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Abstract
Search result diversification plays a crucial role in addressing query

ambiguity and multi-faceted information needs by reducing redun-

dancy across documents. While previous supervised approaches

can achieve superior performance, they require costly, large-scale

annotated data. In contrast, unsupervised methods are more flexi-

ble and training-free but rely on manually designed ranking func-

tions, often leading to suboptimal performance. Inspired by how

humans explore diverse information during real-world searching,

we propose a diversified search agent DIVAgent to combine the

advantages of supervised and unsupervised methods. DIVAgent
introduces LLMs as the “brain” to reason over complex and diverse

search results and delineate human cognitive processes into a work-

flow tailored for search result diversification. Our search agent first

identifies potential user intents and then analyzes the alignment

of each document to the intents via an intent-aware module. To

guide the generation of diversified document rankings, we design

an intent-guided ranker that explicitly links documents to their

dominant intents while performing greedy document selection.

Experimental results demonstrate that DIVAgent significantly out-

performs existing unsupervised baselines and achieves competitive

performance with supervised models, highlighting the promise of

LLMs for diversified ranking in realistic search scenarios.

CCS Concepts
• Information systems → Information retrieval diversity.
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1 Introduction
Information diversification plays a vital role in the information-

seeking process of humans as it addresses two long-standing chal-

lenges: the inherent ambiguity of short queries and the hetero-

geneous information needs of different users when issuing iden-

tical queries. Traditional search engines typically focus on rele-

vance alone and deliver homogeneous search results for a specific

query, overlooking the diverse information needs of users [12, 13,

16, 18, 34, 36, 38]. To bridge this gap, search result diversification

approaches have been devised to present diverse documents cov-

ering various subtopics, and have become indispensable in both

conventional search engines [20, 32, 35, 39, 50, 54] and emerging

retrieval-augmented generation (RAG) systems [15].

Initial efforts for search result diversification focus on unsuper-
vised approaches [4, 9, 35] that use a hyperparameter, 𝜆, to bal-

ance relevance to the query and distinctness between documents,

visualized in Figure 1(a). These methods, while straightforward

and without need for training, heavily rely on manually defined

functions with empirically tuned hyperparameters and typically

yield weaker diversity gains. Consequently, research has shifted

towards supervised learning [14, 42, 47, 50, 53, 54]. As shown in

Figure 1(b), these methods construct approximate ideal rankings as

ground-truth rankings and automatically optimize diverse ranking

functions, leading to superior diversified ranking quality. Never-

theless, supervised learning approaches demand large-scale and

high-quality labeled training data. Constructing such data is costly

and labor-intensive. E.g., in the widely used ClueWeb09 dataset,

human effort is needed to mine potential user intents for each

query from query logs and to annotate document relevance corre-

sponding to each user intent. This leads to an important research

question: Can we combine the advantages of unsupervised and super-
vised methods to develop a method that is simple and with minimal
human involvement, while ensuring effectiveness and transferability?

Large language models (LLMs) [19, 29, 44] offer a promising

solution to this problem. With strong zero-shot and few-shot gen-

eralization capabilities, they have attracted growing interest in

using their zero-shot language understanding and reasoning ca-

pabilities in the information retrieval (IR) domain [26, 52]. Most
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Figure 1: The comparison between our diversified search
agent and previous unsupervised and supervised approaches.

approaches [43] focus on exploiting LLMs for relevance ranking, ne-

glecting the diversity of ranking results. Compared to conventional

relevance ranking, search result diversification involves striking

a delicate balance between relevance and the coverage of diverse

user intents. This dual objective introduces additional complexity

to the ranking process. Further complicating this problem is the

fact that LLMs are not explicitly trained to optimize for diversity

during pretraining. Consequently, LLMs inherently lack a proper

understanding of diversity in the context of IR. Therefore, effec-

tively using the LLMs’ capabilities for diversified document ranking

remains a challenging and unexplored problem.

Considering the aforementioned concerns, we take inspiration

from human search behavior [2, 21, 25, 37]. When people confront

complex and diverse information from a search engine, they can

effectively analyze and extract information to satisfy their diverse

information needs. E.g., when a user issues a query such as London
travel guide, she may simultaneously seek information about tourist
attractions, local cuisine, and public transportation. To fulfill these

diverse needs, users typically engage in a diversified exploration

process: they begin by internally formulating specific information

searching goals based on their latent intents, then sequentially scan

the search engine results, selectively engaging with documents that

introduce novel and intent-relevant aspects. Redundant or overlap-

ping content is often skipped. This greedy selection process and

the intrinsic intent comprehension capability address the previous

challenges posed by integrating LLM in search result diversification.

We propose a Diversified search Agent (DIVAgent) that mimics

human search behavior to produce diversified document rankings.

We use LLMs [1, 19, 29, 44] as the “brain” of our search agent, be-

cause of their strong comprehension and superior performance in

various scenarios without task-specific fine-tuning. To tailor LLMs

for search result diversification, we design an agent architecture

with three key modules: an intent-aware module, a memory mod-

ule, and an intent-guided ranker module. When receiving a query,

the intent-aware module identifies potential user intents underly-
ing the query. Then, the agent iteratively examines each candidate

document to determine which intents it satisfies. Key information

from these assessments is stored in the memory module for sub-
sequent processing. To guide the search agent to produce a more

diversified ranking, we devise an intent-guided ranker module.
This module generates the final document ranking while explic-

itly associating each document with its dominant intent, thereby

enhancing the diversity and interpretability of the search results.

Experimental results demonstrate that DIVAgent can signifi-

cantly outperform existing methods without task-specific fine-

tuning and also achieve competitive results compared with super-

vised approaches. This indicates the benefit of mimicking human

search behavior for building a diversified search agent. We fur-

ther conduct comprehensive analyses to investigate the efficiency

and performance of DIVAgent with different experiment settings,

validating the robustness and wide applicability of our search agent.

Our main contributions are three-fold:

(1) We propose a diversified search agent, DIVAgent, that uses
LLMs to enhance the diversity of document ranking. This ap-

proach combines the strengths of unsupervised and supervised

methods, achieving effective performance without relying on

labeled data and task-specific fine-tuning.

(2) We take inspiration from human search behavior and devise

a three-stage workflow, offering a systematic and explainable

way to identify potential user intents and assess the relevance

between documents and these intents.

(3) We introduce an intent-guided ranker module that not only

generates the final document ranking but also explicitly as-

sociates each document with its covered intents. This design

enhances the search agent’s ability to produce more diversified

and interpretable rankings.

2 Related Work
2.1 Search Result Diversification
Search result diversification approaches can be divided into unsu-

pervised and supervised approaches.

Unsupervised Approaches. Pioneering unsupervised search

result diversification approaches date back to Maximum Marginal

Relevance (MMR) [4], which introduced a hyperparameter 𝜆 to bal-

ance the query-document relevance and diversity of documents.

Following MMR, xQuAD [35] used sub-queries representing pseudo

user intents and diversified document rankings by directly estimat-

ing the relevance of the retrieved documents to each sub-queries.

PM2 [9] further optimized proportionality by iteratively determining

the topic that best maintained the overall proportionality. Subse-

quently, HxQuAD/HPM2 [17] extended the concepts of xQuAD and PM2
by incorporating hierarchical subtopics to better model user intents,

while TxQuAD/TPM2 [10] focused on directly modeling term-level

subtopics, addressing the challenge of subtopic mining.

Supervised Approaches. Supervised approaches automatically

learn the ranking functions for search result diversification by

building approximate ideal rankings as ground-truth rankings.

R-LTR [54] treated search result diversification as a learning-to-

ranking problem and optimized ranking functions with constructed

ground-truth rankings. To directly optimize evaluation metrics,

PAMM [47] devised a maximal marginal relevance model for ranking,

while DALETOR [50] proposed diversification-aware losses to ap-

proach the optimal ranking. NTN [48] further automatically learned

a nonlinear novelty function for measuring the subtopic coverage

of documents. With the advancement of deep neural networks,

DSSA [20] proposed a list-pairwise loss for effectively diversifying

document ranking. Moreover, DESA [32] employed the attention

mechanism to model the novelty of documents and the explicit

subtopics. Based on DESA [32], GDESA [33] incorporated greedy
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document selection to approach global optimal ranking results.

To address the issue of high-quality training samples shortage,

DVGAN [22] adopted Generative Adversarial Networks (GANs) to

produce more training samples efficiently while CL4DIV [14] in-

tegrated contrastive learning for learning better initial document

representation. Graph4DIV [39] and KEDIV [40] further used graph

neural networks for measuring the intent coverage differences

among documents. To model subtle document subtopic coverage,

HAD [11] proposed a hierarchical attention framework to combine

intra- and inter-document interactions while PAD [41] segmented

the entire document into multiple passages for passage-aware inter-

action. Besides, DUB [51] introduced an aspect extractor to enhance

the intrinsic interpretability and effectiveness of the model.

Previous unsupervised approaches are straightforward but demon-

strate inferior diversity improvements. In contrast, supervised ap-

proaches perform better but are constrained by the scarcity of

labeled data. In this paper, we take inspiration from the human

information-seeking process and devise a search agent to directly

diversify document ranking without task-specific fine-tuning.

2.2 LLM Search Agents
The abilities of large language models (LLMs) have attracted the

interest of researchers to explore LLMs in information retrieval.

Pioneering work dates back to WebGPT [28], which adopted LLMs

to automatically interact with search engines for answering open-

ended questions. MindSearch [6] further introduced a multi-agent

framework to solve information-seeking and integration tasks in

a web scenario. Another type of work [24, 43] directly explores

LLMs for list-wise ranking. RankGPT [43] proposed a prompt-based

framework that uses ChatGPT for zero-shot relevance passage

ranking. RankVicuna [30] and RankZephyr [31] distill the ranking

capabilities of ChatGPT or GPT-4 into moderate-size LLMs.

Different from thesemethods that solely focus on query-document

relevance, in this work, we devise a diversified search agent, aiming

to better satisfy the diverse information needs of users.

3 Methodology
Search result diversification has emerged as an effective approach

to enhance user satisfaction by providing information covering

various aspects. While previous supervised methods demonstrate

superior performance, they are heavily constrained by the scarcity

of high-quality labeled data. Conversely, unsupervised methods typ-

ically depend on manually devised functions, limiting their adapt-

ability and generalizability. Inspired by how humans intuitively

select diverse content during real-world information seeking, we

propose a diversified search agent DIVAgent to combine the ad-

vantages of both paradigms. DIVAgent introduces LLMs as the

“brain” to reason over complex and diverse information and delin-

eate human search processes into three modules specialized for

diversification. These modules work together to accurately identify

“user intents” and fine-grained “document intent coverage” and to

effectively diversify document rankings. The architecture of our

search agent is depicted in Figure 2.

3.1 Problem Formulation
To begin, the task of search result diversification can be defined

as follows. Given a current query 𝑞 and its initial ad-hoc ranked

list D = {𝑑1, . . . , 𝑑𝑛} that contains 𝑛 candidate documents, search

result diversification models re-rank these documents and generate

a diversified document ranking list R, in which novel documents

are ranked higher and redundant ones are ranked lower.

Since enumerating all possible diversified document lists is an

NP-hard problem, typically, previous methods either iteratively

select the most novel and relevant document or simultaneously

score all documents. In this paper, we incorporate the two strategies

and devise an LLM-driven diversified search agent.

3.2 Intent-Aware Module
The primary challenges of search result diversification lie in two

aspects: (i) accurately identifying diverse user intents underlying

search queries, and (ii) effectively recognizing the intent cover-

age of documents. While LLMs have demonstrated proficiency in

relevance ranking tasks [24, 43, 52], directly achieving diversified

ranking poses significant challenges. The pretraining objective of

LLMs—next token prediction—biases them toward dominant lin-

guistic patterns and statistical co-occurrences, potentially overlook-

ing less frequent user intents and influencing the assessment of

document intent coverage.

Observations of human search behaviors reveal that individuals

naturally employ implicit reasoning and contextual understanding

when navigating non-diversified result lists [21]. They typically

strategically select previously unseen and novel content to col-

lectively satisfy their diverse latent information needs. Drawing

inspiration from this observation, we mirror the human behavior

and introduce an intent-aware module to swiftly detect potential

user intents and effectively model document intent coverage, facili-

tating the subsequent diversifying document ranking process.

3.2.1 User Intent Identification. Recognizing potential user intents

is a crucial step for search result diversification. When a query

encompasses multiple user intents, search engines should provide

diverse results addressing each user intent. In other words, breaking

down queries into multiple user intents enables our search agent

to satisfy different information needs and increase the comprehen-

siveness of document rankings. Previous research has primarily

relied on commercial search engine query logs [45] or query sugges-

tions [20, 32] to construct user intents, which presents scalability

challenges. Noticing the remarkable generalization capability of

LLMs, we devise a user intent identification component that allows

our search agent to automatically identify the potential user intents

associated with a given query.

To ensure the completeness of the decomposed user intents,

our search agent is prompted with the following instruction with

several demonstrations tailored to extract distinct potential user

intents concerning the current query 𝑞:

Prompt 1. Analyze the given query and documents and identify
up to 10 distinct user intents when users issue the query. Each user
intent should be independent, self-contained, and highlight a unique
aspect of the query. Ensuring no semantic overlap among user intents.

Following the above instruction, the LLMwill generate a user intent

list I = {𝑖1, . . . , 𝑖𝑝 } for each query, which will be reused in the

subsequent ranking stage.
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Wikipedia 

https://en.wikipeda.org  › wiki › Jaguar_Cars

Jaguar is the sports car and luxury vehicle brand of Jaguar Land Rover, … 

Jaguar Cars

Wikipedia 

https://en.wikipeda.org  › wiki › Jaguar

The jaguar (Panthera onca) is a large cat species and the only living … 

Jaguar

Jaguar 

https://www.jaguar.com

JAGUAR F-PACE. Luxury performance SUV offering practicality and … 

OUR VEHICLES | Jaguar

Wikipedia 

https://en.wikipeda.org  › wiki › Jacksonville_Jaguars

The Jacksonville Jaguars are a professional American football team … 

Jacksonville Jaguars

Query and candidate documents

Search agent Agent Memory

Intent-guided ranker module

Intent-aware 
module

Ⓐ Animal jaguar Ⓑ Car brand Jaguar Ⓒ American football team

Document-intent alignment
I will go through each document and conduct intent-aware relevance 
assessment, sequentially. 

Document ① focuses on Ⓐ animal jaguar.  
Document ② introduces Ⓑ car brand Jaguar.  
Similar to ②,document ③ talks about Ⓑ car brand Jaguar.  
Document ④ covers Ⓒ American football team Jacksonville Jaguars. 

①
②

③
④

Potential user intents identification

① : Ⓐ > ② : Ⓑ > ④ : Ⓒ > ③ : Ⓑ

Output Final diversified ranking

①  ②  ④  ③

Figure 2: Overview of DIVAgent. Our search agent initially engages with the intent-aware module to identify user intents and
reason about document intent coverage. Task-related information is stored in working memory and passed to the intent-guided
ranker module for greedy-based document selection and intent-guided output.

3.2.2 Document-Intent Alignment. Given the identified potential

user intents, our search agent requires effectively analyzing the

intent coverage of each candidate document, so as to support sub-

sequent diversified document ranking. A straightforward approach

is to pass each intent with each document to our LLM-based search

agent for judging their relevance. But this method leads to substan-

tial computational cost due to repeated model invocations. More

importantly, it fails to capture relative content differences across

documents, which is critical for fine-grained document-intent align-

ment. We adopt a more efficient strategy: feeding all candidate

documents into the search agent simultaneously and prompting the

model to assess their intent coverage comparatively and sequen-

tially. This joint processing allows the model to better understand

the intent coverage and semantic distinctions among candidate

documents, resulting in a more comprehensive alignment. Never-

theless, processing the full content of all documents can be resource-

intensive and may even exceed the context length limits of LLMs.

Even long-context LLMs often struggle to handle such extensive

input effectively. To tackle this problem, we first propose two strate-

gies that empower the search agent to grasp the key concept of each

document while ensuring an efficient document-intent alignment.

Direct Content Extraction.We use the initial segment of each

document—typically the first 𝑁 tokens—as its representative con-

tent. This strategy is inspired by the widely adopted principle in

web design [27], where critical information is intentionally front-

loaded to attract user attention and improve its discoverability.

Prioritizing the beginning of a document allows our search agent to

efficiently assess intent coverage while adhering to computational

and context-length constraints.

Core content Compression. While the beginning of a doc-

ument often contains high-density information, long documents

may address multiple user intents that appear beyond the initial

segment. To capture such content while mitigating context-length

limitations, we design a core content compression mechanism that

generates concise, intent-aware summaries for each document. We

employ our search agent to distill the intent-relevant aspects of

the document via a prompt-based method, allowing for thorough

document comprehension without exceeding computational limits.

After extracting the core content from each document, we in-

struct our search agent to go through each candidate document

and evaluate its intent coverage. To enhance this process, we en-

courage the agent to simulate a human-like deliberation process

through explicit reasoning. Such explicit reasoning facilitates re-

ducing hallucination, improving factual consistency, and leading

to more faithful and interpretable document-intent alignment. The

prompt used to elicit this reasoning behavior is illustrated below:

Prompt 2. Assign an intent_id to each document based on the
intent it most closely addresses (starting from 1). If a document does
not relate to any user intent, assign intent_id to 0.

3.3 Memory Module
Drawing inspiration from thememory structure of the human brain,

we integrate both long-termmemory and working memory into the

memory module for effectively storing and managing information.

3.3.1 Long-term Memory. For people, long-term memory stores

accumulated knowledge, enabling proper reasoning and decision-

making based on prior experience. Analogously, in our diversified

search agent, long-term memory is embodied in the pre-trained

knowledge encoded within the LLMs. This memory encompasses

world knowledge and linguistic patterns that play a foundational

role in enabling the agent’s zero-shot and few-shot generalization

capabilities. Our search agent uses such knowledge to identify user

intent and analyze document intent coverage, without requiring

task-specific supervision.

3.3.2 Working Memory. The working memory serves as a crucial

cognitive component in the human brain, responsible for the stor-

age of information related to ongoing tasks. For DIVAgent, the
working memory typically collaborates with the subsequent ranker

to perform the final diversified document ranking. To guarantee

that the ranking results are comprehensive and aligned with the

diverse information needs of different users, the working memory

needs to provide the following two crucial dimensions of informa-

tion: (i) The current query 𝑞 and the initial document ranking D
constitute the environment information and serve as the fundamen-

tal basis for the whole diversification process. (ii) For each query,
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user intents I, along with the relevance of each candidate docu-

ment to identified user intents (cf. Section 3.2), will be temporarily

saved in working memory as sensory information for executing

the following diversified ranking process.

3.4 Intent-Guided Ranker Module
The ranker serves as the central scoring component, determining

the order of candidate documents. For search result diversification,

the primary objective is to ensure the top-ranked documents cap-

ture a broader range of user intents. In this section, we devise an

intent-guided ranker module for balancing relevance and diversity

and ultimately achieving optimal diversified document rankings.

3.4.1 Greedy-based Selection. As illustrated in Section 3.1, search

result diversification confronts the NP-hard challenge, complicat-

ing the optimization of diversified results. Greedy-based selection

strategies provide a possible solution to this issue [20, 39]. Addition-

ally, LLMs often encounter the lost-in-the-middle phenomenon [23]

when processing lengthy content in a single turn, adversely im-

pacting performance. To mitigate these challenges, we propose a

greedy-based selection mechanism to iteratively select the next doc-

ument considering both novelty and relevance, thereby achieving

the optimal diversified document ranking.

Initially, given a query 𝑞, a query-related candidate document

listD = {𝑑1, . . . , 𝑑𝑛}, and the sensory information (i.e., user intents
I and document-intent relevance), we prompt the search agent to

select the first document𝑑𝑠
1
∈ S based on the relevance to the query.

For the following document selection, it is essential to consider

both the document’s relevance to the query and its distinction from

already selected documents. Our search agent will repeat the above

greedy-based selection steps until selecting the top-𝐾 documents

S = {𝑑𝑠
1
, . . . , 𝑑𝑠

𝐾
} for each query. The whole process is conducted

with the following instructions:

Prompt 3. Re-rank the document based on two criteria: the diver-
sity of user intent and relevance to the query. 1. Start by selecting the
document most relevant to the query. 2. For each subsequent document,
select one that is relevant to the query and introduce new user intents
not covered by previously selected documents. If no new intents are
available, select documents purely by relevance to the query. 3. Ensure
that the final list is reorganized to reflect this selection process.

3.4.2 Intent-Guided Output. To explicitly promote the diversity

of document ranking, we devise an intent-guided output format,

where each document is tagged with the predicted user intent iden-

tifier, i.e., doc_id:intent_id. The intent labels act as soft constraints
during reranking, encouraging novelty and penalizing documents

aligned to the same intent. This leads to rankings with less content

overlap and more novel information per position. Moreover, the

structured output format provides interpretable results, enhancing

explainability, transparency, and ultimately facilitating user trust

in the system. We follow [43] and use the symbol > to guide the

search agent to directly generate the diversified document rank-

ing order without producing an intermediate score. For example,

(1 : 𝐴) > (2 : 𝐵) > · · · , where the number means the document

identifier and the letter indicates the intent identifier.

3.5 Specialization Distillation
Although closed-sourced LLMs demonstrate remarkable capabili-

ties, their deployment is expensive and impacted by high latency. To

avoid these problems, we propose specialization distillation, which

aims to distill the diversified ranking capability of powerful LLMs

into smaller, deployable models.

Formally, given a query 𝑞 and 𝑛 candidate documents, we in-

struct DIVAgent, powered by more capable LLMs (e.g., Claude 3.7
Sonnet), to generate the diversified ranking results based on the

previously introduced reasoning process. The ranking results are

formatted as Section 3.4.2, i.e., (𝑟1 : 𝑖1) > · · · > (𝑟𝑛 : 𝑖𝑛), where 𝑟𝑘
indicates the document ranked at position 𝑘 and 𝑖𝑘 means the intent

covered by 𝑟𝑘 . This output is used as the supervision signal for the

specialization distillation. Considering the limited learning capac-

ity of smaller models, directly distilling the reasoning process to

them is challenging and may lead to capability collapse. Therefore,

the objective of the student model 𝑓𝜃 (𝑞,S, 𝑑+, 𝑑−) is to determine

which document should be prioritized given the selected document

set S. (𝑑+, 𝑑−) is a document pair such that the teacher ranks 𝑑+

higher than 𝑑− . The ranking score is then defined as the genera-

tion probability of the document identifier. We train the student

model using a list-pairwise loss [20] based on the relative ranking

provided by the teacher. The definition of the loss is as follows:

L
list-pairwise

=∑︁
𝑞∈Q

∑︁
𝑜∈𝑂𝑞

|Δ𝑀 | (𝑦𝑜 log(𝑍 ) + (1 − 𝑦𝑜 ) log(1 − 𝑍 )), (1)

where 𝑜 is the sample pair in all sample pairs 𝑂𝑞 of query 𝑞, 𝑍 =

1/(1 + 𝑒−(𝑠+
𝑑
−𝑠−

𝑑
) ), 𝑠𝑑+ and 𝑠𝑑− are the ranking score of document

𝑑+ and 𝑑− , respectively, and𝑀 reflects the margin in utility metrics

(e.g., 𝛼-nDCG) between the pair.

4 Experiments
4.1 Datasets and Evaluation Metrics
In light of the limited datasets suitable for search result diversifi-

cation, we use the ClueWeb09 Category B data collection [3] for

our experiments, aligning with prior research [20, 32, 39].
1
The

ClueWeb09 dataset comprises 200 queries and 40,537 unique docu-

ments from the Web Track 2009-2012 dataset. Notably, queries #95

and #100 are excluded from our experiments due to the absence

of diversity judgments. The remaining 198 queries consist of 3 to

8 manually annotated user intents with binary relevance ratings

assigned at the intent level. To align with the TREC Web Track and

prior approaches [32, 39], we adopt the top 50 results from Lemur

as the prior relevance ranking.
2

For the evaluation metrics, we adopt the official diversity evalua-

tion metrics of Web Track, including ERR-IA [5], 𝛼-nDCG [7], and

NRBP [8] to align with existing methods [14, 22]. These metrics

assess the diversity of document rankings by explicitly rewarding

novelty while penalizing redundancy. These evaluation metrics are

all computed based on the top 20 ranking results. For significance

testing, consistent with previous studies [22, 32, 39, 54], we conduct

a two-tailed paired t-test with 𝑝-value < 0.05.

1
ClueWeb09 Dataset: https://lemurproject.org/clueweb09.php/

2
Lemur Service: http://boston.lti.cs.cmu.edu/Services/cluweb09_batch/
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4.2 Baselines
We compare the proposed search agent with two types of baselines,

including the ad-hoc search and the diversified search. The diversi-

fied search baselines can be roughly categorized into unsupervised

methods and supervised methods.

Ad-hoc Search. Lemur and ListMLE [46] are two representative
ad-hoc search methods without considering diversity. Lemur is the

search model based on the Indri engine.

Diversified Search. (i) xQuAD [35] and PM2 [9] are typical un-
supervised diversification methods that both use a parameter 𝜆 to

combine the relevance score and the diversity score of a document.

Following xQuAD and PM2, TxQuAD/TPM2 [10] further uses terms

to model intents while HxQuAD/HPM2 [17] introduces hierarchical
subtopics with an additional parameter 𝛼 .

(ii) R-LTR [54], PAMM [47], and NTN [48] are representative super-

vised methods using neural networks. We implement NTN based

on R-LTR and PAMM. DSSA [20], DVGAN [22], DESA [32], GDESA [33],

and HAD are explicit supervised models that use query suggestions

as a proxy for actual user intents. We adopt the list-pairwise loss

proposed by DSSA for training these models.

(iii) DALETOR [50], Graph4DIV [39], and PAD are implicit super-

vised search result diversification models. We implement the di-

versification-aware loss in DALETOR based on the evaluation metric

𝛼-nDCG [49]. KEDIV [42] introduces entities and their relationships
from an external knowledge base to model the diversity of doc-

uments, while CL4DIV [14] devises contrastive learning tasks for

initial document representation optimization.

(iv) We also include two latest closed-source LLMs Claude3.5
(Claude 3.5 Sonnet) [1] and GPT-4o [29] for comparison and in-

struct them with specific prompts tailored for search result diver-

sification. Due to the outstanding capabilities of recent reasoning

models, we also introduce one of the most advanced reasoning

LLMs, Claude3.7 (Claude 3.7 Sonnet), for evaluation.

4.3 Implementation Details
For all supervised baseline models, we train the model with the

full dataset and use five-fold cross-validation based on 𝛼-nDCG

to select the best model. In contrast, our search agent operates

without training data. The LLM is accessed through Anthropic and

OpenAI API, including the Claude 3.5 Sonnet, Claude 3.7 Sonnet,

and GPT-4o variants. We set the temperature of generation to 0.3

to balance uncertainty and variability in responses. A one-shot

in-context example is employed in all instruction prompts. We set

𝐾 in the greedy-based ranker to 20. For the LLMs without explicit

reasoning ability (Claude 3.5 Sonnet and GPT-4o), we prompt them

with three different prompts. Conversely, for the reasoning LLMs,

such as Claude 3.7 Sonnet, we concatenate all prompts and ask

the LLM to reason the whole process and generate the diversified

document ranking with one prompt. The average cost of each query

is around 0.05 dollars. For the specialization distillation, we use

LLaMA 3.1-8B with a zero-shot generation instruction and evaluate

the distilled model with five-fold cross-validation. Our code and

more prompts and implementation details are released at Github.
3

3
Open-source code of our search agent DIVAgent: https://github.com/DengZhirui/

DIVAgent/tree/main

Table 1: Overall performance of all methods. Zero-shot in-
dicates model performance without task-specific training.
The best zero-shot results are in bold. † indicates the model
significantly outperforms zero-shot baselines with paired
t-tests at 𝑝-value < 0.05 level.

Task Method Zero-Shot ERR-IA 𝛼-nDCG NRBP

Ad-hoc

search

Lemur ✓ .271 .369 .232

ListMLE ✓ .287 .387 .249

Claude3.7 ✓ .339 .437 .308

Div.

search

R-LTR - .303 .403 .267

PAMM - .309 .411 .271

R-LTR-NTN - .312 .415 .275

PAMM-NTN - .311 .417 .272

DSSA - .356 .456 .326

DALETOR - .364 .461 .333

DESA - .363 .464 .332

DVGAN - .367 .465 .334

GDESA - .369 .469 .337

Graph4DIV - .370 .468 .338

HAD - .387 .480 .361

PAD - .386 .482 .357

KEDIV - .390 .485 .362

CL4DIV - .393 .486 .364

xQuAD ✓ .317 .413 .284

TxQuAD ✓ .308 .410 .272

HxQuAD ✓ .326 .421 .294

PM2 ✓ .306 .411 .267

TPM2 ✓ .291 .399 .250

HPM2 ✓ .317 .420 .279

GPT-4o ✓ .313 .410 .279

Claude3.5 ✓ .337 .435 .305

Claude3.7 ✓ .350 .447 .318

DIVAgent ✓ .386† .478† .358†

4.4 Overall Results
The overall results of our proposed method DIVAgent and all base-

lines are shown in Table 1. We can find that:

(1) DIVAgent significantly outperforms existing ad-hoc and unsu-

pervised diversified search methods on all evaluation metrics. Com-

pared with the best LLM-based unsupervised baseline Claude3.7,
DIVAgent achieves a significant edge with the absolute value of 𝛼-

nDCG improved by 3.1%. This indicates that the superiority of our

method stems from our search agent workflow rather than merely

using LLMs. Besides, DIVAgent also achieves a remarkable perfor-

mance improvement in comparisonwith HxQuAD/HPM2, which is the
best unsupervised baseline without LLMs. HxQuAD/HPM2 adopts a hi-
erarchical structure to represent user intents and scores documents

with manually designed functions, necessitating meticulous hyper-

parameter tuning. In contrast, our proposed diverse search agent

DIVAgent mimics human cognitive processes during the search re-

sult diversification task. This approach requires only the provision

of queries and candidate documents to produce diversified ranking

results, significantly reducing the reliance on manually designed

ranking functions and hyperparameter adjustments.
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Table 2: The case study of DIVAgent on the query #50 “Dog
Heat”. Contents with the same color indicate the same topic.

Query #50 Dog Heat

User intent

identification

[A] Understanding dog heat cycle, [B] Knowing the

symptoms of dog heat, [C] Determining the ideal tem-

perature for dogs, . . ., [E] Dog heatstroke prevention

Direct content

extraction/

Core content

compression

[1]: Female dogs have a 6-7 month heat cycle, with

6-8 days of receptivity to males. . . .

[2]: Pet Street Mall offers a wide variety of dog beds

in different styles, sizes, and materials, . . .

. . .

[49]: A female dog’s heat cycle includes proestrus,

estrus, and diestrus. Signs of heat include vaginal

discharge, restlessness, and increased urination. . . .

[50]: Dogs can suffer from heat stroke, especially in

hot, humid weather. The symptoms and treatment of

dog heat stroke . . .

Document

intent

alignment

I will identify the main topics covered in the docu-

ments based on the user intents:

[1]. Understanding dog heat cycle.

. . .

[49]: Knowing the symptoms of dog heat.

[50]: Dog heatstroke prevention.

Intent-guided

ranker

I’ll rerank based on relevance and topic diversity:

[1]:[A] > [49]:[B] > [50]:[C] > . . .

Final ranking [1] [49] [50] . . .

(2) Intriguingly, DIVAgent can achieve competitive results, and

even surpass some supervised methods, particularly in terms of

ERR-IA and NRBP. This narrowing of the disparity between unsu-

pervised and supervised models is attributable to the intent-aware

reasoning process and the intent-guided output format of DIVAgent,
as well as the textual information modeling capabilities of LLMs.

By employing prompts designed for diversification, DIVAgent elim-

inates the reliance on large-scale annotated data while maintain-

ing comparable effectiveness. Moreover, through prompt-based

interactions with LLMs, DIVAgent naturally generates a transpar-

ent decision-making process and explainable diversified document

ranking. This interpretability distinguishes DIVAgent from tradi-

tional black-box models [14, 32], facilitating more accountable and

user-trustworthy search result diversification systems.

4.5 Case Study
To provide an intuitive demonstration of our DIVAgent, we first
conduct a case study to observe the role of each component in our

workflow. We randomly select query #50 Dog Heat and illustrate

its related intermediate results in Table 2.

Initially, when DIVAgent receives the query Dog Heat, the intent-
aware module first mirrors human search behaviors to analyze

the input and predict several potential user intents. Concurrently,

our search agent will go through each candidate document and

extract its core content with direct content extraction or a core

content compression strategy. By mimicking the human process of

selecting diverse information, our search agent performs document-

intent alignment, reasoning about the intent coverage of each doc-

ument. To facilitate the generation of a diverse document ranking,

Table 3: Results of ablation studies with different compo-
nents belonging to three modules, respectively.

Method ERR-IA 𝛼-nDCG NRBP

DIVAgent .386 .478 .358

w/o User intent identification .370 .464 .339

w/o Document-intent alignment .376 .470 .347

w/o Intent-guided ranking .366 .460 .336

w/ Direct content extraction .386 .478 .358

w/ Core content compression .384 .479 .357

the intent-guided ranker integrates a greedy-based selection strat-

egy with an intent-guided output format. As illustrated in Table 2,

DIVAgent can successfully derive a document ranking encompass-

ing distinct topics at the top of the ranking list, indicating the benefit

of mimicking human search processes for developing DIVAgent.

4.6 Ablation Studies
Next, we conduct ablation studies to explore the influence of differ-

ent components in DIVAgent. We also depict the performance of

different document content modeling mechanisms.

The results are presented in Table 3, and we can observe that

removing any individual component results in a noticeable decline

in performance. This finding demonstrates the importance of each

component in contributing to an effective diversified search agent.

Meanwhile, the exclusion of the intent-guided ranking strategy

leads to the most severe decrease in performance. This indicates

that explicitly guiding the agent to output the document identifier

with its covered intent identifier during the document ranking pro-

cess can facilitate the overall diversity. Besides, both user intent

identification and document-intent alignment contribute a lot to

overall performance. Eliminating either component causes a con-

siderable drop in all metrics (e.g., ERR_IA: 0.386 → 0.370/0.376 and

𝛼-nDCG: 0.478 → 0.464/0.470). This observation is consistent with

our assumption, as more precise and comprehensive modeling of

user intent and document intent coverage judgment encourages

the measurement of the documents’ novelty. Moreover, we observe

that directly extracting document content yields comparable perfor-

mance to compressing it into core summaries. A possible reason is

that important information on web pages is typically front-loaded,

allowing the initial segment of each document to effectively cap-

ture its core content without additional summarization. Given that

content compression introduces additional computational cost, our

search agent adopts direct content extraction for document content

modeling, offering a more efficient yet equally effective solution.

4.7 Piecewise Evaluation
In this section, we conduct a piecewise evaluation to explore the

performance of each component in our search agent. To evaluate

the quality of user intents identified by our search agent, we di-

rectly compare the generated intent sets against those annotated

in the TREC Web Track datasets. Given that exact matching may

overlook semantic similarities and lead to overly rigid evaluation

results, we adopt GPT-4 to assess the relative completeness, and

distinctiveness of the two intent sets. For document-intent align-

ment, direct comparison is challenging due to the different intent

taxonomies between our method and the annotations. To address
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Figure 3: Piecewise evaluation results for user intent identi-
fication and document-intent alignment.

this, we propose to separately use both the user intents and corre-

sponding document-intent relevance annotations from the TREC

dataset and our search agent, and prompt an LLM for diversified

document ranking. The𝛼-nDCG is compared for evaluation. Results

are presented in Figure 3.

Compared to the manually labeled user intents in the TRECWeb

Track 2009–2012 dataset, our search agent achieves superior perfor-

mance, outperforming the TREC annotations in 72.5% of the evalu-

ated cases. The TREC user intents are constructed from commercial

query logs, which, while effective, are inherently constrained by

historical user behavior and high-frequency, mainstream intents.

In contrast, our search agent uses LLMs to directly generate user

intents in a few-shot setting. This enables the discovery of long-tail

user intents and eliminates the need for human intent construction.

As for document-intent alignment, the rankings generated based

on our search agent’s judgments slightly outperform those derived

from the human-labeled annotations. We attribute this improve-

ment to the agent’s ability to capture subtle intent-document rela-

tionships that may be overlooked by log-derived taxonomies. This

indicates that even without manual supervision, our search agent

can support high-quality, diversified document ranking.

4.8 Influence of the Backbone Model
To investigate the influence of the backbone model on the per-

formance of DIVAgent, we conduct experiments with three types

of models: (i) open-sourced models (i.e., Llama 3.1-8B and Llama

3.1-70B); (ii) closed-sourced models without deep reasoning (i.e.,
GPT-4o and Claude 3.5 sonnet); (iii) closed-sourced models with

deep reasoning (i.e., Claude 3.7 sonnet and Gemini-2.5 pro). The

results are shown in Figure 4.

First, we can observe that DIVAgent achieves consistent and ro-

bust efficacy across models with various parameter scales. Notably,

even with a smaller backbone model, such as Llama 3.1-8B, our

search agent can still outperform existing baselines in few-shot

scenarios. This performance stability demonstrates the adaptability

of our search agent to different configurations, guaranteeing its re-

liability in achieving effective results even in resource-constrained

environments. Second, in contrast to both open-source and closed-

source LLMs that lack explicit reasoning mechanisms, our search

agent, when powered by a reasoning-capable model (e.g., Claude
3.7 Sonnet), demonstrates superior performance. This advancement

indicates that the reasoning capability of the backbone model en-

ables a comprehensive and step-by-step analysis of user intent and

document intent coverage, resulting in better and more explainable

diversified rankings.

4.9 Parameter Sensitivity
In DIVAgent, the number of user intents identified in prompt 1 and

the length of the extracted document content in Section 3.2 are

ERR-IA -nDCG NRBP
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Figure 4: Performance with different backbone models on
all evaluation metrics.

two important hyperparameters affecting the performance of our

search agent. To investigate their impact, we conduct experiments

with different hyperparameter settings and record the performance.

The results are shown in Figure 5.

Number of Intents. To identify the optimal number of user

intents for the prompt, we increase it from zero to 20 with equal

spacing in steps of 5, while closely monitoring the performance

changes in terms of all evaluation metrics. Zero means no explicit

mention of the limit on the number of generated user intents. As

depicted in Figure 5 (a), the performance improves progressively as

the window size increases from zero to 10. The peak of the perfor-

mance is reached at the window size set to 10. When the window

size exceeds 10, the performance starts to degrade. This phenome-

non can be attributed to the fact that as the number becomes larger,

the model tends to generate overly fragmented or redundant in-

tents, which not only introduces semantic overlaps among intents

but also disrupts the latter ranking. Therefore, carefully selecting

an appropriate user intent number is crucial for balancing context

comprehension and diversification quality.

Document Length. Secondly, we investigate the impact of doc-

ument input length on overall ranking performance. We test the

number of input tokens per document from 50 to 250 and report

the results in Figure 5 (b). The findings reveal that the performance

can be gradually improved as the length increases from 50 to 100.

This implies that providing additional context enables the model to

better understand document relevance and intent coverage. How-

ever, when the document length exceeds 100, further increases do

not yield additional performance gains. This phenomenon may be

attributed to two factors. First, webpages exhibit a front-loaded

structure, where the most relevant or informative content appears

at the beginning. As such, extending the input length beyond a

certain threshold adds less informative or redundant content. Sec-

ond, LLMs are known to suffer from the “lost-in-the-middle” prob-

lem [23], where important information located in the middle of

a long sequence receives insufficient attention. These issues ulti-

mately constrain the benefit of long document inputs.

4.10 Analysis of Efficiency
In addition to effectiveness, efficiency is also a critical metric for de-

termining user satisfaction. In this section, we break down efficiency

into two primary dimensions: training efficiency and inference effi-

ciency. Training efficiency indicates the duration required to train
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Figure 6: Analysis of training and inference efficiency on
different search result diversification models. The triangles
represent DIVAgent while circles represent baselines.

the model on the labeled dataset, whereas inference efficiency refers

to the query latency during practical application, typically quanti-

fied by seconds. To provide a thorough evaluation of the inference

efficiency of our diversified search agent DIVAgent, we conduct
experiments with both API invocation (Claude 3.7 sonnet) and local

deployment (Llama 3.1-70B).

As depicted in Figure 6, our proposed search agent DIVAgent
demonstrates a balance between efficiency and effectiveness. In con-

trast to supervised methods (e.g., DALETOR and CL4DIV), which re-

quire several hours of training on labeled datasets to achieve optimal

performance, DIVAgent performs effectively without task-specific

training. By using the inherent capabilities of LLMs, DIVAgent elim-

inates the need for time-consuming training processes. Further-

more, compared to unsupervised models (e.g., xQuAD), DIVAgent
demonstrates superior inference efficiency, particularly in local

deployment scenarios. Our experiments indicate that the local de-

ployment of DIVAgent substantially alleviates network latency

issues, resulting in faster query processing times.

These efficiency advantages position DIVAgent as a practical

and scalable solution for real-world applications, particularly in

scenarios characterized by a scarcity of human labeled data. This

approach delivers competitive performance without the need for

additional training.

4.11 Performance of Specialization Distillation
As illustrated in Section 3.5, we propose a specialization distillation

strategy to transfer the diversified ranking ability of powerful expert

LLMs into a specialized smaller model. In this section, we conduct

experiments with Claude 3.7 Sonnet and LLaMA 3.1-8B, and the

results are summarized in Table 4.

Table 4: Results of specialization distillation.

Model Label ERR-IA 𝛼-nDCG NRBP

Claude 3.7 Sonnet - .386 .478 .358
LLaMA 3.1-8B - .322 .421 .285

LLaMA 3.1-8B Claude 3.7 Sonnet .368 .468 .336

From the results, we can find that the student model distilled

from Claude 3.7 Sonnet achieves performance close to the expert

across all evaluation metrics. Notably, compared to the original

version, the distilled model exhibits significant performance im-

provements. These findings demonstrate the effectiveness of using

LLM-generated signals for ranking specialization.

5 Conclusion and Future Work
Search result diversification plays an important role in improving

user satisfaction. Previous supervised methods, while effective but

typically rely on massive training data. Conversely, unsupervised

approaches eliminate the need for training but require heuristi-

cally constructed ranking functions. In this paper, we combine the

advantages of supervised methods and unsupervised methods to

achieve effective search result diversification without heavy human

involvement. Drawing inspiration from human search processes,

we introduce a diversified search agent DIVAgent that imitates the

process of human search and finds diverse information. The pro-

posed search agent incorporates three essential modules tailored

for search result diversification: an intent-aware module, a memory

module, and an intent-guided ranker module. For each query with

its corresponding document list, the intent-aware module initially

predicts potential user intents and analyzes each document’s con-

tent for document-intent alignment. Information beneficial to the

ongoing task is stored in the memory module for further processing.

Finally, the intent-guided ranker generates the intent-guided output

with a greedy-based selection strategy, which explicitly indicates

the intent coverage of each document. Experimental results demon-

strate the effectiveness of our diversified search agent DIVAgent
even without task-specific fine-tuning.

In future work, we plan to integrate DIVAgent with a generator

to facilitate direct responses to user queries.
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