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ABSTRACT
In recent years many models have been proposed that are
aimed at predicting clicks of web search users. In addition,
some information retrieval evaluation metrics have been built
on top of a user model. In this paper we bring these two
directions together and propose a common approach to con-
verting any click model into an evaluation metric. We then
put the resulting model-based metrics as well as traditional
metrics (like DCG or Precision) into a common evaluation
framework and compare them along a number of dimensions.

One of the dimensions we are particularly interested in is
the agreement between offline and online experimental out-
comes. It is widely believed, especially in an industrial set-
ting, that online A/B-testing and interleaving experiments
are generally better at capturing system quality than off-
line measurements. We show that offline metrics that are
based on click models are more strongly correlated with on-
line experimental outcomes than traditional offline metrics,
especially in situations when we have incomplete relevance
judgements.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Human Factors, Verification

Keywords
Click models, evaluation, information retrieval measures,
user behavior

1. INTRODUCTION
There are currently two orthogonal approaches to evalu-

ating the quality of ranking systems. The first approach is
usually called the Cranfield approach [17] and is done off-
line. It uses a fixed set of queries and documents judged by
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trained people (assessors). Ranking systems are then evalu-
ated by comparing how good their ranked lists are—among
other things, a system is expected to place relevant docu-
ments higher than irrelevant ones.

Another approach described by Kohavi et al. [28] makes
use of real online users by assigning some portion of the
users to test groups (also called flights). The simplest vari-
ant, called A/B-testing, randomly assigns some users to the
“control” group (these users are presented with the exist-
ing ranking results) and the “treatment” group (these users
are presented with the results of an experimental ranking
system). Ranking systems are then compared by analysing
the clicks of the users in the “control” against those in the
“treatment” group. In the interleaving method by Joachims
[27] users are presented with a combined list made out of
two rankings. Then the system that receives more clicks is
assumed to be better.

One of the main advantages of online evaluation schemes
is that they are user-based and, as a result, often assumed
to give us more realistic insights into the real system qual-
ity. Interleaving experiments are now widely being used
by large commercial search engines like Bing and Yahoo!
[11, 31] as well as studied in academia [22, 32]. However,
they are harder to reproduce than offline measurements,
whereas in the traditional Cranfield approach one can re-use
the same set of judged documents to evaluate any ranking.
This makes the use of offline editor-based evaluation meth-
ods unavoidable during the early development phase of rank-
ing algorithms. One should take care, however, that the re-
sulting editor-based measurements agree with the outcomes
of online experiments—online comparison is often used as
the final validation step before releasing a new version of a
ranking algorithm.

In order to bring the two evaluation approaches closer
to each other, we propose a method for building an offline
information retrieval (IR) metric from a user click model.
Click models, probabilistic models of the behavior of web
search users, have been studied extensively by the IR com-
munity during the last five years. The main purpose of pre-
dicting clicks, as seen in previous works, is: (1) modeling
user behavior when real users are not available (see, e.g.,
[23]); (2) improving ranking using relevance inferred from
clicks (e.g., [10]). We hypothesize that click models can also
be turned into offline metrics and the resulting click model-
based metrics should be closely tied to the user and hence
should better correlate with online measurements than tra-
ditional offline metrics. In addition, there is a growing trend
to ground offline metrics in a user model and that is exactly



what click modeling does—trying to propose a better user
model. So, the question is why not use better user models,
based on click behavior, as the basis for offline metrics?

We put our proposal for transforming click models into
metrics to the test through a set of thorough comparisons
with online measurements. Our comparison includes an
analysis of correlations with the outcomes of interleaving
experiments, an analysis of correlations with absolute on-
line metrics, an analysis of correlations between traditional
offline metrics and our new click model-based metrics, as
well as an analysis of the discriminative power of the var-
ious metrics. One dimension to which we devote special
attention in our comparison framework concerns unjudged
documents. As was shown by Buckley and Voorhees [5],
having partially-judged result pages in the evaluation pool
may result in biased measurements. We examine how differ-
ent offline metrics handle this problem. We also show that
in situations when we cannot afford to use only fully-judged
data, we can still make good use of the available data by
making adjustments, by either a technique called condensa-
tion [34] or a new threshold method that we propose.

The main research questions that we address in this work
are:

‚ How do click model-based IR metrics compare to the tra-
ditional offline metrics?

‚ How well do different offline IR metrics agree with online
experiments? Do click model-based metrics show higher
agreement?

‚ How well do different offline metrics perform in the pres-
ence of unjudged documents?

‚ How can we modify offline metrics to enhance agreement
with online experiments?

Our main contributions in this paper are a method for con-
verting click models into click model-based offline metrics.
Secondly, we present a thorough analysis and comparison of
specific click model-based metrics with online measurements
and traditional offline metrics.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 shows how to transform a
click model into a model-based offline metric. In Section 4
we examine click model-based and traditional offline metrics
and report on their performance. We finish with a conclusion
and discussion in Section 5.

2. RELATED WORK
Determining and comparing the quality of information re-

trieval systems has always been an important task in IR,
both in academic and industrial research. In recent years,
competition between large commercial search systems has
reached the point where even a small improvement can be
of great importance. As a result, a broad range of metrics to
assess system performance have been proposed: Discounted
Cumulative Gain (DCG) by Järvelin and Kekäläinen [26],
Expected Reciprocal Rank (ERR) by Chapelle et al. [10],
Expected Browsing Utility (EBU) by Yilmaz et al. [39], to
name just a few. They have also been assessed from a variety
of angles (see, e.g., [6, 10, 33]).

Some IR metrics have an underlying user model (e.g.,
ERR, EBU) or they can be viewed as such (see [6]). How-
ever, there is still a big gap between user models and metrics.
For example, some of the widely used click models, such as

the User Browsing Model (UBM) by Dupret and Piwowarski
[19] and the Dependent Click Model (DCM) by Guo et al.
[21], have so far not been used to develop an offline metric.
Moreover, since the introduction of these early click mod-
els, many more click models have been developed, not only
as improvements to previous models [20, 30], but also to
address specific modeling issues, such as click models for di-
versified search [12, 14], the use of mouse movements along
with clicks [24], or to model sessions [41]. We believe that
all these models can be converted to evaluation measures.

The creation of traditional test collections against reduced
costs has received considerable attention. Carterette and Al-
lan [7] and Sanderson and Joho [35] discuss approaches to
building test sets for evaluation at low cost. Azzopardi et al.
[3], Berendsen et al. [4] go a step further and describe meth-
ods for automatically generating test collections and train-
ing material for learning-based rankers, respectively. Other
works have extensively examined one particular limitation of
traditional test collections: the completeness of judgments
[5, 34]. Buckley and Voorhees [5] introduce a new metric
called bpref to use in a setup where we have missing rel-
evance judgements. Sakai [34] propose an alternative so-
lution that does not require a new metric. We will also
consider this problem when analysing metrics. Apart from
evaluation metrics, there are other interesting problems aris-
ing when dealing with large query sets; these are addressed
by the TREC Million Query Track [2] and further studied
by Carterette et al. [8].

Another important group of extremely related studies con-
cerns user-based experiments. Introduced by Joachims [27],
the interleaving method is now widely used. Since its intro-
duction, several modifications to the original method have
been proposed, notably Team-Draft Interleaving [32] and
Probabilistic Interleaving [22]. A thorough overview of in-
terleaving methods can be found in [11]. Radlinski and
Craswell [31] analyze and compare the sensitivity of both
interleaving and traditional offline IR metrics against each
other. They find that the outcomes of interleaving experi-
ments generally agree quite well with offline metrics while
data can be collected at a much lower cost. Below, we apply
the same type of analysis to evaluate click model-based met-
rics and to compare them against traditional IR metrics. Ali
and Chang [1] show that per-query correlation between off-
line side-by-side comparisons and online interleaving exper-
iments is low even when query filtering is applied. This find-
ing suggests that aggregating results from multiple queries
as was done in [31] is less noisy than computing correlations
on a per query basis. Yue et al. [40] propose ways to in-
crease the signal of an interleaving experiment; inspired by
this idea we propose to tune offline metrics through two tech-
niques referred to as condensation and thresholding below to
enhance the agreement with interleaving (see Section 4.1).

3. CLICK MODEL-BASED METRICS
From an initial focus on precision as a metric, the area

of web search evaluation has evolved considerably. An early
lesson is that we need to apply some sort of discount to
the documents that appear lower in the ranking. One of
the first metrics to operationalize this idea was Discounted
Cumulative Gain (DCG) [26]. This metric is still widely
used in the IR community. However, it has some drawbacks.
One is that its discount function is not motivated by a user
model. Another important issue with this metric is that it



is a static metric, i.e., its discount values are fixed numbers.
As shown in [39], a dynamic metric that dynamically assigns
different discount values according to the relevance of the
documents appearing higher in the ranking, more accurately
represents real user behavior.

In this paper we introduce the notion of click model-based
metrics. The main constituent of such a model-based metric
is a click model—a probabilistic model aimed at predicting
user clicks. Apart from click events (Ck), a click model
usually has hidden variables corresponding to events such
as “the user examined the snippet of the k-th document”
(Ek). These hidden variables are often used to gain deeper
insights into users’ behavior. For example, Chapelle and
Zhang [9] used a click model (DBN) to predict relevance
and train a ranking function and in [19] the parameters of
the click model were analysed to explain how previous user
clicks influence future clicks. All click models that we study
in this paper assume that users click a document only after
examining the document’s snippet, i.e., P pCk “ 1|Ek “
0q “ 0.

Following Carterette [6], we distinguish between utility-
based metrics and effort-based metrics. These give rise to
two ways of mapping a click model to a click model-based
offline metric. First, a utility-based metric uses a click model
only to predict the click probability P pCk “ 1q for the k-th
document in the ranking. This probability is then used to
calculate the metric value as the expected utility :

uMetric “
N
ÿ

k“1

P pCk “ 1q ¨Rk, (1)

where Rk is the relevance of the k-th document. It is com-
mon to use four or five relevance grades, from Irrelevant to
Highly Relevant that are further mapped to numeric values.
For example, the TREC 2011 Web Track [16] uses four levels
of relevance: from 0 for Irrelevant documents to 3 for Highly
Relevant documents.

Second, an effort-based metric requires a click model to
have a notion of “user satisfaction” (Sk). A click model must
have hidden variables Sk such that P pSk “ 1|Ck “ 0q “ 0
(the user can only be satisfied by the documents she clicked)
and P pEj “ 1|Sk “ 1q “ 0 for j ą k (after being satisfied
the user stops examining documents). Having this, we can
define a metric to be an expected value of some effort func-
tion1 at the stopping position:

rrMetric “
N
ÿ

k“1

P pSk “ 1q ¨
1

k
“

N
ÿ

k“1

skP pCk “ 1q ¨
1

k
, (2)

where sk “ P pSk “ 1|Ck “ 1q is a satisfaction probability.
A click model is usually trained using a click log. As a re-

sult we get values of the model parameters that can further
be used to calculate the probability of clicks or satisfaction
events to use in Equations 1 and 2. Some of the parameters
are just constants, some depend on the position(s) in the
ranking and some depend on the document and/or query.
Parameters of the last type are the hardest ones to be used
in a metric, as we want our metric to work even for pre-
viously unseen documents. But, fortunately, parameters of
this type can usually be approximated from the document’s

1Following [6] we use reciprocal rank 1
k

as an effort function.
While we are not doing it here, it would be interesting to
evaluate metrics with different effort functions.

Table 1: Click model-based metrics and their underlying
models. Previously proposed models/metrics are followed
by the reference.

Derived metric

Underlying click model Utility-based Effort-based

DBN [9] uSDBN [10] ERR [10]
DBN [9] EBU [39] rrDBN
DCM [21] uDCM rrDCM
UBM [19] uUBM –

relevance. In fact, when training a model we assume that
these parameters only depend on the document relevance
and not on the document itself. We will demonstrate this
procedure for the attractiveness parameters in DBN, DCM,
UBM and for the satisfaction parameters in DBN.

If a model meets the requirements listed above, it can be
transformed into a click model-based metric. There is no
step-by-step algorithm for such a transformation but only
general guidelines. In the following sections we demonstrate
the idea, using well-known click models as an example. We
want to stress, however, that our framework is general enough
to be applied to other click models, including those that use
additional sources of information, such as recently studied
session-based click models [41] or click models for vertical
search [12, 14].

In Table 1 we classify previously studied metrics (ERR
by Chapelle et al. [10], EBU by Yilmaz et al. [39]) and pro-
pose several new click model-based metrics: rrDBN, uDCM,
rrDCM, uUBM. The left most column lists click models, the
center and right most column denote derived offline metrics,
utility-based and effort-based, respectively. As a recipe for
naming a metric, we use the name of the underlying model
and prefix it with the type metric that we are defining: u- for
utility-based and rr- for reciprocal rank effort-based metrics.

3.1 Previously Studied Metrics
In this section we show how two previously proposed met-

rics, ERR and EBU, can be viewed as click model-based
metrics. Despite the fact that they are different and were
not in fact proposed as derivatives of a click model, they
can both be viewed as metrics based on special cases of the
Dynamic Bayesian Network click model (DBN) by Chapelle
et al. [10]. In this model, the user examines document cap-
tions one by one and may be attracted by document u with
probability au. If the user is attracted by the document, she
clicks it and becomes satisfied with probability su. If she
is not satisfied by the document she proceeds to the next
document with probability γ and stops otherwise.

The Expected Reciprocal Rank (ERR) metric uses a sim-
plified version of the DBN model [9] (we will refer to this
model as SDBN) in which, as an additional constraint, all at-
tractiveness probabilities are set to 1 (auk “ P pCk “ 1|Ek “
1q ” 1) and therefore all documents are clicked. This leads
to suk ” ruk , i.e., the satisfaction probability is equal to the
probability of the document being relevant to the query. By
making this assumption we obtain the probability of clicking
the k-th document

P pCk “ 1q “ γk´1
k´1
ź

i“1

p1´ riq (3)



and the probability of satisfaction

P pSk “ 1q “ rkγ
k´1

k´1
ź

i“1

p1´ riq, (4)

where ri is the probability of relevance of the i-th document
and γ is the continuation probability. The probability of
being relevant is usually viewed as a mapping R Ñ r from
the relevance grades to the segment r0, 1s. In the original
ERR paper [10] the authors use a mapping motivated by

DCG: r “ 2R´1
2Rmax

, where Rmax is the maximum possible
relevance grade (Rmax “ 3 in the case of TREC 2011 Web
Track), but one may also fit this mapping from a click log.

Using probabilities from (3) and (4), we end up with the
ERR and uSDBN metrics (cf. Equations (2), (1)):

ERR “

N
ÿ

k“1

˜

rkγ
k´1

k´1
ź

i“1

p1´ riq

¸

¨
1

k

uSDBN “

N
ÿ

k“1

˜

γk´1
k´1
ź

i“1

p1´ riq

¸

¨ rk

In the original version of the ERR metric, the continuation
probability γ of the DBN model was set to 1.2 Conversely,
for uSDBN [10, Section 7.2], we set γ (“one minus the aban-
donment probability”) to 0.9, as suggested in [9].

The Expected Browsing Utility (EBU) metric by Yilmaz
et al. [39] is also based on a variation of the DBN model.
Unlike the original DBN model, their modification allows
for different continuation probabilities in different situations
(pcont|click, pcont|nonrel, pcont|rel). While these parameters
lead to greater flexibility in setting up the metric, they also
represent a difficult choice for a practitioner to make. They
were all set to 1 in the original paper [39] and here we do the
same. By doing so we reduce the EBU model to DBN [9]
with continuation probability γ “ 1. One notable difference
between the ERR and EBU metrics is that EBU does not
set the attractiveness probabilities to 1. Instead, the attrac-
tiveness probabilities and satisfaction probabilities are both
estimated from a click log using the assumptions that they
are determined by the document relevance:

auk « P pCk|Ruk q

suk « P pLk|Ruk q,

where Ck is the random variable corresponding to a click on
the k-th document, Lk is the random variable corresponding
to leaving the result page after clicking the k-th document
and Ruk is the relevance of the k-th document uk.

3.2 New Click Model-Based Metrics
In this section we propose new offline metrics by introduc-

ing an effort-based variant of the EBU metric and also by
converting the two popular click models, UBM and DCM,
into click model-based metrics. By doing so we show that
our framework of click model-based metrics is not only a
way of viewing previously studied metrics, but also a way of
deriving new metrics in a principled way.

The rrDBN metric uses essentially the same user model
as the EBU metric. In fact, the parameters for EBU and

2In the original paper [10, Section 3] an alternative interpre-
tation of the ERR metric as a metric based on the Cascade
Model by Craswell et al. [18] was also proposed.

rrDBN are the same. The only difference is that rrDBN is
calculated using Equation (2) instead of (1).

Next, the uDCM and rrDCM metrics can be derived from
the Dependent Click Model (DCM, [21]) in a way similar
to how EBU and rrDBN are derived from DBN. The only
difference between DCM and DBN is that the satisfaction
probability P pSk “ 1q depends not on the document itself
but on its position k in a ranked list. Thus, the DCM model
can be described with the following equations:

P pCk “ 1|Ek “ 0q “ 0

P pCk “ 1|Ek “ 1q “ auk
P pSk “ 1|Ck “ 0q “ 0

P pSk “ 1|Ck “ 1q “ sk

P pE1 “ 1q “ 1

P pEk`1 “ 1|Ek “ 0q “ 0

P pEk`1 “ 1|Ek “ 1, Skq “ 1´ Sk

As was shown by Turpin et al. [37], the attractiveness of a
document’s snippet can be approximated as a function of its
relevance grade. A mapping from grades to attractiveness
probabilities can be inferred from a click log using the click
model (DCM in this case). 3 For this purpose we impose the
constraint that documents with the same relevance have the
same attractiveness, i.e., the attractiveness of a document is
a function of its relevance grade: au “ apRuq.

Finally, using the click model and Equations (1), (2), we
can define uDCM and rrDCM metrics as follows:

uDCM “

N
ÿ

k“1

apRkq
k´1
ź

i“1

p1´ apRiqsiq ¨Rk

rrDCM “

N
ÿ

k“1

skapRkq
k´1
ź

i“1

p1´ apRiqsiq ¨
1

k

Chen et al. [12] report that the User Browsing Model
(UBM) [19] performs better than DBN in terms of click pre-
diction perplexity. We have also evaluated this model using
a Yandex click log. We used a sample of clicks collected in
November 2012. We then removed pages without clicks and
split the remaining data into training and test set. In to-
tal we had 1,191,963 training and 1,292,993 test pages. To
compare the models we used the perplexity gain [12, Section
5.2] which is a standard way of comparing perplexity values
(see, e.g., [12, 20, 41]). On our data UBM outperforms DBN
by 16% which is considered a big difference.

This finding motivates the idea of deriving an offline met-
ric from UBM. In the UBM model the click probability is
governed by the attraction bias and the examination bias:

P pC “ 1|u, q, r, dq “ P pA “ 1|u, qqP pE “ 1|d, rq “ auqγrd,

where C stands for click, A for attraction, E for examina-
tion; u is the document URL, q is the user query, r is the doc-
ument rank (position), and d “ r´maxtj ă r|Cj “ 1u is the
distance to the previous click.4 For convenience, we write
ar instead of auq and γrpjq instead of γrd, where d “ r ´ j.

Like for the EBU/rrDBN and uDCM/rrDCM metrics, we
assume that the attractiveness probability a is a function of

3The source code for probabilistic inference is freely avail-
able at https://github.com/varepsilon/clickmodels.
4As in [19] we use a virtual zero position (which is always
clicked) to simplify our equations.

https://github.com/varepsilon/clickmodels


the relevance of the document: auq “ apRuqq. The exam-
ination probabilities γrpjq can be precomputed from click
logs during the same model training process. One impor-
tant difference from the previously studied models is that
the UBM model relies on previous clicks and these are not
available offline. To deal with this problem we factorize the
probability P pCr “ 1q over the position of previous clicks j:

P pCr “ 1q “
r´1
ÿ

j“0

P pCj “ 1, Cj`1 “ 0, . . . , Cr´1 “ 0, Cr “ 1q.

By applying Bayes rule we get

P pCr “ 1q “
r´1
ÿ

j“0

P pCj “ 1q

¨

r´1
ź

k“j`1

P pCk “ 0|Cj “ 1, Cj`1 “ 0, . . . , Ck´1 “ 0q

¨ P pCr “ 1|Cj “ 1, Cj`1 “ 0, . . . , Cr´1 “ 0q “

“

r´1
ÿ

j“0

P pCj “ 1q

˜

r´1
ź

k“j`1

p1´ akγkpjqq

¸

arγrpjq

Finally, the click probability is given by a recursive formula:

P pC0 “ 1q “ 1

P pCr “ 1q “

r´1
ÿ

j“0

P pCj “ 1q

˜

r´1
ź

k“j`1

p1´ akγkpjqq

¸

arγrpjq

where ar “ apRrq, and ap¨q and γrp¨q are known functions
estimated from clicks. It is important to note, that un-
like Dupret and Piwowarski [19], we used all queries, not
only queries with high clickthrough rate. So our resulting γ
function is different from that analysed by Dupret and Pi-
wowarski, and might be interesting on its own. For example,
γrpjq is much less than 1 for j ą 0 which corresponds to the
fact that most of the users click on only one document.

Given the click probability we can define the metric:

uUBM “

N
ÿ

r“1

P pCr “ 1q ¨Rr (5)

The UBM click model does not have a notion of user satis-
faction and hence we do not introduce an “rrUBM” metric.

4. ANALYSIS
In this section we analyze the click model-based metrics

previously listed, both old and new, along a number of di-
mensions. We compare click model-based metrics to tradi-
tional offline metrics. As traditional metrics we consider
precision, with two possible binarizations of four scale judg-
ments (Precision treats the highest three relevance grades
(3, 2, 1) as “relevant,” while Precision2 only treats the high-
est two relevance grades (3, 2) as“relevant”) as well as DCG.
As was shown by Chapelle et al. [10], the NDCG metric is
always worse at capturing user satisfaction than DCG. We
decided not to include this metric and thus to overcome po-
tential issues with corpus-dependent NDCG normalization.

We start by determining correlations of various offline
metrics to the outcomes of interleaving experiments in a way
proposed by Radlinski and Craswell [31]. These correlations
are then used to compare offline metrics to each other. The
metric that shows the best correlation with interleaving out-

comes is assumed to better represent real user behavior. We
then move to more traditional comparison techniques, such
as metric-to-metric correlations and discriminative power.

4.1 Correlation with Interleaving Outcomes
As was shown by Radlinski et al. [32], absolute click met-

rics are often unable to determine differences in IR systems.
Moreover, they are always difficult to interpret and may even
be misleading, because we cannot know for sure how these
metrics are related to user satisfaction.

Fortunately, there is another approach, the pairwise or in-
terleaved comparison techniques mentioned earlier [27, 32].
Following this approach, we compare two ranking systems
by presenting a user with an interleaved result page, con-
taining documents from both result lists. The winner is
then determined from user clicks. We assess an offline IR
metric m in terms of its agreement with the interleaving
outcomes. Specifically, we use the Team-Draft Interleaving
(TDI) method by Radlinski et al. [32]. In this method each
document in the interleaved page is assigned to exactly one
of the two ranking systems (“the teams”). We then say that
a system wins a comparison if the documents it contributes
to the combined list receive more clicks. The system that
wins most of the comparisons is assumed to be better.

For the current experiment we used a click log of the
Yandex search engine collected in October–December 2012.
During this period we focus on five revisions of the core
ranking functions (A, B, C, D, E), with each revision be-
ing compared to the previous one using TDI, that was run
for 5-10 days. For each of our ten experiments we had at
least 200,000 impressions as in the work by Radlinski and
Craswell [31]. Some ranking function revisions influence
more than one market (country), so in total we have 10 pairs
of algorithms to compare: ∆1AB, ∆2AB, ∆1BC, ∆1CD,
∆2CD, ∆3CD, ∆4CD, ∆1DE, ∆2DE, ∆3DE. For each al-
gorithm pair we recorded the interleaving signal value, i.e.,
the deviation from 50% of the number of cases where the
newer system was preferred. For instance, if in the experi-
ment labeled ∆iXY system Y was preferred over system X
in 51% of all cases, we say that the interleaving signal for
the experiment is 1%.

Having interleaving signals, we want to compare them to
the signals obtained by the offline IR measures, i.e., the
average difference of the metric values. Unlike in the tra-
ditional Cranfield approach we use queries and documents
from the query log. When computing an offline metric signal
for a particular experiment ∆iXY , we extract queries issued
by the users assigned to the experimental flight. For these
queries we also extract the document lists that would have
been produced by each of the systems X and Y if they had
not been interleaved. By using click-log-based queries when
comparing the signal of an offline metric to the interleav-
ing signal we eliminate the effect induced by the choice of
a query set that one needs to compile for a Cranfield-style
evaluation. Here it also allows us to perform experiments
with historical revisions of a ranking algorithm that is no
longer running. Although this approach has some advan-
tages for our research problem, it has some disadvantages
for everyday usage. One notable drawback is that we use
only part of the judgements available because not all the
queries that we have judgements for were submitted by the
users of the experimental flight. For each experiment and
each metric we keep only the queries that have at least one



document judged. Depending on the experiment we have
from 178 to 5,815 queries per experiment (median 573). As
shown in [31], it is usually sufficient to have approximately
100 queries to identify the better system in an offline com-
parison.

The amount of data available to the search engine is usu-
ally much larger than a human can handle. Even more im-
portant is the fact that the web corpus is constantly chang-
ing, so we cannot maintain complete judgements even for
a limited set of queries. That is why it seems natural that
some documents returned by the system do not have rele-
vance judgements. In order to analyse the tradeoff between
adding noise from unjudged documents and reducing the
noise by allowing more queries we introduce a parameter
#unjudged. We discard queries for which the number of un-
judged documents in the top 10 is bigger than this value for
either of the two systems taking part in a TDI experiment.
Below, we vary this bound and see how it influences the
correlation between offline metrics and interleaving.

For each offline metric m and each value of #unjudged

from 1 to 9 we compute the weighted Pearson correlation
(similar to [10]) between the metric signal and the interleav-
ing signal. As a weight we use the number of queries partic-
ipating in the calculation of the metric signal (this number
is different for each experiment). The results are presented
in Figure 1. We can see that the effort-based metrics rrDBN
and rrDCM are better at dealing with unjudged documents
and are remarkably different from their utility-based counter-
parts; we will confirm this difference in Section 4.3. Another
interesting observation can be made about the Precision and
Precision2 metrics. Their behavior differs and, moreover,
Precision has a negative correlation and this is not the case
for Precision2. This seems to be due to the fact that un-
judged documents are treated in the same way as the lowest
relevance grade 0, whereas in fact they have a higher chance
to belong to one of the top relevance grades: 92% of the
documents in the top 10 have a relevance grade higher than
0, while only 23% have a relevance grade higher than 1.

As we can see from Figure 1, when we increase #unjud-

ged, the maximum number of unjudged documents, to 4
or higher, the correlation drops for all of the metrics stud-
ied. This means that adding queries with highly incomplete
judgements adds noise to the metric signals. The problem of
unjudged documents has previously been studied by Sakai
[34], and his proposed solution is to exclude unjudged doc-
uments from the ranked list and condense the remaining
documents. Despite its heuristic nature, this idea actually
leads to an increase in correlation for most of the metrics as
shown in Figure 2. The exceptions from this rule are rrDBN
and rrDCM that supposedly suffer most from the incorrect
effort function values. For example, if we miss a judgement
for the first document than for the second document we ap-
ply a 1

1
discount instead of 1

2
(see Equation (2)).

Thresholds
Even when we apply condensation, we still have a decrease
in correlation values for high values of #unjudged. One way
of dealing with this problem is to choose an optimal value
of #unjudged and use it to get high correlations with in-
terleaving outcomes. We propose a different way of dealing
with this noisy data. Comparing systems A and B, we dis-
card all queries with differences in metric values less than a
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Figure 1: Pearson correlation between offline metrics and
interleaving signal. Unjudged documents were treated as
irrelevant.
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Figure 2: Pearson correlation between offline metrics and
interleaving signal. Unjudged documents were skipped
(ranked lists were condensed).
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Figure 3: Pearson correlation between offline metrics with
thresholds and interleaving signal. Unjudged documents
were treated as irrelevant.
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Figure 4: Pearson correlation between offline metrics with
thresholds and interleaving signal. Unjudged documents
were skipped (ranked lists were condensed).

threshold δm for each metric m:

MetricSignal “
1

|Qδm |

ÿ

qPQδm

pmpB, qq ´mpA, qqq ,

where Qδm “ tq P Q | |mpB, qq ´mpA, qq| ě δmu. This
means that we use only some portion of the queries we have
(up to 20%), but these are queries that strongly distinguish
between systems. The idea is that by choosing an appropri-
ate threshold δm we can tune a ranking system to produce
the best correlation with interleaving outcomes. In order to
test the idea we split our data (ten TDI experiments) into
train and test set: we use the train set to choose the best
threshold and the test set to compute the correlation scores.

While it would be natural to do a time-based train/test
split, it appeared to be impractical with the data we have.
Firstly, it was impossible to get training and test sets of rea-
sonable sizes (either the training or the test set would consist
of only 3 experiments which might give too noisy correlation
values). Secondly, there are only few possible time-based
splits so we are not able to assess statistical significance of
the results. Instead, we used all possible 5/5 splits for our
experiments, i.e., we take a subset of five experiments as
a training set and the remaining five experiments as a test
set. In total we had C5

10 “ 252 splits and corresponding cor-
relation values. The correlation values were then averaged
and error bars were computed using the bootstrap test at
95% confidence level and 1000 samples. Results are shown
in Figures 3 and 4.

We can see in Figures 3 and 4 that the confidence intervals
are quite narrow and most of the click model-based met-
rics continue to show high correlation scores when the value
#unjudged is large. If we look at one of the best performing
metrics, uUBM, we can see that thresholded variants are a
bit worse for #unjudged lower than 5, while for #unjudged

equal to 5 and higher the thresholded variants start domi-
nating, reaching the highest point for #unjudged “ 9 (see
Figure 5).

In order to test significance of the differences in correlation
values we used the 5/5 split procedure described above. Un-
like what we did for thresholded and thresholded condensed,
for the simple and condensed variants we only use the test
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Figure 5: Pearson correlation between uUBM (in different
variants) and interleaving signal .

set to determine the correlation and just ignored the train-
ing set as there is nothing we need to tune. The correla-
tion values are then averaged and confidence intervals are
computed using the bootstrap method with 1000 samples
and 95% confidence level. Three highest correlation scores
were shown by thresholded condensed variant of uUBM met-
ric (for different values of #unjudged), while the correla-
tion score for thresholded condensed uUBM (#unjudged = 9)
is significantly higher than any other variant (simple, con-
densed, thresholded) of any metric. From Figures 1–4 we can
also conclude that click model-based metrics in general show
higher correlation values with the outcomes of interleaving
experiments than traditional offline metrics, especially when
we have many incomplete judgements (#unjudged ą 5),
which confirms the hypothesis formulated in the Introduc-
tion: click model-based metrics are better correlated with
online measurements than traditional metrics. Another in-
teresting observation is that for the simple and condensed
variants there exist optimal values of the #unjudged param-
eter (3 and 5 respectively in our case). Conversely, for the
thresholded and thresholded condensed variants it is more
important to pick an appropriate metric and then use any
value of #unjudged higher than 5.

4.2 Correlation with Absolute Online Metrics
Following the original work on ERR by Chapelle et al.

[10] we also compared offline IR metrics by looking at their
correlation with absolute click metrics. In our experiments
we used the following metrics:

‚ MaxRR, MinRR, MeanRR – maximal, minimal, mean
reciprocal ranks of the click. Following the work of Radlin-
ski et al. [32] we exclude pages with no clicks to avoid
correlation with UCTR.

‚ UCTR – binary value representing click (the opposite of
abandonment).

‚ PLC – number of clicks divided by the position of the
lowest click.

We did not include the Search Success (SS) metric consid-
ered by Chapelle et al. [10] as it uses relevances not only
clicks. We also confirmed the findings of [10] that QCTR
(clicks per session) has negative or close to zero correlation
with all the editorial metrics and skipped it as well.



A configuration is a tuple that consists of a query and ten
URLs of the top ranked documents presented to a user. For
each configuration in our dataset we computed the values
of absolute online and offline metrics. The vectors of these
metric values are then used to compute Pearson correla-
tion (unweighted). For our dataset we used clicks collected
during a three-month period in 2012. Because we used a
long period and hence had a sufficient amount of data, we
were able to collect 12,155 configurations (corresponding to
411 unique queries) where all ten documents have relevance
judgements.

The results are summarized in Table 2. A similar com-
parison was previously done by Chapelle et al. [10] for ERR
and traditional offline metrics. The numbers they obtained
are similar to ours. From the table we conclude that click
model-based metrics show relatively high correlation scores
while traditional offline metrics like DCG or Precision gen-
erally have lower correlations, which agrees with the results
of the previous section. Using the bootstrap test (95% sig-
nificance level, 1000 bootstrap samples) we confirmed that
all the click model-based metrics show significantly higher
correlation with all the online metrics than any of the tra-
ditional offline metrics.

As to the online metrics, we can see that the reciprocal
rank family (MaxRR, MinRR, MeanRR) appears to be bet-
ter correlated with the effort-based metrics (ERR, rrDBN,
rrDCM), because the effort function used by these metrics
is the reciprocal rank 1

k
(see Equation 2). The same holds

for PLC as it uses reciprocal rank of the lowest click that
could be viewed as “satisfaction position” used by an effort-
based metric. The differences between ERR and uSDBN,
rrDBN and EBU, rrDCM and uDCM are statistically sig-
nificant (using the same bootstrap test). Conversely, for the
UCTR metric all the utility-based metrics show significantly
higher correlation than corresponding effort-based metrics.

We also compared newly introduced click model-based
metrics with older metrics: ERR (effort-based) and EBU
(utility-based). The result of the comparison is marked
as superscripts in the Table 2: the first superscript corre-
sponds to ERR, the second one corresponds to EBU. The
first (second) Ĳ means that the metric is statistically sig-
nificantly higher than ERR (EBU), İ — significantly lower,
“´” — no statistical difference can be found (95% signifi-

Table 2: Pearson correlation between offline and absolute
online metrics. Superscripts represent statistically signifi-
cant difference from ERR and EBU.

-RR

Max- Min- Mean- UCTR PLC

Precision ´0.117 ´0.163 ´0.155 0.042 ´0.027
Precision2 0.026 0.093 0.075 0.092 0.094
DCG 0.178 0.243 0.237 0.163 0.245

ERR 0.378 0.471 0.469 0.199 0.399
EBU 0.374 0.467 0.464 0.198 0.397
rrDBN 0.384ĲĲ 0.475ĲĲ 0.473ĲĲ 0.194İİ 0.399´Ĳ

rrDCM 0.387ĲĲ 0.478ĲĲ 0.476ĲĲ 0.194İİ 0.400´Ĳ

uSDBN 0.322İİ 0.412İİ 0.407İİ 0.206ĲĲ 0.370İİ

uDCM 0.374İİ 0.466İİ 0.463İİ 0.198´´ 0.396İİ

uUBM 0.377´Ĳ 0.469İĲ 0.467İĲ 0.198´´ 0.398´Ĳ

cance level, bootstrap test). As we see, in most cases our
new click metrics appear to be significantly better than the
previously known ERR and EBU metrics, expect for UCTR
measure, which does not account for clicks (rather for their
absence) and hence obviously lacks the source of correlation
with click-model based metrics. According to other metrics,
rrDBN and rrDCM are better than ERR in 3 of 4 cases and
better than EBU in all 4 cases, while uUBM is better than
EBU in 4 of 4 cases.

In general, all the absolute click metrics are poorly corre-
lated with offline metrics—the correlation values are much
lower than correlation with interleaving outcomes. As was
shown by Radlinski et al. [32], absolute click metrics are
worse at capturing user satisfaction than interleaving. That
is why we propose to use the results of Section 4.1 as the
main way to compare offline metrics with user behavior.

4.3 Correlation Between Offline Metrics
In order to compare offline metrics to each other in terms

of ranking IR systems we used data from the TREC 2011
Web Track [16]. Participants of the TREC competition were
offered a set of queries (“topics” in TREC parlance) and a
set of documents for each query to rank. Each document
was judged using a 4-grade scale.5 For each metric we can
build a list of system runs6 ordered by the metric value aver-
aged over queries. We then compute Kendall tau correlation
scores between these ordered lists; they are summarized in
Table 3. As was shown by Voorhees [38], metrics with cor-
relation scores around 0.9 can be treated as very similar
because this is the level of correlation one achieves when
using the same metric but different judges. This level of
correlation to distinguish equivalent metrics was also used
in subsequent papers, for example [5, 7, 35, 37].

In Table 3 such metric pairs are marked in boldface. We
see that all click model-based metrics are highly correlated
within their group, utility-based or effort-based, while corre-
lations of the two metrics based on the same model (uSDBN
and ERR, EBU and rrDBN, uDCM and rrDCM) are lower.

4.4 Discriminative Power
Another measure frequently used for comparing metrics

is the discriminative power by Sakai [33]. This measure
is a bit controversial, because high values of discriminative
power do not imply a good metric. Nevertheless, extremely
low values of discriminative power can serve as an indica-
tion of a metric’s poor ability to distinguish different rank-
ings. As was shown in previous work (e.g., [15, 36]) dis-
criminative power is highly consistent with respect to sta-
tistical test choice. Given this fact we focus on a bootstrap
test as it makes fewer assumptions about the underlying
distribution. Results based on the same TREC 2011 Web
Track data as used in the previous section are summarized
in Table 4. As expected, highly correlated metric pairs (e.g.,
(rrDBN, rrDCM) and (EBU, uDCM)) have similar discrim-
inative power.

Another observation to be made is that the effort-based
metrics ERR, rrDBN and rrDCM have a lower discrimina-
tive power than the utility-based metrics uSDBN, EBU and

5Initially, a 5-grade scale was listed on a TREC 2011 de-
scription page, but in the end a 4-grade scale was used for
evaluation. As in the trec_eval evaluation tool we do not
distinguish between Irrelevant and Spam documents.
6In total we have 62 runs submitted by 16 teams.



Table 3: Correlation between offline metrics (using the TREC 2011 runs). Values higher than 0.9 are marked in boldface.

Precision2 DCG ERR uSDBN EBU rrDBN uDCM rrDCM uUBM

Precision 0.649 0.841 0.597 0.730 0.568 0.397 0.562 0.442 0.537
Precision2 – 0.785 0.663 0.780 0.675 0.526 0.693 0.551 0.681

DCG – – 0.740 0.857 0.711 0.530 0.704 0.592 0.685

ERR – – – 0.807 0.919 0.754 0.902 0.826 0.888
uSDBN – – – – 0.792 0.585 0.794 0.638 0.754

EBU – – – – – 0.788 0.970 0.822 0.930
rrDBN – – – – – – 0.786 0.917 0.807
uDCM – – – – – – – 0.813 0.947
rrDCM – – – – – – – – 0.841

Table 4: Discriminative power of different metrics according
to the bootstrap test (confidence level 95%).

Metric Discriminative Power

Precision 50.1 %
Precision2 30.8 %
DCG 48.6 %

ERR 39.3 %
uSDBN 51.1 %
EBU 35.1 %
rrDBN 21.1 %
uDCM 34.7 %
rrDCM 26.0 %
uUBM 33.3 %

uDCM, respectively. This is probably due to the fact that
“position discount” for the effort-based metrics goes to zero
faster than for the utility-based metrics and hence they are
less sensitive to changes in the bottom of the ranked list.

5. CONCLUSION AND FUTURE WORK
In this paper we proposed a framework of click model-

based metrics to build an offline evaluation measure on top of
any click model. Answering the research questions outlined
in the introduction we can say that

‚ Click model-based metrics generally differ from tradi-
tional offline metrics, while they are quite similar to each
other. Moreover, utility-based metrics are significantly
different from effort-based metrics in terms of system
ranking.

‚ All click model-based metrics generally show high agree-
ment with the outcomes of online interleaving experi-
ments and relatively high agreement with absolute click
measures. However, correlation with absolute metrics
is low for all offline metrics (both traditional and click
model-based) compared to the correlation with interleav-
ing outcomes.

‚ Unjudged documents may decrease correlation with in-
terleaving outcomes but by using thresholds we can over-
come this issue for click model-based metrics.

‚ Condensation and thresholding of offline metrics are ef-
fective ways of stabilizing correlations with interleaving
outcomes in the presence of unjudged documents.

One natural extension of our framework of click model-based

metrics can be adding more signals from the assessors. For
example, we can ask assessors to judge not only documents,
but their snippets as well (a practice already in place at
commercial search engines). By using this we can drop the
assumption that snippet attractiveness is a function of doc-
ument relevance as was assumed by the click model-based
metrics. While attractiveness is highly correlated with doc-
ument relevance [37], it is essential to use real attractiveness
judgements when we need to evaluate a snippet algorithm,
not only ranking. It might be interesting to incorporate
attractiveness judgements into metrics and re-evaluate our
click model-based metrics using proposed modifications.

Another interesting direction is the area of good abandon-
ments. Li et al. [29] report that some snippets might be
good enough to answer the user query directly on a search
engine result page. As was shown in [13], one can ask human
judges to indicate whether a snippet contains an answer to
the user query (fully or partially). That task appeared to
be relatively easy for assessors. Given such judgements, one
can modify any evaluation metric by adding additional gain
from the snippets that contain an answer to the user’s infor-
mation need. To convert this into a metric, we assign some
gain to the documents that were clicked (Ck “ 1) and some
gain to the documents that were only examined, but did not
attract the user (Ei “ 1, Ak “ 0).

Adapting click models for the unjudged/unknown docu-
ments is also an interesting direction. For example, we could
modify a click model by adding probability of a document
being skipped because it is unjudged. This question requires
further investigation and we leave it as future work.

In our work we argued that offline metrics should be better
correlated with interleaving outcomes. However, we might
want to have a metric that correlates with user satisfaction.
Some steps towards this problem have been taken in early
work by Huffman and Hochster [25] where user studies were
performed to analyse the meaning of editorial relevance for
real users. It would be interesting to perform a study of this
type to compare offline metrics.
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