N
Check for
Updates

Generative Slate Recommendation with Reinforcement Learning

Romain Deffayet
Naver Labs Europe
Meylan, France
University of Amsterdam
Amsterdam, The Netherlands
romain.deffayet@naverlabs.com

Jean-Michel Renders
Naver Labs Europe
Meylan, France
jean-michel.renders@naverlabs.com

ABSTRACT

Recent research has employed reinforcement learning (RL) algo-
rithms to optimize long-term user engagement in recommender
systems, thereby avoiding common pitfalls such as user boredom
and filter bubbles. They capture the sequential and interactive na-
ture of recommendations, and thus offer a principled way to deal
with long-term rewards and avoid myopic behaviors. However, RL
approaches are intractable in the slate recommendation scenario
- where a list of items is recommended at each interaction turn -
due to the combinatorial action space. In that setting, an action
corresponds to a slate that may contain any combination of items.

While previous work has proposed well-chosen decompositions
of actions so as to ensure tractability, these rely on restrictive and
sometimes unrealistic assumptions. Instead, in this work we pro-
pose to encode slates in a continuous, low-dimensional latent space
learned by a variational auto-encoder. Then, the RL agent selects
continuous actions in this latent space, which are ultimately de-
coded into the corresponding slates. By doing so, we are able to
(i) relax assumptions required by previous work, and (ii) improve
the quality of the action selection by modeling full slates instead
of independent items, in particular by enabling diversity. Our ex-
periments performed on a wide array of simulated environments
confirm the effectiveness of our generative modeling of slates over
baselines in practical scenarios where the restrictive assumptions
underlying the baselines are lifted. Our findings suggest that repre-
sentation learning using generative models is a promising direction
towards generalizable RL-based slate recommendation.

CCS CONCEPTS

« Information systems — Recommender systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9407-9/23/02...$15.00
https://doi.org/10.1145/3539597.3570412

580

Thibaut Thonet
Naver Labs Europe
Meylan, France
thibaut.thonet@naverlabs.com

Maarten de Rijke
University of Amsterdam
Amsterdam, The Netherlands
m.derijke@uva.nl

KEYWORDS

Slate recommendation, Reinforcement learning, Variational auto-
encoder

ACM Reference Format:

Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maarten de
Rijke. 2023. Generative Slate Recommendation with Reinforcement Learn-
ing. In Proceedings of the Sixteenth ACM International Conference on Web
Search and Data Mining (WSDM ’23), February 27-March 3, 2023, Singa-
pore, Singapore. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3539597.3570412

1 INTRODUCTION

Ubiquitous in online services, recommender systems (RSs) play a
key role personalization by catering to users’ identified tastes. Ide-
ally, they also diversify their offerings and help users discover new
interests [19]. In the latter case, RSs take on an active role, which
means that recommendations influence future user behavior, and
therefore their effects on users must be explicitly controlled. Such
effects can be detrimental: users may get bored if too many simi-
lar recommendations are made, and it has been well-documented
that users can end up in so-called filter bubbles or echo chambers
[4, 13, 28]. From the perspective of the online platform or the con-
tent provider, user boredom leads to poor retention and conversion
rates [17], while filter bubbles raise fairness and ethical issues for
which providers can be held accountable [26]. Conversely, RSs can
also positively impact users, for example, when users get interested
in new, unexpected topics or when the RS offers a fair represen-
tation of available options [1]. It is natural, therefore, to balance
exploitation (i.e., sticking to the known interests of the user) and
exploration (i.e., further probing the user’s interests) so as to avoid
always recommending similar items, and encourage recommenda-
tions that boost future engagement. The reinforcement learning
(RL) literature has proposed models and algorithms that aim to
optimize long-term metrics by acknowledging the causal effect of
recommendations on users [8, 36].

In this work we consider the common scenario of slate recom-
mendation [8, 18, 31], which comes with specific challenges. At each
interaction turn, a slate recommender system recommends a list of
items from the collection, and the user interacts with zero, one or
several of those items. As a consequence, users may not examine
all the recommended items, which leads to biases in the observed

https://orcid.org/0000-0001-8265-9092
https://orcid.org/0000-0003-0302-0376
https://orcid.org/0000-0002-7516-3707
https://orcid.org/0000-0002-1086-0202
https://doi.org/10.1145/3539597.3570412
https://doi.org/10.1145/3539597.3570412
https://doi.org/10.1145/3539597.3570412
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570412&domain=pdf&date_stamp=2023-02-27

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

interactions along with a complex interplay between items in the
same slate [27]. More importantly, the size of the action space, i.e.,
the number of possible slates, prohibits the use of off-the-shelf RL
approaches [12]. Indeed, as slate recommendation is a combinato-
rial problem, the evaluation of all actions by the RL agent through
trial and error is simply intractable: even with as few as 1, 000 items
in the collection, the number of possible slates of size 10 is approxi-
mately 9.6 X 102°. We propose to tackle this problem in the context
of a practical scenario, (S), which fits the second-stage ranking
phase [11] of many content recommendation platforms:

(S) The collection contains around a thousand items, and at each
turn of interaction the proposed model must select and rank
10 items to be presented to the user.

All our tractability and feasibility statements in this paper must

therefore be understood through the lens of this scenario (8S).

To reduce the prohibitively large size of the combinatorial action
space, previous studies have proposed to decompose slates in a
tractable manner [8, 18, 31] - but at the cost of restrictive assump-
tions, e.g., concerning mutual independence of items in the slate,
knowledge of the user click model, availability of high-quality item
embeddings, or that at most one item per slate is clicked.

In contrast, in this work we propose to first learn a continuous,
low-dimensional latent representation of actions (i.e., slates), and
then let the agent take actions within this latent space during its
training phase. In practice, we obtain the latent representations
by introducing a generative modeling of slates (GeMS) based on a
variational auto-encoder (VAE) pre-trained on a dataset of observed
slates and clicks, collected from a previous version of the recom-
mender system. Such a dataset is usually available in industrial
recommendation settings. Therefore, we do not rely on restrictive
assumptions, and the fact that we represent full slates enables the
agent to improve the quality of its recommendations, instead of
using individual item representations.

Our contributions can be summarized as follows:

e We propose GeMS, a novel way to represent actions in RL for slate
recommendation, by pre-training a VAE on slates and associated
clicks. Unlike previous methods, GeMS is free of overly restrictive
assumptions and only requires logged interaction data.

o We provide a unified terminology to classify existing slate recom-
mendation approaches based on their underlying assumptions.

o We show on a wide array of simulated environments that previ-
ous methods underperform when their underlying assumptions
are lifted (i.e., in practical settings), while GeMS allows us to re-
cover highly rewarding policies without restrictive assumptions.

o To support the reproducibility of this work, we publicly release
the code for our approach, baselines and simulator.!

2 RELATED WORK

Long-term user engagement. Several studies have documented
the misalignment between short-term benefits and long-term user
engagement [1, 17], as well as the tendency of traditional recom-
mender systems to be detrimental to long-term outcomes [29]. Such
myopic behavior is known to cause boredom and decrease user re-
tention [1], which is prejudicial for both users and content providers.
This behavior also raises concerns such as the rich-get-richer issue

https://github.com/naver/gems.

581

Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, & Maarten de Rijke

[8] and feeding close-mindedness [29]. Some previous studies tried
to counter this effect by explicitly maximizing diversity [33] or
by finding metrics correlated with long-term outcomes [2, 7]. In
contrast, in our work we directly optimize long-term metrics by
using reinforcement learning algorithms [8, 16, 36].

Reinforcement learning for slate recommendation. The prob-
lem of slate recommendation with reinforcement learning (RL) has
been tackled in several previous studies, although the settings in
which solutions were tested vary and are sometimes not applicable
to our scenario (S). Chen et al. [8] and Bai et al. [3] assume a simple
user click model and independence of items within a slate in order
to reduce the problem to choosing individual items, which they
solve with the REINFORCE algorithm on a SoftMax policy. Ie et al.
[18] assume knowledge of the user’s click model and item relevance,
which allows them to perform combinatorial optimization for the
computation of Q-values. Sunehag et al. [31] take a continuous
action in the product space of item embeddings, i.e., one embed-
ding per slot in the slate, and pre-select nearest-neighbor items
for full-slate Q-function evaluation. Chen et al. [9] use properties
of the optimal Q-function to propose an elegant decomposition
of it and generate optimal slates autoregressively. We detail the
assumptions made by each of these approaches in Section 4, but
we had to discard [9] due to its prohibitively heavy computation: it
requires a number of neural network forward passes proportional
to the slate size times the number of items in the collection (i.e.,
10,000 passes in scenario (S)), for each training or inference step.

Our proposed approach differs from previous work because we
do not manually decompose the slates using tractable heuristics
based on restrictive assumptions, but instead approximate the slate
generation process with a deep generative model. Our proposed
framework only has a single requirement, viz. the availability of
logged data with slates and associated clicks, as we will detail in
Section 4. The latter assumption is by no means restrictive as such
logged data is readily available in common industrial recommenda-
tion settings.

Latent action representations. While learning a latent repre-
sentation of states is very common in the RL literature [14, 30],
few studies have tackled the problem of latent action representa-
tion. Chandak et al. [6] train an action generation function in a
supervised manner, by learning to predict the action taken from
a pair of successive states. This is not directly applicable in our
case, because the true user state is not observable and successive
observations are simply clicks that appear to be too weak of a signal
to infer the slates leading to these clicks. Botteghi et al. [5] learn a
state-action world model and jointly train latent state and action
representations in a model-based fashion.

Learning a world model in our setting essentially amounts to the
latent modeling of slates and clicks (similar to our approach), while
also conditioning on an internal hidden state.? The work by Zhou
et al. [35] is perhaps the closest work to ours, as it uses a variational
auto-encoder (VAE) to embed actions into a controllable latent space
before training an RL agent. However, it does not consider slates
but only simple, atomic actions. In contrast, Jiang et al. [20], Liu
et al. [25] train VAEs to represent slates and their associated clicks,

2We tried a similar method in pilot experiments, but the additional conditioning only
deteriorated the results, so we only present the condition-free method in this paper.

https://github.com/naver/gems

Generative Slate Recommendation with Reinforcement Learning

@ Generative Modeling of Slates (GeMS)

clicks slate Gaussian Prior slate clicks
i @ :4\ @ v
|
[
I
& proto-action

Encoder Decoder

Belief Encoder

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

@ RL-based slate recommendation with GeMS

proto-action

Decoder
—

(frozen)

d

'
1
I
I
I
|
I
I
I
I

User \
|
I
I
1
I
I
I
|
I
|
1

Figure 1: Our proposed framework for slate recommendation with reinforcement learning. We first pretrain our GeMS model on previously
collected logged data composed of slates and associated clicks (left), then we use the frozen decoder of GeMS to decode the RL agent’s low-

dimensional proto-action vector into a slate (right).

but they do not investigate training an RL agent from the learned
latent representation.

To the best of our knowledge, we are the first to learn a latent
representation of slates for RL-based recommendation.

3 METHOD

3.1 Notations and problem definition

We consider a slate recommendation scenario in which a user inter-
acts with a recommender system (RS) throughout an episode of T
turns. At every turn t € {1,..., T}, the system recommends a slate
ar = (i}, e lf) where (ii)1<j<k are items from the collection I
and k is the size of the slate set by the RS designer. The user can
click on zero, one or several items in the slate and the resulting
click vector ¢; = (c}, e cf), c{ € {0, 1} is returned to the RS.

The problem of maximizing the cumulative number of clicks
over an episode can be modeled as a partially observable Markov
decision process (POMDP) M = (8,0, A,R, T, Q) defined by:

o A set of states S, which represent the unobservable state of the
user’s mind;

o A set of observations O accessible to the system. Here, obser-
vations are clicks from the previous interaction (o; = c¢;—1) and
therefore lie in the space of binary vectors of size k: O = {0, 1}¥;

e Asetof actions A, which is the set of all possible slates composed
I]|!

TR

e Areward function R: § X A — R, which we set to R(s, ar) =
re = Zﬁ?:l c{ in order to reflect our long-term objective of maxi-
mizing the cumulative number of clicks; and

o A set of unknown transition and observation probabilities, re-
spectively T : S X A XS — [0,1] and Q: S X A X O — [0, 1],
as well as a distribution over initial states S! : S — [0, 1].

Due to the unobserved nature of the true user state in the POMDP, it

is common to train agents by relying on a proxy of the state inferred

from available observations. The function that provides such proxy
is traditionally referred to as the belief encoder [21]. We also define
the concepts of a policy 7 : S x A — [0,1] and trajectory 7 =

(or, ar, rt)1<<T- In the remainder, we write 7 ~ 7 to signify that

we obtain a trajectory by first sampling an initial state s; from S?

and then recursively sampling actions T — 1 times from the policy .

The goal can now be formulated as finding an optimal policy, i.e., a

of items from the collection, i.e., |A| =

582

policy maximizing the expected return 7* € argmax,; E;~, [R(7)]
with R(7r) = Zthl ry. Finally, given a state s and action a, we define
the Q-function Q”(s,a) = B¢~y =s,a,=a [R(7)] and V-function
V7(s) = Equn(s) [Q7(s:@)].

3.2 Overview of the framework

In our proposed framework, the interactions with the environment,
i.e., the user, can be described by the following repeated steps:

(1) The belief encoder summarizes the history of interactions with
the user into a state vector;

(2) The agent selects a proto-action based on this state; and

(3) The ranker (here resulting from a VAE model) decodes this
proto-action into a slate that is served to the user.

In the remainder of this section, we first detail our proposed gener-
ative modeling of slates (GeMS). GeMS is a deep generative model
that learns a low-dimensional latent space for slates and associated
clicks — thus constituting a convenient proto-action space for the RL
agent and allowing for tractable RL without resorting to restrictive
assumptions as in prior work [3, 8, 18, 31]. Then we describe how
GeMS is integrated as a ranker in our RL framework and we briefly
discuss the remaining RL components. This two-step process is
depicted in Figure 1.

3.3 Generative Modeling of Slates (GeMS)

In order to instantiate our GeMS model, we propose to train a vari-
ational auto-encoder (VAE) on a precollected dataset D of logged
interactions, as illustrated in Figure 1 (left). A VAE aims to learn
a joint distribution over data samples (i.e., slates and clicks de-
noted as a and c, respectively) and latent encodings (i.e., proto-
actions denoted as z) [22]. To do so, a parameterized distribution
po(a,c, z) is trained to maximize the marginal likelihood of the data
pola,c) = /Z po(a, c,z)dz. In practice, due to the intractability of
this integral, a parameterized distribution g (za, c) is introduced
as a variational approximation of the true posterior pg(z|a, c¢) and
the VAE is trained by maximizing the evidence lower bound (ELBO):

ELBO _
£9’¢ -

1)
Bue [Bz-gy(-lao 108 po(a cl2)] KL [g4(zla,) Ip(2)] |

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

where p(z) is the prior distribution over the latent space, KL is the
Kullback-Leibler divergence [24], and z is a sample from a Gaussian
distribution obtained using the reparameterization trick [22]. The
distributions g (z|a, ¢) and pg(a, c|z) are usually referred to as the
encoder and the decoder, respectively.

The downstream performance of the RL agent we wish to ulti-
mately learn clearly depends on the upstream ability of the VAE
to properly reconstruct slates. However, as Liu et al. [25] observe,
an accurate reconstruction of slates may limit the agent’s capacity
to satisfy the user’s interests. Indeed, finding high-performance
continuous control policies requires smoothness and structure in
the latent space, which may be lacking if too much emphasis is
given to the reconstruction objective in comparison to the prior
matching objective enforced by the KL-divergence. Therefore, it
is necessary to balance reconstruction and controllability, which
is done by introducing an hyperparameter f as weight for the KL
term in Eq. 1. Moreover, in order to promote additional structure
in the latent space, we add a click reconstruction term in the loss:
slates with similar short-term outcomes (i.e., clicks) are grouped
together during pre-training. Yet, we may want to avoid biasing
the learned representations towards click reconstruction too much,
as it may come at the cost of quality of the slate reconstruction.
Therefore, we introduce a hyperparameter A to adjust this second
trade-off. We show the empirical impact of § and A in Section 6.3.

In our implementation, the prior p(z) is set as a standard Gauss-
ian distribution N(0,1). The encoder g (z|a, c) is a Gaussian dis-
tribution with diagonal covariance N'(py(a, c), diag(o? (a,c¢))), pa-
rameterized by a multi-layer perceptron (MLP). This MLP inputs
the concatenation of learnable item embeddings and associated
clicks over the whole slate, and outputs (y4(a, ¢),log o (a, c)). For
the decoder py(a, c|z), another MLP takes as input the latent sam-
ple z, and outputs the concatenation of reconstructed embeddings

H(Z) and click probabilities p “(c; 7|z) for each slot j in the slate.
We then derive logits for the 1tem probabilities p] (aj i |z) by taking
the dot-product of the reconstructed embeddmg e (z) with the
embeddings of all items in the collection. For collectlon items, we
use the current version of embeddings learned within the encoder,
but we prevent the gradient from back-propagating to them using
the stop-gradient operator to avoid potential degenerate solutions.

In summary, the VAE is pre-trained by maximizing the ELBO on
the task of reconstructing slates and corresponding clicks, i.e., by
minimizing .EGeMS Egc-D [LS;MS((J, ¢)] with:

slate reconstruction

L5 (a,0) = Zlogp (ajlzg(ac) +

click reconstruction

ko @)
AZ logp(];’ (cjlzg(a,c)) +
=1

KL-divergence

d
ﬁz (U;’i +;1§,)’l. —log 0gi— 1)
i=1

where zg4(a,c) = pg(a,c) + diag(aé (a,c)) - €, for e ~ N(0,1). Here,

583

Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, & Maarten de Rijke

d is the dimension of the latent space, and f and A are hyperparam-
eters controlling the respective weight of the KL term and the click
reconstruction term. Note that the KL term takes this simple form
due to the Gaussian assumption on g4 (z|a, c) and the (0, I) prior.

3.4 RL agent and belief encoder

After the pre-training step described in Section 3.3, the parameters
of GeMS are frozen and we use its decoder as the ranker in our
RL framework. The RL agent can then be trained to maximize the
discounted return by taking proto-actions within the VAE’s latent
space. To generate a slate (i,..., ik) from the agent’s proto-action
z, we take for each slot j € {1,..., k} the most likely item according
to the decoder: i/ = arg max;c 7 p%(i|z).

Since our focus within the RL framework is on the choice of the
ranker, we adopt a standard implementation of the belief encoder
and the agent: the former is modeled by a gated recurrent unit
(GRU) [10] taking as input the concatenation of item embeddings
and respective clicks from each slate, and the latter is a soft actor-
critic (SAC) [15] algorithm. We chose SAC because it is a well-
established RL algorithm, known for its strong performance and
data-efficiency in continuous control. Additionally, SAC adds an
entropy term incentivizing exploration which we have noticed
during our experiments to be important to attain high performance
in highly stochastic recommendation environments.

4 BASELINES AND THEIR ASSUMPTIONS

We evaluate our proposed method against four main baselines
derived from prior work. In this section, we describe these baselines
as well the assumptions on user behavior that they formulate in
order to make the combinatorial problem of slate recommendation
tractable. By doing so, we are able to compare the assumptions
made by these baselines and highlight the generality of our method
in Table 1. Note that we only report from previous studies the
mechanism used for slate generation, which is the topic of this
study, and ignore other design choices.

SoftMax. In [3, 8], the authors reduce the combinatorial problem
of slate optimization to the simpler problem of item optimization:
the policy network output is a softmax layer over all items in the
collection, and items are sampled with replacement to form slates.
Doing so requires the mild assumption that the Q-value of the slate
can be linearly decomposed into item-specific Q-values (DQ). But
more importantly, it also requires two strong assumptions, namely
users can click on at most one item per slate (1CL) and the returns
of items in the same slate are mutually independent (MI). Together,
these assumptions are restrictive, because their conjunction means
that the click probability of an item in the slate does not depend
on the item itself. Indeed, having dependent click probabilities
(to enforce the single click) and independent items in the slate is
compatible only if click probabilities do not depend on items.
SlateQ. Ie et al. [18] propose a model-based approach in which
the click behavior of the user is given, and Q-learning [34] is used
to plan and approximate users’ dynamic preferences. On top of
the earlier DQ and 1CL, it requires access to the true relevance and
click model (CM), which is an unfair advantage compared to other
methods. For computational efficiency reasons, we adopt the faster
variant referred to as QL-TT-TS in the original paper.

Generative Slate Recommendation with Reinforcement Learning

TopK. Even though, to the best of our knowledge, no work has
proposed this approach, we include it in our set of baselines as
it is a natural way to deal with slate recommendation. The agent
takes continuous actions in the space of item embeddings, and we
generate slates by taking the k items from the collection with the
closest embeddings to the action, according to a similarity metric
(the dot-product in practice). This method therefore assumes the
availability of logged data of past interactions (LD), in order to
pre-train item embeddings. In our experiments, we evaluate two
variants of this baseline: TopK (MF), where item embeddings are
learned by matrix factorization [23], and TopK (ideal), which uses
ideal item embeddings, i.e., the embeddings used internally by the
simulator (see Section 5.1). The latter version clearly has an unfair
advantage. Also, because ranking items this way assumes that the
most rewarding items should appear on top, it makes the sequential
presentation (SP) assumption from [31] that the true click model
is top-down and fading, i.e., if ¢(i) indicates that item i has been
clicked and I < k is the position of i in slate a, then P(c(i)[s, a) =
P(c(i)ls, acy) < P(c(i)|s,d<i—1), where ag; = (il,..., =1) and
agioq = (i%,...,i720).

WXKNN. In [31], the authors propose a finer-grained and potentially
more capable variant of TopK referred to as Wolpertinger [12]: the
agent takes actions in the product-space of item embeddings over
slate slots, i.e., continuous actions of dimension k X d, where d is the
dimension of item embeddings. Then, for each slot in the slate, p
candidate items are selected by Euclidean distance with embeddings
of items from the collection, and every candidate item’s contribution
to the Q-value is evaluated in a greedy fashion. Besides LD and DQ,
WKNN requires two strong assumptions to ensure submodularity
of the Q-function: sequential presentation SP and execution is best
(EIB), i.e., recommendations that are risky on the short term are
never worth it. Formally, this translates as: P(R(s, w1 (s)) = 0) >
P(R(s,m2(s)) = 0) = V7™i(s) < V™(s) for any policies 1, m2.
Note that it partly defeats the purpose of long-term optimization.

In Table 1, we summarize the assumptions made by each baseline.
In comparison to prior work, our proposed framework has a single
assumption: the availability of logged data with slates and asso-
ciated clicks (LD), as Table 1 indicates. This assumption is by no
means restrictive as such logged data is readily available in common
industrial recommendation settings.

On top of these baselines, we also include a random policy and
a short-term oracle as reference points. The short-term oracle
has access to the true user and item embeddings, enabling it to
select the items with the highest relevance probability in each slate.
Therefore, at each turn of interaction, it gives an upper bound on
the immediate reward but it is unable to cope with boredom and
influence phenomena.

5 EXPERIMENTAL SETUP

5.1 Simulator

We design a simulator that allows us to observe the effect of lifting
the assumptions required by the baselines, and we experiment with
several simulator variants to ensure generalizability. We summarize
our main design choices below and refer the reader to our code

584

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

Table 1: Comparison of assumptions made by prior work. Our
method only requires access to logged interaction data.

1ICL DQ MI CM SP EIB LD
SoftMax [3,8] v "2 SR S { X
SlateQ [18] v AR S S X
WLKNN [31] X o X o x v v/
TopK X X X X v X v
GeMS (Ours) X X X x x Xx V/

available online? for a more detailed description.

Item and user embeddings. Following scenario (S), our simulator
includes 1, 000 items. We consider a cold-start situation where users
are generated on-the-fly for each new trajectory. Items and users are
randomly assigned embeddings of size 20, corresponding to ten 2-
dimensional topics: e = (el, el elo). Each 2-dimensional vector e!
is meant to capture the existence of subtopics within topic ¢. The em-
bedding of a user or item x is generated using the following process:
(i) sample topic propensities wk. ~ U (0, 1) and normalize such that
> wh = 1; (ii) sample topic-specific components €& ~ N(0,0.4-15)
and rescale as e}, = wi -min(|eL|, 1)); and (iii) normalize the embed-
ding ex = (el,. .., el) such that |lex|| = 1. Each item is associated
to a main topic, defined as t(i) = arg maxi<s<i0 ||elt||

To accomodate different types of content and platforms, we
derive two variants of item embeddings in the simulator: one with
embeddings obtained as described above, and one with embeddings
for which we square and re-normalize each component. In Section 6,
we highlight this difference in peakedness by referring to the former
as diffuse embeddings and the latter as focused embeddings.

Relevance computation. The relevance probability of item i for
user u is a monotonically increasing function of the dot-product
between their respective embeddings: rel(i, u) = o(e;” e,), where
o is a sigmoid function.

Boredom and influence effects. User embeddings can be affected
by two mechanisms: boredom and influence. Each item i clicked
by user u influences the user embedding in the next interaction
turn as: e, < wey + (1 — w)e;, where we set w = 0.9 in practice.
Additionally, if in the last 10 items clicked by user u five have the
same main topic 1Y, then u gets bored with this topic, meaning we
put e,ﬁb = 0 for 5 turns. These mechanisms have been defined to
penalize myopic behavior and encourage long-term strategies.

Click model. Users click on recommended items according to a
position-based model, i.e., the click probability is the product of
item-specific attractiveness and rank-specific examination probabil-
ities: P(cli,r) = A; X E,. Specifically, we define for an item located
atrank r: E, = ve" + (1 — v)ek*177 with ¢ = 0.85. It is a mixture of
the terms ¢” and e¥*1=7, which respectively capture the top-down
and bottom-up browsing behaviors. We use two variants of this
click model in our experiments: TopDown with v = 1.0 and Mixed
with v = 0.5. The attractiveness of an item is set to its relevance
in TopDown and Mixed. In addition, we consider a third variant
DivPen which also penalizes slates that lack diversity: A; is down-
weighted by a factor of 3 if more than 4 items from the slate have
the same main topic (as in Mixed, we also set v = 0.5 for DivPen).

In summary, our experiments are performed on 6 simulator variants

3https://maver/github/gems

https://naver/github/gems

WSDM °23, February 27-March 3, 2023, Singapore, Singapore Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, & Maarten de Rijke

Table 2: Average cumulative number of clicks on the test set for our 6 simulated environments. Bold: best method; underlined: 2*d-best method;
T statistically significantly better than all other methods. 95% confidence intervals are given in parentheses. Methods grouped under “Disclosed
env.” have access to privileged information about the environment and can therefore not be fairly compared with “Undisclosed env.” methods.

Focused item embeddings Diffuse item embeddings

Method TopDown Mixed DivPen TopDown Mixed DivPen

3 Short-term oracle 107.7 101.6 85.4 96.7 94.6 78.8

<% { SAC+TopK (ideal) 429.0 (£5.9) 384.1 (£13.5) 386.3 (x15.5) 373.9 (£25.0) 371.9 (£36.4) 341.3 (£55.3)
2 SlateQ 2065 (+4.1) 2027 (£3.4) 119.0 (£3.9) 209.5 (£5.4) 192.7 (£5.1) 117.8 (%5.8)
- Random 33.8 (£0.2) 33.9 (+0.2) 33.6 (£0.2) 33.3 (0.2) 33.2 (£0.2) 32.9 (£0.2)
2 REINFORCE+SoftMax ~ 248.1 (£19.3) 233.5 (+18.5) 249.1 (£11.6) 249.5 (£15.3) 214.7 (£25.0) 213.8 (£27.1)
3% { SAC+WKNN 98.5 (+8.9) 97.7 (£10.8) 955 (£9.9) 107.2 (+8.9) 89.8 (£7.4) 92.5 (£5.0)
E SAC+TopK (MF) 254.4 (£17.1) 2327 (£19.4) 242.2 (+15.4) 249.7 (£10.3) 184.1 (+1.3) 2314 (+13.3)

SAC+GeMS (Ours) 305.37(£21.9) 2426 (+21.5)

2541 (£27.7) 300.07(+42.8) 260.67(£27.2) 249.6 (+37.6)

defined by the choice of item embedding peakedness (diffuse item
embeddings or focused item embeddings) and the choice of click
model (TopDown, Mixed, or DivPen).

5.2 Implementation and evaluation details

Our implementation aims to be as standard as possible, considering
the literature on RL, in order to ensure reproducibility. All base-
lines are paired with SAC [15], except SlateQ which is based on
Q-Learning [34], and SoftMax, which we pair with REINFORCE [32]
because it requires a discrete action space and a discretized variant
of SAC led to lower performance in our experiments. We implement
all agents using two-layer neural networks as function approxima-
tors, and use target networks for Q-functions in Slate-Q and SAC.
For hyperparameters common to baselines and our method, we
first performed a grid search over likely regions of the space on
baselines, and re-used the selected values for our method. For all
methods we use the Adam optimizer with learning rates of 0.001
for Q-networks and 0.003 for policy networks when applicable, as
well as a discount factor y = 0.8 and a polyak averaging parameter
7 = 0.002. For the hyperparameters specific to our method (d,
and 1), we perform a grid search on the TopDown environment
with focused item embeddings and select the combination with
the highest validation return. This combination is then re-used
on all other environments. The searched ranges were defined as
d € {16,32}, f € {0.1,0.2,0.5,1.0,2.0} and A € {0.0,0.2,0.5,1.0}.
For methods making the (LD) assumption, we generated a dataset
of 100K user trajectories (with 100 interactions turns each) from an
e-greedy oracle policy with € = 0.5, i.e., each recommended item is
selected either uniformly randomly or by an oracle, with equal prob-
abilities. The VAE in GeMS is trained on this dataset for 10 epochs
with a batch size of 256 and a learning rate of 0.001. For approaches
requiring pre-trained item embeddings (TopK and WkNN), we learn
a simple matrix factorization model on the generated dataset by
considering as positive samples the pairs composed of the user in
the trajectory and each clicked item in their recommended slates.
In all of our experiments, we compare average cumulative re-
wards over 10 seeded runs, corresponding to ten initializations of
the agent’s parameters. In the case of GeMS, the seed also controls
the initialization of the VAE model during pre-training. We train
agents for 100K steps. Each step corresponds to a user trajectory,

585

composed of 100 interaction turns (i.e., 100 slates successively pre-
sented to the user) for a unique user. Every 1, 000 training steps, we
also evaluate the agents on 200 validation user trajectories. Finally,
the agents are tested by selecting the checkpoint with the highest
validation return and applying it on 500 test user trajectories. Con-
fidence intervals use Student’s t-distribution, and statistical tests
are Welch’s ¢-test. Both are based on a 95% confidence level.

6 RESULTS

In our experiments, we investigate the following research ques-
tions: (RQ1) How does our slate recommendation framework based
on GeMS compare to previous methods when the underlying as-
sumptions of the latter are lifted? (RQ2) Does the proposed GeMS
framework effectively balance immediate and future rewards to
avoid boredom? (RQ3) How do the balancing hyperparameters f
and A in GeMS impact the downstream RL performance?

6.1 Comparison of our method against
baselines (RQ1)

In this section, we compare the performance of our method and
baselines on a wide array of simulated environments, corresponding
to the six environments described in Section 5.1.

Overview of the results. Table 2 shows the average test return
(i.e., cumulated reward or cumulated number of clicks) after train-
ing on 100K user trajectories. We group methods into two cate-
gories: Disclosed env., i.e., methods leveraging hidden environment
information, and Undisclosed env., i.e., methods that consider the
environment as a black-box and are therefore practically applicable.
A first observation we can draw, regardless of the specific environ-
ment used, is that the short-term oracle is easily beaten by most
approaches. Indeed, the simulator penalizes short-sighted recom-
mendations that lead to boredom: in these environments, diversity
is required to reach higher returns. We can also observe the superi-
ority of SAC+TopK (Ideal). This is not surprising, as this method
benefits from an unfair advantage — access to true item embed-
dings — but it suggests that practically applicable methods could be
augmented with domain knowledge to improve their performance.
However, despite having access to privileged information, SlateQ’s
performance is subpar, especially in DivPen environments. Its lower
performance might be explained by its approximate optimization

Generative Slate Recommendation with Reinforcement Learning

average score ithreshold average

Number of
saturated topics
0 10
1
2 8

PDF
PDF

o

o)

0 0.1 02 0.3 04 0.1 02

Score

(a) Short-term oracle.

score

Score

(b) SAC+GeMS with y = 0.

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

ithreshold threshold | average score

Number of
saturated topics
0
1
2

Number of
saturated topics
0 14
1
2

PDF

03 0.4 0 0 0.1 0.2 03 0.4 0.5

Score

(c) SAC+GeMS with y = 0.8.

Figure 2: Distribution of the relevance scores of items recommended by (a) a short-term oracle, (b) SAC+GeMS with y = 0 and (c) SAC+GeMS
with y = 0.8. Boredom penalizes item scores and is visualized by orange areas. The myopic approaches (left, center) lead to more boredom than

the long-term approach (right), and therefore to lower average item scores (solid red lines).

strategy and restrictive single-click assumption.

Overall comparison of methods. The proposed SAC+GeMS com-
pares favorably to baselines across the range of environments we sim-
ulate. Out of the 6 tested environments, SAC+GeMS obtained the
best average results on all of them, among which 3 show a statisti-
cally significant improvement over all other methods. SAC+WkKNN
performs very poorly: we hypothesize that the approach suffers
from the curse of dimensionality due to the larger action space
(200 dimensions in our experiments) and the assumption made
by the approach that candidate items need to be close to target
item embeddings according to the Euclidean distance. SAC+TopK
(MF) is more competitive, but the large difference with SAC+TopK
(ideal) suggests that TopK is very sensitive to the quality of item
embeddings. Despite its very restrictive assumptions and lack of the-
oretical guarantees in our setup, REINFORCE+SoftMax was a very
competitive baseline overall. However, while its best checkpoint
had high return, its training was unstable and failed to converge in
our experiments, which suggests it may be unreliable.

Comparisons across environments. The TopDown environ-
ment is the easiest for most methods, regardless of the type of
item embeddings. This is not surprising as all methods besides
Random either assume a top-down click model, sample items in
a top-down fashion or rely on data from a top-down logging pol-
icy. However, it is worth noting that other factors can dominate
the performance, such as sub-optimality of item embeddings for
SAC+TopK (MF). Conversely, DivPen was harder for most methods,
because it requires a strong additional constraint to obtain high
returns: intra-slate diversity must be high. SAC+GeMS was also af-
fected by these dynamics, but remained able to beat other methods
by generating diverse slates. Finally, the use of diffused item embed-
dings does not appear to cause lower returns for GeMS, compared
with focused ones, but is associated with larger confidence intervals
for SAC+GeMS: indeed, pivot items spanning multiple topics are
more likely to be attractive, at the expense of more fine-grained
strategies, making the training process uncertain.

6.2 GeMS overcomes boredom to improve its
return (RQ2)

In Section 1 we highlighted that long-term optimization with RL
can penalize myopic behavior such as recommending only highly

586

relevant but similar items, which may lead to boredom. In this sec-
tion, we verify that SAC+GeMS is able to adapt its slate selection
to cope with boredom. We recall that in our simulated environ-
ments (detailed in Section 5.1), users get bored of a particular topic
whenever 5 of their latest 10 clicks were on items from that topic.
When a topic is saturated, its corresponding dimensions in the user
embedding are set to 0, which has the effect of diminishing the
attractiveness of future items presented to the user. It is therefore
necessary to avoid boredom in order to reach higher returns, even
if it comes at the cost of lower immediate rewards.

In this section, we compare three approaches on the TopDown
environment with focused item embeddings: (i) the short-term ora-
cle (STO) always maximizing the immediate reward, (ii) SAC+GeMS
with y = 0.8 (i.e., our proposed method) where y is the discount
factor of the RL algorithm, and (iii) SAC+GeMS with y = 0 which
does not explicitly include future rewards in its policy gradient.
In this environment, SAC+GeMSY=%-8 achieves an average test re-
turn of 305.3, while SAC+GeMSY=" reaches 194.3, and STO only
obtains 107.7. These results suggest that long-term optimization
is indeed required to reach higher returns. It may seem surprising
that SAC+GeMSY=0 gets better returns than STO, but its training
objective incentivizes average immediate rewards, which implicitly
encourages it to avoid low future rewards. However, adopting an
explicit mechanism to account for its causal effect on the user (i.e.,
setting y = 0.8) allows SAC+GeMS to improve its decision-making.

In Figure 2, we plot the distribution of item scores (i.e., the dot-
product between internal user and item embeddings as defined in
Section 5.1) for the items recommended in slates by each of the
three methods, with the same seed for all three plots. The dashed
vertical line shows the score threshold of 0.28 needed to reach a
relevance probability of 0.5. Therefore, items on the left of this
line have a lower click probability while items on the right have a
higher click probability. The color indicates how many topics were
saturated when the agent recommended that particular item whose
score is plotted: one can see that when the user is bored of at least
one topic, items become less attractive as scores are reduced.

When no topic is saturated (i.e., yellow distribution), STO rec-
ommends items with excellent scores (above the threshold and
up to 0.45): as a consequence, STO gets high immediate rewards.
However, by doing so it incurs a lot of boredom (large orange

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

325

300

~N
<
G

250

Latent dim
® 16
32

~N
N
a

~
=3
o

Cumulative number of clicks

-
S
a

-
I
o

0.0 0.2 0.5

beta

1.0

(a) Impact of 3 for A = 0.5.

Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, & Maarten de Rijke

300 4

N}
I
o

Latent dim
® 16
32

N
1S3
S

Cumulative number of clicks

—
@
o

100 -

0.0 0.2 0.5

lambda

(b) Impact of A for = 1.0.

Figure 3: Average cumulative number of clicks on the validation set obtained by SAC+GeMS with its best validation checkpoint, for different
values of f and A (defined in Section 3.3). We also display 95% confidence intervals.

areas). Overall, it leads to lower expected scores (solid red line)
and therefore fewer clicks. Conversely, SAC+GeMSY=0% sacrifices
some immediate reward (yellow distribution shifted to the left) but
causes very little boredom (small orange area). Overall, by trading
off relevance and diversity, SAC+GeMSY=08 yields good immediate
rewards while limiting boredom. It therefore gets higher average
scores. SAC+GeMSY=0 exhibits an intermediate behavior due to its
limited capabilities: it recommends items of varying relevance, yet
leads to substantial boredom (larger orange area than for y = 0.8).

6.3 Balancing hyperparameters f and 1 (RQ3)

In Section 3.3, we suggested that the choice of f and A leads to trade-
offs that may impact the downstream performance of SAC+GeMS.
As a reminder, §§ adjusts the importance of accurate reconstruction
versus smoothness and structure in the latent space (i.e., controlla-
bility), while A weights the click reconstruction with respect to the
slate reconstruction. Next, we verify our intuition on the importance
of these trade-offs by reporting (in Figure 3) the best validation
return obtained for different values of said hyperparameters, on
the TopDown environment with focused item embeddings.

Figure 3a suggests that, indeed, there exists a “sweet spot” in the
selection of f. It confirms the intuition described in Section 3.3 and
the observation of Liu et al. [25]: must be appropriately balanced
in order to ensure high performance on the downstream RL task.
Specifically, we found that choosing f = 1.0 leads to the highest
return overall, regardless of whether a latent dimension of 16 or 32
is used.

The impact on the downstream performance of the trade-off
between slate and click reconstruction (Figure 3b) is less prominent
but can still be observed. It justifies our choice to add the click
reconstruction term in the loss (Eq. 2), even though clicks output by
GeMS’ decoder are not used during RL training. This also confirms
the importance of introducing and adjusting the hyperparameter A:
modeling clicks jointly with slates improves the final performance of
SAC+GeMS, but properly weighting the click reconstruction objective
with respect to the slate reconstruction objective is necessary.

7 CONCLUSION

We have presented GeMS, a slate representation learning method
based on variational auto-encoders for slate recommendation with

587

reinforcement learning. This method has the notable advantage
of being flexible, allowing full-slate modeling and lightweight as-
sumptions, in contrast with existing approaches.

Findings and broader impact. Our experiments across a wide
array of environments demonstrate that GeMS compares favor-
ably against existing slate representation methods in practical set-
tings. Moreover, our empirical analysis highlights that it effectively
balances immediate and future rewards, and that the trade-offs
imposed by f and A significantly impact the RL downstream perfor-
mance, indicating that properly balancing these hyperparameters is
critical. Our work suggests that generative models are a promising
direction for representing rich actions such as slates.

Limitations. Our simulated experiments demonstrate the effec-
tiveness of GeMS for representing slates in an RL framework. How-
ever, it is well-known that online training of RL agents is too expen-
sive and risky, and that in practice agents must be trained offline, i.e.,
directly from logged data [8]. We did not address here the specific
challenges of offline RL, as we wished to isolate the contribution of
the slate representation to downstream performance.

Future work. In future work, we will investigate how generative
models can be leveraged in the offline setting, in different scenarios,
or with even richer actions. We also plan to look into improvements
of the architectures used for structured action representations, for
example by using domain knowledge and user models.

ACKNOWLEDGMENTS

This research was (partially) funded by the Hybrid Intelligence
Center, a 10-year program funded by the Dutch Ministry of Educa-
tion, Culture and Science through the Netherlands Organisation for
Scientific Research, https://hybrid-intelligence-centre.nl. All con-
tent represents the opinion of the authors, which is not necessarily
shared or endorsed by their respective employers and/or sponsors.

REFERENCES

[1] Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia
Lalmas. 2020. Algorithmic Effects on the Diversity of Consumption on Spotify.
In WWW °20. 2155-2165.

Susan Athey, Raj Chetty, Guido W Imbens, and Hyunseung Kang. 2019. The
Surrogate Index: Combining Short-Term Proxies to Estimate Long-Term Treatment
Effects More Rapidly and Precisely. Technical Report. National Bureau of Economic
Research.

[2]

https://hybrid-intelligence-centre.nl

Generative Slate Recommendation with Reinforcement Learning

=

[10

[11]

[12

[13

[14]

[15

[16]

(17

(18]

Xueying Bai, Jian Guan, and Hongning Wang. 2019. A Model-Based Rein-
forcement Learning with Adversarial Training for Online Recommendation.
In NeurIPS ’19. 10734-10745.

Eytan Bakshy, Solomon Messing, and Lada Adamic. 2015. Exposure to Ideo-
logically Diverse News and Opinion on Facebook. Science 348, 6239 (2015),
1130-1132.

Nicolo Botteghi, Mannes Poel, Beril Sirmagek, and Christoph Brune. 2021. Low-
Dimensional State and Action Representation Learning with MDP Homomor-
phism Metrics. arXiv:2107.01677 (2021).

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip
Thomas. 2019. Learning Action Representations for Reinforcement Learning. In
ICML ’19. 941-950.

Praveen Chandar, Brian St. Thomas, Lucas Maystre, Vijay Pappu, Roberto Sanchis-
Ojeda, Tiffany Wu, Ben Carterette, Mounia Lalmas, and Tony Jebara. 2022. Using
Survival Models to Estimate User Engagement in Online Experiments. In WWW
’22.3186-3195.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H. Chi. 2019. Top-K Off-Policy Correction for a REINFORCE Recommender
System. In WSDM ’19. 456—-464.

Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019.
Generative Adversarial User Model for Reinforcement Learning Based Recom-
mendation System. In ICML ’19. 1052-1061.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP ’14. 1724-1734.

Van Dang, Michael Bendersky, and W. Bruce Croft. 2013. Two-Stage Learning to
Rank for Information Retrieval. In ECIR ’13. 423-434.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris,
and Ben Coppin. 2015. Deep Reinforcement Learning in Large Discrete Action
Spaces. arXiv:1512.07679 (2015).

Seth R. Flaxman, Sharad Goel, and Justin M. Rao. 2016. Filter Bubbles, Echo
Chambers, and Online News Consumption. Public Opinion Quarterly 80, S1
(2016), 298-320.

David Ha and Jurgen Schmidhuber. 2018. Recurrent World Models Facilitate
Policy Evolution. In NeurIPS ’18. 2455-2467.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. In ICML ’18. 1856-1865.

Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre,
and Mounia Lalmas. 2021. Shifting Consumption towards Diverse Content on
Music Streaming Platforms. In WSDM °21. 238-246.

Henning Hohnhold, Deirdre O’Brien, and Diane Tang. 2015. Focusing on the
Long-Term: It’s Good for Users and Business. In KDD ’15. 1849-1858.

Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A Tractable

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

Decomposition for Reinforcement Learning with Recommendation Sets. In I7-
CAI ’19. 2592-2599.

Dietmar Jannach, Pearl Pu, Francesco Ricci, and Markus Zanker. 2021. Recom-
mender Systems: Past, Present, Future. AI Mag. 42, 3 (2021), 3-6.

Ray Jiang, Sven Gowal, Yugiu Qian, Timothy A. Mann, and Danilo J. Rezende.
2019. Beyond Greedy Ranking: Slate Optimization via List-CVAE. In ICLR ’19.
Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998.
Planning and Acting in Partially Observable Stochastic Domains. Artificial
Intelligence 101, 1 (1998), 99-134.

Diederik Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR ’14.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30-37.

Solomon Kullback and Richard A. Leibler. 1951. On Information and Sufficiency.
The Annals of Mathematical Statistics 22, 1 (1951), 79-86.

Shuchang Liu, Fei Sun, Yinggiang Ge, Changhua Pei, and Yongfeng Zhang. 2021.
Variation Control and Evaluation for Generative Slate Recommendations. In
WWW °21. 436-448.

Farzan Masrour, Tyler Wilson, Heng Yan, Pang-Ning Tan, and Abdol-Hossein
Esfahanian. 2020. Bursting the Filter Bubble: Fairness-Aware Network Link
Prediction. In AAAT "20. 841-848.

James McInerney, Brian Brost, Praveen Chandar, Rishabh Mehrotra, and Benjamin
Carterette. 2020. Counterfactual Evaluation of Slate Recommendations with
Sequential Reward Interactions. In KDD ’20. 1779-1788.

Eli Pariser. 2011. The Filter Bubble: What the Internet Is Hiding from You. The
Penguin Press.

Wilbert Samuel Rossi, Jan Willem Polderman, and Paolo Frasca. 2021. The Closed
Loop between Opinion Formation and Personalised Recommendations. IEEE
Transactions on Control of Network Systems (2021).

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. 2021. Decoupling

Representation Learning from Reinforcement Learning. In ICML °21. 9870-9879.
Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin,

and Ben Coppin. 2015. Deep Reinforcement Learning with Attention for
Slate Markov Decision Processes with High-Dimensional States and Actions.
arXiv:1512.01124 (2015).

Richard Sutton and Andrew Barto. 2018. Reinforcement Learning: An Introduction.
MIT Press, 326—-329.

Isaac Waller and Ashton Anderson. 2019. Generalists and Specialists: Using
Community Embeddings to Quantify Activity Diversity in Online Platforms. In
WWW ’19. 1954-1964.

Christopher Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8
(1992), 279-292.

Wenxuan Zhou, Sujay Bajracharya, and David Held. 2020. PLAS: Latent Action
Space for Offline Reinforcement Learning. In CoRL ’20. 1719-1735.

Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement Learning to Optimize Long-Term User Engagement in
Recommender Systems. In KDD °19. 2810-2818.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Notations and problem definition
	3.2 Overview of the framework
	3.3 Generative Modeling of Slates (GeMS)
	3.4 RL agent and belief encoder

	4 Baselines and their assumptions
	5 Experimental Setup
	5.1 Simulator
	5.2 Implementation and evaluation details

	6 Results
	6.1 Comparison of our method against baselines (RQ1)
	6.2 GeMS overcomes boredom to improve its return (RQ2)
	6.3 Balancing hyperparameters and (RQ3)

	7 Conclusion
	Acknowledgments
	References

