Main findings. Experiments on datasets from the TREC-DL 19–22 tracks demonstrate
that QPP-GenRE significantly surpasses existing QPP approaches, achieving state-
of-the-art QPP quality in assessing lexical and neural rankers for either a precision-
oriented IR metric or an IR metric considering recall. Moreover, we have shown that
fine-tuning open-source LLMs on human-labeled relevance judgments is crucial for
obtaining reliable relevance prediction and QPP results. Fine-tuning much smaller
LLMs for relevance judgment prediction can yield more effective relevance prediction
and QPP than few-shot prompting with much larger models. In particular, a fine-tuned
3B model (Llama-3.2-3B-Instruct) offers the best trade-off between QPP quality and
computational efficiency: it significantly outperforms 70B few-shot models and delivers
performance comparable to fine-tuned 7B and 8B models. It implies that fine-tuning
can offer strong performance at low inference costs. Furthermore, QPP-GenRE has
the potential to conduct QPP more accurately when integrated with a more effective
LLM, has a good compatibility with other types of relevance prediction methods (e.g.,
an LLMs-based re-ranker). Additionally, We have demonstrated that QPP-GenRE
has great generalizability to the conversational search scenario. We have shown that
QPP-GenRE exhibits good interpretability. Finally, we have found that our proposed
relevance judgment caching mechanism can reduce LLM calls for relevance prediction
by about 30%.
Broader implications. QPP-GenRE has the potential to facilitate the practical use
of QPP. The limited accuracy and interpretability of current QPP methods make
them difficult to use in practical applications [20]. However, QPP-GenRE demonstrates
significantly improved QPP accuracy and better interpretability, enhancing the reliability
of QPP results and potentially facilitating the practical use of QPP. Especially, QPP-
GenRE has the potential to benefit some knowledge-intensive professional search
scenarios. In such scenarios, accurate QPP is prioritized, interpretable QPP results are
needed, and users may have a higher tolerance level for latency. QPP-GenRE also has
the potential for practical application in commercial search engines: commercial search
engines receive many frequent and repeated queries, and QPP-GenRE can improve QPP
efficiency by reusing stored relevance judgments for repeated query-item pairs and only
generating relevance judgments for new query-item pairs. Moreover, QPP-GenRE can
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be used to analyze the ranking quality of a search system in an purely offline setting [84],
where latency is not necessarily an issue.

This chapter is the final research chapter of this thesis. In the next chapter, we
summarize the key findings and discuss potential directions for future research.
Limitations and future work. First, we only consider predicting the ranking quality
of widely-used lexical and dense retrievers, and have not investigated QPP-GenRE’s
bias towards LLMs-based rankers [153]. Given that QPP-GenRE is based on LLM-
based relevance predictors, it would be particularly interesting to explore QPP-GenRE’s
potential biases when it predicts the ranking quality of LLM-based rankers.

Second, QPP-GenRE is a QPP framework that can be integrated with various
relevance prediction approaches. We show the success of QPP-GenRE equipped with
various open-source LLMs as well as a state-of-the-art pointwise LLM-based re-ranker,
RankLLaMA [153]. Exploring various LLMs to find the optimal one for relevance
prediction is beyond the scope of this chapter. However, in future, we believe it is
valuable to investigate QPP-GenRE’s performance integrated with other open-source
LLMs as relevance judgment generators. It is also interesting to adapt pairwise or
listwise LLM-based re-rankers into relevance judgment generators and integrate QPP-
GenRE with them.

Third, we only show QPP-GenRE’s high effectiveness in predicting two primary
metrics (RR@10 and nDCG@10) used at TREC DL 19–22 [52–55]. It is worthwhile to
consider other metrics at various cutoffs in future work, e.g., nDCG@20 and MAP@100.

Fourth, while QPP-GenRE exhibits a promising QPP quality and can be used in
scenarios where QPP quality is prioritized and users have a higher tolerance level
for latency, e.g., patent search or post analysis, it is worth improving QPP-GenRE’s
efficiency in future to widen its scope of applications. We plan to investigate (i) the
use of multiple GPUs because judging each item in a ranked list is independent of
each other, (ii) distilling knowledge from LLMs to smaller language models [99],
(iii) compressing LLMs by using lower-bit (e.g., 2-bit) quantization [41] or using low-
rank factorization [274], and (iv) proposing an adaptive sampling approach that selects
only a subset of documents from a ranked list for LLM-based relevance prediction to
optimize the trade-off between judgment cost and QPP performance.
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In Section 1.1, we stated the overarching question that we addressed in this thesis:

“What key aspects of agentic workflows for information access should be
optimized, and how can we effectively optimize these aspects?”

To answer this question, this thesis has identified four key issues across three critical
components of existing agentic workflows for information access. This final chapter has
two sections. In Section 6.1, we revisit the research questions defined in Section 1.1,
reflecting on how they have been addressed, summarize the key findings, and discuss
their implications. In Section 6.2, we discuss future research directions to further
advance agentic workflows for information access.

6.1 Main Findings

This section revisits the research questions posed in Section 1.1, reflecting on how they
have been addressed, summarize the key findings, and discuss their implications. We
structure our discussion into three parts, each focusing on the optimization of a key com-
ponent in existing agentic workflows for information access: mixed-initiative strategy
planning, ranking strategy planning, and ranking result reflection. Each corresponds to
a distinct part of this thesis.

6.1.1 Mixed-initiative strategy planning
The first part of this thesis, which included Chapter 2, focused on optimizing the mixed-
initiative strategy planning component. Chapter 2 addressed the issue of a narrow
scope of system-initiative actions in predicting the timing of system initiative-taking.
To resolve the issue, Chapter 2 broadened the scope of system-initiative actions by
defining and modeling a new task, system initiative prediction (SIP). The SIP task aims
to predict the timing of system initiative that covers a broad range of specific system
initiative-taking actions; SIP functions as a high-level strategic decision and effective
SIP has the potential to enhance downstream tasks. Chapter 2 explored the following
question:

RQ1 How can we effectively model system initiative prediction (SIP), and how does
this prediction benefit downstream tasks?
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To address this question, we first conducted an empirical analysis that uncovered struc-
tural dependencies between system-initiative decisions and other factors in multi-turn
conversations. Motivated by these insights, we proposed a multi-turn system-initiative
predictor (MuSIc). We built MuSIc on conditional random fields (CRFs), probabilistic
graphical models known for their effectiveness in capturing structural dependencies
while providing great interpretability and transparency. We further explored how SIP
can benefit two downstream tasks: clarification need prediction and action prediction.
For the former, we proposed a SIP-to-clarification transfer learning method, which trans-
ferred knowledge gained from SIP to improve clarification need prediction performance.
For action prediction, we introduced a SIP-aware hierarchical framework, where action
prediction depended on SIP outcomes.

Experimental results demonstrated that MuSIc achieves state-of-the-art SIP perfor-
mance, surpassing even large language model (LLM)-based baselines. Furthermore, a
visual analysis revealed that MuSIc exhibits strong interpretability and transparency
by learning transition matrices that explicitly illustrated the dependencies it captured.
Moreover, we found that SIP significantly improves both downstream tasks.

Our findings suggest two broad implications. First, SIP and downstream tasks form
a hierarchical decision-making process within agentic workflows [5], leading to superior
performance compared to relying solely on downstream models. This highlights the
effectiveness of structuring agentic workflows hierarchically, where complex tasks are
decomposed into sequential steps, each building upon the previous one, ultimately
enhancing overall system accuracy. Second, this chapter demonstrated that probabilistic
graphical modeling remains highly effective and offers strong interpretability and
transparency. This suggests that, even in the era of LLMs, probabilistic graphical
models are valuable choices for agents to enhance interpretability and transparency in
agentic workflows.

6.1.2 Ranking strategy planning
The second part of this thesis, which included Chapter 3, focused on optimizing the
ranking strategy planning component. Chapter 3 addressed a research gap in dynamic
per-query re-ranking depth prediction in the context of LLM-based re-ranking. Chap-
ter 3 highlighted two key dimensions within the research gap. First, there was a lack of
systematic empirical analysis examining the potential advantages of dynamic per-query
re-ranking depths over fixed ones in the context of LLM-based re-ranking. Second, no
prior research had explored predicting dynamic per-query re-ranking depth specifically
for LLM-based re-ranking. Chapter 3 investigated the use of ranked list truncation (RLT)
methods, which had previously been applied to non-LLM re-ranking [285], to model
dynamic per-query re-ranking depth prediction in LLM re-ranking. We posed the
following question:

RQ2 In the context of LLM-based re-ranking, what are the potential benefits of using
dynamic per-query re-ranking depths over fixed ones, and to what extent can RLT
methods effectively predict dynamic re-ranking depths?

To address this question, we began by conducting a systematic empirical analysis to
identify the limitations of fixed re-ranking depths and explore the potential advantages
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of dynamic re-ranking depths in the context of LLM-based re-ranking. Our findings
revealed that effective dynamic per-query re-ranking depths can improve both efficiency
and effectiveness. For example, in terms of efficiency, when using a highly effective
retriever, re-ranking did not enhance ranking quality for 30% of queries. In such cases,
assigning a re-ranking depth of zero allows the system to bypass expensive LLM-based
re-ranking, leading to substantial computational savings. Regarding effectiveness, a
deeper re-ranking depth degraded re-ranking quality for some queries, as the re-ranker
mistakenly elevated irrelevant documents to the top of the ranked list. This suggests
that dynamically adjusting the re-ranking depth to exclude “false positive” re-ranking
candidate documents has the potential to enhance ranking quality.

Next, we carried out a comprehensive study to examine how effectively various
RLT methods adapt to predicting dynamic per-query re-ranking depths in the context
of LLM-based re-ranking. Our experimental results revealed that while RLT methods
showed advantages in certain cases, they did not demonstrate a clear improvement over
using a fixed re-ranking depth. We found additional key insights. For example, the
choice of retriever had a substantial impact on determining optimal re-ranking depths
in LLM-based re-ranking: with an effective retriever, a fixed re-ranking depth of 20
already provided an excellent effectiveness/efficiency trade-off; increasing the fixed
depth beyond this point yielded diminishing returns, with no significant improvement in
re-ranking effectiveness.

This chapter has one broader implication. Dynamic per-query re-ranking depth
prediction intrinsically predicts the number of LLM calls on a per-query basis, striking
a balance between effectiveness and efficiency. Beyond ranking strategy planning,
this principle extends to other components of agentic workflows that involve LLM
invocation, such as prompt chaining, where multiple LLM calls are made sequentially
to solve a task [227]. By dynamically determining whether to invoke LLMs at all
and, if so, how many calls are necessary, agentic workflows can minimize redundant
computations, leading to greater scalability and resource efficiency.

6.1.3 Ranking result reflection
The third part of this thesis, which included Chapter 4 and Chapter 5, focused on
optimizing the ranking result reflection component. Both chapters focused on query
performance prediction (QPP). Chapter 4 focused on filling the research gap in QPP
for conversational search, while Chapter 5 explored the underexplored area of LLM-
enhanced QPP.

Chapter 4 identified two specific aspects of the research gap in QPP for conversa-
tional search. First, the performance of existing QPP methods, originally designed for
ad-hoc search, remained unclear in conversational search, where queries are context-
dependent, and the ranking quality of top results is emphasized. No prior research
had evaluated these methods in this context. Second, conversational search brings new
challenges that do not exist in ad-hoc search, e.g., understanding context-dependent
queries in conversations. It had been unclear how to adapt existing QPP methods,
originally developed for ad-hoc search, to conversational search scenarios. To address
the gap, we asked the following question:

RQ3 How can QPP methods originally designed for ad-hoc search be effectively
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adapted to conversational search, and how well do QPP methods for ad-hoc
search perform in conversational search?

To answer this question, we adapted existing QPP methods that heavily rely on input
queries to conversational search, by feeding self-contained query rewrites, generated by
off-the-shelf query rewriting models, into these methods. With the adaptation strategy,
we conducted a comprehensive study to investigate how well existing QPP methods in
ad-hoc search perform in conversational search.

Our extensive experiments revealed four key findings. First, compared to using
human-written query rewrites (i.e., ground-truth rewrites), we demonstrated that feeding
machine-generated self-contained query rewrites is an effective way to adapt QPP
methods that heavily rely on input queries for conversational search. However, we
observed that, in general, human-written rewrites leads to to higher QPP quality than
machine-generated ones. Second, we found that all QPP methods generally performed
worse when predicting an information retrieval (IR) evaluation metric with a shallow
cut-off compared to a metric with a deep cut-off. Third, we observed that retrieval
score-based methods that model the retrieval scores of rankers exhibit promising results.
One possible explanation is that these models bypassed query understanding issues in
conversational search by not directly modeling input queries. Fourth, we showed that
supervised QPP methods significantly outperformed their unsupervised counterparts,
provided they had access to a large-scale training set.

This chapter has two broad implications. First, it effectively enabled existing QPP
methods to reflect on ranking results in conversational scenarios. This advancement
enhances the generalizability of agentic workflows, enabling them to function more
effectively in conversational environments, where modern information access frequently
takes place [12]. Second, this chapter used off-the-shelf query rewriting methods
as a tool to adapt QPP methods for conversational scenarios without modifying the
underlying QPP models. As an external tool, query rewriting provides a flexible and
lightweight adaptation strategy. This suggests that integrating external tools with
existing agents is an effective approach to adapting agentic workflows to new scenarios,
rather than designing entirely new agents.

In Chapter 5, we focused on improving QPP accuracy by leveraging LLMs’ capa-
bilities. Despite their promising performance across various IR and natural language
processing (NLP) tasks, it had been unclear how LLMs could effectively benefit QPP.
We posed the following question:

RQ4 How can LLMs be used to effectively enhance QPP accuracy?

To answer this question, we proposed a framework for modeling QPP using automat-
ically generated relevance judgments (QPP-GenRE), which decomposed QPP into
independent subtasks of predicting the relevance of each document in a ranked list to
the query, and then predicted different IR evaluation measures based on the relevance
predictions. QPP-GenRE used the strong performance of LLMs in generating relevance
judgments [249], with prior research showing that LLMs can achieve accuracy compa-
rable to human labelers [242]. To further enhance the quality of generated relevance
judgments, we fine-tuned open-source LLMs on human-labeled relevance data, experi-
menting with two families of models ranging from 1B to 70B parameters. Moreover,
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since predicting a recall-based IR evaluation metric by definition requires knowing
all relevant documents in the entire corpus, we proposed an approximation strategy
for QPP-GenRE that predicts relevance for only a limited set of ranked documents
and then uses their relevance judgments to estimate recall-based IR evaluation metrics.
Additionally, to mitigate the efficiency issue of calling LLMs, we devised a relevance
judgment caching mechanism that improves efficiency by reusing previously predicted
relevance judgments.

Extensive experiments demonstrated that QPP-GenRE achieve state-of-the-art QPP
accuracy in evaluating both lexical and neural retrievers across ad-hoc and conversa-
tional search scenarios. Moreover, we observed that fine-tuning significantly improves
LLMs’ performance in relevance judgment prediction compared to few-shot prompting,
ultimately leading to more accurate QPP. Interestingly, our results showed that a fine-
tuned 3B model provides the best trade-off between performance and computational
efficiency: it not only outperforms a few-shot prompting-based 70B LLM, but also
achieves performance comparable to that of fine-tuned 7B and 8B models. Additionally,
we showed that the proposed caching mechanism markedly reduces the number of LLM
calls for relevance prediction by approximately 30%. Besides improved QPP accuracy,
QPP-GenRE demonstrated strong interpretability, enabling QPP errors to be analyzed
in relation to errors in generated relevance judgments.

This chapter has one major broader implication. With high reflection accuracy,
QPP-GenRE enhances the overall effectiveness of agentic workflows by ensuring that
high-quality documents are either directly presented to users or forwarded to a response
generator for further processing. Agentic workflows rely on accurate ranking result
reflection to make decisions on whether to proceed with ranked documents or invoke
alternative retrieval strategies. More accurate ranking reflection empowers agentic
workflows to operate effectively in low-error-tolerance scenarios, where users rely on
precise and reliable information to make informed decisions. For instance, in financial
analysis, users may query historical stock trends to guide investment decisions, where
inaccurate ranking could lead to misguided financial choices. Similarly, in systematic
reviews [216], professionals depend on retrieving high-quality, evidence-based sources
to answer complex scientific questions, where mis-ranked documents could undermine
critical research conclusions.

6.2 Future Directions

We conclude this thesis by outlining promising research directions that have the potential
to further advance agentic workflows for information access. Specifically, we examine
future directions from two perspectives: potential enhancements to the three critical
components explored in this thesis (Section 6.2.1) and broader research avenues that
extend beyond these components (Section 6.2.2).

6.2.1 Future improvements of this thesis

We discuss future research directions in the three components this thesis investigated:
mixed-initiative strategy planning, ranking strategy planning, and ranking result reflec-

133



6. Conclusions

tion.
For mixed-initiative strategy planning, we identify two promising directions. First,

our findings demonstrated that SIP significantly improved two downstream tasks: clar-
ification need prediction and action prediction. While these improvements suggest
SIP’s potential to enhance the final response generation, we did not verify it with
experiments. A valuable future direction is to assess the performance of a complete
hierarchical agentic workflow that includes SIP, SIP-aware action prediction, and re-
sponse generation. Such an investigation can offer deeper insights into how multi-level
decision-making contributes to the ultimate response quality. Second, SIP does not
consider personalization, which is crucial for accurately predicting the timing of system
initiative. For example, the user query “apple price” may seem ambiguous, but if the
system is aware that the user is an Apple enthusiast, it should infer that the query refers
to Apple products rather than the fruit, avoiding unnecessary clarification. Similarly,
if a user prefers to take the lead and dislikes interruptions, the system should adapt its
mixed-initiative strategy planning to minimize the frequency of initiative-taking actions.
Thus, an important future direction is incorporating users’ personal data and preferences
into mixed-initiative strategy planning planning.

Regarding ranking strategy planning, we summarize two future directions. First, our
findings suggest that while predicting dynamic per-query re-ranking depths in LLM-
based re-ranking is a highly meaningful task, it remains challenging, highlighting the
need for developing more effective methods. One reflection on the limited advantages
of RLT methods over using fixed re-ranking depths is that RLT primarily relies on
retriever-side information, such as retrieval scores for candidate documents, without
incorporating insights from the re-ranking stage. Thus, incorporating real-time re-
ranking signals (e.g., re-ranking scores) into the prediction process holds promise for
improving per-query re-ranking depth prediction. Second, this thesis focused on ranking
strategy planning for document ranking but did not address the emerging paradigm
of tool ranking [222, 275, 296]. While document ranking is effective for general
information-seeking queries, many real-world user requests, such as retrieving real-time
stock trends or weather updates, require specialized tools beyond document ranking. In
practice, tool ranking is essential as the number of available tools continues to grow,
with many offering similar functionalities [202]. Thus, a key future direction is to
explore planning ranking strategies for tools, e.g., determining when to rank tools.

We identify two promising future research directions for ranking result reflection.
First, Chapter 4 found that query rewriting quality plays a crucial role in achieving
accurate QPP in conversational search, emphasizing the need for future research on
enhancing query rewriting techniques. Second, this thesis focused on QPP itself, such
as investigating QPP in conversational search and enhancing QPP with LLMs, but did
not explore the application of QPP scores in determining execution paths within agentic
workflows. While existing studies have demonstrated that effective QPP can optimize
ranking quality by dynamically adjusting execution paths on a per-query basis, such as
query routing [215], selective query expansion [13], and retriever selection [122], an
important future direction is to investigate to what extent the QPP methods proposed in
this thesis, including QPP adapted to conversational search QPP and LLM-enhanced
QPP, can further enhance decision-making in agentic workflows for information access.
Also, it is valuable to explore new applications of QPP in agentic workflows. One
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potential application is QPP-aware iterative retrieval, where QPP scores act as feedback
signals to continuously refine retrieval performance.

6.2.2 Broader research directions
In this section, we identify three broader research avenues. First, while this thesis
explored adjusting execution paths of agentic workflows on a per-query basis, the
overall structure of these workflows remained manually pre-defined. For example, we
explicitly designed an agentic workflow where SIP precedes action prediction, and
another where retrieval is followed by re-ranking depth prediction and re-ranking.
The reliance on pre-defined structures requires significant human effort, limiting the
scalability and adaptability of agentic workflows to new, complex domains [290]. Thus,
exploring the automation of agentic workflows in information access is a promising
direction to minimize reliance on human intervention, enhancing adaptability and
scalability [197, 288, 290].

Second, this thesis examined an essential dimension of ranking result reflection, i.e.,
to automatically assess the utility of ranking results. However, as agentic workflows
gain greater autonomy, they also bear increased responsibility [5]. This necessitates
expanding the scope of reflection beyond mere utility, to integrate human-valued prin-
ciples into reflection, whether in ranking result reflection or reflection on response
generation.

Third, this thesis focused on text-based agentic workflows, yet real-world informa-
tion access increasingly involves multi-modal data, including images, videos, and audio.
Future research could investigate multi-modal agentic workflows that process different
modalities. This could involve aligning multi-modal retrieval techniques with agentic
decision-making to create more comprehensive and context-aware information access
systems.
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Summary

Information access systems have been embedded into the capillaries of human society,
serving as essential tools for connecting people to information that is crucial for decision-
making and taking actions in the world. Many information access systems rely on static
workflows, which follow a fixed execution process for all user queries. However, this
“one-size-fits-all” approach limits the ability of information access systems to address
real-world user queries in complex scenarios that demand adaptive and case-by-case
handling. To overcome the constraints of static workflows, prior work has explored
agentic workflows for information access, in which one or multiple autonomous agents
dynamically adjust execution paths to each user query. This thesis targets optimizing
agentic workflows for information access by improving three critical components of the
workflows: mixed-initiative strategy planning, ranking strategy planning and ranking
result reflection.

The first part of the thesis focuses on optimizing mixed-initiative strategy planning.
This part comprises one chapter that focuses on resolving the issue of a narrow scope in
system-initiative actions for predicting the timing of system initiative-taking. To solve
this issue, this chapter broadens the scope of system-initiative actions by defining and
modeling a new task, system initiative prediction (SIP). The SIP task aims to predict the
timing of system initiative that covers a broad range of specific system initiative-taking
actions. SIP functions as a high-level strategic decision, and effective SIP can enhance
related downstream tasks, for instance, by forming a hierarchical decision-making
process.

The second part of this thesis aims to optimize ranking strategy planning. This
part consists of one chapter that specifically focuses on dynamic per-query re-ranking
depth prediction, an important task in ranking strategy planning. Given the limited
prior research on dynamic per-query re-ranking depth prediction in the context of the
emerging area of large language model (LLM)-based re-ranking, this chapter explores
dynamic per-query re-ranking depth prediction in this new context. It conducts a
systematic empirical analysis that motivates the need for dynamic per-query re-ranking
depths, and explores how to model the prediction in this context.

The third part of the thesis aims to optimize ranking result reflection. This part
comprises two chapters that specifically focus on query performance prediction (QPP),
a long-standing and effective methodology in ranking result reflection. However, little
research explores QPP in the emerging area of conversational search, and little research
explores improving QPP accuracy by using the capabilities of LLMs. This part addresses
both gaps. The first chapter in this part adapts QPP methods, originally designed for
ad-hoc search, to conversational search scenarios, and systematically investigates the
performance of existing QPP methods in conversational search. The second chapter
enhances QPP accuracy by leveraging LLMs’ capabilities.

In summary, the thesis optimizes agentic workflows for information access by
addressing limitations in three critical components: mixed-initiative strategy planning,
ranking strategy planning, and ranking result reflection.
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Samenvatting

Systemen voor toegang tot informatie zijn diep geı̈ntegreerd geraakt in alle lagen
van onze samenleving. Veelgebruikte systemen volgen echter meestal een statische
werkwijze, waarbij een vaste aanpak wordt gehanteerd voor alle gebruikersvragen.
Dit one-size-fits-all-model beperkt echter de effectiviteit van systemen bij complexe,
realistische scenario’s waarin gebruikersvragen een adaptieve en situatie-specifieke
behandeling vereisen. Om deze beperking aan te pakken, richt recent onderzoek zich
op agentgebaseerde informatietoegang (agentic workflows), waarbij één of meerdere
autonome agenten de uitvoeringsstappen dynamisch aanpassen aan elke specifieke
zoekvraag. Deze thesis richt zich op het optimaliseren van zulke agent-gebaseerde work-
flows door te focussen op drie cruciale componenten: mixed-initiative strategieplanning,
planning van de rankingstrategie, en reflectie op de rankingresultaten.

Het eerste deel van dit proefschrift omvat één hoofdstuk dat gericht is op de optimal-
isatie van mixed-initiative strategieplanning. Huidig onderzoek beperkt zich doorgaans
tot een smal bereik aan acties waarbij het systeem het initiatief neemt, waardoor de
toepasbaarheid van zulke methoden beperkt blijft. Om dit probleem aan te pakken,
verbreedt dit hoofdstuk de reikwijdte van mogelijke systeemgestuurde acties door het
introduceren van een nieuwe taak: system initiative prediction (SIP). De SIP-taak richt
zich specifiek op het voorspellen van het moment waarop het systeem initiatief moet
nemen, en omvat daarbij een breed scala aan strategische systeemacties, waardoor
betere interactie met gebruikers mogelijk wordt.

Het tweede deel van het proefschrift bestaat uit één hoofdstuk dat zich richt op het
optimaliseren van de planning van de rankingstrategie. Concreet onderzoekt dit hoofd-
stuk dynamische, query-afhankelijke her-ordeningsdiepte, een belangrijk onderdeel van
de planning van de rankingstrategie. Aangezien eerdere onderzoek naar dynamische
her-ordeningsdiepten in de context van de opkomende grote taalmodellen-gebaseerde
benaderingen voor her-ordening beperkt zijn, verkent dit hoofdstuk deze problematiek
specifiek binnen systemen die gebaseerd zijn op het gebruik van grote taalmodellen voor
her-ordening. Er wordt een systematische empirische analyse uitgevoerd die aantoont
waarom dynamische, query-specifieke her-ordeningsdiepten noodzakelijk zijn en hoe
deze effectief gemodelleerd kunnen worden.

Het derde deel van het proefschrift richt zich op het verbeteren van de reflectie
op rankingresultaten, oftewel het automatische beoordelen van de kwaliteit van rank-
ingresultaten. Hoewel query performance prediction (QPP) een belangrijke techniek is
binnen dit domein, is er weinig onderzoek gedaan naar de toepassing ervan binnen het
opkomende veld van conversatie-gestuurd zoeken en naar het verbeteren van QPP met
behulp van grote taalmodellen. Dit deel van het proefschrift pakt beide kennishiaten aan.
In het eerste hoofdstuk worden bestaande QPP-methoden, oorspronkelijk ontwikkeld
voor ad-hoc zoekscenario’s, aangepast en systematisch geëvalueerd binnen conversatie-
gebaseerd zoeken. Het tweede hoofdstuk benut vervolgens expliciet de mogelijkheden
van grote taalmodellen om de nauwkeurigheid van QPP verder te verbeteren.

Samenvattend levert dit proefschrift bijdragen aan de ontwikkeling van agent-
gebaseerde systemen voor toegang tot informatie door drie essentiële componenten
te verbeteren: mixed-initiative strategieplanning, planning van de rankingstrategie, en
reflectie op de rankingresultaten.
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