
U
nderstanding and M

odeling U
sers of M

odern Search Engines
A

leksandr
Chuklin

Understanding and Modeling 
Users of Modern Search Engines

Aleksandr Chuklin

As search is being used by billions of people, modern search
engines are becoming more and more complex. And
complexity does not just come from the algorithms. Richer
and richer content is being added to search engine result
pages: news and sports results, definitions and translations,
images and videos. Many such elements are added by search
engines in their attempt to stand out from the competition by
providing a superior user experience. However, the more
complex search engines become, the harder it gets to
understand users and their interactions with result pages,
and to measure the quality of the user experience. In this
thesis we address exactly this topic.
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1
Introduction

Search is ubiquitous these days. It comes in different forms: from general-purpose
commercial search engines used by billions of people, to smaller-scale search interfaces,
such as library search or academic search. Driven by both market competition and a
desire to make people more productive, modern search engines introduce more and more
features to their interfaces: they embed image or video results, augment the search result
list by an encyclopedia panel or even make results interactive. Figure 1.1 is an example
of such an interface. More and more features are being added, making the search engine
result page (SERP)1 increasingly complex. With this complexity come obvious problems
of interpreting user behavior and detecting user satisfaction. Was this particular change in
the news ranking good for the user? Why did the users click this result so often despite it
being objectively bad? What is the best position to put sports results? In order to answer
questions like these and make product decisions, we need a solid theoretical ground and
models proven to work in practice.

The area of information retrieval (IR) was established long before the search engines
as we know them today. In fact, the term first appeared in 1950 when Mooers [116]
defined information retrieval as the discovery process in a large collection of recorded
information. Since then IR emerged as an independent computer science discipline with a
number of theoretical and practical pillars. One of the pillars is the so-called Cranfield
evaluation paradigm [57]. It established the following evaluation approach. A collection
of queries and documents is created where query-document pairs are rated by professional
annotators according to the document’s relevance to the query. Having such a rated
collection, one can evaluate the performance of many different IR systems, where an IR
system is a search engine that returns a ranked list of documents as a result of a user query.
This idea is a cornerstone of the Text REtrieval Conference (TREC).2 A competition is
run during this conference where participants from different research groups compete in
how well their IR systems rank unknown documents in response to some unseen queries.

The idea of collecting relevance ratings once and then using them to evaluate many
systems is still widely used today. But the IR systems of today are quite different from how
they looked fifty or even ten years ago. They no longer return a flat list of homogeneous
results: the list is not flat and the results are not homogeneous. Moreover, we can no
longer say that the system must put the most relevant documents on top: there are multiple

1We maintain a list of notations on page 159.
2http://trec.nist.gov

1
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1. Introduction

Figure 1.1: An example of a modern complex SERP, featuring Image and News verticals
as well as an information panel with encyclopedia data and live flight prices data. Image
credits: Aleksandr Chuklin, Google, Wikimedia Commons and its contributors.

aspects of relevance and the notion of “top” is blurred. While not completely discarding
the ideas of the Cranfield approach, we suggest taking a step back and analyze what
defines user behavior and user satisfaction and how one can use this knowledge to model
users and to make evaluation more accurate.

After a search system has been put online, one of the easiest type of user interaction
data to collect is clicks. Clicks are often interpreted as a signal of user satisfaction.
However, there are whole classes of situations where we observe no clicks at all, yet
the users are satisfied. These are called good abandonments [37, 104, 161]. We need
to understand when such situations occur, how users behave and why they behave in a
certain way. To achieve that, we must go beyond clicks.

In general, modeling the users of a search system is an important task with many
applications. The first application is understanding the users through fitting a model to
the user data [69]. A second application is using a user model to perform simulated
experiments when no or limited user data is available [48, 82]. Thirdly, user modeling is
used to improve ranking [25] and, finally, to build more accurate evaluation metrics [42,
112]. Contemporary SERPs pose two big challenges to user modeling: taking into
consideration various signals beyond clicks (such as mousing or scrolling) and accounting
for the heterogeneous nature of results and their non-trivial arrangement on a SERP.

While user interaction data helps us to build more accurate Cranfield-style evaluation
metrics through user modeling, it may also be used as a form of direct, albeit implicit,
relevance feedback. Out of two popular methods, A/B-testing [99] and interleaving [27],
the second was shown to have higher sensitivity. Interleaving is an online evaluation
strategy that compares two ranking systems—usually the current production ranking

2



1.1. Research Outline and Questions

and an experimental ranking—by mixing results from the two systems into one and
interpreting users’ clicks as implicit feedback. While such a method has high sensitivity
and intuitive interpretation of the click scores, it nevertheless faces challenges when
heterogeneous SERPs are involved as it is not a straightforward task to interleave two
SERPs featuring different special elements and potentially having different layouts.

In the next section we formulate the main research questions of the thesis as well as the
sub-questions that aim to go deeper on each one of them.

1.1 Research Outline and Questions

Complex SERPs create many challenges in different areas of information retrieval. Below
we list the research questions we will be answering in this thesis. We first list the bigger
questions and then dig deeper into each individual one.

RQ1 Can we substantially improve existing click models by taking into account result
page structure and aggregated user characteristics?

RQ2 How do we evaluate click models?

RQ3 How can we make use of click models to improve offline evaluation metrics?

RQ4 How can we improve user models and offline evaluation metrics to account for
non-trivial attention patterns and direct usefulness of result snippets?

RQ5 How can we perform accurate online quality evaluation on complex SERPs without
affecting the user experience?

1.1.1 Click Models for Complex SERPs
While actual users should always be the golden standard as a source of behavioral data,
sometimes we simply lack user interaction data. Or it can well be the case that the study
we want to conduct has risks of degrading the user experience and we just cannot afford
such risks and have to forgo experiments with real users. In other words, collecting data
from users does not scale in some cases. That is why we need a solid model of the user
interacting with the SERP.

For this purpose we employ the notion of a click model, a probabilistic model that
predicts next user actions given historical data [45]. In previous work only clicks were
considered as interaction data. However, recent work by Huang et al. [88] goes beyond
that and adds mouse movements as an additional source of information. We want to
continue this line of work and make use of other sources of information to improve the
model accuracy. As was demonstrated in prior work [51, 154], some results may be more
visually salient (e.g., video results) and hence attract more clicks. We want to leverage
that observation and put the SERP layout information as well as our knowledge about
user intents into a click model.

The main sub-questions we want to answer are:

RQ1.1 How can we use page layout information to improve click models?

3
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RQ1.2 How can we use aggregated user characteristics such as vertical orientation to
improve existing click models?

1.1.2 Evaluating Click Models

There are different ways to evaluate click models. Some of them are motivated by the
theory behind the probabilistic graphical model (PGM) framework that we use, some are
motivated by the applications of click models.

Firstly, we want to know how different click models that are widely used these
days compare to each other when measured across different evaluation dimensions on a
common dataset. Previously the models were mostly evaluated on various proprietary
datasets. Moreover, different sets of metrics were used to evaluate different models. Our
goal is to establish a common ground.

Secondly, we want to question whether the current set of click model evaluation metrics
is sufficient to evaluate click models for modern SERPs. We suggest a complementary
evaluation approach that allows to better understand quality of such click models.

We formulate the above as the following research questions:

RQ2.1 How do different click models perform when evaluated on a common dataset?

RQ2.2 How should we evaluate click models for complex aggregated SERPs?

1.1.3 Click Model-based Metrics

Search evaluation is a very important but complex issue. It is always hard to justify a new
evaluation metric. That being said, we argue that the need for better evaluation techniques
for contemporary SERPs should be put in our research agenda.

After having built efficient models of user click behavior, we suggest using these
models to build Cranfield-style evaluation metrics that are more aligned with the actual
users. In particular, we answer the following questions:

RQ3.1 Can we make use of click models to build better evaluation metrics? How do such
click model-based IR metrics differ from traditional offline metrics?

RQ3.2 Which evaluation metrics are better tied to the user? Do click model-based metrics
show higher agreement with online experiments? How do they compare in terms
of discriminative power?

RQ3.3 How well do different offline metrics perform in the presence of unjudged docu-
ments?

RQ3.4 How can we modify offline metrics to enhance agreement with online experi-
ments?

RQ3.1 requires developing a framework to derive an evaluation metric from a click
model. It is also important to show that the resulting metrics differ from already existing
and widely used metrics such as discounted cumulative gain (DCG) [89] or expected
reciprocal rank (ERR) [26], which is what the second part of the question is about.
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After suggesting new evaluation metrics with a solid foundation of a click model, we
want to show that they not only differ from existing metrics, but also outperform them. So
in RQ3.2 we adopt a commonly used discriminative power analysis to compare metrics.
On top of that we suggest measuring a metric’s performance by looking at how well it
agrees with the outcome of the online click-based evaluation. Since online experiments
are often used as a rather time-consuming but precise tool to make final decisions, it is
important that during many iterations of algorithm development, one has a metric that
would be better aligned with the final outcome of the online experiment.

RQ3.3 touches on an important question of missing relevance judgements. As was
previously pointed out by Sakai [131], we often face a situation where part of the docu-
ments that an IR system ranks at the top of a SERP lacks relevance judgements, in other
words, it was not judged by the raters. Due to a limited amount of resources, this situation
happens rather often and we need to check how our metrics perform in such a scenario.

Finally, RQ3.4 suggests ways to improve the quality of evaluation metrics (mea-
sured by the agreement with the outcomes of the online experiments), especially in case
judgements may be missing.

1.1.4 Going Beyond Clicks
As result pages become more and more complex, two big challenges for evaluation arise:
non-trivial attention patterns and good abandonments. As was shown by Clarke et al.
[51], Sushmita et al. [154], some results are more visually salient, e.g., video or image
results, and therefore attract more clicks (and, in general, more of the user’s attention).
There also exists the opposite effect—a SERP may already contain an answer to the query
and does not require clicks. This effect is known as good abandonment [30, 104].

We argue that the notion of good abandonment also applies to individual SERP items,
not just to the SERP as a whole. By analyzing factoid queries we show that the quality of
individual result snippets has a peculiar connection to the abandonment rate, suggesting
there may be direct utility gain from examining results on a SERP.

Combining the ideas of non-trivial attention pattern and direct usefulness of result
snippets, we suggest a novel evaluation metric that more accurately predicts user satis-
faction. Since our metric has a user model behind it, we ask separate questions about the
model and the metric based on it:

RQ4.1 Does a model that unites attention and click signals give more precise estimations
of user behavior on a SERP and self-reported satisfaction? How well does the
model predict click vs. satisfaction events?

RQ4.2 Does an offline evaluation metric based on such a model show higher agreement
with user-reported satisfaction than conventional metrics such as DCG?

1.1.5 Online Evaluation
In the area of online evaluation, we concentrate our effort on a family of methods called
interleaving. As was shown by Hofmann et al. [84], Radlinski and Craswell [123],
evaluation methods based on relative techniques such as interleaving are easier to interpret
and are more sensitive than evaluation methods based on comparing absolute click metrics.
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In the case of modern complex SERP we aim to achieve the efficiency of conventional
interleaving methods while preserving the conventional aggregated search user experience.
This proves to be a challenging task due to interleaving algorithms’ nature to “mix up”
results. Consequently, we want to formulate our research question as follows:

RQ5.1 Influence on the user experience. What effect do different interleaving methods—
both conventional and newly introduced vertical-aware—have on the user expe-
rience in the case of complex SERPs? Do any of these methods run the risk of
degrading the quality of the results or altering the user experience?

RQ5.2 Correctness and sensitivity. Do different interleaving methods always draw
correct conclusions about the better system? How fast, in terms of the number of
impressions and amount of feedback needed, can they detect that one aggregated
search system is to be preferred over another?

RQ5.3 Unbiasedness. Do the interleaving methods that we consider provide a fair and
unbiased comparison, or do some of them erroneously infer a preference for one
aggregated search system over another in situations where implicit feedback is
provided by a randomly clicking user?

In order to answer RQ5.1 we consider different pairs of complex SERPs and analyse
the effect on the user experience imposed by the interleaving methods that we consider.
RQ5.2 concerns the ability of an interleaving method to correctly capture the difference
between two rankers by using the minimal amount of implicit user feedback. Finally, to
answer RQ5.3 we need to check that none of the evaluation methods infer statistically
significant preferences when no preference is expected.

1.2 Main Contributions

Here we summarize the main contributions of the thesis, roughly split into three groups:
theoretical, algorithmic and software contributions.

1.2.1 Theoretical Contributions

Our main theoretical contributions lie in the area of evaluating evaluation methods and
user models. Apart from that, we introduce the idea of per-intent parameters for click
models and a Bayesian framework to estimate click probabilities in this case. Below we
describe the contributions in more detail.

T1 Bayesian framework to estimate click probabilities using per-intent parameters of a
probabilistic graphical model (Chapter 4).

T2 A novel evaluation method for click models—click model intuitiveness (Chapter 5).

T3 An evaluation framework for offline metrics based on their agreement with the
outcomes of online experiments (Chapter 6).
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T4 An evaluation framework for offline metrics based on their agreement with user-
reported satisfaction (Chapter 7).

T5 A new evaluation facet for online interleaving experiments—method’s influence on
the user experience (Chapter 8).

1.2.2 Algorithmic Contributions

Algorithmic contributions form the core of the thesis. In all but one research chapters
we suggest concrete algorithms that can be directly applied to existing search engines to
make their operation measurably better.

A1 A method to convert any click model into an intent-aware click model—a model that
accounts for complex SERP structure and distribution of user intents (Chapter 4).

A2 A method to extend any click model beyond the first page of results (Chapter 4).

A3 A method to derive evaluation metrics from click models (Chapter 6).

A4 A user model and an evaluation metric that unite clicks, attention and satisfaction
(Chapter 7).

A5 A method to extend two popular interleaving methods so that they become suitable
for complex SERPs (Chapter 8).

1.2.3 Software Contributions

Open-source software is an important part of our contribution. We contribute in two ways:
(1) by releasing new software libraries, and (2) by contributing to existing projects:

S1 We release a library for training and using click models and click model-based
metrics: https://github.com/varepsilon/clickmodels.

S2 We contribute click model implementations to two other commonly used libraries,
namely PyClick3 and Lerot.4

S3 We release a collection of components used to train and evaluate our CAS model (see
Chapter 7): https://github.com/varepsilon/cas-eval. It contains
the following components:

• a configuration settings for a search proxy;

• client and server code to collect user interaction data via proxy;

• an interface for managing the search log of a user;

• templates and post-processing scripts for relevance crowdsourcing;

• code to train and evaluate CAS model and metric.
3A Python library to work with click models, https://github.com/markovi/PyClick.
4A learning-to-rank library, https://bitbucket.org/ilps/lerot.
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Our clickmodels project S1 is a self-sufficient library we released. It has the new
models we develop in Chapter 4, the machinery to train parameters of a click model-based
metric (Chapter 6) and a method to use click model parameters as ranking features similar
to [25]. Apart from that, it has the basic machinery to work with existing click models as
well as sufficient flexibility to build new models on top of it. For example, PSCM model
by Wang et al. [160] was built on top of our framework.5

The contribution to PyClick [45] includes implementations of some click models,
e.g., DBN [25] and CCM [74], as well as some changes throughout the framework,
ensuring it is currently the most comprehensive, extensible and easy to use library for
working with click models.

Our contribution to Lerot [137], an online learning to rank framework, includes port-
ing some state-of-the-art click models to be used to simulate users as well as implementing
vertical-aware interleaving methods that we introduce in Chapter 8.

1.3 Thesis Overview

Below we present an overview of the thesis structure and give recommendations for
reading directions.

Chapter 1 gives an introduction to the thesis. It starts with a general motivation for
the problem we study, outlines the research questions in Section 1.1, summarizes the main
contributions in Section 1.2, gives overview of the thesis in Section 1.3 (current section)
and lists the origins in Section 1.4.

Chapter 2 gives necessary background and discusses related work.
Chapter 3 introduces some common baselines and basic evaluation metrics used in

Chapters 4–8.
Chapter 4 talks about click models for web search—probabilistic models of user

behavior on a SERP. In that chapter we introduce several new models aimed at modeling
user behavior on a modern complex SERP.

Chapter 5 focuses on evaluating click models. In that chapter we introduce a new
evaluation method specifically geared towards click models for complex SERPs and
present a comprehensive evaluation of basic click models on a number of evaluation
criteria.

Chapter 6 introduces a family of offline evaluation metrics based on click models. It
also establishes a new way of evaluating evaluation metrics based on their agreement with
online experiments.

Chapter 7 goes one step further and enhances evaluation metrics with implicit and
implicit signals related to user attention and user satisfaction. In that chapter we also
introduce an evaluation approach where metrics are compared to each other in terms of
how well they predict user-reported satisfaction.

Chapter 8 approaches the problem of evaluating the user experience from a different
angle, namely it discusses the settings where user experience is evaluated online using
interleaving. We introduce a framework to evaluate online evaluation methods and suggest
two new interleaving methods that can be used in the setting of complex SERPs.

5Their code is available at https://github.com/THUIR/PSCMModel.
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Chapter 9 gives a summary of conclusions for the research chapters and links back to
the research questions introduced in Section 1.1. We also discuss limitations and potential
future directions.

Readers familiar with the basics of IR system evaluation and click modeling may skip the
corresponding parts of the background material offered in Chapters 2 and 3. Chapters 4–6
require basic familiarity with click models, but are independent from each other and can
be read in any order. Chapter 7 largely builds on the material introduced in Chapter 6 and
should be read after it. Finally, Chapter 8 can be read independently of Chapters 4–7 and
only requires familiarity with basic IR evaluation methods introduced in Chapter 3.

1.4 Origins

Below we list publications which form the basis for each research chapter. We use
abbreviations for the author names which should be self-explanatory.

Chapter 4 is based on the paper titled Using Intent Information to Model User Behavior
in Diversified Search by A. Chuklin, P. Serdyukov, and M. de Rijke [41] published
at ECIR’13. The algorithm was designed by AC, experiments and analysis were
performed by AC. All authors contributed to the text, AC did most of the writing.
It is also based on the article titled Modeling Clicks Beyond the First Result Page
by A. Chuklin, P. Serdyukov, and M. de Rijke [43] published as a short paper at
CIKM’13. The algorithm was designed by AC, experiments and analysis were
performed by AC. All authors contributed to the text, AC did most of the writing.

Chapter 5 is based on the paper titled Evaluating Intuitiveness of Vertical-aware Click
Models by A. Chuklin, K. Zhou, A. Schuth, F. Sietsma, and M. de Rijke [44]
published as a short paper at SIGIR’14. All authors contributed to the evaluation
idea. AC and AS contributed equally to the model design. KZ did most of the
experiments and analysis. All authors contributed to the text, AC did most of the
writing.
It also includes some evaluation experiments from the Click Models for Web Search
book by A. Chuklin, I. Markov, and M. de Rijke [45] published by Morgan &
Claypool in 2015. All authors contributed to the synthesis of the material and,
respectively, to the text. AC and IM performed the experiments and analyzed the
results.

Chapter 6 is based on the paper titled Click Model-based Information Retrieval Metrics
by A. Chuklin, P. Serdyukov, and M. de Rijke [42] presented at SIGIR’13. The
method was designed by AC, experiments and analysis were performed by AC. All
authors contributed to the text, AC did most of the writing.

Chapter 7 is based on the paper named Incorporating Clicks, Attention and Satisfac-
tion into a Search Engine Result Page Evaluation Model by A. Chuklin and
M. de Rijke [35] presented at CIKM’16. The method was designed by AC, experi-
ments and analysis were performed by AC. Both authors contributed to the text,
AC did most of the writing.
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It also draws motivation from the paper titled Good Abandonments in Factoid
Queries by A. Chuklin and P. Serdyukov [37] presented as a poster at WWW’12.
The method was designed by AC, experiments and analysis were performed by AC.
Both authors contributed to the text, AC did most of the writing.

Chapter 8 is based on the journal article, A Comparative Analysis of Interleaving Meth-
ods for Aggregated Search by A. Chuklin, A. Schuth, K. Zhou, and M. de Rijke [48]
published at TOIS in 2015, which itself is an extended version of the paper titled
Evaluating Aggregated Search Using Interleaving by A. Chuklin, A. Schuth, K. Hof-
mann, P. Serdyukov, and M. de Rijke [40] published at CIKM’13. AC suggested
the interleaving methods, implemented them and did most of the experiments and
analysis. AS did most of the simulation-based experiments and their analysis in the
original CIKM’13 version of the paper. KH contributed most to the analysis of the
unbiasedness results in the original CIKM’13 version. Most of the new experiments
for the extended TOIS’15 version, including those based on simulations, were done
by AC. All authors contributed to the text, AC did most of the writing.

Apart from the papers listed above there were several other publications that contributed
to this thesis. Multiple tutorials given at SIGIR’15, WSDM’16 and RuSSIR’16 [46, 47,
49, 50] as well as the co-authored paper [73] presented at CLEF’15 helped to shape the
story of click models and their applications. Work on good abandonments [38, 39] helped
to understand the problem better and gain motivation for need to go beyond clicks in
Chapter 7, while [33] determined the design of the metric used in that chapter.

Work on other aspects of aggregated search [34, 113] helped in understanding the
problem of modern complex SERPs better, while work on result filtering [36] was a useful
diversion to a different area of information retrieval. Finally, work on file synchronisa-
tion [32] from the area of information theory helped in forming general computer-science
thinking and research-related programming skills early on.
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Background

In this chapter we discuss the required background and the previous work that the thesis
builds upon. We start with a general introduction to information retrieval in Section 2.1,
then move to areas of particular importance for the thesis: vertical search in Section 2.2,
user modeling in Section 2.3, offline evaluation in Section 2.4 and online evaluation in
Section 2.5.

We then study the main basic concepts in greater detail in Chapter 3.

2.1 Information Retrieval

The term information retrieval (IR) was introduced by Mooers [116]. He advocated for it
to become a separate area of research, distinct from database research. And he was right,
an ACM Special Interest Group on Information Retrieval was formed and now organizes
a yearly SIGIR conference along with many other conferences and forums; there are also
other groups around the globe supporting research in IR.

The initial focus for IR was on indexing and matching [162]. Similar to a book that
has an index of terms in the back, one can build an index1 of the words appearing in
a collection of documents. If a user comes with an information need expressed by a
query, we can split the query by words (query terms) and retrieve the documents from
the index where each of the query terms appear. Many optimizations have been proposed
for matching and retrieval since then [176] and there is still work being published on
optimizing this first step of the search process (see, e.g., [17]).

With the rapid growth of the size of document collections, especially the World Wide
Web, ranking retrieved documents became an important problem. It was often no longer
possible for a user submitting a query to examine all documents returned. Even when it is
possible, it is a tedious job that can be helped by algorithms. Apart from that, the users are
often unable to precisely specify their information need as a bag-of-words query [14], so
a search engine should aid them in the process of information discovery. To address these
issues search engines—or IR systems as we often call them—started ranking documents
according to their match to the user’s query. One of the simplest approaches to ranking the
retrieved documents is to order them by the term frequency (TF), the number of times the
query terms appear in the document [110]. Another ranking signal is the inverse document

1Sometimes referred to as inverted index.
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frequency (IDF), one over the number of documents the term appears in. Intuitively, if the
term appears only in a handful of documents, it is likely to be an important term for that
query. Conversely, if a term appears in many documents it is likely to be a common word,
such as an article or the verb “to be.” To use this signal for ranking, one multiplies the TF
score by it to get the so-called TF.IDF score [150].2 Both TF and TF.IDF scores are still
used these days, albeit as part of a bigger ranking model.

With the development of more complex ranking functions such as best match 25
(BM25) by Robertson et al. [128] it became necessary to evaluate the quality of IR
systems. The first systematic study of rating query-document pairs and comparing ranking
functions was done in the context of the Cranfield project [55–57] which we cover in
more detail in Section 2.4.

The next step after ranking results is their presentation on a search engine result
page (SERP). Instead of just showing a list of links, nowadays we augment them with
document titles and small snippets extracted from the document and biased towards the
query [136, 156]. As was shown by Dumais et al. [68], it is also helpful to organize results
on the page by their sub-topics because it facilitates the information consumption. This
idea was adopted in what is now called aggregated or vertical search and is closely related
to the notion of federated search. We discuss vertical search in more detail in Section 2.2.

After results are presented to the user and the user interacted with them, their actions
are stored in a search log and can be analyzed. Apart from observational studies, the
search log can be used to build a model of user behavior (Section 2.3) or to interpret user
actions as implicit quality signals, thus performing so-called online quality evaluation
(Section 2.5). More on that in the corresponding sections below.

For a more comprehensive overview of the history of IR one can refer to [134]. A general
introduction to the area is well described in a book by Manning et al. [111] as well as
some earlier work by Spärck Jones [149] and Baeza-Yates et al. [13].

2.2 Vertical Search

The first topic we will dive deeper into is the so-called vertical search, a paradigm where
the SERP is composed of results coming from different verticals, such as an Image, News
or Web vertical. Vertical search is also sometimes referred to as aggregated search (AS)
or even federated search, although one may argue that the latter is more concerned with
selecting and routing queries to vertical search engines rather than aggregating results
on a SERP (see, e.g., [60, 120, 144]). We claim that the paradigm of a heterogeneous
SERP aggregated from different verticals has become de-facto standard of modern web
search and therefore the topics we discuss in this section resonate well with the rest of the
material throughout the thesis.

Dumais et al. [68] demonstrated that users are more efficient with their goals whenever
search results are organized according to sub-topics. Moreover, Radlinski and Dumais
[125] showed that it is useful to diversify results returned to the user. A good example is a
query [jaguar] which may refer to an animal, car brand or, at some point in history, to

2In practice, IDF undergoes log-transformation to avoid skewness.
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an operating system. Showing results for all those distinct intents helps to improve overall
user satisfaction.

Classical vertical search deals with organizing results coming from different special-
ized ranking systems (verticals) into one unified SERP. If the results from a vertical are
deemed to be suitable for the query, they are placed in a grouped manner somewhere on a
SERP. Usually there are three or four insert positions—slots—where vertical results can
be placed [121], although some search engines do not follow this practice [152].

The vertical search problem is usually split in two tasks: vertical selection and vertical
ranking. Vertical selection deals with determining which verticals are relevant to the given
query, while vertical ranking is the problem of deciding which vertical block should be
placed higher than others. There are several papers following the vertical approach that
aim at solving these tasks (e.g., [5–7]). The problem of aggregated search evaluation also
received some attention [8, 122, 171].

An alternative approach where vertical results are all ranked together with an objective
of optimizing diversity in addition to relevance, also attracted some attention in both
academia and industry [1, 153].

The search engine that introduced such aggregated (or faceted) search interface early
on was Naver.3 There, a SERP can contain more than ten results per query—in fact, many
more—and results are always organized into separate groups, one for each vertical [142].
Yahoo! Search4 and Bing5 historically inserted blocks of vertical documents on fixed
positions (slots) in addition to the organic web search documents [7, 122]. Yandex6 allows
vertical blocks to appear in any position [41], and the same appears to hold for Google.7

2.3 User Modeling

As we have mentioned already, by processing a search log, we can come up with a model
of user behavior that can be used to simulate user’s actions. Clicks are a type of interaction
that appear on both desktop and mobile search and are easily accessible for any search
engine. Therefore, we are going to focus first and foremost on click models, although
there are now some early attempts to predict user mousing [62] instead of clicks which
we also employ in our work (see Chapter 7).

Perhaps the first work that used the term “click model” was the paper by Craswell
et al. [59] in which the cascade model (CM) was introduced. This work also considered a
number of other models that are based on the position bias hypothesis—an observation
that results lower in the rank get less attention and, consequently, fewer clicks. The
position bias had previously been established by Joachims et al. [92] using eye tracking
and click log analysis. Prior to the work of Craswell et al. a couple of models that we now

3http://www.naver.com, the most used search engine in South Korea as of 2015.
4https://search.yahoo.com, a global search engine with a significant market share in Hong Kong

and Taiwan as of 2015.
5https://www.bing.com, a global search engine with a significant market share in the United States

as of 2015.
6https://yandex.com, the most used search engine in Russia with a significant market share in several

other countries as of 2015.
7https://www.google.com, a global search engine with more than a billion monthly active users as

of 2015.
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call click models had been introduced for the sake of ranking evaluation [70, 115].
Following the publication of [59], the user browsing model (UBM) was introduced

by Dupret and Piwowarski [69], the dynamic Bayesian network (DBN) model by Chapelle
et al. [26], and the dependent click model (DCM) by Guo et al. [74]. Most click models
that have been introduced since then are based on one of those three models. We discuss
these and several other models in more detail in Section 3.1.

For parameter estimation, mostly maximum likelihood estimation (MLE) and expecta-
tion maximization (EM) are used (see, e.g., [45]), but there is some work that explores
other methods. For example, Liu et al. [106] used the same assumption as in the UBM
model, but proposed a faster inference algorithm. Zhang et al. [168] suggested a so-called
deep probit Bayesian inference for more accurate estimation that uses query-document
matching scores, while Shen et al. [143] suggested to leverage existing work on matrix
factorization and collaborative filtering for more accurate estimation of model parameters
for previously unseen query-document pairs.

In more recent years, quite a few improvements to the basic click models have been
suggested. For instance, once search engines began to present their search results as
blocks of verticals aggregated from different sources (see Section 2.2), click models for
aggregated search started to receive their rightful attention [28, 159]. We also contribute
to this effort in Chapter 4.

Overall, the development of click models goes hand in hand with their applications.
For example, recent research on analyzing mouse movements has been applied to improve
click models in [88]. And as web search is rapidly becoming more personalized [66, 155],
this is also reflected in click models; see, e.g., [163]. Another direction is taken by
Zhang et al. [169], who go beyond a single query by modeling user tasks in a so-called
task-centric click model. We believe these directions are going to be developed further,
following the evolution of search engines.

Above we briefly discussed background material on user models, mainly click models.
User models are the main object of study in Chapters 4 and 5, while Chapters 6 and 7
focus on a particular application thereof, namely user model-based offline evaluation
models. Finally, we also use click models in Chapter 8 to simulate users. For a more
technical overview of the basic click models we refer to Section 3.1. For a comprehensive
survey on click models one can also consult [45].

2.4 Offline Evaluation

Cranfield-style evaluation, as put forward by Cleverdon et al. [55–57], assumes the
following protocol to evaluate ranking quality of a search engine. First, collections of
queries and documents are created. Then documents are rated by independent judges—
assessors—to determine how well the document matches the query. In the simplest case
the ratings are 0 or 1, that is, the document is either irrelevant or relevant to the query.
Nowadays graded relevance scores are often used, usually three or four grades, e.g.,
Irrelevant, Marginally Relevant, Relevant, Perfect Match are the names we use for the
relevance grades in Chapter 7. For each new ranking function we then compute some
quality metric based on the relevance scores assigned by assessors and average it across
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the query collection. An example of such a quality metric would be the average number
of relevant documents amongst the top ten returned by the system (see Section 3.2.1).

The benefit of this approach is that we can try many new ranking functions without the
need to repeat the time-consuming and costly process of collecting ratings. This allows
us to have many iterations of ranking function development without the need to try each
iteration on real users. We can even optimize our ranking function directly to maximize a
metric. This is why we call such metrics offline metrics, that is, they do not require us to
deploy the system live, as opposed to online metrics discussed in the next section.

Assessors can be trained judges doing this work for a long time. Alternatively,
assessors can be crowd workers, sourced by one of the crowdsourcing platforms [4], such
as Amazon Mechanical Turk,8 CrowdFlower9 or Yandex.Toloka.10

As document collections become larger, the task of collecting ratings for all query-
document pairs becomes infeasible. In that case a technique called pooling is applied [148],
whereby top-N documents retrieved by several ranking systems are sent for rating. To
avoid being stuck with the same documents, this technique is best applied in a living
evaluation lab setting, where new systems are constantly added, the pool is updated and
the new documents are rated. There are multiple avenues for such data collection, most
popular are the benchmarking efforts run as part of various conferences: TREC11 in North
America, CLEF12 in Europe and NTCIR13 in Asia. The competitions run regularly, with
teams from various institutions submitting the output of their ranking systems and thus
providing candidates for pooled rating collection.

Even when the new judgements are constantly collected, we often have to deal with
missing relevance judgements [18, 20, 131] and the fact that some documents may never
be seen by raters. This suggests that alternatives to pooling should be sought, and, in fact,
there was some work exploring this direction [19, 23, 105, 135]. We also consider the
problem of missing judgements when analysing metrics in Chapter 6.

The creation of traditional test collections against reduced costs has received con-
siderable attention. Carterette and Allan [22] and Sanderson and Joho [135] discussed
approaches to building test sets for evaluation at low cost. Azzopardi et al. [12], Berendsen
et al. [15] went a step further and described methods for automatically generating test
collections and training material for learning-based rankers, respectively. Buckley and
Voorhees [18] introduced a new metric called bpref to use in a setup where we have
missing relevance judgements. Sakai [131] proposed an alternative solution that does not
require a new metric. Apart from evaluation metrics, there are other interesting problems
arising when dealing with large query sets; these are addressed by the TREC Million
Query Track [3] and further studied by Carterette et al. [24].

On the metric side, precision and recall have long been standard metrics in computer
science and statistics. Then, metrics designed for ranked lists such as average precision
and discounted cumulative gain (DCG) started to emerge, which we cover in more detail

8https://www.mturk.com, as of 2016 limited to researchers from Australia, Canada, the United
Kingdom and the United States.

9https://www.crowdflower.com, available to researchers from most of the world as of 2016.
10https://toloka.yandex.com, available to researchers from most of the world as of 2016.
11Text REtrieval Conference.
12Conference and Labs of the Evaluation Forum.
13NII (National Institute of Informatics) test collection for information resources.
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2. Background

in Section 3.2. More recently metrics for diversification and aggregated search have been
suggested. If we assume that each document has separate relevance labels for different
query intents, we get a family of intent-aware metrics by Agrawal et al. [1] as well as other
metrics addressing the problem of diversity: ERR-IA by Chapelle et al. [26], ↵-NDCG
by Clarke et al. [52], and D7-NDCG by Sakai and Song [133]. ERR-IA has become a
standard metric for the TREC diversity track [53]. These diversity-aware metrics can
also be adopted to the aggregated search settings. Alternatively, one can use a dedicated
aggregated search metric such as the aggregated search metric based on rank-biased
precision (ASRBP) [171].

Above we discussed the history and the main areas of research for offline search evaluation.
We discuss several widely-used metrics in Section 3.2. For a survey-like overview one
may refer to [94].

2.5 Online Evaluation

While offline evaluation has its advantages and is still widely used, there exist another
method, namely running experiments with real users. Sometimes it is the only way of
doing studies due to the sensitivity of the data (e.g., one cannot use assessors to rate results
of an email search engine due to obvious privacy concerns) or simply because rating
documents would be too expensive or too slow for a small search engine to afford. And,
perhaps, the most important advantage of online evaluation is that one can often interpret
the signals unambiguously where the users serve as final judges of quality—if the users
engage with the search more often, or, perhaps, buy more (in the case of a product search
engine), it is a clear signal of search quality improvement.

There are two lines of work addressing the problem of online search quality evaluation.
First is a pairwise A/B-testing approach (see, e.g., [99]), where two different versions of
the system (called A and B) are deployed to a small percentage of the user base, say, 1%

each, and the user behavior is observed. We should stress that this type of experiment
is used widely and not just for search engine evaluation: one can use it to compare two
versions of virtually any system, also outside information and communication technology.
The trick is how to interpret user behavior and decide which system should win the
comparison. For search engines looking just at total number of clicks—click-through
rates (CTRs)—would be wrong, because users are subject to different kinds of bias as
was shown by Joachims et al. [93]. Abandonment rate as well as other simple SERP-level
signals (see Section 3.3) are widely used, although, they are not able to capture long-term
user retention. On the other hand, experiments with user retention as a metric take long
to converge as its sensitivity is relatively low [100, 101]. Recently several methods have
been suggested that are aimed at improving sensitivity of click metrics and at optimizing
the schedule of A/B-testing experiments [61, 67, 97, 98].

Another line of work is interleaving. Unlike A/B-testing where two different versions
of the SERP are shown to different users, in interleaving experiments we mix the results of
the two systems in the same SERP and show it to a single user. This setup helps to greatly
improve sensitivity over absolute online metrics because we eliminate variance due to user
differences [27, 84]. Before the word “interleaving” was coined by Radlinski et al. [127],
the method itself was described in [91]. Several other algorithms aimed at interpreting
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user clickthrough data for evaluation and learning were suggested [90, 126], but these
alternative evaluation approaches did not gain as much popularity as interleaving.

The two most commonly used interleaving methods are team-draft interleaving
(TDI) [127] and balanced interleaving (BI) [91]. TDI can be described as follows.
For each user query we build an interleaved list L whose documents are contributed by
rankings A and B, the two rankings that we want to compare. This interleaved list is
then shown to the user and the user’s clicks are recorded. The system that contributes
most of the documents clicked by the user is inferred to be the winner for the particular
query-user pair; the system that wins for most such pairs is then considered to be the
better system. BI uses a different algorithm to build an interleaved list L and a more
sophisticated procedure for determining the winner. These interleaving methods, as well
as their modifications, were extensively studied in [27, 83].

Other interleaving methods include document constraints interleaving (DCI) by He
et al. [79] and probabilistic interleaving (PI) by Hofmann et al. [80]. DCI produces
interleaved lists similar to BI, but it has a different and more involved way of determining
the winner by computing which ranking violates the smallest number of constraints. PI
has the advantage that historical interaction data can be easily reused using importance
sampling, for instance in an online learning to rank setting [82] or potentially also in an
evaluation setting. However, because PI relies on probabilistic rankers, it risks showing
the user results of the poorly performing rankers that are not related to the original rankers
being interleaved, which may affect the user experience [83].

A more recent approach to generating interleaved pages, called optimized interleaving
(OI), was proposed by Radlinski and Craswell [124]. This method does not have the
drawbacks of PI. Unlike TDI, it first enumerates all the possible interleaved lists and then
assigns probabilities, according to which an interleaved list is drawn. This probability
distribution is selected such that the comparison is unbiased and such that it has optimal
sensitivity.

Finally, Schuth et al. [138, 139] suggested extending interleaving beyond two sys-
tems obtaining a method called multileaving where multiple systems are compared at
once, therefore allowing for faster iterations of quality improvements and faster online
learning [141].

Above we discussed different approaches to evaluating system’s quality online. Our
Chapter 8 is entirely devoted to online evaluation and its adaptation to the case of complex
heterogeneous SERPs. In Chapter 6 we compare offline metrics to online quality signals,
while in Chapter 7 we use online metrics to demonstrate that looking only at clicks is
insufficient to understand user’s satisfaction. Below, in Section 3.3 we detail on the
absolute online evaluation metrics that we use later in the thesis.
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3
Basics

In this chapter we provide a detailed overview of the algorithms and methods used
throughout the thesis. First, we present the basic click models and basic offline evaluation
metrics that will be used in Chapters 4–8 and Chapters 6–8, respectively. Then we present
online evaluation methods used in Chapters 6–8.

3.1 Basic Click Models

Click data has always been an important source of information for search engines. It is,
however, an implicit signal—we do not always understand how user behavior correlates
with user satisfaction as user’s clicks are biased. Following Joachims et al. [92], who
conducted eye-tracking experiments, there was a series of papers that model user behavior
using probabilistic graphical models (PGMs).1

The basic models described below are used throughout the thesis for different purposes.
Chapters 4 and 7 use them as baselines. In Chapter 5 the models are the objects that we
study and whose evaluation we discuss. In Chapters 6 and 7 we build evaluation metrics
on top of click models. Finally, in Chapter 8 we apply click models to simulate users.

A click model can be described as follows. Let us assume that a user submits a query
q to a search engine and gets back a list of results: u

1

, . . . , u

n

. Given a query q we
denote a session to be a set of events experienced by the user since issuing the query until
abandoning the result page or issuing another query. Note that one session corresponds to
exactly one query. The minimal set of random variables used in all models to describe user
behavior are examination of the r-th document (E

r

) and click on the r-th document (C
r

):

• E

r

indicates whether the user looked at the document2 at rank r (hidden variables).

• C

r

indicates whether the user clicked on the r-th document (observed variables).

Note that for the sake of simplicity we use the rank r as a subscript for the random
variables and not the query-document index uq. We are going to use these notations
interchangeably, writing either X

uq

, X

u

or X

r

depending on the context.

1See [102] for a general introduction to PGMs.
2Here and below we refer to the snippet as it appears on the SERP, not the full document behind the click.
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In order to define a click model we need to denote dependencies between these
variables. As there are many ways to do that, there exist a great variety of click models,
some of which are presented below.

3.1.1 Random Click Model (RCM)
The random click model (RCM) assumes that a document is clicked with probability ⇢

regardless of document position and its perceived relevance:

P pC
r

“ 1q “ ⇢. (3.1)

This model has only one parameter ⇢ that is either inferred from the data or set to some
value, like, e.g, 0.5.

Two simple extension of this model are:

• Rank-based CTR model (RCTR) where click probabilities are different for each
rank: P pC

r

“ 1q “ ⇢

r

.

• Document-based CTR model (DCTR) where click probabilities are different for
each query-document pair: P pC

u

“ 1q “ ⇢

uq

.

See [45] for more details.

3.1.2 Position-based Model (PBM)

document 
u

E

u

C

u

A

u

↵

uq

�

r

u

Figure 3.1: Graphical representation of the position-based model.

Many click models include a so-called examination hypothesis:

C

u

“ 1 ô E

u

“ 1 and A

u

“ 1, (3.2)

which means that a user clicks a document u if, and only if, she examined the document
(E

u

“ 1) and was attracted by the document (A
u

“ 1). The random variables E

u

and A

u

are usually considered independent.
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The simplest model that uses the examination hypothesis introduces a set of document-
dependent parameters ↵ that represent the attractiveness3 of documents on a SERP:

P pC
u

“ 1 | E

u

“ 1q “ P pA
u

“ 1q “ ↵

uq

. (3.3)

We should emphasize that attractiveness here, or probability of click given examination, is
a characteristic of the document’s snippet (sometimes referred to as document caption),
and not the full text of the document. As was shown by Turpin et al. [157], this parameter
is correlated with the full-text relevance obtained from judges in a TREC-style assessment
process, but there is still a substantial discrepancy between them.

Joachims et al. [92] shows that the probability of a user examining a document depends
heavily on its rank or position on a SERP and typically decreases with rank. That was also
confirmed by Zhang et al. [167]. To incorporate this intuition into a model, we introduce
a set of examination parameters �

r

, one for each rank.4 This position-based model (PBM)
was formally introduced by Craswell et al. [59] and can be written as follows:

C

u

“ 1 ô E

u

“ 1 and A

u

“ 1 (3.4)
P pA

u

“ 1q “ ↵

uq

(3.5)
P pE

u

“ 1q “ �

r

u

. (3.6)

The corresponding graphical model is shown in Figure 3.1.

3.1.3 Rank-biased Precision (RBP) Model

If we take PBM (3.4)–(3.6) introduced above and, instead of learning it from data, set
the examination probability P pE

r

“ 1q “ �

r

to p

r´1 for some parameter p, we obtain
the model behind the rank-biased precision metric [115]. By doing so we reduce the
parameter space for � from n ´ 1 parameters (�

r

for r from 2 to n) to just one parameter
p, which, as in case of RCM, can be either learned from the data or set to some fixed
value.

3.1.4 Cascade Model (CM)

The cascade model (CM) [59] assumes that a user scans documents on a SERP from top
to bottom until he or she finds a relevant document. Under this assumption, the top ranked
document u

1

is always examined, while documents u

r

at ranks r • 2 are examined if,
and only if, the previous document u

r´1

was examined and not clicked. If we combine
this idea with the examination assumptions (3.4) and (3.5), we obtain the cascade model

3It is sometimes referred to as perceived relevance or just relevance of a document.
4Strictly speaking, in PBM we assume that the first document is always examined, so �1 always equals 1,

and we therefore have one less parameter.
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document u
r

document 
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Figure 3.2: Graphical representation of the cascade model (fragment).

as introduced by Craswell et al. [59]:

C

r

“ 1 ô E

r

“ 1 and A

r

“ 1 (3.7)
P pA

r

“ 1q “ ↵

u

r

q

(3.8)
P pE

1

“ 1q “ 1 (3.9)
P pE

r

“ 1 | E

r´1

“ 0q “ 0 (3.10)
P pE

r

“ 1 | C

r´1

“ 1q “ 0 (3.11)
P pE

r

“ 1 | E

r´1

“ 1, C

r´1

“ 0q “ 1. (3.12)

The corresponding graphical model is shown in Figure 3.2.
The key difference between the cascade model (CM) and the position-based model

(PBM) is that the probability of clicking on a document u

r

in PBM does not depend on
the events at previous ranks r

1 † r whereas in CM it does. In particular, CM does not
allow sessions with more than one click, but such sessions are totally possible for PBM.

3.1.5 User Browsing Model (UBM)

document u
r

E

r

C

r

A

r

...

↵

u

r

q

�

rr

�

Figure 3.3: Graphical representation of the user browsing model (fragment).
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The user browsing model (UBM) by Dupret and Piwowarski [69] is an extension of PBM
that has some elements of the cascade model. The idea is that the examination probability
should take previous clicks into account, but should mainly be position-based. To achieve
that, we assume that it depends not only on the rank of a document r, but also on the rank
of the previously clicked document r

1:5

C

r

“ 1 ô E

r

“ 1 and A

r

“ 1 (3.13)
P pA

r

“ 1q “ ↵

u

r

q

(3.14)
P pE

r

“ 1 | C

1

“ c

1

, . . . , C

r´1

“ c

r´1

q “ �

rr

1
, (3.15)

where r

1 is the rank of the previously clicked document or 0 if none of them was clicked.
In other words:

r

1 “ max tk P t0, . . . , r ´ 1u : c

k

“ 1u, (3.16)

where c

0

is set to 1 for convenience.
Alternatively, (3.15) can be written as follows:

P pE
r

“ 1 | C†r

q “ P pE
r

“ 1 | C

r

1 “ 1, C

r

1`1

“ 0, . . . , C

r´1

“ 0q “ �

rr

1 (3.17)

Figure 3.3 shows a graphical representation of UBM. The set of arrows on the left
means that the examination probability P pE

r

“ 1q depends on all click events C

k

at
smaller ranks k † r. Click on rank r, denoted by C

r

, in turn, influences all examination
probabilities further down the ranked list (hence, the set of arrows on the right side).

3.1.6 Dynamic Bayesian Network (DBN) Model
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Figure 3.4: Graphical representation of the dynamic Bayesian network model (fragment).

Apart from the examination probability E

r

, attractiveness probability A

r

and click prob-
ability C

r

, the dynamic Bayesian network (DBN) model [25] also introduces a set of

5Instead of the rank of the previously clicked document r1, the distance d “ r ´ r1 to this document was
used in the original paper [69], which is equivalent to the form we use.
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random variables S

r

, one for each document on a SERP, corresponding to the user’s satis-
faction after clicking the document at rank r. The DBN model extends CM, and unlike
CM it assumes that the user’s perseverance after a click depends on the actual relevance6

�

uq

, and not the perceived relevance ↵

uq

. In other words, DBN introduces another set of
document-dependent parameters. The model, then, can be written as follows:

C

r

“ 1 ô E

r

“ 1 and A

r

“ 1 (3.18)
P pE

1

“ 1q “ 1 (3.19)
P pA

r

“ 1q “ ↵

u

r

q

(3.20)
P pS

r

“ 1 | C

r

“ 1q “ �

u

r

q

(3.21)
P pS

r

“ 1 | C

r

“ 0q “ 0 (3.22)
P pE

r

“ 1 | E

r´1

“ 0q “ 0 (3.23)
P pE

r

“ 1 | S

r´1

“ 1q “ 0 (3.24)
P pE

r

“ 1 | E

r´1

“ 1, S

r´1

“ 0q “ �, (3.25)

where � is the continuation probability for a user who either did not click on a document
or clicked but was not satisfied by it. The graphical model is shown in Figure 3.4.

A simplification of the DBN model, called simplified dynamic Bayesian network
(SDBN) is often used. It assumes that � “ 1 which greatly simplifies the model training
and application. As we will see in Chapter 5, its performance is close to the performance
of the full DBN.

If we further assume that �

u

r

q

” 1 (a click is equivalent to satisfaction), the SDBN
reduces to the CM. Another way to reduce SDBN to CM is to set ↵

u

r

q

to 1, which would
give a model that is mathematically equivalent to CM, albeit with different parameter
names.

3.1.7 Dependent Click Model (DCM)
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Figure 3.5: Graphical representation of the dependent click model (fragment).

The dependent click model (DCM) by Guo et al. [74] is another extension of the cascade
model that is meant to handle sessions with multiple clicks. The only difference between

6This parameter is often referred to as the satisfaction probability.
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DCM and SDBN is that the satisfaction probability P pS
r

“ 1q depends not on the
document itself but on its position r in a ranked list. Thus, the DCM model can be
described with the following equations (cf. (3.18)–(3.25)):

C

r

“ 1 ô E

r

“ 1 and A

r

“ 1 (3.26)
P pE

1

“ 1q “ 1 (3.27)
P pA

r

“ 1q “ ↵

u

r

q

(3.28)
P pS

r

“ 1 | C

r

“ 1q “ �

r

(3.29)
P pS

r

“ 1 | C

r

“ 0q “ 0 (3.30)
P pE

r

“ 1 | E

r´1

“ 0q “ 0 (3.31)
P pE

r

“ 1 | S

r´1

“ 1q “ 0 (3.32)
P pE

r

“ 1 | E

r´1

“ 1, S

r´1

“ 0q “ 1, (3.33)

The corresponding graphical model is shown in Figure 3.5.

3.2 Basic Offline Metrics

In this section we present the basic metrics used to evaluate IR systems. The general
approach, often referred to as the Cranfield evaluation paradigm, assumes there is a
collection of query-document pairs that are rated by so-called assessors or raters. For
each document u there is a relevance score R

u

that quantifies how well the document
matches the user query q. The role of an evaluation metric then is to aggregate the scores
of all documents in a SERP. Since there are different ways to aggregate relevance scores,
we have different evaluation metrics. We call them offline metrics, because they can be
computed offline and are not based on the users of a live search engine.

Offline metrics presented below are used in multiple chapters. In Chapters 6 and 7
they are used as baselines and compared against. Apart from that, they are used directly
as a measurement tool in parts of Chapters 7 and 8.

3.2.1 Precision

The simplest metric used with the binary relevance is the precision-at-n, which tells us
how many relevant documents are there in the top-n:

Precision “ P@n “ 1

n

n

ÿ

r“1

R

r

, (3.34)

where R

r

is the (binary) relevance of the document at rank r. This equation can also be
viewed as an average relevance of the documents in the SERP.
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3.2.2 Average Precision (AP)
The next step is to approximate the area under the precision-recall curve to get a sense of
precision at different recall levels (as opposed to precision at a fixed rank):

AP “
∞

n

r“1

P@r ¨ R

r

∞

n

r“1

R

r

, (3.35)

which is equivalent to precision values averaged across ranks of the relevant documents.

3.2.3 Rank-biased Precision (RBP)
As the documents lower in the rank have to be less important, the idea of rank discounting
was proposed. One way of discounting has been suggested by Moffat and Zobel [115]:

RBP “
n

ÿ

r“1

p

r´1 ¨ R

r

, (3.36)

where p is the discounting parameter. When p equals 1, the RBP falls back to Preci-
sion (3.34). The optimal value of the parameter may be learned from data (see Sec-
tion 3.1.3) or set to different values to see how it affects the outcome.

3.2.4 Discounted Cumulative Gain (DCG)
Discounted cumulative gain (DCG) is another discounting method introduced by Järvelin
and Kekäläinen [89]. Apart from a different rank-dependent discounting factor, it also
assumes a graded relevance. It transforms relevance grades7

R ranging from 0 to Rmax
into real values using the following transformation:

⇢pRq “ 2

R ´ 1

2

Rmax
. (3.37)

The DCG metric can then be written as follows:

DCG “
n

ÿ

r“1

⇢pR
r

q
log

2

p1 ` rq . (3.38)

3.2.5 Normalized Discounted Cumulative Gain (NDCG)
One modification of DCG called normalized discounted cumulative gain (NDCG) is
somewhat widely used in academia. To compute this metric one first computes the DCG
of an ideal SERP where the most relevant documents are put on top and then normalizes
on that value:

NDCG “ DCG
DCGideal

. (3.39)

Since we cannot obtain relevance ratings for all the documents in the world, we cannot
compute DCGideal precisely and have to approximate it by the DCG of the SERP made of

7In the case of the TREC 2011 Web Track dataset Rmax “ 3, i.e., there are four grades.
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the best rated documents. Not only is this metric hard to compute, but one may argue that
it behaves incorrectly when aggregated across multiple SERPs. For instance, the system
that performs well for “hopeless” queries—the queries where DCGideal is low—can in
theory have higher average NDCG then the system that performs well for easier queries,
where DCG can be brought up to the level useful for the user. On top of that, as was
shown by Chapelle et al. [26], the NDCG metric is worse at capturing user satisfaction
than DCG.

3.2.6 Cumulative Gain (CG)

There also exists a non-discounted variant of DCG:

CG “
n

ÿ

r“1

⇢pR
r

q, (3.40)

which is the same as precision in case of binary relevance and differs from it in case of
graded relevance.

3.2.7 Expected Reciprocal Rank (ERR)

Finally, another widely used offline metric, expected reciprocal rank (ERR), was suggested
by Chapelle et al. [26] and is based on the cascade model introduced in Section 3.1.4:

ERR “
n

ÿ

r“1

˜

⇢

r

r´1

π

i“1

p1 ´ ⇢

i

q
¸

¨ 1

r

, (3.41)

where ⇢

i

“ ⇢pR
i

q is the same transformation (3.37) as in DCG.

3.3 Basic Online Metrics

A/B-testing, an approach complementary to the Cranfield evaluation paradigm, involves
deploying two versions of a system live and comparing various quality metrics based on
click signals obtained from the users.

Below we present several commonly used such online quality metrics that we will
later use in Chapters 6–8 to compare our evaluation methods against. We give definition
for one session even though the metrics are usually averaged for many sessions over a
certain period.

• UCTR—binary value representing a click (the opposite of abandonment).

• QCTR (or simply CTR)—number of clicks in a session.

• MaxRR, MinRR, MeanRR—maximum, minimum and mean reciprocal rank (1{r)
of clicks. Following the work of Radlinski et al. [127] we exclude pages with no
clicks when computing these metrics to avoid correlation with UCTR.
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• PLC8—the number of clicks divided by the rank of the lowest click. This is the
opposite of pSkip used in [27].

• Clicks@1—equals 1 if there was a click on the top-1 document, 0 otherwise.

In Chapter 6 these metrics are used as ground truth to show the link between the offline
metrics—both the new ones introduced in those chapters and the basic ones discussed in
Section 3.2—and the online metrics discussed here. In Chapter 7 we use online metrics
to demonstrate a non-trivial dependency between user behavior and the SERP quality.
In Chapter 8 we introduce one vertical-specific online metric and then compare all the
absolute metrics to pairwise interleaving methods, both classic ones and the new ones that
we introduce.

8Precision at the lowest click.
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A result page of a modern search engine often contains documents of different types
targeted to satisfy different user intents (news, blogs, multimedia). In general, modern
SERPs are not just infinite lists of homogeneous results: the results are heterogeneous and
the results list, though usually long, is not presented all at once, but is initially truncated
to around ten results. All this introduces distortion into user interaction patterns. When
evaluating performance of a search system and making design decisions we need to better
understand user behavior on such complex result pages. To address this problem various
click models have previously been proposed.

In this chapter we introduce a number of modifications to existing click models to
improve their performance on complex SERPs. We suggest several ways to improve
existing click models to take into account SERP structure and aggregated user information.
This corresponds to the following research questions:

RQ1.1 How can we use page layout information to improve click models?

RQ1.2 How can we use aggregated user characteristics such as vertical orientation to
improve existing click models?

The following Chapter 5 concerns the questions of evaluating click models, both simple
and complex ones. Chapters 6 and 7 discuss an important application of click models—
search quality evaluation, while in Chapter 8 we use click models to simulate users.

4.1 Introduction

In this chapter we study two aspects of a search engine result page: the pagination button
and vertical search. We show that both of them need to be accounted for while building a
click model. The pagination button is a simple element of virtually any search interface,
yet it was not previously taken into account by click models. We use it as an example to
show how click models can be improved if we start considering such simple user interface
elements. Vertical search (Section 2.2), on the other hand, is the de-facto standard of
present-day SERPs and therefore we have to design click models with vertical search in
mind.
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Figure 4.1: Result page switching (pagination) buttons.

A result page of a modern search engine, whether commercial or not, usually has
buttons leading to more results; Figure 4.1 shows an example of such buttons. There, the
user can switch to the next page of results either by using the page number (e.g., “2”) or
by clicking the “Next” button. We have a similar setup in our experiments. By analyzing
the 2012 click log of the Yandex search engine we learned that one third of all users uses
the pagination buttons at least once a week. At the query level, with probability 5–10%,
a user will go to the second result page. This number is even bigger for further result
pages—once she has switched to the second page, a user often continues to the third
and fourth pages, and this probability is at least five times bigger than the probability of
switching from the first to the second page.1 On average, the users examine 1.1 pages.
These facts suggest that we need to pay more attention to the ranking of documents below
the first result page—such documents have a non-trivial click pattern and are examined by
a substantial number of users. We argue that existing click models do not properly model
the click skewness caused by the need for switching pages. We propose a modified DBN
click model (see Section 3.1.6 for background), that explicitly includes into the model the
probability of transitioning between result pages.

Another distinct feature of contemporary search engines is diversification of re-
sults (see Section 2.2). Here we focus on one particular vertical of so-called fresh
results—recently published web pages such as news or blogs. Figure 4.2 shows part
of a SERP in which fresh results are mixed with ordinary results in response to the
query [chinese islands]. We say that every document has a presentation type,
in our example “fresh” (the first two documents in the figure) or “web” (the third, or-
dinary search result item). We assume that each query has a number of categories—or
intents—associated with it. In our case these will be “fresh” and “web.”

The main problem that we address in this chapter is the problem of modeling user
behavior in the presence of pagination buttons and vertical results. In order to better
understand user behavior we propose to exploit intent and layout information in a click
model to improve its performance. Unlike previous click models our proposed models
use additional information that is already available to search engines.

We assume that the search engine already knows the probability distribution of intents
corresponding to the query. This is a typical setup for the TREC diversity track [53]
as well as for commercial search systems. We also know the presentation type of each
document. We argue that this presentation may lead to some sort of bias in user behavior
and taking it into account may improve the click model’s performance.

Two main contributions of this chapter are the following:

• A modified DBN model, that explicitly includes into the model the probability of
transitioning between result pages.

1Due to the sensitive nature of this information we cannot disclose the exact numbers.
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Figure 4.2: Group of fresh results at the top followed by an ordinary web result.

• A novel framework of intent-aware (IA) click models that can be used to better
understand various aspects of user behavior and document relevance.

In particular, our work on intent-aware click models brings the following contributions:
1) a family of click models that use presentation types of the documents on a SERP and
prior knowledge about user intent distribution, 2) a probabilistic framework for dynamic
adaptation of this distribution using previous clicks when predicting next clicks, and 3) a
breakdown of relevance parameters for different intents, which helps us improve model
performance and enables new applications of click models.

In Section 4.2 we introduce our modification of DBN to account for pagination buttons. In
Section 4.3 we introduce the family of intent-aware models to account for vertical blocks
and user intents. In Section 4.4 we discuss our experimental setup. The results of the
experiments are presented in Sections 4.5 and 4.6. Section 4.7 presents an overview of
related work. We conclude in Section 4.8.

4.2 Accounting for Layout: Pagination-aware Models

The most straightforward way of extending a click model beyond the first ten result items
is to simply apply the model to the entire list of documents, not just the first ten.2 This
model implicitly assumes that the user always clicks a pagination button whenever she
is not satisfied/attracted by the current ten documents. Below, we use it as our baseline
method.

The first model we propose is an extension of the SDBN model described in Sec-
tion 3.1.6. Essentially, we introduce a fake “document” p corresponding to the pagination

2To simplify the discussion we assume that the SERP has exactly ten documents. This simplification can be
dropped when implementing the model.

31



4. Click Models for Modern Search Engines

buttons. This fake “document” is shared across all result pages, i.e., model parameters
for this document depend only on the user query q. Because this is not a real document
we assign a different meaning to the model parameters: the attractiveness ↵

u

p

q

of the
fake “document” p models the probability of proceeding to the next page of results by
clicking a pagination button (continuation probability); the satisfaction probability �

u

p

q

plays the role of an “impatience parameter.” The reason to add this “impatience parameter”
is that the first document on the second page (u

11

in our case), once shown, is clicked
much less than the first document u

1

on the first page (at least 3 times less on our data).
This might be motivated not only by the lower quality of the document, but also by a
decrease in trust in the documents after the user has had to click a pagination button,
namely, the user abandons search results right after switching to the next result page.
This hypothesis also suggests that we cannot simply apply the SDBN model separately to
each result page. The resulting model, that we refer to as simplified dynamic Bayesian
network (pagination-aware) (SDBN(P)), is visualized in Figure 4.3. To simplify the
image, we draw it as if a SERP had three documents, even though it has more (usually
ten).

So, the SDBN(P) model uses the same equations (3.18)–(3.25) as SDBN. The click
probability for the fake “document” representing the pagination buttons is also observed:
we have not only changed the model, but also introduced an additional source of informa-
tion. As in [88], where the authors use information about mouse movements to improve
the model, we do not measure how well we predict these additional observed events
(pagination clicks)—we are only interested in predicting document clicks and do not
include pagination clicks in the perplexity computation (4.7).

We also introduce a second model, SDBN(P-Q), that uses equations (3.18)–(3.25) for
normal documents and (3.18), (4.1), (4.2), and (3.22)–(3.25) for the fake “document” p

corresponding to the pagination buttons:

P pA
p

“ 1q “ ↵

u

p

(4.1)
P pS

p

“ 1 | C

p

“ 1q “ �

u

p

, (4.2)

i.e., we assume that the attractiveness and “satisfaction” parameters do not depend on the
query (hence, “minus Q” in our notation SDBN(P-Q)) and are global constants.

4.3 Accounting for Layout and User Intents: Intent-aware
Models

Now we address a different part of the SERP layout, namely vertical blocks. Because
different vertical blocks are targeted to answer to different user intents, we study layout
and intent together.

In order to demonstrate how layout and intent information can be used to better
understand user behavior we propose modifications to commonly used click models and
show that the information added through our modifications helps us improve click model
performance. As a basic model to modify we use the user browsing model by Dupret
and Piwowarski [69] (Section 3.1.5), although our extensions can equally well be applied
to other click models. Unlike Chen et al. [28], we focus on almost-plaintext results that
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look very similar to the standard “ten blue links.” We do not know beforehand if the user
notices any differences between special (vertical) results and ordinary ones.

We add one hidden variable I and a set of observed variables tG
r

u to the two sets of
variables tE

r

u and tC
r

u commonly used in click models:

• I “ i indicates that the user performing the session has intent i, i.e., relevance with
respect to the category i is much more important for the user.

• G

r

“ l indicates that the result at rank r has an appearance specific to the results
with dominating intent l. For example, for the result page shown in Figure 4.2
we have G

1

“ fresh , G

2

“ fresh , G

3

“ web. We will further refer to a list of
presentation types tG

1

, . . . , G

10

u for a current session as a layout.

A typical user scenario can be described as follows. First, the user looks at the whole
result page and decides whether to examine the r-th document or not. We assume that the
examination probability P pE

r

q does not depend on the document itself, but depends on the
user intent, her previous interaction with other results, the document rank r and the SERP
layout. If she decides to examine the document (if E

r

“ 1) we assume that she is focused
on that particular document. It implies that the attractiveness probability P pA

r

“ 1q
depends only on the user intent I and the attractiveness of the current document, but
neither on the layout nor on the document position r. After clicking (or not clicking) the
document the user moves to another document following the same “examine-then-click”
scenario.

Here we only allow dependencies between E

r

and G

r

in order to simplify inference,
but one can also consider additional dependency links.3 As an example, using our proposed
addition, one can build an intent-aware version of the UBM model in the following manner
(cf. (3.13)–(3.15)):

C

r

“ 1 ô E

r

“ 1 and A

r

“ 1 (4.3)

P pA
r

“ 1 | I “ iq “ ↵

i

u

r

q

(4.4)

P pE
r

“ 1 | G

r

“ b, I “ i, C

1

, . . . , C

r´1

q “ �

rr

1 pb, iq, (4.5)

where ↵ and � are to be inferred from clicks: ↵

i

u

r

q

is the attractiveness of the document
u

r

for the intent i and �

rr

1 pb, iq is the probability of examination given the current rank r,
rank of the previous click r

1, current intent I “ i and current presentation type G

r

“ b.
The model is shown in Figure 4.4 (cf. Figure 3.3). Below, we refer to (4.3)–(4.5) as user
browsing model (intent-aware) (UBM-IA).

We would like to stress that our aim here is not to study how to find intents corre-
sponding to the query. Instead, given that we know the query intent spectrum, we aim
to investigate the effect of this distribution on the users’ click-through behavior. So
we assume that for each session we have a prior distribution of the intents P pI “ iq.4
Importantly, unlike Hu et al. [85] we do not assume that our intent distribution is fixed for

3For example, one can assume that the presentation types of previously clicked documents affects the
probability of examination Er , because they may indicate a bias towards documents of a particular type. See
our discussion in Section 4.7 for more details.

4We use a proprietary machine-learned algorithm to obtain this value for each query.
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Figure 4.4: The graphical model for UBM-IA. Gray circles correspond to observed
variables. Arrows show dependency links.

the session. When predicting the next click, we use posterior intent distribution which we
compute using Bayes’ rule, see (4.16):

P pC
r

| C

1

, . . . , C

r´1

q “
ÿ

I

P pC
r

| C

1

, . . . , C

r´1

, Iq
loooooooooooooomoooooooooooooon

probability from single intent model

¨ P pI | C

1

, . . . , C

r´1

q
looooooooooomooooooooooon

posterior intent distribution

. (4.6)

Dupret and Piwowarski [69] found that the single browsing model outperforms a mix-
ture of browsing models when inferring intent distribution from clicks. We show that
using layout information and prior knowledge of intent distribution, we can significantly
outperform the single browsing model.

4.4 Experimental Setup

In order to test our ideas and answer our research questions, we collect a click log of
the Yandex search engine and then use the maximum likelihood estimation (MLE) and
expectation maximization (EM) algorithms to estimate parameters of the click models.
To train the pagination-aware models we use the MLE method from [25] (called Algo-
rithm 1 there). Details of the EM algorithm for UBM-IA are described in the Appendix
(Section 4.9). Both intent-aware and pagination-aware methods are implemented in our
clickmodels project.5

We use different data samples for testing the pagination-aware and intent-aware
models. For the latter, we only select query sessions that have fresh results. We also
discard sessions with no clicks (as in [25]) and do not take into account clicks on positions
lower than ten.6 The details of the datasets are summarized in Table 4.1. In both cases
we use one day of data for train/test, but for pagination-aware experiments we use a
sliding window of two days, whereas for intent-aware we use non-overlapping pairs. For

5https://github.com/varepsilon/clickmodels.
6Fresh results are also counted and might appear at any position.

35

https://github.com/varepsilon/clickmodels


4. Click Models for Modern Search Engines

Table 4.1: Summary of the datasets used to evaluate effects of layout and intent.

Dataset Dates Collected Query Sessions Train / Test Day Pairs

Pagination-aware 2013, Feb 1–11 37,163,170 d

k

/ d

k`1

, k P 1, . . . , 11

Intent-aware 2012, Jul 1–30 14,969,116 d

2m´1

/ d

2m

, m P 1, . . . , 15

intent-aware models we have also experimented with the whole dataset (split into equally
sized train and test sets) and observed almost identical results.

To evaluate a model on a test set we used the conditional perplexity metric (Sec-
tion 5.2.3). For each rank r we calculated the following expression:

p

r

“ 2

´ 1
N

∞

N

j“1pC

j

r

log2 q

j

r

`p1´C

j

r

q log2p1´q

j

r

qq
, (4.7)

where C

j

r

is a binary value corresponding to the presence of a click on the r-th rank
in the j-th session, q

j

r

is the predicted probability of a click on the r-th position in the
j-th session given the observed previous clicks. Conditional perplexity measures how
“surprised” the model is upon observing the click or lack thereof (skip). The higher its
value, the worse the model.

The conditional perplexity of a simple random click model—predicting each click
with probability 0.5—equals 2, the conditional perplexity of a perfect model is 1. We also
report an average perplexity value for ranks from one to ten:

AvgPerp “ 1

10

10

ÿ

r“1

p

r

. (4.8)

To compute the perplexity gain of model B over model A we use the following formula:
p

A

´ p

B

p

A

´ 1

, (4.9)

which is a standard way to compare perplexity values [28, 45, 74, 169].

4.5 Results: Pagination-aware Models

In this section we compare our pagination-aware SDBN(P) and SDBN(P-Q) models to the
original SDBN model. The average conditional perplexity values across ten train/test pairs
are reported in Figure 4.5. Vertical bars correspond to the confidence intervals computed
using the bootstrap method [71] with 1000 samples and 95% confidence level. In this and
other figures we use continuous results numbering, so the first document of the second
page has rank r “ 11.

We can see that the perplexity values of the models do not differ for ranks 1 through
10. However, we do see that the perplexity is much lower for SDBN(P) and SDBN(P-Q)
for all positions below rank 10.

Another interesting observation is that we no longer observe constantly decreasing
perplexity for r ° 10. It may well be the case that the underlying cascade hypothesis—
that the user examines the documents one by one—needs to be revised for the second and
later result pages. We leave this matter as future work.
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Figure 4.6: Conditional perplexity of predicting click events for SDBN(P) and
SDBN(P-Q) (y axis); document rank (x axis).

Next, we contrast the perplexity gains of our two new models over the baseline.
Confidence intervals are again computed using the bootstrap method. If we compute the
average conditional perplexity values for positions 1 through 40, then the SDBN(P-Q) and
SDBN(P) models yield a 20.5% and 20.2% perplexity gain over the baseline, respectively.

Following Dupret and Piwowarski [69], we also analyze the prediction perplexity of
clicks and skips (non-clicks) separately. We compute p

click

r

and p

skip

r

using equation 4.7
limiting ourself to C

j

r

equal to 1 and 0 respectively. The corresponding results are reported
in Figures 4.6 and 4.7. Both models have difficulties predicting clicks, but since click
events occur less often than skips, the overall perplexity is not very high. From these
plots we can see that SDBN(P) is always better at predicting skips and worse at predicting
clicks.

Returning to Figure 4.5, we can see that on every result page for ranks 20–40, SDBN(P)
outperforms SDBN(P-Q) at the beginning of the result page, while SDBN(P-Q) wins at
the end of the result page. We believe that the reason is that the relative importance of
click/skip prediction is different at the top and the bottom of a result page.7

4.6 Results: Intent-aware Models

In the previous section we have demonstrated that accounting for layout elements such as
pagination buttons boosts the predictive abilities of the model substantially. Now we turn
our attention to another layout element, namely presentation type of vertical results. We
also consider the notion of user intent distribution, which is closely related to the vertical
result type.

7Recall that SDBN(P-Q) is better at predicting clicks while SDBN(P) better predicts absence of clicks.
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Figure 4.7: Conditional perplexity of predicting non-click events for SDBN(P) and
SDBN(P-Q) (y axis); document rank (x axis).

Table 4.2: Average perplexity gain for UBM-IA.

Model Average Perplexity Gain Confidence Interval (Bootstrap)

UBM-IA vs. UBM 1.34 % r1.25%, 1.43%s

As a starting point we implemented the classical DBN and UBM models8 and tested
them on our data. We found that UBM performs much better than DBN, consistently
giving around 18% gain in perplexity over DBN. So we decided to use UBM as our
baseline and we report our improvements compared to this model.

4.6.1 Layout and Intent Information

The combined contribution of layout and intent. We start by comparing our UBM-IA
model (4.3)–(4.5) to the original UBM model and then consider the individual contribu-
tions of intent and layout information. The main results are summarized in Table 4.2.
In this table we report the average value of perplexity gain for the 15 subset pairs
pd

2m´1

, d

2m

q described in Section 4.4 (Table 4.1). We also report confidence inter-
vals calculated using the bootstrap method [71]. We can see that our improvements are
statistically significant.

Layout and intent in isolation. When we take a look at the modifications implemented
on top of the UBM model, (4.3)–(4.5), we can see that they are actually a combination of

8See Section 3.1.
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Figure 4.8: Perplexity gains for UBM-IA, UBM-layout and UBM-intents compared to
UBM.

two ideas: information about layout tG
r

u and information about user intents I . These
ideas can be tested separately and we can study their contribution separately. We call
the resulting click models user browsing model (vertical layout) (UBM-layout) and user
browsing model (intents) (UBM-intents); they are defined using (4.3), (4.10), (4.11) and
(4.3), (4.4), (4.12), respectively:

P pA
r

“ 1q “ ↵

u

r

q

(4.10)
P pE

r

“ 1 | G

r

“ b, C

1

, . . . , C

r´1

q “ �

rr

1 pbq (4.11)
P pE

r

“ 1 | I “ i, C

1

, . . . , C

r´1

q “ �

rr

1 piq. (4.12)

The results, in terms of perplexity, of comparing UBM-IA, UBM-layout and UBM-intents
against UBM are summarized in Figure 4.8(a). We can see that both individual models
give some improvements while the best results are achieved using the combined model
UBM-IA. Using the bootstrap method we confirm that the observed differences are
statistically significant; the confidence intervals are shown as vertical bars.

The importance of layout information. How much of the positive effects observed in
Figure 4.8(a) is due to layout information, that is, to the fact that fresh results are singled
out and clearly presented as such? In order to answer this question we performed the
following user experiment. A small part of all Yandex users were presented with fresh
results that looked just like ordinary documents while placed on the same positions. In
other words, despite the fact that the search engine knows the presentation type G

r

of
every document, these users could not see it. We hypothesize that the usage of layout
information will be less reliable in this situation because users with fresh intent are less
inclined to examine these documents. We collected the data for a period of 12 days in
September 2012 and evaluated the same three click models (UBM-IA, UBM-layout and
UBM-intents) on this data.

The results, again in terms of perplexity gain, are shown in Figure 4.8(b). Because
we have much less data (121,431 sessions corresponding to 42,049 unique queries) our
bootstrap confidence intervals are wide, wider than in Figure 4.8(a). From the plot we see
that including layout information does not help, and that the best model in this situation is
UBM-intents, which affirms our hypothesis.
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Figure 4.9: Perplexity gains for different ranking positions compared to UBM.
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Figure 4.10: Perplexity gains for different models.

Gain per rank. The results so far report on perplexity gains over the complete SERP.
We now examine the perplexity gains per individual rank to analyze our click models in
more detail. Figure 4.9 shows the results for all three models: UBM-IA, UBM-layout
and UBM-intents. One can see that it is difficult to make an improvement for the first
document. This is because the models do not differ much for the first position: users
usually examine the first document despite its presentation type and other factors, and,
therefore, click probability is determined only by the attractiveness of the document.
Clicks on the last two positions do not appear to be motivated by user intent or page
layout; this information even leads to a decrease in perplexity for the UBM-intents and
UBM-IA click models. However, UBM-layout is robust to such errors: it always gives an
improvement even if it is mostly smaller than that of other models.

There is another interesting observation to be made. Intent information matters
for positions 2–6, while layout information matters for positions 2–10, and it is more
important than intent for positions 6–10. This difference can be explained by the fact that
for most of the users only the top five or six documents can be viewed without scrolling.

4.6.2 Other Models

We also implement the DBN [25], DCM [75] and RBP [115] click models (Section 3.1).
Since these models all performed significantly worse than UBM on our data, they are also
expected to perform worse than our UBM-IA click model.
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As we mentioned previously, Chen et al. [28] also addressed the problem of verticals
by a click model. We can consider their model as a state-of-the-art click model for
diversified search. While the focus of that work was on visually appealing verticals,
the ones containing images or video, we can assume that our fresh results are similar
to their News vertical. We use the best performing click model for that vertical called
“exploration bias model” that was based on UBM. Here, we refer to it as exploration bias
user browsing model (EB_UBM).

Our exploration bias user browsing model (intent-aware) (EB_UBM-IA) extends
EB_UBM in the same way as we do it for UBM. We compare UBM, UBM-IA, EB_UBM
and EB_UBM-IA on our data set. A short summary is reported in Figure 4.10. We see
that UBM-IA gives a bigger improvement over the original UBM model than EB_UBM.
We can also see that if we combine our ideas of layout and intent with Chen et al.’s idea
of “exploration bias,” thus yielding the EB_UBM-IA click model, we observe a gain
over EB_UBM but not as big as for UBM-IA. That means that there is a certain overlap
between those two approaches, yet there is value in combining them.

4.7 Discussion and Related Work

The problem we address in this chapter is closely related to the vertical search problem
discussed in Section 2.2. Historically, there are two different approaches to this problem.
We can call them the intent and vertical approaches.

The intent hypothesis assumes that each document has separate relevances for dif-
ferent user intents.9 Following this hypothesis, a family of diversity-aware metrics such
as ERR-IA or ↵-NDCG emerged (see Section 2.4). There were also attempts to use
intent information in click models. In the original publication on UBM by Dupret and
Piwowarski [69], a so-called mixture model was studied. Instead of using prior knowledge
of intent distribution they learned such information from clicks. However, they were
unable to report any improvements compared to the vanilla UBM (referred to as the single
browsing model there). In a later publication, Hu et al. [85] proposed to use a constant
relevance discount factor for each session to model intent bias. While their approach is
valid for building a click model, the variable they used to implicitly model intent bias does
not correspond to the commonly used notion of intents or categories to which we adhere
in the current work.

Vertical or federated search is an approach adopted by many modern search engines.
Following this approach, an incoming query is sent to several specialized search engines,
called verticals, e.g., Image, Video or News vertical. The returned heterogeneous docu-
ments are then organized on a SERP by inserting vertical documents into fixed positions
between the organic web results. Relevant related work is discussed in Section 2.2. On
top of what is discussed there, particularly relevant to the research in the current chapter
is the work on click models [28, 159] that also follows the vertical approach.

In [5], where the problem of vertical selection is studied in detail, there is a list of
commonly used verticals such as News, Image, Video, TV, Sports, Maps, Finance. Most
of these contain images or interactive tools like video or maps. On the one hand, the fact
that we focused on fresh results here can be viewed as a limitation of our work. On the

9Frequently referred to as categories, topics or nuggets; see, e.g., Clarke et al. [52].
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other hand, there are many user intents other than news, that can be (and probably should
be) covered by more or less textual results: forums, blogs, reviews, etc.

Seo et al. [142] studied a problem that is related to the pagination-related skewness
problem we address in this chapter. They study a similar problem in the context of
aggregated search interfaces. In their setup, the search engine returns a set of vertical
blocks, each having a so-called rank cut—only the top five documents from the vertical
are shown. They showed that users rarely continue to a vertical-specific result page,
switching to another vertical instead. Hence, they observe skewness in the number of
clicks received by a particular vertical. To deal with this skewness the authors propose to
use regularization of the click counts. Our pagination-aware approach differs in that we
adopt the framework of click models [45].

An early study by Dumais et al. [68] suggested that users tend to prefer grouped results
as they are easier to investigate. It takes less time for participants of their experiment
to complete search tasks using a grouped interface. However, if we build a SERP so as
to optimize a diversity metric (e.g., ERR-IA) we will end up with a blended result page
where results from the same vertical are not necessarily grouped together. To address this
problem we ran an online A/B-testing experiment where some users were presented with
fresh results grouped while other users always saw fresh results mixed with ordinary web
results. We found that fresh results got 5% fewer clicks when they are mixed with other
results while the total number of clicks and abandonments remained unchanged.10 This
suggests that if we want to optimize traffic on fresh results (e.g., if news content providers
share some revenue with the web search company), we need to consider the fact that user
behavior depends on how we organize vertical results. One can extend our intent-aware
click model framework to handle these types of layout changes by introducing additional
dependencies between the examination probability E

r

and the page layout tG
r

un

r“1

. For
example, for our UBM-IA click model we can add a dependency on the number of vertical
groups or presentation type of the previous document G

r´1

to the �

rr

1 function (4.5).

4.8 Conclusion

In this section we look back at the research questions formulated at the beginning of the
chapter and show how we answered them.

The first question runs as follows:

RQ1.1 How can we use page layout information to improve click models?

To answer this question we showed how taking into account two separate layout aspects
of a SERP can help us to build better models.

First, we studied the skewness of clicks due to SERP pagination. We showed that
the click pattern for documents beyond the first page is different from that of the first
page. We introduced new ingredients to the widely used DBN model and showed that
by explicitly adding pagination buttons into our model we can achieve better results in
predicting clicks beyond the first result page.

Second, we introduced a framework of intent-aware click models, which incorporates
layout and intent information. We showed that using presentation type of documents helps

10The difference is significant at level ↵ “ 0.001 when using a two-tailed Mann–Whitney U test.
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to improve the performance of click models. Another important property of intent-aware
additions to click models is that by analyzing examination probabilities (e.g., �

rr

1 in the
case of UBM) we can see how user patience depends on his/her intent and SERP layout.
Put differently, it allows us to use a click model as an ad-hoc analytic tool.

Apart from that, intent-aware models helped us to answer the second question:

RQ1.2 How can we use aggregated user characteristics such as vertical orientation to
improve existing click models?

We showed that using separate relevance parameters for different user intents helps to
improve the model. Our intent-aware modification can be applied to any click model to
improve its perplexity. One interesting feature of an intent aware click model is that it
allows us to infer separate relevances for different intents from clicks. These relevances
can be further used as features for specific vertical ranking functions, e.g., one can tune
image search ranking by observing users’ clicks on an aggregated SERP that has image
block among other results.

Future directions. One limitation of our pagination buttons analysis is that we focused
our attention on a cascade-like DBN model. While the ranks of user clicks generally appear
in ascending order (Chapelle and Zhang [25] showed that only 3% of the query sessions
contain out-of-order clicks in the top ten), out-of-order clicks are more prominently visible
when analyzing pagination buttons—users often skip the next result page or return to the
previously viewed page. While we simply ignored such sessions (13% of sessions in our
sample), it might be interesting to analyze such sessions in detail.

One direction for future work is to consider SERP elements other than pagination
buttons or special result pages used in mobile and tablet search. The mobile version of a
search result page usually has a different design from the desktop version of the result page
so as to facilitate user interaction. In particular, the pagination may be invoked differently:
sometimes the new set of results appears after scrolling to the bottom of the screen and no
buttons have to be clicked. Vertical blocks also have a different presentation on mobile
search, sometimes requiring a user to do an extra tap or swipe to get more information. It
would be interesting to check whether our models introduced in this chapter are applicable
to mobile and tablet search interfaces.

Another future direction is an analysis of different query classes and different users.
By having some prior information about the query and the user we can further refine
the model by adjusting the probabilities related to the pagination buttons, e.g., by using
different priors for different query classes or different groups of users. We can even go
further and make all model parameters, e.g., ↵ and � in DBN (3.18)–(3.25), depend on
the user.

Apart from classes of queries and users, different classes of verticals need to be
analyzed. While we only looked at the Fresh vertical here, other verticals may pose
different challenges. We performed a set of preliminary experiments using Mobile
Applications as a vertical. A result item from this vertical consists of a text snippet with a
small thumbnail, price and application rating (see Figure 8.4). These documents are more
visually appealing than fresh results but still look similar to web results (unlike video or
images). The data was collected during several days in September 2012 and consisted of
34,917 sessions. We found that both UBM-IA and EB_UBM-IA give an improvement of
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about 9% perplexity over UBM, while EB_UBM without our modifications gives only a
0.15% improvement. It would be interesting to perform a full-scale study of the model
performance for different verticals as a future work.

Sometimes, intents are unique to the query, like for instance for the query [jaguar]
there are at least two intents: finding information about cars and finding information about
animals. It is very unlikely that a search engine has a special vertical for these intents.
However, we believe that knowledge of the user’s intent can still be used in order to
better understand her behavior. Applying our ideas to these minor intents is an interesting
direction for future work.

In Chapter 5 we discuss evaluation of click models, both simple ones and vertical-aware.
It is recommended to at least skim over this chapter before proceeding to the next ones to
have a full picture of the click models.

4.9 Appendix: EM for UBM-IA Model

We describe an expectation maximization algorithm for the UBM-IA click model. Algo-
rithms for the other intent-aware models considered in the chapter can be derived in a
similar manner.

Suppose that we have N sessions and a record of URLs shown, their visual represen-
tations G

r

and click positions. Let us denote the vectors of observed variables as C

j and
G

j and the vectors of hidden variables as E

j and A

j . Each vector has length 10 indexed
by subscript, e.g., C

j

r

is a binary variable denoting whether the r-th document was clicked
in the j-th session. We use I

j to denote a hidden variable representing the intent for the
session.

M-step. At the M-step we estimate the vector of parameters ✓ from the previous estima-
tion ✓

t:

✓

t`1 “ arg max

✓

ÿ

y

P

`

Y “ y | X, ✓

t

˘

log P pX, Y | ✓q, (4.13)

where X and Y denote the sets of observed and hidden variables respectively. In our case:

↵

i

uq

“ arg max

↵

N

ÿ

j“1

10

ÿ

r“1

Ipuj

r

“ uq pq
A

r

p0, iq logp1 ´ ↵q ` q

A

r

p1, iq log ↵q `

log P p↵q

�

rr

1 pb, iq “ arg max

�

N

ÿ

j“1

IpGj

r

“ b,PrevClick “ r

1q ¨

pq
E

r

p0, iq logp1 ´ �q ` q

E

r

p1, iq log �q ` log P p�q,

where P p↵q, P p�q are beta priors and q

A

r

, q

E

r

are calculated during the E-step.

45



4. Click Models for Modern Search Engines

E-step. Let us first define the probabilities we need to compute:11

q

A

r

pa, iq “ P pA
r

“ a, I “ i | C, Gq (4.14)
q

E

r

pe, iq “ P pE
r

“ e, I “ i | C, Gq. (4.15)

We can transform (4.14) and (4.15) using Bayes’ rule. E.g., for A

r

we have:

P pA
r

, I | C, Gq “ P pA
r

| I, C, Gq ¨ P pI | C, Gq.
The probability P pI | C, Gq can be calculated as follows:

P pI | C, Gq “ P pC | I, GqP pIq
∞

i

1 P pC | I “ i

1
, GqP pI “ i

1q , (4.16)

where P pIq is a prior distribution of intents for a query (assumed to be known). Now, if
C

r

“ 0:

P pA
r

“ 1 | I “ i, C,Gq “ ↵

i

uq

p1 ´ �

rr

1 pb, iqq
1 ´ ↵

i

uq

�

rr

1 pb, iq

P pE
r

“ 1 | I “ i, C,Gq “ �

rr

1 pb, iqp1 ´ ↵

i

uq

q
1 ´ ↵

i

uq

�

rr

1 pb, iq .

If C

r

“ 1 then P pA
r

“ 1 | I “ i, C,Gq “ 1 and P pE
r

“ 1 | I “ i, C,Gq “ 1. By
combining these equations with (4.16) we complete the E-step.

11We omit the superscript j here for convenience.
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In this chapter we turn our attention to the question of evaluating click models, including
basic models and models accounting for the heterogeneous nature of modern SERPs. We
ask ourselves the following research questions:

RQ2.1 How do different click models perform when evaluated on a common dataset?

RQ2.2 How should we evaluate click models for complex aggregated SERPs?

5.1 Introduction

We start with a brief overview of basic click model evaluation methods and present a
comprehensive comparison of existing click models using a publicly available dataset and
an open-source implementation of click models. This is needed in order to eliminate a
prominent drawback of existing studies that usually evaluate only a subset of available
click models, often use proprietary data, rely on different evaluation metrics and rarely
publish the source code used to produce the results. All these make it hard to compare
results reported in different studies.

We then turn our attention to click models for complex SERPs. In addition to the
classic evaluation methods that we introduce in the first part, we also propose to look
at the model performance from a different angle. Our new evaluation method designed
specifically for modern heterogeneous SERPs allows us to isolate model components and
therefore gives a multi-faceted view on a model’s performance.

5.2 Basic Click Model Evaluation

In Section 4.4 we already mentioned a commonly used conditional perplexity metric (4.7).
Below we discuss other commonly used evaluation metrics.

5.2.1 Log-likelihood

Whenever we have a statistical model, we can evaluate its accuracy by looking at the
likelihood of some held-out test set (see, e.g., [72]). For each session s in the test set S
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we compute how likely this session is according to our click model:

Lpsq “ P

M

´

C

1

“ c

psq
1

, . . . , C

n

“ c

psq
n

¯

, (5.1)

where P

M

is the probability measure induced by the click model M . If we further assume
independence of sessions, we can compute the logarithm of the joint likelihood:

LLpMq “
ÿ

sPS
log P

M

´

C

1

“ c

psq
1

, . . . , C

n

“ c

psq
n

¯

. (5.2)

This metric is known as log-likelihood and usually computed using the formula of total
probability:

LLpMq “
ÿ

sPS

n

ÿ

r“1

log P

M

´

C

r

“ c

psq
r

| C†r

“ cpsq
†r

¯

. (5.3)

As a logarithm of a probability measure, this metric always has non-positive values
with higher values representing better prediction quality. The log-likelihood of a perfect
prediction equals 0.

5.2.2 Perplexity
Craswell et al. [59] proposed to use the notion of cross-entropy from information the-
ory [117] as a metric for click models. This metric was not easy to interpret and it
did not become widely used. Instead, Dupret and Piwowarski [69] proposed to use the
conceptually similar notion of perplexity as a metric for assessing click models:

p

r

pMq “ 2

´ 1
|S|

∞

sPSpc

psq
r

log2 q

psq
r

`p1´c

psq
r

q log2 p1´q

psq
r

qq
, (5.4)

where q

psq
r

is the probability of a user clicking the document at rank r in the session s as
predicted by the model M , i.e., q

psq
r

“ P

M

pC
r

“ 1 | q,uq. Note that while computing
this probability only the query q and the vector of documents u are used and not the clicks
in the session s. This is different from the conditional perplexity definition (4.7) that we
used before.

Usually, perplexity is reported for each rank r independently, but it is also often
averaged across ranks:

ppMq “ 1

n

n

ÿ

r“1

p

r

pMq. (5.5)

Notice that perplexity of the ideal prediction is 1. Indeed, an ideal model would predict
the click probability q

r

to be always equal to the actual click c

r

(zero or one). On the
other hand, the perplexity of the simple random model where each document is clicked
with probability ⇢ “ 0.5 is equal to 2. Hence, the perplexity of a realistic model should lie
between 1 and 2. Notice, also, that better models have lower values of perplexity. When
we compare perplexity scores of two models A and B, we follow Guo et al. [75] and
compute the perplexity gain of A over B as follows:

gainpA, Bq “ p

B ´ p

A

p

B ´ 1

. (5.6)
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The perplexity is typically higher for top documents and decreases toward the bottom of a
SERP.1

5.2.3 Conditional Perplexity
One of the building blocks of perplexity is the click probability q

r

at rank r. In the
above definition we defined it as the full probability P pC

r

“ 1q. This probability is
independent of the clicks in the current session s and could be tricky to compute as it
involves marginalizing over all possible assignments for previous clicks C†r

.
Another possibility for defining perplexity is to use the conditional click probability,

given the previous clicks in the session. We introduce another version of perplexity, which
we call conditional perplexity:

p̃

r

pMq “ 2

´ 1
|S|

∞

sPSpc

psq
r

log2 q̃

psq
r

`p1´c

psq
r

q log2 p1´q̃

psq
r

qq
, (5.7)

where q̃

psq
r

is the conditional probability:

q̃

psq
r

“ P

M

´

C

r

“ 1 | C

1

“ c

psq
1

, . . . C

r´1

“ c

psq
r´1

¯

. (5.8)

Unlike the simple version of perplexity (5.4), which evaluates a model’s ability to predict
clicks without any input, the conditional perplexity is just a decomposition of the likelihood
(Section 5.2.1) and also factors in a model’s ability to exploit clicks above the current
rank. Since the conditional perplexity uses the beginning of a session cpsq

†r

to compute
the probability q̃

psq
r

it typically yields lower values than the simple notion of perplexity
presented above, especially for models like UBM (Section 3.1.5) that rely on the accuracy
of previous clicks. It is important to keep this in mind when comparing results from
different publications using different versions of perplexity.

5.3 Evaluating Vertical-aware Models: Intuitiveness

While all the metrics described above are applicable to complex SERPs, we would like to
have a better insight into the performance of the vertical-aware click models—the models
that take into account the groups of vertical results, such as the models we introduced in
Chapter 4.

Sakai [132] proposed a way of quantifying “which metric is more intuitive.” This
method has been applied to understanding aggregated search metrics in [174], where four
key factors of aggregated search systems are listed: vertical selection (VS), item selection
(IS), result presentation (RP), vertical diversity (VD). The authors measure the preference
agreement of a given aggregated search metric with a “basic” single-component metric
for each factor; they also assess the ability of a metric to capture the combination of these
factors.

The main contribution of this section is that we adapt the intuitiveness test to evaluate
vertical-aware click models instead of aggregated search metrics. In order to apply the
intuitiveness test to click models, we use a simulation setup and proceed as follows. We

1As we have shown in Section 4.5, this does not hold beyond the first SERP.
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run a click model CM to simulate user clicks2 and report the total number of clicks—
CTR—produced by the simulated user as a metric score for a given ranking. We then
compare aggregated search systems by the number of clicks they receive according to
a click model CM , like in A/B-testing experiments.3 The outcome of this aggregated
search system comparison determines the intuitiveness of the underlying click model.

Algorithm 5.1 shows our intuitiveness test algorithm. The algorithm computes relative
intuitiveness scores for a pair of click models CM

1

and CM

2

and a gold standard metric
M

GS

. The latter represents a basic property that a candidate metric should satisfy. We
consider not one but four metrics as our gold standards, one for each aggregated search
factor; the same metrics were used by Zhou et al. [174]. These gold standards are
intentionally kept simple and some of them are set retrieval metrics based on binary
relevance. They should be agnostic to differences across models (e.g., different position-
based discounts); their purpose is to separate out and test single factor properties of more
complex click models. The four gold standard metrics are:

• VS metric—selected vertical precision on relevant verticals with high vertical
orientation (orientation values more than 0.5).

• VD metric—selected vertical recall on all available verticals.

• IS metric—mean precision of retrieved vertical documents.

• RP metric—Spearman’s rank correlation with a “perfect” aggregated search refer-
ence page.

We first obtain all pairs of aggregated search result pages for which CM

1

and CM

2

disagree about which result page should get more clicks. Out of these disagreements, we
count how often each click model’s CTR scores agree with the gold standard metric(s).
The click model that concords more with the gold standard metric(s) is considered to be
more “intuitive.” An ideal click model should be consistent with all four gold standards;
we therefore introduce an additional step to Algorithm 5.1 where we count how often the
model agrees with a subset or all of the four gold standards at the same time.

When compared to traditional perplexity-based click model evaluation as presented
above, our method has the following advantages:

• it allows for assessments of individual model components, separating their contri-
bution to the model’s performance;

• it assigns explanatory scores that allow us to assess the ideas underlying a click
model;

• it allows us to make use of public test collections and obtain re-usable scores
without the need to access a user click log.

2The code we use to simulate clicks is available as part of Lerot [137] at https://bitbucket.org/
ilps/lerot.

3Alternatively, one can perform an interleaving comparison (see Section 2.5), but this is beyond the scope of
the current experiment.
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Algorithm 5.1 Computing the intuitiveness scores of click models CM
1

and CM

2

based
on preference agreement with a gold standard metric M

GS

.
1: Disagree – 0; Correct
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– 0
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5.4 Basic Evaluation: Experimental Comparison

In this section, we present a comprehensive evaluation of the click models described in
Section 3.1 using a publicly available dataset, an open-source implementation and a set of
commonly used evaluation metrics introduced in Section 5.2.

5.4.1 Experimental Setup

We use the WSCD 2012 dataset released by Yandex as part of the Web Search and Click
Data workshop. We use the first one million query sessions of the dataset to train and test
the basic click models.4 We train models on the first 75% of the sessions and test them
on the last 25%. This is done to simulate the real-world application where the model is
trained using historical data and applied to unseen future sessions. Since sessions in the
dataset are grouped by user tasks, we are not fully guaranteed to have a strict chronological
ordering between training and test material, but this is the closest we can get. Since the
basic click models introduced in Section 3.1 cannot handle unseen query-document pairs,
we filter the test set to contain only queries that appear in the training set.

In order to verify that the results hold for other subsets of the data and to report confi-
dence intervals for our results, we repeat our experiment 15 times, each time selecting the
next million sessions from the dataset and creating the same training-test split as described
above. We then report the 95% confidence intervals using the bootstrap method [71].

All click models are implemented in Python within the PyClick library.5 The expecta-
tion maximization (EM) algorithm uses 50 iterations. The DCM model is implemented in
its simplified form, simplified dependent click model (SDCM), according to the original

4We also experimented with ten million sessions and the results were qualitatively similar to what we present
here.

5https://github.com/markovi/PyClick.
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Table 5.1: Log-likelihood, perplexity, conditional perplexity and training time of basic
click models for web search as calculated on the first one million sessions of the WSCD
2012 dataset. The best values for each metric are indicated in boldface.

model log-likelihood perplexity conditional perplexity time (sec)

RCM ´0.3727 1.5325 1.5325 2.37
RCTR ´0.3017 1.3730 1.3730 2.45

DCTR ´0.3082 1.3713 1.3713 9.39

PBM ´0.2757 1.3323 1.3323 77.95

CM ´8 1.3675 `8 12.17

UBM ´0.2568 1.3321 1.3093 113.53

SDCM ´0.2974 1.3315 1.3588 15.53

CCM ´0.2807 1.3406 1.3412 2,993.03

DBN ´0.2680 1.3311 1.3217 1,661.16

SDBN ´0.2940 1.3270 1.3538 17.42

paper [75]. To measure the quality of click models, we use log-likelihood and perplexity,
both the simple and conditional versions, which are the most commonly used evaluation
metrics for click models. In addition, we report the time it took us to train each model
using a single CPU core6 and the PyPy interpreter.7

5.4.2 Results and Discussion

The results of our experimental comparison are shown in Table 5.1. The table reports
log-likelihood, perplexity, conditional perplexity and training time. The best values for
each evaluation metric are indicated in boldface. Below we discuss the results for each
metric.

Log-likelihood. The log-likelihood metric shows how well a model approximates the
observed data, which, in our case, is clicks. Table 5.1 and Figure 5.1 report the log-
likelihood values for all basic click models. Notice that the cascade model (CM) cannot
handle query sessions with more than one click and gives zero probabilities to all clicks
below the first one. For such sessions, the log-likelihood of CM is ´8. Similarly, the
value of conditional perplexity for CM is `8. We could consider only sessions with one
click to evaluate the CM model. However, this would make the CM log-likelihood values
incomparable to those of other click models.

Since most click models have the same set of attractiveness parameters that depend
on queries and documents (apart from RCM and DCTR), the main difference between
the models is the way they treat examination parameters (e.g., the number of examination
parameters and the estimation technique).8 Thus, it is natural to expect that models with

6Intel Xeon CPU E5-2650 0 @ 2.00 GHz, 20 MB L2 cache.
7http://pypy.org.
8Notice that DBN and SDBN differ from other models also by considering satisfaction parameters that

depend on queries and documents.
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5.4. Basic Evaluation: Experimental Comparison

Figure 5.1: Log-likelihood values for different models; higher is better. Error bars
correspond to the 95% bootstrap confidence intervals. The cascade model (CM) is
excluded because it cannot handle multiple clicks in a session.

more examination parameters, which are estimated in connection to other parameters (i.e.,
using the EM algorithm), should better approximate the observed data.

The results in Table 5.1 and Figure 5.1 generally confirm this intuition. UBM, having
the largest number of examination parameters, which are estimated using EM, appears to
be the best model in terms of approximating user clicks based on previous clicks and skips.
It is followed by DBN (ten examination parameters, a set of satisfaction parameters, EM
algorithm) and PBM (ten examination parameters, EM algorithm). Other models have
noticeably lower log-likelihood with the RCM baseline being significantly worse than the
others as expected.

Notice that DBN outperforms PBM and SDBN outperforms SDCM (although not
significantly), respectively, having fewer examination parameters and using the same
estimation technique. This is due to the fact that DBN and SDBN have a large set of
satisfaction parameters that also affect examination. Overall, the above results show that
complex models are able to describe user clicks better than the simple CTR models, which
confirms the usefulness of these models.

As expected, simple models, namely RCTR, DCTR and RCM, have the lowest log-
likelihood. Notice, however, that RCTR and DCTR do not differ much from SDCM
and SDBN, while being much simpler and sometimes much faster (RCTR). Still, the
downside of these simple CTR-based models is that they do not explain user behavior
on a SERP, as opposed to SDCM and SDBN that explicitly define examination and click
behavior and that can, therefore, be used in a number of applications of click models.
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Figure 5.2: Perplexity values for different models; lower is better. Error bars correspond
to the 95% bootstrap confidence intervals.

Perplexity. Perplexity shows how well a click model can predict user clicks in a query
session when previous clicks in that session are not known (the lower the better). Table 5.1
shows that this version of perplexity (defined in Section 5.2.2) does not directly correlate
with log-likelihood. Therefore, we believe that the simple perplexity should be preferred
over the conditional perplexity for the task of click model evaluation because it gives a
different perspective compared to log-likelihood.

When ranking click models based on their perplexity values (see Table 5.1 and
Figures 5.2 and 5.3) the best model is SDBN followed by DBN, SDCM, UBM and PBM,
respectively. The results show that complex click models perform better than CTR not
only in terms of log-likelihood but also in terms of perplexity.

By looking at perplexity values for different ranks, as shown in Figure 5.3, one can
see that, apart from the simple CTR-based models and the cascade model, all the models
show similar perplexity results with the biggest difference observed for rank 1.

Conditional perplexity. As discussed in Section 5.2.3, conditional perplexity can be
seen as a per rank decomposition of the likelihood. Indeed, Table 5.1 and Figure 5.4
show that the conditional perplexity produces the same ranking of click models as log-
likelihood (apart from RCTR and DCTR, whose ranks are swapped). This means that
conditional perplexity does not add much additional information when used together with
log-likelihood for click model evaluation.

By looking at a per-rank decomposition (Figure 5.5) one can see a more non-trivial
pattern. First, UBM is a clear leader starting from rank 4, suggesting that knowing the

54



5.4. Basic Evaluation: Experimental Comparison

Figure 5.3: Perplexity values for different models and at different ranks; lower is better.
Error bars correspond to the 95% bootstrap confidence intervals.

distance to the last click is quite useful for the examination prediction (cf. Section 3.1.5).
DBN also shows quite good results for lower ranks, much better than SDBN, although not
as good as UBM. Surprisingly, predicting a click on the first position is easier for SDBN
than for the more complex DBN model. This suggests that the DBN assumptions work
either for higher ranks or for lower ranks (with different � parameter values), but cannot
quite explain user behavior as a whole.

Training time. The amount of time required to train a click model (Table 5.1 and
Figure 5.6) directly relates to the estimation method used. MLE iterates through training
sessions only once and, thus, it is much faster than EM, which needs many iterations.
Click models estimated using MLE require from 2 to 18 seconds to train on 750,000 query
sessions, while the fastest models are RCM and RCTR. The EM-based models, instead,
require from 1 to 50 minutes to be trained on the same number of sessions, whereas the
slowest model is CCM. In fact, CCM is over 60% slower than DBN, which, in turn, is
over ten times slower than any other model studied in this section.

One of the things to mention here is that the choice of PyPy as a Python interpreter
was crucial. Just this simple switch reduced the training time of DBN from 39 hours to 28

minutes; similar dramatic drops were observed for all other models.
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Figure 5.4: Conditional perplexity values for different models; lower is better. Error
bars correspond to the 95% bootstrap confidence intervals. The cascade model (CM) is
excluded because it cannot handle multiple clicks in a session.

5.5 Intuitiveness Evaluation: Experimental Comparison

We report here on the intuitiveness scores computed for a variety of click models, using
Algorithm 5.1. For each click model we test intuitiveness with respect to the four AS
factors individually, as well as the ability to capture a combination of multiple AS factors,
i.e., how often a given click model’s CTR agrees with multiple AS component metrics at
the same time. The models that we test are: mFCM, mFCM-NO, FCM, RBP, RCM.

RBP and RCM are described in Section 3.1. The probability of a click given exami-
nation in RBP is approximated using relevance labels:9

P pC
r

“ 1 | E

r

“ 1q “ R

r

; a
similar model was used as a baseline model in [25].

Other models are described below.

5.5.1 Vertical-aware Click Models

Chen et al. [28] found that about 15% of the search result pages contain more than one
type of vertical. Since this is a significant fraction of the search traffic, we want to
adequately evaluate click models that capture user behavior in such multi-vertical settings.
In order to demonstrate how our method rates such models, we introduce a multi-vertical
federated click model (mFCM), a generalization of the federated click model (FCM) by

9For simplicity we use binary relevance labels, following [40].
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5.5. Intuitiveness Evaluation: Experimental Comparison

Figure 5.5: Conditional perplexity values for different models and at different ranks; lower
is better. Error bars correspond to the 95% bootstrap confidence intervals. The cascade
model (CM) is excluded because it cannot handle multiple clicks in a session.

Chen et al. [28, 40] in which we allow different vertical types, each with its own influence
on examination probabilities.

As in [28], P pE
r

“ 1q is influenced by the distance to vertical blocks on the SERP
and the attention bias caused by these verticals. If there is no attention bias present, the
examination probability �

r

depends only on the rank of the document r:

P pE
r

“ 1 | Aq “ �

r

` p1 ´ �

r

q ¨ �

r

pAq (5.9)
P pC

r

“ 1 | E

r

“ 0q “ 0 (5.10)
P pC

r

“ 1 | E

r

“ 1q “ R

r

. (5.11)

Here, A is the vector of independent binary random variables A

j

, attention bias values for
each vertical vert

j

. The influence of vertical documents on the examination probability
of a document r is represented by a function �

r

pAq. We set it to 1 if document r is a
vertical document itself and decrease it as document u

r

is further away from the vertical
documents [28]. According to Chen et al. [28], the decrease should depend on the vertical
type j, so we introduce parameters �

j

that depend solely on the vertical type j:

�

r

pAq “ min

ˆ

1, max

j:A

j

“1

1

|dist
j

prq| ` �

j

˙

, (5.12)
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Figure 5.6: Training time for different click models; lower is better.

where dist

j

prq is the distance from document u

r

to the nearest document that belongs to
vert

j

[28, 40].
If we do not distinguish between different verticals in (5.12), i.e., set �

j

“ � for all
j, and also assume that for a vertical j, its attention bias A

j

is determined only by its
position on the page:

P pA
j

“ 1q “ hpos

vert

j

, (5.13)

we obtain the FCM model exactly as it was used in [40].
In order to distinguish verticals, we use the vertical orientation—the probability that

users prefer a certain vertical to general web results [171, 174]. We write orientpvert
j

, qq
to denote the orientation towards the type of vert

j

, given query q. Having orientation
values, we can further improve our click model by refining the estimation of attention
bias:

P pA
j

“ 1q “ orientpvert
j

, qq ¨ hpos
vert

j

. (5.14)

The model defined by equations (5.9)–(5.12), (5.14) is called mFCM. The simpler multi-
vertical federated click model (no orientation) (mFCM-NO) model that does not use
vertical orientation10 (5.9)–(5.13) is also of interest, since vertical orientation values are
not always available and it is important to understand their contribution.

10The prefix “-NO” in the model name stands for “no orientation.”
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5.5.2 Data and Parameter Settings

Following Zhang et al. [167], we set p “ 0.73 in the position-based model. For the mFCM
model we instantiate the �, � and hpos parameters similar to [40]. We set � to 0.1 for
multimedia verticals such as News or Blogs and 0.2 for text-based verticals such as Image
or Video to resemble click heatmaps reported by [28] for the corresponding vertical types.
We also set hpos “ r.95, .9, .85, .8, .75, .7, .3, .25, .2, .15s for multimedia verticals as
in [40] (assuming the user cannot see documents below rank 6 without scrolling), and for
text verticals hpos “ r.95, .3, .25, .15, .10, .05, .05, .05, .05, .05s, since Chen et al. [28]
suggest that a text vertical, unlike multimedia verticals, does not substantially influence
user clicks if it is not at the top of the page; this is also supported by [154]. As in [40],
� equals r.68, .61, .48, .34, .28, .2, .11, .1, .08, .06s based on the eye fixation probabilities
reported by Joachims et al. [92].

To complete the experimental setup we need to specify the aggregated search systems
and document dataset that we use. We use simulated aggregated systems from [174],
which are built by systematically varying the quality of key aggregated search components.
Specifically, we use four state-of-the-art VS systems. We also employ three ranking
functions (BM25, TF and Perfect) for selecting vertical items for IS and three ways
(Perfect, Random and Reverse) to embed vertical result blocks on the final aggregated
search pages (RP). In total, we simulate 36 aggregated search systems (4 ˆ 3 ˆ 3). As
a document collection we use a public aggregated search dataset from the TREC 2013
FedWeb track [120] for which relevance judgements of documents and vertical orientation
preference judgments are available for each topic (query). There are 50 topics in our
collection, so with 36 simulated aggregated search systems runs we have a total of
C

2

36

“ 630 run pairs and 50 ¨ 630 “ 31,500 pairs of result pages.

5.5.3 Results

Table 5.2 lists our results. For every gold standard metric and every pair of click models,
we give the intuitiveness scores of both models in the pair and the percentage of result
page pairs for which the models disagree.

For example, Table 5.2(a) shows that if we compare mFCM and mFCM-NO in terms
of the component VS (the ability to select relevant verticals), there are 14.7% (4,620 out
of 31,500 pairs) disagreements. The intuitiveness score for mFCM is 0.870, which is the
fraction of these disagreements for which mFCM agrees with the gold standard metric.
The score for mFCM-NO lies at 0.833, so mFCM is more likely to agree with the VS
metric than mFCM-NO. Note that the scores of two competing models do not add up to
1; when the gold standard judges two result pages to be equally good, both click models
agree with the gold standard. That is also why the scores for a very simple random click
model (RCM) are relatively high in Table 5.2(a). We can also observe that as two click
models differ more, the percentage of disagreements increases. For instance, the more
complex click models tend to have a substantial disagreement with the RCM.

Let “CM
1

° CM

2

” denote the relationship “click model CM
1

statistically signifi-
cantly outperforms click model CM

2

in terms of concordance with a given gold-standard
metric.”

Our findings can be summarized as follows:

59



5. Evaluating Click Models

• VS: mFCM ° mFCM-NO, FCM;

• VD: mFCM, mFCM-NO ° PBM ° FCM ° RCM;

• IS: mFCM ° mFCM-NO ° FCM ° PBM ° RCM;

• RP: FCM ° RBP ° mFCM, mFCM-NO ° RCM;

• VS and IS: mFCM ° mFCM-NO ° FCM ° RBP ° RCM;

• VS, IS, VD: mFCM ° mFCM-NO ° FCM ° RBP ° RCM;

• VS, IS, RP, VD: mFCM ° RBP ° RCM, FCM ° mFCM-NO ° RBP ° RCM.

For single-component evaluation, mFCM outperforms the other models on VS, VD and
IS, with mFCM-NO as a second-best alternative. The same holds for the combinations
VS + IS and VS + IS + VD. For RP, FCM performs best, with RBP ranking second. The
RP factor is measured as correlation with a “perfect” result page in which verticals with
high vertical orientation are put on top. However, this order does not necessarily emit the
maximum number of clicks in FCM-like click models. For example, if there is a vertical
lower on the page that attracts a lot of attention, it may be better to place the relevant
document just above or below this vertical. The table suggests that the intrinsic “optimal”
result orders for mFCM and mFCM-NO are further from the “perfect” order than RBP’s.
When we look at all gold standard metrics combined, FCM and mFCM are almost equally
good, with mFCM-NO again as a second-best alternative.

Our evaluation method implies that mFCM captures the VS, IS and VD factors very
well, better than any other model we tested. Even without orientation values, mFCM-NO
is able to capture these factors. mFCM performs worse at capturing result presentation as
measured by our RP metric, which is unsurprising as the multiple vertical click model
focuses less on putting relevant results on top and better accounts for attention bias caused
by multiple vertical blocks. This shows that our intuitiveness evaluation method is able to
draw non-trivial detailed conclusions about model’s performance.

5.6 Conclusion

In this section we look back at the research questions formulated at the beginning of the
chapter and show how we answered them. The questions are as follows:

RQ2.1 How do different click models perform when evaluated on a common dataset?

RQ2.2 How should we evaluate click models for complex aggregated SERPs?

We first presented a detailed introduction into common evaluation metrics—metrics
that can be used for both simple and vertical-aware click models. We performed a detailed
analysis of all basic click models on one common open dataset, with models implemented
in an open-source software package, thus addressing RQ2.1. We found that more complex
click models, namely PBM, UBM, SDCM, CCM, DBN and SDBN, outperform CTR-
based models and the cascade model both in terms of log-likelihood and perplexity. Also,
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the models whose parameters are estimated using the EM algorithm (PBM, UBM, CCM
and DBN) tend to outperform those estimated using the MLE technique (SDCM and
SDBN), because in the former case model parameters are estimated in connection to
each other. However, such models take much longer to train. When comparing pairs of
more complex and simplified models (DBN/SDBN and CCM/SDCM) one can see that
the simplified one yields better perplexity values but worse conditional perplexity and
likelihood scores. We believe that these simplifications together with the MLE algorithm
can find more robust estimations for the model parameters, but cannot fully interpret the
relation between past and future behavior in the same session.

There is no clear winner among the best performing models, but UBM tends to have
the highest log-likelihood and almost the lowest perplexity. A potential drawback of UBM,
however, is that the interpretation of its examination parameters is not straightforward
(see Section 3.1.5). UBM is closely followed by DBN and PBM, which sometimes have
slightly worse performance, but their parameters are easier to interpret.

We then turned our attention to vertical-aware models to answer RQ2.2. We introduced
an evaluation method that can be used to assess a vertical-aware click model’s ability
to capture key components of an aggregated search system and demonstrated it using
different vertical-aware as well as traditional click models. We also showed that click
models that account for multiple vertical blocks within a single result page typically get
higher intuitiveness scores, which indicates that our evaluation method measures the right
thing. In addition, we showed that a model that uses vertical orientation values have higher
intuitiveness scores than the corresponding model that does not (cf. RQ1.2).

Future directions. When doing basic click model evaluation we did not include click
models for vertical search because there is no dataset that would allow us to do such
a comparison. We also omitted some evaluation facets such as prediction of clicks
vs. prediction of their absence, query frequency and query entropy analysis, to name a few.
For those additional dimensions we refer to a complementary study by Grotov et al. [73].

One limitation of the intuitiveness analysis is that we did not use raw click data to infer
the parameters of the click models we experiment with. However, we set these parameters
using previous work that did use real click and eye gaze data [28, 92, 154].

As a direction for future work we want to compare the findings of the intuitiveness test
with conventional model performance tests (e.g., perplexity of click prediction) and see
whether good intuitiveness scores also imply good click prediction results and vice-versa.

The next two chapters rely heavily on the framework of click models. In Chapter 6
we introduce an important application of click models—model-based offline evaluation
metrics. We further develop this approach in Chapter 7 to include signals beyond clicks
and also tune the metric to fit the satisfaction reported by the users. Alternatively, the
reader may proceed directly to Chapter 8 where we study online evaluation methods and
use click models to simulate users in some of the experiments.
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6
Offline Evaluation Based on Click Models

Many models have been proposed recently that are aimed at predicting clicks of web
search users. In addition, some information retrieval evaluation metrics have been built on
top of user models. In this chapter we bring these two directions together and propose a
common approach to converting any click model into an evaluation metric. We then put
the resulting model-based metrics as well as traditional metrics such as DCG or Precision
(see Section 3.2) into a common evaluation framework and compare them along a number
of dimensions.

One of the dimensions we are particularly interested in is the agreement between
offline and online experimental outcomes. It is widely believed, especially in an industrial
setting, that online A/B-testing and interleaving experiments (Section 2.5) are generally
better at capturing system quality than offline measurements [27, 99]. We show that
offline metrics that are based on click models are more strongly correlated with online
experimental outcomes than traditional offline metrics, especially in situations when we
have incomplete relevance judgements.

The main research questions that we address in this chapter are:

RQ3.1 Can we make use of click models to build better evaluation metrics? How do
such click model-based IR metrics differ from traditional offline metrics?

RQ3.2 Which evaluation metrics are better tied to the user? Do click model-based
metrics show higher agreement with online experiments? How do they compare
in terms of discriminative power?

RQ3.3 How well do different offline metrics perform in the presence of unjudged
documents?

RQ3.4 How can we modify offline metrics to enhance agreement with online experi-
ments?

Our main contributions in this chapter are a method for converting click models into click
model-based offline metrics. Secondly, we present a thorough analysis and comparison
of specific click model-based metrics with online measurements and traditional offline
metrics.
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6.1 Introduction

There are currently two orthogonal approaches to evaluating the quality of ranking systems.
The first approach is usually called the Cranfield approach [57] and is done offline. It
uses a fixed set of queries and documents judged by trained people (assessors). Ranking
systems are then evaluated by comparing how good their ranked lists are. Among other
things, a system is expected to place relevant documents higher than irrelevant ones.

Another approach makes use of real online users by assigning some portion of the
users to test groups (also called flights). The simplest variant, called A/B-testing, randomly
assigns some users to the “control” group (these users are presented with the existing
ranking results) and the “treatment” group (these users are presented with the results of
an experimental ranking system). Ranking systems are then compared by analysing the
clicks of the users in the “control” group against those in the “treatment” group. In the
interleaving method by Joachims [90] users are presented with a combined list made out
of two rankings. Then the system that receives more clicks is assumed to be better.

One of the main advantages of online evaluation schemes is that they are user-based
and, as a result, often assumed to give us more realistic insights into the real system quality.
Interleaving experiments are now widely being used by large commercial search engines
like Bing and Yahoo! [27, 123] as well as studied in academia [80, 127]. However, they
are harder to reproduce than offline measurements, whereas in the traditional Cranfield
approach one can re-use the same set of judged documents to evaluate any ranking.
This makes the use of offline rater-based evaluation methods unavoidable during the
early development phase of ranking algorithms. One should take care, however, that
the resulting rater-based measurements agree with the outcomes of online experiments—
online comparison is often used as the final validation step before releasing a new version
of a ranking algorithm.

In order to bring the two evaluation approaches closer to each other, we propose a
method for building an IR metric from a click model. We previously discussed some
basic click models in Section 3.1 and then studied them in Chapter 5. We hypothesize
that click models can be turned into offline metrics and the resulting click model-based
metrics should be closely tied to the user and hence should better correlate with online
measurements than traditional offline metrics. In addition, there is a growing trend to
ground offline metrics in a user model and that is exactly what click modeling does—
trying to propose a better user model. So, the question is why not use better user models,
based on click behavior, as the basis for offline metrics?

We put our proposal for transforming click models into metrics to the test through
a set of thorough comparisons with online measurements. Our comparison includes an
analysis of correlations with the outcomes of interleaving experiments, an analysis of
correlations with absolute online metrics, an analysis of correlations between traditional
offline metrics and our new click model-based metrics, as well as an analysis of the
discriminative power of the various metrics. One dimension to which we devote special
attention in our comparison framework concerns unjudged documents. As was shown
by Buckley and Voorhees [18], having partially-judged result pages in the evaluation pool
may result in biased measurements. We examine how different offline metrics handle this
problem. We also show that in situations where we cannot afford to use only fully-judged
data, we can still make good use of the available data by making adjustments, either by a
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technique called condensation [131] or by a new thresholding method that we propose.

The rest of the chapter is organized as follows. Section 6.2 presents related work. Sec-
tion 6.3 shows how to transform a click model into a model-based offline metric. In
Section 6.4 we examine click model-based and traditional offline metrics and report on
their performance. We finish with a conclusion and discussion in Section 6.5.

6.2 Related Work

Determining and comparing the quality of information retrieval systems has always
been an important task in IR, both in academic and industrial research. In recent years,
competition between large commercial search systems has reached the point where even
a small improvement can be of great importance. As a result, a broad range of metrics
to assess system performance have been proposed: discounted cumulative gain (DCG)
by Järvelin and Kekäläinen [89], expected reciprocal rank (ERR) by Chapelle et al. [26],
expected browsing utility (EBU) by Yilmaz et al. [164], to name just a few. They were
also assessed from a variety of angles (see, e.g., [21, 26, 130]).

Some IR metrics have an underlying user model (e.g., ERR and EBU do) or they can
be viewed as such (see [21]). However, there is still a big gap between user models and
metrics. For example, some of the widely used click models, such as user browsing model
(UBM) by Dupret and Piwowarski [69] (Section 3.1.5) and dependent click model (DCM)
by Guo et al. [75] (Section 3.1.7), have so far not been used to develop an offline metric.
Moreover, since the introduction of these early click models, many more click models
have been developed, not only as improvements to previous models [74, 106], but also to
address specific modeling issues, such as click models for vertical search [28, 41], models
that use mouse movements along with clicks [88], or to sessions-level click models [169].
We believe that all these models can be converted into evaluation measures.

Another important group of closely related studies concerns user-based online eval-
uation that we discuss in Section 2.5. Apart from that, we must mention some work
that touches on the comparison of offline and online evaluation. Radlinski and Craswell
[123] analyzed and compared the sensitivity of both interleaving and traditional offline
IR metrics against each other. They found that the outcomes of interleaving experiments
generally agree quite well with offline metrics while data can be collected at a much lower
cost. Below, we apply the same type of analysis to evaluate click model-based metrics and
to compare them against traditional IR metrics. Ali and Chang [2] showed that per-query
correlation between offline side-by-side comparisons and online interleaving experiments
is low even when query filtering is applied. This finding suggests that aggregating results
from multiple queries as was done in [123] is less noisy than computing correlations on a
per query basis. Yue et al. [166] proposed ways to increase the signal of an interleaving
experiment; inspired by this idea we propose to tune offline metrics through two tech-
niques referred to as condensation and thresholding below to enhance the agreement with
interleaving (see Section 6.4.1).
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6.3 Click Model-based Metrics

From an initial focus on Precision as a metric, the area of web search evaluation has
evolved considerably. An early lesson was that we need to apply some sort of discount to
the documents that appear lower in the ranking. One of the first metrics to operationalize
this idea was discounted cumulative gain (DCG) [89]. This metric is still widely used in
the IR community. However, it has some drawbacks. One is that its discount function is
not motivated by a user model. Another important issue with this metric is that it is a static
metric, i.e., its discount values are fixed numbers. As was shown by Yilmaz et al. [164], a
dynamic metric—a metric that dynamically assigns different discount values according
to the relevance of the documents appearing higher in the ranking—more accurately
represents real user behavior.

In this chapter we introduce the notion of click model-based metrics. The main
constituent of such a model-based metric is a click model—a probabilistic model aimed
at predicting user clicks. Apart from click events (C

r

), a click model usually has hidden
variables corresponding to events such as “the user examined the snippet at rank r” (E

r

).
All click models that we study in this chapter assume that users click a document only
after examining the document’s snippet, i.e., P pC

r

“ 1 | E

r

“ 0q “ 0 (cf. (3.2)).
Following Carterette [21], we distinguish between utility-based metrics and effort-

based metrics. These give rise to two ways of mapping a click model to a click model-
based offline metric. First, a utility-based metric uses a click model only to predict the
click probability P pC

r

“ 1q for the r-th snippet in the ranking. This probability is then
used to calculate the metric value as the expected utility:

uMetric “
n

ÿ

r“1

P pC
r

“ 1q ¨ R

r

, (6.1)

where R

r

is the relevance of the r-th document. It is common to use four or five relevance
grades that are further mapped to numeric values. For example, the TREC 2011 Web
Track [54] uses four levels of relevance: from 0 for Irrelevant documents to 3 for Highly
Relevant documents.

Second, an effort-based metric requires a click model to have a notion of “user satisfac-
tion” (S

r

). A click model must have hidden variables S

r

such that P pS
r

“ 1 | C

r

“ 0q “ 0

(the user can only be satisfied by the documents she clicked) and P pE
t

“ 1 | S

r

“ 1q “ 0

for t ° r (after being satisfied the user stops examining documents). Having this, we can
define a metric to be an expected value of some effort function1 at the stopping position:

rrMetric “
n

ÿ

r“1

P pS
r

“ 1q ¨ 1

r

“
n

ÿ

r“1

�

r

P pC
r

“ 1q ¨ 1

r

, (6.2)

where �

r

“ P pS
r

“ 1 | C

r

“ 1q is a satisfaction probability.
A click model is usually trained using a click log. As a result we get values of

the model parameters that can further be used to calculate the probability of clicks or
satisfaction events to use in (6.1) and (6.2). Some parameters are just constants, some

1Following [21] we use reciprocal rank 1
r as an effort function. While we are not doing it here, it would be

interesting to evaluate metrics with different effort functions.
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Table 6.1: Click model-based metrics and their underlying models. Previously proposed
models/metrics are followed by the reference.

Derived metric

Underlying click model Utility-based Effort-based

CM [59] / DBN [25] uSDBN [26] ERR [26]
DBN [25] EBU [164] rrDBN
DCM [75] uDCM rrDCM
UBM [69] uUBM –

depend on the position(s) in the ranking and some depend on the document and/or query.
Parameters of the last type are the hardest ones to be used in a metric, as we want our
metric to work even for previously unseen documents. But, fortunately, parameters of this
type can usually be approximated from the document’s relevance. In fact, when training
a model we assume that these parameters only depend on the document relevance and
not on the document itself. We will demonstrate this procedure for the attractiveness
parameters in DBN, DCM, UBM and for the satisfaction parameters in DBN.

If a model meets the requirements listed above, it can be transformed into a click
model-based metric. There is no step-by-step algorithm for such a transformation, only
general guidelines. In the following sections we demonstrate the idea, using well-known
click models as an example. We want to stress, however, that our framework is general
enough to be applied to other click models, including those that use additional sources of
information, such as recently studied session-based click models [169] or click models
for vertical search [28, 41].

In Table 6.1 we classify previously studied metrics (ERR by Chapelle et al. [26],
EBU by Yilmaz et al. [164]) and propose several new click model-based metrics: rrDBN,
uDCM, rrDCM, uUBM. The left most column lists click models, the center and right
most column denote derived offline metrics, utility-based and effort-based, respectively.
As a recipe for naming a metric, we use the name of the underlying model and prefix it
with the type metric that we are defining: u- for utility-based and rr- for reciprocal rank
effort-based metrics.

6.3.1 Previously Studied Metrics

In this section we show how two previously proposed metrics, ERR and EBU, can be
viewed as click model-based metrics. Despite the fact that they are different and were not
in fact proposed as derivatives of a click model, they can both be viewed as metrics based
on special cases of the dynamic Bayesian network (DBN) model (Section 3.1.6).

Expected reciprocal rank (ERR) is based on the cascade model (CM), which, as we
mentioned in Section 3.1.6, is a simplification of DBN. If we opt for a DBN simplification
where we set ↵

r

” 1, the probability of clicking the r-th document is as follows:

P pC
r

“ 1q “ P pE
r

“ 1q “ �

r´1

r´1

π

i“1

p1 ´ ⇢

i

q, (6.3)
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where ⇢

i

is the probability of i-th document being relevant and � is the continuation
probability.2 Correspondingly, the probability of satisfaction

P pS
r

“ 1q “ ⇢

r

P pC
r

“ 1q “ ⇢

r

�

r´1

r´1

π

i“1

p1 ´ ⇢

i

q. (6.4)

The probability of being relevant is usually viewed as a mapping R Ñ ⇢ from the
relevance grades to the interval r0, 1s. In the original ERR paper [26] the authors use the
mapping (3.37) motivated by DCG, but one may also fit this mapping from a click log.

Using probabilities from (6.3) and (6.4), we end up with the ERR and uSDBN metrics
(cf. (6.2), (6.1), (3.41) and [26]):

ERR “
n

ÿ

r“1

˜

⇢

r

�

r´1

r´1

π

i“1

p1 ´ ⇢

i

q
¸

¨ 1

r

(6.5)

uSDBN “
n

ÿ

r“1

˜

�

r´1

r´1

π

i“1

p1 ´ ⇢

i

q
¸

¨ ⇢

r

. (6.6)

In the original version of the ERR metric, the continuation probability � of the DBN
model was set to 1 and we do likewise. Conversely, for uSDBN we set the continuation
probability � to 0.9, as suggested in [25].

The expected browsing utility (EBU) metric by Yilmaz et al. [164] is also based on a
variation of the DBN model. Unlike the original DBN model, their modification allows
for different continuation probabilities in different situations (p

cont|click , p

cont|nonrel ,
p

cont|rel ). While these parameters lead to greater flexibility in setting up the metric, they
also represent a difficult choice for a practitioner to make. They were all set to 1 in the
original paper [164] and here we do the same. By doing so we reduce the underlying
model to DBN [25] with continuation probability � “ 1.

One notable difference between the ERR and EBU metrics is that EBU does not set the
attractiveness probabilities to 1. Instead, the attractiveness probabilities and satisfaction
probabilities are both estimated from a click log using the assumptions that they are
determined by the document relevance:

↵

r

« P pC
r

| R

r

q
�

r

« P pS
r

| R

r

q,
where C

r

is the random variable corresponding to a click on the r-th document, S

r

is the
random variable corresponding to leaving the result page after clicking the r-th document
(satisfaction) and R

u

r

is the relevance of the r-th document u

r

.

6.3.2 New Click Model-based Metrics
In this section we propose new offline metrics by introducing an effort-based variant of the
EBU metric and also by converting the two popular click models, UBM and DCM, into

2Here we also decided to keep � from the DBN model, unlike the original paper which set it to 1 to fully
reduce DBN to CM.
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click model-based metrics. By doing so we show that our framework of click model-based
metrics is not only a way of interpreting previously studied metrics, but also a way of
deriving new metrics in a principled way.

The rrDBN metric uses essentially the same user model as the EBU metric. In fact,
the parameters for EBU and rrDBN are the same. The only difference is that rrDBN is
calculated using (6.2) instead of (6.1).

Next, the uDCM and rrDCM metrics can be derived from the dependent click model
(DCM) (Section 3.1.7) in a way similar to how EBU and rrDBN are derived from DBN.

As was shown by Turpin et al. [157], the attractiveness of a document’s snippet can be
approximated as a function of its relevance grade. A mapping from grades to attractiveness
probabilities can be inferred from a click log using the click model (DCM in this case).3
For this purpose we impose the constraint that documents with the same relevance have
the same attractiveness, i.e., the attractiveness of a document is a function of its relevance
grade: ↵

r

“ ↵pR
r

q.
Finally, using the click model and equations (6.1), (6.2), we can define the uDCM and

rrDCM metrics as follows:

uDCM “
N

ÿ

r“1

↵pR
r

q
r´1

π

i“1

p1 ´ ↵pR
i

q�
i

q ¨ R

r

rrDCM “
N

ÿ

r“1

�

r

↵pR
r

q
r´1

π

i“1

p1 ´ ↵pR
i

q�
i

q ¨ 1

r

.

Chen et al. [28] report that the user browsing model (UBM) [69] performs better than
DBN in terms of click prediction perplexity. We also evaluated this model using a Yandex
click log. A sample of clicks collected in November 2012 was used. We removed pages
without clicks and split the remaining data into training and test set. In total, we had
1,191,963 training and 1,292,993 test pages. To compare the models we used perplexity
gain (5.6). On our data UBM outperforms DBN by 16% which is quite substantial.

This finding motivates the idea of deriving an offline metric from UBM. In the UBM
model the click probability is governed by the attraction bias and the examination bias
(see Section 3.1.5 for more details):

P pC
r

“ 1 | C†r

q “ P pA
r

“ 1qP pE
r

“ 1 | C†r

q “ ↵

r

�

rr

1
,

where C stands for click, A for attraction, E for examination; u is the document URL, q

is the user query, r is the document rank (position), and r

1 “ maxtj † r | C

j

“ 1u is the
rank of the previous click.4

Like for the EBU/rrDBN and uDCM/rrDCM metrics, we assume that the attractive-
ness probability ↵ is a function of the relevance of the document: ↵

r

“ ↵pR
r

q. The
examination probabilities �

rr

1 can be precomputed from a click log during the model
training process. One important difference from the previously studied models is that
UBM relies on previous clicks and these are not available offline. To deal with this

3The source code for probabilistic inference is freely available at https://github.com/
varepsilon/clickmodels#train_for_metric.

4As in [69] we use a virtual 0th position (which is assumed to be always clicked) to simplify our equations.
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problem we factorize the probability P pC
r

“ 1q over the position of previous clicks r

1:

P pC
r

“ 1q “
r´1

ÿ

r

1“0

P pC
r

1 “ 1, C

r

1`1

“ 0, . . . , C

r´1

“ 0, C

r

“ 1q.

By applying Bayes’ rule we get

P pC
r

“ 1q “
r´1

ÿ

r

1“0

P pC
r

1 “ 1q

¨
r´1

π

k“r

1`1

P pC
k

“ 0 | C

r

1 “ 1, C

r

1`1

“ 0, . . . , C

k´1

“ 0q

¨ P pC
r

“ 1 | C

r

1 “ 1, C

r

1`1

“ 0, . . . , C

r´1

“ 0q “

“
r´1

ÿ

r

1“0

P pC
r

1 “ 1q
˜

r´1

π

k“r

1`1

p1 ´ ↵

k

�

kr

1 q
¸

↵

r

�

rr

1
.

Finally, the click probability is given by a recursive formula:

P pC
0

“ 1q “ 1

P pC
r

“ 1q “
r´1

ÿ

r

1“0

P pC
r

1 “ 1q
˜

r´1

π

k“r

1`1

p1 ´ ↵

k

�

kr

1 q
¸

↵

r

�

rr

1
,

where ↵

r

“ ↵pR
r

q, and ↵ and � are known functions estimated from clicks. It is
important to note, that unlike Dupret and Piwowarski [69], we used all queries, not only
queries with high clickthrough rate. So our resulting � function5 is different from that
analysed by Dupret and Piwowarski, and might be interesting on its own. For example,
�

rr

1 is much less than 1 for r

1 ° 0 which corresponds to the fact that many users click on
only one document.

Given the click probability we can define the metric:

uUBM “
n

ÿ

r“1

P pC
r

“ 1q ¨ R

r

. (6.7)

The UBM click model does not have a notion of user satisfaction and hence we do not
introduce an “rrUBM” metric.

6.4 Analysis

In this section we analyze the click model-based metrics previously listed, both old and
new, along a number of dimensions. We compare click model-based metrics to traditional
offline metrics (Section 3.2). As traditional metrics we consider precision, with two
possible binarizations of four scale judgments (Precision treats the highest three relevance
grades—3, 2, and 1—as “relevant,” while Precision2 only treats the highest two relevance

5The values are available in the source code under name UBM_GAMMAS.
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grades 3 and 2 as “relevant”) as well as DCG. We decided not to include the NDCG
metric and thus to overcome potential issues with corpus-dependent NDCG normalization
(see Section 3.2.5).

We start by determining correlations of various offline metrics to the outcomes of
interleaving experiments in a way proposed by Radlinski and Craswell [123]. These
correlations are then used to compare offline metrics to each other. The metric that
shows the best correlation with interleaving outcomes is assumed to better represent
real user behavior. We then move to more traditional comparison techniques, such as
metric-to-metric correlations and discriminative power.

6.4.1 Correlation with Interleaving Outcomes

As was shown by Radlinski et al. [127], absolute click metrics are often unable to deter-
mine differences in IR systems. Moreover, they are always difficult to interpret and may
even be misleading, because we cannot know for sure how these metrics are related to
user satisfaction.

Fortunately, there is another approach, the pairwise or interleaved comparison tech-
niques mentioned earlier [90, 127]. Following this approach, we compare two ranking
systems by presenting a user with an interleaved result page, containing documents from
both result lists. The winner is then determined from user clicks. We assess an offline IR
metric m in terms of its agreement with the interleaving outcomes. Specifically, we use
the team-draft interleaving (TDI) method by Radlinski et al. [127]. In this method each
document in the interleaved page is assigned to exactly one of the two ranking systems
(“the teams”). We then say that a system wins a comparison if the documents it contributes
to the combined list receive more clicks. The system that wins most of the comparisons is
assumed to be better.

For the current experiment we use a click log of the Yandex search engine collected
in October–December 2012. During this period we focus on five revisions of the core
ranking function (A, B, C, D, E), with each revision being compared to the previous
one using TDI, that was run for 5–10 days. For each of our ten experiments we have at
least 200,000 impressions as in the work by Radlinski and Craswell [123]. Some ranking
function revisions influence more than one market (country), so in total we have ten pairs
of algorithms to compare: �

1

AB, �

2

AB, �

1

BC, �

1

CD, �

2

CD, �

3

CD, �

4

CD,
�

1

DE, �

2

DE, �

3

DE. For each algorithm pair we record the interleaving signal value,
i.e., the deviation from 50% of the number of cases where the newer system was preferred.
For instance, if in the experiment labeled �

i

XY system Y was preferred over system X

in 51% of all cases, we say that the interleaving signal for the experiment is 1%.
Once we have interleaving signals, we want to compare them to the signals given

by offline IR measures, i.e., the average difference of the metric values. Unlike in the
traditional Cranfield approach we use queries and documents from the query log. When
computing an offline metric signal for a particular experiment �

i

XY , we extract queries
issued by the users assigned to the experimental flight. For these queries we also extract
the document lists that would have been produced by each of the systems X and Y if they
had not been interleaved. By using click log-based queries when comparing the signal of
an offline metric to the interleaving signal we eliminate the effect induced by the choice
of a query set that one needs to compile for a Cranfield-style evaluation. Here it also
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allows us to perform experiments with historical revisions of a ranking algorithm that is
no longer running. Although this approach has some advantages for our research problem,
it has some disadvantages for everyday usage. One notable drawback is that we use only
part of the judgements available because not all the queries that we have judgements for
were submitted by the users of the experimental flights. For each experiment and each
metric we keep only the queries that have at least one document judged. Depending on
the experiment we have from 178 to 5,815 queries per experiment (median number is
573). As was shown in [123], it is usually sufficient to have approximately 100 queries to
identify the better system in an offline comparison.

The amount of data available to the search engine is usually much larger than a
human can handle. Even more important is the fact that the web corpus is constantly
changing, so we cannot maintain complete judgements even for a limited set of queries.
That is why it seems natural that some documents returned by the system do not have
relevance judgements. In order to analyse the tradeoff between adding noise from unjudged
documents and reducing the noise by allowing more queries we introduce a parameter
#unjudged. We discard queries for which the number of unjudged documents in the top
ten is bigger than this value for either of the two systems taking part in a TDI experiment.
We vary this bound and see how it influences the correlation between offline metrics and
interleaving. For each offline metric m and each value of #unjudged from 1 to 9 we
compute the weighted Pearson correlation (similar to [26]) between the metric signal
and the interleaving signal. As a weight we use the number of queries participating in
the calculation of the metric signal (this number is different for each experiment). The
results are presented in Figure 6.1. We can see that the effort-based metrics rrDBN and
rrDCM are better at dealing with unjudged documents and are remarkably different from
their utility-based counterparts; we will confirm this difference in Section 6.4.3. Another
interesting observation can be made about the Precision and Precision2 metrics. Their
behavior differs and, moreover, Precision has a negative correlation and this is not the
case for Precision2. This seems to be due to the fact that unjudged documents are treated
in the same way as the lowest relevance grade 0, whereas in fact they have a higher chance
to belong to one of the top relevance grades: 92% of the documents in the top 10 have a
relevance grade higher than 0, while only 23% have a relevance grade higher than 1.

As we can see from Figure 6.1, when we increase #unjudged—the maximum
number of unjudged documents—to 4 or higher, the correlation drops for all the metrics
studied. This means that adding queries with highly incomplete judgements adds noise
to the metric signals. The problem of unjudged documents has previously been studied
by Sakai [131], and his proposed solution is to exclude unjudged documents from the
ranked list and condense the remaining documents. Despite its heuristic nature, this idea
actually leads to an increase in correlation for most of the metrics as shown in Figure 6.2.
The exceptions from this rule are rrDBN and rrDCM that supposedly suffer most from
the incorrect effort function values. For example, if we miss a judgement for the first
document, then for the second document we apply a 1

1

discount instead of 1

2

, see (6.2).

Thresholds

Even when we apply condensation, we still have a decrease in correlation values for high
values of #unjudged. One way of dealing with this problem is to choose an optimal
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Figure 6.1: Pearson correlation between offline metrics and interleaving signal. Unjudged
documents are treated as irrelevant.

Figure 6.2: Pearson correlation between offline metrics and interleaving signal. Unjudged
documents are skipped (ranked lists are condensed).
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Figure 6.3: Pearson correlation between offline metrics with thresholds and interleaving
signal. Unjudged documents are treated as irrelevant.

Figure 6.4: Pearson correlation between offline metrics with thresholds and interleaving
signal. Unjudged documents are skipped (ranked lists are condensed).
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value of #unjudged and use it to get high correlations with interleaving outcomes. We
propose a different way of dealing with this noisy data. Comparing systems A and B,
we discard all queries with differences in metric values less than a threshold �

m

for each
metric m:

MetricSignal “ 1

|Q
�

m

|
ÿ

qPQ

�

m

pmpB, qq ´ mpA, qqq ,

where Q

�

m

“ tq P Q | |mpB, qq ´ mpA, qq| • �

m

u. This means that we use only some
portion of the queries we have (up to 20%), but these are queries that strongly distinguish
between systems. The idea is that by choosing an appropriate threshold �

m

we can tune a
ranking system to produce the best correlation with interleaving outcomes. In order to test
the idea we split our data (ten TDI experiments) into train and test set: we use the train set
to choose the best threshold and the test set to compute the correlation scores.

While it would be natural to do a time-based train/test split, it appeared to be imprac-
tical with the data we have. Firstly, it turns out to be impossible to get training and test
sets of reasonable sizes (either the training or the test set would consist of only three
experiments which might give too noisy correlation values). Secondly, there are only few
possible time-based splits so we are not able to assess statistical significance of the results.
Instead, we use all possible 5/5 splits for our experiments, i.e., we take a subset of five
experiments as a training set and the remaining five experiments as a test set. In total, we
have C

5

10

“ 252 splits and corresponding correlation values. The correlation values are
then averaged and error bars are computed using the bootstrap test [71] at 95% confidence
level and 1,000 samples. Results are shown in Figures 6.3 and 6.4.

We can see in Figures 6.3 and 6.4 that the confidence intervals are quite narrow and
most of the click model-based metrics continue to show high correlation scores as the
value #unjudged increases. If we look at one of the best performing metrics, uUBM,
we can see that thresholded variants are a bit worse for #unjudged lower than 5, while
for #unjudged equal to 5 and higher the thresholded variants start dominating, reaching
the highest point for #unjudged “ 9 (see Figure 6.5).

In order to test significance of the differences in correlation values we use the 5/5 split
procedure described above. Unlike what we do for thresholded and thresholded condensed,
for the simple and condensed variants we only use the test set to determine the correlation
and just ignore the training set as there is nothing we need to tune. The correlation values
are then averaged and confidence intervals are computed using the bootstrap method with
1,000 samples and 95% confidence level. The three highest correlation scores were shown
by a thresholded condensed variant of uUBM metric (for different values of #unjudged),
while the correlation score for thresholded condensed uUBM (#unjudged “ 9) is
significantly higher than any other variant (simple, condensed, thresholded) of any metric.
From Figures 6.1–6.4 we can also conclude that click model-based metrics in general show
higher correlation values with the outcomes of interleaving experiments than traditional
offline metrics, especially when we have many incomplete judgements (#unjudged °
5), which confirms the hypothesis formulated in the introduction: click model-based
metrics are better correlated with online measurements than traditional metrics. Another
interesting observation is that for the simple and condensed variants there exist optimal
values of the #unjudged parameter (3 and 5 respectively in our case). Conversely,
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Figure 6.5: Pearson correlation between uUBM (in different variants) and interleaving
signal.

for the thresholded and thresholded condensed variants it is more important to pick an
appropriate metric and then use any value of #unjudged higher than five.

6.4.2 Correlation with Absolute Online Metrics

Following the original work on ERR by Chapelle et al. [26] we also compare offline IR
metrics by looking at their correlation with absolute click metrics. In our experiments
we use Max-, Min- and MeanRR, UCTR and PLC metrics (see Section 3.3). We do
not include the search success (SS) metric considered by Chapelle et al. [26] as it uses
relevance labels and not only clicks. We have also confirmed the findings of [26] that
QCTR (clicks per session) has negative or close to zero correlation with all the editorial
metrics and therefore skip it as well.

A configuration is a tuple that consists of a query and ten URLs of the top ranked
documents presented to a user. For each configuration in our dataset we compute the
values of absolute online and offline metrics. The vectors of these metric values are then
used to compute Pearson correlation (unweighted). For our dataset we use clicks collected
during a three-month period in 2012. Because we use a long period and hence have a
sufficient amount of data, we are able to collect 12,155 configurations (corresponding to
411 unique queries) where all ten documents have relevance judgements.

The results are summarized in Table 6.2. A similar comparison was previously done
by Chapelle et al. [26] for ERR and traditional offline metrics. The numbers they obtained
are similar to ours. From the table we conclude that click model-based metrics show
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Table 6.2: Pearson correlation between offline and absolute online metrics. Superscripts
denote cases of statistically significant difference with ERR and EBU respectively. The
first (second) ú means that the metric is statistically significantly higher than ERR (EBU),
ù—significantly lower, ˛—no statistical difference can be found (95% significance level,
bootstrap test).

-RR

Max- Min- Mean- UCTR PLC

Precision ´0.117 ´0.163 ´0.155 0.042 ´0.027
Precision2 0.026 0.093 0.075 0.092 0.094
DCG 0.178 0.243 0.237 0.163 0.245

ERR 0.378 0.471 0.469 0.199 0.399
EBU 0.374 0.467 0.464 0.198 0.397
rrDBN 0.384úú 0.475úú 0.473úú 0.194ùù 0.399˛ú

rrDCM 0.387úú 0.478úú 0.476úú 0.194ùù 0.400˛ú

uSDBN 0.322ùù 0.412ùù 0.407ùù 0.206úú 0.370ùù

uDCM 0.374ùù 0.466ùù 0.463ùù 0.198˛˛ 0.396ùù

uUBM 0.377˛ú 0.469ùú 0.467ùú 0.198˛˛ 0.398˛ú

relatively high correlation scores while traditional offline metrics like DCG or Precision
generally have lower correlations, which agrees with the results of the previous section.
Using the bootstrap test (95% significance level, 1,000 bootstrap samples) we confirmed
that all the click model-based metrics show significantly higher correlation with all the
online metrics than any of the traditional offline metrics.

As to the online metrics, we can see that the reciprocal rank family (MaxRR, MinRR,
MeanRR) appears to be better correlated with the effort-based metrics (ERR, rrDBN,
rrDCM), because the effort function used by these metrics is the reciprocal rank 1

r

(6.2).
The same holds for PLC as it uses reciprocal rank of the lowest click that could be viewed
as “satisfaction position” used by an effort-based metric. The differences between ERR
and uSDBN, rrDBN and EBU, rrDCM and uDCM are statistically significant (using the
same bootstrap test). Conversely, for the UCTR metric all the utility-based metrics show
significantly higher correlation than corresponding effort-based metrics.

We also compare the newly introduced click model-based metrics with older metrics:
ERR (effort-based) and EBU (utility-based). The result of the comparison is marked
as superscripts in the Table 6.2: the first superscript corresponds to ERR, the second
one corresponds to EBU. As we see, in most cases our new click metrics appear to be
significantly better than the previously known ERR and EBU metrics, expect for UCTR
measure, which does not account for clicks (rather for their absence) and hence obviously
lacks the source of correlation with click-model based metrics. According to other metrics,
rrDBN and rrDCM are better than ERR in three out of four cases and better than EBU in
all four cases, while uUBM is better than EBU in four out of four cases.

In general, all the absolute click metrics are poorly correlated with offline metrics—
the correlation values are much lower than correlation with interleaving outcomes. As
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Table 6.3: Correlation between offline metrics (using the TREC 2011 runs). Values higher
than 0.9 are marked in boldface.

Precision2 DCG ERR uSDBN EBU rrDBN uDCM rrDCM uUBM

Precision 0.649 0.841 0.597 0.730 0.568 0.397 0.562 0.442 0.537
Precision2 – 0.785 0.663 0.780 0.675 0.526 0.693 0.551 0.681
DCG – – 0.740 0.857 0.711 0.530 0.704 0.592 0.685

ERR – – – 0.807 0.919 0.754 0.902 0.826 0.888
uSDBN – – – – 0.792 0.585 0.794 0.638 0.754
EBU – – – – – 0.788 0.970 0.822 0.930
rrDBN – – – – – – 0.786 0.917 0.807
uDCM – – – – – – – 0.813 0.947
rrDCM – – – – – – – – 0.841

was shown by Radlinski et al. [127], absolute click metrics are worse at capturing user
satisfaction than interleaving. That is why we propose to use the results of Section 6.4.1
as the main way to compare offline metrics with user behavior.

6.4.3 Correlation Between Offline Metrics

In order to compare offline metrics to each other in terms of ranking IR systems we use
data from the TREC 2011 Web Track [54]. Participants of the TREC competition were
offered a set of queries (“topics” in TREC parlance) and a set of documents for each query
to rank. Each document was judged using a four-grade scale.6 For each metric we can
build a list of system runs7 ordered by the metric value averaged over queries. We then
compute Kendall tau correlation scores between these ordered lists; they are summarized
in Table 6.3. As was shown by Voorhees [158], metrics with correlation scores around
0.9 can be treated as very similar because this is the level of correlation one achieves
when using the same metric but different judges. This level of correlation to distinguish
equivalent metrics was also used in subsequent papers, for example [18, 22, 135, 157]. In
Table 6.3 such metric pairs are marked in boldface.

We see that all click model-based metrics are highly correlated within their group,
utility-based or effort-based, while correlations of the two metrics based on the same
model (uSDBN and ERR, EBU and rrDBN, uDCM and rrDCM) are lower.

6.4.4 Discriminative Power

Another measure frequently used for comparing metrics is the discriminative power by
Sakai [130]. This measure is a bit controversial, because high values of discriminative
power do not imply a good metric. Nevertheless, extremely low values of discriminative

6Initially, a five-grade scale was listed on a TREC 2011 description page, but in the end a four-grade scale
was used for evaluation. As in the trec_eval evaluation tool we do not distinguish between Irrelevant and
Spam documents.

7In total we have 62 runs submitted by 16 teams.
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Table 6.4: Discriminative power of different metrics according to the bootstrap test
(confidence level 95%).

Metric Discriminative Power

Precision 50.1%

Precision2 30.8%

DCG 48.6%

ERR 39.3%

uSDBN 51.1%

EBU 35.1%

rrDBN 21.1%

uDCM 34.7%

rrDCM 26.0%

uUBM 33.3%

power can serve as an indication of a metric’s poor ability to distinguish different rankings.
As was shown in previous work (e.g., [53, 146]) discriminative power is highly consistent
with respect to statistical test choice. Given this fact we focus on a bootstrap test as it
makes fewer assumptions about the underlying distribution. Results based on the same
TREC 2011 Web Track data as used in the previous section are summarized in Table 6.4.
As expected, highly correlated metric pairs (e.g., (rrDBN, rrDCM) and (EBU, uDCM))
have similar discriminative power.

Another observation to be made is that the effort-based metrics ERR, rrDBN and
rrDCM have a lower discriminative power than the utility-based metrics uSDBN, EBU
and uDCM, respectively. This is probably due to the fact that “position discount” for the
effort-based metrics goes to zero faster than for the utility-based metrics and hence they
are less sensitive to changes in the bottom of the ranked list.

6.5 Conclusion

In this chapter we proposed a framework of click model-based metrics to build an offline
evaluation measure on top of any click model.

We formulated the following research questions:

RQ3.1 Can we make use of click models to build better evaluation metrics? How do
such click model-based IR metrics differ from traditional offline metrics?

RQ3.2 Which evaluation metrics are better tied to the user? Do click model-based
metrics show higher agreement with online experiments? How do they compare
in terms of discriminative power?

RQ3.3 How well do different offline metrics perform in the presence of unjudged
documents?
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RQ3.4 How can we modify offline metrics to enhance agreement with online experi-
ments?

Answering them, we can say the following:

• Click model-based metrics generally differ from traditional offline metrics, while
they are quite similar to each other. Moreover, utility-based metrics are significantly
different from effort-based metrics in terms of system ranking.

• All click model-based metrics generally show high agreement with the outcomes
of online interleaving experiments and relatively high agreement with absolute
click measures. However, correlation with absolute metrics is low for all offline
metrics (both traditional and click model-based) compared to the correlation with
interleaving outcomes.

• Unjudged documents may decrease correlation with interleaving outcomes but by
using thresholds we can overcome this issue for click model-based metrics.

• Condensation and thresholding of offline metrics are effective ways of stabilizing
correlations with interleaving outcomes in the presence of unjudged documents.

Future directions. Naturally, the study we performed in this chapter has some lim-
itations and potential for future work. Adapting click models for unjudged/unknown
documents is one such direction. For example, one could modify a click model by adding
the probability of a document being skipped because it is unjudged. This question requires
further investigation and we leave it as future work.

Another natural extension of our framework of click model-based metrics is adding
more signals from the assessors. For instance, we can ask assessors to judge not only
documents, but their snippets as well (a practice already in place at commercial search
engines) and use direct snippet relevance as part of the total utility.

Finally, in our work we argued that offline metrics should be better correlated with
interleaving outcomes. However, we might want to have a metric that correlates with
self-reported user satisfaction instead.

The last two topics will be addressed next, in Chapter 7. Alternatively, the reader may
proceed to Chapter 8 which addresses the question of online evaluation as opposed to
offline evaluation studied in the current and the following chapters.
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7
Offline Evaluation of Modern Search:

Click, Attention and Satisfaction

Modern SERPs often provide immediate value to users and organize information in such
a way that it is easy to navigate. The core ranking function contributes to this and so do
result snippets, smart organization of result blocks and extensive use of one-box answers
or side panels. While they are useful to the user and help search engines to stand out, such
features present two big challenges for evaluation. First, the presence of such elements on
a SERP may lead to the absence of clicks, which is, however, not related to dissatisfaction,
so-called “good abandonments.” Second, the non-linear layout and visual difference of
SERP items may lead to non-trivial patterns of user attention, which is not captured by
existing evaluation metrics.

In this chapter we propose a model of user behavior on a SERP that jointly captures
click behavior, user attention and satisfaction, the clicks, attention and satisfaction (CAS)
model, and demonstrate that it gives more accurate predictions of user actions and self-
reported satisfaction than existing models based on clicks alone. We use the CAS model
to build a novel evaluation metric that can be applied to non-linear SERP layouts and
that can account for the utility that users obtain directly on a SERP. We demonstrate
that this metric shows better agreement with user-reported satisfaction than conventional
evaluation metrics.

Together these contributions allow us to answer the research questions formulated in
the introduction:

RQ4.1 Does a model that unites attention and click signals give more precise estimations
of user behavior on a SERP and self-reported satisfaction? How well does the
model predict click vs. satisfaction events?

RQ4.2 Does an offline evaluation metric based on such a model show higher agreement
with user-reported satisfaction than conventional metrics such as DCG?

7.1 Introduction

When looking at the spectrum of queries submitted to a web search engine, we see a heavy
head of highly frequent queries (“head queries”) as well as a long tail of low-frequency
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Figure 7.1: Example of a modern SERP with a news block and a side panel produced
by one of the big commercial search engines for the query [Indianapolis]. Image
credits: Google.

queries (“tail queries”) [145]. While a small number of head queries represent a big part
of a search engine’s traffic, all modern search engines can answer these queries quite
well. In contrast, tail queries are more challenging, and improving the quality of results
returned for tail queries may help a search engine to distinguish itself from its competitors.
These queries often have an underlying informational user need: it is not the user’s goal
to navigate to a particular website, but rather to find out some information or check a
fact. Since the user is looking for information, they may well be satisfied by the answer
if it is presented directly on a SERP, be it inside an information panel or just as part of
a good result snippet. In fact, as has been shown by Stamou and Efthimiadis [151], a
big portion of abandoned searches is due to pre-determined behavior: users come to a
search engine with a prior intention to find an answer on a SERP. This is especially true
when considering mobile search where the network connection may be slow or the user
interface may be less convenient to use.

An important challenge arising from modern SERP layouts is that their elements are
visually different and not necessarily placed in a single column. As was shown by Dumais
et al. [68], grouping similar documents helps user to navigate faster. Since then this
approach has been studied extensively by the IR community [5–7, 122, 171] and adopted
by the major search engines with so-called vertical blocks and side panels (Figure 7.1).
When information is presented in such a way, the user examines it in a complex way, not
by simply scanning it from top to bottom [62, 159, 160].

We claim that the currently used user models and corresponding evaluation metrics
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have several disadvantages. First, most of the models assume that the SERP consists
of equally shaped result blocks, often homogeneous, presented in one column, which
often prevents us from accurately measuring user attention. Second, none of the current
Cranfield-style evaluation metrics account for the fact that the user may gain utility directly
from the SERP. And finally, and, perhaps, the most important of all, is that the offline
evaluation metrics, although sometimes based on a user model, do not learn from the
user-reported satisfaction, but rather use ad-hoc notions for utility and effort.

In this chapter we propose an offline evaluation metric that accounts for non-trivial
attention patterns of modern SERPs and the fact that a user can gain utility not only by
clicking documents, but also by simply viewing SERP items. Our approach consists of
two steps, each having value on its own: (1) we build a unified model of a user’s clicks,
attention and satisfaction, the clicks, attention and satisfaction (CAS) model; and (2) we
use this model to build a Cranfield-style evaluation metric (which we call the CAS metric).

The rest of the chapter is organized as follows. In Section 7.2 we discuss related work. In
Section 7.3 we present our motivation for including utility gained directly from the SERP.
Then we present our user model in Section 7.4. In Section 7.5 we present an evaluation
metric based on this model. Section 7.6 describes our experimental setup. In Section 7.7
we present results of our experiments. We conclude in Section 7.8.

7.2 Related Work

Apart from click models discussed in Section 2.3 and click model-based metrics introduced
in Chapter 6, there are three areas of research relevant to the current study. Below we list
the most relevant papers from each of them.

Abandonments

Turpin et al. [157] showed that perceived relevance of the search results as seen on a
SERP (snippet relevance or direct SERP item relevance, as we call it) can be different
from the actual relevance and should affect the way we compute the utility of a page. Li
et al. [104] introduced the notion of good abandonment showing that utility can be gained
directly from the SERP without clicks. Chilton and Teevan [30] found that the presence
of specially decorated search results (Answers) might lead to higher abandonment rates
for several query types. In [38, 39] two approaches to query classification were suggested,
where the queries were classified as potential good abandonments, i.e., the queries that
are likely to result in good abandonment. Diriye et al. [63] presented a comprehensive
analysis of causes of (good and bad) abandonments, while Williams et al. [161] and Song
et al. [147] showed how to build a classifier of abandonments.

Mouse Movements

Another important part of related studies concerns mouse movements. It was demonstrated
that there is a strong relation between mouse movement and eye fixation, although
this relation is not trivial [129]. Even though the correlation between eye fixation and
mouse movement is far from perfect, the latter was shown to be a good indicator of user
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attention [118], comparable in quality to eye gaze data. In follow-up work Navalpakkam
et al. [119] showed that mouse movements are not always aligned with eye fixations,
suggesting the idea that this behavior is user-dependent. Based on the idea of eye-mouse
association, a classifier was developed that can predict the fact of an individual user
carefully reading a SERP item [108] and even the satisfaction reported by the user [109],
based on mouse movements. Huang et al. [87] demonstrated that mouse movements can
serve as a strong signal in identifying good abandonments. Diriye et al. [63] showed that
mouse movement data together with other signals can indeed yield an efficient classifier
of good abandonments. Their work also introduced an experimental setup for in-situ
collection of good abandonment judgements. They argued that this is the only way of
collecting ground truth data, as even query owners have difficulties telling the reason for
abandonment if they are asked later.

Click Models

On the overlap between click modeling and mouse movement research Huang et al. [88]
proposed an extended click model that uses mouse interactions to slightly refine an existing
click model. Diaz et al. [62] showed that visually salient SERP elements can dramatically
change mouse movement trails and suggested a model that handles this. Chen and Min
[29] adopted a generative approach to click modeling where relevance, clicks and mousing
were written as noisy functions of previous user actions. They used this approach to
predict CTRs of results on the SERP.

Our work here is different from previous work on good abandonments in that we not only
allow for stopping after a good SERP item, but we account for this in terms of the total
utility accumulated by the user, which brings us closer to the traditional Cranfield-style
evaluation approach. Our work is different from previous work on mouse movements
and click models in that we do not study them separately, but use both as evidence for
locating the user’s attention. On top of that, we explicitly include in our model the notion
of accumulated utility and user satisfaction as well as the possibility to gain utility from
results that were not interacted with.

7.3 Motivation

In this section we demonstrate that the presence of snippets that answer the user query
increases the number of abandonments. That suggests that the user can be satisfied without
a click. A similar study for mobile search was carried out by Arkhipova and Grauer [9],
who performed online experiments and demonstrated that satisfaction might come from
snippets, not just from clicked results.

Chapelle et al. [26] showed that conventional offline metrics such as DCG (Sec-
tion 3.2.4) have negative correlation with abandonment rate.1 However, the phenomenon
of good abandonments [104] must be taken into account. In all previous works related
to good abandonments authors usually performed human assessments of query-SERP
pairs by asking human raters the following question: “Does the search engine result page

1They showed a positive correlation with UCTR, which is the opposite of abandonment (Section 3.3).
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p contain an answer to the query q?” Still, it is not completely clear if real users (i.e.,
not raters) notice such an answer and decide to abandon their habit of clicking on search
results. In this section we measure correlation of snippet metrics with user clicks thus
providing evidence for real-word good abandonments.

For this small motivation study we focus on factoid queries: short questions that can
be answered in a search result snippet (annotation). Our idea is to gather judgements of
snippet quality, compute offline metrics that measure a SERP’s quality and then calculate
correlation with click metrics. We start by extracting data from Yandex’s query log. We
keep queries with clear encyclopedic intent, namely queries of the form [X definition],
[what is X], [meaning of X], etc. After that we ask a group of raters to judge each document
snippet with respect to the query:

• Raters should answer Yes if it represents a full and easy-to-read answer to the
question.

• Raters should answer No if it does not contain an answer to the user’s query (even
if an acceptable answer can be found after following the URL).

• Raters should answer Partial if it contains only partial answer to the query. E.g.,
the question is to define some ambiguous term and the snippet explains only one of
its possible meanings. Another example: answer is correct, but not detailed enough
or is not easy to read.

After performing this filtering, we are left with 8,830 judged snippets corresponding
to 883 queries. In order to calculate whole SERP relevance we compute several frequently
used offline metrics (see Sections 3.2 and 6.3.1):2

• Precision at N. We calculate P@10 and P@5 by converting relevance grades to
binary (only Yes-snippets are treated as relevant).

• Average precision (AP). Again, only Yes-snippets are treated as relevant.

• uSDBN. We use uSDBN metric (6.6) also known as “ERR with abandonment
probability” [26, Section 7.2]: We convert direct relevance grades D to probabilities
using the mapping: ⇢pDq “ 2

D´1

2

D

max

, as in Section 3.2.4. In our case D P t0, 1, 2u
is a grade assigned by a rater, D

max

“ 2. Similar to Section 6.3.1, we use � “ 0.9

as was suggested in [25].

• Cumulative gain (CG). Non-discounted metric:
∞

n

r“1

⇢pD
r

q.

• Discounted cumulative gain (DCG). Classic DCG metric:
∞

n

r“1

2

D

r ´1

log2 p1`rq .

Once we have computed quality measures for all the SERPs we compare them to
online click-based metrics.3 The hypothesis is that users tend to click less when SERP is
sufficiently good. First, we perform the following procedure: for each offline metric we
sort queries according to this metric (in ascending order) and split our data set into five

2We replace document relevance R by direct snippet relevance D.
3Clicks are gathered from a Yandex query log collected for the period of three months in 2011. In total, we

have 137,010 query sessions.

87



7. Offline Evaluation of Modern Search: Click, Attention and Satisfaction

Figure 7.2: Pearson correlation between CTR and SERP quality.

Figure 7.3: Pearson correlation between abandonment rate and SERP quality.
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Table 7.1: Pearson correlation between SERP quality metrics and abandonment rate.

P@10 P@5 AP CG@10 CG@5 DCG uSDBN

CTR ´0.154 ´0.142 ´0.111 ´0.190 ´0.182 ´0.195 ´0.186

Aband. (whole dataset) ´0.010 ´0.003 ´0.041 `0.023 `0.022 `0.012 ´0.021

Aband. (best 40%) `0.150 `0.074 `0.006 `0.114 `0.084 `0.084 `0.078

bins of equal size, each bin contains one fifth of all instances. For that experiment we use
only two offline metrics: uSDBN and DCG. Other metrics are too discrete and hard to
split to equal bins. We examined two click metrics, namely abandonment rate and total
CTR, (see Section 3.3). The results are presented in Figures 7.2 and 7.3.

From these plots we can draw several conclusions. First, we can see that overall page
CTR decreases with better snippets’ quality, i.e., better SERPs need fewer clicks. Second,
we conclude that users tend to abandon more the SERPs that contain very informative
snippets.

We then look at the CTR metric for the whole dataset and find substantial negative
correlation with all SERP quality metrics. For abandonment rate we compute correlation
for the whole dataset and also use another approach where we leave only well-performing
queries, i.e., best 40% of the queries according to a particular offline metric. The intuition
is that those queries are more likely to result in good abandonments and we expect to see
positive correlation with abandonment rate, whereas it could be negative for the whole
dataset. The results are summarized in Table 7.1 and, indeed, confirm our intuition.

Results presented in this section can be considered as a justification of the existence of
real good abandonments in the real Web. Moreover, we claim that asking the raters to
judge the snippets for direct snippet relevance is useful in determining user satisfaction.
In the next section we take this motivation on board and present a new user model and a
corresponding evaluation metric.

7.4 Model

Let us first describe the clicks, attention and satisfaction (CAS) model that we are going
to use. It is a model of user behavior on a SERP that has three components:

• an attention model;

• a click model; and

• a satisfaction model.

The model is visualized in Figure 7.4. Each SERP item k gives rise to a feature vector
~'

k

that determines the examination event E

k

. After examination the user may or may
not click through (C

k

). Then the examined and clicked documents contribute to the
total utility, which, in turn, determines satisfaction (S). We describe each of the three
components in the following sections.
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Figure 7.4: Diagram of the CAS model.

We should note here that we train a relevance-based click model, where the click
probability depends on the relevance label assigned by the raters and not on the document
itself, just as we did in Chapter 6. A classical click model can also be trained (from a bigger
dataset) and compared using click likelihood similar to what we did in Chapter 5. However,
we still need a relevance-based model to build an evaluation metric (Sections 7.5 and 7.7.2).

7.4.1 Attention (Examination) Model

Diaz et al. [62] suggested a model that predicts mouse transitions between different
elements of the SERP. While mousing can be used as a proxy for user attention focus [77,
119, 129], we observe in our data entire classes of sessions where mouse tracks and
attention areas are substantially different, while others are not.4 Hence, we cannot fully
reconstruct the attention transition path. That is why, unlike [62], we train a pointwise
model of user attention:

P pE
k

“ 1q “ "p~'
k

q, (7.1)

where k is an index referring to one of the items comprising the SERP (result snippets,
weather results, knowledge panels, etc.), E

k

is a random variable corresponding to the
user examining item k, ~'

k

is a vector of features indexed by the item k, and " is a

4For instance, currency conversion queries like, e.g., [12 EUR in CHF] often result in no mousing at all, yet
the user reports satisfaction. Similar patterns of discrepancy between mousing and attention were also reported
by Rodden et al. [129].
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function converting a feature vector into a probability. The features we use are presented
in Table 7.2.

Table 7.2: Features used by the attention model of CAS.

Feature group Features # of features

rank user-perceived rank of the SERP item (can be dif-
ferent from k)

1

CSS classes SERP item type (Web, News, Weather, Currency,
Knowledge Panel, etc.)

10

geometry offset from the top, first or second column (binary),
width (w), height (h), w ˆ h

5

The function that converts feature vectors into probabilities is a logistic regression. Instead
of training it directly from mouse movement data, which is only a part of the examined
items, we train it in such a way that it optimizes the full likelihood of the data, which
includes not just mouse movement, but also clicks and satisfaction labels. More on this in
the following sections.

7.4.2 Click Model
For our click model we use a generalization of the position-based model (PBM) (Sec-
tion 3.1.2), at the core of which lies an examination hypothesis, stating that in order to be
clicked a document has to be examined and attractive:

P pC
k

“ 1 | E

k

“ 0q “ 0 (7.2)
P pC

k

“ 1 | E

k

“ 1q “ ↵

u

k

, (7.3)

where C

k

is a random variable corresponding to clicking the k-th SERP item, ↵

u

k

is the
attractiveness probability of the SERP item u

k

. Unlike the classic PBM model, where
examination is determined by the rank of the SERP item, in our model we use a more
general approach to compute the examination probability P pE

k

“ 1q, as described
in Section 7.4.1.

7.4.3 Satisfaction Model
Next, we propose a satisfaction model. As we saw in Section 7.3 user satisfaction may
come from clicking a relevant result, but also from examining a good SERP item. We
also assume that satisfaction is not a binary event that happens during the query session,
but has a cumulative nature. In particular, we allow the situations where after examining
a good document or a good SERP item the user may still continue the session. This
assumption is supported by data that we collected from raters. After looking at a SERP
item (referred to as “summary extracted from a bigger document” in the instructions), our
raters were asked whether they think that “examining the full document will be useful
to answer the question Q” and if so, what the reason is. While looking at the reasons
specified by the raters we found out that 42% of the raters who said that they would click
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through on a SERP, indicated that their goal was “to confirm information already present
in the summary,” which implies that the summary has an answer, yet the users continue
examining it.

To put these ideas into a model, we assume that each relevant document or SERP item
that received a user’s attention contributes towards the total utility U gained by the user:

U “
ÿ

k

P pE
k

“ 1qu
D

p ~

D

k

q `
ÿ

k

P pC
k

“ 1qu
R

p~

R

k

q, (7.4)

where ~

D

k

and ~

R

k

are vectors of rater-assigned labels of direct SERP item relevance and
full document relevance, respectively; u

D

and u

R

are the transformation functions that
convert the corresponding raters’ labels into utility values. To accommodate variable
ratings from different raters, we assume u

D

and u

R

to be linear functions of the rating
histogram with weights learned from the data:

u

D

p ~

D

k

q “ ~⌧

D

¨ ~

D

k

(7.5)

u

R

p~

R

k

q “ ~⌧

R

¨ ~

R

k

, (7.6)

where ~

D

k

and ~

R

k

are assumed to be histograms of the ratings assigned by the raters.
We have three grades for D (see Figure 7.7, question 2) and four relevance grades for R

(Irrelevant, Marginally Relevant, Relevant, Perfect Match); the vectors have corresponding
dimensions.

Then, we assume that the probability of satisfaction depends on the accumulated utility
via the logit function:

P pS “ 1q “ �p⌧
0

` Uq “ 1

1 ` e

´⌧0´U

, (7.7)

where ⌧

0

is a constant intercept value.
Finally, we can write down the satisfaction probability as follows:

P pS “ 1q “ �

˜

⌧

0

`
ÿ

k

P pE
k

“ 1qu
D

p ~

D

k

q `
ÿ

k

P pC
k

“ 1qu
R

p~

R

k

q
¸

. (7.8)

7.4.4 Model Training
To be able to train the CAS model we make a further assumption that the attractiveness
probability ↵

u

k

depends only on the relevance ratings ~

R

k

assigned by the raters:5

P pC
k

“ 1 | E

k

“ 1q “ ↵p~

R

k

q “ �

´

↵

0 ` ~↵ ¨ ~

R

k

¯

. (7.9)

Since the function ↵ has to yield a probability, we set it to be a logistic regression of the
rating distribution.

Now that we have the model fully specified, we can write the likelihood of the observed
mouse movement, click and satisfaction data and optimize it using a gradient descent

5We also tried collecting separate attractiveness labels with the crowd worker, but the data appeared to be too
noisy due to the subjective nature of the question; see Section 7.6.2 for more details.
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method. We use the L-BFGS algorithm [107], which is often used for logistic regression
optimization. It has also been shown to be robust to correlated features [114].

One important thing to note is that while computing the satisfaction probability (7.8)
as part of the likelihood expression, the values of click probabilities are always either 0

or 1, while the value of the examination probability can be either 1 if there is a mouse
fixation or it is computed using (7.1) if there is no mouse fixation on the SERP item.

7.5 Search Evaluation Metric

Now that we have described a model of the user’s behavior on a SERP, we can use this
model to build an evaluation metric. Once the parameters of the model are fixed, it can
easily be re-used for any new search ranking or layout change. This is very important
when working on improving a search engine and allows for quick iterations.

Assume that we have the following judgements about the SERP items from human
raters (cf. [33]):

1. direct SERP item relevance D

k

; and

2. topical relevance R

k

of the full document (assigned after clicking and examining
the full document).

Assume further that we have trained the model as explained in Section 7.4.4. Now we can
simply plug in the relevance labels and the model parameters in equation (7.4) to obtain
the utility metric:

U “
ÿ

k

"p~'
k

q
´

u

D

p ~

D

k

q ` ↵p~

R

k

qu
R

p~

R

k

q
¯

. (7.10)

Note that after the parameters have been estimated and fixed, only the raters’ judgements
and layout information are used to evaluate system performance. This way we ensure the
scalability and re-usability of the Cranfield-style offline evaluation.

7.6 Experimental Setup

First, let us repeat the research questions for this chapter:

RQ4.1 Does a model that unites attention and click signals give more precise estimations
of user behavior on a SERP and self-reported satisfaction? How well does the
model predict click vs. satisfaction events?

RQ4.2 Does an offline evaluation metric based on such a model show higher agreement
with user-reported satisfaction than conventional metrics such as DCG?

Our first research question RQ4.1 requires that we build a model and evaluate it on self-
reported satisfaction. That prompts us to collect a log of user actions. See Section 7.6.1.
Similarly, for the second question RQ4.2 we need to have judgements from independent
raters and we use crowdsourcing for it. See Section 7.6.2.

Below we carefully describe each step of our data collection to facilitate reproducibility.
Then we detail the baseline models and the way we evaluate the models.
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Figure 7.5: Search satisfaction questionnaire.

7.6.1 In-situ Data Collection

First of all, we set up a proxy search interface that intercepts user queries to a commercial
search engine and collects click and mouse movements data. Our log collection code
is based on the EMU.js library by Guo and Agichtein [76]. The interface was used by
a group of volunteers who agreed to donate their interaction data. The design of the
experiment was also reviewed by the Ethical Committee of the University of Amsterdam.
In our experiments we only use the queries that were explicitly vetted by the owners as
not privacy sensitive using the log management interface we provide; see Figure 7.6.6
We should also stress here, that unlike laboratory settings, the search experience was not
changed: the user received the same list of results and interacted with them in the same
way as if they were using the underlying search system in the normal manner.

Occasionally we showed a pop-up questionnaire asking users to rate their search
experience upon leaving the SERP; see Figure 7.5. To avoid showing it prematurely, we
forced result clicks to open a new browser tab. Through this questionnaire we collected
explicit satisfaction labels that we later used as ground truth to train and evaluate the CAS
model.

Each user saw the pop-up questionnaire no more than ten times a day and only for 50%

of the sessions. The questionnaire was equipped with “mute buttons” that allowed the
user to disable the questions for one hour or 24 hours. We assume that this questionnaire,
if not shown overly frequently, would not seriously affect the overall user experience. A
similar setup was used in [63].

6Our code, including modifications to EMU.js, is available at https://github.com/varepsilon/
cas-eval.
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Figure 7.6: Log management interface for experiment participants.

Table 7.3: Data collected with the search proxy.

# of participants 12
# of shared sessions (queries) 2,334
# of shared sessions with satisfaction feedback 243

The parameters of the dataset are summarized in Table 7.3.

7.6.2 Crowdsourcing Data Collection
As a second stage of our experiment we asked crowdsourcing raters (“workers”) to assign
(D) and (R) labels (see Section 7.5) by showing them SERP items or corresponding web
documents and asking the following questions:

(D) Does the text above answer the question Q?

(R) Does the document that you see after clicking the link contain an answer to the
question Q?

For the first question we showed only the part of the SERP corresponding to a single
SERP item and no clickable links. For the second one we only showed a link and required
the workers to click it. Moreover, the above two tasks were run separately so the chances
of raters confusing the two tasks were quite low. When comparing the most common (D)
and (R) labels assigned for each document, they show Pearson correlation values of 0.085

and Spearman correlation values of only 0.094, which proves that they are quite different.
Originally, a third question was also included to collect attractiveness labels (“(A)-

ratings”) to be used instead of (R) relevance in (7.9). It ran as follows: “Above is a

95



7. Offline Evaluation of Modern Search: Click, Attention and Satisfaction

Table 7.4: Data collected via crowdsourcing. We sent for rating all the sessions with
satisfaction feedback (Table 7.3) apart from non-English queries.

(D) (R)
# of workers 1,822 951
# of ratings 23,000 22,056
# of snippets/documents rated 2,180 2,180

summary extracted from a bigger document. Do you think examining the full document
will be useful to answer the question Q?” However, this proved to be a very subjective
question, and attractiveness labels collected this way were less useful as click predictor
compared to relevance labels (R). To be precise, the average (A)-rating for the clicked
results was 0.82, while it was 0.84 for non-clicked (0.02 standard deviation for both). For
the (R)-ratings the corresponding numbers were as follows: 2.29 (standard deviation of
0.29) for clicked and 2.19 (standard deviation of 0.31) for non-clicked. That proves that
(R) serves better as a click predictor.

From preliminary runs of the crowdsourcing experiment we learned that the crowd
workers rarely pay attention to the detailed instructions of a task, so we decided against
using terms like “query” (we used question instead) or “snippet” (we referred to it as
text or summary). After several iterations of improving the task we also decided to ask
the raters to provide justifications for their answers. We later used this as an additional
signal to filter out spammers (see Section 7.9), but it can also be used to understand more
about the complexity of individual questions or the task as a whole [10]. One application
for the data collected in this way we already saw when we discussed the satisfaction
model in Section 7.4.3. Another analysis that we ran was to identify potential good
abandonments, i.e., queries that may be answered directly on a SERP [104]. We found
out that, even though the raters often disagree with themselves,7 the queries that were
marked as potential good abandonments most often by the raters, were all labeled as such
in an independent rating.

An example of the task interface is shown in Figure 7.7. We used the CrowdFlower
platform, which was the only platform we could use at the time due to the regional
limitations of the other platforms mentioned in Section 2.4. Workers were paid $0.02
per task to keep the hourly pay above $1, above the minimum wage in the author’s home
country8 and a psychological threshold for the raters to treat it as a fair pay.9

The key parameters of the dataset that we collected in this manner are summarized
in Table 7.4.10 After removing ratings coming from spammers (see Appendix 7.9) and
sessions that are labeled as something other than “I am satisfied” or “I am not satisfied”

7Approximately 30% of the raters said that a query is both a potential good and bad abandonment when a
slightly different wording was used (or indicated that a potential bad abandonment query has an answer on a
SERP).

8 7,500 per month as of 01.01.2017 (http://www.consultant.ru/document/cons_doc_LAW_
198850/), roughly equivalent to 50 or $0.80 per hour after accounting for state holidays and vacation days.

9The workers were shown an optional survey at the end of the task where they rated “Pay” from 3.2 to 3.5
(out of 5).

10The anonymized version of the dataset can be obtained at http://ilps.science.uva.nl/
resources/cas-eval.
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Figure 7.7: Crowdsourcing task for assigning direct relevance label (D) plus some addi-
tional questions.

(see Figure 7.5) we are left with 199 query sessions. Of those, 74% were marked as
satisfactory; 12% (24 items) of the SERPs are heterogeneous, meaning that they have
something other than “ten blue links.” For these 199 queries we have 1,739 rated results.
If an item does not have a rating, we assume the lowest rating 0, although more advanced
approaches exist [11, 20].

7.6.3 Baseline models/metrics
To evaluate our CAS model, we implement the following baseline models:

• the user browsing model (UBM) (Section 3.1.5) that was shown to yield a metric
that is well correlated with user signals (see Chapter 6);

• the position-based model (PBM) (Section 3.1.2), a robust model with fewer param-
eters than UBM, yet a powerful one (see Chapter 5);

• the random model that predicts click and satisfaction with fixed probabilities.11

11Note that this model is different from the random click model (RCM) introduced in Section 3.1.1 in that it
learns not only the probability of click, but also the probability of satisfaction.
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Apart from these, we also included the following metrics:

• the discounted cumulative gain (DCG) metric (Section 3.2.4); and

• the utility-based UBM metric (uUBM), the metric that showed the best results
in Chapter 6. It is similar to the above UBM model, but parameters are trained not
on our dataset (Table 7.4), but on a much bigger dataset (see Chapter 6).

This way we include both non-model-based (DCG) and model-based metrics (the rest),
but also locally trained models (UBM, PBM) as well as the uUBM model trained on a
different dataset.

To test stability of our results we employ 5-fold cross-validation that we restart 5

times, each time reshuffling the data, see Algorithm 7.1. Thus, we have 25 experimental
outcomes that we aggregate to assess significance of the results.

Algorithm 7.1 TQ-fold cross-validation.
1: procedure TQFOLD(dataset D, T repetitions, Q folds)
2: N – sizepDq
3: for i – 1 to T do
4: D – RandomShu✏epDq
5: for j – 1 to Q do
6: Dtest – D

”

N

Q

pi ´ 1q . . .

N

Q

i

ı

7: Dtrain – DzDtest
8: train on Dtrain
9: evaluate on Dtest

7.7 Results

Below we report results on comparing the CAS model and corresponding evaluation
metric to other models and metrics, respectively.

7.7.1 Evaluating the CAS Model

We evaluate the CAS model by comparing the log-likelihood values for different events,
viz. clicks and satisfaction. We also analyse the contribution of different attention features
introduced in Table 7.2.

Likelihood of clicks

First, we would like to know how the CAS model compares to the baseline models in
terms of log-likelihood. Figure 7.8 shows the likelihood of clicks (Section 5.2) for different
models. On top of the CAS model described above, we include three modifications of it:

• CASnod is a stripped-down version of CAS that does not use (D) labels;
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• CASnosat is a version of the CAS model that does not include the satisfaction
term (7.8) while optimizing the model; and

• CASnoreg is a version of the CAS model that does not use regularization while
training.12

As we can see from Figure 7.8, the difference between different variants of CAS is
minimal in terms of click log-likelihood. UBM and PBM show better log-likelihood
values on average, with PBM being more robust. There are two reasons for CAS to
underperform here. First, it is trained to optimize the full likelihood, which includes
moused results and satisfaction, not just the likelihood of clicks. As we will see later, CAS
shows much better likelihood for satisfaction, more than enough to make up for a slight
loss in click likelihood. Second, the class of models for examination and attractiveness
probabilities we have chosen (logistic regression) may not be flexible enough compared
to the arbitrary rating-to-probability mappings used by PBM and UBM. While similar
rating-to-probability mappings can be incorporated into CAS as well, it makes the training
process much harder and we leave it for future work.

Likelihood of satisfaction

Next, we look into the log-likelihood of the satisfaction predicted by the various models;
see Figure 7.9. For the models that do not have a notion of satisfaction (CASnosat, UBM,
PBM, uUBM), we use the sigmoid transformation of the utility function, which, in turn,
is computed as the expected sum of relevance of clicked results (see [42]). However, all
such models turn out to be inferior to the random baseline. This finding supports the
idea of collecting satisfaction feedback directly from the user instead of relying on an
ad-hoc interpretation of utility which may be quite different from the user’s perception of
satisfaction.

By comparing the results for CAS vs. CASnoreg in Figure 7.9 we also see that
regularization leads to a more stable satisfaction prediction likelihood, which is, however,
lower on average. If we have a large sample of data that is representative of the user
population, regularization may as well be omitted. By comparing the performance of
CAS vs. CASnod we can also see that the lack of (D) ratings clearly hurts the model’s
performance as it can no longer explain some utility that is directly gained from the SERP.

Analyzing the attention features

Finally, we look at the features used by the attention model (Table 7.2). If we exclude
some of these features we obtain the following simplified versions of the CAS model:

• CASrank is the model that only uses the rank to predict attention; this makes
the attention model very similar to PBM and the existence of the satisfaction
component (7.8) is what makes the biggest difference;

• CASnogeom is the model that only uses the rank and the SERP item type informa-
tion but does not use geometry; and

12All other models are trained with L2-regularization.
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Figure 7.8: Log-likelihood of the click data. Note that uUBM was trained on a different
dataset.

Figure 7.9: Log-likelihood of the satisfaction prediction. Some models here always have
log-likelihood below ´0.8, hence there are no boxes for them.
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(a) Clicks. (b) Satisfaction.

Figure 7.10: Feature ablation for the attention model: log-likelihood of the click prediction
(a) and the satisfaction prediction (b) for vanilla CAS as well as stripped-down versions
of it.

• CASnoclass is the model that does not use the CSS class features (SERP item
type).

We compare these models to the vanilla CAS and CASnod models in terms of log-
likelihood of click and satisfaction prediction as we did above for the baseline models.

The results are shown in Figures 7.10(a) and 7.10(b). What we can see from these plots
is that excluding (D) labels (CASnod) almost does not affect click prediction accuracy, but
it does substantially hurt the satisfaction prediction. This is expected as these labels are
only used in the satisfaction formula (7.8). On the other hand, removing geometry features
(CASnogeom, CASrank) hurts click prediction the most, while having a less prominent
impact on satisfaction prediction. Finally, removing CSS class features (CASnoclass) has
a small effect on both click and satisfaction prediction, but much smaller than removing
geometry affects click prediction or removing (D) labels affects satisfaction prediction.

In this section we showed that the CAS model predicts clicks slightly worse than the
baseline models, albeit at roughly the same level. When it comes to predicting satisfaction
events, the baseline models show much lower log-likelihood values, the only comparable
performance is shown by the random model, but it performs worse than CAS. In terms
of incorporating satisfaction into our models, we demonstrated that it is necessary to do
so in order to beat the random baseline on the log-likelihood of satisfaction (CASnosat
is always worse than the baseline) and the (D)-labels play an essential role for model
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Table 7.5: Correlation between metrics measured by average Pearson’s correlation coeffi-
cient.

CASnosat CASnoreg CAS UBM PBM DCG uUBM

CASnod 0.593 0.564 0.633 0.470 0.487 0.546 0.441

CASnosat 0.664 0.715 0.707 0.668 0.735 0.684

CASnoreg 0.974 0.363 0.379 0.417 0.341

CAS 0.377 0.394 0.440 0.360

UBM 0.814 0.972 0.882

PBM 0.906 0.965

DCG 0.943

accuracy: CASnod shows lower log-likelihood than the CAS. This answers our first
research question RQ4.1.

7.7.2 Evaluating the CAS Metric

Now we evaluate the metric derived from the CAS model and described in Section 7.5. To
do this we compute correlations with baseline metrics and with user-reported satisfaction.

Correlation between metrics

Table 7.5 shows the average Pearson correlation between utilities produced by different
metrics averaged across folds and repetitions of the cross-validation procedure. As we
can see, metrics from the CAS family are less correlated with the baseline metrics than
they are with each other. The highest level of correlation with the baseline metrics among
the CAS metrics is achieved by CASnosat, the metric that does not explicitly include
satisfaction in the user model. This is expected as its model is close to PBM. Another
observation from Table 7.5 is that CASnod is also quite different from the baseline metrics,
but not as much as CASnoreg and CAS, which, again, shows that including (D) relevance
labels (direct snippet relevance) makes the metric quite different.

Correlation with user-reported satisfaction

Figure 7.11 shows the Pearson correlation between the utility induced by one of the
models and the binary satisfaction labels reported by the user. As we can see from the plot,
the metric induced by the CAS model shows the best Pearson correlation values, despite
the fact that it was trained to maximize the full likelihood of the data, not just to predict
satisfaction. Correlation is always above zero for metrics based on CAS and CASnoreg,
but for the metrics based on CASnod and CASnosat the correlation can be negative,
which, again, reinforces the importance of the (D) labels and the explicit satisfaction
component in the model. While comparing CAS to the baseline models, we observed that
the correlation values for the CAS-based metrics are at least 0.14 higher on average.
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Figure 7.11: Pearson correlation coefficient between different evaluation metrics and the
user-reported satisfaction.

Modern SERPs

To prove that the CAS model is especially useful in case of heterogeneous SERPs we
perform the following experiment. We take a stratified random split of the dataset
into training and testing, where the test set contains 1{24 of the data and exactly one
heterogeneous SERP.13 We then compute utility of this one SERP using the metric
trained on the train set and compare it to the satisfaction label for the corresponding
session. This process is repeated 20 times and the Pearson correlation of the utilities and
satisfaction labels is computed. Results are reported in Figure 7.12. We see that the CAS
and CASnoreg metrics show much higher correlation with the user-reported satisfaction
than the other metrics.

Analyzing the attention features

Similar to our analysis in Section 7.7.1 we perform an ablation study, this time to compare
vanilla CAS to CASrank, CASnogeom, CASnoclass and CASnod in terms of how well
the metrics induced by them are correlated with user-reported satisfaction. The results are
shown in Figure 7.13.

As can be see from the plot, removing the class features reduces correlation only a
little (CAS vs. CASnoclass). We hypothesize that the reason for this is that in our dataset
only 12% of the SERPs have non-trivial SERP items. Removing geometry features
(CASnogeom) or both geometry and class features (CASrank) already makes the metric

13As we mentioned in Section 7.6.2, our dataset contains 24 such SERPs.
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Figure 7.12: Pearson correlation coefficient between utility of heterogeneous SERP and
user-reported satisfaction.

Figure 7.13: Feature ablation for the attention model: Pearson correlation coefficient
between different variants of the CAS metric and users’ satisfaction.
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perform worse, suggesting that these features are crucial for modeling the user’s attention
on a modern SERP. Finally, the worst performing metric is CASnod which does not use
the (D)-labels. The performance drop is much higher than for the models discussed above,
which shows that attention features are important for satisfaction prediction, but having
(D)-labels brings more to the table. This is consistent with the analysis of the results
reported in Figure 7.10(b).

In this section we showed that the metric based on the CAS model differs substantially
from the baseline metrics, but less so if the model does not include (D) labels or disregards
the satisfaction term altogether. More importantly, the CAS metric is not just different
from the baseline metrics, it also shows better correlation with the satisfaction reported by
users. So, indeed, incorporating satisfaction yields a new and interesting metric, which
answers RQ4.2.

7.8 Conclusion

In this chapter we presented a model of user behavior that combines clicks, attractiveness
and satisfaction in a joint model, which we call the CAS model. A method to estimate
the parameters of the model and a Cranfield-style offline evaluation metric based on this
model were proposed. We also described the crowdsourcing setup to collect labels for
individual documents.

As was demonstrated, the model (cf. RQ4.1) conceived in this way can be used as a
robust predictor of user satisfaction without sacrificing its ability to predict clicks. We
have also shown that decoupling satisfaction from attention and clicks leads to inferior
satisfaction prediction without gain in predicting clicks.

In addition, a metric was presented (cf. RQ4.2) that can be used for offline search
system evaluation, an important component of ranking development. The CAS metric with
parameters trained from user data consistently shows correlation with satisfaction, unlike
traditional metrics. Moreover, the metric is quite different, suggesting that including it
into one’s evaluation suite may lead to a different view on which version of the ranking
system is better.

Future directions. First of all, we would like to acknowledge some limitations of the
study presented in this chapter. Our dataset is small compared to the typical datasets used
for training click models (cf. Sections 4.4 and 5.4.1) and may be somewhat biased in
terms of query distribution since most of the users whose data was used have a computer
science background. It would be preferable to collect such data at a bigger scale. One
direction for future work would be to train the CAS model on heterogeneous data, where
potentially a bigger dataset with clicks and mousing is supplemented by a smaller one
with satisfaction labels.

Feature engineering for the attention model also was not comprehensive and was not a
goal of this chapter. One may add more saliency features to detect the users’ attention or
even train separate skimming and reading models [108].

Another challenging part in our setup is the use of crowd workers. It would be
interesting to run a study with trained raters and learn how to extrapolate it to the crowd,
by adjusting the instructions and filtering the spammers in a more automated fashion than
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Table 7.6: Filtered out workers and agreement scores for remaining workers.

% of workers % of ratings Cohen’s Krippendorff’s
label removed removed kappa alpha

(D) 32% 27% 0.339 0.144

(R) 41% 29% 0.348 0.117

we have used [95]. There is also a noticeable difference between raters and the users. For
example, Liu et al. [109] claim that the raters pay more attention to the effort required to
complete a task, while the users care more about utility. Also, the ratings assigned by the
owners of the query are different from the ones assigned by other people [31].

Mobile search evaluation [78, 86] is another facet of future work. As we mentioned
in the introduction, navigating away from a SERP is more expensive there, so users tend
to gain utility directly from the SERP and the search engines add more ways to aid this
behavior. It would be interesting to see how we can leverage additional attention signals
to adapt the CAS model for mobile settings.

While the experiments presented in this chapter have limitations, we view them as a
motivation to move away from the ten blue links approach and adopt an evaluation metric
that uses rich features and relevance signals beyond traditional document relevance. We
also call for releasing a dataset that would allow for a more comprehensive evaluation
than currently provided by TREC-style evaluation setups.

In the current chapter and the one before we talked about offline quality evaluation based
on expert ratings. Next, in Chapter 8 we are going to look at a different type of evaluation,
namely online interleaving evaluation, and show how it can be adjusted for modern
SERPs.

7.9 Appendix: Filtering Spammers

To identify spammers, we use free-text fields where the raters were asked to copy text from
the snippet or full document to support their relevance ratings. If the text was not copied
from the snippet (in case of direct snippet relevance) or contained gibberish words, we
add this worker to the list of suspicious workers. After each batch of tasks sent for ratings
was finished, we manually review lowest scoring workers according to those metrics and
ban them from the future tasks.14 We also ignore workers with fewer than three ratings
following [10]. In total, we ignore ratings coming from 698 workers out of 2,185, which
corresponds to 27% of direct snippet relevance ratings (D) and 29% of relevance ratings
(R), see Table 7.6.

To measure worker disagreement we report average Cohen’s kappa [58] as well as
Krippendorff’s alpha [103]. The numbers are reported in Table 7.6. As we can see, the
agreement numbers are rather low, which shows that there is still a big variation of opinions.

14Manual examination of the worker’s ratings before banning is enforced by the crowdsourcing platform that
we used.
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Fortunately, our model is able to accommodate this by taking the histogram of ratings and
not just a single number coming from averaging or majority vote; see (7.5), (7.6) and (7.9).

We also experimented with worker-worker and worker-task disagreement scores [10],
the method of cleaning the data where workers that disagree with too many other workers
on either global or per-item level are removed from the data. We explored different
thresholds on disagreement scores and managed to improve overall agreement measured
by Cohen’s kappa and Krippendorff’s alpha, which was expected, but it did not improve
the final results (Section 7.7). Presumably, the reason for that was that there were
always enough careless workers that consistently gave wrong answers and showed good
agreement with each other, and the method based on worker disagreement was not able to
catch them. Moreover, some disagreement is natural in such a subjective task; reducing it
does not necessarily improve quality.

Finding a good balance between data quantity and data quality is a topic for a different
discussion and is outside the scope of this chapter. Changing the settings for spammer
filtering to very aggressive (removing all workers that made at least one mistake thus
filtering out over 75% of the ratings) or to very permitting (no spammer filtering) gives
rise to models with inferior performance both in terms of likelihood of clicks/satisfaction
and the correlation of utility and user-reported satisfaction.
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8
Online Evaluation of Modern Search:

Interleaving

Unlike the previous two chapters, here we focus on online evaluation where a system’s
quality is inferred from real users’ interactions with a live search system. As we said in the
introduction, modern SERPs are intrinsically heterogeneous and thus create challenges
for us when we try to interpret user behavior. An additional problem arises for so-called
interleaving methods—by mixing results from two different SERPs one can easily break
the desired web layout in which vertical documents are grouped together, and hence affect
the user experience, potentially in a negative way.

In this chapter we conduct an analysis of different interleaving methods as applied
to modern heterogeneous SERPs. In addition to conventional interleaving methods,
we propose two vertical-aware methods: one derived from the widely used team-draft
interleaving method by adjusting it in such a way that it respects vertical document
groupings, and another based on the recently introduced optimized interleaving framework.
We show that our proposed methods are better at preserving the user experience than
existing interleaving methods while still performing well as a tool for comparing ranking
systems. For evaluating our proposed vertical-aware interleaving methods we use real
world click data as well as simulated clicks and simulated ranking systems.

Our main research questions are as follows:

RQ5.1 Influence on the user experience. What effect do different interleaving methods—
both conventional and newly introduced vertical-aware—have on the user expe-
rience in the case of complex SERPs? Do any of these methods run the risk of
degrading the quality of the results or altering the user experience?

RQ5.2 Correctness and sensitivity. Do different interleaving methods always draw
correct conclusions about the better system? How fast, in terms of the number of
impressions and amount of feedback needed, can they detect that one aggregated
search system is to be preferred over another?

RQ5.3 Unbiasedness. Do the interleaving methods that we consider provide a fair and
unbiased comparison, or do some of them erroneously infer a preference for one
aggregated search system over another in situations where implicit feedback is
provided by a randomly clicking user?
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In order to answer RQ5.1 we consider different pairs of SERPs and analyse the effect on
the user experience imposed by the interleaving methods that we consider. We analyze
a scenario where the aggregated result pages are allowed to have multiple blocks that
originate from different verticals. In addition to evaluating visual changes, we add an
evaluation of the quality of the interleaved list as captured by both click metrics and offline
rater-based metrics. When evaluating visual changes we aim at preserving the usual user
experience and alter it as little as possible. When we look at offline or online metric-based
quality, we want to make sure that we do not degrade the user experience.

RQ5.2 concerns the ability of an interleaving method to correctly capture the differ-
ence between two rankers by using the minimal amount of implicit user feedback. We
analyze the ability to notice strong differences between rankers (formulated in terms of
Pareto dominance), as well as subtle differences reported by offline and online quality
metrics (including those specific to aggregated search).

Finally, to answer RQ5.3 we check that none of the evaluation methods infer statisti-
cally significant preferences when we assume a randomly clicking user.

8.1 Introduction

There is a general trend to aggregate search results from different verticals (e.g., News,
Image, Video) and present them in one search result page together with “general web” or
“organic web” results. This new search paradigm is called aggregated search or federated
search and has been adopted by all major commercial search engines. As much as one
third of all queries have an intent that can be answered by a specific vertical, whereas 10%

to 30% of the queries require at least two different types of vertical. This was first pointed
out in a study by Arguello et al. [5], where human editors found at least two relevant
verticals for 30% of the queries in a random sample of Yahoo! Search1 queries. More
conservative estimations from other search engines were later reported by Chen et al. [28]
and Styskin [152]. With respect to presentation style, it has become standard to group the
results coming from the same vertical and present them as one coherent block. As was
shown by Dumais et al. [68], presenting results in a grouped manner simplifies browsing
result lists and helps users to navigate faster.

As web search engines constantly evolve, their quality needs to be evaluated. Inter-
leaving [90, 91] is an evaluation method for comparing the relative quality of two ranking
systems. Users are presented with a mixed or interleaved list of results from both rankings
and the users’ clicks are used to determine which system is better. Interleaving methods
have proved to be an efficient tool; they allow us to identify the preferred system from
user clicks faster than other methods such as A/B-testing [127].

How can interleaving methods be used to measure the quality of aggregated search
systems that combine web and vertical results? We want to achieve the efficiency of
conventional interleaving methods while preserving the conventional aggregated search
user experience, in which vertical results are organized in blocks. In this chapter we
propose several extensions of interleaving methods to handle complex heterogeneous
search engine result page comprising results from different verticals.

1https://search.yahoo.com
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8.2. Related Work

The rest of the chapter is organized as follows. We discuss related work in Section 8.2.
In Section 8.3 we introduce conventional interleaving methods and their limitations as
applied to modern search result pages. In Section 8.4 we present two vertical-aware
interleaving methods capable of dealing with not just one but many vertical blocks of
different types. Section 8.5 describes the experimental setups that we use and discuss their
strengths and weaknesses. In Sections 8.6, 8.7 and 8.8 we address the research questions
formulated above. We conclude in Section 8.9.

8.2 Related Work

Two lines of research relate to this work. One focuses on evaluating aggregated SERPs
using different evaluation paradigms. The other explores utilizing interleaving methods
for evaluating search rankings.

Vertical Search

Vertical or aggregated search deals with presenting results from different verticals in one
unified interface. We discuss the foundations of it in Section 2.2.

Evaluation of aggregated search is a complex and challenging problem as there is
a variety of compounding factors. Four key components of aggregated search have the
main influence of the user’s experience: vertical selection (VS), vertical diversity (VD),
item selection (IS), result presentation (RP) (cf. Section 5.3). Vertical selection and
diversity deal with deciding which set of diverse verticals are implicitly intended by a
query. Item selection deals with selecting a subset of items from each vertical to present
on the aggregated page. Result presentation deals with organizing and embedding the
various types of result on the result page.

There is a growing body of work on evaluating aggregated search. Relatively early
work considered VS to be the main criterion of evaluation and much of the research [5,
172] aimed to measure the quality of the set of selected verticals, compared with an
annotated set obtained by collecting manual labels from assessors underlying different
assumptions [173, 175].

In later work, to evaluate both VS and RP, Arguello et al. [8] proposed to use pairwise
preference evaluation to rank the vertical blocks for a given query. Targeting a similar
objective, Ponnuswami et al. [122] described the process of manual assessments of both
vertical and organic documents, and proposed a click-based assessment of vertical block
placement similar to Joachims [90]. However, they neither discussed the combined effect
of these two ranking aspects nor suggested a way to compare vertical documents inside
one block to each other (IS). Most of these evaluation methods assumed that the vertical
block was atomic, i.e., it was considered to have no internal structure. However, this is
not always the case. For example, a news block usually contains a list of headlines. Each
of them can be judged separately and compared to organic web results.

Recently, Zhou et al. [171] followed the Cranfield paradigm (Section 2.4) and proposed
an evaluation framework for measuring aggregated search quality by modeling all, or a
subset, of the four aggregated search key components discussed above (VS, VD, IS and
RP). The main differences between these proposed metrics are the way they model each
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factor and the way they combine them. A list of diversity metrics such as ↵-NDCG [52]
was also adapted to evaluate aggregated search. By meta-evaluating those metrics on
their reliability and intuitiveness, Zhou et al. [174] concluded that the ASRBP [171] was
the preferred metric. Similar to [171], we aim to capture the four key components of
aggregated search together when we conduct our evaluations. To answer RQ5.1, we also
utilize a set of offline metrics, including ASRBP, to quantify the quality of the results in
order to verify that our proposed approaches do not degrade the user experience.

Interleaving

We build vertical-aware interleaving methods on top of TDI and on top of OI that we
describe in Section 2.5. Below we mention the most relevant related work in the area of
interleaving and evaluation thereof and put our research in context.

Most interleaving methods presented until now, were evaluated in terms of sensitivity
and correctness, which corresponds to our RQ5.2. Radlinski and Craswell [123] showed
that interleaving is more accurate and more sensitive than standard offline metrics such as
NDCG or ERR introduced in Section 3.2. Radlinski and Craswell [124] applied the same
evaluation method to show that OI is more sensitive than TDI if the right credit function
is used. They also analyzed typical biases of different interleaving methods (related to
our RQ5.3).

Another meta-evaluation method was proposed by He et al. [79] where different
interleaving methods were compared in terms of their effect on the user experience (related
to our RQ5.1). Unfortunately, they did not report any difference between interleaving
methods nor did they compare the quality of the interleaved system to the original A and
B systems being interleaved. We substantially extend this meta-evaluation method in our
Section 8.6 (RQ5.1).

A comprehensive study with a systematic analysis of interleaving methods and their
meta-evaluation was suggested by Hofmann et al. [82]. The main questions we aim to
answer are related to, but different from, the notions of fidelity, soundness and efficiency
studied by Hofmann et al. [82]. First of all, we put more focus on the user experience
aspect (RQ5.1), which was not analyzed in [82]. Second, our RQ5.2 unites two closely
related questions of sensitivity and correctness, which in [82] were split across definitions
of efficiency and fidelity (their Definitions 4.4 and 4.2(2) respectively). And finally, we
separate the question of unbiasedness which in [82] was bundled with correctness (their
Definition 4.2(1)). In addition, we do not study the notion of soundness introduced by
Hofmann et al. [82] since it is trivially satisfied for the interleaving methods we use.

Our work differs in important ways from the work just discussed. In contrast to pre-
vious work on evaluating aggregated search, we perform online evaluations based on
interleaving methods that allow us to evaluate aggregated system as a whole and to do
so efficiently. Our proposed approach only needs naturally occurring user interactions,
which makes it cheap and useful in an online environment. In contrast to previous work on
interleaving, we propose a new interleaving method that preserves the user experience on
complex aggregated SERPs while maintaining a high degree of sensitivity and preserving
unbiasedness.
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8.3 Conventional Interleaving

To design a new interleaving method one can follow one of two possible ways. The
first way, taken by the majority of the interleaving methods [80, 91, 127], assumes that
the designer of the interleaving method specifies the probability distribution over pos-
sible interleaved lists. This probability distribution was made explicit in probabilistic
interleaving [80] and left implicit, although easily reconstructible, in balanced interleav-
ing [91] and team-draft interleaving [127].2 Another approach introduced by Radlinski
and Craswell [124] specifies an interleaving method as an optimization problem that
allows us to explicitly tune the method for better sensitivity.

According to Joachims [91], a good interleaving method should be blind to the user
and have a low usability impact. This is particularly important for vertical search, since,
as we will show below, conventional interleaving methods do not fully satisfy these
conditions.

We will use two conventional interleaving methods as baseline methods: team-draft
interleaving (TDI) and optimized interleaving (OI). The former is widely used in commer-
cial settings [42, 123], while the latter has good flexibility which enables us to naturally
extend it to the aggregated search setting. The same two interleaving methods were also
extended in [138] to allow for comparisons of multiple rankers at once.

8.3.1 Team-draft Interleaving (TDI)
Conventional TDI (Algorithm 8.1) allows rankings A and B to contribute documents turn
by turn and keeps track of which side contributes which document (Team

A

or Team
B

).
By flipping a coin in cases when both teams have the same size (line 4), the algorithm
ensures a fair and unbiased team assignment and sufficient variability in the result list L.

Algorithm 8.1 Conventional TDI.
1: function TDI(ranking A, ranking B)
2: L – rs; Team

A

– H; Team
B

– H
3: while |L| † N do
4: if |Team

A

| † |Team
B

| ` RANDOMINTEGERp0, 1q then
5: k – minti | Aris R Lu
6: Team

A

– Team

A

` Arks ô add Arks to Team

A

7: L – L ` Arks ô append Arks to the list L

8: else
9: k – minti | Bris R Lu

10: Team

B

– Team

B

` Brks ô add Brks to Team

B

11: L – L ` Brks ô append Arks to the list L

12: return L

As we can see in Algorithm 8.1, there is nothing that prevents result list L from mixing
up documents from different verticals with web documents. Even when we have only one
vertical block of the same type in A and B, the algorithm may give rise to two blocks in

2The distribution is uniform amongst allowed rankings in these two methods.
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the interleaved list and therefore affect the user experience. For instance, Figure 8.1 shows
a schematic representation of two ranked lists A, B and one of the possible interleaved
lists. In this example, vertical documents d

3

, d

4

and d

5

are not grouped in the result list
L, which deviates from the intended aggregated search user experience.

ranking A ranking B L = TDI(A, B), example
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Figure 8.1: Two rankings with a vertical block and one of the possible interleaved lists
(TDI). Vertical documents are shown as dotted lines.

8.3.2 Optimized Interleaving (OI)

Radlinski and Craswell [124] proposed to formalize the “low usability impact” constraint
(our RQ5.1) using a prefix condition (called c

1 there):

@k Di, j such that L

k “ A

i Y B

j

, (8.1)

where A

i is the set of top-i documents returned by system A, B

j is the set of top-j
documents returned by system B, and L

k is the set of top-k documents of the interleaved
ranking L.3

When we fix a prefix condition, all we need to do is assign probabilities to all the
possible interleaved lists L that conform to this condition (we denote the set of possible
interleaved lists as L). Radlinski and Craswell [124] suggested choosing this probability
distribution in order to maximize a method’s sensitivity while preserving its unbiasedness.
We also need to specify a credit function �pdq that assigns a particular credit to document
d depending on its rank in rankings A and B. If we assume for now that the credit function
is fixed, we can write down the following optimization problem:4

p

i

P r0, 1s (8.2)
|L|
ÿ

i“1

p

i

“ 1 (8.3)

@k P t1, . . . , Nu :

|L|
ÿ

i“1

p

i

�

k

pL
i

q “ 0 (8.4)

|L|
ÿ

i“1

p

i

spL
i

q Ñ max

tp

i

u
, (8.5)

3Note that interleaved lists produced by TDI also satisfy the prefix condition (8.1).
4Radlinski and Craswell [124] used a different formalization of unbiasedness (Section 3 there), which is,

however, mathematically equivalent to our condition (8.4).
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where s is an estimated sensitivity function defined as follows:

spLq “ ´ 1 ´ w
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∞
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We use the same constraints as [124] for the credit function. Given a document d, let �pdq
denote the credit assigned to system A for this document.5 Thus, when �pdq is positive
then A receives credit, if it is negative then B receives credit. The credit function should
satisfy:

rankpd, Aq † rankpd, Bq ô �pdq ° 0 (8.6)
rankpd, Aq ° rankpd, Bq ô �pdq † 0, (8.7)

where rankpd, Xq is the position of document d in ranking X (we set rankpd, Xq “ `8
if d R X). In particular, we set � to linear rank difference which is the most sensitive
setting in [124, equation (14)]:

�

k

pLq “ �pd
k

q “ rankpd
k

, Bq ´ rankpd
k

, Aq. (8.8)

The interleaving method then proceeds as specified in Algorithm 8.2.

Algorithm 8.2 Conventional OI.
1: function OI(ranking A, ranking B, credit function �

i

)
2: L – tL | L satisfies (8.1)u
3: Find a distribution tp

L

| L P Lu that conforms to the constraints (8.2), (8.3), (8.4)
and maximizes the average sensitivity (8.5).

4: Sample L from L according to the probability distribution p

L

5: return L

If we are to add a constraint that discards all the rankings L that split vertical documents
of the same type, we will end up with a very biased list of rankings L. Consider the
example provided in Figure 8.2. In this example each ranking A and B has exactly one
vertical block, say, News, which consists of different documents and resides on positions
4 and 5 in both rankings A and B. We also assume that organic rankings are sufficiently
different in A and B. We can easily see that the prefix condition (8.1) does not allow

5For simplicity we use the same names for rankers (ranking systems) and the ranking lists they generate. It
should be clear from the context what we refer to.
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system B to contribute its vertical documents until it has contributed all the documents
before the block. The same holds for system A. This means that if we want both systems
to contribute to the resulting vertical block of L, we are forced to place the block lower in
the ranking, because we first need to show the union of before-block documents from A

and B. This implies that, in Figure 8.2, we need to present d

1

, d

2

, d

3

, d

6

, d

7

before the
vertical block whenever we want both d

4

and d

8

to be present in the resulting ranking.
But if we do so, we push the vertical block to the bottom of the result page and hence
influence the user experience (RQ5.1). We also risk having a bigger vertical block than in
either ranking A or ranking B for the same reason.

ranking A ranking B
d

1

d

1

d

2

d

6

d

3

d

7

d

4

d

8

d

5

d

5

d

6

d

9

Figure 8.2: Two rankings with a vertical block at the same position.

8.4 Vertical-aware Interleaving

In this section we discuss vertical-aware extensions of the two interleaving methods that
we study: TDI and OI. We modify these interleaving methods such that the vertical
documents of the same type are guaranteed to be grouped.

8.4.1 Vertical-aware Team-draft Interleaving (VA-TDI)
We describe an algorithm that may be viewed as a generalization of the conventional TDI
method by Radlinski et al. [127]. The intuition is to start with the standard TDI method
and then alter it to meet the following requirements:

R1 Both of the ranked lists being interleaved should contribute to the vertical block
placement size and position in the interleaved list;

R2 Both ranked lists should contribute vertical and organic web documents;

R3 Team assignment should be “fair”; and

R4 The resulting interleaved list should not degrade the user experience.

We propose a method called vertical-aware team-draft interleaving (VA-TDI) (Algo-
rithm 8.3) that generalizes Algorithm 1 from [40] to the case of multiple vertical blocks.
The main idea is to enforce the grouping of vertical documents. Therefore, our algorithm
proceeds like the conventional TDI method until it hits the first vertical document. After
that it interleaves only vertical documents of this type (line 29) until the block has been
formed (line 18), i.e., there are no vertical documents left or the desired block size is
reached.6 After that, the algorithm continues as usual, but ignores the vertical documents

6We pick the desired block size beforehand (line 7) to ensure requirement R1 is met.
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Algorithm 8.3 Vertical-aware team-draft interleaving (VA-TDI).
1: function VATDI(ranking A, ranking B)
2: vLeft – H ô verticals left (not yet present in L)
3: for every vertical type t present in either A or B do
4: A

t

– td P A | d is a vertical doc of type tu
5: B

t

– td P B | d is a vertical doc of type tu
6: Size

A

t

– |A
t

|; SizeB

t

– |B
t

|
7: Size

L

t

– SAMPLESMOOTHLYpSizeA

t

,Size

B

t

q
8: if SizeL

t

‰ 0 then
9: vLeft – vLeft Y ttu

10: L – rs
11: Team

A

– H; Team
B

– H
12: t – NULL ô current vertical type
13: while |L| † N do
14: if |Team

A

| † |Team
B

| ` RANDOMINTEGERp0, 1q then
15: ADDNEXTDOCFROMpA, t, vLeftq
16: else
17: ADDNEXTDOCFROMpB, t, vLeftq
18: if t ‰ NULL and |td P L | d is a vertical doc of type tu| “ Size

L

t

then
19: vLeft – vLeftzttu ô this vertical is completed in L

20: t – NULL
21: return L

22: function SAMPLESMOOTHLY(integer a, integer b)
23: if a ° b then
24: SWAPpa, bq
25: Sample r randomly from ra ´ 1, b ` 1s where all integers from ra, bs have equal

probability p; pa ´ 1q and pb ` 1q, each has probability p

2

26: return r

27: procedure ADDNEXTDOCFROM(ranking X , current vertical type t, vLeft)
ô X is either A or B

28: if t ‰ NULL then
29: X

left

– ti | Xris P X

t

zLu
30: if X

left

“ H then
31: raise exception ô interleaved list is rejected, start a new one
32: else
33: X

left

– ti | Xris P XzL and (Xris is a Web doc or Dt

1 P vLeft such that
Xris P A

t

1 )u
34: k – min X

left

ô select the document with the min rank
35: Team

X

– Team

X

Y tXrksu ô add the document to the team
36: if Xrks is a vertical doc of type t

1 then
37: t – t

1 ô change the current vertical type
38: L – L ` Xrks ô append the document to L
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whose blocks have already been formed (line 33).
If we look back to our original goals, we see that Algorithm 8.3 explicitly chooses

block sizes between those of A and B (with some smoothing in order to do exploration),
while the position of the block is contributed implicitly (although both ranked lists can
influence it). Requirements R2 and R3 are met automatically due to the TDI procedure
that we re-use (after one ranked list wins the coin flip and contributes the document, the
other ranked list has to contribute the next document), though we also verify them along
with requirement R4 in our experiments.

On the other hand, the algorithm proposed has some weaknesses. First of all, it
assumes a rejection sampling procedure: if the selected block size cannot be achieved,
we reject the list being built and start a new one with another randomization (line 31).
This usually happens when A and B have very different block sizes and we cannot build
big enough vertical block as VA-TDI assumes that A and B contribute roughly the same
number of vertical documents (line 14). Using synthetic rankings (Section 8.5.3), we
identify that rejection happens on average 3.8 times per interleaving function invocation
with slightly over hundred in the worst case. This could lead to unwanted delays in
building the interleaved SERP and may potentially affect the user if the search is run
on slow hardware. It is worth noting, however, that the TDI method normally takes a
negligible amount of query processing time and even a 100-fold increase should not lead
to a visible degradation.7 Another issue of the VA-TDI method exhibits itself when we
consider A and B with different sets of verticals. The method’s nature prevents one
ranked list from contributing more than two documents in a row, which means that if A

has a vertical of type t and size n (n • 3) while B does not have a vertical of type t, the
interleaved list will only be able to include one or two top documents from this block. As
we will see later, this leads to smaller vertical blocks (Section 8.6.1), which may affect the
user experience. This also limits the sensitivity of VA-TDI (due to the fact that it may skip
vertical documents)—as we will see in Section 8.7, VA-TDI is unable to break the limit
of sensitivity 0.8 even when we consider a more obvious case where A always Pareto
dominates B. In the next section we propose another interleaving method, vertical-aware
optimized interleaving (VA-OI), that does not suffer from these limitations.

8.4.2 Vertical-aware Optimized Interleaving (VA-OI)
In order to extend the optimized interleaving method presented in Section 8.3.2, we
extend equation (8.1) and introduce an additional constraint that guarantees that vertical
documents of the same type are presented in a grouped manner (8.16).

Consider a list of documents A, containing multiple blocks of vertical documents
of different types. Let AWeb be the list of organic web results in A, so A stripped of
all vertical blocks. For any vertical type t P tImage, News, . . .u, let A

t

be the list of
vertical documents of that type in A. This list may be empty. We assume that all vertical
documents of one type occur in A in one group, so all those documents are grouped
together in the SERP.

Let A

k

Web be the list of the k documents in AWeb having the smallest rank values
(ranked higher). So for AWeb “ pd

1

, . . . , d

n

q, we have A

k

Web “ pd
1

, . . . , d

k

q. For any
7For practical purposes we can also introduce a cut-off and skip interleaving if it takes too much time to

build. This would lead, however, to a biased sample and requires a separate analysis.
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vertical type t, define A

k

t

in a similar way. Note that it is not necessarily so that a
document d

i

in AWeb “ pd
1

, . . . , d

n

q is ranked at position i, since there may be vertical
documents above d

i

, pushing it to a lower rank. Therefore, there may be documents
in A

k that are ranked below rank k. For a document d, let rankpd, Aq denote its rank
in A, with rankpd, Aq “ `8 if d is not in A. For a set of documents S we define
rankpS, Aq “ min

dPS

rankpd, Aq.
From two lists A and B, we generate a new list L that is a combination of the two. We

define similar lists and functions for B and L as above for A. The constraints that should
be satisfied by any generated list are:

@k Di, j : L

k

Web “ A

i

Web Y B

j

Web (8.9)

@t, k Di, j : L

k

t

“ A

i

t

Y B

j

t

(8.10)
@t such that L

t

‰ H : minp|A
t

|, |B
t

|q § |L
t

| § maxp|A
t

|, |B
t

|q (8.11)
@t such that L

t

‰ H : rankpL
t

, Lq • minprankpA
t

, Aq, rankpB
t

, Bqq (8.12)
@t such that L

t

‰ H : rankpL
t

, Lq § maxprankpA
t

, Aq, rankpB
t

, Bqq (8.13)
|tt | L

t

‰ Hu| • minp|tt | A

t

‰ Hu|, |tt | B

t

‰ Hu|q (8.14)
|tt | L

t

‰ Hu| § maxp|tt | A

t

‰ Hu|, |tt | B

t

‰ Hu|q (8.15)
@t Dm : @k P rm, m ` |L

t

|s : Dd P L

t

: rankpd, Lq “ k. (8.16)

Constraint (8.9) is the prefix constraint introduced by Radlinski and Craswell [124]. It
requires any prefix of LWeb to be a combination of the top i and top j documents of AWeb
and BWeb. This essentially means that the new list could be constructed by repeatedly
taking the top document that is not used yet from either AWeb or BWeb. Constraint (8.10) is
an adaptation of the prefix constraint for verticals. It requires that the prefix of any vertical
block L

t

is a combination of top documents of the lists of verticals of the same type in A

and B. Constraint (8.11) requires the size of each vertical block to be between the sizes
of the vertical blocks of the same type in A and in B. Constraints (8.12)–(8.13) control
the position of each vertical block. The rank of the vertical block should be between the
ranks of the blocks of the same type in A and B.

We need additional constraints to control the number of vertical blocks in the list L.
If we only had constraints (8.9)–(8.13), it might be the case that there are three vertical
blocks in A, three vertical blocks of different types in B, and six vertical blocks in the
result list L. This would change the user experience a lot. Therefore, constraints (8.14)
and (8.15) limit the number of vertical blocks in L to be between the number of vertical
blocks in A and the number of vertical blocks in B.

Finally, constraint (8.16) ensures that ranks of the vertical documents of the same
vertical type t are adjacent numbers, i.e., there are no gaps in the ranks.

The interleaving method then proceeds as described in Algorithm 8.4.
With these constraints, we require all aspects of the interleaved list (document place-

ment in the regular result list, document placement inside the vertical block, size of
the vertical block, position of the vertical blocks and number of vertical blocks) to be
somewhere between A and B. This allows for exploration of all possible rankings that
can be considered a combination of A and B.

It is worth noting that our constraints (8.9)–(8.16) are more limiting than the original
constraints in the conventional OI method. As a consequence, the problem of forming an
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Algorithm 8.4 Vertical-aware optimized interleaving (VA-OI).
1: function VAOI(ranking A, ranking B, credit function �

i

)
2: L – tL | L satisfies (8.9)–(8.16)u
3: Find a distribution tp

L

| L P Lu that conforms to the constraints (8.2)–(8.4) and
maximizes the average sensitivity (8.5).

4: Sample L from L according to the probability distribution p

L

5: return L

interleaved list becomes over-constrained more often than for the conventional OI method:
it happens about 10% of the time for VA-OI versus less than 0.1% for OI (experiments
with the real rankings introduced in Section 8.5.1). In cases where the problem becomes
over-constrained, we relax it by replacing constraint (8.4) by the aggregated version:

N

ÿ

k“1

|L|
ÿ

i“1

p

i

�

k

pL
i

q “ 0. (8.17)

By doing so we guarantee that the problem has a solution. Note that A and B are
always present in L, so we have at least two variables (p

1

and p

2

) and at most two linear
equations (8.3) and (8.17). We can also see that the interleaving method stays unbiased
for the randomly clicking user, which we also confirm experimentally in Section 8.8.

We also considered altering the credit function to account for the fact that we are
dealing with aggregated result pages. Vertical documents are often visually more salient
than organic web documents, which changes the examination probabilities and in some
cases even the examination order. We take this into account by redefining the rankpd, Xq
function in (8.8) as rankpd, examinationpXqq, which represents the rank of document
d in ranking X , where X is reordered in descending order by examination probability
according to a click model. Preliminary experiments with this adapted credit function
showed that it makes no change for the sensitivity and correctness as measured with the
offline and online reference metrics (Sections 8.7.2, 8.7.3). We did see a difference in
sensitivity if Pareto dominance is used as ground truth (Section 8.7.1), but we treat this
result as an artifact of our experimental setup, one that stems from the fact that both click
model and Pareto dominance rely on the same examination order implied by the same
click model.

To summarize, we have introduced two interleaving methods that respect vertical blocks
within aggregated search scenarios. In Sections 8.6, 8.7, 8.8 we evaluate these methods
experimentally and show how they compare to conventional interleaving methods.

8.5 Experimental Setup

Each of the interleaving methods we study (Algorithms 8.1, 8.2, 8.3, 8.4) takes two
ranked lists as an input, generates an interleaved list, observes user clicks on it and infers
which system produces better rankings. Therefore, in order to answer the three research
questions listed in the introduction (Section 8.1), we need two ingredients: pairs of ranked
lists (rankings) and clicks. Below we present different ways to obtain ranked lists and
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Table 8.1: Characteristics of different experimental setups: documents, queries, verticals
and aggregated search systems.

Data Documents Queries
(TREC
Topics)

Verticals Aggregated
Search
Systems

Described in

rankings clicks

real two months
of log data

814

(5,755

˚)
queries

1 vertical 2 systems 8.5.1 8.5.4

model TREC
FedWeb13
data [60]

50 topics 12 verticals:
36 model
systems

8.5.2 8.5.5

synthetic artificial
documents
with
simulated
relevance

any
number of
synthetic
topics

3 verticals any
number of
synthetic
AS systems

8.5.3 8.5.5

˚ We have more queries for the relaxed setup (see Section 8.5.4).
: Verticals are manually classified from the 108 FedWeb sources. Details of the classification can be found in

[174].

clicks that we will later use in our experiments. The breakdown of the experimental setups
that we use is presented in Table 8.1. We also present a table showing which experiments
use which datasets (Table 8.2). Basically, we aim to choose the most appropriate dataset(s)
that provide most valuable insights to answer each specific experiment we perform.

Rankings. We use three sources of rankings: from real rankings of a commercial search
system through model rankings emitted by rather simplistic model aggregated search
(AS) systems to completely synthetic rankings targeted to approximate realistic AS result
pages while having more control.

The reason to use different setups lies in the need to find a trade-off between reality,
variability and the amount of data we have (see Figure 8.3). While desirable, we are not
in possession of a single setup that would cover all the aspects (dotted line in Figure 8.3).
Instead, we have three different setups. Firstly, real rankings allow us to assess interleaving
methods on real-world ranking systems that serve real users and give us access to a good
amount of data. However, variability of the data is low (e.g., we only have access to
a single vertical and hence cannot assess our interleaving methods in a multi-vertical
environment). Secondly, model rankings represent near real-world ranking systems, which,
however allow for greater variability, since we use simulated users and do not run the risk
of hurting real users’ experiences here. The data, however, is limited by the number of
model AS systems (36 in our case) and the number of TREC FedWeb topics (50 in our
case). And lastly, synthetic rankings allow us to generate endless amounts of data with
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Table 8.2: Experiments performed to answer each research questions and the datasets
used.

Research Question Experiment Section Data

real model synthetic

RQ5.1 influence on the user
visual aspects 8.6.1
offline quality 8.6.2
online quality 8.6.3

RQ5.2 correctness and sensitivity

Pareto dominance 8.7.1
offline metrics 8.7.2
online metrics 8.7.3
A/B-testing 8.7.4

RQ5.3 unbiasedness random clicks 8.8.1

any variability we want, but the relation to the real world is limited to what we explicitly
include in our synthetic ranking generation procedure.

Clicks. For clicks, we use both real click data from a two-month click log (see below)
and simulated clicks derived from a state-of-the-art click model for aggregated search.
The click log setup is closely tied to the ranking setup: the real clicks can only be used
with the real rankings, while the other ranking setups require modeling the user clicks
with a click model.

8.5.1 Real Rankings

We use a two-months click log of the Yandex search engine recorded during winter 2012–
2013. Due to limited access to the click log data we were only able to collect data with
one vertical block. We picked the vertical of Mobile Applications since it is visually
different from normal web results and at the same time does not have additional aspects
such as freshness [65, 96] (so we ruled out the News vertical) or horizontal document
layout within a vertical block (that ruled out the Image and Video verticals). The Mobile
Applications vertical is triggered for queries with an intent related to smartphone or tablet
applications.8 While the algorithm used for intent detection is beyond the scope of this
study, it is useful to name a few examples of queries triggering the appearance of this
vertical. These include queries containing a mobile application name (e.g., [cut the
rope]) or explicit markers of mobile platforms (e.g., [Opera for iPhone]). The
result items in the vertical block are presented using a standard text snippet, enhanced
with an application icon, price and rating. An example of such a snippet is shown in
Figure 8.4.

One of the limitations of this approach is that we cannot experiment with completely
new document orders that are disallowed by the current production ranking algorithms.

8Limited to iOS or Android devices at the time of collecting data.
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variability

reality

amount

synthetic

modelreal

Figure 8.3: Radar chart of the different data characteristics covered by the different
experimental setups (real, model and synthetic data). The further from the center, the more
pronounced this property is in a particular data set. Note that for illustrative purposes, the
intersection of the three axes denotes that all the characteristics are low, but not zero. E.g.,
model data exhibits relatively high variability and reality with amount of data being low.

In particular, we cannot reproduce the outcomes of an interleaving method that does
not respect vertical block grouping. Another limitation is that we do not have data with
multiple verticals and hence can only reproduce part of the analysis that we are able to
conduct with model or synthetic rankings introduced below. On the other hand, even
limited experiments with real data allow us to validate the key findings of the more
comprehensive but less realistic setups.

8.5.2 Model Rankings

A broader but less realistic scope of rankings can be obtained by implementing model
aggregated search (AS) systems. As in [174], we implement near-real-world aggregated
search systems that we can apply to rank documents and emit rankings with vertical
blocks. The basic idea is that we implement state-of-the-art aggregated search components
and by combining different components, we develop a set of aggregated search pages with
varying qualities.

Firstly, we assume that an aggregated search page consists of ten Web blocks (a single
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Figure 8.4: A vertical result item from the Mobile Applications vertical for the query
[learn languages for free iPhone].

organic web document is viewed as a block) and up to three vertical blocks dispersed
throughout those ten blocks (where each vertical block consists of a fixed number of three
items).

Secondly, as described in previous work [174], we simulate a set of systems by
implementing existing algorithms. We develop four state-of-the-art vertical selection (VS)
systems; two utilize vertical term distribution evidence and the other two use user intent
information by mining query logs. For IS we simulate three potentially different levels
of relevance by using different ranking weighting schemes: Perfect (all vertical items
are relevant), BM25 (with PageRank as a prior) and TF (with PageRank as a prior). We
also simulate three result presentation approaches for result presentation (RP): Perfect,
Random and Bad. Perfect places the vertical blocks on the page so that gain could
potentially be maximized, where Bad reverses the perfectly presented page.

By utilizing this approach, we can generate 4 ˆ 3 ˆ 3 “ 36 aggregated search systems,
which gives us 36 ˆ 35{2 “ 630 system pairs.

As a source of documents we use the TREC FedWeb13 dataset [60], which has topical
relevance labels as well as vertical orientation labels, i.e., the probability that the user
prefers documents of this vertical type to the organic web documents.

8.5.3 Synthetic Rankings

While the model AS systems allow us to have broader variety and a larger amount of data
than real rankings, they still provide a limited setup. In order to make reliable judgements
about the sensitivity of an interleaving method (RQ5.2) or about its unbiasedness (RQ5.3)
we would like to be able to generate as much data as we need. For this purpose we
introduce a synthetic ranking generation procedure that does not require any document
dataset or pool of AS systems.

First of all, we want to mention that two ranking systems, when compared, may or
may not differ in how they present vertical documents. In particular, the systems being
compared may use the same method of building and presenting the vertical blocks and
only differ in the non-vertical (organic) ranking. We believe that this is an important
special case for search engine evaluation and it deserves a separate analysis. Our early
experiments with a real click log [40, Table 4] showed that the outcome of the interleaving
method is correlated with, but different from, the interleaving in situations where no
verticals are distorting user clicks.

For the synthetic experiments we design two algorithms to simulate rankings; those
with fixed vertical blocks (position and contents of the vertical blocks is the same in A

and B rankings) and non-fixed vertical blocks (vertical blocks may have different contents
and positions in A and B). These two settings also correspond to two approaches to the
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construction of aggregated search page (Section 2.2). The first approach [7, 8] assumes
that we have an organic web ranking in place and that vertical documents are being added
on top of it, regardless of what the web ranking is. Another approach [154, 174] assumes
that the vertical documents also have topical relevance labels that can be compared to those
of the web documents. This approach has started gaining popularity with the recently
established TREC FedWeb track [60, 120].

For the fixed vertical blocks we first generate a pair of organic rankings and then
randomly insert blocks of vertical documents at the same place in both rankings. These
blocks vary in size from zero to eight documents and in the positions of the blocks.9
The ranking of the vertical documents within a block is always fixed, i.e., the same for
both rankings. Vertical documents are either (1) non-relevant (condition non-relevant);
or (2) a number of them, proportional to the relevant organic web documents, is relevant
(condition relevant).

For the non-fixed vertical blocks we generate two lists that contain vertical documents
straight away. We slightly modify the above procedure that we use for organic ranking
generation: when constructing the ranking of all documents, both vertical and organic
web documents are generated; if the vertical documents end up not being grouped, we
reorder them accordingly (see Algorithm 8.7).

When generating pairs of rankings A and B, we also ensure that the difference between
a generated pair of rankings resembles the typical differences that we encounter in real-
world interleaving experiments while allowing for ample variety. A particular procedure
for generating synthetic ranking pairs is described in Appendix 8.10.

8.5.4 Real Clicks
One problem that we face with click data, is that we need to have clicks on the interleaved
document list. If the particular interleaving method we want to study has not been
deployed in production, we do not necessarily have the clicks that we need. To address
this problem we adopt the setup proposed by Radlinski and Craswell [124] that makes
use of historic user clicks in order to evaluate new interleaving methods. The main idea
of the method is to look at queries with sufficient variation in the ranked lists and then
pretend that these different ranked lists are the interleaved lists for some rankers A and B.

Let us call a query together with a result list a configuration. Each configuration that
has been shown at least once to a user counts as an impression. Each impression has zero
or more clicks. We proceed in the following steps:

1. Keep only impressions that have at least one click on their top-N documents.
2. Keep only configurations that have at least K such impressions.
3. Keep only queries that have at least M such configurations.

After that, we pick two configurations to be rankings A and B for each query. Following
Radlinski and Craswell [124], we call the most frequent configuration ranking A and the
one that differs at the highest rank ranking B. In cases when we have several candidates
for B, we choose the most frequent one. Once we have our rankings A and B, we compute
all possible interleaved lists that can be produced by Algorithm 8.3 and proceed with the
filtering:

9We randomly assign block positions based on the distribution obtained from the TREC FedWeb data [60].
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Table 8.3: Filtering parameters setup.

N K M

Radlinski and Craswell [124] 4 10 4

our setup 10 4 2

4. Keep only queries for which we have all interleaved lists that can be produced by
VA-TDI in the log.10

In order to fully define the experimental setup we have to define the parameters K, M and
N . We summarize the parameters we use in Table 8.3. Unlike [124] we cannot use only
the top-4 documents as this is highly likely to be in-between the vertical block. This is
why we are forced to decrease K and M in order to have a sufficient amount of log data.
With these parameters we have 814 unique queries. If we relax the last filtering step and
only require at least one interleaved list to be present in our query log, we obtain 5,755

queries to experiment with (we consider the missing interleaved lists as ties). The reason
to consider this relaxed setup is the following: if we required all possible interleaved lists
to be present in the click log, we would end up in a situation where only very similar
rankings A and B are left, which is an additional bias we want to avoid.

The main limitation of this approach is that we have a very limited amount of data,
which is not the case for the click simulation (Section 8.5.5). We should also take into
account that the data we get using this method is skewed towards a relatively small number
of highly frequent queries. The variety of rankings is also limited by those extracted from
the click log (Section 8.5.1)—we cannot combine real clicks with model or synthetic
rankings.

8.5.5 Simulated Clicks

We simulate users’ click behavior on an interleaved list using click models. Simulated
users are always presented with the top ten documents from the interleaved list. We have
two types of user simulations.

Random User The random click model (cf. Section 3.1.1) assumes that users click
on each document in the presented ranking with probability ⇢ “ 0.5, such that—in
expectation—half the documents are clicked. Relevance or presentation of documents is
not taken into account. This model is used to answer RQ5.3.

Federated Click Model The multi-vertical federated click model (mFCM) (see Sec-
tion 5.5.1) is used in order to answer RQ5.1 and RQ5.2. This click model is designed to
capture user behavior when result pages contain vertical documents of different vertical
types. It assumes that user attention may be attracted to vertical documents as well as
documents adjacent to a block.

10For historical reasons we report only on VA-TDI, since it was the only interleaving method considered
during the period when we had access to the click log.
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This model is an extension of the FCM model used in [40] for the case of multiple
verticals. Unlike the simple model of position bias used in [82], we also take into account
the fact that vertical blocks and adjacent documents draw additional attention of the user,
more so if the vertical orientation is high.

8.6 Influence on the User Experience

When one wants to evaluate an interleaving method, its effect on the user experience
needs to be evaluated first. We formulate this as one of our research questions (RQ5.1)
and conduct three experiments.

Firstly, we look at the visual changes of the interleaved list in Section 8.6.1. Secondly,
we evaluate the quality of the interleaved list as captured by offline metrics (Section 3.2)
and compare it to the quality of the systems being interleaved (Section 8.6.2). And finally,
in Section 8.6.3 we perform a similar quality comparison using absolute click metrics
(Section 3.3) based on data produced by real search engine users as well as by simulated
users.

8.6.1 Visual Changes in Result Page

Setup

A good online evaluation method should be opaque to the user. That is, the user should not
notice any interface changes when interacting with an interleaved list as opposed to a base
ranking system. We identified several particularly prominent features of aggregated search
systems related to vertical blocks, namely the number of vertical blocks per vertical and
the size of a vertical block, and track how they change when we use different interleaving
methods. If an interleaving method shows smaller or bigger vertical blocks or, especially,
if it splits a vertical block into two (thus, increasing the number of blocks) we consider
this to affect the user, which we want to avoid.

As a source of rankings we use real, model and synthetic rankings (see Sections 8.5.1,
8.5.2 and 8.5.3).

Results

Synthetic Rankings. We start with synthetic rankings (Section 8.5.3), since they allow
us to vary the target block size of the ranking lists being interleaved. Namely, we can set
the block size exactly if we use fixed vertical placement (Algorithm 8.6, each vertical has
a block of the specified size). For non-fixed placement the target block size is an expected
number of vertical documents per block, specified using the distribution q in Algorithm 8.7
(i.e., for target block size 2 we set q

t

“ 2{10 for each vertical t). We also considered the
case of up to one vertical type and a multi-vertical case where up to three verticals are
allowed. In the latter case, the smaller target block sizes are considered, since a result
page of ten documents cannot have more than ten vertical documents in Algorithm 8.7.

Figures 8.5 and 8.6 show our results for different numbers of blocks per vertical11 and
Figures 8.7 and 8.8 for vertical size. For VA-TDI, we see that the number of generated

11Figure 8.5 differs from the corresponding figure in [40] (Figure 4 there) due to different settings of the
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Figure 8.5: Average number of vertical blocks per vertical; target block sizes 1–8, up to
one vertical type. Error bars correspond to 5th and 95th percentiles.

Figure 8.6: Average number of vertical blocks per vertical; target block sizes 1–4, up to
three different vertical types. Error bars correspond to 5th and 95th percentiles.
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Figure 8.7: Average vertical block size divided by the target block size; target block sizes
1–8, up to one vertical type. Error bars correspond to 5th and 95th percentiles.

Figure 8.8: Average vertical block size divided by the target block size; target block sizes
1–4, up to three different vertical types. Error bars correspond to 5th and 95th percentiles.
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vertical blocks is typically close to and never higher than 1, as designed. Due to equa-
tions (8.14) and (8.15), VA-OI always has exactly one vertical block per vertical if the
fixed placement scheme is used. When the vertical blocks in the lists we interleave are
small, the block may not be included in the interleaved list at all, resulting in an average
number of blocks smaller than one (cf. Algorithm 8.3, line 22). This can also occur when
the vertical blocks are placed in the lower halves of the original lists. For TDI, we observe
different behaviors under fixed and non-fixed block placement. When the rankers we
compare have different vertical blocks (condition non-fixed), TDI tends to generate several
smaller blocks which result in a higher average number of blocks. The same goes for OI.

All interleaving methods behave similarly with respect to block size. When two
verticals have the same vertical block (fixed block placement), the block size can only
become smaller after the ranked lists they are contained have been interleaved (values less
than 1 in Figures 8.7 and 8.8) because some vertical documents are pushed outside the
top ten. This effect is more visible when multiple vertical blocks from multiple verticals
are present (Figure 8.8). When the verticals are generated using the non-fixed scheme
(Algorithm 8.7), the resulting block size to target block size ratio on average is the same
as, or even smaller than, in the fixed scheme. It also has a wider distribution. The reason is
that the target block size is not always equal to the exact size of the corresponding vertical
block in A and B rankers; in fact, A and B can have different block sizes.

Real and Model Rankings. Now we repeat the same experiments for the model and
real datasets (Sections 8.5.2, 8.5.3). In those cases we no longer have control over the
size, position or contents of the vertical blocks in the A and B rankers, so we simply plot
the overall picture that includes blocks of different sizes.

Figure 8.9 shows the results for the real data. We can see that VA-TDI only has
slightly less than one block per vertical on average, while it never exceeds 1, i.e., the
vertical block is not broken. We can also confirm that VA-TDI results in smaller vertical
blocks than the other interleaving methods (TDI, OI, VA-OI). VA-OI always yields one
vertical block as is guaranteed by equations (8.14) and (8.15), and the fact that we only
have one vertical in the real dataset.

Figure 8.10 reports similar results for the model data. We see the same pattern that
VA-TDI tends to have smaller blocks and misses a block completely (number of blocks
zero) more often than TDI and OI, which, in turn, often have a vertical block split up into
two or even three smaller blocks. Now VA-OI also has less than one block per vertical on
average, which is normal because A and B can have different verticals and not all of them
should be present in the interleaved list. The difference between average number of blocks
of OI and TDI is not observed for the real data, but is observed for the model data which
suggests that the difference between these methods depends on the ranking systems being
compared and number of different verticals present in the dataset (remember that real data
rankings have only one vertical). Also, vertical-aware methods VA-TDI and VA-OI are
more conservative about the vertical blocks, and yield smaller blocks and fewer blocks
than conventional interleaving methods. We believe this to be less visible and to have a

synthetic generation procedure. Previous results can be obtained if we set d “ 0 and ⌧ “ 0, i.e., two generated
rankings are just two random permutations of the same documents. We believe, however, that the settings we
use here (see Appendix 8.10) are more realistic.
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Figure 8.9: Average number of vertical blocks per vertical and the vertical block size of
each vertical; real data. Error bars correspond to 5th and 95th percentiles.

Figure 8.10: Average number of vertical blocks per vertical and the vertical block size of
each vertical; model data. Error bars correspond to 5th and 95th percentiles.
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less disturbing effect on the user experience than splitting the block of the same vertical
type.

We conclude that VA-TDI and VA-OI keep vertical documents together, as designed.
These methods produce up to one vertical block per result list, thus bounding the impact
of interleaving on the user experience. When vertical blocks are placed independently,
the impact of TDI and OI without vertical awareness is high. However, when blocks are
placed at the same fixed positions, the impact is much lower, especially for OI (but still
higher than for its vertical-aware extension VA-OI).

8.6.2 Offline Quality Measures of the Interleaved Page

Setup

Our second and third sets of experiments involve comparing an interleaved system’s
performance to that of the systems A and B that are being interleaved. Ideally, we want an
interleaving method to produce ranked lists that are not worse than those of A and B. We
see it as one of the main contributions of our work and claim that every new interleaving
method should be tested for that.

In this section concerning offline quality measures we only use model rankings
(Section 8.5.2) since these rankers, unlike synthetic rankers, have topical relevance and
vertical orientation labels that we can use for quality comparison.12 We do not use real
rankings since only a small fraction of these documents have relevance judgements.

Given two rankings A and B, we can compute a relevance-based quality measure
for A, B and for the interleaved lists similar to He et al. [79]. As our quality metrics we
use a classic evaluation metric NDCG [89] (Section 3.2.5) as well as a metric specific
to aggregated search, ASRBP [171]. Separately, we also analyse simple one-component
aggregated search metrics [174] to verify that our interleaving procedure does not lead to
degradation in any of the aspects of aggregated search (VS, VD, IS, RP). The choice of
ASRBP is motivated by the fact that this metric is the best at capturing all four aggregated
search aspects (provided that they are all treated equally important) and at discriminating
different aggregated search systems [174]. The simple single-component aggregated
search metrics we use are adopted from the aggregated search meta-evaluation study
by Zhou et al. [174]; they independently reflect basic aggregated search properties and are
as simple as possible in order to be agnostic to potential differences in the interleaving
methods (e.g., the credit function choice). The same metrics were used in Section 5.3
(page 50).

For each offline metric M and each pair of 36 model rankers (Table 8.1) we first
determine which ranker in the pair has a higher average value of M . This ranker is
named A and the other one B. Ideally, our interleaved system should have an average
value of quality metric M that lies in between those of A and B, respectively. We
also perform a paired t-test (two-tailed 95%) to see how many interleaving experiments
(out of C

2

36

“ 630 experiments corresponding to pairs of model rankers) result in an
interleaved systems being statistically significantly worse than B (i.e., the worst out of

12More details on the topical relevance and vertical orientation labels available for the model rankings can be
found in [171].
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Figure 8.11: Average value of offline quality measures for the interleaved lists and original
rankings A (better system) and B (worse system).

Table 8.4: Percentage of pairwise comparisons (out of 630) where the interleaved ranking
scores statistically significantly lower than B as measured by the offline quality measures.

NDCG ASRBP VS VD IS RP

OI 9.5% 13.2% 0.0% 0.8% 0.0% 0.5%
TDI 11.6% 21.4% 0.0% 3.3% 0.0% 0.2%
VA-OI 0.2% 0.8% 0.5% 0.3% 0.2% 0.5%
VA-TDI 0.2% 0.2% 0.0% 0.6% 0.2% 3.0%

two systems). We do not perform multiple testing corrections since we are not interested
in the absolute values here. Instead, we compare the number of detected significant
differences for different interleaving algorithms: if the null hypothesis is indeed true
(i.e., two systems have the same quality) the odds of erroneously reporting N significant
differences decreases with N (exponentially if we assume that the tests are independent).

Results

Figure 8.11 and Table 8.4 summarize our results. All interleaving methods, on average,
perform better than B and worse than A. It is also worth noting that VA-TDI and VA-OI
perform substantially better than TDI and OI if measured by the classic NDCG metric.
We believe this to be an artifact of the model dataset (Section 8.5.2) that we are using.
We noticed that in general, there are more relevant organic web documents than there
are relevant vertical documents [60] and, since vertical-aware methods produce smaller
vertical blocks (Figure 8.10) and those blocks tend to be lower in the ranking than they
are for TDI and OI, we conclude that this leads to higher NDCG scores.

Table 8.4, in particular, tells us that only a small fraction of the model systems, once
interleaved using VA-TDI, would suffer from quality degradation. The same holds for
VA-OI, although degradation in terms of ASRBP is slightly higher. On the other hand, we
will much more likely have a quality degradation for a big portion of system pairs if we
use OI and even more likely if we use TDI. As to the one-component metrics, VS, VD, IS
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and RP, we only notice a small degradation of vertical diversity (VD) of the TDI rankings
(possibly due to the fact that some verticals are pushed out of the top ten documents
presented to the user) and result presentation (RP) of the VA-TDI rankings.

In summary, when evaluating offline, we conclude that our VA-TDI and VA-OI
methods outperform TDI and OI in preserving the user experience.

8.6.3 Online Quality Measures of the Interleaved Page

Setup

Next we repeat the experiments from the previous section, but instead of computing
offline relevance-based metrics, we compute online click-based metrics. This type of
analysis is less precise, but can be used in situations when we do not possess relevance
labels. This time we use real and model datasets. For the real dataset (Section 8.5.1) we
compute click metrics for all impressions of all interleaved lists L that appear in our click
log (Section 8.5.4). For the model dataset (Section 8.5.2) we simulate user clicks using
the mFCM click model (Section 8.5.5), repeated 50 times. The real dataset allows us
to work with real user clicks, whereas the model dataset gives us variability. Since the
amount of data is not an issue here, we do not need to use synthetic data in this experiment
(cf. Figure 8.3).

As absolute metrics we use the metrics that are often used in A/B-testing experiments.
We decided to use metrics that only require clicks and no additional information (like
relevance judgements, user information, timestamps or session information): Clicks@1,
MaxRR, MeanRR, MinRR, PLC, see Section 3.3. These metrics were also used in
the interleaving study by Chapelle et al. [27]. We also add one vertical-specific metric
VertClick, which equals 1 if there was a click on a vertical document and 0 otherwise.
Unlike previous metrics, this one measures less of the quality of the result page, but rather
how much attention is being drawn to the vertical documents.

Results

Real rankings. The results for the real dataset are summarized in Figure 8.12. As
we are not interested in the absolute values of the metrics (and are not able to disclose
them due to the proprietary nature of such information), we normalize all the metrics to
the corresponding values of the system A which also happens to perform better than B

according to all those metrics.
We can see from the plot that the click metric values for the interleaved list L are

between those of A and B. The differences between them are not statistically significant
when using a 95% paired two-tailed t-test. We conclude that we do not have any degrada-
tion in user experience compared to the worst of two systems (B in this case). We should
mention that we do have a degradation (not significantly) compared to the best system
(A), but this cannot be avoided since we do not know which system is superior beforehand
since finding this is the purpose of performing the evaluation in the first place.

Model rankings. Figure 8.13 shows that, on average, every interleaving method pro-
duces a system that scores between A and B according to all online metrics. We can
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Figure 8.12: Normalized scores for online click metrics for the rankings A and B and for
the interleaved list obtained using VA-TDI (real dataset).

Figure 8.13: Average online click metric scores for the rankings A and B and for the
interleaved list obtained using different interleaving methods (model rankings, simulated
clicks).

Table 8.5: Percentage of pairwise comparisons (out of 630 model ranking pairs) where the
interleaved ranking scores statistically significantly lower than B as measured by online
quality measures.

Clicks@1 MaxRR MeanRR MinRR PLC VertClick

OI 7.1% 1.7% 4.9% 5.7% 4.3% 4.0%
TDI 7.6% 3.2% 6.8% 10.0% 8.1% 4.0%
VA-OI 4.9% 1.1% 0.8% 0.3% 0.5% 20.0%
VA-TDI 4.6% 0.5% 0.8% 1.6% 0.8% 27.9%
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see that VA-TDI and VA-OI are slightly better than TDI and OI according to all metrics
except VertClick, where VA-TDI and VA-OI have substantially lower scores. This is
also supported by Table 8.5; like Table 8.4 it shows how many comparisons result in
statistically significantly lower metric values for the interleaved system using a paired
two-tailed 95% t-test. One explanation for the low VertClick values for VA-TDI and
VA-OI is that they tend to produce smaller blocks (see Figure 8.10), so that we have fewer
vertical documents and therefore they have a lower probability of being clicked.

In this section we presented a thorough analysis of the influence that an interleaving
method has on the user experience, on both visual and quality aspects. Such an analysis
should be at the core of evaluating any new interleaving method, even though it was
largely ignored until now. In answer to RQ5.1 about the influence of interleaving on the
user experience, we demonstrated that the newly-introduced vertical-aware interleaving
methods not only preserve the user experience, but they also preserve the quality of the
ranking systems being interleaved, with the exception of the controvertial VertClick metric.

8.7 Correctness and Sensitivity

Our second research question RQ5.2 concerns the amount of data we need to be able to
draw conclusions about the system quality (sensitivity) and how accurate this conclusion
is (correctness). Typically, before a new ranking algorithm is launched to the public, it
is compared to the previous version of the algorithm using interleaving or some other
method. It is therefore crucial that we can quickly and accurately decide if the new ranking
algorithm is better or worse than the current one.

In Sections 8.7.1, 8.7.2 and 8.7.3 we analyze how the fraction of correctly identified
preference pairs depends on the number of user impressions. We first look at the strong
cases where one ranker Pareto dominates the other (Section 8.7.1) and then analyze
more relaxed settings where instead of Pareto dominance we use offline quality metrics
like NDCG or ASRBP (Section 8.7.2) or online metrics like MeanRR or Clicks@1 (Sec-
tion 8.7.3). In Section 8.7.4 we consider typical ten-day experiments and see how often
interleaving methods can come to a statistically significant decision in this time frame and
how they compare to A/B-testing in terms of sensitivity.

8.7.1 Finding Strong Differences: Pareto Dominance

Setup

Our simulation approach is based on the experimental setup proposed by Hofmann et al.
[80, 83]. We first take two synthetic (Section 8.5.3) or model (Section 8.5.2) ranked lists,
apply an interleaving method, and subsequently offer the interleaved list to a simulated
user that produces clicks (Section 8.5.5). Then it is up to the interleaving method to select
a winning ranker. Our experiment measures to what degree an interleaving method can
detect differences in the quality of result lists. Specifically, we look at how the confidence
about the preferred ranker depends on the number of user impressions (sensitivity) and
what the final correctness level is. The fewer impressions are needed for an interleaving
method to determine the winner, the more sensitive the method is.
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Figure 8.14: Portion of correctly identified ranker preferences (vertical axis) by different
interleaving methods after 1–500 user impressions (horizontal axis, log-scale). The dashed
horizontal line at 0.5 denotes random preference. All figures have independent block
placement. Error bars correspond to 95% binomial confidence intervals. All rankings
have one or zero verticals.

Figure 8.15: Same as above, but rankings can have up to three different verticals.

137



8. Online Evaluation of Modern Search: Interleaving

We repeat the process of generating two synthetic rankings (or randomly drawing a
pair of model rankers and a query) until one ranking Pareto dominates13 the other in terms
of how it ranks relevant documents. Because the rankings are chosen in such a way that
one dominates the other, we know which ranking should be preferred by an interleaving
method.

We generate 500 pairs of rankings, with one ranking dominating the other, as described
above. These pairs are each interleaved 500 times by different interleaving methods. For
synthetic rankings we repeat this process for several combinations of the conditions de-
scribed in Section 8.5.3. We observe the portion of correctly identified ranking preferences
(i.e., the accuracy) by each interleaving method. We calculate the mean and 95% binomial
confidence bounds.

Results

Synthetic Rankings We compare our vertical-aware interleaving methods, VA-TDI and
VA-OI, to the non-vertical-aware baselines, TDI and OI, in terms of the accuracy of the
identified ranker preferences. Figures 8.14, 8.15 show the portion of correctly identified
ranker preferences by TDI, OI, VA-TDI, and VA-OI after 1 to 500 user impressions
modeled by the federated click model mFCM (see Section 8.5.5).14

In Figure 8.14 we only consider cases where rankings are allowed to have verticals of
one type (e.g., News) whereas in Figure 8.15 up to three different types of vertical are
allowed.

Figure 8.14(a) shows results averaged over all possible positions of a block of size 2

(non-fixed block placement) under the assumption that none of the vertical documents are
relevant. We see that TDI and VA-TDI converge to correctly identify about 90% of the
true preferences, whereas OI and VA-OI converge to about 98%. There is no significant
difference in the number of impressions between conventional and vertical-aware methods.

Figure 8.14(b) shows results in the setting with relevant vertical documents. Results
are almost identical to the case of non-relevant vertical documents with only subtle
differences. The difference is more visible when allowing more verticals (Figures 8.15(a)
vs. (b)) — the final converged accuracy level is higher when there are relevant vertical
documents.

VA-TDI initially requires more sample data than TDI: TDI is significantly more
accurate when we have a very small number of impressions (less than ten). We believe
that the reason for this is the noise added by vertical documents dropping out, the problem
discussed at the end of Section 8.4.1. Since this is noise—and not bias towards either
ranking—this levels out as the number of observed impressions increases. However, this
need for more samples by VA-TDI is a small loss in efficiency for a method that preserves
the original user experience as much as possible compared to TDI.

Figures 8.14(c) and (d) show results for the same conditions as (a) and (b), respectively,
but with a block size of five instead of two. The only difference with Figures 8.14(a) and (b)

13As in [83], we re-rank documents by examination probability P pEr “ 1q. In [83], P pEr “ 1q is
implicitly defined by the cascade click model. In our case, it is dictated by the mFCM model (Section 8.5.5);
we marginalize over attention bias, using (5.9) and (5.14). We say that ranking A dominates B if, and only
if, re-ranked with P pEr “ 1q, A ranks all relevant documents at least as high as B and at least one relevant
document higher than B.

14In all our experiments all the methods plateaued after several hundred user impressions.
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Figure 8.16: Portion of correctly identified ranker preferences (vertical axis) by different
interleaving methods after 1–500 user impressions (horizontal axis, log-scale). The dashed
horizontal line at 0.5 denotes random preference. Error bars correspond to binomial
confidence intervals.

is the increased gap between TDI and OI families, which suggests that the latter should
be preferred, especially in situations when we have many vertical documents. The same
holds for Figure 8.15 where up to three different verticals are allowed.

Model Rankings Figure 8.16 shows the same experiment for the model data. This is a
more realistic dataset than the synthetic one studied above. It contains vertical blocks of
different types (see Table 8.1). From the figure we see that VA-TDI performs significantly
worse than the other interleaving methods. As we explained at the end of Section 8.4.1,
this is due to the fact that vertical documents often drop out of the interleaved list, thereby
limiting the sensitivity of VA-TDI. This is especially true if the difference between lists
being interleaved is large, which is often the case for the model data.

8.7.2 Finding Weak Differences: Offline Metrics

Setup

In this section we use a setup similar to the previous section, but instead of requiring that
one ranker Pareto dominates another, we only require a non-zero difference in terms of an
offline quality metric. This resembles the so-called “live data” simulations by Hofmann
et al. [82] where interleaving methods are compared in terms of how well they can predict
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Figure 8.17: Portion of ranker preferences that agree with the offline metric (vertical axis)
by different interleaving methods after 1–500 user impressions (horizontal axis, log-scale).
The dashed horizontal line at 0.5 denotes random preference. Error bars correspond to
binomial confidence intervals.

the direction of NDCG preference. On the one hand, offline metrics are less reliable as
reference metrics than Pareto dominance. On the other hand, by using offline metrics we
evaluate our interleaving methods’ ability to find weak differences between rankings as
opposed to strong cases of Pareto dominance.

We picked NDCG and ASRBP to use in our experiments. We also experimented
with the one-component aggregated search metrics (VS, VD, IS, RP), but found that
only IS differences can be identified by the interleaving methods; only for this one-
component reference metric the agreement level is more than 0.5. This is due to the fact
that the one-component metrics are too simple to be used as reference metrics for system
preference. One system can be better according to a one-component metric, but worse
overall. Interleaving, in turn, considers the ranked list as a whole and is not required to
agree with one-component metrics.

Here we only use model rankings (Section 8.5.2) since this is the only dataset that has
meaningful relevance and vertical orientation labels.

Results

Results are presented in Figure 8.17. The error bars are big and it is hard to state that some
method is more accurate than another, with the exception of VA-TDI, which converges
much slower than VA-OI. In fact, for the first ten impressions with the NDCG reference
metric (Figure 8.17(a)), the error bars do not overlap, indicating that VA-OI identifies
significantly more correct ranker preferences than VA-TDI does. A similar picture is
observed for ASRBP (Figure 8.17(b)).

We also observe that all the interleaving methods agree better with the NDCG ref-
erence metric than with the ASRBP. This demonstrates that it is more challenging to
use interleaving methods to derive the preference of aggregated search pages than it is
for homogenous pages. The loss of agreeing with ASRBP might be due to the fact that
the assumptions made in assigning credits of documents in interleaving methods align
better with the NDCG position-based discount than with the more complex assumptions
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Figure 8.18: Portion of ranker preferences that agree with the online metric (vertical axis)
by different interleaving methods after 1–500 user impressions (horizontal axis, log-scale).
The dashed horizontal line at 0.5 denotes random preference. Error bars correspond to
binomial confidence intervals.

of ASRBP. It may also stem from the fact that the mFCM click model we utilize still as-
signs more value to topical relevance than to vertical orientation: equations (5.10)–(5.11)
guarantee that only topically relevant documents are clicked whereas vertical orientation
simply increases the chances of examining some documents.

8.7.3 Finding Weak Differences: Online Metrics

Setup

In this section we re-use the setup from the previous section, but use online click metrics
as reference metrics instead of offline metrics: we identify the better ranking by comparing
average values of an online metric from 50 query sessions, simulated using the mFCM
click model (Section 8.5.5). We picked two online metrics: the very simple Clicks@1
metric, and position-aware MeanRR. These are also the metrics that, as we will see later,
do not have statistically significant disagreement with interleaving in the real A/B-testing
settings (Section 8.7.4). Since the metrics values now vary more, we increased the number
of comparisons to 10,000 to reduce the churn due to randomness present in the metrics.
This also helped us to overcome problems stemming from the fact that Clicks@1 is a
binary metric and hence is often the same for A and B (we exclude such cases).

As in the previous section we only use model rankings (Section 8.5.2), because the
click models heavily rely on the relevance labels and it is crucial for these relevance labels
to be meaningful. Our preliminary experiments with synthetic rankings showed that the
click metrics are very noisy in that case and all the interleaving methods only marginally
agree with them.

Results

Results are shown in Figure 8.18. We see that all interleaving methods converge to the
same level of accuracy of about 0.85 as measured by the Clicks@1 reference metric.
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The agreement between the more complex MeanRR reference metric and the interleav-
ing methods is less, but it confirms the previous finding (Figure 8.16) that VA-TDI is
significantly less discriminative than the other interleaving methods.

8.7.4 Time-constrained Experiments and A/B-testing

Setup

In a real-world setting of a search engine evaluation experiment, the experiment is run for
a certain period of time within which our interleaving method needs to reach a conclusion.
In this section we reproduce such a time-constrained experiment setting using our real
dataset (Sections 8.5.1, 8.5.4).

One issue of live experiments is that we do not have ground truth labeling of the better
system. Usually, online click metrics are used to find the better system (e.g., in A/B-testing
experiments), but these metrics may contradict each other or lack statistical significance.
Therefore, one should not blindly use them as ground truth, but rather examine the full
picture of their agreement and disagreement with the interleaving outcomes and with each
other.

Given the click log data that we have access to (Section 8.5.4), we compute the
following values for each query:

1. The average difference of the absolute click metrics for rankings A and B.

2. The interleaving score15 for each impression of each ranking implied by VA-TDI.
As some configurations might have more impressions in our click log than the
interleaving method suggests, we normalize the scores to the correct probabilities
as implied by the interleaving method. Specifically, we compute the average score
for each configuration, multiply it by the probability of such a configuration and
then average across all found configurations, similar to [124].

3. The interleaving scores for vertical documents and non-vertical (organic) docu-
ments separately, i.e., interleaving scores computed while only taking vertical
(non-vertical) clicks into account.

In order to compare the direction of preference indicated by the absolute click metrics
and the interleaving methods we split the data into six buckets corresponding to six equal
time periods of ten days (t
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) and compute the weighted average of the
absolute metrics and interleaving methods. The outcome for each impression (positive
if A wins, negative if B wins, zero if it is a tie) is multiplied by the total frequency of
the query16 and summed up over all queries. We report the winning system according
to each measure in Table 8.6. Note that we consider three ways of interpreting clicks
in the interleaving method: total—all clicks are counted, organic only—only the clicks
on non-vertical documents are taken into account, and vertical only—only the clicks on
vertical documents are counted. For example, if we want to evaluate only changes in the
organic ranking we may want to look at organic only results. On the other hand, we risk
having an unbalanced team assignment if we skip the vertical block.

15We assume that the score is 1 if ranking A wins a particular impression, ´1 if B wins and 0 if they tie.
16Remember that we previously normalized configurations to the correct probabilities.
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8.7. Correctness and Sensitivity

Table 8.6: Agreement between A/B-testing measures and VA-TDI. All changes are
statistically significant except for ones marked by ˛.

Measure t

1

t

2

t

3

t

4

t

5

t

6

Absolute Metrics
Clicks@1 B˛ B B A A B
MaxRR A B B A A B
MeanRR A˛ B B˛ A A B
MinRR A˛ B A˛ A A B
PLC A B B˛ A A B
VertClick B B B B B B

VA-TDI (different variants)
total B B B A A B
organic only B B B A A B
vert only A A˛ A˛ B B B

We also computed a per-query correlation between interleaving and A/B-testing
metrics and performed a detailed analysis of the influence of the vertical block on this
correlation (total vs. organic only). This analysis can be found in our previous work [40,
Section 4.2.2].

Results

Table 8.6 shows that in most cases VA-TDI (total and organic only) agrees with the
majority of the absolute metrics. Similar to what was reported in [127], the cases of
disagreement between absolute click metrics and interleaving outcomes are always ac-
companied by the lack of statistical significance. We mark such cases where the winning
system is not statistically significantly better with the ˛ sign.17 We can also note that
the agreement between the vertical-only VA-TDI and the VertClick absolute metric is
low. However, in two of the three cases with disagreement VA-TDI does not detect
a statistically significant preference. That means that either VertClick is too simple to
correctly capture the ranking changes or vertical-only is not the right way to interpret
interleaving outcomes (or both).

In this section we analyzed the sensitivity and correctness of conventional and vertical-
aware interleaving methods under different settings and with different datasets. We
showed that vertical-aware interleaving methods are in most cases as accurate as their
conventional counterparts with the exception of VA-TDI which in some rare cases may be
less sensitive than TDI because of vertical documents dropping-out. Some of our findings
support the fact that OI and VA-OI are more sensitive and more accurate than TDI and
VA-TDI, while the others suggest that they are at least as sensitive as TDI and VA-TDI.
We also confirmed that interleaving methods are more sensitive than A/B-testing and
demonstrated that these two approaches often disagree with each other.

17Here we use a bootstrap test with 1,000 bootstrap samples and a significance level of 99%.
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8.8 Unbiasedness

Our third research question RQ5.3 concerns unbiasedness of the interleaving methods.
We investigate whether any of the interleaving methods identifies preferences for a ranker
when there is no evidence in the data. For this purpose we employ randomly clicking
users to show that there is no systematic bias in the algorithm.18

8.8.1 Randomly Clicking User

Setup

Our final simulated experiment assesses the unbiasedness of interleaving methods under
random clicks (Section 8.5.5). It is important that accounting for vertical documents does
not introduce bias, as it may otherwise lead to wrong interpretations of interleaving results.
VA-TDI and VA-OI (Algorithms 8.3 and 8.4 respectively) were designed to be unbiased
under many forms of noise; here we validate that our implementation does indeed fulfill
this requirement.

Under the random click model (Section 8.5.5) an unbiased interleaved comparison
method should not systematically prefer either ranker, i.e., the rankers should tie in
expectation. We measure this following the methodology proposed by Hofmann et al.
[83], by counting the number of comparisons for which a method detects a significant
preference towards one of the rankers. For an unbiased method, this number should be
close to the number expected due to noise. For example, a significance test with a p-value
of 0.05 should detect statistically significant differences between rankers under random
clicks in 5% of the comparisons. We repeat the test for different document datasets
(synthetic, model, real) and for different numbers of impressions (from 100 to 500).

Results

Tables 8.7, 8.8, and 8.9 show the results, the percentage of detected significant differences,
for synthetic (first two), model and real datasets, respectively. For all the methods and
all datasets we see that the number of significant differences detected is in line with the
expected 5%.

Using a one-tailed binomial confidence test (also with p “ 0.05), we confirm that this
number is only once significantly higher than 5%, in the case of OI with synthetic rankings
and up to three verticals (non-relevant, fixed), see Table 8.9. We also see that the number
of detected significant differences does not increase with the number of impressions which
confirms that all the interleaving methods are, indeed, unbiased and can be relied on.

In this section we verified that none of the interleaving methods exhibit a bias under the
random click model. We performed an analysis with different datasets and confirmed that
there is no bias under an assumption of randomly clicking user. There could be other type
of biases that we did not analyse in the current work.

18One may also test unbiasedness under other user models that are blind to results.
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Table 8.7: Percentage of significant differences between rankers detected under the ran-
dom click model for model rankings. p † 0.05 on 500 ranker pairs after 100–500 user
impressions (left-most column). With p † 0.05, an interleaving method is expected to de-
tect around 5% significant differences. None of the outcomes are statistically significantly
higher than 5% using a one-tailed binomial confidence test (with significance level 0.05).

OI TDI VA-OI VA-TDI

100 4.4% 6.2% 6.2% 5.8%
200 3.8% 6.4% 6.4% 5.2%
300 6.0% 6.2% 5.2% 5.4%
400 4.8% 4.6% 4.8% 6.6%
500 4.4% 5.2% 4.8% 4.4%

Table 8.8: Percentage of significant differences between rankers detected under the
random click model for real rankings. p † 0.05 on 500 ranker pairs after 100–500 user
impressions (left column). With p † 0.05, an interleaving method is expected to detect
around 5% significant differences. None of the outcomes are statistically significantly
higher than 5% using a one-tailed binomial confidence test (with significance level 0.05).

OI TDI VA-OI VA-TDI

100 4.4% 4.0% 5.2% 6.0%
200 5.6% 7.8% 5.8% 4.2%
300 5.6% 5.8% 7.2% 5.4%
400 5.8% 6.2% 5.6% 5.4%
500 5.0% 5.0% 5.8% 5.0%
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8.9. Conclusion

8.9 Conclusion

To assess different interleaving methods under a wide range of conditions, we have
addressed three main research questions about the influence of interleaving methods on
the user experience, about the correctness and sensitivity of interleaving methods, and
about their unbiasedness, all with a special focus on vertical search. We have done so using
both simulations and real rankings and clicks. With simulated rankings we have tested
several vertical block sizes, several block placements and different levels of relevance
within the block.19

To summarize, we have shown the following.

• Vertical-aware interleaving methods do not alter the user experience, as they do not
break vertical blocks (Section 8.6.1) and do not degrade the quality of the result
page (Sections 8.6.2, 8.6.3).

• Vertical-aware interleaving methods can find differences between rankings as fast
and as accurate as their conventional counterparts with the optimized interleaving
family being substantially more sensitive (Sections 8.7.1, 8.7.2, 8.7.3). We also
demonstrated that in a ten-day experiment the vertical-aware team-draft inter-
leaving (VA-TDI) is able to reach a conclusion, while A/B-testing metrics often
contradict each other (Section 8.7.4).

• Both vertical-aware and conventional interleaving methods are unbiased under
random clicks (Section 8.8.1).

We have shown that vertical-aware interleaving methods can accurately compare result lists
while preserving vertical blocks and quality level. Accuracy is as high as for conventional
interleaving methods, with only small losses in efficiency for small sample sizes. We also
confirmed that methods based on optimized interleaving (OI, VA-OI) usually outperform
methods based on team-draft (TDI, VA-TDI). Based on an extensive analysis, we conclude
that vertical-aware interleaving methods (VA-TDI, VA-OI) should be used for comparing
two ranking systems in situations where vertical documents are present.

One limitation of our work is that not all the experiments were validated in a real
search settings. We should note however, that in cases when we did perform experiments
with real click log data, we found them to be in line with the findings reported using
synthetic or model data. Another limitation is that for unbiasedness (RQ5.3) we only
considered the case where the user clicks randomly, but did not analyse the case where
the ranking systems are indistinguishable. The problem with that is that it is hard to
define what indistinguishable systems are. One may even claim that real-world systems
are always different, we just do not always have enough data or the right instruments to
observe this.

Future directions. As future work it would be interesting to apply our analysis of the
influence on the user experience as presented in Section 8.6 (RQ5.1) to the online learning

19The code of our simulation experiments, including a reference implementation of the vertical-aware
interleaving methods, is publicly available at https://bitbucket.org/ilps/lerot as part of the
Lerot distribution [137].
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8. Online Evaluation of Modern Search: Interleaving

to rank problem of balancing exploration and exploitation (see, e.g., [81]). Currently, in
formulations of the dueling bandits problem for online learning to rank [165], the regret
function of an interleaving method—how much the users loose by using a suboptimal
system—is set to an average of the relative quality degradation by A and B. As we saw
in Section 8.6, the quality of an interleaved list can be far from that average; moreover it
depends on the interleaving method used and the ranking systems being interleaved.

Another direction of future work concerns an analysis of A/B-testing methods for
aggregated search and their comparison to the interleaving methods presented here. In
our work we considered only one very simple online A/B-testing metric, VertClick, but
one can go further and adapt conventional online metrics to aggregated search settings or
introduce new click metrics or new A/B-testing procedures.

8.10 Appendix: Synthetic Ranking Pair Simulation

Fixed position. First we describe how we simulate ranking pairs for organic web
documents with vertical documents inserted afterwards (condition fixed).

Algorithm 8.5 Generate a pair of organic web rankings.
1: function GENERATERANKINGPAIR(d, N

R,max

)
2: documentPool – GENERATEDOCUMENTPOOLp10 ` d, N

R,max

q
3: A – GENERATERANKINGpdocumentPool , 10q
4: B – GENERATERANKINGpdocumentPool , 10q
5: return pA, Bq

6: function GENERATEDOCUMENTPOOL(N 1, N

R,max

)
7: N

R

– RANDOMINTEGERp1, N

R,max

q
8: return document list of length N

1 with N

R

relevant documents

9: function GENERATERANKING(X , N )
10: initialize s

X

pdq using (8.18)
11: L – rs
12: while |L| † N do
13: dnext – SAMPLEWITHOUTREPLACEMENT ps

X

pdqq
14: L – L ` dnext

15: return L

The algorithm for GENERATERANKINGPAIR function (Algorithm 8.5) consists of
several steps. In order to generate two ranked lists of size 10 we first generate a document
pool of slightly bigger size (10 ` d) and then draw documents from this pool to produce
rankings A and B. The reason is that rankings A and B can differ not only in the order of
the documents, but also one of them can have some additional documents that the other
one does not have. In order to allow different document orders in A and B we employ a
softmax distribution s

X

by Hofmann et al. [80] in which the probability of selecting the
next document is inversely proportional to a power of the rank r

X

pdq of a document d in
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a document pool X:

P

s

X

pdq “
1

r

X

pdq⌧

∞

d

1PX

1

r

X

pd1q⌧

. (8.18)

In this distribution the document from the bottom of the list X has lower probability of
being selected at each step of generating a ranking (Algorithm 8.5, line 13) than one of the
top documents. It leads to ranking lists A and B being quite similar to each other (which
is usually the case where B is a small experimental ranking change), and we can control
the degree of similarity by varying the ⌧ parameter.

For our experiments we set N

R,max

“ 3 as in [40]. We also set d “ 2 and ⌧ “ 5 to
resemble the level of difference between A and B that we have in the real interleaving
experiments.20

Algorithm 8.6 Generate a pair of rankings with the fixed vertical blocks vBlocks (condi-
tion fixed).

1: function GENERATERANKINGPAIRWITHVERTICALSFIXED(d, N

R,max

, vBlocks ,
vPositions)

2: pA, Bq – GENERATERANKINGPAIRpd, N

R,max

q
3: insert vBlocks to A at positions vPositions
4: insert vBlocks to B at positions vPositions
5: return pA, Bq

If the vertical blocks are fixed, then a synthetic ranker is generated in two steps
(Algorithm 8.6). First, organic rankings are generated using Algorithm 8.5, then the
vertical blocks are inserted at fixed positions. Note, that if the organic list had ten
documents, then inserting a vertical block can only increase the total document count, so
there will be more than ten documents.

Non-fixed position. Let us now describe the procedure of generating pairs of rankings
that contain vertical documents (condition non-fixed). We assume that we have a list of
vertical types tv

t

| t P t1, . . . , T uu and a probability distribution q, such that for each
document d and each vertical type t, document d has type v

t

with probability q

t

. We
also require

∞

T

t“1

q

t

† 1, so that the probability of the fact that d is a Web (non-vertical)
document can be set to

´

1 ´ ∞

T

t“1

q

t

¯

:

@t P pvertpdq “ v

t

q “ q

t

(8.19)

P pvertpdq “ Webq “ 1 ´
T

ÿ

t“1

q

t

. (8.20)

Now we first generate rankings that have Web and vertical documents mixed up, and then
reorder them to respect the vertical blocks. See Algorithm 8.7 for more details.

2097% of the real ranking pairs (Section 8.5.1) has no more than two distinct document pairs, so we choose
d “ 2. The parameter ⌧ is chosen such that the percentage of cases where A and B have 0, 1 or 2 different
document pairs resembles that of the real ranking pairs we analyze.
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Algorithm 8.7 Generate a pair of rankings with vertical documents (condition non-fixed).
1: function GENERATERANKINGPAIRWITHVERTICALSNONFIXED(d, N

R,max

, q)
2: documentPool – GENERATEDOCPOOLWITHVERTICALSp10`d, N

R,max

, qq
3: A – GENERATERANKINGWITHVERTICALSpdocumentPool , 10q
4: B – GENERATERANKINGWITHVERTICALSpdocumentPool , 10q
5: return pA, Bq

6: function GENERATEDOCPOOLWITHVERTICALS(N 1, N

R,max

, q)
7: N

R

– RANDOMINTEGERp1, N

R,max

q
8: Lpool – rs
9: while |Lpool| † N

1 do
10: dnext – document of type t according to the distribution q (8.19)–(8.20)
11: Lpool – Lpool ` dnext

12: assign exactly N

R

documents in Lpool to be relevant
13: return Lpool

14: function GENERATERANKINGWITHVERTICALS(X , N )
15: initialize s

X

pdq using (8.18)
16: L – rs
17: while |L| † N do
18: dnext – SAMPLEWITHOUTREPLACEMENT ps

X

pdqq
19: L – L ` dnext

20: for each vertical type t do
21: reorder documents of type t directly below the top document of type t

22: return L
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9
Conclusions

In this thesis we studied the problem of understanding and modeling users of modern
search engines. We identified the main problems arising from the modern complex layout
of search engine result pages and suggested solutions to them.

First, we turned our attention to the problem of user modeling in Chapter 4. Namely,
we suggested several methods to improve existing click models. We demonstrated that
by taking user intent distribution and non-trivial SERP layout into account, we can
substantially improve the accuracy of user modeling.

Chapter 5 is dedicated to the question of click model evaluation. We started with a
comprehensive comparison of click models along different dimensions. Further, a new
evaluation method was introduced to complement a click model evaluation suite that is
specifically geared towards complex SERPs.

After studying user models, we turned our attention to the problem of Cranfield-
style evaluation metrics, which often lack a connection to user models. In Chapter 6
we introduced a framework to build offline evaluation metrics from click models. We
performed a comprehensive evaluation of the new metrics and showed that they are more
aligned with online experiments and are more robust in the case of missing judgements.

In Chapter 7 we further improved evaluation metrics by looking at signals other than
clicks. We built an evaluation metric that takes explicit and implicit user attention and
satisfaction signals into account. We then demonstrated that a user model built in such a
way and the corresponding evaluation metric show better alignment with user-reported
satisfaction.

Finally, in Chapter 8 we studied an online evaluation method, namely interleaving,
and showed how it can be adopted to the settings of complex SERPs in a way that does
not affect the user experience.

In Section 9.1 we revisit the research questions formulated in the introduction and sum-
marize our answers to them. In Section 9.2 we discuss some possible directions for future
research that naturally follow from this thesis.

151



9. Conclusions

9.1 Main Findings

The first research question was the following:

RQ1 Can we substantially improve existing click models by taking into account
result page structure and aggregated user characteristics?

Since all commonly used click models ignore the heterogeneous structure of the result
page and the spectrum of the user intents, it is clear that there is room for improvement
there. We broke down this research question as follows:

RQ1.1 How can we use page layout information to improve click models?

RQ1.2 How can we use aggregated user characteristics such as vertical orientation to
improve existing click models?

The very first question RQ1.1 was about layout, and, first of all, about the presentation
type of the results on the page. For instance, news items or image answers are visually
different from general web results. In Chapter 4 we suggested a modification to existing
click models wherein the parameters of the model that determine the probability of
examination were made dependent on the presentation type of the document. We showed
that such a modification gives a significant improvement to the model, even when the
presentation difference is rather subtle. However, when the presentation difference was
removed completely, the gain disappeared, suggesting that this was indeed due to the
visual difference and not due to some intrinsic differences between result types. Similarly,
we demonstrated that explicitly including pagination buttons into a click model improved
its performance.

In RQ1.2 we asked ourselves whether vertical orientation, or user intent—the aggre-
gated characteristic of the kind of documents the users are interested in for a particular
query—could also help to built a better click model. By incorporating intent distribution
into the click model and training separate relevance-related parameters for each intent, we
showed that it gives an improvement even bigger than the presentation type. Intuitively,
by training separate relevance parameters for “jaguar, the car” and “jaguar, the animal”
we built a better model of user behavior in response to the query [jaguar], where
results answering both intents—to different degrees—are present. We also showed that a
combination of the two ideas—layout and intent—gave the biggest improvement.

The next question, RQ2, was of a different nature. It concerned the problem of click
model evaluation and was answered in Chapter 5.

RQ2 How do we evaluate click models?

We split it into two sub-questions:

RQ2.1 How do different click models perform when evaluated on a common dataset?

RQ2.2 How should we evaluate click models for complex aggregated SERPs?
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9.1. Main Findings

First of all, we gave an answer to RQ2.1 in the form of evaluation experiments with
an open-source software library and a publicly available dataset. Our experiments were
the first to evaluate all commonly used models on the same data and along the same
comprehensive set of dimensions.

We then moved to evaluating vertical-aware models. We suggested a new evaluation
facet—intuitiveness—wherein models are compared in terms of how well they manage
to capture different aspects of the modern aggregated search systems and the complex
SERPs they produce. We showed that intuitiveness evaluation gives additional insights
into model’s quality, thus answering RQ2.2.

Having studied click models, we turned our attention to one particular application of
them:

RQ3 How can we make use of click models to improve offline evaluation metrics?

In particular, this question was broken down as follows:

RQ3.1 Can we make use of click models to build better evaluation metrics? How do
such click model-based IR metrics differ from traditional offline metrics?

RQ3.2 Which evaluation metrics are better tied to the user? Do click model-based
metrics show higher agreement with online experiments? How do they compare
in terms of discriminative power?

RQ3.3 How well do different offline metrics perform in the presence of unjudged
documents?

RQ3.4 How can we modify offline metrics to enhance agreement with online experi-
ments?

To answer this question, in Chapter 6 we developed a framework to convert any click
model into evaluation metrics. We considered two variants of metrics: utility-based and
effort-based. We then showed that while some of them are quite well correlated with
traditional evaluation metrics such as DCG or ERR introduced in Section 3.2, others
behave quite differently. This answered RQ3.1.

Moreover, while answering RQ3.2 we showed that our click model-based metrics and,
in particular, uUBM (utility-based metric based on UBM) have higher agreement with
absolute and pairwise online experiments, while still keeping discriminative power at a
reasonable level.

To answer RQ3.3 we varied the ratio of unrated results in the rating pool and examined
how different offline metrics react to it. We found that all offline metrics, both classic
and click model-based, degrade when the number of unjudged documents increases.
Effort-based metrics based on DBN and DCM were the best at dealing with the unjudged
documents.

Finally, to answer RQ3.4 we suggested two techniques to improve performance. First
is condensation which simply dictated that we cross out the unjudged documents from
the list and thus “condense” the ranked list. Another technique was thresholding where
we excluded queries with small metric differences when comparing two systems. Both
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techniques dramatically improved the metric quality (measured by its correlation with the
outcomes of the interleaving experiments) if the metric was based on a user model. The
combination of these two techniques yielded the best result.

To continue on the topic of offline evaluation metrics, we asked ourselves the following
question:

RQ4 How can we improve user models and offline evaluation metrics to account
for non-trivial attention patterns and direct usefulness of result snippets?

The question was split into sub-questions as follows:

RQ4.1 Does a model that unites attention and click signals give more precise estimations
of user behavior on a SERP and self-reported satisfaction? How well does the
model predict click vs. satisfaction events?

RQ4.2 Does an offline evaluation metric based on such a model show higher agreement
with user-reported satisfaction than conventional metrics such as DCG?

We started Chapter 7 by showing that the abandonment rate for answer-seeking queries
grows with improvements in the quality of the document snippets, which suggests that
users were indeed finding answers in those snippets and were getting satisfied without
clicks. To put this into a user model, we suggested the so-called clicks, attention and
satisfaction (CAS) framework where we added the possibility to gain utility from SERP
elements that were both clicked and merely attracted gaze, as well as an explicit user
satisfaction model. We showed that such a model achieves reasonable click prediction per-
formance while at the same time being much better at predicting user-reported satisfaction,
thereby answering RQ4.1.

Finally, in the spirit of RQ3 we converted that user model into an evaluation metric
and showed that the resulting metric was quite different from conventional metrics, while
at the same time showing much higher agreement with user-reported satisfaction, which it
managed to generalize from the training data. This answered RQ4.2.

Finally, the last research question was about a different kind of evaluation, namely online
interleaving evaluation based on implicit user feedback:

RQ5 How can we perform accurate online quality evaluation on complex SERPs
without affecting the user experience?

In Chapter 8 we suggested a family of algorithms that we called vertical-aware inter-
leaving. In parallel, we developed an evaluation framework where an online comparison
method was scrutinized from different angles. Therefore, we formulated our sub-questions,
each asking about different aspects of the method’s quality:

RQ5.1 Influence on the user experience. What effect do different interleaving methods—
both conventional and newly introduced vertical-aware—have on the user expe-
rience in the case of complex SERPs? Do any of these methods run the risk of
degrading the quality of the results or altering the user experience?
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RQ5.2 Correctness and sensitivity. Do different interleaving methods always draw
correct conclusions about the better system? How fast, in terms of the number of
impressions and amount of feedback needed, can they detect that one aggregated
search system is to be preferred over another?

RQ5.3 Unbiasedness. Do the interleaving methods that we consider provide a fair and
unbiased comparison, or do some of them erroneously infer a preference for one
aggregated search system over another in situations where implicit feedback is
provided by a randomly clicking user?

To answer RQ5.1 we showed that vertical-aware interleaving indeed does not degrade
nor change the user experience, while the classical methods do run such risk. In response
to RQ5.2 we showed that vertical-aware interleaving methods can find differences between
rankings as fast as their conventional counterparts and faster than the A/B-testing method
based on absolute metrics. The last one, RQ5.3 was more of a validation question, which
we answered positively for both classical and vertical-aware methods—none of them
detected a preference in situations where there was not any.

Above we summarized our main findings and advances towards understanding and mo-
deling users of modern search engines. We demonstrated that modern SERPs are much
more complex and often require different machinery when it comes to evaluation or user
modeling. Methodologically, we started with existing IR foundations and challenged
some of them. We did not completely discard the foundations, but tried to adopt them to
the new reality where SERPs have become richer and more interactive. We demonstrated
that such an evolutional approach is able to bridge some important gaps and bring us
closer to the goal of understanding and modeling the user, provided that we question
the existing approaches often enough. A good example of that is what we did when we
replaced ad-hoc evaluation metrics by model-based metrics in Chapter 6 or augmented
result relevance by snippet relevance in Chapter 7.

Work done in this thesis enables us to do the usual things such as offline/online
evaluations and user modeling, knowing that the complex nature of the result pages is
taken into account. We also provide general guidelines on how to advance the area even
further, which will be the topic of the next section.

9.2 Future Directions

The problem formulated in the introduction—understanding users of modern SERPs and
using this understanding for user modeling and quality evaluation—is an open-ended one.
We cannot claim that we completely solved it, but rather say how much we advanced
in the right direction. We claim that we did advance substantially in accuracy of user
modeling and offline evaluation and enabled the use of online interleaving evaluation
which was previously not possible in the setting of complex SERPs. Nevertheless, our
work has some limitations which motivate future work. While studying the question of
user modeling, we limit ourselves to the framework of probabilistic graphical models
and did not study other approaches, such as structure learning or neural networks. While
studying the question of offline evaluation, we did not address the problem of mismatch
between raters’ judgements and the users’ perception of relevance nor did we test our
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CAS model (Chapter 7) on a large-scale data. Finally, in the area of online evaluation, we
focused on interleaving methods, while absolute A/B-testing metrics, which have some
advantages, were left behind.

There are three different (but related) directions for future work: user modeling, offline
evaluation and online evaluation. Below we discuss them in more detail.

9.2.1 User Modeling

The work on user modeling presented in this thesis (Chapters 4 and 5) is by no means
complete. There are still ways to improve our understanding of the user. We introduced
a number of different signals, such as layout information, user intent and attention, and
suggested including them into a user model. All these ideas helped to advance the
state of the art of user modeling for complex SERPs. But we have not challenged the
underlying fundamentals of these models, which is probabilistic graphical models with a
rigid structure defined beforehand.

Another limitation lies in the area of evaluation. While we performed a comprehensive
analysis of existing evaluation metrics and suggested a new one in Chapter 5, we do not
always know how improvements in these evaluation metrics translate into accuracy of the
models in practice.

One possible direction for better user modeling would be learning the structure of the
dependency graph using a method described, e.g., in [102, Chapter 18]. The very fact
that there are so many different models out there, suggests that we, humans, cannot easily
engineer a perfect dependency graph by hand. Instead, we may want to infer this structure
from the data, just as we currently do for model parameters. Another way would be
replacing the directed Bayesian networks that we normally use by undirected Markov
networks, by partially directed conditional random fields or by an altogether different
architecture, such as neural networks. In fact some recent work has started to explore the
idea of applying neural networks to model search engine users [16, 170]. We believe this
to be a promising direction, given that modern SERPs are full of images and rich content,
which motivates borrowing techniques from the area of image perception, where neural
networks recently helped to achieve extraordinary improvements.

In the area of evaluation, we need to develop application-driven ways to compare
models. If an offline evaluation metric based on a user model shows better agreement
with the user-reported satisfaction, then it is a better model. If ranking systems winning
simulation-based online experiments also win experiments performed on real users, then
the model behind the simulation is solid. While it is hard to perform such studies at scale,
it is an important part of confirming the validity of our click model evaluation.

9.2.2 Offline Evaluation

It is always hard to evaluate evaluation methods and our work in Chapters 6 and 7 faces
the same problem. We did show that our offline metrics correlate with online evaluation
signals and user-reported satisfaction, but more evidence from different search engines
may be needed before the metrics we suggested will become standard. Since the metrics
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themselves requires training, it is still an open question how portable they are between
different search systems and how stable they are over time.1

As for future work, apart from training on more and different data and improving the
underlying user models, we would like to outline two important directions. One direction
is a further study of the problem of utility aggregation. While in Chapter 7 we simply
assumed utility to be a linear combination of expected snippet-based and document-based
relevance gained, the real connection between them may be more involved.

Another direction is the problem of using crowdsourcing for collecting full document
relevance and snippet relevance. There are many issues coming from the quality of
crowdsourcing annotations: we need a better understanding of how the task should
be designed, how we should go about filtering lazy workers and leveraging natural
disagreement between the honest ones, to name a few. All of these questions are important
in the context of collecting reusable judgements, and our dual relevance nature adds a new
dimension to it.

9.2.3 Online Evaluation
There are two limitations of our online evaluation analysis presented in Chapter 8. First,
it is the lack of real-world experiments for some of the hypotheses that we tested. In
particular, when we studied the effect on the user, we were very risk-averse and opted for
performing most of our experiments on simulated users. Also, repeating our real-world
experiments in a multi-vertical setting is a limitation that is, perhaps, easier to overcome,
provided that whoever does it, has access to the relevant log data. A second limitation is
the amount of attention we devoted to the A/B-testing experiments. While interleaving
was shown to be more sensitive in early work by [27], A/B-testing is still widely used [64,
67, 101] due to its intuitive nature and the ease of adaptation to heterogeneous SERPs (or
even to pages that are not SERPs). Moreover, there are now several techniques helping to
improve the sensitivity of A/B-testing experiments [61, 98], which make it an interesting
target to study in the context of heterogeneous SERPs.

Apart from mitigating the limitations outlined above, there are several avenues for future
work. First, it is an explore-exploit trade-off. How much of a user degradation can we
tolerate in order to get a useful signal about the system quality? While the problem of
online learning is an active area of research [141, 177], the design of an interleaving
method and the regret computation can affect the outcomes and has to be put on the
roadmap.

Another direction is improving the accuracy of the experimental outcome. This can
be done by adding additional signals, such as mouse movements or viewport position, but
also by analysing different ways to interpret the signals to make experimental outcome
agree more with user retention metrics. Schuth et al. [140] have made some steps to
bridge the gap between interleaving and absolute quality metrics, but to bring SERP-level
interleaving signals closer to long-term metrics such as retention, we need to design
evaluation methods to account for user interactions spanning multiple queries.

1One should note that metric stability, although desirable, should not be put before its accuracy. A good
example is DCG, which is widely used and has a fixed and easy-to-compute form, but is quite inaccurate as we
demonstrated in Chapter 7.
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List of Acronyms

Acronyms

AP average precision (see page 26)

AS aggregated search (see page 12)

ASRBP aggregated search metric based on rank-biased precision (see page 16)

BI balanced interleaving (see page 17)

BM25 best match 25 (see page 12)

CAS clicks, attention and satisfaction (see page 83)

CCM click chain model (see page 8)

CG cumulative gain (see page 27)

CLEF Conference and Labs of the Evaluation Forum (see page 15)

CM cascade model (see page 21)

CTR click-through rate (see page 16)

DBN dynamic Bayesian network (see page 23)

DCG discounted cumulative gain (see page 26)

DCI document constraints interleaving (see page 17)

DCM dependent click model (see page 24)

DCTR document-based CTR model (see page 20)

EBU expected browsing utility (see page 67)

EB_UBM exploration bias user browsing model (see page 42)

EB_UBM-IA exploration bias user browsing model (intent-aware) (see page 42)

EM expectation maximization (see page 14)

ERR expected reciprocal rank (see page 27)

ERR-IA expected reciprocal rank (intent-aware) (see page 16)

FCM federated click model (see page 56)

IDF inverse document frequency (see page 11)

IR information retrieval (see page 1)

IS item selection (see page 49)
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mFCM multi-vertical federated click model (see page 56)

mFCM-NO multi-vertical federated click model (no orientation) (see page 58)

MLE maximum likelihood estimation (see page 14)

NDCG normalized discounted cumulative gain (see page 26)

NTCIR NII (National Institute of Informatics) test collection for information resources
(see page 15)

OI optimized interleaving (see page 17)

PBM position-based model (see page 21)

PGM probabilistic graphical model (see page 19)

PI probabilistic interleaving (see page 17)

PLC precision at the lowest click (see page 28)

RBP rank-biased precision (see page 26)

RCM random click model (see page 20)

RCTR rank-based CTR model (see page 20)

RP result presentation (see page 49)

SDBN simplified dynamic Bayesian network (see page 24)

SDBN(P) simplified dynamic Bayesian network (pagination-aware) (see page 32)

SDCM simplified dependent click model (see page 51)

SERP search engine result page (see page 1)

TDI team-draft interleaving (see page 17)

TF term frequency (see page 11)

TREC Text REtrieval Conference (see page 1)

UBM user browsing model (see page 23)

UBM-IA user browsing model (intent-aware) (see page 34)

UBM-intents user browsing model (intents) (see page 40)

UBM-layout user browsing model (vertical layout) (see page 40)

VA-OI vertical-aware optimized interleaving (see page 118)

VA-TDI vertical-aware team-draft interleaving (see page 116)

VD vertical diversity (see page 49)

VS vertical selection (see page 49)
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Summary

Understanding and Modeling Users of Modern Search Engines

As search is being used by billions of people, modern search engines are becoming
more and more complex. And complexity does not just come from the algorithms. Richer
and richer content is being added to search engine result pages: news and sports results,
definitions and translations, images and videos. Many such elements are added by search
engines in their attempt to stand out from the competition by providing a superior user
experience. However, the more complex search engines become, the harder it gets to
understand users and their interactions with result pages, and to measure the quality of the
user experience. In this thesis we address exactly this topic.

We start by analyzing user behavior on complex result pages and show that the users’
click patterns are non-trivial. We also demonstrate that there are situations where we
observe no clicks at all, even though there is good content on a search engine result page
and the users are likely to be satisfied. Having made these observations, we proceed
to modeling the users of modern search engines. In particular, we suggest so-called
intent-aware models that capture different user intents and different presentation types
on the search engine result page. We also contribute to the area of user model evaluation
by presenting a comprehensive evaluation of click models and a new evaluation method
designed specifically for modern search engine result pages.

We then turn our attention to evaluating the user search experience. With additional
tools made available by modern search engines, users hope to become more productive
in their everyday life and achieve more in a smaller amount of time. That can reliably
be achieved only if the added complexity of the search engines comes with a correctly
measured benefit. We suggest a general framework for deriving an offline evaluation
metric from a click model—click model-based metrics—and then refine the underlying
user model by modeling user attention and user satisfaction signals in addition to clicks.
The benefit of such evaluation metrics is that they can be fit to real user data and then
re-used multiple times without involving actual users.

Next to studying offline metrics, we also study online evaluation approaches that
require deploying new versions of the search system live and comparing them to the
current production system based on user feedback. We propose a modification of a
popular online evaluation method—interleaving—that accounts for blocks of rich content
(often called verticals) that we refer to as vertical-aware interleaving. In addition, we
suggest several methods for evaluating evaluation methods, both offline and online ones,
from multiple angles.
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Samenvatting

Modelleren en Begrijpen van Gebruikers van Moderne Zoekmachines

Nu zoekmachines door miljarden mensen worden gebruikt, neemt hun complexiteit
toe. De complexiteit zit niet alleen in de achterliggende algoritmes, maar ook in de
resultaatpagina’s, die steeds rijkere resultaten tonen, zoals nieuws, sport, vertalingen,
afbeeldingen en video’s. Meer en meer van deze elementen worden toegevoegd door
zoekmachines, die hun concurrenten af willen troeven in het bieden van de beste gebruik-
erservaring. Echter, hoe complexer de zoekmachines worden, hoe moeilijker het wordt
om de interactie van gebruikers met de zoekmachine te interpreteren en om de kwaliteit
van de gebruikerservaring te meten. Dit proefschrift behandelt precies dit onderwerp.

We beginnen met het analyseren van het gedrag van gebruikers op complexe resul-
taatpagina’s en tonen aan dat hun klikgedrag niet-triviaal is. Bovendien laten we zien
dat er situaties zijn waarin geen enkele klik wordt geobserveerd, terwijl er wel relevante
informatie getoond wordt en de gebruiker waarschijnlijk tevreden is. Op basis van deze
bevindingen modelleren we de gebruikers van moderne zoekmachines. We stellen intent-
aware modellen voor die verschillende gebruikersdoelen en verschillende presentatietypes
op de resultaatpagina modelleren. We dragen ook bij aan de evaluatie van gebruikersmod-
ellen met een uitgebreide evaluatie van klikmodellen, en de introductie van een nieuwe
evaluatiemethode die specifiek gericht is op resultaatpagina’s van moderne zoekmachines.

Vervolgens richten we onze aandacht op het evalueren van de gebruikerservaring.
Door alle toevoegingen die moderne zoekmachines bieden, worden gebruikers hopelijk
productiever in hun dagelijks leven en kunnen ze meer gedaan krijgen in minder tijd. Een
correcte manier van het meten van de toegevoegde waarde van de additionele complexiteit
is hiermee zeer gewenst. We stellen een algemene methode voor om een offline eval-
uatiemaat af te leiden van een klikmodel — click model-based metrics — waarna het
onderliggende gebruikersmodel bijgesteld wordt door, naast de kliks, de aandacht van de
gebruiker en de afgegeven signalen van tevredenheid te modelleren. Het voordeel van
deze evaluatiematen is dat ze geoptimaliseerd kunnen worden op basis van bestaande ge-
bruikersgegevens, en vervolgens opnieuw gebruikt kunnen worden zonder dat er nogmaals
gebruikers bij betrokken hoeven te worden.

Naast offline evaluatiematen bestuderen we ook zogenaamde online aanpakken voor
evaluatie die uitgaan van meerdere live versies van zoekmachines, die vergeleken worden
op basis van actuele gebruikersinteracties. We stellen een aanpassing voor van een veelge-
bruikte online evaluatiemethode — interleaving — die rekening houdt met additionele
elementen in de resultaatpagina (ook wel verticals genoemd): vertical-aware interleaving.
Bovendien stellen we meerdere manieren voor om evaluatiemethodes te evalueren uit
verschillende invalshoeken.

171





SIKS Dissertation Series

1998

1 Johan van den Akker (CWI) DEGAS: An Active,
Temporal Database of Autonomous Objects

2 Floris Wiesman (UM) Information Retrieval by
Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguis-
tic Analysis of Business Conversations

4 Dennis Breuker (UM) Memory versus Search in
Games

5 E. W. Oskamp (RUL) Computerondersteuning bij
Straftoemeting

1999

1 Mark Sloof (VUA) Physiology of Quality Change
Modelling: Automated modelling of

2 Rob Potharst (EUR) Classification using decision
trees and neural nets

3 Don Beal (UM) The Nature of Minimax Search
4 Jacques Penders (UM) The practical Art of Moving

Physical Objects
5 Aldo de Moor (KUB) Empowering Communities:

A Method for the Legitimate User-Driven
6 Niek J. E. Wijngaards (VUA) Re-design of compo-

sitional systems
7 David Spelt (UT) Verification support for object

database design
8 Jacques H. J. Lenting (UM) Informed Gambling:

Conception and Analysis of a Multi-Agent Mecha-
nism

2000

1 Frank Niessink (VUA) Perspectives on Improving
Software Maintenance

2 Koen Holtman (TUe) Prototyping of CMS Storage
Management

3 Carolien M. T. Metselaar (UvA) Sociaal-
organisatorische gevolgen van kennistechnologie

4 Geert de Haan (VUA) ETAG, A Formal Model of
Competence Knowledge for User Interface

5 Ruud van der Pol (UM) Knowledge-based Query
Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Languages
for Agent Communication

7 Niels Peek (UU) Decision-theoretic Planning of
Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analyis of
Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilistic
Query Optimization

10 Niels Nes (CWI) Image Database Management
System Design Considerations, Algorithms and
Architecture

11 Jonas Karlsson (CWI) Scalable Distributed Data
Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to
Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Lan-
guages: Programming with Mental Models

3 Maarten van Someren (UvA) Learning as problem
solving

4 Evgueni Smirnov (UM) Conjunctive and Disjunc-
tive Version Spaces with Instance-Based Boundary
Sets

5 Jacco van Ossenbruggen (VUA) Processing Struc-
tured Hypermedia: A Matter of Style

6 Martijn van Welie (VUA) Task-based User Inter-
face Design

7 Bastiaan Schonhage (VUA) Diva: Architectural
Perspectives on Information Visualization

8 Pascal van Eck (VUA) A Compositional Semantic
Structure for Multi-Agent Systems Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Distributed De-
velopment of Large Object-Oriented Models

10 Maarten Sierhuis (UvA) Modeling and Simulating
Work Practice

11 Tom M. van Engers (VUA) Knowledge Manage-
ment

2002

1 Nico Lassing (VUA) Architecture-Level Modifia-
bility Analysis

2 Roelof van Zwol (UT) Modelling and searching
web-based document collections

3 Henk Ernst Blok (UT) Database Optimization As-
pects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The Discrete
Acyclic Digraph Markov Model in Data Mining

5 Radu Serban (VUA) The Private Cyberspace Mod-
eling Electronic

6 Laurens Mommers (UL) Applied legal epistemol-
ogy: Building a knowledge-based ontology of

7 Peter Boncz (CWI) Monet: A Next-Generation
DBMS Kernel For Query-Intensive

8 Jaap Gordijn (VUA) Value Based Requirements
Engineering: Exploring Innovative

9 Willem-Jan van den Heuvel (KUB) Integrating
Modern Business Applications with Objectified
Legacy

10 Brian Sheppard (UM) Towards Perfect Play of
Scrabble

11 Wouter C. A. Wijngaards (VUA) Agent Based
Modelling of Dynamics: Biological and Organ-
isational Applications

173



SIKS Dissertation Series

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TUe) A Reference Architecture for
Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Abstract
Approaches to Modelling, Programming and Veri-
fying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verification of
UML Activity Diagrams for Workflow Modelling

16 Pieter van Langen (VUA) The Anatomy of Design:
Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding, Model-
ing, and Improving Main-Memory Database Per-
formance

2003

1 Heiner Stuckenschmidt (VUA) Ontology-Based
Information Sharing in Weakly Structured Environ-
ments

2 Jan Broersen (VUA) Modal Action Logics for Rea-
soning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer Inter-
action and Presence in Virtual Reality Exposure
Therapy

4 Milan Petkovic (UT) Content-Based Video Re-
trieval Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial Intelli-
gence and Law: A modelling approach

6 Boris van Schooten (UT) Development and speci-
fication of virtual environments

7 Machiel Jansen (UvA) Formal Explorations of
Knowledge Intensive Tasks

8 Yongping Ran (UM) Repair Based Scheduling
9 Rens Kortmann (UM) The resolution of visually

guided behaviour
10 Andreas Lincke (UvT) Electronic Business Nego-

tiation: Some experimental studies on the inter-
action between medium, innovation context and
culture

11 Simon Keizer (UT) Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian Net-
works

12 Roeland Ordelman (UT) Dutch speech recognition
in multimedia information retrieval

13 Jeroen Donkers (UM) Nosce Hostem: Searching
with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Lan-
guage: Conceptualisation Processes across ICT-
Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-
Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar Sys-
tems: Incremental Maintenance of Indexes to Dig-
ital Media Warehouses

17 David Jansen (UT) Extensions of Statecharts with
Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organiza-
tional Interaction: Based on Agents, Founded in
Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts
for E-business

3 Perry Groot (VUA) A Theoretical and Empirical
Analysis of Approximation in Symbolic Problem
Solving

4 Chris van Aart (UvA) Organizational Principles
for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge discovery and
monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of Busi-
ness Process Modeling Techniques

7 Elise Boltjes (UM) Voorbeeldig onderwijs: voor-
beeldgestuurd onderwijs, een opstap naar abstract
denken, vooral voor meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Interna-
tionale Informatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

9 Martin Caminada (VUA) For the Sake of the Argu-
ment: explorations into argument-based reasoning

10 Suzanne Kabel (UvA) Knowledge-rich indexing of
learning-objects

11 Michel Klein (VUA) Change Management for Dis-
tributed Ontologies

12 The Duy Bui (UT) Creating emotions and facial
expressions for embodied agents

13 Wojciech Jamroga (UT) Using Multiple Models of
Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical
Explorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data Mining
16 Federico Divina (VUA) Hybrid Genetic Relational

Search for Inductive Learning
17 Mark Winands (UM) Informed Search in Complex

Games
18 Vania Bessa Machado (UvA) Supporting the Con-

struction of Qualitative Knowledge Models
19 Thijs Westerveld (UT) Using generative proba-

bilistic models for multimedia retrieval
20 Madelon Evers (Nyenrode) Learning from Design:

facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UvA) Methodological Aspects of
Designing Induction-Based Applications

2 Erik van der Werf (UM) AI techniques for the game
of Go

3 Franc Grootjen (RUN) A Pragmatic Approach to
the Conceptualisation of Language

4 Nirvana Meratnia (UT) Towards Database Support
for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level Proba-
bilistic Grammars for Natural Language Parsing

6 Pieter Spronck (UM) Adaptive Game AI

174



SIKS Dissertation Series

7 Flavius Frasincar (TUe) Hypermedia Presentation
Generation for Semantic Web Information Systems

8 Richard Vdovjak (TUe) A Model-driven Approach
for Building Distributed Ontology-based Web Ap-
plications

9 Jeen Broekstra (VUA) Storage, Querying and In-
ferencing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Behaviour: Us-
ing Qualitative Simulation in Interactive Learning
Environments

11 Elth Ogston (VUA) Agent Based Matchmaking
and Clustering: A Decentralized Approach to
Search

12 Csaba Boer (EUR) Distributed Simulation in In-
dustry

13 Fred Hamburg (UL) Een Computermodel voor het
Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VUA) Web-Service configura-
tion on the Semantic Web: Exploring how seman-
tics meets pragmatics

15 Tibor Bosse (VUA) Analysis of the Dynamics of
Cognitive Processes

16 Joris Graaumans (UU) Usability of XML Query
Languages

17 Boris Shishkov (TUD) Software Specification
Based on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies for
probabilistic networks

19 Michel van Dartel (UM) Situated Representation
20 Cristina Coteanu (UL) Cyber Consumer Law, State

of the Art and Perspectives
21 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Ap-
plication Semantics

2006

1 Samuil Angelov (TUe) Foundations of B2B Elec-
tronic Contracting

2 Cristina Chisalita (VUA) Contextual issues in the
design and use of information technology in orga-
nizations

3 Noor Christoph (UvA) The role of metacognitive
skills in learning to solve problems

4 Marta Sabou (VUA) Building Web Service Ontolo-
gies

5 Cees Pierik (UU) Validation Techniques for Object-
Oriented Proof Outlines

6 Ziv Baida (VUA) Software-aided Service
Bundling: Intelligent Methods & Tools for Graphi-
cal Service Modeling

7 Marko Smiljanic (UT) XML schema matching:
balancing efficiency and effectiveness by means
of clustering

8 Eelco Herder (UT) Forward, Back and Home
Again: Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formulation
of the Auditor’s Opinion

10 Ronny Siebes (VUA) Semantic Routing in Peer-to-
Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over
Nested Data Types

12 Bert Bongers (VUA) Interactivation: Towards an
e-cology of people, our technological environment,
and the arts

13 Henk-Jan Lebbink (UU) Dialogue and Decision
Games for Information Exchanging Agents

14 Johan Hoorn (VUA) Software Requirements: Up-
date, Upgrade, Redesign - towards a Theory of
Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in the
Biomedical Domain

16 Carsten Riggelsen (UU) Approximation Methods
for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU) User Assistance for Multitask-
ing with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA) Graph transformation
for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent Pro-
gramming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for pre-
diction in data mining

21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adaptive

Personalisation
23 Ion Juvina (UU) Development of Cognitive Model

for Navigating on the Web
24 Laura Hollink (VUA) Semantic Annotation for Re-

trieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-likelihood

MDL and Evolutionary MCMC
26 Vojkan Mihajlovic (UT) Score Region Algebra:

A Flexible Framework for Structured Information
Retrieval

27 Stefano Bocconi (CWI) Vox Populi: generating
video documentaries from semantically annotated
media repositories

28 Borkur Sigurbjornsson (UvA) Focused Informa-
tion Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-
Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Information Ex-
change and Confidentiality: A Formal Approach

3 Peter Mika (VUA) Social Networks and the Se-
mantic Web

4 Jurriaan van Diggelen (UU) Achieving Seman-
tic Interoperability in Multi-agent Systems: a
dialogue-based approach

5 Bart Schermer (UL) Software Agents, Surveillance,
and the Right to Privacy: a Legislative Framework
for Agent-enabled Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics for
Blogs

7 Natasa Jovanovic’ (UT) To Whom It May Concern:
Addressee Identification in Face-to-Face Meetings

175



SIKS Dissertation Series

8 Mark Hoogendoorn (VUA) Modeling of Change
in Multi-Agent Organizations

9 David Mobach (VUA) Agent-Based Mediated Ser-
vice Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Conformity:
an Institutional Perspective on Norms and Proto-
cols

11 Natalia Stash (TUe) Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adap-
tive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Networks for
Clinical Decision Support: A Rational Approach
to Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Environ-
ments: Implications of Progressing Technology

14 Niek Bergboer (UM) Context-Based Image Analy-
sis

15 Joyca Lacroix (UM) NIM: a Situated Computa-
tional Memory Model

16 Davide Grossi (UU) Designing Invisible Hand-
cuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems

17 Theodore Charitos (UU) Reasoning with Dynamic
Networks in Practice

18 Bart Orriens (UvT) On the development an man-
agement of adaptive business collaborations

19 David Levy (UM) Intimate relationships with arti-
ficial partners

20 Slinger Jansen (UU) Customer Configuration Up-
dating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and broad-
ening use: A research on residential adoption and
usage of broadband internet in the Netherlands
between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of value
and process models from patterns

23 Peter Barna (TUe) Specification of Application
Logic in Web Information Systems

24 Georgina Ramírez Camps (CWI) Structural Fea-
tures in XML Retrieval

25 Joost Schalken (VUA) Empirical Investigations in
Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based Simula-
tion of Financial Markets: A modular, continuous-
time approach

2 Alexei Sharpanskykh (VUA) On Computer-Aided
Methods for Modeling and Analysis of Organiza-
tions

3 Vera Hollink (UvA) Optimizing hierarchical
menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Uncertain
Data: towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating
causal dependencies on process-aware informa-
tion systems from a cost perspective

6 Arjen Hommersom (RUN) On the Application of
Formal Methods to Clinical Guidelines, an Artifi-
cial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tutor in
the design and support of adaptive e-learning

8 Janneke Bolt (UU) Bayesian Networks: Aspects of
Approximate Inference

9 Christof van Nimwegen (UU) The paradox of the
guided user: assistance can be counter-effective

10 Wauter Bosma (UT) Discourse oriented summa-
rization

11 Vera Kartseva (VUA) Designing Controls for Net-
work Organizations: A Value-Based Approach

12 Jozsef Farkas (RUN) A Semiotically Oriented Cog-
nitive Model of Knowledge Representation

13 Caterina Carraciolo (UvA) Topic Driven Access to
Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware Query-
ing: Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adaptive
Behavior: Knowledge Representation and Algo-
rithms for the Markov Decision Process Frame-
work in First-Order Domains

16 Henriette van Vugt (VUA) Embodied agents from
a user’s perspective

17 Martin Op ’t Land (TUD) Applying Architecture
and Ontology to the Splitting and Allying of Enter-
prises

18 Guido de Croon (UM) Adaptive Active Vision
19 Henning Rode (UT) From Document to Entity Re-

trieval: Improving Precision and Performance of
Focused Text Search

20 Rex Arendsen (UvA) Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met de overheid
op de administratieve lasten van bedrijven

21 Krisztian Balog (UvA) People Search in the Enter-
prise

22 Henk Koning (UU) Communication of IT-
Architecture

23 Stefan Visscher (UU) Bayesian network models
for the management of ventilator-associated pneu-
monia

24 Zharko Aleksovski (VUA) Using background
knowledge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable Ex-
change in Air Traffic Management Plan Repair
using Spender-signed Currency

26 Marijn Huijbregts (UT) Segmentation, Diarization
and Speech Transcription: Surprise Data Unrav-
eled

27 Hubert Vogten (OU) Design and Implementation
Strategies for IMS Learning Design

28 Ildiko Flesch (RUN) On the Use of Independence
Relations in Bayesian Networks

29 Dennis Reidsma (UT) Annotations and Subjec-
tive Machines: Of Annotators, Embodied Agents,
Users, and Other Humans

176



SIKS Dissertation Series

30 Wouter van Atteveldt (VUA) Semantic Network
Analysis: Techniques for Extracting, Representing
and Querying Media Content

31 Loes Braun (UM) Pro-Active Medical Information
Retrieval

32 Trung H. Bui (UT) Toward Affective Dialogue
Management using Partially Observable Markov
Decision Processes

33 Frank Terpstra (UvA) Scientific Workflow Design:
theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent Tree
Mining

35 Ben Torben Nielsen (UvT) Dendritic morpholo-
gies: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal Inde-
pendence Models

2 Willem Robert van Hage (VUA) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-based
Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the Qual-
ity of Organisational Policy Making using Collab-
oration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and De-
mand for Knowledge Intensive Tasks: Based on
Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding Classi-
fication

7 Ronald Poppe (UT) Discriminative Vision-Based
Recovery and Recognition of Human Motion

8 Volker Nannen (VUA) Evolutionary Agent-Based
Policy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN) Design, Discovery and
Construction of Service-oriented Systems

10 Jan Wielemaker (UvA) Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UvA) Legal Theory, Sources of
Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-Universitaet zu
Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent Sys-
tems

14 Maksym Korotkiy (VUA) From ontology-enabled
services to service-enabled ontologies (making on-
tologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Representation:
Design Patterns and Ontologies that Make Sense

16 Fritz Reul (UvT) New Architectures in Computer
Chess

17 Laurens van der Maaten (UvT) Feature Extraction
from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable Clas-
sification

22 Pavel Serdyukov (UT) Search For Expertise: Go-
ing beyond direct evidence

23 Peter Hofgesang (VUA) Modelling Web Usage in
a Changing Environment

24 Annerieke Heuvelink (VUA) Cognitive Models for
Training Simulations

25 Alex van Ballegooij (CWI) RAM: Array Database
Management through Relational Mapping

26 Fernando Koch (UU) An Agent-Based Model for
the Development of Intelligent Mobile Services

27 Christian Glahn (OU) Contextual Support of social
Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management with
Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Semantic
Integration of Service-Oriented Applications

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized storage

31 Sofiya Katrenko (UvA) A Closer Look at Learning
Relations from Text

32 Rik Farenhorst (VUA) Architectural Knowledge
Management: Supporting Architects and Auditors

33 Khiet Truong (UT) How Does Real Affect Affect
Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method En-
gineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens: Over geautomatiseerde normatieve
informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support for Learn-
ers in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support for
Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-organisation:
a metadata ecology for learning resources in a
multilingual context

39 Christian Stahl (TUE, Humboldt-Universitaet zu
Berlin) Service Substitution: A Behavioral Ap-
proach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Lan-
guage Learning: Investigations into the Geometry
of Language

41 Igor Berezhnyy (UvT) Digital Analysis of Paint-
ings

42 Toine Bogers (UvT) Recommender Systems for
Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

177



SIKS Dissertation Series

44 Roberto Santana Tapia (UT) Assessing Business-IT
Alignment in Networked Organizations

45 Jilles Vreeken (UU) Making Pattern Mining Use-
ful

46 Loredana Afanasiev (UvA) Querying XML: Bench-
marks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Matter
2 Ingo Wassink (UT) Work flows in Life Science
3 Joost Geurts (CWI) A Document Engineering

Model and Processing Framework for Multime-
dia documents

4 Olga Kulyk (UT) Do You Know What I Know?
Situational Awareness of Co-located Teams in Mul-
tidisplay Environments

5 Claudia Hauff (UT) Predicting the Effectiveness
of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of Video
Game AI

7 Wim Fikkert (UT) Gesture interaction at a Dis-
tance

8 Krzysztof Siewicz (UL) Towards an Improved Reg-
ulatory Framework of Free Software. Protecting
user freedoms in a world of software communities
and eGovernments

9 Hugo Kielman (UL) A Politiele gegevensverwerk-
ing en Privacy, Naar een effectieve waarborging

10 Rebecca Ong (UL) Mobile Communication and
Protection of Children

11 Adriaan Ter Mors (TUD) The world according to
MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking software
for crime analysis

13 Gianluigi Folino (RUN) High Performance Data
Mining using Bio-inspired techniques

14 Sander van Splunter (VUA) Automated Web Ser-
vice Reconfiguration

15 Lianne Bodenstaff (UT) Managing Dependency
Relations in Inter-Organizational Models

16 Sicco Verwer (TUD) Efficient Identification of
Timed Automata, theory and practice

17 Spyros Kotoulas (VUA) Scalable Discovery of Net-
worked Resources: Algorithms, Infrastructure, Ap-
plications

18 Charlotte Gerritsen (VUA) Caught in the Act: In-
vestigating Crime by Agent-Based Simulation

19 Henriette Cramer (UvA) People’s Responses to
Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Anyway? How
Improv Informs Agency and Authorship of Emer-
gent Narrative

21 Harold van Heerde (UT) Privacy-aware data man-
agement by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support for
Access to
Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure of
Emotions

24 Zulfiqar Ali Memon (VUA) Modelling Human-
Awareness for Ambient Agents: A Human Min-
dreading Perspective

25 Ying Zhang (CWI) XRPC: Efficient Distributed
Query Processing on Heterogeneous XQuery En-
gines

26 Marten Voulon (UL) Automatisch contracteren
27 Arne Koopman (UU) Characteristic Relational

Patterns
28 Stratos Idreos (CWI) Database Cracking: Towards

Auto-tuning Database Kernels
29 Marieke van Erp (UvT) Accessing Natural His-

tory: Discoveries in data cleaning, structuring,
and retrieval

30 Victor de Boer (UvA) Ontology Enrichment from
Heterogeneous Sources on the Web

31 Marcel Hiel (UvT) An Adaptive Service Oriented
Architecture: Automatically solving Interoperabil-
ity Problems

32 Robin Aly (UT) Modeling Representation Uncer-
tainty in Concept-Based Multimedia Retrieval

33 Teduh Dirgahayu (UT) Interaction Design in Ser-
vice Compositions

34 Dolf Trieschnigg (UT) Proof of Concept: Concept-
based Biomedical Information Retrieval

35 Jose Janssen (OU) Paving the Way for Lifelong
Learning: Facilitating competence development
through a learning path specification

36 Niels Lohmann (TUe) Correctness of services and
their composition

37 Dirk Fahland (TUe) From Scenarios to compo-
nents

38 Ghazanfar Farooq Siddiqui (VUA) Integrative
modeling of emotions in virtual agents

39 Mark van Assem (VUA) Converting and Integrat-
ing Vocabularies for the Semantic Web

40 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

41 Sybren de Kinderen (VUA) Needs-driven service
bundling in a multi-supplier setting: the computa-
tional e3-service approach

42 Peter van Kranenburg (UU) A Computational Ap-
proach to Content-Based Retrieval of Folk Song
Melodies

43 Pieter Bellekens (TUe) An Approach towards
Context-sensitive and User-adapted Access to Het-
erogeneous Data Sources, Illustrated in the Televi-
sion Domain

44 Vasilios Andrikopoulos (UvT) A theory and model
for the evolution of software services

45 Vincent Pijpers (VUA) e3alignment: Exploring
Inter-Organizational Business-ICT Alignment

46 Chen Li (UT) Mining Process Model Variants:
Challenges, Techniques, Examples

47 Jahn-Takeshi Saito (UM) Solving difficult game
positions

178



SIKS Dissertation Series

48 Bouke Huurnink (UvA) Search in Audiovisual
Broadcast Archives

49 Alia Khairia Amin (CWI) Understanding and
supporting information seeking tasks in multiple
sources

50 Peter-Paul van Maanen (VUA) Adaptive Support
for Human-Computer Teams: Exploring the Use
of Cognitive Models of Trust and Attention

51 Edgar Meij (UvA) Combining Concepts and Lan-
guage Models for Information Access

2011

1 Botond Cseke (RUN) Variational Algorithms for
Bayesian Inference in Latent Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent Organi-
zations. Syntax and Operational Semantics of an
Organization-Oriented Programming Language

3 Jan Martijn van der Werf (TUe) Compositional
Design and Verification of Component-Based In-
formation Systems

4 Hado van Hasselt (UU) Insights in Reinforcement
Learning: Formal analysis and empirical evalua-
tion of temporal-difference

5 Base van der Raadt (VUA) Enterprise Architecture
Coming of Age: Increasing the Performance of an
Emerging Discipline

6 Yiwen Wang (TUe) Semantically-Enhanced Rec-
ommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information Presenta-
tion for High Load Human Computer Interaction

8 Nieske Vergunst (UU) BDI-based Generation of
Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Media
for Learning

10 Bart Bogaert (UvT) Cloud Content Contention
11 Dhaval Vyas (UT) Designing for Awareness: An

Experience-focused HCI Perspective
12 Carmen Bratosin (TUe) Grid Architecture for Dis-

tributed Process Mining
13 Xiaoyu Mao (UvT) Airport under Control. Multi-

agent Scheduling for Airport Ground Handling
14 Milan Lovric (EUR) Behavioral Finance and

Agent-Based Artificial Markets
15 Marijn Koolen (UvA) The Meaning of Structure:

the Value of Link Evidence for Information Re-
trieval

16 Maarten Schadd (UM) Selective Search in Games
of Different Complexity

17 Jiyin He (UvA) Exploring Topic Structure: Coher-
ence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-Making in
complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on Personal
Profiles

20 Qing Gu (VUA) Guiding service-oriented software
engineering: A view-based approach

21 Linda Terlouw (TUD) Modularization and Specifi-
cation of Service-Oriented Systems

22 Junte Zhang (UvA) System Evaluation of Archival
Description and Access

23 Wouter Weerkamp (UvA) Finding People and
their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Genera-
tion for Interpersonal Coordination with Virtual
Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VUA) Analysis
and Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VUA) Virtual Agents for
Human Communication: Emotion Regulation and
Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots

27 Aniel Bhulai (VUA) Dynamic website optimiza-
tion through autonomous management of design
patterns

28 Rianne Kaptein (UvA) Effective Focused Retrieval
by Exploiting Query Context and Document Struc-
ture

29 Faisal Kamiran (TUe) Discrimination-aware Clas-
sification

30 Egon van den Broek (UT) Affective Signal Process-
ing (ASP): Unraveling the mystery of emotions

31 Ludo Waltman (EUR) Computational and Game-
Theoretic Approaches for Modeling Bounded Ra-
tionality

32 Nees-Jan van Eck (EUR) Methodological Ad-
vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate De-
cisions

34 Paolo Turrini (UU) Strategic Reasoning in Interde-
pendence: Logical and Game-theoretical Investi-
gations

35 Maaike Harbers (UU) Explaining Agent Behavior
in Virtual Training

36 Erik van der Spek (UU) Experiments in serious
game design: a cognitive approach

37 Adriana Burlutiu (RUN) Machine Learning for
Pairwise Data, Applications for Preference Learn-
ing and Supervised Network Inference

38 Nyree Lemmens (UM) Bee-inspired Distributed
Optimization

39 Joost Westra (UU) Organizing Adaptation using
Agents in Serious Games

40 Viktor Clerc (VUA) Architectural Knowledge
Management in Global Software Development

41 Luan Ibraimi (UT) Cryptographically Enforced
Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior through
Mental State Attribution

43 Henk van der Schuur (UU) Process Improvement
through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-Computer In-
terfaces

45 Herman Stehouwer (UvT) Statistical Language
Models for Alternative Sequence Selection

179



SIKS Dissertation Series

46 Beibei Hu (TUD) Towards Contextualized Infor-
mation Delivery: A Rule-based Architecture for
the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VUA) Exploring Computa-
tional Models for Intelligent Support of Persons
with Depression

48 Mark Ter Maat (UT) Response Selection and Turn-
taking for a Sensitive Artificial Listening Agent

49 Andreea Niculescu (UT) Conversational inter-
faces for task-oriented spoken dialogues: design
aspects influencing interaction quality

2012

1 Terry Kakeeto (UvT) Relationship Marketing for
SMEs in Uganda

2 Muhammad Umair (VUA) Adaptivity, emotion,
and Rationality in Human and Ambient Agent Mod-
els

3 Adam Vanya (VUA) Supporting Architecture Evo-
lution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content Man-
agement System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisational
Information Systems

6 Wolfgang Reinhardt (OU) Awareness Support for
Knowledge Workers in Research Networks

7 Rianne van Lambalgen (VUA) When the Going
Gets Tough: Exploring Agent-based Models of Hu-
man Performance under Demanding Conditions

8 Gerben de Vries (UvA) Kernel Methods for Vessel
Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Manage-
ment Support for Context-Aware Service Platforms

10 David Smits (TUe) Towards a Generic Distributed
Adaptive Hypermedia Environment

11 J. C. B. Rantham Prabhakara (TUe) Process Min-
ing in the Large: Preprocessing, Discovery, and
Diagnostics

12 Kees van der Sluijs (TUe) Model Driven Design
and Data Integration in Semantic Web Information
Systems

13 Suleman Shahid (UvT) Fun and Face: Exploring
non-verbal expressions of emotion during playful
interactions

14 Evgeny Knutov (TUe) Generic Adaptation Frame-
work for Unifying Adaptive Web-based Systems

15 Natalie van der Wal (VUA) Social Agents. Agent-
Based Modelling of Integrated Internal and Social
Dynamics of Cognitive and Affective Processes

16 Fiemke Both (VUA) Helping people by under-
standing them: Ambient Agents supporting task
execution and depression treatment

17 Amal Elgammal (UvT) Towards a Comprehensive
Framework for Business Process Compliance

18 Eltjo Poort (VUA) Improving Solution Architect-
ing Practices

19 Helen Schonenberg (TUe) What’s Next? Opera-
tional Support for Business Process Execution

20 Ali Bahramisharif (RUN) Covert Visual Spatial
Attention, a Robust Paradigm for Brain-Computer
Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse Ma-
trices for Information Retrieval

22 Thijs Vis (UvT) Intelligence, politie en veilighei-
dsdienst: verenigbare grootheden?

23 Christian Muehl (UT) Toward Affective Brain-
Computer Interfaces: Exploring the Neurophys-
iology of Affect during Human Media Interaction

24 Laurens van der Werff (UT) Evaluation of Noisy
Transcripts for Spoken Document Retrieval

25 Silja Eckartz (UT) Managing the Business Case
Development in Inter-Organizational IT Projects:
A Methodology and its Application

26 Emile de Maat (UvA) Making Sense of Legal Text
27 Hayrettin Gurkok (UT) Mind the Sheep! User Ex-

perience Evaluation & Brain-Computer Interface
Games

28 Nancy Pascall (UvT) Engendering Technology Em-
powering Women

29 Almer Tigelaar (UT) Peer-to-Peer Information Re-
trieval

30 Alina Pommeranz (TUD) Designing Human-
Centered Systems for Reflective Decision Making

31 Emily Bagarukayo (RUN) A Learning by Con-
struction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and Infras-
tructure

32 Wietske Visser (TUD) Qualitative multi-criteria
preference representation and reasoning

33 Rory Sie (OUN) Coalitions in Cooperation Net-
works (COCOON)

34 Pavol Jancura (RUN) Evolutionary analysis in PPI
networks and applications

35 Evert Haasdijk (VUA) Never Too Old To Learn:
On-line Evolution of Controllers in Swarm- and
Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Evalua-
tion of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration Process
for Enterprise Architecture Creation

38 Selmar Smit (VUA) Parameter Tuning and Scien-
tific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of value
and coordination networks

40 Agus Gunawan (UvT) Information Access for
SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Patterns for
Learning

42 Dominique Verpoorten (OU) Reflection Amplifiers
in self-regulated Learning

43 Anna Tordai (VUA) On Combining Alignment
Techniques

180



SIKS Dissertation Series

44 Benedikt Kratz (UvT) A Model and Language for
Business-aware Transactions

45 Simon Carter (UvA) Exploration and Exploitation
of Multilingual Data for Statistical Machine Trans-
lation

46 Manos Tsagkias (UvA) Mining Social Media:
Tracking Content and Predicting Behavior

47 Jorn Bakker (TUe) Handling Abrupt Changes in
Evolving Time-series Data

48 Michael Kaisers (UM) Learning against Learning:
Evolutionary dynamics of reinforcement learning
algorithms in strategic interactions

49 Steven van Kervel (TUD) Ontologogy driven En-
terprise Information Systems Engineering

50 Jeroen de Jong (TUD) Heuristics in Dynamic
Sceduling: a practical framework with a case
study in elevator dispatching

2013

1 Viorel Milea (EUR) News Analytics for Financial
Decision Support

2 Erietta Liarou (CWI) MonetDB/DataCell: Lever-
aging the Column-store Database Technology for
Efficient and Scalable Stream Processing

3 Szymon Klarman (VUA) Reasoning with Contexts
in Description Logics

4 Chetan Yadati (TUD) Coordinating autonomous
planning and scheduling

5 Dulce Pumareja (UT) Groupware Requirements
Evolutions Patterns

6 Romulo Goncalves (CWI) The Data Cyclotron:
Juggling Data and Queries for a Data Warehouse
Audience

7 Giel van Lankveld (UvT) Quantifying Individual
Player Differences

8 Robbert-Jan Merk (VUA) Making enemies: cogni-
tive modeling for opponent agents in fighter pilot
simulators

9 Fabio Gori (RUN) Metagenomic Data Analysis:
Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT) A Unified
Modeling Framework for Service Design

11 Evangelos Pournaras (TUD) Multi-level Reconfig-
urable Self-organization in Overlay Services

12 Marian Razavian (VUA) Knowledge-driven Mi-
gration to Services

13 Mohammad Safiri (UT) Service Tailoring: User-
centric creation of integrated IT-based homecare
services to support independent living of elderly

14 Jafar Tanha (UvA) Ensemble Approaches to Semi-
Supervised Learning Learning

15 Daniel Hennes (UM) Multiagent Learning: Dy-
namic Games and Applications

16 Eric Kok (UU) Exploring the practical benefits of
argumentation in multi-agent deliberation

17 Koen Kok (VUA) The PowerMatcher: Smart Co-
ordination for the Smart Electricity Grid

18 Jeroen Janssens (UvT) Outlier Selection and One-
Class Classification

19 Renze Steenhuizen (TUD) Coordinated Multi-
Agent Planning and Scheduling

20 Katja Hofmann (UvA) Fast and Reliable Online
Learning to Rank for Information Retrieval

21 Sander Wubben (UvT) Text-to-text generation by
monolingual machine translation

22 Tom Claassen (RUN) Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT) Value Activity

Monitoring
24 Haitham Bou Ammar (UM) Automated Transfer

in Reinforcement Learning
25 Agnieszka Anna Latoszek-Berendsen (UM)

Intention-based Decision Support. A new way of
representing and implementing clinical guidelines
in a Decision Support System

26 Alireza Zarghami (UT) Architectural Support for
Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT) Inference-based Frame-
work Managing Data Provenance

28 Frans van der Sluis (UT) When Complexity be-
comes Interesting: An Inquiry into the Information
eXperience

29 Iwan de Kok (UT) Listening Heads
30 Joyce Nakatumba (TUe) Resource-Aware Business

Process Management: Analysis and Support
31 Dinh Khoa Nguyen (UvT) Blueprint Model and

Language for Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN) Networking For

Learning: The role of Networking in a Lifelong
Learner’s Professional Development

33 Qi Gao (TUD) User Modeling and Personalization
in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT) Distributed Deep Web
Search

35 Abdallah El Ali (UvA) Minimal Mobile Human
Computer Interaction

36 Than Lam Hoang (TUe) Pattern Mining in Data
Streams

37 Dirk Börner (OUN) Ambient Learning Displays
38 Eelco den Heijer (VUA) Autonomous Evolution-

ary Art
39 Joop de Jong (TUD) A Method for Enterprise On-

tology based Design of Enterprise Information Sys-
tems

40 Pim Nijssen (UM) Monte-Carlo Tree Search for
Multi-Player Games

41 Jochem Liem (UvA) Supporting the Conceptual
Modelling of Dynamic Systems: A Knowledge En-
gineering Perspective on Qualitative Reasoning

42 Léon Planken (TUD) Algorithms for Simple Tem-
poral Reasoning

43 Marc Bron (UvA) Exploration and Contextualiza-
tion through Interaction and Concepts

2014

1 Nicola Barile (UU) Studies in Learning Monotone
Models from Data

181



SIKS Dissertation Series

2 Fiona Tuliyano (RUN) Combining System Dynam-
ics with a Domain Modeling Method

3 Sergio Raul Duarte Torres (UT) Information Re-
trieval for Children: Search Behavior and Solu-
tions

4 Hanna Jochmann-Mannak (UT) Websites for chil-
dren: search strategies and interface design -
Three studies on children’s search performance
and evaluation

5 Jurriaan van Reijsen (UU) Knowledge Perspectives
on Advancing Dynamic Capability

6 Damian Tamburri (VUA) Supporting Networked
Software Development

7 Arya Adriansyah (TUe) Aligning Observed and
Modeled Behavior

8 Samur Araujo (TUD) Data Integration over Dis-
tributed and Heterogeneous Data Endpoints

9 Philip Jackson (UvT) Toward Human-Level Artifi-
cial Intelligence: Representation and Computation
of Meaning in Natural Language

10 Ivan Salvador Razo Zapata (VUA) Service Value
Networks

11 Janneke van der Zwaan (TUD) An Empathic Vir-
tual Buddy for Social Support

12 Willem van Willigen (VUA) Look Ma, No Hands:
Aspects of Autonomous Vehicle Control

13 Arlette van Wissen (VUA) Agent-Based Support
for Behavior Change: Models and Applications in
Health and Safety Domains

14 Yangyang Shi (TUD) Language Models With Meta-
information

15 Natalya Mogles (VUA) Agent-Based Analysis and
Support of Human Functioning in Complex Socio-
Technical Systems: Applications in Safety and
Healthcare

16 Krystyna Milian (VUA) Supporting trial recruit-
ment and design by automatically interpreting eli-
gibility criteria

17 Kathrin Dentler (VUA) Computing healthcare
quality indicators automatically: Secondary Use
of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UvA) Methods and Models for
the Design and Study of Dynamic Agent Organiza-
tions

19 Vinicius Ramos (TUe) Adaptive Hypermedia
Courses: Qualitative and Quantitative Evaluation
and Tool Support

20 Mena Habib (UT) Named Entity Extraction and
Disambiguation for Informal Text: The Missing
Link

21 Kassidy Clark (TUD) Negotiation and Monitoring
in Open Environments

22 Marieke Peeters (UU) Personalized Educational
Games: Developing agent-supported scenario-
based training

23 Eleftherios Sidirourgos (UvA/CWI) Space Effi-
cient Indexes for the Big Data Era

24 Davide Ceolin (VUA) Trusting Semi-structured
Web Data

25 Martijn Lappenschaar (RUN) New network models
for the analysis of disease interaction

26 Tim Baarslag (TUD) What to Bid and When to
Stop

27 Rui Jorge Almeida (EUR) Conditional Density
Models Integrating Fuzzy and Probabilistic Repre-
sentations of Uncertainty

28 Anna Chmielowiec (VUA) Decentralized k-Clique
Matching

29 Jaap Kabbedijk (UU) Variability in Multi-Tenant
Enterprise Software

30 Peter de Cock (UvT) Anticipating Criminal Be-
haviour

31 Leo van Moergestel (UU) Agent Technology in
Agile Multiparallel Manufacturing and Product
Support

32 Naser Ayat (UvA) On Entity Resolution in Proba-
bilistic Data

33 Tesfa Tegegne (RUN) Service Discovery in
eHealth

34 Christina Manteli (VUA) The Effect of Governance
in Global Software Development: Analyzing Trans-
active Memory Systems

35 Joost van Ooijen (UU) Cognitive Agents in Virtual
Worlds: A Middleware Design Approach

36 Joos Buijs (TUe) Flexible Evolutionary Algo-
rithms for Mining Structured Process Models

37 Maral Dadvar (UT) Experts and Machines United
Against Cyberbullying

38 Danny Plass-Oude Bos (UT) Making brain-
computer interfaces better: improving usability
through post-processing

39 Jasmina Maric (UvT) Web Communities, Immigra-
tion, and Social Capital

40 Walter Omona (RUN) A Framework for Knowl-
edge Management Using ICT in Higher Education

41 Frederic Hogenboom (EUR) Automated Detection
of Financial Events in News Text

42 Carsten Eijckhof (CWI/TUD) Contextual Multidi-
mensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Process Im-
provement using Method Increments

44 Paulien Meesters (UvT) Intelligent Blauw:
Intelligence-gestuurde politiezorg in gebiedsge-
bonden eenheden

45 Birgit Schmitz (OUN) Mobile Games for Learn-
ing: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analytics: Rele-
vance, Redundancy, Diversity

47 Shangsong Liang (UvA) Fusion and Diversifica-
tion in Information Retrieval

2015

1 Niels Netten (UvA) Machine Learning for Rele-
vance of Information in Crisis Response

2 Faiza Bukhsh (UvT) Smart auditing: Innovative
Compliance Checking in Customs Controls

182



SIKS Dissertation Series

3 Twan van Laarhoven (RUN) Machine learning for
network data

4 Howard Spoelstra (OUN) Collaborations in Open
Learning Environments

5 Christoph Bösch (UT) Cryptographically En-
forced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Process Qual-
ity Computation: Computing Non-Functional Re-
quirements to Improve Business Processes

7 Maria-Hendrike Peetz (UvA) Time-Aware Online
Reputation Analysis

8 Jie Jiang (TUD) Organizational Compliance: An
agent-based model for designing and evaluating
organizational interactions

9 Randy Klaassen (UT) HCI Perspectives on Behav-
ior Change Support Systems

10 Henry Hermans (OUN) OpenU: design of an inte-
grated system to support lifelong learning

11 Yongming Luo (TUe) Designing algorithms for
big graph datasets: A study of computing bisimu-
lation and joins

12 Julie M. Birkholz (VUA) Modi Operandi of So-
cial Network Dynamics: The Effect of Context on
Scientific Collaboration Networks

13 Giuseppe Procaccianti (VUA) Energy-Efficient
Software

14 Bart van Straalen (UT) A cognitive approach to
modeling bad news conversations

15 Klaas Andries de Graaf (VUA) Ontology-based
Software Architecture Documentation

16 Changyun Wei (UT) Cognitive Coordination for
Cooperative Multi-Robot Teamwork

17 André van Cleeff (UT) Physical and Digital Secu-
rity Mechanisms: Properties, Combinations and
Trade-offs

18 Holger Pirk (CWI) Waste Not, Want Not!: Manag-
ing Relational Data in Asymmetric Memories

19 Bernardo Tabuenca (OUN) Ubiquitous Technology
for Lifelong Learners

20 Loïs Vanhée (UU) Using Culture and Values to
Support Flexible Coordination

21 Sibren Fetter (OUN) Using Peer-Support to Ex-
pand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate Networks
23 Luit Gazendam (VUA) Cataloguer Support in Cul-

tural Heritage
24 Richard Berendsen (UvA) Finding People, Papers,

and Posts: Vertical Search Algorithms and Evalu-
ation

25 Steven Woudenberg (UU) Bayesian Tools for
Early Disease Detection

26 Alexander Hogenboom (EUR) Sentiment Analysis
of Text Guided by Semantics and Structure

27 Sándor Héman (CWI) Updating compressed
column-stores

28 Janet Bagorogoza (TiU) Knowledge Management
and High Performance: The Uganda Financial
Institutions Model for HPO

29 Hendrik Baier (UM) Monte-Carlo Tree Search En-
hancements for One-Player and Two-Player Do-
mains

30 Kiavash Bahreini (OUN) Real-time Multimodal
Emotion Recognition in E-Learning

31 Yakup Koç (TUD) On Robustness of Power Grids
32 Jerome Gard (UL) Corporate Venture Manage-

ment in SMEs
33 Frederik Schadd (UM) Ontology Mapping with

Auxiliary Resources
34 Victor de Graaff (UT) Geosocial Recommender

Systems
35 Junchao Xu (TUD) Affective Body Language of

Humanoid Robots: Perception and Effects in Hu-
man Robot Interaction

2016

1 Syed Saiden Abbas (RUN) Recognition of Shapes
by Humans and Machines

2 Michiel Christiaan Meulendijk (UU) Optimizing
medication reviews through decision support: pre-
scribing a better pill to swallow

3 Maya Sappelli (RUN) Knowledge Work in Context:
User Centered Knowledge Worker Support

4 Laurens Rietveld (VUA) Publishing and Consum-
ing Linked Data

5 Evgeny Sherkhonov (UvA) Expanded Acyclic
Queries: Containment and an Application in Ex-
plaining Missing Answers

6 Michel Wilson (TUD) Robust scheduling in an
uncertain environment

7 Jeroen de Man (VUA) Measuring and modeling
negative emotions for virtual training

8 Matje van de Camp (TiU) A Link to the Past: Con-
structing Historical Social Networks from Unstruc-
tured Data

9 Archana Nottamkandath (VUA) Trusting Crowd-
sourced Information on Cultural Artefacts

10 George Karafotias (VUA) Parameter Control for
Evolutionary Algorithms

11 Anne Schuth (UvA) Search Engines that Learn
from Their Users

12 Max Knobbout (UU) Logics for Modelling and
Verifying Normative Multi-Agent Systems

13 Nana Baah Gyan (VU) The Web, Speech Technolo-
gies and Rural Development in West Africa: An
ICT4D Approach

14 Ravi Khadka (UU) Revisiting Legacy Software Sys-
tem Modernization

15 Steffen Michels (RUN) Hybrid Probabilistic Log-
ics: Theoretical Aspects, Algorithms and Experi-
ments

16 Guangliang Li (UvA) Socially Intelligent Au-
tonomous Agents that Learn from Human Reward

17 Berend Weel (VUA) Towards Embodied Evolution
of Robot Organisms

18 Albert Meroño Peñuela (VUA) Refining Statistical
Data on the Web

183



SIKS Dissertation Series

19 Julia Efremova (TUe) Mining Social Structures
from Genealogical Data

20 Daan Odijk (UvA) Context & Semantics in News
& Web Search

21 Alejandro Moreno Célleri (UT) From Traditional
to Interactive Playspaces: Automatic Analysis of
Player Behavior in the Interactive Tag Playground

22 Grace Lewis (VU) Software Architecture Strate-
gies for Cyber-Foraging Systems

23 Fei Cai (UvA) Query Auto Completion in Informa-
tion Retrieval

24 Brend Wanders (UT) Repurposing and Probabilis-
tic Integration of Data; An Iterative and data
model independent approach

25 Julia Kiseleva (TUe) Using Contextual Informa-
tion to Understand Searching and Browsing Be-
havior

26 Dilhan Thilakarathne (VU) In or Out of Control:
Exploring Computational Models to Study the Role
of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy
Management Domains

27 Wen Li (TUD) Understanding Geo-spatial Infor-
mation on Social Media

28 Mingxin Zhang (TUD) Large-scale Agent-based
Social Simulation - A study on epidemic prediction
and control

29 Nicolas Höning (CWI/TUD) Peak reduction in de-
centralised electricity systems - Markets and prices
for flexible planning

30 Ruud Mattheij (UvT) The Eyes Have It
31 Mohammadreza Khelghati (UT) Deep web content

monitoring
32 Eelco Vriezekolk (UT) Assessing Telecommunica-

tion Service Availability Risks for Crisis Organisa-
tions

33 Peter Bloem (UvA) Single Sample Statistics, exer-
cises in learning from just one example

34 Dennis Schunselaar (TUe) Configurable Process
Trees: Elicitation, Analysis, and Enactment

35 Zhaochun Ren (UvA) Monitoring Social Media:
Summarization, Classification and Recommenda-
tion

36 Daphne Karreman (UT) Beyond R2D2: The de-
sign of nonverbal interaction behavior optimized
for robot-specific morphologies

37 Giovanni Sileno (UvA) Aligning Law and Action:
a conceptual and computational inquiry

38 Andrea Minuto (UT) MATERIALS THAT MAT-
TER: Smart Materials meet Art & Interaction De-
sign

39 Merijn Bruijnes (UT) Believable Suspect Agents:
Response and Interpersonal Style Selection for an
Artificial Suspect

40 Christian Detweiler (TUD) Accounting for Values
in Design

41 Thomas King (TUD) Governing Governance: A
Formal Framework for Analysing Institutional De-
sign and Enactment Governance

42 Spyros Martzoukos (UvA) Combinatorial and
Compositional Aspects of Bilingual Aligned Cor-
pora

43 Saskia Koldijk (RUN) Context-Aware Support for
Stress Self-Management: From Theory to Practice

44 Thibault Sellam (UvA) Automatic Assistants for
Database Exploration

45 Bram van de Laar (UT) Experiencing Brain-
Computer Interface Control

46 Jorge Gallego Perez (UT) Robots to Make you
Happy

47 Christina Weber (UL) Real-time foresight: Pre-
paredness for dynamic innovation networks

48 Tanja Buttler (TUD) Collecting Lessons Learned
49 Gleb Polevoy (TUD) Participation and Interaction

in Projects. A Game-Theoretic Analysis
50 Yan Wang (UVT) The Bridge of Dreams: Towards

a Method for Operational Performance Alignment
in IT-enabled Service Supply Chains

2017

1 Jan-Jaap Oerlemans (UL) Investigating Cyber-
crime

2 Sjoerd Timmer (UU) Designing and Understand-
ing Forensic Bayesian Networks using Argumenta-
tion

3 Daniël Harold Telgen (UU) Grid Manufactur-
ing: A Cyber-Physical Approach with Autonomous
Products and Reconfigurable Manufacturing Ma-
chines

4 Mrunal Gawade (CWI) Multi-core Parallelism in
a Column-store

5 Mahdieh Shadi (UvA) Collaboration Behavior
6 Damir Vandic (EUR) Intelligent Information Sys-

tems for Web Product Search
7 Roel Bertens (UU) Insight in Information: from

Abstract to Anomaly
8 Rob Konijn (VUA) Detecting Interesting Differ-

ences: Data Mining in Health Insurance Data
using Outlier Detection and Subgroup Discovery

9 Dong Nguyen (UT) Text as Social and Cultural
Data: A Computational Perspective on Variation
in Text

10 Robby van Delden (UT) (Steering) Interactive
Play Behavior

11 Florian Kunneman (RUN) Modelling patterns of
time and emotion in Twitter #anticipointment

12 Sander Leemans (UT) Robust Process Mining with
Guarantees

13 Gijs Huisman (UT) Social Touch Technology: Ex-
tending the reach of social touch through haptic
technology

14 Shoshannah Tekofsky (UvT) You Are Who You
Play You Are: Modelling Player Traits from Video
Game Behavior

15 Peter Berck (RUN) Memory-Based Text Correc-
tion

16 Aleksandr Chuklin (UvA) Understanding and
Modeling Users of Modern Search Engines

184



U
nderstanding and M

odeling U
sers of M

odern Search Engines
A

leksandr
Chuklin

Understanding and Modeling 
Users of Modern Search Engines

Aleksandr Chuklin

As search is being used by billions of people, modern search
engines are becoming more and more complex. And
complexity does not just come from the algorithms. Richer
and richer content is being added to search engine result
pages: news and sports results, definitions and translations,
images and videos. Many such elements are added by search
engines in their attempt to stand out from the competition by
providing a superior user experience. However, the more
complex search engines become, the harder it gets to
understand users and their interactions with result pages,
and to measure the quality of the user experience. In this
thesis we address exactly this topic.
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