Journal of
Symbolic

Computation
Journal of Symbolic Computation 35 (2003) 21-58

www.elsevier.com/locate/jsc

Deciding the guarded fragments by resolution

Hans de Nivell8*, Maarten de Rijk&

aMax Planck Institutdit Informatik, Stuhlsatzenhausweg 85, 66123 Saskein, Germany
blLLC, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received 8 August 1999; accepted 7 September 2000

Abstract

The guarded fragment (GF) is a fragment of first-order logic that has been introduced for two
main reasons: first, to explain the good computational and logical behaviour of propositional modal
logics. Second, to serve as a breeding ground for well-behaved process logics. In this paper we
give resolution-based decision procedures for the GF and for the loosely guarded fragment (LGF)
(sometimes also called the pairwise guarded fragment). By constructing an implementable decision
procedure for the GF and for the LGF, we obtain an effective procedure for deciding modal logics
that can be embedded into these fragments. The procedures have been implemented in the theorem
proverBliksem. (© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The guarded fragment (GF) was inspired by two observations. First, many propositional
modal logics have very good computational and logical properties: their satisfiability prob-
lems are decidable in polynomial space and exponential time; they have the (uniform) finite
model property, and the tree model propeklfgrdi, 1997; we have a solid understanding
of their expressive power in model theoretic terms, and they have various interpolation and
preservation properties (s&@rtonina and de Rijke, 1999; Areces, 2000

Second, these modal logics can be translated into first-order logic, using a standard
(relational) translation based on the Kripke semantics. In this translation, a modal formula
A is translated by computing (A, X, y), wherex andy are two distinct first-order
variables.T is recursively defined as follows:

T(p,a, B) = p(a) if pisan atom
TEA o, 8) =-TA, o, B)
T(AvB,a,8)=T(A,a, 8) VT(B,«a,B)

* Corresponding author. Tel.: +49-681-9325-223; fax: +49-681-9325-299.
E-mail addressesnivelle@mpi-sh.mpg.de (H. de Nivelle), mdr@science.uva.nl (M. de Rijke).

0014-5793/03/$ - see front matt@ 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0747-7171(02)00092-5

22 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

T(AAB,a,) =T(A o, B) AT(B,a, B)
T(A—> B,a,f)=T(A o,) > T(B,a, B)
TUA . p) =VBIR(@ B) — T(A B, a)]
TOA a,) =38R B AT(A B)l

Here R is a binary relation symbol that denotes the accessibility relation. In case there
are additional restrictions on the accessibility relation, these can be explicitly added to the
translation. The formuld (A, X, y) means ‘A holds in worldx”. In order to translate A

is satisfiable”, one must compua T (A, X,).

The consequence of the translation above is that propositional modal logics can be seen
as fragments of first-order logic. The natural question that arises is: What makes these
fragments special? Or put differently, why do they have the pleasant computational and
logical properties noted abov€&abbay (1981jvas the first to observe that modal logics
can be translated into thev&riable fragmenfO? of first-order logic, which is decidable.
(Indeed the translation given above uses only the variataesly.) The fragment F&with
equality was first shown to be decidableMortimer (1975) without giving an explicit
complexity bound. InGradel et al. (1997t was shown that the satisfiability problem for
the 2-variable fragment (with equality) is NEXPTIME-complete@riidel et al. (1997an
interesting account of the history of the fragment can be found.

The decidability of F@ appears to be an explanation for the pleasant properties of
modal logics. We have a clear understanding of the expressive powerr'dhR€rms of
so-called pebble gamelsrimerman and Kozen, 198However on the negative side, FO
is not finitely axiomatizable, it does not have the Craig interpolation property, and it does
not have the tree model property, unlike the modal logics it contains. For example, the
formulaVvxy[R(X, y)] does not have a tree-like model. Mardi (1997)it is convincingly
argued that the tree model property is the reason for the good behaviour of modal logics.

Recently, an alternative explanation for the good behaviour of modal fragments of
first-order logic was put forward byAndréka et al.in 1998 Their observation is that
in the translation given above all quantifiers only oceelativized or guardedby the
accessibility relation. They called this fragment of first-order logic, in which all quantifiers
occur relativized, the GF. Clearly, the translation above translates modal formulae into
the GF.

At present, the GF is actively being investigated, both from a computational and from
a logical point of view. It is known to be decidable and to have the finite model property
(Andréka et al., 1998 Its satisfiability problem is decidable in double exponential time
and it enjoys (a generalized form of) the tree model propé&styadel, 199). Because of
this it is consistent withvardi (1997)to use the GF as explanation for the good behaviour
of modal logics.

Actually, the results inGradel (1997)were proven for the GF with equality (however
equality cannot act as a guard). Banzinger et al. (1999) is shown that the 2-variable
restriction of the GF remains decidable, when it is extended by transitive relations. In
Gradel and Walukiewicz (1999)he GF is extended with monotone fixed point construc-
tors. It is shown that this extension does not increase the complexity of the decision prob-
lem. Moreover, this extended fragment still satisfies the tree model property.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 23

Many familiar—and well-behaved—modal logics can be translated into the GF. These
logics includeK, B, D, and recently als&4, K4 andS5 (de Nivelle, 1999h However,
it seems that several important modal and temporal logics cannot be translated into the
GF, including the temporal logic with Since and Until. For these reasons, a number of
generalizations of the GF have been proposed, the oldest of which is the soloadlely
guarded fragmenf{LGF) (van Benthem, 1997 In this fragment, more liberal guards are
allowed than in the original GF. With these liberal guards the operators Since and Until can
be translated.

The aim of this paper is to present resolution decision procedures for both the GF and
the LGF without equality. Recently, a superposition decision procedure for the GF with
equality has been developed@anzinger and de Nivelle (199%Ithough the first-order
fragment in that paper is more general, the clause fragment had to be strongly restricted
in order to make it possible to include equality. For example, the clause fragment used
here allows nesting of function symbols, while this is not allowed in the other clause
fragment. This means that the decidability results here and the decidability results in
Ganzinger and de Nivelle (1998)e incomparable at the clause level.

In order to decide the GF, we define guarded clauses, and show that first-order guarded
formulae can be translated into sets of guarded clauses. We then show that sets of
guarded clause sets are decidable by an appropriate restriction of resolution. The restriction
that has to be used is based on a so-catletering refinementAll of the resolution
theorem provers (SPASSMeidenbach, 1997 OTTER McCune, 1995 and Bliksem
(de Nivelle, 19999 support orderings. This makes our strategy fit very well into the
standard framework of first-order resolution theorem proving. The standard optimizations
and implementation techniques can be reused for our decision procedure, so we can
expect our procedure to be technically efficient. Indeed, with an effective resolution-based
decision procedure, implementation has become feasible. The strategy for the GF has been
implemented in the theorem prover Bliksede(Nivelle, 1999a We will also show that
our decision procedure is theoretically optimal, because it terminates in double exponential
time.

In order to decide the LGF we define a similar notion of loosely guarded clause.
However, deciding sets of loosely guarded clauses is much harder than deciding sets
of guarded clauses. We need a non-trivial modification of hyperresolution on top of the
ordering refinement for this. In order to prove its completeness, an extension of the
resolution game turns out to be necessary.

The paper is organized as followSection 2provides background material. After that,
in Section 3we get to work and establish decidability of the GF by means of ordered
resolution. InSection 4we use ordered resolution to decide the LGF. The fifth and final
section contains our conclusions as well as some open questions.

2. Background

We begin by defining the GF. After that we give some general background on resolution
strategies, normal form transformations, and covering literals. It should be noted that we
do not consider equality in this paper. For this we reféstmzinger and de Nivelle (1999)

24 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

2.1. The guarded fragment

Definition 2.1. The GF is recursively defined as the following subset of first-order logic
without equality and function symbols.

1. Tandl arein GF.

2. If ais an atomic formula, thea € GF.

3. If A,B € GF, them—A, AV B, AAB,A— B,A«~ B e GF.

4. LetA € GF, and leta be an atomic formula such that every free variabldafccurs
at least once among the argumentadfhenvx(a — A) € GF andaX(anA) € GF.
We also allowx(—a v A) € GF.

The atoms in Item 4 are calledyuards

There are no conditions on the order in which the variables occur in the guards. Itis also
allowed to repeat variables.

Example 2.2. The following formulae are guarded:

vxyla(x, y) = (b(x, y) A c(x) Ad(y, y)I.
vxyla(x, y, Y, X) A (c(x) v =Vz[a(y, z2) — d(y)D].

The following formulae are not guarded:

vxyla(x) — a(f(x))].
vxy@(x) — b(x, y)).
YXYZ4R(X, y) A R(Y, 2) — R(X, 2)].

It is easily checked that for every modal formufathe translatioraxT(A, X, y) is
guarded.T (A, X, y) is clearly function free. The set of free variables DB, «, 8)
is always included infe}. All quantifications inT (A, x, y) have formVB[R(«, 8) —
T(B, 8,)] or 3B[R(«, B) A T(B, 8, a)]. Sincep occurs inR(«, 8) the quantifications
are guarded.

2.2. Resolution

We briefly review some elementary facts about resolution. We assume that the reader is
familiar with such notions as literals, clauses, and ground terms. We begin by defining some
complexity measures for terms, atoms, clauses, and literals. For convenience we identify
atoms and terms in the following recursive definitions. Bdte an atom/term. Theepth
of Ais recursively defined as follows:

1. If Ais a variable, then Deptih) = 1.
2. For a functional term/atom, Depth(ts, ..., ty)) equals the maximum ofl, 1 +

Depthty), ..., 1+ Depthty)}.

The depth of a literal equals the depth of its atom. The depth of a claesgals the
maximal depth of the literals ig, or O for the empty clause.
Thevardepthof a term/atomA is recursively defined as follows:

1. If Ais ground, then Vardeptih) = —1.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 25

2. If Ais avariable, then Vardepth) = 0.
3. In all other cases,

Vardepthi f (t1, ..., th)) = max{1+ Vardepthty), ..., 1 + Vardeptht,)}.

The vardepth of a literal equals the vardepth of its atom. The vardepth of a clegsels
the maximal vardepth of a literal im The vardepth of the empty clause is defined-4s

If Ais an atom, literal, or clause, then VA is defined as the set of variables that occur
in A. Varnr(A) is defined as the number of variablesAni.e. as the cardinality of V&A).

For a term/atomA, we define theomplexityof A, written as #A, as the total number of
occurrences of function, constant, and variable symboks in

Next we introduce the ordered resolution rule. We assume that the reader is familiar
with most general unifiers (mgu’s); s€ang and Lee (1978 Leitsch (1997)

Definition 2.3. We define the ordered resolution rule, and factorization rulel_be an
order on literals.

Res Let{A1} U Ry and{—A2} U Ry be two clauses such that the following hold:

1. {A1} U Ry and{—A2} U R, have no variables in common;
2. thereis ndA € Ry such thatA; C A;

3. there is noA € Ry such thatA, — A; and

4. A; andAp have an mguo.

Then the clausdr1©® U R, is called ac-ordered resolvenbf {A1} U Ry and
{(—A2} U Ra.
Fact Let{A1, A2} U Rbe a clause, such that

1. thereis noA € Rsuch thatA; C A,
2. A; and Az have an mguo.

Then the claus@A1 0} U RO is called ac-ordered factorof { A1, A2} U R.

The order is calledliftable if it satisfies the following condition, for all literalg, B,
and for all substitution®,

AC B= AP LC B6O.

The combination of ordered resolution and factoring is complete, when the order is liftable,
seeLeitsch (1997¥or a proof. The order that we will use for the GF does not satisfy this
property.

We now define (unordered) hyperresolution. We mention hyperresolution here because
we will need a variant of it in the decision procedure for the LGF.

Definition 2.4. Let {A1} U Ry, ..., {Ap} U Ry be purely positive clauses. Let
{(—=AL ..., —-A’p} U {Bu,..., Bq} be a mixed clause, in whicBy, ..., By are positive.
Let © be the most general unifier of the pairs

(A, AD. ... (Ap, AD).

26 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

Then the clause
RiOU---URp,OU({B16,..., BqO}

is a hyperresolvent.
2.3. Transformation to clausal normal form

Resolution works only on formulae of a restricted form. In order to be able to deal with
full first-order logic, we need a method of transforming first-order formulae into clause
sets. We give a collection of operators that can be used for this transformation. We define
all operators as working on sets of formulae rather than on formulae themselves, so that
operators can split one formula into different formulae. To start, here is a brief overview:

NNF(C) Bring C in negation normal form.

Struci{C) Replace certain subformulae by fresh atoms, and add equivalence definitions
for the new atoms.

Struct, (C) Replace certain subformulae by fresh atoms, but add implications instead of
equivalences.

Sk(C) Replace every existentially quantified variable by a functional term, using a fresh
function symbol.

Cls(C) FactorC into a set of clauses.

The operator sequence NNEK Cls constitutes a complete transformation. It is
possible to insert Struct or Strycbefore Cls.

Definition 25. Let C = {Fy,..., Fy} be a set of formulae. NNE) is obtained by
first replacing all occurrences ef and <, after that moving alt-’s inwards as much as
possible, and by finally removing all doubtes.

In Baaz et al. (1994)he structural transformatioris defined by replacing all subfor-
mulae of a certain formula by fresh names, with defining formulae for the fresh names.
When such a transformation has been applied, the original formula can always be recon-
structed, contrary to when the normal form has been obtained by factoring. For this reason
Baaz, Fermaller and Leitsch have called these transformatitnsctural In our decision
procedures we will make use of structural transformations, but we will not replace all sub-
formulae. We will now give the operator Struct but specify later which subformulae are
going to be replaced.

Definition 2.6. LetC = {F4,..., Fn} be a set of formulae. We define Str(€j as the
result of making replacements of the following form: lebe a subformula of one of the
Fi. Letxs, ..., Xy be an enumeration of the free variablesfofLet « be a new predicate
name. Replac&;[A] by Fi[a(Xs, ..., Xn)] and add

VX1, ..., Xp [a(X1, ..., Xp) < A]

to C.

If C is in negation normal form, then it is sufficient to use instead of<« in
order to obtain a satisfiability preserving transformation. Sirustdefined by adding
VX1, ..., Xn [a(X1, ..., Xn) = A] to C, instead of using equivalence.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 27

Definition 2.7. LetC = {F4, ..., Fn} be a set of formulae in negation normal form. We
define theSkolemizatioisk(C) as the result of making the following replacements: as long
as one of thds contains an existential quantifier, wrikg = F[3y A], wheredy Ais not

in the scope of another existential quantifier. ket. . ., X, be the universally quantified
variables in the scope of whichoccurs. Replac€i[3y Al by F[A[Y := f (X1, ..., Xn)]].
Here we use the notatidf [y := t] to denote full first-order substitution.

There are more sophisticated ways for Skolemization leading to more general Skolem
terms, seeOhlbach and Weidenbach (199%)ut we cannot use them for our present
purposes.

Definition 2.8. Let C = {Fy,..., Fy} be a set of formulae in NNF containing no
existential quantifiers: thelausificationof C, written as CI¢C), is the result of the
following replacements.

1. ReplaceAv (BAC) by (Av B) A (AvV Q).

2. Replacd AAB)vCby(AvC)A(BVvC).

3. Replacerx Aby A[x := X], whereX is a designated variable symbol not occurring
in A

4. If one of theF; has formA A B, then replace it byA andB.

The result of Cls is a set of clauses.
2.4. Weakly covering literals

In this section we briefly introduce a class of literals that are calledkly covering
literals. They first appeared ilammet (199Q)and independently in the thesis of Fesliai
(seeFermller et al., 1993 Weakly covering literals are the basis of many of the classes
that are decidable by resolution, such&s and S*. Their usefulness is due to the fact
that when two weakly covering literals are unified, the result is not more complex than the
larger of them. We will shortly state the main facts.

Definition 2.9. A literal is coveringif every functional subterm of it contains all variables
that occurin the literal. A literal iszeakly coveringf every non-ground, functional subterm
contains all variables of the literal.

We will not make use of covering literals, but we included the definition for the
sake of completeness. Covering and weakly covering literals are typically the result of
Skolemization, when the prefix ends in an existential quantifier. If a function free atom
a(X, y) in the scope of quantifiesx3y is Skolemized, the result equaéx, f (X)), which

is covering. Ifa(X, y) contains functional ground terms, then the result is weakly covering.
For the proofs of the following facts we refer Eermiller et al. (1993) We mention the
facts here so that we can refer to them when we need them in later sections.

Theorem 2.10. Let A and B be weakly covering literals that have an mguLet
C =A0 =B6.Then

28 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

1. C is weakly covering.
2. One of the following holds: eithevardeptifC) < Vardepti{A) and Varnr(C) <
Varnr(A), or VardepthC) < Vardepth{B) andVarnr(C) < Varnr(B).

Theorem 2.1@lone does not prevent unbounded growth of the unifier. This is because of
the fact that, although the variable depth®fs boundedC may contain arbitrarily large
ground terms. The following controls this problem:

Lemma 2.11. Let C = A©® = BEO be a most general unifier of two weakly covering
literals. Letv be the maximum d&fardepth{A) and VardepthB). Every ground term in C
occurring at a depth greater than or equal tgooccurs either in A orin B.

This restricts the introduction of new ground terms to ground clauses. This will turn
out sufficient for bounding the growth of unified terms. What we have until now is not
sufficient for bounding the side literals in resolved clauses R U Ry © be a resolvent

of {A1} U Ry and {—A2} U Rp. Theorem 2.1Gstates thatA; © is weakly covering and
bounded in variable depth, but we have said nothing about the literd®sé@n First we

state that the side literals are weakly covering, after that we state that their variable depth
is bounded.

Theorem 2.12. Let A and B be literals which are both weakly covering. Vat(A) C
Var(B), and let® be a substitution such that® is weakly covering. Then @ is weakly
covering.

Lemma 2.13. Let A and B be literals which are both weakly covering. Vat(A) <
Var(B), Vardeptl{A) < VardepthB), and let® be a substitution. ThevardeptiAO) <
Vardepti{B ©), andVar(A©) C Var(BO).

2.5. The resolution game

The completeness proof of our strategy is based on the resolution game, which was
introduced inde Nivelle (1994)as a device for proving completeness of resolution with
non-liftable orders. We briefly introduce it here, but for a more elaborate description, see
de Nivelle (1994)

Definition 2.14. A resolution gamés an ordered tripl& = (P, A, <), where

1. P is a set of propositional symbols,
2. Ais aset of attributes,
3. <isanorderonP U—-P) x A, where—P is defined ag—p | p € P}.

It must be the case that is well-founded on(P U —=P) x A. The elements of
(P U =P) x A, are calledindexed literals We will write a : A instead of(a, A). A
clauseof G is a finite multiset of indexed literals ©f.

Interpretationdor a resolution game are defined in a standard manner, i.e. as propositional
assignments. A clause is true in an interpretation if one of the literals that occurs in it
(ignoring the indices) is true. We now define resolution and factoring for the resolution

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 29

game. We need an explicit factoring rule even for propositional logic, because clauses are
multisets.

Definition 2.15. LetG = (P, A, <) be a resolution game. Letbe a clause of;. An
indexed literala : A is maximalin c, if for no indexed literab : Binc,a: A < b : B.
We define resolution and factoring fgr letc; = [a: A1] U r1 : Ry andc; = [—a :
Az] U ro: R be clauses such that: A; and—a : Ay are maximal in their clauses. Then
ri: RiU 2 : Ryis aresolvenbf ¢, andcy. The expressions : R; denote finite multisets
of indexed literals. Let; = [a: Ai,a: A2]JUr : R be a clause, such that: Aj is
maximal inc;. Then[a: A1] U r : Ris afactorof c;.

Until now we have nothing unusual, as this is just lock resolut®woyer, 197). We now
define reductions, which distinguish the resolution game from lock resolution.

Definition 2.16. Letc be a clause of a resolution gagieA reductionof c is obtained by
performing zero, or any finite number of the following actions: (1) Deleting an indexed
literal. (2) Replacing an indexed litera : A; by an indexed literaln : A with
a:Ar<a: AL

Definition 2.17. Let C be a set of clauses of a resolution gage= (P, A, <). A
saturationC of C is a minimal set for which (1 < C. (2) For every resolvent that
can be constructed from two clausasc, € C, there is a reductiod of cin C. (3) For

every factorc that can be constructed from a clawugsee C, there is a reductiod of ¢
in C.

The resolution game is different from lock or indexed resolutiBayer, 197}, because

in lock resolution the resolvent inherits the indices from the parent clause without any
changes. In the resolution game the indices may change. The reason that this variant of
resolution is called resolution game, is that it can be seen as a game of two players: one
player, called th@pponentis trying to refute the clause set using ordered resolution and
factoring. The other player, called tdefendertries to disturb the opponent by replacing
clauses by reductions.

Theorem 2.18. Let C be a set of clauses of a resolution gagheThe following two
statements are equivaler(it) C is unsatisfiable(2) Every saturation of C contains the
empty clause.

A complete proof can be found the Nivelle (1994)In terms of games heorem 2.1&an
be reformulated as follows: & is unsatisfiable, then the opponent has a winning strategy,
and ifC is satisfiable, then the defender has a winning strategy.

3. The guarded fragment

In this section we give a decision procedure for the GF. Our decision procedure is
based on ordered resolution, as definedifinition 2.3 It is common to restrict the
resolution rule by an ordering, but usually this is done to improve efficiency in cases where

30 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

a proof exists. However, certain orderings can be used to enforce termination in cases
where no proof exists.

We will illustrate this point with an example. L&tbe some clause set in which only one
variableX is used, all literals contain this variable and it contains no constant symbols.
So{p(X), q(s(X, X), X)} is allowed, buf p(s(X), 0)} is not. LetC be an order on literals
that is defined by putting C B iff Vardepth(A) < Vardeptl{B). Then the following hold:

1. Every ordered resolvent or factor fro@ contains exactly one variable, and no
constants. Hence every derivable clause can be renamed such that it contains only
the variableX.

2. If © is the mgu of two literalsA and B, each containing exactly one variable and
no constant symbol, theA©® andB© are also such literals, and VardepN©) =
Vardepth{B ©) is equal to Vardepith) or to VardeptliiB).

3. If Vardepti{A) < VardepthiB), and ©® = {X := t} is a substitution, such
that t contains exactly one variable and no constants, then Vardepth <
Vardepth{B ©).

As a consequence, the clauses cannot become deeper, and cannot contain more than one
variable. Because the set of literals that can occur in the clauses is finite, the set of derivable
clauses is finite. Hence, the ordeenforces termination. If one can show the completeness

of resolution with_, at least for this one-variable class, then one has a decision procedure.
This is straightforward because the order is liftable on the class under consideration. Our
decidability proofs below have the same structure as this example.

3.1. Basics

In order to be able to use resolution we need a notion of guardedness for clause sets, and
a way to translate guarded, first-order formulae into guarded clause sets. The translation
is not completely standard. Standard translations would transform guarded formulae into
non-guarded clauses.

The first step of the transformation is the transformation into NNF. This can be done
without problems, since all of the necessary replacements preserve the GF. When the
formula is in NNF, the guard condition for the existential quantifier is not necessary
anymore. This means that the guard conditionDfinition 2.1 can be weakened to
positively occurring’-quantifiers, and negatively occurriBgguantifiers, in the case where
one wants to decide satisfiability. For clause sets we define the following normal form.

Definition 3.1. A clausec is calledguardedif it satisfies the following conditions:

1. Every non-ground, functional term @ncontains all variables af.
2. If ciis not ground, then there is a negative litereh in c that does not contain a
non-ground, functional term, and that contains all variables of

A clause seC is calledguardedif its clauses are guarded.

The negative literal in item 2 obefinition 3.1is the guard. Every ground clause is
guarded. The definition of a guarded clause given here differs from the definition in
de Nivelle (1998)but is equivalent. Irde Nivelle (1998)}he first condition was given as

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 31

two conditions: (1a) every literal, containing non-ground functional terms contains all
variables ofc, and (1b) every literal irt is weakly covering. It is easily checked that (1a)
and (1b) are equivalent with (1).

Example 3.2. The claus€ p(0, s(0)), q(s(s(0)))} is guarded because it is ground. The
clause{—p(X), =q(X, Y), r (f(X,Y))} is guarded by the literakq(X, Y). The clause
{=p(X), =q(Y), r (f(X,Y))} is not guarded. Adding a literata(X, Y, X, X,Y) would
result in a guarded clause. The clagse(Y, X), gq(f (X), X, Y)} is not guarded. It cannot
be made guarded by adding literals. The empty clause is guarded.

Let us continue with the translation taking guarded formulae into guarded clause sets. We
need a variant of Strugtof Definition 2.6 which we will call Strucy.

Definition 3.3. Struct, is the structural transformation that is obtained by replacing the
subformulae of the formex(a — A) or VX(—a Vv A) with free variableg, by some fresh
name«(y) and adding a defining formula of the for¥iXy (—a v —« v A). The latter
formula is equivalent withVy(« — ¥X(a — A)).

Example 3.4. The guarded formula

ax n(x) AVyl[a(x,y) — —=3z(p(X, 2) A (VX a(X, 2) — (b(z,2) A c(X, X))))]
is translated as follows. First, NNF results in

X n(x) AVy[—-aX, y) v Vz(=p(X, 2) v (3x a(X, 2) A (—b(z, 2) v —c(X, X))))].
After that, Struct results in the following set of formulae

IX[NX) Aa(X)], Vxy[—a(X, y) v —~a(x) v B(X)],

Yxz[-p(X, 2) vV =B(X) vV (3X a(X, 2) A (—b(z, 2) v =c(X, X)))].
Sk results in

ne) Aa(c), vxy[—a(x,y) Vv —a(x)V B(X)]

vxz[-p(X, 2) vV -B(X) Vv (@(f(x,2),2) A (—b(z,z) v =c(f (X, 2), (X, 2)))].
And finally, clausification results in

{n©}, {ax(@}, {—alX,Y), —a(X), B(X)},

{=p(X, 2), =B(X), a(f(X, 2), 2)},
{=p(X, 2), =B(X), =b(Z, Z), =c(f (X, Z), £ (X, 2))}.

Theorem 3.5. Let F € GF. Then

1. F' = NNF(F) € GF,
2. F” = Strucy,(F’) € GF, and
3. (Sk; Cls)(F”) is a guarded clause set.

Proof. We consider the steps made in the transformation: the NNF is characterized by a
set of rewrite rules. Le® = VX (a — A) or & = 3X (a A A) be a guarded quantification.
¢ will remain guarded under each application of a rewrite rule ingigeince none of the

32 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

rewrite rules introduces a free variable. Similarlyifoccurs in theX or Y of a rewrite rule

(X opY) = ---thenAis copied without problems. The only possible problem occurs
whenvXx (a — A) rewrites tovx (—a Vv A), but this case is covered by the definition of
the GF.

The next step is Strugt The defining formularXy (—a v —« v A) is guarded, since
a is a guard, andA is not affected. Any quantification in which the replaced formula
VX (—a v A) occurs, remains guarded after replacemen&By), because no new free
variables are introduced.

In the result of Strugtthere are no nested, universal quantifications. Because of this,
every existential quantifier is in the scope of at most one universal quantification, which is
guarded. The result of the Skolemization is a formula in which all universal quantifiers are
guarded, and all functional terms are Skolem terms. They are either constants or contain
all variables of the guarded quantification in which they occur.

Clearly, at the end of this process the formut&e(—a v A) can be factored into guarded
clauses’X (—mav Ay, ..., VX (mavVv Ay). O

3.2. Termination

As announced in the previous section, the first step towards our decidability result for
the GF will be to show that, with a suitable ordering, ordered resolution terminates for the
GF.

We will now define the order on literals. Although we will be using completely standard
ordered resolution, our order is hon-standard.

Definition 3.6. We define the following order on literals.

1. AC BifVardepth A) < VardepthB), or

2. AC BifVvar(A) c Var(B).

Note that the inclusion in the second condition is strict. Strictly seen we cannot call relation
C an order because it is not transitive. Howewveris an order within guarded clauses, in
particular it has the following property:

Lemma 3.7. Every guarded clause ¢ hascamaximal literal, and every maximal literal
of ¢ contains all variables of c.

Proof. If cis ground, then every literal is maximal. ¢fis non-ground, and does not
contain a non-ground functional term, then every guard is maximal, since it contains all
variables ofc and there are no deeper literalsclfs non-ground, and does contain non-
ground, functional terms, then there are literals containing the deepest occurrence of a non-
ground, functional term. These literals must be maximal, because they contain all variables
of c.

If cis non-ground there is a literal containing all variables.oBecause of this every
maximal literal must also contain all variablesof O

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 33

The result that we aim to prove is that resolution and factoring, restricted, loan only
derive a finite set of clauses from a guarded clause set, but first we prove that the property
of being guarded is preserved.

Theorem 3.8.

1. If c; and ¢ are guarded clauses, and ¢ igaordered resolvent oficand ¢, then ¢
is guarded.
2. If c1 is a guarded clause, and c is a factor af then c is guarded.

We show that derived clauses satighgfinition 3.1 We first show Condition 1, then
Condition 2.

Claim 1. Conditionl is preserved by resolution and factoring.

Proof. Letc; = {A1} U Ry andcy; = {A2} U Ro resolve intoc = R1O U RO, 5060 is
the mgu ofA; and Az. Because of the order, the literalsA; and Az contain all variables
of their respective clauses. This ensures tha® = A6 contains all variables of the
resolventc. Because bottA; and A are weakly covering, every non-ground functional
term in A1 © contains all variables of; © and hence of.

Lett be a non-ground functional term @ There are two possibilities:

1. There is a non-ground functional temmin c; or ¢, such that = u®. W.l.o.g.
assume thati occurs inc;. Thenu contains all variables ofA;. Because of this,
u® contains all variables o1 ©. Since A1 © contains all variables df, the term
t = u@ contains all variables af.

2. Thereis a variabl¥ in c; or ¢y, such that is a subterm o¥ ©. Assume w.l.0.g that
V occurs incy. ThenV also occurs iPA;. Hencet, being a subterm o¥ ©, occurs
in A16. This means thatcontains all variables df.

Next letc = {A160} U RO be a factor ot; = {A1, A2} U R. Analogous to the situation
with resolution, one of the literal&;, A contains all variables af;. Assume it isA;. The
situation is the same as with resolutiohi ©® = A>© contains all variables af, every
non-ground functional term i1 © contains all variables of, etc. However, case 2 is
not possible here (there exists a varia¥dlén ci, such that occurs inV ©) because the
variableV would occur inA;. This contradicts Vardeptih; ©) < VardepthifA). O

Claim 2. Condition2 is preserved.

Proof. First we consider resolution. If bothi, ¢ are ground, the is also ground, and

hence satisfies Condition 2. If one ©f, ¢z is ground, then assume it @3. BecauseA;
contains all variables af,, and A, © is ground, the resolvemtis also ground in this case.

Now if both ¢c; andc; are not ground, then letG41, =G2 be guards oty, cp. In one of

1, C2, the guard is not resolved upon, because guards are negative. We can assume that
A1 # G1.

1. If © does not assign a non-ground, functional term to any variabe ithen—G1 6
is a guard of, because~-G1 O does not contain any non-ground, functional terms,

34 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

and due to the fact thab; contains the same variables Af, the result—=-G16
contains all variables oA; ©, which contains all variables @f by the proof of the
first claim.

2. Otherwise,® assigns a non-ground, functional term to a variabléAin This is
caused by the fact thak, contains a non-ground, functional term, which implies
that A # Go. Then® does not assign a non-ground, functional term to any variable
in A2. This means thatG,© can act as guard af by the same argument as before.

The situation with factoring is the same. Onefaf A, contains all variables af;. Because
of this, the mgu® cannot assign a non-ground, functional term to a variablg i his
implies that every guard af; is still a guard ofc. [

In fact, one can prove that factoring withanotalso preserves the GF. However, in the case
of resolution one really needs theorder.

Lemma 3.9. Let C be a finite set of guarded clauses. Let Vardepti{C). Let k be the
maximalVarnr(c), for c € C. Then for every_-derivable clause c the following holds:

1. Varnrc) < k.
2. Vardeptlic) < v.

Proof. We first prove the first fact. Let be the resolvent o€; and c,. If either of
c1 or ¢ is ground, therc is ground by itself. If bothc; and ¢, are non-ground, then
c contains a guard-A, which is an instance of a guard of either or c,. We can
assume that Variey), Varnr(c;) < k. Since every variable of occurs in—A, and
Varnr(—A) < k, we immediately obtain Varie) < k. The case where is obtained
by factoring is immediate. In order to prove the second factclbe the resolvent of
c1 = {A1} U Ry andcy = {Az} U Rp. By induction there is no literal with Vardepth v
in c1 or co. Assume that Vardepfh;) > Vardepth{Az). Let © be the unifier used.
By Lemma 2.10 we have Vardepthy ©) < Vardeptl{A;). By Lemma 2.13we have
VardeptifR ©) < Vardepth{A;). It follows that VardepthR1©® U R, ©) < v. The case
wherec is obtained by factoring is analogous]

We would have the complete proof if we had De@h < Depth(C). Unfortunately this is
not the case, but it is possible to prove that no new ground terms are introduced at positions
that are deeper than Vardepd).

Lemma 3.10.

1. Let ¢ be ac-ordered resolvent of clauses @nd ¢. Let v be the greater of
Vardepthicy) and Vardeptlicp). Every ground term t that occurs at a depth greater

than or equal tow, occurs either in ¢ or in cp.
2. Let ¢ be a factor of clauseicLetv = Vardepthicy). Every ground term occurring

in ¢ at a depth greater than or equal tQ occurs in g.
Proof.

1. Writecy = {A1}URy, andc; = {—A2}URy. Let © be the mgu ofA; andA,. We can
assume, without loss of generality, thatccurs inR; ©. There are two possibilities:

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 35

(@) There is a variabl&/ in Ry, such thatt is a subterm ofV©, ort = V6.
When this is the cas&/ occurs inAz, at least as deep as Ry. This ensures
thatt occurs inAz, at a depth greater than or equahtoHence we can apply
Lemma 2.11and it follows that occurs inA; or Ao.

(b) Thereis aternnin Ry, such that = u®, andu is not a variable. Ifi is ground,
then we are done. li is non-ground, then contains variables at depth greater
thanv. This implies that Vardeptle;) > v, so this cannot occur.

2. The case whereis obtained by factoring is analogous]

From Lemma 3.10an upperbound on the depth of the derivable clauses can be easily
obtained. LetC be the initial clause set. Let = VardeptiiC) and letd = DepthC).

Let c be some derivable clause. Since every term occurring at deptbhccurs inC, it has

a depth=< d. Hence Deptft) < v +d.

Lemma 3.11. Let C be a finite set of guarded clauses. Cebe its closure under-
ordered resolution, and (unrestricted) factoring. Therhas finite size.

Proof. For each derivable clause, both the depth and the number of variables are
bounded. O

We will derive the exact complexity of the decision procedur8éttion 3.4
3.3. Completeness

The final step in our proof of the decidability of the GF by means of resolution consists
of proving completeness of our ordered resolution method. (THerder is non-liftable.
Both cases iefinition 3.6cause non-liftability:

1. p(s(0), X) = p(0, s(X)) and p(X, 0) C p(s(X), s(0)). The substitutio{ X := 0}
results in a conflict.

2. Also—=p(X, X) C —q(X,Y) and—q(X, X) = —=p(X, Y). The substitution{ X :=
Y} results in a conflict.

Because of this we cannot refer to the standard result on the completeness of liftable orders.
Also the completeness resultsde Nivelle (1994)o not apply because there one of the
following two conditions should have been met:

1. The order needs to satisfy the propeiy C— A, for non-renaming substitutions.
Our order putA(X) = A(s(X)), but A(s(X)) is an instance oA(X).

2. The literals in the clauses must have the same set of variables. The guarded clause
{—a(X,Y), b(X)} violates this condition.

Fortunately however, although guarded clauses do not satisfy Condition 2, it turns out that
the proof method that was used for Condition 2, can be applied to guarded clauses. The
proof is based on the resolution game. We need some technical preparation.

Definition 3.12. A representation-indexed clause a clause of the fornt = {a; :
A1, ...,ap : Ap} for which there exists a substitutiofl, such thatA; © = a;, for all i.

36 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

If for each variableV that does not occur in afy, it is the case tha¥ © = V, then we call
© thesubstitutionof c. A literal orderC can be extended to indexed literals as follows:

a:ACb:B iff ALC B.

Using this we extend ordered resolution and ordered factoring to representation-indexed
clauses as follows:

Resolution: From{a: A1} Ur1: Ryand{—a: A2} Uro: Ry deriver; : Ri1@Urs: Ry 6.
Factoring: From{a: A;,a: A2} Ur : Rderive{a: A10}Ur : RO.

In both cases is the mgu. The literals resolved upon, and one of the literals factored
upon, must be maximal. Observe that the mgu always exists.

Lemma3.13. Let C; be a set of representation-indexed clauses, that has a resolution refu-
tation, using some order. Let G, be obtained from by replacing each representation-
indexed claus¢ay : Ag,...,ap : Ap} by{Aq,..., Ap}. Then G has a resolution refuta-

tion usingL.

Proof. One can delete the ground instance from every derivable representation-indexed
clause, and show that it is still derivableld

We will construct a resolution game from a set of representation-indexed clauses. In order
to do this we define an operato} from representation-indexed clauses to indexed clauses
of the type used in the resolution game. Before we can définee need the following:

Definition 3.14. We assume that there is a fixed enumeration of the set of variables
{Xo, X1, X2, ...}. Aliteral Ais normalif the variableX;_ 1 occurs only after an occurrence

of the variableX;. (When the literal is written in the standard notation.) Every litéyabn

be renamed into exactly one normal literal, which we callitbemalizationof A. We write

‘A for the normalization ofA.

The literal p(Xo, X1, X2) is normal, but its renamingg(X1, Xo, X2) and p(X1, X2, X3)
are not normal. If two literals are renamings of each other, they have the same normaliza-
tion.

Lemma 3.15. LetrC be the order oDefinition3.6. If A = B thenA C B.

Definition 3.16. Let ©® = {V1 :=t1, ..., V := t,} be a substitution. The complexity of
O, written as # equals # + - - - + #tp.

Definition 3.17. We define the following operat¢r] on representation-indexed clauses.
Let{as : A1, ...,ap : Ap} be a representation-indexed clause. Bebe its substitution.
Letk = #6. Then

[{al : A]_, ey ap : Ap}]
equals the indexed clause
{ar: (k, A, ..., ap: (K, Ap)}.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 37

TheAq, ..., Ap are the normalizations of thay, ..., Ap.
Lemma 3.18. Letc = {a1: A1, ..., 8p : Ap} be a representation-indexed clause. Let
C2 ={ay: ALX,...,ap : ApX} be an instance obtained with substitutidh such that

there exists a substitutiaf, for whicha = Aj X=. Let

[ci]={ar: (K1, A1), ..., ap : (ky, A_p)},
[Co] ={ar: (k2, ArY), ..., ap : (Ko, ApX)}.

Then either for all i, A/ X = A, or ko < k.

We are now ready for the completeness proof.

Theorem 3.19. Ordered resolution, using: as defined irDefinition3.6, is complete for
guarded clause sets.

Proof. LetC be an unsatisfiable guarded clause set.d &k the set of clauses that can
be obtained fron€C usingC-ordered resolution, and-ordered factoring. We show th@t

must contain the empty clause. Write= {cy, ..., cp}. Let
O11,..., 601,
Qn,ls D) @n,ln

be a list of substitutions such that the set of clauses
{C1011,...,€101);,...,CnOn1, ..., CnCn,}

is propositionally unsatisfiable. Such a set exists because of Herbrand’s theorem. First we
construct a seCyyp, of representation-indexed clauses, using the Herbrand set. For each
¢ = {Aq, ..., Ap} and substitutior®_ j, the seChp contains the clause

{A16Gij 1 A1, ..., ApBij : Apl.

Next we writeChy, for the closure ofCh, under—-ordered resolution for representation-
indexed clauses. It is clear froonemma 3.13hat if we can prove tha€yp contains the
empty clause, the@ contains the empty clause. In order to prove g does indeed
contain the empty clause, we define the following resolution géme (P, A, <), and
initial clause seCg:

1. The setP of propositional symbols equals the set of atoms that occuar iasthe
elements : A of Cpp,.

2. The setA4 of attributes is constructed as follows: letbe the maximal #; j. Let
L be the set of literal8 for which there is an indexed literal : A in one of the
Chp, such thaB is an instance o\, anda is an instance oB. Then.4 consists of
the pairs(i, C), for which 0 < i < m, andC is the normalization of a literal ifh..
Observe that the set of attributes is finite.

3. The orde is defined fromaz : (i1, C1) < a2 : (i2, Co) if

(@) i1 <ip, or

38 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

(b) (i1 =i2andCy C Cyp).
4. The initial clause seEg equals{[c] | ¢ € Chp}.

This completes the definition of the resolution game. We will complete the proof by
showing that the set

[Chbl = {[c] | cis derivable fromCpp}

is a saturation ofP, A, <). Then it follows fromTheorem 2.18that[Chp] contains the
empty clause. From this it follows immediately ti@4, contains the empty clause.

It remains to show thdiCpyp] is a saturation ofP, .4, <). In order to do this we must
show tha{Cpp] contains a reduction of every factor/resolvent that is derivable f@wg].

1. Letc; andcy be clauses ifChp] with a resolventc. There must exist clauses
dq, do € Chp, such that; = [d1], andcy = [d2]. Write

di={a: AjjJUry: Rranddy, = {—a: A2} Urs: Ry.
Then we can write
c1={a: (k, A} Ury: (ki Ry) andcy = {—a: (ko, A} Utz : (ka, Ro).
We use the notation : (ki, R;) for the side (indexed) literals. They have the form
[ria s (kiz R,y o (K, R

Using Lemma 3.15 we obtain that the indexed literaés : A; and—a : A, are
maximal in their respective clauses. Hence a resolvent

d=r1: RiOUr;: RO

is possible, wher® is the mgu. We will show thdi] is a reduction ot. Let X be
the substitution of the representation-indexed clalideet Xy be the substitution of
the representation-indexed clause

di®={a: A1@}Ury: R16.

Analogously let’> be the substitution of the representation-indexed clause
O ={—a: A2O}Urs: R6.

By puttingl = #X, we can write
[dl=r1:(, RiO)Ur2: (I, RO).

Writel1 = #X1, 1o = #X5. Then

(@) r1: (1, R1©®) is areduction of : (k1, R1), usingLemma 3.18
(b) r2: (I2, R2O) is areduction of 2 : (k2, Rp), usingLemma 3.18
(© I <liandl <.

Putting this together we obtain thiat] is a reduction ot.

2. Finally, in the second case, where a clatiskas a factoc in [Chp] we can directly
applyLemma 3.18 O

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 39

The orderC as we have defined it iDefinition 3.6 is very basic, and it could be
strengthened further to improve the efficiency, for example with an order on the predicate
symbols.

Theorem 3.20. Resolutiory- factoring, using—, together with the normal form transfor-
mation ofTheorenB.5, is a decision procedure for the GF.

Proof. Follows fromTheorem 3.5Lemma 3.1landTheorem 3.19 O
3.4. Complexity

The complexity of our decision procedure is double exponenti@rldelhas shown
in Gradel (1997)that the decision problem for the GF is 2EXPTIME-complete, so our
procedure is theoretically optimal. First we give a general bound on the time needed to
compute a saturation.

Lemma 3.21. Let C be some clause set, [€t be its closure under resolution and
factoring. Let S be some clause set, such that S. Let s be the maximal size of a
clause in S. Let ¢ be the cardinality of S. THeércan be computed in timgas)? and
space cs.

Proof. The space complexity is dominated by the space that is needed toGstditee
space needed to stoBequals at mosts, and this is also an upperbound for the siz€of

In order to obtain a saturation, the algorithm has to systematically inspect all pairs
of clauses and see if a resolvent or factor is possible. The castds+ cs, which is
dominated by(cs)2. The algorithm halts when no more clauses can be added. This is the
case after at mostiterations. [

Theorem 3.22. Let S be some signature. Let C be a set of guarded clauses Syer
possibly using variables. Letbe the maximal vardepth of a clause in C, andddie the

set of ground terms that occur in C. Let a be the maximal arity of a predicate/function
symbol inS. Let n be the maximum @1) the total number of function symbois the
maximal arity of a guardt- the size o, and(2) the total number ob-arity predicate
symbols. Then a saturation of C has at most size

2n@),

and can be obtained in time
23(2n<a“>)

Proof. UsingLemmas 3.10 and 3,9ve know that at positions at depittor deeper, there
are only ground terms frori. Hence we can treat the literals in the saturatio€dds if
they have a depth af + 1, and view thgj as additional constants. Define the following
numbers:

a; be the maximal arity of a predicate sympol
ap be the maximal arity of a function symbol

40 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

n1 be the total number of function symbols the total number of constant symbols
+ the maximal arity of a guard
ny be the total number of predicate symbols
We begin by giving an estimation of the number of positi®id) in a term, dependent on

its depthd. The second column in the table givesi) defined in terms oP(i — 1). The
third column gives explicit forms foP(i).

d
1 1 1,
2 1l+aP1) 1+a,
3 1+aP(2 1+4a+a3
4 1+aP3) 1+a+al+ad
So we get
“ al -1 d—1
P@) = a, = ~ O(al~ hena; > 1.
(d) ;}l 1~ 0@ ™). whena >

The number of terms of depthcan then be estimated by
(nl)(agil).

We could writen; + 1 instead oh; because positions can be empty, when the term does
not use the full possible length, but in that case there is an operator that does not use the
full a3, which compensates for this.

A literal of depthd consists of a possible negation sign, followed by one predicate
symbol, followed by, at mosg, terms with depthd — 1. The number of possible literals
can be estimated by

d-2
2n2(n(la11))""2.

By remembering that = Max(n1, np), a = Max(az, a2), and puttingd = v + 1, we can
estimate the number of possible literals as

2n@"),
Then the set of possible clauses has, at most, size

2(2n(av))

Applying Lemma 3.21we obtain the given space and time complexity]

4. Theloosaly guarded fragment

In this section we show that the LGF can also be decided by resolution. The LGF is a
generalization of the GF, which has been introducedhiimBenthem (1997 he guard no

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 41

longer needs to be a single literal as in the GF, but may consist of a group of literals
satisfying certain conditions. One of the main motivations behind the LGF is the following.
Recall that one of the motivations behind the original GF was the search for general
fragments of first-order logic that could explain the good behaviour of modal and modal-
like logics. An important and well-behavéeimporallogic that escapes the GF is temporal
logic with the Since and Until operators. Recall that the semantid® Bhtil Q is given

by the following definition:

Ay (RxyA Qy AVz (RxzAn Rzy— P2).

Clearly, this is not a guarded formula, but it does enjoy a special property: the variable
occurs together with each of the other variableendy in at least one atom in the “loose
guard”. This special feature motivates the following definition.

Definition 4.1. The LGF is recursively defined as the following subset of first-order logic
without equality and function symbols.

. Tand.l are in LGF.

. If Ais an atom, therA € LGF.

. If A€ LGF, then—A € LGF.

. If A,B € LGF,thenAv B,AAB,A— B, A< B e LGF.

. (a) LetA € LGF,
(b) letay, ..., ay be a group of atomic formulae,
(c) letX be a sequence of variables,
such that for every variable iR, and for every free variable odj A --- A ap,
there is ang; containing them both. Thevix(ag A --- A an — A) € LGF, and
IX(@ar A--- Aan A A) € LGF. We also allowX(—ai Vv --- vV —a, vV A) € LGF.

ORrWNE

The definition of LGF can be weakened in the same way as GF, if one considers the
satisfiability problem. The guard condition is only necessary for positively occuyring
guantifiers, and for negatively occurriBequantifiers. The GF is included in the LGF.
Example 4.2. The transitivity axiom

YXyZ(R(X, y) A R(Y, 2) = R(X, 2))

is not loosely guarded, because an atom containingbatidz is missing. The following
formula, translating® SinceQ, is loosely guarded:

Ay(RyxA Qy AVz(RyzA Rzx— P2).
4.1. Translation to CNF

The strategy that we will use for LGF is based on the strategy for GF. The
transformation to CNF will be almost the same, with an obvious adaption in Stwict
handle loose guards. The resolution strategy will be more involved, as we will discuss in
the next section. We now introduce LGF for clauses, and the transformation.

Definition 4.3. A clause set is callekbosely guardedf its clauses are loosely guarded. A
clausec is loosely guardedf it satisfies the following condition:

42 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

1. Every non-ground, functional term @contains all variables df.

2. If cis non-ground, then there is a set of negative literads,, ..., =Ap € c not
containing non-ground, functional terms, such that every Yal of variables ofc
occurs together in at least one of thé;.

The conjunction of the atom4; in Item 2 is the loose guard. A clause may have more than
one loose guard.

Theorem 4.4. Using the following transformation, loosely guarded formulae can be
translated into loosely guarded clause sets:

1. F' = NNF(F).
2. F” = (Struct)(F).
3. C = (Sk Cls)(F").

(Here, Struct, has been modified in the obvious way.)

Proof. The proof is analogous to the proof Bheorem 3.5However, there is one inter-
esting aspect concerning Struciransformation Strugtreplaces universally quantified
subformulaevx(—a; Vv --- v —an v A) with free variablegy by a fresh atonu(y) and
introduces a definition

VXy(—a1 Vv --- VvV -an Vv oay) v A).
Then the disjunction
—a1 V.-V -an VoY)

is a loose guard. To see this, lkat, v2 be a pair of variables occurring &y. If either vy
or vz is among th&, thenv1 andvz occur together in one of thea;, because the original
guantification was loosely guarded. If bath andv, are not among th&, then they are
both among th&, and then they occur togetherta (y). O

4.2. Termination

The ordering strategy for loosely guarded clause sets is more complicated than the
decision procedure for guarded clause sets. This is caused by problems that occur when
we have to select the literals of the loose guard. The completeness proeéofem 3.19
hinges on the fact that it is always possible to select a literal containing all variables of the
clause. This is not possible with loosely guarded clauses, because such a literal may not
exist, as, for example, in clausgbelow. The obvious approach would be to use the closest
possible approximation of the strategy for the GF. When there are literals with hon-ground
functional terms, we prefer the literals with maximal Vardepth. When there are no literals
with non-ground functional terms, select the complete loose guard and resolve it away
using hyperresolution (sd2efinition 2.4. Unfortunately at this point growth of Vardepth
is possible, as can be seen from the following example:

Example 4.5. The following clause is loosely guarded:
co = {—a1(X,Y), =ax(Y, Z), ~az(Z, X), b1(X,Y), b2(Y, Z), b3(Z, X)}.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 43

There are no non-ground functional terms, so the clause is a candidate for hyperresolution.
It is possible to construct a hyperresolvent with the following clauses

c1 = {=p1(A), a1(s(A), s(A)},
C2 ={—p2(B), a2(B, t(B))},
c3 = {—p3(C), as(t(C), C)},

using the substitution
0 ={X,Y,B,C:=5s(A), Z:=t(s(A)}.
The result equals

{=P1(A), =p2(S(A)), = Pp3(S(A)), bi(S(A), S(A)), ba(S(A), t(S(A))),
b3(t(s(A)), s(A)},
which has a Vardepth of 2, which is too deep.

Here is an explanation for the problemBkample 4.5 Clausecy can hyperresolve with
clauses; andcg using substitution

©={Y,B,X:=C,Z:=t(C)}.
The result equals:
Cpart = {_'al(cs C)! _‘pZ(C)v _'p3(c)v bl(Cv C)v bZ(Cv t(C))s b3(t (C)v C)}

This clause is loosely guarded, and it is not too deep. To obtain the final hyperresolvent one
needs to resolve upon the literad; (C, C). Howevera; (C, C) is not the deepest term in

the clause, and whem (C, C) is unified withai (s(A), s(A)) the literalba(c, t(C)) grows

into a Vardepth of 2. This means that our refinement should allow the constructiggof

but that it should block resolvingpart with c;.

Instead of allowing the construction of full hyperresolvents, we allow the construction of
partial hyperresolvents that are not too deep. We will prove that whenever a hyperresolvent
can be found using the loose guard, there exists a partial hyperresolvent which does not
grow in Vardepth and which is loosely guarded. In order to do this, we need to go into
details of how the mgu is constructed. For this purpose we repeat the following algorithm
for the construction of most general unifiers. It comes fieemuller et al. (1993)

Definition 4.6. The following algorithm decides whether or not two literAlandB have
a unifier. It constructs a most general unifier if there exists a unifier.

First, we define the notion of minimal differenceof two literals. LetA andB be two
literals, such thaA # B. A minimal difference is a paitA’, B) that is the result of the
following decomposition:

1. PutA’ := A, andB’ := B.
2. Aslong asA’ has the formp(ty, .. ., t,) andB’ has the formp(ug, .. ., up), replace
A by t; andB’ by u;, for ani, such that; # u;.

Using this, the algorithm for computing mgu’s is defined as follows.AandB be the
terms to be unified. Pu® := { }, the identity substitution.

44 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

1. If A= B, then® equals the most general unifier.
2. Aslong asA # B, let (A', B) be a minimal difference. Then

(a) If (A, B") has the form(p(ts, ..., tn), q(us,...,Um)), with p # g, orn # m,
then report failure.

(b) If (A, B') has the form(V, t), whereV is a variableV # t, butV occurs int,
then report failure.

(c) If (A, B') has the form(t, V), whereV is a variableV #t, butV occurs int,
then report failure.

(d) If (A, B') has the form(V, t) whereV is a variable, and/ does not occur im,
then putA .= A{V :=t}, B:=B{V :=1}, 0 := 0 - {V :=t}.

(e) If (A, B') has the fornit, V), whereV is a variable, and does not occur im,
then putA := A{V :=t}, B:=B{V :=1}, 0 := 6 - {V :=t}.

The procedure dbefinition 4.6is complete and sound. Up to renaming, the result does not
depend on the choice of the minimal difference. Beamiller et al. (1993¥or details.

Theorem 4.7. Assume that the literals4A. .., Ay, and By, ..., B, and the substitution
O satisfy the following conditions:

. All Aj have no non-ground, functional terms.

. Forall X,Y e Var(Aq, ..., An) thereis an Asuch that XY € Var(A)).
. All B} are weakly covering and have a non-ground, functional term.
. Ifi # j, then B and Bj have no overlapping variables.

. There are no overlapping variables between theaAd the B.

. ©isthe mgu of Az, B1), ..., (An, Bp).

OO WNPE

Then it is possible to find a permutatigm, . . ., 7,) with the following properties: write
(AL, ..., A) = (Agp, oo A

and
(Bi.....By) = (Bry, ..., Bry).

There exists an & n, such that, whe®" is the mgu of A}, B)), ..., (Aq,, B, then

1. Varn(B;©’) < Varnr(B)), andVardeptliB; ©’) < Vardepth{B;).
2. Foralli,withl<i<m,

Var(B/©') C Var(B;0"), and VardepthiB/©’) < VardepthB;).
3. Foralli,withl<i<m,
Var(Al ©') = Var(B/ 0", and Vardept Al ©") = Vardepth{B/ ©).
4. Foralli, with 1 <i <m, both A@" and B ©’ are weakly covering.
As a consequence, Bmits the complexity of the result.
Proof. Item 3 follows immediately from the fact tha®’ is a unifier. Before we can

establish items 1 and 2 we need the following notion. When a varigbteccurs as
Ai(...,V,..),and aterm asB;(...,t,...), we say thaV is pairedto t.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 45

Ifall A; © are ground, then the theorem follows trivially. Otherwise, define the following
orderC on variablesV that occur in the formulad\y, ..., Ay and for whichV © is not
ground:

XrCVYif X andY occur together in am, as Ai(..., X,....,Y,...),
and in the correspondinB; there isBi(..., T,...,U,...), with
Vardepth{T) < Vardepth{U).

Then the following property holds:
MAXVAR There exists @-maximal variable inAq, ..., Ap).

To see thaM AXVAR holds, argue as follows. If there does not exist a maximal variable
this is caused by the fact that there is a cycle as follows:

VoCViC---CVp L Vo

We show that in this case there does not exist a unifier. The cycle is caused by literals of
the form:

AO(V07 Vl)s Al(vlv V2)1 AZ(V27 V3)7 ceey Ap(Vp, VO)?
and
BO(TO? u0)7 Bl(tls ul)s BZ(tZ: U2)1 ceey Bp(tp, up),

with Vardepthitj)) < Vardepthiu;). Because thetj and u; are weakly covering,
Vardeptlt ©) < Vardepthiu; ©), (t © andu; © need not be weakly covering, but that
is not important). Becausg © = Vi1 0, fori < p, andu, @ = tpO it follows that

Vardepttito©) < Vardeptlit; ©) < --- < Vardepthtp ©) < Vardepthto ©),
which is impossible. This shows thistAXVAR holds.

We can now construct the permutation, . . ., 7p). Let Z be a maximal variable under
the_-order. Defing(ry, . . .,) as the following permutation:
1. Permute thgAj, Bj) whereA; containsZ before the(Aj, Bj), whereAj does not
containZ.
2. After that, sort théA;, B;) by VardeptliB;), putting theB; with the largest Vardepth
first.

Letmbe the index of the lagh; that contain&. Then the pairgsA{, B/) have the following
property, for 1<i <m,

MAXVARDEPTH If Z is matched to a ternt of B/ in one of the (A, B)), then
Vardeptfit) = Vardept{B/).

Suppose for the sake of contradiction that there is a teimB/, for which Vardeptku) >

Vardeptlit). There are three possibilities:

1. u is paired toZ. In that casd andu have to be unified by, which is impossible
because Vardepth = Vardepttiu) and because of the fact thaandu are weakly
covering.

46 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

2. uis paired to another variable, which contradictsithenaximality of Z, or

3. uis paired to a ground term. This would maké® ground. Since Vardepth) > 0,
it follows thatu contains all variables oB;. But thenB/6 is ground, and this
contradicts the fact that © is non-ground.

Let © be the mgu of the pairs
(AL, BD, ..., (A, Bpy).

We have to show that the permutation afitihave the desired properties 1 and 2. Write
O = 3135335405, wherely, ..., s are defined as follows.

(X1) 271 is the substitution that makes ground all variables in Ahe¢hat are paired to a
ground termZ is not among these variables. Then:

1. VardepthiB/ Y1) < VardepttiB/) and Varn(B/X1) < Varnr(B/), becauseX;
does not affect th@;.
2. VardepthiA{ X1) < VardeptlfA)), and VarntA{Y) < Varnr(A)), because

variables are replaced by ground terms.

(X2) X2 = {Z :=t}, wheret is a term of maximal Vardepth occurring By X1, andZ
is aC_-maximal variable. It must be the case that Vardéptl 0, Vardeptlit) =
Vardepth{B] 1) = Vardeptl{B}), and VardepttB;) > 0 by assumption. Because
of thist contains all variables oB] = B X1. X, does not affect any of thB/ X1,
becaus& occurs only in theA{. We now have

1. Var(B; X1 %>) € Var(A X1 %), because even) X1 X, containd.

2. VardepthiA{ X1 5) = VardeptliB;), because is the only non-ground and
functional term inA{ X1 X.

3. VardepthiB/ X1 Y>) < VardeptifAl Y1) = Vardepth{B;), because Vardepth
(B X122) = Vardepth{B)).

(X3) X3 is the unifier oft with the remaining terms with whichis paired. These are the
terms with whichZ was paired. Since they are weakly covering, and maximal in the
B/, we have the following:

1. VardeptliAl X1 X Y3) < Vardeptl{ Al X1 25). This follows fromTheorem 2.10

2. VardepthiB/ Y1 X, X3) = Vardepthit Xy X> 23). This follows fromTheorem 2.10
and the fact that the terms with whit¢hs paired are the terms with maximal
Vardepth.

3. Var(8{212223) C Var(B’1212223).

(X4) X4 is a substitution that replaces each of the remaining variables iA{tbg one of
the terms with which it is paired. We have

Var(Al 5155 53 54) = Var(B! 1 Y X3 5s)
and

Vardepth A} Xy X X3X,) < VardepthB)).

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 47

(Xs) Xsisthe remaining unification. Sincg; unifies terms with the same set of variables,
X5 must assign either a variable, or a ground term to each variable, hence the depth
cannot increase.

The result follows by collecting all the inclusions and inequalitiesl

Now that we haveTheorem 4.7 we can define the strategy that we described in the
introduction:

Definition 4.8. The decision procedure consists of the following derivation rules:

1. Letc be a clause. It has a factor, then the construction of this factor is always
allowed.

2. Letcy = {A1} U Ry andco = {—A2} U Ry be clauses such tha; and A, are
unifiable. Construction of the resolvent is allowed if for eack 1, 2 one of the
following holds:

(a) ¢ is ground, or
(b) ¢ contains non-ground functional terms, and Vardépthis maximal inc;.

3. Letc be non-ground and without functional terms. Write
c={-A1...,~AlJUR,
where—As, ..., ~ Ay is aloose guard. If there areclauses
c1={Bi1}JURy,...,ch = {Bn}URy,
such that either

(a) for each, eitherc; is ground or
(b) ¢ contains non-ground functional terms, and Vardépthis maximal inc;,

and a hyperresolvent is possible, then construct a permutation. .,), and an
m as inTheorem 4.7Write

(A/s"'s A/n):(Aﬂls"'vAT[n)v
(B, ..., B =By, ..., Bx),
(R/7~-'a RA)Z(Rnl,..., Rzrn)a
and construct a partial hyperresolvent as follows: from
{=AL....—~An ~Ani - A UR
and
{(BUURL, ..., {BL}URY,
construct

{(=AL10 ..., mAJO}URO'URO'U---UR6".

48 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

Making use ofTheorem 4.7the termination proof is analogous to the termination proof
for the GF.

Lemma 4.9. Let ¢ be a loosely guarded clause. Lét be a substitution that does
not assign a non-ground functional term to any variable. Thénis loosely guarded.
Moreover, for every set of literals G ¢ that form a loose guard of c, the instantiation
GO isaloose guard of ©.

Theorem 4.10. Let C be a loosely guarded clause setet Vardepti{C). Every clause
that is derivable by the refinement D&finition4.8 is loosely guarded, does not have a
Vardepthgreater thanw, and has a loose guard, that is an instance of a loose guard in a
clause of C.

Pr oof.

1. Suppose that has been obtained by factoring from a parent claysé follows in
the same way as in the proof ©heorem 3.8that the substitutio® does not assign
a non-ground, functional term to a variablecii®. ThenLemma 4.%can be applied,
to obtain that is loosely guarded and has a loose guard that is an instance of a loose
guard inc;. It follows immediately from the fact tha® does not assign non-ground
functional terms that Vardeptty ©) < Vardepthc).

2. Letcbe obtained frong; andc; by binary resolution, using an mgt. One can show
in essentially the same way as in the proofléfeorem 3.8hat each non-ground,
functional term inc contains all variables af, and that Vardepfit) < Vardeptticy)
or Vardeptlic) < Vardepthicp). One also obtains that for one of, ¢, the following
holds: the substitutio® does not assign a hon-ground, functional term to any of the
variables inc;. This ensures that has a loose guard that is an instance of a loose
guard ofc;.

3. Let

h==G10U---U=Gn6O
U {=An10, ..., A0} UROUROU---URnO

be obtained by partial hyperresolution from the following loosely guarded clauses:

C= {_‘Al, c ey _'Am} U {_'Am+]_, ey _'An} U R,
€1 =—-G1URLU{By},

with substitution®. The—G; are the loose guards of clausgsWe will show that
—G16 is a loose guard dfi. From Theorem 4.7Part 1, we know tha® does not
assign a non-ground functional term to a variablecin Therefore we can apply
Lemma 4.9and we know that-G10 U R1© U {B16} is a loosely guarded clause,
with loose guard-G1 6. Now all the B; contain all variables of their clauses
FromTheorem 4.7Part 2, it follows that VaiB; ©) € Var(B1©). This makes sure
that—G1 60 is a loose guard df.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 49

Next we must show that every non-ground functional terim @ontains all variables
of h. Lett be a non-ground functional term m First consider the case whetre
originates from one of the parergs If there is a variabl®/ in ¢;, such thaiy © =t,
then this variable occurs iB;j. SinceB; © is weakly covering (byrheorem 4.7Part
4), the resulty ©® = t contains all variables df. If there is a termu in ¢, such
thatu® = t, then this term contains all variables@f Henceu® =t contains all
variables oft; ©. The case whereoriginates front is completely analogous.
Finally we show that Vah) < Var(ci;) and Vardeptth) < Vardeptticy). We
originally have

Var(ci) € Var(B;), Vardepthici) < Vardepth{B;).
This implies that

Var(c; ©) C Var(B; ©), Vardeptlic; ©) < Vardepth{B; ©).
FromTheorem 4.7Part 2, we have

Var(B; ©) C Var(B10), Vardeptl{B; ©) < Vardepth{B,0).
Combining this and applying Part 1 ®heorem 4.tompletes the proof.]

It remains to show that the set of derivable clauses is finite and to obtain a complexity
bound. One can prove the analoguéemma 3.10n essentially the same way. This makes
it possible to applyrheorem 3.22vith the following modification: In poin{l), one has to
replace “the maximal arity of a guard”, by “the maximal number of variables in a loose
guard”.

4.3. Completeness

The strategy for the LGF is more complex than the strategy for the GF. The strategy
is also non-liftable, but moreover, it does not have a natural definition that uses orders. In
order to prove its completeness we need to modify the resolution game, such that it can
handle the partial hyperresolution rule.

The closest existing approximation of what we needAirdered resolution with
selectionthat occurs irBachmair and Ganzinger (1994)e repeat the definition here.

Definition 4.11. Let ¢ be a set of propositional clauses. Lietbe an order on atoms.
Extendr to literals as follows:

A C Bimplies—A, AC —B, B.
Leto be a function from sets of literals to sets of literals satisfying:

1. o(c) C ¢, for each clause.
2. For each clause, eithero(c) contains allC-maximal literals, or (€) contains at
least one negative literal.

Having the selection function, when we construct the resolvent

{=A}JURy, {AJUR = RiURy,

50 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

we impose the condition that

—Aco({—-AlURp), Aeco({AlU Ry).

Example4.12. Assume thaa C b. Look at the clause = {a, b, —a, —b}. Itis allowed to
haveos (c) = {b}. Itis not allowed to have (c) = {a}. It is allowed to haver (¢c) = {—a},
oro(c) = {—b}.

It is not required to select a single literal, so it is allowed to haye) = {a, b},
o(c) = {—a, b}. In the propositional case, that we have defined here, it is always possible
to makeo (c) a singleton. Hyperresolution can be seen as a special form of resolution
with selection, by always selecting exactly one negative literal, if there is one. Standard
A-ordered resolution can be obtained by always selecting consisterntwith

It is shown in Bachmair and Ganzinger (1994hat this restriction of resolution is
complete, and that it can be combined with certain restrictions of paramodulation. The
relation to our strategy can best be explained by ugirgmple 4.5 We would like to
use selection on clausg to select the literals-a; (X, Y), —ax(Y, Z), —az(Z, X), but this
is not possible, because it depends on the claoge®, c3, which literals of the loose
guard should be resolved away. There might be different clayses, c;, for which other
literals should be selected. However in the completeness proof of resolution with selection
functions, the fact that the selection is made in advance, is not used. All that is used there is
that, if there is a clausg-ay, . . ., —ap}U Rwith one of the literals-ay, . . ., ~a, selected,
and for each there is a clause of the forfa;} U R;, with g; selected, then there is at least
one clause of the fornf—ag, ..., ~a_1, —a@j+1,..., ~ap} U RU R, for somei. This
can be ensured by selecting a fixed literal from -, ..., —ap in advance, but it is not
necessary. So we need a generalization of the resuBséhmair and Ganzinger (1994)
with a non-liftable order, and without having to make the selection in advance. For this we
need to adapt the resolution game.

Definition 4.13. We define the new resolution game as an ordered quadduple
(P,PA, <,0). HereP is a set of propositional atoms, as befgfed is a set of indexed
atoms. It is not required that all pairs of a propositional symbol and an attribute do occur
in PA. Literals andindexed literalsare as before. The orderis well-founded as before,

but it is defined orP A instead of(P U —=P) x A. Itis extended to indexed literals by

a:A<b:B=+:aA<b:+B.

A clauseis a structure of the forrg - ¢;. Herecy is a finite multiset of atoms, ang
is a finite multiset of indexed literals.

For a claus&g - ¢, theselection functiorequals eithecg or ;. If o(cg - ¢) = cg,
we say thaty is selected. In the other case we say thas selected. It; is selected, the
clausecg I ¢ can be used for binary resolution and factoringiglis selected, the clause
Cg I ¢ can be used for partial hyperresolution and factoring.

If ¢ is selected, then it must be the case that for every aamty, and for all indexed
literalsa : A that can be built using, there is an indexed literdd : B in ¢, such that
a:A<b:B.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 51

We have the following condition on atoms that occur in the left-hand side: if an atom
occurs in the left-hand side of a clausgt- ¢, then there exists am: A € P.A, such that
for all othera : A’, based oma, itisthe case tha : A’ < a: A.

Reductiongre obtained by finitely often making the following replacements.

1. Replacingeg U [a] ¢ bycg ¢ U[—-a: Al
2. Replacingeg ¢ Ua: Al by somecg ¢ Ula: Alwitha: A’ <a: A

The modified resolution game has the following derivation rules:

FACTOR 1. If aclausec; has formeg - [b : By, b : B2] U R, and the right-hand side
is selected, and : By is maximal, thercg - [b : B1] U Ris a factor ofc;.
2. If aclausec; has form[a] U cg - [—a : A]U R, the right-hand side is selected,
and—a : Ais maximal, thefa] U cg - R is a factor ofc;.
RES If ¢c1 = RyU[b: B1], andca = Ry U[—=b : Bp] are clauses with their right-hand sides
selected, anth : B; and—b : By are maximal in their clauses, then the following
clause is a resolvent:

ctUcF RiURy.
PARTIAL Let
r=[a,...,ap]FR
be a clause, such that the left-hand dJigie: A1, ..., ap : Ap] is selected. Let
giF[ar: AYJURL....0p - [ap: AJURp

be clauses, such that all : Af are maximal in their clauses, andf@l : A[JUR; are
selected. Lein < p. Then clauses of the following form apartial hyperresolvents

QLU - UdmUlames, ..., apl F RURLU---URn.

(We have omitted the permutation for notational reasons.)

Definition 4.14. LetC be a set of clauses. gaturationC of C is a set of clauses satisfying
the following:

1.CcC.

2. For every clauseg |- ¢; that can be obtained from clausesGneither by RES, or
by FACTOR, there is a reductialy - d; of cg - ¢; in C.

3. For every group of clauses ci, ..., cn, such that it is possible to form partial
hyperresolvents, there is at least one reductignt- dr of one of the partial
hyperresolvents i.

We have the following completeness theorem:

Theorem 4.15. LetC be a saturation of a clause set C Gfdoes not contain the empty
clause, then C has a model.

52 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

Proof. Assume that a saturated clause@etoes not contain the empty clause. We show
thatC has a model. The order of the resolution game is well-founded &hA. Without
loss of generality we can assume thaits total. Letk be the ordinal of the length of. We
inductively construct setk, 11, ..., I, ... up tolg as follows:

1. lg={}.
2. For a successor ordinaH- 1, letb : B be the indexed literal on position

(@) Putl; 41 = 1, U {b : B} if either there is a reductiob : B’ of b : Biin I;, or
there is a clausein C which has form

c=[ag...,aplFr:RU[b:B],
such that
() the right-hand side of is selected,
(i) c cannot be factored,
(iii) b: Bis the maximal indexed literal i,

(iv) for each literala; of the left-hand side oty, there is an indexed literal
a:Ael,,

(v) thereis no literal ir : R, that occursin,;,.

(b) Putl, 1 = I, U {=b: B} on the same conditions as for. B, but withb : B
replaced by-b : B.
(c) Otherwise put; 1 = 1,.

Observe that Cases 1 and 2 may overlap. When that happens, we assume that Case 1
is checked before Case 2. Because of thisB is added, ane-b : B is not added.
3. Fora limit ordinalk, putl, = U, _; lu-

We first establish the following property:

JUST For each indexed literattb : B in lg, there is a clause of the form =
[ai,...,apl Fr: RU[£b: B]in C, such that

1. The right-hand side afis selected,

2. c cannot be factored,

3. +b: B is the maximal indexed literal af,

4. for eachg;, there is an indexed literal of the foran : A; € Iy,
5. no literal ofr : Ris in Ik.

The problem is to establish (5). It is clearly the case that no literal:0R occurs inl;,
because of Condition v of the construction. The indexed litetals: A, that are added
later, all havetb : B < +a : A. Sincexb : B is the maximal literal ot, they cannot be
inc.

Next we will show the following two facts by induction:

A forindexed atoma : A, it is not the case that both: Aand—a : Aare inl,

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 53

and for each clausg |- ¢; in C, at least one of the following is true:

C1 Foranain cg, there is noA, such thata : A € Ik.
C2 Thereisara: Ainc, suchthata: Ain lk.
C3 Thereisa-a: Ainc;, such that-a: Ain Ii.

We write C for the disjunction C¥ C2 v C3.

We will establish A and C by induction on the multiset extensior of <. In order
to do this we associate a finite multiset of indexed atoms to each instance of A and C as
follows:

1. To A, applied to an indexed atoa: A, we associate the multisg : Al.

2. To C, applied to a clauskay, ..., ap] F+ cg we associate the multisghy :
A1, ...,ap : AplUcq. Here eachy : A is the maximal indexed atom that can
be constructed frorg;.

In the induction proof we need the following property:

REDUCTION Let Sbe a finite multiset of indexed literals. Suppose that we have already
established the induction hypotheses to all finite multisets b&oketcg - ¢ be
some clause, not necessarilyGn with associated multiset belo@ Letdg I d; be
a reduction oty I ¢; that occurs irC. Thencg - ¢ also satisfies C.

First observe thadg - dr also has the associated multiset befdwt is sufficient to show
that REDUCTION is preserved by reductions that consist of one step.

1. Consider the case whergt ¢; U [—a: A]is a reduction oty U [a] - ¢;. Assume
thatcg - [a] U [—a : A] satisfies one of C1, C2, C3.df - ¢ U [—a : A] satisfies
C1, thency U [a] - ¢ also satisfies C1. Iég - ¢ U [—a : A] satisfies one of C1,
C2, then one of the literals igf U [—a : A] occurs inlk. If this literal is inc, then
Cg U [a] - ¢ clearly satisfies one of C1, C2. If itisa : A, then let—a : A’ be the
maximal indexed literal based @ By the construction ofy, it must be the case
that—a : A" € lx. The associated multisgh : A'] << the associated multiset of
Cg U [a] F ¢r. Hence we can apply A to obtain that: A’ is not in lx. This means
thatcg U [a] I ¢ satisfies C1.

2. Consider the case whetg - ¢ U [+a : A'lis a reduction ofg - ¢ U [+a : Al
If cg - ¢ U[+a : A] satisfies C1, theng - ¢ U [+a : A] also satisfies C1. If
Cg F ¢ U[£a : A’ satisfies one of C2, C3, and a literal®fis in I, then clearly
¢ ¢ U[+a: A] satisfies one of C2, C3. ify - ¢ U [f+a : A'] satisfies one of
C2, C3, andta : A’ isin I, then by the construction df, +a : A € Ix. Hence
Cg - ¢ U[a: A] satisfies one of C2, C3.

Let Sbe a finite multiset of indexed atoms. Assume that A and C are true for all instances
with associated multiset belo®. We prove that instances of A and C with associated
multiset equal tds are also true. We do this by analysing the possible instances that have
an associated multis& More than one case can be applicable, and it is possible that no
case applies.

54

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

. If Shas the fornia : A], then we have to establish the fact that not bthA and

—a: AareinC. Suppose that they were both@ Then there are clauses
ca=czhguUla: Al and c=cjFcfUl-a: Al

in C satisfying JUST. The resolven} U ¢ + ¢ U ¢7 is allowed, and therefore a

reductiondg I d; of itis in C. Now the resolvent has an associated multiset smaller
than S, because it consists of indexed literals strictly below A. We can apply
REDUCTION, and we obtain the fact that the resolvgit 3 - ¢ Uc? satisfies C.

We show that this leads to a contraction. If the resolvent satisfies C1, this means that
for one of the atoma in cé U cé, there is no indexed atom: A € Ik. This means
that one of the clauseas, c, violates Condition 4 of JUST. If the resolvent satisfies
C2 or C3 this leads to a violation of Condition 5 of JUST in the same way.

. If there is a clause of the form= [az,...,ap] - Rin C, with the left-hand side

selected, and with associated multiSethen assume thatdoes not satisfy C1. We
will show thatc satisfies either C2 or C3. There must exist clauses

gll_[a]_A]_]UR]_,,gpl_[apAp]URp

in C, that satisfy JUST. Because of this a partial hyperresolvent is possible. Assume
that there is a reduction of the partial hyperresolvent

h=g1U---UgmU[a8ms1,...,8] F RURLU---URm.

The associated multiset df is smaller thanS. This is because in the clauses

g F[a : AillU R, all indexed literals irR; are strictly smaller thag; : A;. By the
conditions on selection of the right-hand side, the maximal indexed atoms that can
be built fromg; are strictly smaller thag; : A;. Each indexed atorg; : A is less

than, or equal to the maximal indexed atom that can be built fprithis implies

that the associated multiset lofcan be obtained from the associated multiset,of

by replacing some indexed literals by a finite set of strictly smaller indexed literals.
Because of this we can apply REDUCTION, and we obtain the facttisatisfies

C. We can proceed in essentially the same way as in the previous case. We first show
that h must satisfy C2 or C3, because C1 results in a contradiction. Suppose that
h satisfies C1. If for one of they, ..., ap, there is noA;, such that; : A € I,

this contradicts the initial assumption. If for an at@enin one of theg;, there is no
indexed atona : A € i, this contradicts Condition 4 of JUST. Now the fact that
satisfies C2 or C3 means that there is an indexed liteeal A that occurs in both
RURiU---U Ry andlk. Because eacty - [a : Aj]U R satisfies Condition 5 of
JUST, the only possibility is that the indexed litefigh : A occurs inR. This means
thatc satisfies C2 or C3.

. If there is a clause of the forog I ¢; in C, with the right-hand side selected, which

can be factored and with associated multSethen we writecg - ¢; for one of its
factors, and letly - ¢, be a reduction that is €. It is easily checked that both
have an associated multiset strictly smaller tisaand because of this we can apply
REDUCTION and obtain thaty + ¢ satisfies C. Then it is easily checked that
Cy I ¢ satisfies C.

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 55

4. If there is a clause of the formy + ¢, with the right-hand side selected, which
cannot be factored and with associated mult&ehen proceed as follows: suppose
thatcy does not satisfy C1. Leta : Abe the (unique) maximal literal iy - ¢; . Let
A be its position in the ordering. Then at the moment thaj was constructed there
already was an indexed literal: C € I, for eachc € cg. (Because the right-hand
side ofcg - ¢ was selected, there do not exist indexed litecalsC with ¢ € ¢y
greater thanta : A) If at the moment that; ; was constructedsy - ¢ did not
satisfy C2 or C3, thed-a : A is added td ;1. For this reasomg - ¢; necessarily
satisfies C2 or C3.

Finally, a model ofC can be extracted frortk by putting the atoms, for which there is
an indexed atora : Ain Iy, true. The other atoms are put false. It follows from A, C1, C2,
C3, that this makes every clauseGrtrue. O

Definition 4.16. Let A be literal. Thenormalizationof A is defined as iefinition 3.14
but if Ais negative, the negation sign is removed in the process.

Letc={—ar: As,...,—ap : Ap,b1: By, ..., bq : Bg} be arepresentation-indexed,
loosely guarded clause with loose gugrehy @ Ag, ..., —ap : Ap}. Let © be its substi-
tution. Letk = #6. Then[c] is defined as

[a,...,apl - [b1: (K Ba),...,bq: (K, Byl

Here theA;, B; are the normalizations of tha;, B;.
Theorem 4.17. The strategy oDefinition4.8 is complete for clause sets C in the LGF.

Proof. Once we have the resolution gamedsfinition 4.13 the proof is analogous to the
proof of Theorem 3.19Let C be an unsatisfiable, loosely guarded clause setClis its
closure under resolution and factoring, using the ruld3effnition 4.8 We need to show
thatC contains the empty clause. L&kp andChp be obtained as iTheorem 3.19The
set of propositional symbolB is defined as the set of propositional atom€ijmp. The set
[Chp] is defined as before, but using the new definitiof pigiven inDefinition 4.16 The
setP A is defined as the set of objeas (k, A) for which eithera : (k, A) or —a : (k, A)
occurs in[Chp].

The selection function is defined as follows: let

c=l[a,...,aplF[b1:(k B1),...,bq: (K Bg)l

be a clause ifCnp]. If there is an indexed literad; : (k, B_j) containing non-ground,
functional terms, then select the right-hand side.dbtherwise select the left-hand side.

We must show that when the right-hand side is selected, the clause satisfies the condition
in Definition 4.13 Because thg; : (k, Aj) are part of the loose guard, they do not contain
non-ground, functional terms. Lét be the substitution such that = A; X. BecauseA,

does not contain non-ground, functional terms, there exist no té&/masd X', such that

a =AY ,and # < #X', so we know that # > #Y’. We also have ¥ < k. (They are

not necessarily equal becausgneed not contain all variables in the clause.) From this it

56 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

follows that there are no indexed atoms: (I, A) [Chol Withk <1, ork =1, andAl
contains non-ground, functional terms.

We also need to show that for every atom occurring in a guard, there is a maximal
indexed atom, based @nin P.A. This is the case becaugea is finite.

It remains to show thdCnp] is a saturation of the resolution game. This is essentially
analogous to the proof dtheorem 3.19The differences are the following:

When, due to substitution, a literal moves from the loose guard to the body of a clause,
this is modelled by the first type of reduction,refinition 4.13

When a partial hyperresolvent is formed, assume[dat . ., ap] - r : (k, R) and

01k [ag: ki, AD)JUTry s (K1, Ry,

have a partial hyperresolvent. There must exist clauses of the following foBxuin

C={-ar: Ay ...,map: ApjUr: R,
CG={—01:G1}Ur1: RpU{a: A1},

Cm={"0Om:Gm}Urm: RnU{am: Am},
with partial hyperresolverit =

Ur:ROUr1: RIOU---Urpy: Rno.

Write [h] =
LU ---UgmU[a@mt1,...,aplFr:(,RO)UrL: (I, RiO)U---Urp: (I, RpO).
It is sufficient to show thafth] is a reduction of the following partial hyperresolvent
O1U---UgmU[amy1,...,apl-r (kKR Ury:(ky, ROU---Urp: (Kp, Rp).

This is essentially analogous to the proofTdfeorem 3.19It is sufficient to prove that
| < kj, andl < k. This follows from the fact that for eachl <i < m,

Var(ci ©) C Var(cO). O

Theorem 4.18. Resolution with factoring, as defined refinition4.8, together with the
modified normal form transformation, is a decision procedure for the LGF.

5. Conclusionsand further work

We have shown that it is possible to effectively decide the GF and the LGFs by
resolution. The proofs that the resolution refinements are complete and terminating can be
used as proofs for the decidability of these fragments, but they offer more than that. They
also define practical decision procedures, using techniques that are standard to the theorem

H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58 57

proving community. This has made implementation relatively easy. Since the procedures
could be built on top of an existing resolution prover, they could easily be combined with
an efficient, full first-order theorem provetd Nivelle, 1999a

Our decision procedure has interest in itself, but it can also be applied to modal
logics, using the relational translation. From the space point of view, translation into the
GF is not the optimal way for deciding simple modal logics likeand T, since these
logics are in PSPACEL@dner, 197y, while the complexity of the GF with fixed arity is
single exponential. However it is not likely that a resolution decision procedure will ever
decide modal logics in PSPACE, since resolution cannot even solve propositional logic in
PSPACE.

We expect that our method has advantages over the direct approaches of resolu-
tion in modal logic Enjalbert and Fanas del Cerro, 1989; de Nivelle, 199Because our
method provides a decision procedure, and because it can exploit existing implementations.

We do not expect to be able to improve the functional translation methods
(Schmidt, 199y, at least not with our present translation.

A natural question is, whether or not the result&iriidel and Walukiewicz (199%an
be obtained by resolution. We are pessimistic but we will investigate the question.

Acknowledgements

We would like to thank the anonymous referees for their comments, and the Editor-in-
Chief for his help during the publication process.

Both authors were partially supported by the Spinoza Project “Logic in Action” at ILLC,
the University of Amsterdam. MdR was also supported by grants from the Netherlands
Organization for Scientific Research (NWO), under project numbers 612-13-001, 365-20-
005, 612.069.006, 612.000.106, 220-80-001, and 612.000.207.

References

Andréka, H., van Benthem, J.,ddieti, I., 1998. Modal languages and bounded fragments of
predicate logic. J. Phil. Logic 27, 217-274.

Areces, C., 2000. Logic Engineering, Ph.D. Thesis. ILLC, University of Amsterdam.

Baaz, M., Fermller, C., Leitsch, A., 1994. A non-elementary speed up in proof length by
structural clause form transformation. Proceedings LICS’'94. pp. 213-219.

Bachmair, L., Ganzinger, H., 1994. Rewrite-based equational theorem proving with selection and
simplification. J. Logic Comput. 4, 217-247.

Boyer, R., 1971. Locking: A Restriction of Resolution. Ph.D. Thesis. University of Texas at Austin.

Chang, C.-L., Lee, R.-T., 1973. Symbolic Logic and Mechanical Theorem Proving. Academic Press.

de Nivelle, H., 1993. Generic resolution in propositional modal systems. LPAR’93. LNAI, vol. 698.
pp. 241-252.

de Nivelle, H., 1994. Resolution games and non-liftable resolution orderings. CSL'94. pp. 279-293.

de Nivelle, H., 1998. A resolution decision procedure for the guarded fragment. CADE’98. pp. 191—
204.

de Nivelle, H., 1999a. The Bliksem Theorem Prover. Can be obtained frotp:: //www.mpi-sb.
mpg.de/ bliksem.

http://www.mpi-sb.
mpg.de/~bliksem

58 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21-58

de Nivelle, H., 1999b. Translation of S4 and K4 into the guarded fragment and the 2-variable
fragment (manuscript).

Enjalbert, P., Farids del Cerro, L., 1989. Modal resolution in clausal form. Theor. Comput. Sci. 65,
1-33.

Fermuller, C., Leitsch, A., Tammet, T., Zamov, N., 1993. Resolution Methods for the Decision
Problem, LNAI, vol. 679. Springer.

Gabbay, D., 1981. Expressive functional completeness in tense logicolmibti, U. (Ed.), Aspects
of Philosophical Logic. Reidel, pp. 91-117.

Ganzinger, H., de Nivelle, H., 1999. A superposition decision procedure for the guarded fragment
with equality. LICS’99. pp. 295-303.

Ganzinger, H., Meyer, C., Veanes, M., 1999. The two-variable guarded fragment with transitive
relations. LICS’99, pp. 24-34.

Gradel, E., 1997. On the restraining power of guards. J. Symb. Log. (to appear).

Gradel, E., Kolaitis, P., Vardi, M., 1997. On the decision problem for two-variable first-order logic.
Bull. Symb. Logic 3, 53—69.

Gradel, E., Walukiewicz, ., 1999. Guarded fixed point logic. LICS’99. Trento, pp. 45-54.

Immerman, N., Kozen, D., 1989. Definability with a bounded number of bound variables. Inf.
Comput. 83, 121-139.

Kurtonina, N., de Rijke, M., 1999. Expressiveness of concept expressions in first-order description
logics. Artif. Intell. 107, 303-333.

Ladner, R., 1977. The computational complexity of provability in systems of modal propositional
logic. SIAM J. Comput. 6, 467—-480.

Leitsch, A., 1997. The resolution calculus. In: Texts in Theoretical Computer Science. Springer.

McCune, W., 1995. Otter 3.0 Reference Manual and Guide. Argonne National Laboratory,
Mathematics and Computer Science Division. Available frdtp.mcs.anl.gov, directory
pub/Otter.

Mortimer, M., 1975. On languages with two variables. Z. Math. Log. Grundl. Math. 21, 135-140.

Ohlbach, H.-J., Weidenbach, C., 1995. A note on assumptions about skolem functions. J. Autom.
Reasoning 15, 267-275.

Schmidt, R., 1997. Optimized Modal Translation and Resolution, Ph.D. Thesis. Max Planck Institut
fur Informatik, Saarhrcken.

Tammet, T., 1990. The resolution program, able to decide some solvable classes. Proceedings
COLOG-88, pp. 300-312.

van Benthem, J., 1997. Dynamic bits and pieces. Technical Report LP-97-01, ILLC. University of
Amsterdam.

Vardi, M., 1997. Why is modal logic so robustly decidable? In: Immerman, N., Kolaitis, P. (Eds.),
Descriptive Complexity and Finite Models. pp. 149-183.

Weidenbach, C., 1997. The Spass & Flotter Users Guide, Version 0.55. Available from:
ftp.mpi-sb.mpg.de, directorypub/SPASS.

ftp.mcs.anl.gov
ftp.mpi-sb.mpg.de

	Deciding the guarded fragments by resolution
	Introduction
	Background
	The guarded fragment
	Resolution
	Transformation to clausal normal form
	Weakly covering literals
	The resolution game

	The guarded fragment
	Basics
	Termination
	Completeness
	Complexity

	The loosely guarded fragment
	Translation to CNF
	Termination
	Completeness

	Conclusions and further work
	Acknowledgement
	References

