
SARDINE: A Simulator for Automated Recommendation in Dynamic

and Interactive Environments

ROMAIN DEFFAYET, Naver Labs Europe, Meylan, France and University of Amsterdam, Amsterdam, Nether-

lands

THIBAUT THONET, Naver Labs Europe, Meylan, France

DONGYOON HWANG, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

VASSILISSA LEHOUX, Naver Labs Europe, Meylan, France

JEAN-MICHEL RENDERS, Naver Labs Europe, Meylan, France

MAARTEN DE RIJKE, University of Amsterdam, Amsterdam, The Netherlands

Simulators can provide valuable insights for researchers and practitioners who wish to improve recommender systems,

because they allow one to easily tweak the experimental setup in which recommender systems operate, and as a result lower

the cost of identifying general trends and uncovering novel indings about the candidate methods. A key requirement to

enable this accelerated improvement cycle is that the simulator is able to span the various sources of complexity that can be

found in the real recommendation environment that it simulates.

With the emergence of interactive and data-driven methods ś e.g., reinforcement learning or online and counterfactual

learning-to-rank ś that aim to achieve user-related goals beyond the traditional accuracy-centric objectives, adequate

simulators are needed. In particular, such simulators must model the various mechanisms that render the recommendation

environment dynamic and interactive, e.g., the efect of recommendations on the user or the efect of biased data on subsequent

iterations of the recommender system. We therefore propose SARDINE, a lexible and interpretable recommendation simulator

that can help accelerate research in interactive and data-driven recommender systems. We demonstrate its usefulness by

studying existing methods within nine diverse environments derived from SARDINE, and even uncover novel insights about

them.

CCS Concepts: · Information systems→ Recommender systems.

Additional Key Words and Phrases: Interactive recommender systems, Simulator, Reinforcement learning

1 INTRODUCTION

Recommender systems must match users and items based on item content and user preferences, so as to provide
users with content that fulills a consumption need or carries relevant information given user preferences [35]. In
other words, they need to learn the semantic information [45] that explains why a certain user is attracted to a
certain item, usually by leveraging user features, item content or logged interactions. However, by restricting
the scope of recommender systems to a static semantic matching task one would ignore a crucial part of the
recommendation task: converting semantic understanding of users and items into increased value for the user, as

Authors’ addresses: Romain Defayet, Naver Labs Europe, Meylan, France, IRLab and University of Amsterdam, Amsterdam, Netherlands,

romain.defayet@naverlabs.com; Thibaut Thonet, Naver Labs Europe, Meylan, Auvergne-Rhône-Alpes, France, thibaut.thonet@naverlabs.com;

Dongyoon Hwang, Korea Advanced Institute of Science and Technology, Daejeon, South Korea, godnpeter@kaist.ac.kr; Vassilissa Lehoux,

Naver Labs Europe, Meylan, Auvergne-Rhône-Alpes, France, vassilissa.lehoux@naverlabs.com; Jean-Michel Renders, Naver Labs Europe,

Meylan, Auvergne-Rhône-Alpes, France, jean-michel.renders@naverlabs.com; Maarten de Rijke, University of Amsterdam, Amsterdam, The

Netherlands, m.derijke@uva.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2770-6699/2024/4-ART

https://doi.org/10.1145/3656481

ACM Trans. Recomm. Syst.

HTTPS://ORCID.ORG/0000-0001-8265-9092
HTTPS://ORCID.ORG/0000-0003-0302-0376
HTTPS://ORCID.ORG/0009-0003-6471-5208
HTTPS://ORCID.ORG/0000-0002-6512-283X
HTTPS://ORCID.ORG/0000-0002-7516-3707
HTTPS://ORCID.ORG/0000-0002-1086-0202
https://orcid.org/0000-0001-8265-9092
https://orcid.org/0000-0003-0302-0376
https://orcid.org/0009-0003-6471-5208
https://orcid.org/0000-0002-6512-283X
https://orcid.org/0000-0002-7516-3707
https://orcid.org/0000-0002-1086-0202
https://doi.org/10.1145/3656481
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656481&domain=pdf&date_stamp=2024-04-08

2 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

well as for content providers and other potential stakeholders. Such value may be measured by, e.g., click-through
rate, user satisfaction, retention rate, or fairness metrics.

This concern has led to the emergence of methods that consider beyond-accuracy goals [22, 33] and that often
view recommendation as a dynamic and interactive task [15]. First, recommender systems are often trained from
user interaction data, either in an online [47] or oline [13] fashion. As a result, recommender systems must learn
to deal with noisy user feedback [53], limited knowledge about new users in the cold start scenario [26], as well
as potential biases in user behavior that may impact the training data [13]. Second, the items consumed by a user
may have an efect on the user state [2, 11, 12]. They could alter user preferences ś by developing a user’s interest
in a topic, by educating users about a topic in a way that encourages them to explore more advanced content, or
by changing their perspective on other items, for instance by sparking their interest or instead by reducing it.
Items could also temporarily afect user behaviors, for instance by causing boredom, which subsequently reduces
user interest and engagement in the platform [2]. Third, exogenous factors may change the value of items and
the preferences of users, yielding an ever-changing dynamic environment [19].

1.1 The role of simulators in recommender systems research

In order to account for the dynamic and interactive aspects of recommendation, various approaches have been
proposed, including contextual bandits [1, 28], reinforcement learning (RL) [5, 11, 12], active learning [40],
counterfactual learning-to-rank [13, 24], and click modeling [6, 8, 9]. These approaches are trained from user
data, and it has been shown that they should not be evaluated solely on accuracy-centric benchmarks [10, 22, 48]
as these miss the potential beneits brought by beyond-accuracy methods.
While online evaluation [44, 55] remains a gold standard ś when done right [23] ś to evaluate the impact of

recommendation models on user-related metrics, most researchers do not have access to a live recommendation
system. Moreover, the potential degradation in user satisfaction and revenue induced by online experiments may
limit the possibility to conduct such an evaluation, especially in a research setting where many experiments are
needed to improve on the current version of the recommender system.

In that case, prior work [10, 25, 49] has advised to either resort to of-policy evaluation (OPE), which consists in
evaluating the target system using data collected with the original system, or otherwise to conduct experiments in
a simulated environment. Simulators are by deinition synthetic, at least partially, and good performance obtained
in a simulator is therefore no guarantee of success in the live system. However, their value lies in the ability to
control relevant parameters in a way that spans the potential dynamics encountered in the real environment.
Indeed, tweaking parameters and observing their efect on candidate methods allows one to identify general
trends and study important research topics: regimes of success and failure (e.g., low data, high bias), robustness
to environment features that may be observed in the real world (e.g., noise, distribution shifts), generalizability of
the results, etc.
In that sense, simulated evaluation can even be less opaque than OPE and online evaluation, as observing

variables that are normally not accessible to the practitioner can help better interpret the observed performance
of the candidate systems. In order to deliver these beneits, we argue that simulators should be:

(1) Conigurable in a way that is easily interpretable to the practitioner,
(2) Able to span a large part of the various forms of complex behavior commonly found in the real environment.

In practice, we draw up a list of speciications that we use as a goalpost for designing our simulator:

Speciications 1.1 ś Our simulator should satisfy the following requirements:

• Comprehensiveness: Most of the important research questions for interactive recommender systems can
be studied in one core simulated engine;

• Interpretability: One or a few well-deined parameters can control a speciic aspect of interest in recom-
mender system research, i.e., the simulator should be interpretable and controllable;

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 3

• Efect isolation: The efect of individual parameters or individual algorithmic modules can be singled out,
so as to allow the focused study of one aspect of the environment (e.g., noise, user drift, etc.) or one part of
the method (e.g., user and item representation, decision-making module, etc.);

• Non-triviality: The simulated task should not be trivially solved by of-the-shelf baselines; and
• Conigurability: Additions and changes to the existing simulator should be easy enough to enable deeper
studies or new research questions.

In order to fulill the speciications, and before engaging with simulator design, we must deine the scope of
the research we wish to enable with such a simulator. We therefore deine the research agenda our simulator
addresses in the next section.

1.2 A research agenda for interactive recommender systems

We identify four overarching research topics (RTs) that we believe to be crucial for interactive recommender
systems (RSs) research, and that can be studied in our simulator. We also connect them to variants of our simulator
that are particularly well-suited to study them:

(RT1) How to enable multi-step reasoning and control user-related metrics in the long run? In a dynamic
and interactive environment, shifting dynamics and delayed consequences of actions prompt RS designers
to adopt a control paradigm, where target variables such as user satisfaction, revenue, or fairness-related
variables must be optimized and kept at a desired value in the long run. This requires multi-step reasoning,
i.e., thinking ahead of time about future consequences of recommendations formulated at the present
time. Many approaches have been proposed to tackle multi-step reasoning, notably with reinforcement
learning [5, 11, 12, 54].This research topic can be studied thanks to the interactive environments we release,
i.e., SingleItem-Bored, SlateTopK-Bored, SlateTopK-BoredInf, SlateTopK, SlateTopK-Uncertain,
SlateRerank-Bored.

(RT2) How to learn from biased data? As online learning is often not possible in a large commercial platform,
it is common to resort to oline or of-policy learning, by irst collecting data in the live environment,
and then learning from this data. However, multiple biases arise in the logged data. Due to selection bias,
the distribution of items observed in the data is highly imbalanced, including many items that are never
or almost never shown to certain users. Additionally, even when feedback is observed, biases in user
behavior favor certain items above others, e.g., due to position bias. As a result, training models that do not
account for these biases leads to the unfair promotion of already well-exposed items. Learning from data
despite these biases is a very active area in information retrieval research, with techniques such as oline
reinforcement learning [5, 12, 54], counterfactual learning-to-rank [13, 24], or click modeling [6, 9]. All of
our simulated environments can be used for of-policy training, but we notably study this research topic
with our SlateRerank-Static and SlateRerank-Bored environments.

(RT3) How to make sure that interactive recommender systems are robust to uncertainties of the real-

world? Recommender systems must operate under large amounts of uncertainty coming from multiple
sources: in the user feedback and in their evolution after consuming items (e.g., varying mood and personal
traits, light scanning of the results), about exogenous factors inluencing user behavior and item value
(e.g., world events, current context when accessing the platform), about user preferences (e.g., cold start,
changing users) and in the policy itself (e.g., business rules, stochastic amortization). Large amounts of
uncertainty may hurt the performance of recommender systems and yield disappointing results during the
deployment of these models, which has prompted the development of uncertainty-aware methods [26, 37].
Our SlateTopK-Uncertain, SlateTopK-PartialObs and SingleItem-PartialObs allow to study such
uncertainties.

(RT4) How to efectively and eiciently recommend slates (e.g., lists or grids) of items to users? The

ACM Trans. Recomm. Syst.

4 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

interface of many recommendation platforms requires showing multiple recommendations to users on
the same page. This comes with additional challenges as diferent combinations of items may lead to
diferent short and long-term outcomes. The problem thus becomes combinatorial in nature, which makes
the task intractable for most applications. The existing literature discusses slate-speciic methods for both
training and evaluation of slate recommendation policies [5, 20, 49], including methods that improve on
the eiciency of slate recommender systems [36, 42]. It is possible to train slate recommender systems on
all our SlateTopK and SlateRerank environments.

1.3 Our contributions

Our contributions can be summarized as follows:

• We introduce a simulator for automated recommendation in dynamic and interactive environments
(SARDINE), which can be used as a lexible core engine for multiple types of simulated experiments
in recommender systems research, allowing quicker iterations towards studying, among others, the re-
search topics (RT1ś4) mentioned in Section 1.2, i.e., multi-step reasoning, biased data, uncertain dynamics,
and slate recommendation.

• We additionally provide nine diferent environments derived from this simulator, in the form of gymna-
sium [50] environments, that are already tailored for studying important aspects of recommendation in
dynamic and interactive settings.1

• We conduct experiments on the nine proposed environments, in order to (i) better describe the main
dynamics of the simulator, (ii) provide a testbed for some existing approaches and baselines, and (iii) uncover
some novel indings about existing approaches, thereby restating the value of our simulator for efective
recommender system research.2

Furthermore, we now summarize the expected beneits of releasing our simulator. Indeed, we seek to help
accelerate future research, by: (i) providing a playground for researchers to create and test prototypes and
therefore iterate more quickly; (ii) enabling quickly building experimental set-ups in order to gain knowledge
on speciic research questions related to the topics RT1ś4 we describe in the paper; and (iii) providing a set of
not-yet-solved simulated tasks that trace a path towards progress in recommender systems research (e.g., as Atari
games or Go have been for multi-step visual control).

In contrast, we have no intention to: (i) create a realistic simulator of the human mind ś besides clearly being
an unattainable goal, we argue that it is not necessary to gain perfect knowledge of the actual underlying user
model to efectively optimize the target variables (e.g., user engagement). Instead, we propose to study the
adaptability and robustness of recommendation agents, with the help of a large array of diferent simulated
settings. (ii) Provide guarantees of live performance. Simulators, whether they are fully- or semi-synthetic, cannot
provide guarantees of performance in the live recommender system. They are nonetheless valuable for making
progress in recommender systems research, e.g., by studying the robustness of agents and the edge cases where
they might struggle, by quickly iterating on simulated tasks that robust recommenders should be able to solve,
or even by detecting poorly robust methods before conducting A/B testing in a live system and potentially
negatively impacting real users. And (iii) replace oline evaluation on traditional metrics. While a set of diverse
simulated experiments ofers a unique perspective on the inner workings of recommender systems, simulations
must always be complemented with oline and online real-world experiments in order to build a well-rounded
assessment of the progress in recommender systems research.

The remainder of the paper is organized as follows. We formally deine the recommendation problem of interest
in Section 2. We then describe the technical details of the SARDINE simulator in Section 3. Section 4 covers the

1The core simulator as well as the proposed environments can be found at https://github.com/naver/sardine.
2Our experiments are open-source and can be found at https://github.com/RomDefayet/SARDINE_Experiments.

ACM Trans. Recomm. Syst.

https://github.com/naver/sardine
https://github.com/RomDeffayet/SARDINE_Experiments

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 5

details about our experimental setup, which includes the description of the SARDINE environments tested in
our experiments as well as the compared approaches. The experiment results are presented and discussed in
Section 5. Finally, we compare our proposed SARDINE to existing recommendation simulators in Section 6, and
conclude the paper in Section 7.

2 PROBLEM DEFINITION

The problem studied in this paper can be deined as slate recommendation3 in a dynamic environment. In this
scenario, we consider that a user interacts with a recommender system over a session of � steps. In each step, the
recommender system presents a slate containing � items from a predeined set I of cardinal �I to the user. Based
on the ainity between the recommended items and the user preferences, the user decides to click on some or
none of the slate items. Information about the interaction and the current user state is then returned to the agent
and, based on this, the recommender determines the next slate to recommend. This process can be formulated as
a Markov decision process (MDP) M = (S,A, �, �) deined as follows:

• A set of states � ∈ S, which represent the user state and summarize information about the past interactions.
• A set of actions � ∈ A corresponding to the possible slates presented by the recommender to the user. This

set covers all slates combining items from I, so that |A| =
�I !

(�I−�)!
for a slate of size � .

• A set of transition probabilities � : S ×A ×S → [0, 1], which deine the dynamics in the process, i.e., how
likely a state �′ ∈ S is if the recommender takes action � ∈ A in state � ∈ S.

• A (potentially stochastic) reward function � : S × A → R, which we deine as the sum of clicks over the
recommended slate.

We also deine a possibly stochastic policy � : S × A → [0, 1] whose role is to decide what slate � the
recommender system should return in a given state � . A trajectory � is deined as the set of successive states, actions
and rewards collected in a session of interactions between a user and a recommender. We denote as � ∼ � the fact
that trajectory � is generated by following the actions provided by policy � . The problem of slate recommendation
in a dynamic environment can then be summarized as identifying a policy �∗ that maximizes the cumulated
reward (also known as return) in expectation over possible trajectories, i.e., �∗ ∈ argmax� E�∼�

[
∑

(�,�) ∈� �(�, �)
]

.
In this paper, we introduce a simulator that instantiates the MDP described above to provide a testbed for

developping recommendation policies and studying their characteristics in various settings. The proposed
simulator is further described in Section 3.

3 SIMULATOR

In this section, we detail the components of our proposed simulator for automated recommendation in dynamic
and interactive environments, or SARDINE in short. In SARDINE, we consider a cold-start scenario where each
new session corresponds to a new user, generated on-the-ly. This means that we assume no prior knowledge
on user proiles before a session starts and that the agent must do some exploration to discover user interests.
This design choice is realistic for many recommendation platforms, e.g., when a single device or proile regroups
several users ś who exhibit diverse preferences over diferent sessions ś or when the platform does not track a
user ID for privacy reasons [16].

First, our simulator is initialized by forming synthetic embeddings for the set of recommendable items (Section
3.1). Then, each user session is generated by following these successive steps:

(1) Sample a user embedding for the current session’s user (Section 3.1);
(2) Provide an initial recommendation (Section 3.2) or prompt the agent to recommend a slate to the user;

3We consider that single-item recommendation is just a special case of slate recommendation with a slate of size one. Therefore our problem

formulation also covers this case.

ACM Trans. Recomm. Syst.

6 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

SARDINE
environment

slate

reward,
obs

Item
embedding

matrix

Apply boredom &
influence effects

slate item
embeddingsFetch slate

item embeddings

Session-specific
user embedding

Compute item
relevance scores

Sample
slate clicks

relevance
scores

Click model

clicks

updated user
embedding

Recommendation
agent

Fig. 1. Diagram summarizing the diferent components of the proposed SARDINE simulator, and its interaction with the

recommendation agent.

(3) Compute the relevance of the items in the slate with respect to the user and sample the clicks on the slate
based on items’ relevance and rank (Section 3.3);

(4) Update the user embedding to account for the efects of boredom and clicked item inluence, if those
mechanisms are included in the simulator (Section 3.4);

(5) Repeat steps (2) to (4) until the number of interaction steps reaches the session length �.

We deine both a fully observable variant and a partially observable variant for SARDINE, whose diferences
are detailed in Section 3.5. Moreover, we use the main engine described in this section with diferent sets of
hyperparameters so as to create nine diferent environments with various characteristics, and targeting various
research outcomes. We introduce these environments in Section 4.1.

Fig. 1 illustrates the diferent components of our simulator and its interactions with the recommendation agent.
In Table 1 we additionally provide a description for the hyperparameters of the simulator, which are further
deined in the remainder of this section.

3.1 Item and user embeddings

Items and users are assigned randomly-generated sparse embeddings of size �T = |T |, where T is the set of
topics associated to items and users (deined below). The sparsity enforces a coverage of only a limited number
of topics per item and user. The generative process to deine the embedding4 for each item � in the set of items I
is the following:

(1) Sample the item embedding components from a uniform distribution over [0, 1]: e� = (e�,1, . . . , e�,�T
) ∈ R

�T

with e�, � ∼ Unif([0, 1]);

4To distinguish the item embeddings used in the simulator from the item embeddings that may be learned by an agent, we refer to the former

as ideal item embeddings when disambiguation is needed.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 7

Table 1. List of the hyperparameters used in the proposed SARDINE simulator, with their description.

Hyperparameter Description

� Session length (in time steps).
� Slate size (in number of items).
�I Number of items.
�T Number of topics (and user/item embedding dimension).
� Scale hyperparameter for the relevance function.
� Shift hyperparameter for the relevance function.
� Range hyperparameter for item attractiveness.
� Click propensity for examination probability.
�b Number of items considered for boredom computation.
�b Click recency (in time steps) for boredom computation.
�b Threshold on topic occurrence for boredom computation.
� Weight controlling the inluence of clicked items on user.
O Hyperparameter indicating full or partial state observability.

(2) Sample a number of topics associated to the item (i.e., the number of non-zero components to retain in e�)
equal to either 2 or 3: �T� ∼ Unif({2, 3});

(3) Sample the �T� topics associated to the item from the topic set T : T� = {��,1, . . . ,��,�T�
} ⊂ T with ��, � ∼

Unif(T) without replacement;
(4) Zero out the components of the item embedding that correspond to non-selected topics (i.e., outside of T�):

e�, � := 0 if � ∈ T \ T� ;
(5) Normalize the components to have an embedding with unitary Euclidean norm: e� :=

e�

∥e� ∥2
.

We denote the main topic of item � as� ∗
� which corresponds to the dominating component in the item embedding

e� , i.e., �
∗
� = argmax�∈T e�, � .

The process to generate a user embedding e� for each new session is similar to that of generating an item
embedding, with the diference that we allow a user embedding to cover 3, 4, or 5 topics instead of 2 or 3 for
items. The rationale for this choice is that a user may be interested in a broad selection of topics whereas an item
usually spans a more narrow set of topics (e.g., the number of movie genres a user likes vs. the number of genres
a movie belongs to).

3.2 Initial recommendation

The irst recommendation the user receives at the beginning of a session is independent of the agent and done
directly in the simulator. Given our cold-start setting, i.e., we have no prior knowledge of the user proile, we wish
to start the session by probing the preferences of the user. For that purpose, our initial recommendation is simply
a slate containing random items. In a real-life scenario, other alternatives could be considered, e.g., by exploiting
the popularity of items [3], prior user proile [4] as well as user metadata [31]. We leave the investigation of
alternative initial recommendations for future work.

3.3 Relevance computation & click model

In this section, we describe how relevance, i.e., the matching score, is computed for a (user, item) pair. Then we
detail how this relevance score is used to sample the clicks and skips on a slate recommended to the user.

ACM Trans. Recomm. Syst.

8 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Relevance score. The relevance of items presented to a user is calculated based on the dot-product between the
item embedding and the user embedding:

rel(�, �) = e
�
� e� . (1)

Item attractiveness. To the relevance score we then apply a sigmoid function that is rescaled and shifted to
account for the range of values and the desired level of saturation for the function, resulting in an attractiveness
score. Compared to the relevance score, the attractiveness of an item relects click behavior speciied by the
hyperparameters of the sigmoid; their role is explained below. Formally, the attractiveness of item � for user � is
deined as follows:

��,� = � · � (rel(�, �)) where � (�) =
1

1 + exp(−�(� − �))
. (2)

The hyperparameter � is introduced to adjust the range of the attractiveness score. The shift hyperparameter �
ensures that the function outputs a value close to 1 for a highly matching (user, item) pair, and close to 0 for an
item totally unrelated to the user. The scale hyperparameter � controls how steep the sigmoid will be (i.e., how
easily the output of the function saturates to 0 or 1). This latter hyperparameter plays a key role for the level of
uncertainty in the simulator. Indeed, a lower value of � implies that the sigmoid � will be less steep, leading to
smaller diferences in attractiveness (and, in turn, in click probabilities as detailed below) between relevant and
irrelevant items. In other words, the user feedback is more uncertain when � is low.
In practice, we set the values of � and � using the following rules:

(1) A random recommendation policy should almost always propose irrelevant items, i.e., such that � (e�
�
e�)

is generally close to 0 for a randomly selected item �;
(2) An oracle recommendation policy should always propose relevant items, i.e., such that � (e�

�
e�) is close to

1 for the few top items � that best match user �;
(3) A bored5 user cannot be satisied most of the time, even by an oracle recommendation policy, i.e., when

user � is in a bored state, � (e�
�
e�) is much smaller than 1 even for the few top items � that best match �.

Click model. After the attractiveness score for a (user, recommended item) pair has been computed for each
item of the slate, the simulator has to decide if this pair leads to a click or not. For that purpose, we consider a
position-based click model, i.e., the probability of click is deined by the product of item-speciic attractiveness
and rank-speciic examination probability. More complex click models could be considered and added to the
simulator, but we do not wish to provide a catalog of all existing models. Instead, we want to show that the
impact of biased data in general is visible in our simulator, taking the position-based model as an example.
Formally, this click probability is expressed as P(� | �, �, �) = ��,� × �� for an item � positioned at rank

� ∈ {1, . . . , �} in the slate, with � the slate size. ��,� is the attractiveness of item � for user � deined in Eq. 2 and
�� is the probability that the user examines the items in the slate down to rank � . By default, the examination
probability is set to �� = ��−1, where the hyperparameter � deines the rate of decay of the examination probability.
The click (or skip) from user � on item � at rank � in the slate is then sampled from the Bernoulli distribution
Bern(��,� × ��).

3.4 Boredom and influence mechanisms

Our SARDINE simulator introduces two long-term mechanisms in the recommendation, which penalize myopic
strategies and thus require the agent to consider the consequences of its actions several steps after taking them.
The rationale for this choice is to be able to generate benchmarks where reinforcement learning-based agents
are a better choice than bandit approaches, which would otherwise be more suitable for a greedy sequential
recommendation task as shown in [27]. This goal is motivated by empirical evidence of the limits of greedy
methods with respect to, e.g., diversity, and thus their detrimental impact on long-term metrics such as churn

5The notion of boredom introduced in this simulator is further detailed in Section 3.4.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 9

rate [2, 12, 34]. The irst mechanism we deine is referred to as boredom and intuitively relects the fact that a
user may become less interested in consuming content (i.e., clicking on items) when the items recommended
in successive slates are too similar, similarly to [11, 12]. The second mechanism we consider is the inluence of
the clicked items on the future user behavior: when a user consumes an item, this may shift the user’s interest
towards the item’s topics, as in [e.g., 7]. These two mechanisms are described in more detail below.

Boredom. To determine if a user � gets bored during a session, we consider the items clicked in the last �b time
steps. If there are more than �b such items, we keep only the �b most recently clicked items and we record a list
of their main topics. Then, if a topic � ∈ T occurs more than a threshold of �b ≤ �b times in this list, we consider
that the user � is bored with respect to topic � . We deine two boredom variants that specify the impact on
the bored user’s behavior: temporary loss-of-interest boredom and churn-and-return boredom. For the temporary
loss-of-interest boredom, the user � who is bored with respect to topic � has their user embedding component
e�,� set to 0 (i.e., this simulates a loss of interest for topic �) for �b time steps. After this period, we consider that
the boredom efect has timed out and the user may be willing to click again on items with main topic � , so the
component e�,� is restored to its previous value. The churn-and-return boredom operates in a similar fashion
with the diference that all components of e� are set to 0 until the boredom efect times out: this simulates the fact
that the user churns the platform (as an all-zero user embedding implies an absence of clicks in our simulator)
and then returns after �b time steps.

Clicked item inluence. At each interaction step, the user � is recommended a slate and potentially clicks on
some of this slate’s items. We denote as I� this set of clicked items. We transcribe the inluence of clicked items
on �’s future behavior by updating the user embedding e� as a weighted average of the previous user embedding
and the mean of the clicked item embeddings: e� := � e� + (1 − �) 1

| I� |

∑

�∈I� e� , where � is a hyperparameter

controlling the amount of inluence clicked items have on the user. Intuitively, the inluence mechanism causes a
drift in user interests and thus makes the recommendation process more dynamic.

3.5 Full observability vs partial observability

Our SARDINE simulator can be used in two modes: either with full state observability or with partial state
observability, which is recorded in the hyperparameter O. The former simulates a Markov decision process (MDP)
setting while the latter deines a partially observable Markov decision process (POMDP) setting. In this section,
we deine the state/observation used in these two cases.

Full observability. In the full observability case, agents have access to the entire information about the user
state. Here, the state fed to the agent is deined as the concatenation of 3 vectors:

• The current user embedding, i.e., e� , which corresponds to the user embedding at the current time step and
thus includes the efects of boredom and inluence (if those mechanisms are included in the simulator).
Size: �T .

• A histogram indicating the number of times each topic was the main topic of an item among the �� last
clicked items in the most recent �� time steps. The histogram is normalized by dividing click numbers by
the threshold �� and by clipping between 0 and 1. Size: �T .

• A vector indicating the boredom timeout duration (in number of steps) left for each topic. If a topic is not
in a bored state for the user, then its default timeout duration is �� . For topics that triggered boredom in
previous steps and whose boredom is still ongoing, the duration will be between 0 and �� (excluded). This
vector is also normalized between 0 and 1 by dividing it by �� . Size: �T .

In the state, the current user embedding is used to keep track of the dynamic user preferences, while the histogram
and timeout vectors maintain the information about recent item consumption and boredom. The current item
embeddings ś which represent the actual preferences of a user at a given time ś are normally not available in
a real-life recommendation scenario. However, studying this fully observable setting enables the practitioner

ACM Trans. Recomm. Syst.

10 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

to single out the impact of the recommendation algorithm, contrarily to the partially observable setting which
compounds the efects of algorithm efectiveness and user embedding estimation quality. As we will show in
our experiments (Sections 4 and 5), the fully observable case already leads to challenging environments which
justiies our choice to include this less realistic scenario.

Partial observability. For the partial observability setting, the agent cannot access the inner workings of the
simulator and is only provided a set of observations about the last interaction. The observation returned to the
agent is the concatenation of 3 vectors:

• The slate that was recommended by the agent, with the item ID for each slot. Size: � .
• The clicks that the user did on the recommended slate, with 1 or 0 at each slot to indicate a click or a skip,
respectively. Size: � .

• The histogram of recent clicked topics, as in the fully observable case. It is realistic to consider this
information accessible to the agent as item categories in recommender systems are generally public. Size:
�T .

Based on these 3 pieces of information, the agent is able to identify which recommended items led to a click
and exploit recently clicked topics to better infer user preferences. However, they are not enough to perfectly
determine the user state and the agent may need to incorporate the history of observations in the same session
in order to improve its estimation of the user state (which is usually done through state encoders).

4 EXPERIMENTAL SETUP

Now that we have detailed the main components of our simulator in the previous section, we can describe
some of its possible instantiations for conducting experiments related to the research agenda of Section 1.2. This
section therefore aims (i) to provide guidance for the usage of the simulator, (ii) to deine a testbed for studying
existing methods along the research topics deined in Section 1.2, and (iii) to demonstrate the simulator’s utility
for recommendation research by uncovering some novel insights about these methods.

First, Section 4.1 introduces nine recommendation environments instantiated from our simulator, that we use in
our experiments. Then, Section 4.2 describes the recommendation agents we seek to compare on the environments.
Finally, Section 4.3 summarizes the simulator hyperparameters adopted by the diferent environments, as well as
the agent hyperparameters used in our experiments.

4.1 Simulated environments

To demonstrate possible use cases enabled by SARDINE, we deined nine diferent environments ś each being
a variant of our simulator. The characteristics of these nine environments are detailed in Table 2. They are
characterized along six dimensions, which are directly linked to the research topics deined in Section 1.2:

(1) The type of recommendation made to the user: single-item recommendation (corresponding to the case
where � = 1) or slate recommendation (� > 1) Ð RT4;

(2) The presence of a boredom mechanism, i.e., users get bored when being presented repeatedly with a similar
content, and thus become less likely to click on the related items Ð RT1;

(3) The presence of an inluence mechanism, i.e., users are inluenced by clicked items in future interaction
steps Ð RT1;

(4) The level of click uncertainty, i.e., the degree of stochasticity in the click probabilities, which is controlled
by the scale hyperparameter � in the relevance sigmoid: lowering � increases the click likelihood on less
relevant items (see Section 3.3 for more details) Ð RT3;

(5) The observability, i.e., whether the agent has access to full or partial user state information (MDP or POMDP
setting, respectively) as detailed in Section 3.5 Ð RT3;

(6) Whether the task is reranking, in which case there is a limited number of items that are all presented to the

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 11

user (i.e., �I = �) and the recommendation agent has to ind the best permutation of those items6 Ð RT2.

Below, we summarize the purpose of each of the nine environments we introduce:

• SingleItem-Static: This single-item recommendation environment with static user behavior and full
state observability was chosen to showcase an łeasyž environment where learned agents should be able
to reach optimal performance without diiculty. This environment also provides a good sanity check to
validate that a learned agent is working as expected.

• SingleItem-BoredInf: This environment augments SingleItem-Static with boredom and inluence
long-term mechanisms, which require the agent to consider multi-turn dynamics to provide efective
recommendations. Therefore, this corresponds to a typical RL-based recommendation environment, in an
MDP setting.

• SingleItem-PartialObs: This is another variant of SingleItem-Static that increases the environment’s
diiculty through partial observability, i.e., the true state is not directly accessible and the agent is only
provided with partial observations at each interaction step. This simulates typical sequential recommenda-
tion environments based on oline feedback, where the state (i.e., the user embedding) is unknown and
recommendations have no causal efect on future user interactions [10].

• SlateTopK-Bored: This variant of the simulator includes slate recommendation (as opposed to the single-
item recommendation from the previous environments) and a boredom mechanism, with full state observ-
ability. It makes this environment suitable to evaluate RL-based slate recommendation methods in an MDP
setting.

• SlateTopK-BoredInf: This environment is based on SlateTopK-Boredwith an additional inluence mech-
anism, making the dynamics more complex as clicked items’ inluence causes a drift in user interests.

• SlateTopK-PartialObs: This challenging environment derived from SlateTopK-BoredInf includes bore-
dom and inluence mechanisms, but also partial observability. The POMDP setting along with the need for
RL-based agents to tackle the efects of the long-term mechanisms make this environment a good choice to
investigate state encoders as well as RL-based slate recommendation agents.

• SlateTopK-Uncertain: In this environment, we start from SlateTopK-PartialObs and increase the
uncertainty through greater stochasticity in the clicking process. In practice, this is done by reduc-
ing the value of the relevance scale hyperparameter �. We vary � from its standard value 100 (used
in SlateTopK-PartialObs) to 10, 5 or 2 to study diferent levels of click uncertainty.

• SlateRerank-Static: This environment is focused on the reranking task described previously and includes
static users. Its main purpose is to enable us to study the efect of the ranking order (i.e., the presentation
bias) as opposed to the mere efect of including items in the ranking (i.e., the selection bias), as done in
SlateTopK environments. This environment and its potential variants are therefore particularly suited for
click modeling and counterfactual learning-to-rank research.

• SlateRerank-Bored: Similarly to SlateRerank-Static, this environment provides a testbed for research
on presentation biases such as position bias. However, it adds a boredom mechanism so that greedy agents,
even with perfectly alleviated position bias, are not optimal. It thus constitutes a way to conduct research
on the efect of data biases on, e.g., RL agents.

The set of environments introduced above is not intended to give an exhaustive coverage of all possible com-
binations allowed by our simulator, but rather to provide a sample of relevant environments highlighting
its various possibilities. In particular, we chose these environments to relect the four research topics intro-
duced in Section 1.2: the inclusion of multi-step mechanisms (in SingleItem-BoredInf, SlateTopK-Bored,

6An example of such a scenario in a real-life recommender system is in a two-stage setting where the recommender irst reranks the (limited)

set of item categories for the user. Then, in a second step, the recommender identiies the best item to present for each ranked category slot.

What we are interested in here is the irst reranking step where items correspond to categories.

ACM Trans. Recomm. Syst.

12 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Table 2. Description of the nine environments studied in our experiments, each corresponding to a variant of our simulator.

Environment name Rec. type Boredom Inluence Click uncertainty Observability Reranking

SingleItem-Static Single item No No Low Full No
SingleItem-BoredInf Single item Yes Yes Low Full No
SingleItem-PartialObs Single item No No Low Partial No
SlateTopK-Bored Slate Yes No Low Full No
SlateTopK-BoredInf Slate Yes Yes Low Full No
SlateTopK-PartialObs Slate Yes Yes Low Partial No
SlateTopK-Uncertain Slate Yes Yes Medium to v. high Partial No
SlateRerank-Static Slate No No High Full Yes
SlateRerank-Bored Slate Yes No High Full Yes

SlateTopK-BoredInf, SlateTopK-PartialObs, and SlateRerank-Bored), the biases induced by the item pre-
sentation order (in SlateRerank-Static and SlateRerank-Bored), the uncertainty in the clicks (in SlateTopK-
Uncertain) and in the user state (in SingleItem-PartialObs, SlateTopK-PartialObs, and SlateTopK-

Uncertain), and the recommendation of slates as opposed to single items (SlateTopK and SlateRerank environ-
ments vs. SingleItem environments). The precise set of hyperparameters used in each environment are detailed
in Section 4.3.
As a side note, in Section 3.4, we deined two types of boredom mechanism: the temporary loss-of-interest

boredom and the churn-and-return boredom. In our experiments, we only use the churn-and-return boredom.
Indeed, the experiments done in our pilot studies with the two boredom mechanisms lead to similar conclusions
on the approaches’ relative performance. Therefore, we omit results with the temporary loss-of-interest boredom
for the sake of brevity.

4.2 Compared methods

This section presents the diferent baseline recommendation methods that we re-implemented in SARDINE7 and
tested in our experiments. We sought to include both simple, naive baselines as well as recent and state-of-the-
art approaches to highlight the diferent characteristics and diiculty levels of the environment presented in
Section 4.1. Our compared methods include the following:

• Random: This simple baseline simply consists in recommending a random slate (or item in the case of
SingleItem environments) at each interaction step.

• Greedy Oracle: This baseline recommends at each step the optimal slate (or item in the case of SingleItem
environments) based on the current user embedding. The optimal slate contains the � items that maximize
the relevance function deined in Section 3.3, ordered by relevance in a top-down fashion. This approach is
optimal in a static setting (without boredom and inluence). However, it is unable to perform multi-step
reasoning in a dynamic setting (with boredom and/or inluence) due to its myopic behavior, hence the
name Greedy Oracle.

• REINFORCE + Top-K: This approach proposed in [5] extends the REINFORCE policy-gradient agent
to the slate recommendation problem. It estimates the value of individual items rather than the full slate,
thereby making the problem tractable. However, it requires certain assumptions, for instance that the slate
receives at most one click and that the items’ returns are mutually independent. Since slates can have
several clicks in SARDINE, we simply use the irst click in the slate for this method. For the SingleItem
environments, we instead use a standard REINFORCE agent as the top-K addition is not needed.

• SAC + Top-K: This method was introduced in [11] as a simple yet strong baseline for slate recommendation.

7The implementation for those methods is included in our code at https://github.com/RomDefayet/SARDINE_Experiments and made available

for the sake of reproducibility.

ACM Trans. Recomm. Syst.

https://github.com/RomDeffayet/SARDINE_Experiments

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 13

Table 3. Value of the simulator hyperparameters for each of the nine environments used in our experiments. The description

of the hyperparameters’ meaning and role is detailed in Table 1. An N/A value signals that the phenomenon related to the

hyperparameter is absent in this environment (e.g., the influence parameter � is N/A for the SlateTopK-Bored environment

which does not include the influence mechanism).

Environment name
Hyperparameter value

� � �I �T � � � � �b �b �b � O

SingleItem-Static 100 1 1000 10 100 0.65 1.0 0.85 N/A N/A N/A 1.0 full
SingleItem-PartialObs 100 1 1000 10 100 0.65 1.0 0.85 N/A N/A N/A 1.0 partial
SingleItem-BoredInf 100 1 1000 10 100 0.65 1.0 0.85 10 5 5 0.95 full
SlateTopK-Bored 100 10 1000 10 100 0.65 1.0 0.85 10 5 5 1.0 full
SlateTopK-BoredInf 100 10 1000 10 100 0.65 1.0 0.85 10 5 5 0.95 full
SlateTopK-PartialObs 100 10 1000 10 100 0.65 1.0 0.85 10 5 5 0.95 partial
SlateTopK-Uncertain 100 10 1000 10 {2, 5, 10} 0.65 1.0 0.85 10 5 5 0.95 partial
SlateRerank-Static 10 10 10 10 5 0.30 1.0 0.85 N/A N/A N/A 1.0 full
SlateRerank-Bored 10 10 10 10 5 0.30 1.0 0.85 10 5 5 1.0 full

It relies on a soft actor-critic (SAC) [14] policy that takes actions in the item embedding space. The
recommended slate is then formed by identifying the items which maximize the dot-product with the
action, i.e., the K-nearest neighbors, and by ordering them in a top-down fashion. For the SingleItem
environments, we adopt a standard SAC agent and simply replace the top-K selection by a top-1 selection.

• SAC + GeMS: Proposed in [11], this approach relies on a variational autoencoder (VAE) to embed the
high-dimensional slate space into a low-dimensional latent space, that is used as a tractable action space
for a SAC agent. This process is done in two steps. First, a VAE is trained on logged data containing past
user sessions with slates and clicks. For that purpose, we generate a dataset which collects interactions
between the environment of interest and a logging policy corresponding to a uniformly balanced mixture
of a Random agent and a Greedy Oracle agent.8 Second, the frozen decoder of the VAE is plugged on the
output of a SAC agent to reconstruct a slate from the agent’s action in the latent space.

• HAC: Similarly to the GeMS framework, the hyper-actor critic (HAC) method [30] proposes to use an RL
agent which takes actions in a latent space and introduces a module to translate latent actions into slates.
Diferently from SAC + GeMS, this approach relies on the DDPG [29] policy and it does not exploit a VAE
to regularize the latent space. It also requires no pretraining as all parameters are learned in an of-policy
fashion. Moreover, HAC uses a supervised click prediction objective in addition to the RL one, in order to
stabilize the learning of the agent and directly exploit the user response signal on slate items.

In our experiments, we consider that methods have access to the ideal item embeddings, i.e., the item embeddings
that are used in the simulator (whose generation was described in Section 3.1). This constitutes an advantage for
the agents which explicitly use item embeddings in their method, namely, Greedy Oracle, SAC + Top-K, SAC +
GeMS, and HAC. The other approaches (Random and REINFORCE + Top-K) therefore have a slight disadvantage
over the former methods for that reason. To study the impact of the access to high-quality item embeddings,
we also compared the results with ideal embeddings to those obtained using sub-optimal, matrix factorization
embeddings (see the experiments on SlateTopK-Bored in Section 5.2).

4.3 Hyperparameter seting

The hyperparameters used for each of the environments introduced in Section 4.1 are detailed in Table 3. The
hyperparameter values were chosen to relect the environment-speciic characteristics that we highlighted in

8In other words, each item in a slate generated by the logging policy has 50% chance to be the item the Greedy Oracle would recommend at

this rank, and 50% chance to be a random item.

ACM Trans. Recomm. Syst.

14 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Table 2.
We now describe the hyperparameters used for the diferent methods.9 For all RL recommendation agents, we

set the discount factor � to 0.0 for static environments (without boredom and inluence) and 0.8 for dynamic
ones (with boredom and/or inluence). Agents are trained for 500,000 steps, where each step corresponds to the
agent producing a recommendation ś a slate or a single item depending on the environment. The policy learning
rate and critic learning rate (for approaches with a critic) were ixed to 0.0003 and 0.01, respectively. Actors and
Q-networks are MLPs with a hidden size of 256 at all layers. For REINFORCE agents, the bufer size was set to
100. For SAC-based approaches and HAC, we used a bufer size of 106, a batch size of 32, and a target smoothing
coeicient � equal to respectively 0.05 and 0.5. In SAC-based agents, we adopted auto-tuning for the entropy
regularization coeicient � and we used a single Q-network. We also independently tuned the hyperparameters
speciic to the HAC approach: we set the learning rate of the behavior loss to 0.00003, the standard deviation for
the reparameterization trick to 0.1, the weight for the hyper-actor loss to 0.1, and the dimension of the latent
space to 32.

For environments with partial observability (SingleItem-PartialObs, SlateTopK-PartialObs, SlateTopK-
Uncertain), we used two types of state encoders commonly used in RL-based recommender systems [17]: GRU
and transformer. The input to the state encoder is a sequence containing for each step the concatenation of
click embeddings and item embeddings averaged over the slate. The click and item embeddings are learned
independently in the state encoder. The click embedding dimension was set to 2, and the item embedding
dimension was set to 16 for the GRU state encoder and 32 for the transformer state encoder. The dimension of
the state output by the state encoder was ixed to 32. We used 2 layers (both for the GRU and the transformer), as
well as 4 attention heads, a dropout rate of 0.1, and a feedforward dimension of 64 (only for the transformer).

4.4 Evaluation protocol and metrics

For the evaluation, we performed 5 seeded runs for each method on each environment. For each run, we recorded
the validation performance on 25 validation episodes every 50,000 training steps. An episode corresponds to
a session of � steps where each step corresponds to the agent issuing a recommendation. For every episode,
we sample a new random user embedding following the procedure described in Section 3.1. For that reason,
validation users are distinct from training users, ensuring no leakage between training and validation. We also
used diferent seeds during hyperparameter tuning (detailed in Section 4.3) and evaluation, in order to have
diferent validation users in these two phases and thus avoid the situation where methods would be speciically
optimized on the set of users sampled for tuning.
We considered two metrics in our evaluation. The irst one is the return (i.e., the cumulated reward over an

episode), averaged over the 25 validation episodes. This metric ranges from 0 to � × � (i.e., 100 for SingleItem
environments and 1000 for SlateTopK environments), which corresponds to the case where the user clicked
on all the items presented to them. A higher return indicates more clicks from the user across the episode and
thus higher quality recommendation from the agent. On the environments that include a boredom mechanism
(SingleItem-BoredInf, SlateTopK-Bored, SlateTopK-BoredInf, SlateTopK-PartialObs, SlateTopK-Unce
rtain), we also report the boredom metric. We deine this metric as the number of steps in the episode where
the user is bored on at least one topic ś lower is better. In our churn-an-return boredom setting (see Section 3.4
for more details), this corresponds to the number of steps where the user embedding is zeroed out and the user
cannot click. This metric is important as in order to be successful an agent should be able to balance accurate
recommendations (to reach high immediate rewards) and diverse recommendations over time (to avoid triggering
boredom and temporary churn).

9With our source code we provide the detailed hyperparameters used for each agent on each environment to facilitate reproducibility.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 15

5 RESULTS

In this section, we describe the results of the experiments done on single item recommendation (Section 5.1),
slate top-K recommendation (Section 5.2), and slate reranking (Section 5.3). Again, we remind the reader that the
goal of these experiments is to demonstrate the possibilities and challenges of the environments derived from
SARDINE, rather than to create a benchmark for state-of-the-art approaches on a limited set of environments.
These experiments should be seen as a starting point for researchers and practitioners to further investigate the
speciic scenarios and approaches of their interest.

5.1 Experiments on single item recommendation

We performed experiments on three SingleItem environments whose characteristics are recalled below (see
Section 4.1 for a more detailed description). In SingleItem-Static, we consider an easy, static recommendation
scenario in a fully observable setting and with low uncertainty in order to validate that learned agents can reach op-
timal performance. SingleItem-BoredInf adds boredom and inluence mechanisms to SingleItem-Static, in-
creasing the diiculty of the environment. For SingleItem-PartialObs, we start aswell from SingleItem-Static

but change it to a POMDP setting. The results on the SingleItem environments are given in Fig. 2 and discussed
below.

SingleItem-Static. The validation return over the diferent training steps on SingleItem-Static is plotted
in Fig. 2a. In this experiment we compared SAC and REINFORCE agents against the Greedy Oracle and Random
baselines. In this speciic setting, the Greedy Oracle is by design optimal due to the absence of long-term
mechanisms (boredom or inluence). It is therefore not surprising that the Greedy Oracle achieves a return of
100, meaning that all recommended items in the session have been clicked. However, it is interesting to note
that among the learned agents, SAC fares much better than REINFORCE. Indeed, the former is able to reach
optimal performance (or very close to it) after only 200,000 steps, whereas the latter struggles to close the gap.
This diference might be explained by the fact that SAC exploits the ideal item embeddings whereas REINFORCE
simply selects actions through a softmax over items. Additionally, SAC is generally a better performing RL agent
than REINFORCE in most cases, due to a better bias-variance trade-of. Nonetheless, it is reassuring to see that in
this simple environment, a learned agent such as SAC is able to easily ind the optimal policy.

SingleItem-BoredInf. We now turn to the more challenging SingleItem-BoredInf environment which
includes boredom and inluence mechanisms. The results according to the return and boredom metrics are
illustrated in Fig. 2c and 2d, respectively. This environment corresponds to typical RL-based recommendation in
an MDP setting and we expect RL agents to be able to beat a myopic approach such as the Greedy Oracle. Indeed,
the Greedy Oracle is no longer optimal here due to the introduction of long-term mechanisms. This is conirmed
by the results in the plots, which show that the Greedy Oracle only yields a return of around 50, and a boredom
of around 50 as well. This means that for 50% of the steps the user is in a bored state, and for the remaining 50%
the recommendation leads to a click. Turning to the RL agents, we irst see that REINFORCE struggles to learn an
efective policy and remains inferior to the Greedy Oracle in terms of return. However, SAC is able to provide
high-quality recommendations, with a return close to 70 even after only 50,000 training steps. SAC is also able to
recommend diversiied items, as its low (and diminishing) boredom conirms. On the other hand, the boredom of
REINFORCE increases steadily as return increases, showing that its policy is still in an accuracy improvement
stage and is not favoring result diversiication.

SingleItem-PartialObs. This environment is static like SingleItem-Static but we consider here a POMDP
setting, i.e., partial state observability. This corresponds to the typical sequential recommendation scenario based
on oline feedback, where recommendations have no causal efect on user behavior [10]. Due to the partial
observability, RL agents require a state encoder to convert the observations returned by the environment into a
state that can be exploited by the agent. We consider both a GRU and a transformer state encoder, which we

ACM Trans. Recomm. Syst.

16 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

0 100000 200000 300000 400000 500000
number of steps

20

40

60

80

100

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
REINFORCE
SAC

(a) Return (↑) on SingleItem-Static

0 100000 200000 300000 400000 500000
number of steps

20

40

60

80

100

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
SAC GRU
SAC Transformer

(b) Return (↑) on SingleItem-PartialObs

0 100000 200000 300000 400000 500000
number of steps

10

20

30

40

50

60

70

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
REINFORCE
SAC

(c) Return (↑) on SingleItem-BoredInf

0 100000 200000 300000 400000 500000
number of steps

0

10

20

30

40

50
va

l b
or

ed
om

Random
Greedy Oracle
REINFORCE
SAC

(d) Boredom (↓) on SingleItem-BoredInf

Fig. 2. Results on the SingleItem-Static (2a), SingleItem-PartialObs (2b), and SingleItem-BoredInf (2c, 2d) environ-

ments. The colored envelope surrounding lines indicates the 95% confidence interval around the mean computed from 5

seeded runs. Boredom results are not shown for SingleItem-Static and SingleItem-PartialObs as these static environ-

ments do not include a boredom component and thus all methods have a default boredom of 0.

test in combination with a SAC agent as it obtained convincing results on SingleItem-Static. The results are
shown in Fig. 2b. Here, the Greedy Oracle is still optimal as it has access to the true user state (and thus is not
afected by the POMDP setting). The partial observability does have an impact on the SAC agents, leaving a gap
between the 60+ return obtained by these and the 100 return obtained by the Greedy Oracle. This highlights that
more research might be needed on state encoders to be able to accurately estimate the true user state in this
setting. Comparing the variants of SAC equipped with a GRU and transformer state encoder, we do not notice
statistically signiicant diferences between those two in this case.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 17

5.2 Experiments on slate top-K recommendation

We now move on to the experiments performed on slate top-K recommendation, i.e., where the recommenda-
tion presented to the user is a list instead of a single item as in SingleItem environments. We studied four
SlateTopK environments which are summarized below (and further detailed in Section 4.1). SlateTopK-Bored
and SlateTopK-BoredInf are both fully observable environments which require agents to do multi-step rea-
soning to perform well. The diference between the two is that the former only includes a boredom mechanism,
whereas the latter additionally integrates an inluence mechanism ś causing user embeddings to drift based
on clicked items and thus making it more diicult to track user interest. We also investigated a partially ob-
servable version of SlateTopK-BoredInf through SlateTopK-PartialObs, further increasing the diiculty
of the task. Finally, we experimented with various levels of uncertainty in the clicking process through the
SlateTopK-Uncertain environments. The results on the SlateTopK environments are shown in Fig. 3, 4, 5,
and 6.

SlateTopK-Bored. The results on the SlateTopK-Bored environment are plotted in Fig. 3a (for the return)
and Fig. 3b (for the boredom). We compared the Greedy Oracle baseline, which is sub-optimal here, to four
learned agents: REINFORCE + Top-K, SAC + Top-K, SAC + GeMS and HAC. Similar to the results observed on
SingleItem environments, we see here that REINFORCE + Top-K fails to reach the performance of the Greedy
Oracle, while SAC + Top-K beats by a good margin the Greedy Oracle. HAC and SAC + GeMS are also able to
beat the oracle baseline, but by a much smaller margin. In terms of boredom, SAC + Top-K is also the winner
with a much lower value. We also report the distribution of item relevance scores for the diferent methods tested
here in Appendix D. We hypothesize that the superiority of SAC + Top-K, in particular over SAC + GeMS and
HAC, is due to the use of ideal item embeddings in this experiment. Indeed, SAC + Top-K directly uses the item
embedding space as action space and thus rely heavily on the quality of item representations. To investigate
this hypothesis, we repeated the same experiment as shown in Fig. 3a and Fig. 3b, but we replace the ideal item
embeddings used by default in our experiments with item embeddings learned by matrix factorization (MF).10

We report the results in Fig. 3c and Fig. 3d for the return and boredom metrics, respectively. We observe that
changing from ideal to MF embeddings does have a drastic efect on the recommendation performance (measured
by the return metric) of SAC + Top-K, which degraded to the level of the Greedy Oracle. The performance of HAC
is also greatly impacted ś its return dropping even below that of REINFORCE Top-K. SAC + GeMS is the approach
that underwent the smallest performance drop in comparison to the ideal embedding case. This suggests that this
latter approach might overall be more robust to sub-optimality in item embeddings.

In addition to the results described above on SlateTopK-Bored, we also investigated a challenging variant of
this environment that is closer to a real-life scenario, where certain topics tend to co-occur and the distribution
of topics for items and users is skewed. The setting and the experiments done in this environment are further
detailed in Appendix B.

SlateTopK-BoredInf. On the SlateTopK-BoredInf environment, which adds an inluence mechanism to
SlateTopK-Bored with ideal embeddings, we observe similar trends as this latter environment. The return and
boredom results are given in Fig. 4a and Fig. 4b, respectively. One notable diference with SlateTopK-Bored,
however, is that in SlateTopK-BoredInfHAC fails to beat the Greedy Oracle and gets a return that is signiicantly
worse than that of SAC + GeMS. This might be explained by the fact that HAC integrates a supervised click
prediction loss which may hinder the model performance due to the greater dynamics in the user embedding
caused by the inluence drift.

SlateTopK-PartialObs. The results on the SlateTopK-PartialObs environment, which increases SlateTopK-B
oredInf’s challenge with partial observability, are shown in Fig. 5a (for return) and Fig. 6a (for boredom). Given

10To obtain these embeddings, we used the dataset generated for SAC + GeMS pretraining (described in Section 4.2) to train a matrix

factorization model with an embedding dimension of 10.

ACM Trans. Recomm. Syst.

18 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

0 100000 200000 300000 400000 500000
number of steps

50

100

150

200

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC GeMS
SAC TopK

(a) Return (↑) on SlateTopK-Bored (Ideal)

0 100000 200000 300000 400000 500000
number of steps

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC GeMS
SAC TopK

(b) Boredom (↓) on SlateTopK-Bored (Ideal)

0 100000 200000 300000 400000 500000
number of steps

20

40

60

80

100

120

140

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
HAC MF
REINFORCE TopK
SAC GeMS MF
SAC TopK MF

(c) Return (↑) on SlateTopK-Bored (MF)

0 100000 200000 300000 400000 500000
number of steps

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
HAC MF
REINFORCE TopK
SAC GeMS MF
SAC TopK MF

(d) Boredom (↓) on SlateTopK-Bored (MF)

Fig. 3. Results on the SlateTopK-Bored environment with default, ideal item embeddings (3a, 3b) and with matrix factoriza-

tion item embeddings (3c, 3d). The colored envelope surrounding lines indicates the 95% confidence interval around the

mean computed from 5 seeded runs. Some approaches keep the same performance across the two setings as they either do

not rely on item embeddings (Random, REINFORCE Top-K) or are an oracle baseline and only make sense with ideal item

embeddings (Greedy Oracle).

the superior performance of SAC + Top-K on SlateTopK-BoredInf, we focus here on variants of this method
based on a GRU or a transformer state encoder. In this setting, we observe that the performance of the transformer
variant leads on most training steps to a signiicant improvement in terms of return over the GRU variant. This
result goes in line with previous indings on state encoders for RL-based recommendation [17]. However, both
SAC + Top-K variants fail to beat the Greedy Oracle baseline, highlighting the diiculty of this environment
and showing that additional eforts on the agent and/or state encoder might be needed to achieve high-quality
recommendation.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 19

0 100000 200000 300000 400000 500000
number of steps

25

50

75

100

125

150

175

200

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC GeMS
SAC TopK

(a) Return (↑)

0 100000 200000 300000 400000 500000
number of steps

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC GeMS
SAC TopK

(b) Boredom (↓)

Fig. 4. Results on the SlateTopK-BoredInf environment. The colored envelope surrounding lines indicates the 95% confidence

interval around the mean computed from 5 seeded runs.

SlateTopK-Uncertain. Starting from SlateTopK-PartialObs, we varied the level of uncertainty in the clicks
through the � scale hyperparameter in the simulator’s relevance function. In particular, we compared the setting of
SlateTopK-PartialObs with low uncertainty (� = 100) to diferent SlateTopK-Uncertain environments with
medium uncertainty (� = 10), high uncertainty (� = 5) and very high uncertainty (� = 2) ś which we will refer to
as SlateTopK-Uncertain10, SlateTopK-Uncertain5, and SlateTopK-Uncertain2 for simplicity. The return
and boredom results in these environments are illustrated in Fig. 5 and Fig. 6, respectively. Comparing the return
on SlateTopK-PartialObs (Fig. 5a) to SlateTopK-Uncertain10 (Fig. 5b), we observe that the gap between the
SAC + Top-K transformer and GRU variants increases. Indeed, while the overall performance of SAC + Top-K
GRU slightly decreases with the uncertainty increase, we see that SAC + Top-K transformer is able to maintain
its performance at around 125 at 500,000 steps. This suggests that the transformer state encoder is more robust
to a medium level of uncertainty. When we increase the uncertainty to a high level in SlateTopK-Uncertain5

(Fig. 5c), we notice that the SAC Top-K variants beat the Greedy Oracle baseline, and that the gap between the
Random baseline and the Greedy oracle shrinks. This is explained by the fact that with more stochasticity in
the clicking process, less relevant items get more clicks ś which reduces the advantage of the greedily optimal
recommendations from the Greedy Oracle. Clicks on more varied items also means that user boredom is less
likely to be triggered, which is conirmed by the comparison of the boredom scores of the SAC Top-K variants
across Fig. 6a, Fig. 6b, and Fig. 6c. When the uncertainty level is further increased in SlateTopK-Uncertain2,
we observe that the environment rewards random recommendations more than the accurate recommendations
from the Greedy Oracle, as shown in Fig. 5d. This is, again, explained by the fact that less relevant items lead to a
click probability similar to that of relevant items. In this setting, the SAC Top-K variants both perform similarly
to the Random baseline and are thus learning to favor more diverse recommendations over accurate ones.

5.3 Experiments on slate reranking

With this last set of experiments, we explore the reranking task using two SlateRerank environments: the static
SlateRerank-Static and the interactive, multi-step SlateRerank-Bored. We conduct experiments on click
modeling according to the following protocol: (i) we generate a dataset of interactions using a certain logging
policy, (ii) we train a click model on the generated dataset, and (iii) we rerank the items by decreasing amount

ACM Trans. Recomm. Syst.

20 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

0 100000 200000 300000 400000 500000
number of steps

40

60

80

100

120

140

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(a) SlateTopK-PartialObs, low uncertainty

0 100000 200000 300000 400000 500000
number of steps

70

80

90

100

110

120

130

140

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(b) SlateTopK-Uncertain, medium uncertainty

0 100000 200000 300000 400000 500000
number of steps

115

120

125

130

135

140

145

150

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(c) SlateTopK-Uncertain, high uncertainty

0 100000 200000 300000 400000 500000
number of steps

175

180

185

190

195

200

205

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(d) SlateTopK-Uncertain, very high uncertainty

Fig. 5. Results in terms of return (↑) on the SlateTopK-PartialObs (5a) and SlateTopK-Uncertain (5b, 5c, 5d) environments.

The click uncertainty degree varies from low (5a), medium (5b), high (5c) to very high (5d), corresponding to a scale

hyperparameter � in the relevance function equal to 100, 10, 5, and 2, respectively (see Section 3.3 for more details). The

colored envelope surrounding lines indicates the 95% confidence interval around the mean computed from 5 seeded runs.

of relevance, according to the model. For both environments, we use the reverse-oracle policy, i.e., the policy
that orders items by increasing order of relevance, as the logging policy. It therefore generates a dataset that
contains substantial spurious correlations due to position bias. We report the observed return when applying the
reranking methods in the live environment in Table 4.

SlateRerank-Static. On the static environment, the Greedy Oracle policy is the optimal policy, while the
Reverse Oracle yields minimal return. We can indeed irst verify in Table 4 that an online-trained SAC + Top-K,
as in Section 5.2, even with full observability of user state and ideal item embeddings, does not beat the greedy
oracle.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 21

0 100000 200000 300000 400000 500000
number of steps

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(a) SlateTopK-PartialObs, low uncertainty

0 100000 200000 300000 400000 500000
number of steps

0

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(b) SlateTopK-Uncertain, medium uncertainty

0 100000 200000 300000 400000 500000
number of steps

0

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(c) SlateTopK-Uncertain, high uncertainty

0 100000 200000 300000 400000 500000
number of steps

10

20

30

40

50

60

va
l b

or
ed

om

Random
Greedy Oracle
SAC TopK GRU
SAC TopK Transformer

(d) SlateTopK-Uncertain, very high uncertainty

Fig. 6. Results in terms of boredom (↓) on the SlateTopK-PartialObs (6a) and SlateTopK-Uncertain (6b, 6c, 6d) environ-

ments. The click uncertainty degree varies from low (6a), medium (6b), high (6c) to very high (6d), corresponding to a scale

hyperparameter � in the relevance function equal to 100, 10, 5, and 2, respectively (see Sections 3.3 for more details). The

colored envelope surrounding lines indicates the 95% confidence interval around the mean computed from 5 seeded runs.

Secondly, we can see that a position-based model (PBM) correctly identiies the biases in the logged data and
almost reaches the performance of the oracle policy, while the naive document click-through rate model (dCTR)
model fails to do so, and barely improves on the Reverse Oracle policy it was trained on. This result does not come
as a surprise since the underlying user click model in the SlateRerank environments is also a position-based
model. We can nonetheless verify that the learned propensities, i.e., observation probabilities at each rank, match
the true propensities of the simulator. We therefore compute the mean-squared error (MSE) of the normalized
propensities, i.e., where the probability of observation at the irst position is set to 1, and we ind that the learned
PBM’s propensities have an MSE of 0.570. That indicates that despite documents being correctly ordered, the

ACM Trans. Recomm. Syst.

22 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Table 4. Online return obtained by debiasing the logged data on the reranking environments. Averaged over five seeded runs.

Method SlateRerank-Static SlateRerank-Bored

Greedy Oracle 21.45 13.69
Reverse Oracle 8.82 8.47
dCTR 9.28 8.97
PBM 21.17 13.14
Online SAC + Top-K 19.01 14.82

learned model does not fully match the underlying model.
The experiments on SlateRerank-Static call for further experiments with diferent underlying user click

models and candidate click models, e.g. as done in [9], so as to investigate the performance of click models under
the more realistic settings of model mismatch. While we leave this for readers to experiment with, we turn to
another natural extension that is, to the best of our knowledge, unexplored, and that SARDINE enables.

SlateRerank-Bored. In this interactive environment, the Greedy Oracle policy is not optimal anymore, because
the agent must trade of the accuracy and diversity of the most-exposed topics. Indeed, we can see in Table 4 that
an online-trained SAC + Top-K agent beats the Greedy Oracle. This environment therefore constitutes a testbed
for (oline) RL agents with biased feedback, and notably the combination of RL and click modeling.
Another important diference that comes with this interactive environment is the fact that the logged data

may appear relatively noisier to a click model, as the click/skip feedback can be explained by something else than
relevance and position: the boredom. While the boredom information is contained in the ideal user state we use
for click model training and the model should therefore in theory be able to correctly identify biases, we expect
the training process to be harder. We observe what seems to be a slight degradation of relative performance,
compared to the static environment. Indeed, while the PBM managed to ill 98% of the gap between the logging
policy and the oracle policy on the Static environment, it only ills 89% of the gap on the Bored environment.
But the extent of the degradation is most apparent when we compare the propensities learned by the model in this
new dynamic environment. The MSE now increases to 0.915, compared to 0.570 in the static case. This suggests
that using the learned propensities of the model in downstream tasks, e.g., counterfactual learning-to-rank,
fairness or reinforcement learning, is likely to lead to imperfect and biased policies.
Efectively using the user behavior learned by click models in a dynamic and interactive environment with,

e.g., reinforcement learning, including when the learned variables are imperfect, is to the best of our knowledge
still an open question. Our proposed simulator ofers the possibility to study this topic in an interpretable and
controllable way.

6 RELATED WORK

In this section we highlight how our work difers from previously published simulators. Considering the research
agenda we deined in Section 1.2 as well as our target speciications 1.1, we draw a comparison of existing
simulators, along with our proposed SARDINE, in Table 5. Note that some of these simulators may have been
proposed to target a diferent research outcome, but we analyze only what we think to be relevant to interactive
recommendation research and our corresponding research agenda. Also, we acknowledge that some of the criteria
used here are subjective and we try to substantiate our claims as much as possible.
We now describe related simulators that have been published in recent years, and how they may difer from

our objective.
RecoGym [39] is an e-commerce and advertising simulator where the agent aims to display attractive ads so
that the users come back on an e-commerce website they have previously visited. It comes bundled with multiple
bandit agents and use cases, including the efect of selection bias on oline agents, and stochasticity in user

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 23

Table 5. Comparison of the proposed SARDINE to existing recommendation simulators. ✓ indicates that the research topic

is addressed by the simulator and ∼ that it is partially addressed. Our assessment of whether the simulators fulfill the

specifications is graded according to { −, ±, + }. Overall, we find that only RecSim [21] addresses the research agenda that

SARDINE targets, but that it does not fulfill our specifications for such a simulator.

Research agenda 1.2 Speciications 1.1

Simulator RT1 RT2 RT3 RT4 Interpretability Efect isolation Conigurability

RecoGym ∼ ✓ ± + +

MARS-Gym − − ±

RL4RS ∼ ∼ ✓ − − −

RecSim ✓ ✓ ∼ ∼ ± − ±

Virtual-TB ✓ ✓ − − −

SOFA ✓ + ± +

OBP ✓ + + +

SARDINE ✓ ✓ ✓ ✓ + + +

response and evolution, as well as in observed returning time. Its ease of conigurability and experimentation
makes it a desirable choice, but it does not address multi-step reasoning, slate recommendation and presentation
bias.
MARS-Gym [43] aims to simulate online marketplaces, and is based on real data from such platforms. It includes
next-item prediction and of-policy metrics for evaluation of trained agents. The agent’s objective, for a given
user, is to select one of the items that were observed in the real data for that user. Therefore, MARS-Gym aims to
evaluate the quality of static, semantic information learned by agents and does not meet our research agenda
targeting dynamic and interactive systems.
RL4RS [51] is an e-commerce, slate recommendation simulator based on real purchase data, and where the
reward function is a black-box sequential recommendation model. It is composed of two variants: one-shot
(i.e., single-turn) and sequential slate recommendation. Oline RL agents can be trained on the real logged data
and evaluated in the simulator, but one cannot directly control the logging policy, and presentation bias is not
modeled. The authors verify that a transformer model can better capture the item sequence using non-greedy
decoding strategies, which might indicate multi-step dependencies. However, the simulator is opaque and hardly
tunable, and thus does not satisfy our speciications for a research-oriented simulator.
RecSim [21] is certainly the efort closest to ours. The authors provided a conigurable simulator and three
environment instantiations that cover, at least partially, all research topics that we wish to study. However, we
found practical drawbacks in using it, motivating us to propose our take on interactive recommendation simulators.
First, installation and usage is made very diicult as it relies on older, unmaintained packages, without specifying
the version being used. Moreover, relying on third-party software like Tensorlow 1.15 or Google dopamine
hurts the ease of conigurability of both the environment and agents. In contrast, our simulator relies only on
Numpy (and Gymnasium). Second, we found tweaking the environment properties and singling out speciic
research questions to be hard, as there are often multiple parameters controlling the same research dimension,
without clear guidance on their efect, and they are not always tunable without substantial modiications: e.g., the
uncertainty in user response comes from a binary coin lip, which does not allow to draw proiles of robustness
to increasing uncertainty. There is also no simple way to use an oracle for user state or item embeddings as we
do in our environment to single out certain modules of the agent. Finally, while the simulator aims to tackle slate
recommendation, no proposed environment uses a number of candidates greater than 15 or a slate size greater
than 3, while we wish to study slate recommendation at a larger scale, e.g., with a number of candidates of 1000
and a slate size of 10 as in our proposed SlateTopK environments. Overall, we adopt the general philosophy of

ACM Trans. Recomm. Syst.

24 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

RecSim and propose our take on making a lightweight, lexible, and research-oriented simulator.
Virtual-TaoBao [46] is an online retail simulator trained from real data, where generative adversarial networks
are trained via multi-agent imitation learning in order to approximate the user response to recommendations.
It incorporates certain uncertainties, e.g., on the user churning mechanism, and rewards multi-step reasoning,
but it does not address other research topics, i.e., biases in the data and slate recommendation. Additionally,
since the simulator consists of model approximations of real user behavior, the notion of items is lost (state and
actions are continuous latent variables) and the user response is a black-box that cannot be tweaked for further
experimentations.
SOFA [18] uses an intermediate reweighting step in order to remove popularity and positivity biases in the
resulting simulator. The authors verify that policies trained in the debiased simulators perform better when
evaluated on datasets from the same platform but where biases have been alleviated (i.e., through random
recommendations). The simulator is relatively easy to tweak as we can replace the intermediate inverse-propensity
scoring step with a diferent technique, and change the underlying logged data. However, SOFA does not target
the study of the other research topics in our agenda, i.e., multi-step reasoning, environment uncertainty and slate
recommendation.
OBP [41] is a semi-synthetic, research-oriented simulator for of-policy training evaluation of bandit agents.
Using real logs of an online retail platforms collecting with several policies, it can evaluate the quality of of-policy
evaluation estimators and therefore help research in that direction. However, it does not address our other
concerns, i.e., multi-step reasoning, environment uncertainty and slate recommendation.

7 CONCLUSION

Summary. In this paper, we have introduced SARDINE, a simulator for automated recommendation in a
dynamic and interactive environments. Our eforts seek to address diferent shortcomings identiied in existing
recommendation simulators: (i) a lack of comprehensiveness in the covered research questions, that compels
researchers and practioners to scatter their study across several simulators; (ii) a lack of interpretability and
controllability, when speciic aspects of the simulator depend on the setting of multiple parameters; (iii) the
inability to study in isolation the phenomena and efects of interest in the simulator; (iv) the solvability of the
simulator through trivial of-the-shelf baselines; and (v) the diiculty for researchers and practitioners to make
additions and changes to the simulator to study certain directions in more depth, or to investigate new research
questions.

In an efort to cover a wide range of problems studied in recommendation, we devised our simulator to enable
the investigation of four over-arching research topics, including the multi-step reasoning capacity of models
(RT1), the ability to learn models from biased data (RT2), the robustness to uncertainty (RT3), and the challenges
associated with recommending slates (RT4). Concretely, these research topics translate into six dimensions ś
that the practioner may or may not decide to include in their instantiation of the simulator ś spanning the
recommendation type (single-item vs. slate recommendation), the inclusion of a boredom and/or inluence
mechanism, the level of uncertainty in the clicking process, the state observability (full vs. partial), and whether
the task is reranking.
We then conducted extensive experiments on a set of nine environments derived from SARDINE. These

environments have been selected to constitute diverse combinations of the aforementioned dimensions and thus
provide a good coverage of our four research topics. In our experiments, we compared various methods which
include both simple baselines and state-of-the-art approaches. To foster reproducibility and enable researchers to
draw from this work to develop their own environments, we release the code for the simulator,11 as well as the

11https://github.com/naver/sardine

ACM Trans. Recomm. Syst.

https://github.com/naver/sardine

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 25

detailed speciications for each environment and the implementation for all the compared methods.12

Findings. Through our experiments on nine SARDINE environments, we derived some valuable insights on the
behavior of existing approaches in certain settings, demonstrating the usefulness of our simulator. First, we found
that the SAC + Top-K approach, which combines the widely used SAC agent to a simple top-K ranker, showed
impressive performance across the diferent environments and demonstrated a high stability. To the best of our
knowledge, this approach is rarely considered as a baseline in RL-based slate recommendation works (except
in [11]) despite its efectiveness and relative simplicity in comparison to state-of-the-art models. Therefore, we
advocate for its usage as a baseline in future work on slate recommendation in dynamic environments.

To slightly nuance this irst inding, we wish to add as a caveat that SAC + Top-K may be particularly dependent
on the high quality of the item embeddings used. The performance of this approach was particularly high when
using the ideal item embeddings (i.e., the ones that are used inside the simulator), but it decreased by a good
margin when we replaced the ideal item embeddings with sub-optimal, matrix factorization embeddings. In
comparison, the SAC + GeMS [11] approach seemed to be more robust overall to the item embedding quality.
The recent hyper-actor critic (HAC) approach [30] was the most impacted by the quality of item embeddings in
the studied settings. Moreover, we found that this approach was more afected than other methods by a highly
dynamic environment with a drift in the user interests. We attribute this to the supervised click prediction loss
used in HAC, which favors immediate reward over multi-step reasoning in the model.

Secondly, we studied how a transformer state encoder compare to a GRU state encoder in partially observable
environments, and identiied that the former tends to outperform the latter. This was notable in particular on
environments where the click uncertainty was medium or high. This inding on the superiority of the transformer
over the GRU as a state encoder goes in line with previous studies [17] and thus it does not come as a surprise.
However, the impact of the level of click uncertainty on the state encoder is a subject that has not been considered
a lot in the recommendation literature, and might be a topic worth investigating more deeply.

Finally, we conducted experiments on the impact of presentation bias in the user feedback in a recommendation
scenario.We notably found that when the environment is dynamic, clickmodels trained olinemay be less accurate
than on static environments, which can have a detrimental efect on downstream tasks, such as counterfactual
learning-to-rank or oline reinforcement learning. Our experiments also open up the possibility of studying the
end-to-end training of RL agents from biased data, including a click modeling step.

Overall, the experiments we conducted act as guidance on how to use the simulator, examples of use cases that
can be studied through SARDINE, and more importantly as a call for more research on dynamic and interactive
approaches for recommender systems. The insights we gathered throughout our experiments also reinforce the
usefulness of simulated evaluation in general, and SARDINE in particular.

Future work. While we designed our simulator to be lexible and conigurable, so that researchers can tweak the
experimental setup to their needs, we did not implement variants of the simulator that target the study of many
of the research questions associated with our agenda (Section 1.2). For instance, the performance of agents when
the environment is non-stationary (e.g., due to changes in the world) is still largely unknown [38], and could be
investigated in SARDINE. Similarly, reaching the best possible policy in a limited number of deployments, a task
known as deployment-eiciency [32], as well as continual learning [52], which aims to deploy agents that keep
on learning, could be explored in the recommendation scenario thanks to SARDINE. We hope our simulator can
foster the experimentation of such novel ideas in recommender systems research.

ACKNOWLEDGMENTS

This research was (partially) funded by the Hybrid Intelligence Center, a 10-year program funded by the Dutch
Ministry of Education, Culture and Science through the Netherlands Organisation for Scientiic Research,

12https://github.com/RomDefayet/SARDINE_Experiments

ACM Trans. Recomm. Syst.

https://github.com/RomDeffayet/SARDINE_Experiments

26 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Table 6. Value of the simulator hyperparameters for the WebtoonSlateTopK-Bored environment. The description of the

hyperparameters’ meaning and role is detailed in Table 1.

Environment name
Hyperparameter value

� � �I �T � � � � �b �b �b � O

WebtoonSlateTopK-Bored 100 10 669 16 100 0.65 1.0 0.85 10 5 5 1.0 full

https://hybrid-intelligence-centre.nl, project LESSEN with project number NWA.1389.20.183 of the research
program NWA ORC 2020/21, which is (partly) inanced by the Dutch Research Council (NWO), and the FINDHR
(Fairness and Intersectional Non-Discrimination in Human Recommendation) project that received funding from
the European Union’s Horizon Europe research and innovation program under grant agreement No 101070212.

All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

A EFFICIENCY

On a single Intel Xeon Gold 6338 CPU, we found that our simulator can operate at approximately 4, 500 steps
(i.e., user interactions) per second with the SlateTopK-Bored environment and up to 5, 000 steps per sec-
ond on the SingleItem-Static environment. Moreover, training a SAC+TopK agent on SlateTopK-Bored or
SlateTopK-BoredInf for 500, 000 training steps, as in Section 5.2, takes around 40 minutes on a single NVIDIA
A100 GPU.

B WEBTOON EXPERIMENT

B.1 Environment description

The environments introduced in Section 4 and experimented on in Section 5 are based on purely synthetic items
with uniformly drawn topic-item assignments. While these environments enabled us to derive interesting insights,
one might question whether such environments relect a real-life scenario where (i) topic-item assignments are
not uniformly drawn (i.e., some topics tend to co-occur within items), (ii) item-topic distribution is skewed (i.e.,
some topics are more prominent than others among items), and (iii) user-topic distribution is skewed (i.e., some
topics are more popular than others among users). To showcase the possibilities of SARDINE to address such
a scenario, we deine a semi-synthetic environment named WebtoonSlateTopK-Bored that presents the same
characteristics as SlateTopK-Bored with the diference that its items are based on the real-world catalog of
the Webtoon13 online comics platform. The hyperparameters for this environment are summarized in Table 6.
Diferently from SlateTopK-Bored, WebtoonSlateTopK-Bored includes 669 items and 16 topics.

User and item embeddings. In this experiment, we consider that we only have access to an item catalog, which
does not directly include embeddings. Therefore, item and user embeddings need to be generated under the
constraints imposed by the catalog (e.g., item-topic assignments), leading to a semi-synthetic setting. To obtain
item and user embeddings based on the Webtoon catalog, we slightly changed the generation process described
in Section 3.1. For item embeddings, steps (2) and (3) are removed as item-topic assignments are directly obtained
from the catalog ś these correspond to the genres of an item, such as Drama, Romance, Superhero, Sci-i, etc.
Exploiting these assignments ensures a meaningful co-occurrence of topics within items: for example, the pairs
(Drama, Romance) as well as (Superhero, Sci-i) are more likely to co-occur than the pair (Romance, Superhero).
The distribution of items across topics, i.e., the number of items attributed to each topic, is illustrated in Fig. 7a.
This igure highlights a skewed distribution, with a large share of items pertaining to Fantasy, Drama, or Romance

13https://www.webtoons.com/en (item catalog accessed in January 2022).

ACM Trans. Recomm. Syst.

https://hybrid-intelligence-centre.nl
https://www.webtoons.com/en

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 27

Fantasy
Drama

Romance
Actio

n
Comedy

Slice
 of lifeThrille

r

Supernatural
Sci-fi

Superhero

Heartwarming
Horror

Mystery
Sports

Histo
rica

l

Informative
0

50

100

150

200

Nu
m

be
r o

f i
te

m
s

(a) Item distribution across topics

Romance

Slice
 of life

Comedy
Drama

Sports
Fantasy

Actio
n

Supernatural

Heartwarming
Horror

Superhero
Histo

rica
l

Sci-fiThrille
r

Mystery

Informative
0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

(b) Topic prior for user embeddings

Fig. 7. Properties of Webtoon items and topics (i.e., Webtoon categories). Fig. 7a depicts the number of items atributed to

each topic, based on the actual item-category assignments in the Webtoon catalog. Fig. 7a illustrates the topic prior used for

generating user embeddings in SARDINE, which is drawn from the number of likes obtained for the items of each category.

topics, and a much smaller share of items with Sports, Historical or Informative topics.
To generate user embeddings, we changed step (3) from the embedding generation process in Section 3.1 to

relect the fact that topics may not be uniformly popular among users. More speciically, instead of being sampled
from Unif(T), the topics of interest for a user � (denoted as T� = {��,1, . . . ,��,�T�

} ⊂ T) are sampled from a
categorical, non-uniform prior �T without replacement. The probability �T (�) for a topic � is deined as the ratio
of the average number of likes for items with category � divided by the average number of likes for items with
any category. Formally, �T (�) is deined as follows:

�T (�) =

1
| I� |

∑

�∈I� #likes(�)
∑

� ′∈T
1

| I� ′ |

∑

�∈I� ′
#likes(�)

, (3)

where #likes(�) indicates the number of likes given to item � , and I� is the set of items which pertain to topic
� (i.e., items � such that ��, � > 0). The distribution �T is plotted in Fig. 7b, which highlights as well the skewed
nature of user-topic preferences in the WebtoonSlateTopK-Bored environment.

B.2 Results

Following the protocol and hyperparameters used for the experiments on SlateTopK-Bored (Ideal) (the results
of which are described in Section 5.2, and illustrated in Fig. 3a and Fig. 3b), we compared the same methods
on the WebtoonSlateTopK-Bored environment. The results are shown in Fig. 8, with the return in Fig. 8a
and the boredom in Fig. 8b averaged over validation episodes. A notable diference with the results on the
SlateTopK-Bored environment is the fact that no RL-based approach is able to beat the Greedy Oracle. This
might be explained by the greater diiculty of WebtoonSlateTopK-Bored due to its skewed item-topic and
user-topic distributions. Nonetheless, similarly to the results on SlateTopK-Bored, we observe that among the
RL-based approaches, SAC + Top-K performed the best and is followed by SAC + GeMS. However, diferently
from previous results, HAC underperformed and showed some instability which is illustrated by its high variance.
This suggests that HAC might be less robust and more sensitive to changes in the environment in comparison

ACM Trans. Recomm. Syst.

28 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

0 100000 200000 300000 400000 500000
number of steps

0

20

40

60

80

100

120

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC TopK
SAC GeMS

(a) Return (↑)

0 100000 200000 300000 400000 500000
number of steps

0

10

20

30

40

50

60

70

va
l b

or
ed

om

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC TopK
SAC GeMS

(b) Boredom (↓)

Fig. 8. Results on the WebtoonSlateTopK-Bored environment. The colored envelope surrounding lines indicates the 95%

confidence interval around the mean computed from 5 seeded runs.

to other methods. Overall, this experiment demonstrates that deriving environments with realistic, long-tail
distributions provides interesting and challenging use-cases in SARDINE.

0.85 0.90 0.95 1.00
omega

25

50

75

100

125

150

175

200

225

va
l e

pi
so

di
c

re
tu

rn

Random
Greedy Oracle
HAC
REINFORCE TopK
SAC TopK
SAC GeMS

Fig. 9. Validation return ater 500, 000 training steps on the SlateTopK-BoredInf environment at diferent levels of influence

by the clicked items (the lower � , the higher the influence of clicked items on user preference). The colored envelope

surrounding lines indicates the 95% confidence interval around the mean computed from 5 seeded runs.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 29

C CLICKED ITEM INFLUENCE EXPERIMENT

In this section we focus on the efect of clicked items on the user preference, which can be controlled by
the � parameter introduced in Section 3.4. Concretely, we use the SlateTopK-BoredInf environment and
build a performance proile of the benchmarked algorithms under increasing inluence of the clicked items:
� ∈ {1.0, 0.95, 0.9, 0.85}. Note that � = 1 correponds to the SlateTopK-Bored environment, where clicked items
do not change the user preference. With � < 1, clicked items attract the user by shifting the user preference
embedding towards the embedding of the clicked item. As a result, the system must control for the long-term
efect of its recommendations on user preference, possibly yielding complex dynamics.

As in Section 5.2, we train all models for 500, 000 steps, with ive diferent random seeds. In Figure 9, we report
the validation episodic return obtained after 500, 000 training steps, at four diferent values of � . We ind that
the complex dynamics created by increasing the inluence of clicked items makes it harder for all methods to
reach a high return. In particular, for � ⩽ 0.9, none of the tested methods manages to beat a greedy oracle agent.
Moreover, the relative performance of the diferent methods is sensitive to the strength of item inluence, with
SAC+GeMS being overall more robust than its counterparts and even beating SAC+TopK under lower � values.

D ITEM SCORES

In Figure 10 we report the distribution of scores for items recommended by the methods benchmarked on the
SlateTopK-Bored environment. In this environment, there exists a trade-of between recommending highly
relevant items andmitigating user boredom.We can indeed see that while the greedy oracle algorithm recommends
only highly relevant items, it does not yield as much return as multi-step approaches like HAC, SAC+TopK and
SAC+GeMS. Furthermore, we can spot diferences across methods, as it appears that HAC often recommends
highly relevant items, but also often defaults to poorly relevant items, in contrast to REINFORCE+TopK, which
mostly avoids irrelevant items but also usually fails to accurately estimate user preferences and propose highly
relevant items.
Overall, the availability and interpretability of standardized item scores within our simulator14 allows us to

complement the information contained in the inal return obtained by each method, and therefore to better
qualify the strengths and weaknesses of each method.

14Item scores are returned by the step method of the simulator under info["scores"].

ACM Trans. Recomm. Syst.

30 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Ra
nd

om

Gree
dy

 Orac
le

REIN
FO

RC
E T

op
K

HAC

SA
C To

pK

SA
C GeM

S

Method

0.0

0.2

0.4

0.6

0.8

1.0

Ite
m

 sc
or

e

Fig. 10. Distribution of the relevance score of items recommended by diferent methods ater training for 500, 000 steps

on SlateTopK-Bored. The higher the score, the higher the click probability. See Section 3.3 for how the relevance score is

computed within the simulator.

ACM Trans. Recomm. Syst.

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 31

REFERENCES

[1] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual Bandits with Linear Payofs. In Proceedings of the 30th

International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 28), Sanjoy Dasgupta and David McAllester

(Eds.). PMLR, Atlanta, Georgia, USA, 127ś135. https://proceedings.mlr.press/v28/agrawal13.html

[2] Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia Lalmas. 2020. Algorithmic Efects on the Diversity of

Consumption on Spotify. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW ’20). Association for Computing Machinery,

New York, NY, USA, 2155ś2165. https://doi.org/10.1145/3366423.3380281

[3] Iason Chaimalas, Duncan Martin Walker, Edoardo Gruppi, Benjamin Richard Clark, and Laura Toni. 2023. Bootstrapped Personalized

Popularity for Cold Start Recommender Systems. In Proceedings of the 17th ACM Conference on Recommender Systems (Singapore,

Singapore) (RecSys ’23). Association for Computing Machinery, New York, NY, USA, 715ś722. https://doi.org/10.1145/3604915.3608820

[4] Rana Chamsi Abu Quba, Salima Hassas, Hammam Chamsi, and Usama Fayyad. 2014. From a łColdž to a łWarmž Start in Recommender

systems. In IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2014). IEEE

Digital Library, Parma, Italy, 1ś7. https://doi.org/10.1109/WETICE.2014.66

[5] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi. 2019. Top-K Of-Policy Correction for a

REINFORCE Recommender System. In WSDM. 456ś464. https://doi.org/10.1145/3289600.3290999

[6] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for Web Search. Morgan & Claypool. https://doi.org/10.2200/

S00654ED1V01Y201507ICR043

[7] Federico Cinus, Marco Minici, Corrado Monti, and Francesco Bonchi. 2022. The Efect of People Recommenders on Echo Chambers and

Polarization. Proceedings of the International AAAI Conference on Web and Social Media 16, 1 (May 2022), 90ś101. https://doi.org/10.

1609/icwsm.v16i1.19275

[8] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An Experimental Comparison of Click Position-Bias Models. In

Proceedings of the 2008 International Conference on Web Search and Data Mining (Palo Alto, California, USA) (WSDM ’08). Association for

Computing Machinery, New York, NY, USA, 87ś94. https://doi.org/10.1145/1341531.1341545

[9] Romain Defayet, Philipp Hager, Jean-Michel Renders, and Maarten de Rijke. 2023. An Oline Metric for the Debiasedness of Click

Models. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (Taipei,

Taiwan) (SIGIR ’23). Association for Computing Machinery, New York, NY, USA, 558ś568. https://doi.org/10.1145/3539618.3591639

[10] Romain Defayet, Thibaut Thonet, Jean-Michel Renders, and Maarten de Rijke. 2022. Oline Evaluation for Reinforcement Learning-

Based Recommendation: A Critical Issue and Some Alternatives. ACM SIGIR Forum 56, 2 (2022), 3:1ś3:14. https://doi.org/10.1145/

3582900.3582905

[11] Romain Defayet, Thibaut Thonet, Jean-Michel Renders, and Maarten de Rijke. 2023. Generative Slate Recommendation with Reinforce-

ment Learning. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining (Singapore, Singapore)

(WSDM ’23). Association for Computing Machinery, New York, NY, USA, 580ś588. https://doi.org/10.1145/3539597.3570412

[12] Chongming Gao, Kexin Huang, Jiawei Chen, Yuan Zhang, Biao Li, Peng Jiang, Shiqi Wang, Zhong Zhang, and Xiangnan He. 2023.

Alleviating Matthew Efect of Oline Reinforcement Learning in Interactive Recommendation. In Proceedings of the 46th International

ACM SIGIR Conference on Research and Development in Information Retrieval (Taipei, Taiwan) (SIGIR ’23). Association for Computing

Machinery, New York, NY, USA, 238ś248. https://doi.org/10.1145/3539618.3591636

[13] Shashank Gupta, Philipp Hager, Jin Huang, Ali Vardasbi, and Harrie Oosterhuis. 2023. Recent Advances in the Foundations and

Applications of Unbiased Learning to Rank. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development

in Information Retrieval (Taipei, Taiwan) (SIGIR ’23). Association for Computing Machinery, New York, NY, USA, 3440ś3443. https:

//doi.org/10.1145/3539618.3594247

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft Actor-Critic: Of-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor. In ICML. 1856ś1865. https://proceedings.mlr.press/v80/haarnoja18b.html

[15] Chen He, Denis Parra, and Katrien Verbert. 2016. Interactive Recommender Systems: A Survey of the State of the Art and Future

Research Challenges and Opportunities. Expert Systems with Applications 56 (2016), 9ś27. https://doi.org/10.1016/j.eswa.2016.02.013

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based Recommendations with Recurrent

Neural Networks. In ICLR. http://arxiv.org/abs/1511.06939

[17] Jin Huang, Harrie Oosterhuis, Bunyamin Cetinkaya, Thijs Rood, and Maarten de Rijke. 2022. State Encoders in Reinforcement Learning

for Recommendation: A Reproducibility Study. In SIGIR. 2738ś2748. https://doi.org/10.1145/3477495.3531716

[18] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. 2020. Keeping Dataset Biases out of the Simulation: A Debiased

Simulator for Reinforcement Learning Based Recommender Systems. In Proceedings of the 14th ACM Conference on Recommender Systems

(Virtual Event, Brazil) (RecSys ’20). Association for Computing Machinery, New York, NY, USA, 190ś199. https://doi.org/10.1145/

3383313.3412252

[19] Wasim Huleihel, Soumyabrata Pal, and Ofer Shayevitz. 2021. Learning User Preferences in Non-Stationary Environments. In Proceedings

of The 24th International Conference on Artiicial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 130), Arindam

ACM Trans. Recomm. Syst.

https://proceedings.mlr.press/v28/agrawal13.html
https://doi.org/10.1145/3366423.3380281
https://doi.org/10.1145/3604915.3608820
https://doi.org/10.1109/WETICE.2014.66
https://doi.org/10.1145/3289600.3290999
https://doi.org/10.2200/S00654ED1V01Y201507ICR043
https://doi.org/10.2200/S00654ED1V01Y201507ICR043
https://doi.org/10.1609/icwsm.v16i1.19275
https://doi.org/10.1609/icwsm.v16i1.19275
https://doi.org/10.1145/1341531.1341545
https://doi.org/10.1145/3539618.3591639
https://doi.org/10.1145/3582900.3582905
https://doi.org/10.1145/3582900.3582905
https://doi.org/10.1145/3539597.3570412
https://doi.org/10.1145/3539618.3591636
https://doi.org/10.1145/3539618.3594247
https://doi.org/10.1145/3539618.3594247
https://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1016/j.eswa.2016.02.013
http://arxiv.org/abs/1511.06939
https://doi.org/10.1145/3477495.3531716
https://doi.org/10.1145/3383313.3412252
https://doi.org/10.1145/3383313.3412252

32 • Romain Defayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke

Banerjee and Kenji Fukumizu (Eds.). PMLR, 1432ś1440. https://proceedings.mlr.press/v130/huleihel21a.html

[20] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier.

2019. SlateQ: A Tractable Decomposition for Reinforcement Learning with Recommendation Sets. In Proceedings of the Twenty-Eighth

International Joint Conference on Artiicial Intelligence, IJCAI-19. International Joint Conferences on Artiicial Intelligence Organization,

2592ś2599. https://doi.org/10.24963/ijcai.2019/360

[21] Eugene Ie, Chih wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: A

Conigurable Simulation Platform for Recommender Systems. arXiv:1909.04847 [cs.LG]

[22] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker. 2016. Recommender Systems Ð beyond Matrix Completion.

Commun. ACM 59, 11 (oct 2016), 94ś102. https://doi.org/10.1145/2891406

[23] Olivier Jeunen. 2023. A Common Misassumption in Online Experiments with Machine Learning Models. In PERSPECTIVES workshop at

RecSys’23. https://arxiv.org/abs/2304.10900

[24] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased Learning-to-Rank with Biased Feedback. In WSDM.

781ś789. https://doi.org/10.1145/3018661.3018699

[25] Haruka Kiyohara, Ren Kishimoto, Kosuke Kawakami, Ken Kobayashi, Kazuhide Nataka, and Yuta Saito. 2023. SCOPE-RL: A Python

Library for Oline Reinforcement Learning, Of-Policy Evaluation, and Policy Selection. arXiv preprint arXiv:23xx.xxxxx (2023).

https://github.com/hakuhodo-technologies/scope-rl

[26] Norman Knyazev and Harrie Oosterhuis. 2023. A Lightweight Method for Modeling Conidence in Recommendations with Learned

Beta Distributions. In RecSys’23. Association for Computing Machinery, New York, NY, USA. https://arxiv.org/abs/2308.03186

[27] Hojoon Lee, Dongyoon Hwang, Kyushik Min, and Jaegul Choo. 2022. Towards Validating Long-Term User Feedbacks in Interactive

Recommendation Systems. In SIGIR. 2607ś2611. https://doi.org/10.48550/arXiv.2308.11137

[28] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A Contextual-Bandit Approach to Personalized News Article

Recommendation. In Proceedings of the 19th International Conference on World Wide Web (Raleigh, North Carolina, USA) (WWW ’10).

Association for Computing Machinery, New York, NY, USA, 661ś670. https://doi.org/10.1145/1772690.1772758

[29] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016.

Continuous control with deep reinforcement learning. In ICLR.

[30] Shuchang Liu, Qingpeng Cai, Bowen Sun, Yuhao Wang, Ji Jiang, Dong Zheng, Peng Jiang, Kun Gai, Xiangyu Zhao, and Yongfeng Zhang.

2023. Exploration and Regularization of the Latent Action Space in Recommendation. In WWW. 833ś844. https://doi.org/10.1145/

3543507.3583244

[31] Angshul Majumdar and Anant Jain. 2017. Cold-start, warm-start and everything in between: An autoencoder based approach to

recommendation. In 2017 International Joint Conference on Neural Networks (IJCNN). 3656ś3663. https://doi.org/10.1109/IJCNN.2017.

7966316

[32] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Oir Nachum, and Shixiang Gu. 2020. Deployment-Eicient Reinforcement Learning

via Model-Based Oline Optimization. arXiv:2006.03647 [cs.LG]

[33] SeanM. McNee, John Riedl, and Joseph A. Konstan. 2006. Being Accurate is Not Enough: HowAccuracy Metrics Have Hurt Recommender

Systems. In CHI ’06 Extended Abstracts on Human Factors in Computing Systems (Montréal, Québec, Canada) (CHI EA ’06). Association

for Computing Machinery, New York, NY, USA, 1097ś1101. https://doi.org/10.1145/1125451.1125659

[34] Rishabh Mehrotra. 2021. Algorithmic Balancing of Familiarity, Similarity, & Discovery in Music Recommendations. In Proceedings of

the 30th ACM International Conference on Information & Knowledge Management (Virtual Event, Queensland, Australia) (CIKM ’21).

Association for Computing Machinery, New York, NY, USA, 3996ś4005. https://doi.org/10.1145/3459637.3481893

[35] Prem Melville and Vikas Sindhwani. 2010. Recommender Systems. Springer US, Boston, MA, 829ś838. https://doi.org/10.1007/978-0-

387-30164-8_705

[36] Harrie Oosterhuis. 2021. Computationally Eicient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness. In

Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (Virtual Event, Canada)

(SIGIR ’21). Association for Computing Machinery, New York, NY, USA, 1023ś1032. https://doi.org/10.1145/3404835.3462830

[37] Harrie Oosterhuis and Maarten de Rijke. 2021. Robust Generalization and Safe Query-Specialization in Counterfactual Learning to

Rank. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY,

USA, 158ś170. https://doi.org/10.1145/3442381.3450018

[38] Sindhu Padakandla, Prabuchandran K. J., and Shalabh Bhatnagar. 2020. Reinforcement Learning Algorithm for Non-stationary

Environments. Applied Intelligence 50, 11 (jun 2020), 3590ś3606. https://doi.org/10.1007/s10489-020-01758-5

[39] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou. 2018. RecoGym: A Reinforcement Learning

Environment for the problem of Product Recommendation in Online Advertising. arXiv:1808.00720 [cs.IR]

[40] Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan. 2015. Active Learning in Recommender Systems. Springer US, Boston,

MA, 809ś846. https://doi.org/10.1007/978-1-4899-7637-6_24

[41] Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. 2021. Open Bandit Dataset and Pipeline: Towards Realistic and

Reproducible Of-Policy Evaluation. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks,

ACM Trans. Recomm. Syst.

https://proceedings.mlr.press/v130/huleihel21a.html
https://doi.org/10.24963/ijcai.2019/360
https://arxiv.org/abs/1909.04847
https://doi.org/10.1145/2891406
https://arxiv.org/abs/2304.10900
https://doi.org/10.1145/3018661.3018699
https://github.com/hakuhodo-technologies/scope-rl
https://arxiv.org/abs/2308.03186
https://doi.org/10.48550/arXiv.2308.11137
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/3543507.3583244
https://doi.org/10.1145/3543507.3583244
https://doi.org/10.1109/IJCNN.2017.7966316
https://doi.org/10.1109/IJCNN.2017.7966316
https://arxiv.org/abs/2006.03647
https://doi.org/10.1145/1125451.1125659
https://doi.org/10.1145/3459637.3481893
https://doi.org/10.1007/978-0-387-30164-8_705
https://doi.org/10.1007/978-0-387-30164-8_705
https://doi.org/10.1145/3404835.3462830
https://doi.org/10.1145/3442381.3450018
https://doi.org/10.1007/s10489-020-01758-5
https://arxiv.org/abs/1808.00720
https://doi.org/10.1007/978-1-4899-7637-6_24

SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments • 33

J. Vanschoren and S. Yeung (Eds.), Vol. 1. Curran. https://datasets-benchmarks-proceedings.neurips.cc/paper_iles/paper/2021/ile/

33e75f09dd601bbe69f351039152189-Paper-round2.pdf

[42] Otmane Sakhi, David Rohde, and Nicolas Chopin. 2023. Fast Slate Policy Optimization: Going Beyond Plackett-Luce.

arXiv:2308.01566 [cs.LG]

[43] Marlesson R. O. Santana, Luckeciano C. Melo, Fernando H. F. Camargo, Bruno Brandão, Anderson Soares, Renan M. Oliveira, and

Sandor Caetano. 2020. MARS-Gym: A Gym Framework to Model, Train, and Evaluate Recommender Systems for Marketplaces. In 2020

International Conference on Data Mining Workshops (ICDMW). 189ś197. https://doi.org/10.1109/ICDMW51313.2020.00035

[44] Masahiro Sato. 2021. Online Evaluation Methods for the Causal Efect of Recommendations. In Proceedings of the 15th ACM Conference

on Recommender Systems (Amsterdam, Netherlands) (RecSys ’21). Association for Computing Machinery, New York, NY, USA, 96ś101.

https://doi.org/10.1145/3460231.3474235

[45] Sebastian Sequoiah-Grayson and Luciano Floridi. 2022. Semantic Conceptions of Information. In The Stanford Encyclopedia of Philosophy

(Spring 2022 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University.

[46] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019. Virtual-Taobao: Virtualizing Real-World Online Retail

Environment for Reinforcement Learning. Proceedings of the AAAI Conference on Artiicial Intelligence 33, 01 (Jul. 2019), 4902ś4909.

https://doi.org/10.1609/aaai.v33i01.33014902

[47] Nícollas Silva, Heitor Werneck, Thiago Silva, Adriano C.M. Pereira, and Leonardo Rocha. 2022. Multi-Armed Bandits in Recommendation

Systems: A Survey of the State-of-the-art and Future Directions. Expert Systems with Applications 197 (2022), 116669. https://doi.org/10.

1016/j.eswa.2022.116669

[48] Aixin Sun. 2023. Take a Fresh Look at Recommender Systems from an Evaluation Standpoint. In Proceedings of the 46th International

ACM SIGIR Conference on Research and Development in Information Retrieval (Taipei, Taiwan) (SIGIR ’23). Association for Computing

Machinery, New York, NY, USA, 2629ś2638. https://doi.org/10.1145/3539618.3591931

[49] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien Jose, and Imed Zitouni. 2017.

Of-Policy Evaluation for Slate Recommendation. In Proceedings of the 31st International Conference on Neural Information Processing

Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 3635ś3645.

[50] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris,

Arjun K.G., Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhof, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.

Younis. 2023. Gymnasium. https://doi.org/10.5281/zenodo.8127026

[51] Kai Wang, Zhene Zou, Minghao Zhao, Qilin Deng, Yue Shang, Yile Liang, Runze Wu, Xudong Shen, Tangjie Lyu, and Changjie Fan.

2023. RL4RS: A Real-World Dataset for Reinforcement Learning Based Recommender System. In Proceedings of the 46th International

ACM SIGIR Conference on Research and Development in Information Retrieval (Taipei, Taiwan) (SIGIR ’23). Association for Computing

Machinery, New York, NY, USA, 2935ś2944. https://doi.org/10.1145/3539618.3591899

[52] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. 2023. A Comprehensive Survey of Continual Learning: Theory, Method and

Application. arXiv:2302.00487 [cs.LG]

[53] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M. Jose, Fuli Feng, and Xiangnan He. 2022. Learning Robust Recommenders through

Cross-Model Agreement. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for

Computing Machinery, New York, NY, USA, 2015ś2025. https://doi.org/10.1145/3485447.3512202

[54] Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina Christakopoulou, and Zhaochun Ren. 2022. Rethinking

Reinforcement Learning for Recommendation: A Prompt Perspective. In Proceedings of the 45th International ACM SIGIR Conference on

Research and Development in Information Retrieval (Madrid, Spain) (SIGIR ’22). Association for Computing Machinery, New York, NY,

USA, 1347ś1357. https://doi.org/10.1145/3477495.3531714

[55] Eva Zangerle and Christine Bauer. 2022. Evaluating Recommender Systems: Survey and Framework. ACM Comput. Surv. 55, 8, Article

170 (dec 2022), 38 pages. https://doi.org/10.1145/3556536

ACM Trans. Recomm. Syst.

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/33e75ff09dd601bbe69f351039152189-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/33e75ff09dd601bbe69f351039152189-Paper-round2.pdf
https://arxiv.org/abs/2308.01566
https://doi.org/10.1109/ICDMW51313.2020.00035
https://doi.org/10.1145/3460231.3474235
https://doi.org/10.1609/aaai.v33i01.33014902
https://doi.org/10.1016/j.eswa.2022.116669
https://doi.org/10.1016/j.eswa.2022.116669
https://doi.org/10.1145/3539618.3591931
https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.1145/3539618.3591899
https://arxiv.org/abs/2302.00487
https://doi.org/10.1145/3485447.3512202
https://doi.org/10.1145/3477495.3531714
https://doi.org/10.1145/3556536

	Abstract
	1 Introduction
	1.1 The role of simulators in recommender systems research
	1.2 A research agenda for interactive recommender systems
	1.3 Our contributions

	2 Problem definition
	3 Simulator
	3.1 Item and user embeddings
	3.2 Initial recommendation
	3.3 Relevance computation & click model
	3.4 Boredom and influence mechanisms
	3.5 Full observability vs partial observability

	4 Experimental Setup
	4.1 Simulated environments
	4.2 Compared methods
	4.3 Hyperparameter setting
	4.4 Evaluation protocol and metrics

	5 Results
	5.1 Experiments on single item recommendation
	5.2 Experiments on slate top-K recommendation
	5.3 Experiments on slate reranking

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Efficiency
	B Webtoon experiment
	B.1 Environment description
	B.2 Results

	C Clicked item influence experiment
	D Item scores
	References

