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Abstract

The guarded fragment (GF) is a fragment of first-order logic that has been introduced for two
main reasons: first, to explain the good computational and logical behaviour of propositional modal
logics. Second, to serve as a breeding ground for well-behaved process logics. In this paper we
give resolution-based decision procedures for the GF and for the loosely guarded fragment (LGF)
(sometimes also called the pairwise guarded fragment). By constructing an implementable decision
procedure for the GF and for the LGF, we obtain an effective procedure for deciding modal logics
that can be embedded into these fragments. The procedures have been implemented in the theorem
proverBliksem. c© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The guarded fragment (GF) was inspired by two observations. First, many propositional
modal logics have very good computational and logical properties: their satisfiability prob-
lems are decidable in polynomial space and exponential time; they have the (uniform) finite
model property, and the tree model property (Vardi, 1997); we have a solid understanding
of their expressive power in model theoretic terms, and they have various interpolation and
preservation properties (seeKurtonina and de Rijke, 1999; Areces, 2000).

Second, these modal logics can be translated into first-order logic, using a standard
(relational) translation based on the Kripke semantics. In this translation, a modal formula
A is translated by computingT(A, x, y), where x and y are two distinct first-order
variables.T is recursively defined as follows:

T(p, α, β) = p(α) if p is an atom

T(¬A, α, β) =¬T(A, α, β)

T(A∨ B, α, β)= T(A, α, β) ∨ T(B, α, β)
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T(A∧ B, α, β) = T(A, α, β) ∧ T(B, α, β)

T(A→ B, α, β)= T(A, α, β)→ T(B, α, β)

T(�A, α, β) =∀β[R(α, β)→ T(A, β, α)]
T( A, α, β) = ∃β[R(α, β) ∧ T(A, β, α)].

Here R is a binary relation symbol that denotes the accessibility relation. In case there
are additional restrictions on the accessibility relation, these can be explicitly added to the
translation. The formulaT(A, x, y) means “A holds in worldx”. In order to translate “A
is satisfiable”, one must compute∃xT(A, x, y).

The consequence of the translation above is that propositional modal logics can be seen
as fragments of first-order logic. The natural question that arises is: What makes these
fragments special? Or put differently, why do they have the pleasant computational and
logical properties noted above?Gabbay (1981)was the first to observe that modal logics
can be translated into the 2-variable fragmentFO2 of first-order logic, which is decidable.
(Indeed the translation given above uses only the variablesx andy.) The fragment FO2 with
equality was first shown to be decidable inMortimer (1975), without giving an explicit
complexity bound. InGrädel et al. (1997)it was shown that the satisfiability problem for
the 2-variable fragment (with equality) is NEXPTIME-complete. InGrädel et al. (1997)an
interesting account of the history of the fragment can be found.

The decidability of FO2 appears to be an explanation for the pleasant properties of
modal logics. We have a clear understanding of the expressive power of FO2 in terms of
so-called pebble games (Immerman and Kozen, 1989). However on the negative side, FO2

is not finitely axiomatizable, it does not have the Craig interpolation property, and it does
not have the tree model property, unlike the modal logics it contains. For example, the
formula∀xy[R(x, y)] does not have a tree-like model. InVardi (1997)it is convincingly
argued that the tree model property is the reason for the good behaviour of modal logics.

Recently, an alternative explanation for the good behaviour of modal fragments of
first-order logic was put forward byAndréka et al.in 1998. Their observation is that
in the translation given above all quantifiers only occurrelativized or guardedby the
accessibility relation. They called this fragment of first-order logic, in which all quantifiers
occur relativized, the GF. Clearly, the translation above translates modal formulae into
the GF.

At present, the GF is actively being investigated, both from a computational and from
a logical point of view. It is known to be decidable and to have the finite model property
(Andréka et al., 1998). Its satisfiability problem is decidable in double exponential time
and it enjoys (a generalized form of) the tree model property (Grädel, 1997). Because of
this it is consistent withVardi (1997)to use the GF as explanation for the good behaviour
of modal logics.

Actually, the results inGrädel (1997)were proven for the GF with equality (however
equality cannot act as a guard). InGanzinger et al. (1999)it is shown that the 2-variable
restriction of the GF remains decidable, when it is extended by transitive relations. In
Grädel and Walukiewicz (1999), the GF is extended with monotone fixed point construc-
tors. It is shown that this extension does not increase the complexity of the decision prob-
lem. Moreover, this extended fragment still satisfies the tree model property.
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Many familiar—and well-behaved—modal logics can be translated into the GF. These
logics includeK , B, D, and recently alsoS4, K 4 andS5 (de Nivelle, 1999b). However,
it seems that several important modal and temporal logics cannot be translated into the
GF, including the temporal logic with Since and Until. For these reasons, a number of
generalizations of the GF have been proposed, the oldest of which is the so-calledloosely
guarded fragment(LGF) (van Benthem, 1997). In this fragment, more liberal guards are
allowed than in the original GF. With these liberal guards the operators Since and Until can
be translated.

The aim of this paper is to present resolution decision procedures for both the GF and
the LGF without equality. Recently, a superposition decision procedure for the GF with
equality has been developed inGanzinger and de Nivelle (1999). Although the first-order
fragment in that paper is more general, the clause fragment had to be strongly restricted
in order to make it possible to include equality. For example, the clause fragment used
here allows nesting of function symbols, while this is not allowed in the other clause
fragment. This means that the decidability results here and the decidability results in
Ganzinger and de Nivelle (1999)are incomparable at the clause level.

In order to decide the GF, we define guarded clauses, and show that first-order guarded
formulae can be translated into sets of guarded clauses. We then show that sets of
guarded clause sets are decidable by an appropriate restriction of resolution. The restriction
that has to be used is based on a so-calledordering refinement. All of the resolution
theorem provers (SPASS (Weidenbach, 1997), OTTER (McCune, 1995), and Bliksem
(de Nivelle, 1999a)) support orderings. This makes our strategy fit very well into the
standard framework of first-order resolution theorem proving. The standard optimizations
and implementation techniques can be reused for our decision procedure, so we can
expect our procedure to be technically efficient. Indeed, with an effective resolution-based
decision procedure, implementation has become feasible. The strategy for the GF has been
implemented in the theorem prover Bliksem (de Nivelle, 1999a). We will also show that
our decision procedure is theoretically optimal, because it terminates in double exponential
time.

In order to decide the LGF we define a similar notion of loosely guarded clause.
However, deciding sets of loosely guarded clauses is much harder than deciding sets
of guarded clauses. We need a non-trivial modification of hyperresolution on top of the
ordering refinement for this. In order to prove its completeness, an extension of the
resolution game turns out to be necessary.

The paper is organized as follows.Section 2provides background material. After that,
in Section 3we get to work and establish decidability of the GF by means of ordered
resolution. InSection 4we use ordered resolution to decide the LGF. The fifth and final
section contains our conclusions as well as some open questions.

2. Background

We begin by defining the GF. After that we give some general background on resolution
strategies, normal form transformations, and covering literals. It should be noted that we
do not consider equality in this paper. For this we refer toGanzinger and de Nivelle (1999).
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2.1. The guarded fragment

Definition 2.1. The GF is recursively defined as the following subset of first-order logic
without equality and function symbols.

1. � and⊥ are in GF.
2. If a is an atomic formula, thena ∈ GF.
3. If A, B ∈ GF, then¬A, A∨ B, A∧ B, A→ B, A↔ B ∈ GF.
4. Let A ∈ GF, and leta be an atomic formula such that every free variable ofA occurs

at least once among the arguments ofa. Then∀x(a→ A) ∈ GF and∃x(a∧A) ∈ GF.
We also allow∀x(¬a ∨ A) ∈ GF.

The atomsa in Item 4 are calledguards.

There are no conditions on the order in which the variables occur in the guards. It is also
allowed to repeat variables.

Example 2.2. The following formulae are guarded:

∀xy[a(x, y)→ (b(x, y)∧ c(x)∧ d(y, y))].
∀xy[a(x, y, y, x)∧ (c(x)∨ ¬∀z[a(y, z)→ d(y)])].

The following formulae are not guarded:

∀xy[a(x)→ a( f (x))].
∀xy(a(x)→ b(x, y)).

∀xyz[R(x, y)∧ R(y, z)→ R(x, z)].
It is easily checked that for every modal formulaA the translation∃xT(A, x, y) is

guarded.T(A, x, y) is clearly function free. The set of free variables ofT(B, α, β)

is always included in{α}. All quantifications inT(A, x, y) have form∀β[R(α, β) →
T(B, β, α)] or ∃β[R(α, β) ∧ T(B, β, α)]. Sinceβ occurs inR(α, β) the quantifications
are guarded.

2.2. Resolution

We briefly review some elementary facts about resolution. We assume that the reader is
familiar with such notions as literals, clauses, and ground terms. We begin by defining some
complexity measures for terms, atoms, clauses, and literals. For convenience we identify
atoms and terms in the following recursive definitions. LetA be an atom/term. Thedepth
of A is recursively defined as follows:

1. If A is a variable, then Depth(A) = 1.
2. For a functional term/atom, Depth( f (t1, . . . , tn)) equals the maximum of{1, 1 +

Depth(t1), . . . , 1+ Depth(tn)}.
The depth of a literal equals the depth of its atom. The depth of a clausec equals the
maximal depth of the literals inc, or 0 for the empty clause.

Thevardepthof a term/atomA is recursively defined as follows:

1. If A is ground, then Vardepth(A) = −1.
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2. If A is a variable, then Vardepth(A) = 0.
3. In all other cases,

Vardepth( f (t1, . . . , tn)) = max{1+ Vardepth(t1), . . . , 1+ Vardepth(tn)}.
The vardepth of a literal equals the vardepth of its atom. The vardepth of a clausec equals
the maximal vardepth of a literal inc. The vardepth of the empty clause is defined as−1.

If A is an atom, literal, or clause, then Var(A) is defined as the set of variables that occur
in A. Varnr(A) is defined as the number of variables inA, i.e. as the cardinality of Var(A).

For a term/atomA, we define thecomplexityof A, written as #A, as the total number of
occurrences of function, constant, and variable symbols inA.

Next we introduce the ordered resolution rule. We assume that the reader is familiar
with most general unifiers (mgu’s); seeChang and Lee (1973)or Leitsch (1997).

Definition 2.3. We define the ordered resolution rule, and factorization rule. Let❁ be an
order on literals.

Res Let {A1} ∪ R1 and{¬A2} ∪ R2 be two clauses such that the following hold:

1. {A1} ∪ R1 and{¬A2} ∪ R2 have no variables in common;
2. there is noA ∈ R1 such thatA1 ❁ A;
3. there is noA ∈ R2 such thatA2 ❁ A; and
4. A1 andA2 have an mguΘ .

Then the clauseR1Θ ∪ R2Θ is called a❁-ordered resolventof {A1} ∪ R1 and
{¬A2} ∪ R2.

Fact Let {A1, A2} ∪ R be a clause, such that

1. there is noA ∈ R such thatA1 ❁ A;
2. A1 andA2 have an mguΘ .

Then the clause{A1Θ} ∪ RΘ is called a❁-ordered factorof {A1, A2} ∪ R.

The order❁ is calledliftable if it satisfies the following condition, for all literalsA, B,
and for all substitutionsΘ ,

A ❁ B ⇒ AΘ � BΘ .

The combination of ordered resolution and factoring is complete, when the order is liftable,
seeLeitsch (1997)for a proof. The order that we will use for the GF does not satisfy this
property.

We now define (unordered) hyperresolution. We mention hyperresolution here because
we will need a variant of it in the decision procedure for the LGF.

Definition 2.4. Let {A1} ∪ R1, . . . , {Ap} ∪ Rp be purely positive clauses. Let
{¬A′1, . . . ,¬A′p} ∪ {B1, . . . , Bq} be a mixed clause, in whichB1, . . . , Bq are positive.
Let Θ be the most general unifier of the pairs

(A1, A′1), . . . , (Ap, A′p).
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Then the clause

R1Θ ∪ · · · ∪ RpΘ ∪ {B1Θ , . . . , BqΘ}
is a hyperresolvent.

2.3. Transformation to clausal normal form

Resolution works only on formulae of a restricted form. In order to be able to deal with
full first-order logic, we need a method of transforming first-order formulae into clause
sets. We give a collection of operators that can be used for this transformation. We define
all operators as working on sets of formulae rather than on formulae themselves, so that
operators can split one formula into different formulae. To start, here is a brief overview:

NNF(C) Bring C in negation normal form.
Struct(C) Replace certain subformulae by fresh atoms, and add equivalence definitions

for the new atoms.
Struct+(C) Replace certain subformulae by fresh atoms, but add implications instead of

equivalences.
Sk(C) Replace every existentially quantified variable by a functional term, using a fresh

function symbol.
Cls(C) FactorC into a set of clauses.

The operator sequence NNF, Sk, Cls constitutes a complete transformation. It is
possible to insert Struct or Struct+ before Cls.

Definition 2.5. Let C = {F1, . . . , Fn} be a set of formulae. NNF(C) is obtained by
first replacing all occurrences of→ and↔, after that moving all¬’s inwards as much as
possible, and by finally removing all double¬’s.

In Baaz et al. (1994)the structural transformationis defined by replacing all subfor-
mulae of a certain formula by fresh names, with defining formulae for the fresh names.
When such a transformation has been applied, the original formula can always be recon-
structed, contrary to when the normal form has been obtained by factoring. For this reason
Baaz, Ferm¨uller and Leitsch have called these transformationsstructural. In our decision
procedures we will make use of structural transformations, but we will not replace all sub-
formulae. We will now give the operator Struct but specify later which subformulae are
going to be replaced.

Definition 2.6. Let C = {F1, . . . , Fn} be a set of formulae. We define Struct(C) as the
result of making replacements of the following form: letA be a subformula of one of the
Fi . Let x1, . . . , xn be an enumeration of the free variables ofA. Let α be a new predicate
name. ReplaceFi [A] by Fi [α(x1, . . . , xn)] and add

∀x1, . . . , xn [α(x1, . . . , xn)↔ A]
to C.

If C is in negation normal form, then it is sufficient to use→ instead of↔ in
order to obtain a satisfiability preserving transformation. Struct+ is defined by adding
∀x1, . . . , xn [α(x1, . . . , xn)→ A] to C, instead of using equivalence.
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Definition 2.7. Let C = {F1, . . . , Fn} be a set of formulae in negation normal form. We
define theSkolemizationSk(C) as the result of making the following replacements: as long
as one of theFi contains an existential quantifier, writeFi = Fi [∃y A], where∃y A is not
in the scope of another existential quantifier. Letx1, . . . , xn be the universally quantified
variables in the scope of whichA occurs. ReplaceFi [∃y A] by Fi [A[y := f (x1, . . . , xn)]].
Here we use the notationFi [y := t] to denote full first-order substitution.

There are more sophisticated ways for Skolemization leading to more general Skolem
terms, seeOhlbach and Weidenbach (1995), but we cannot use them for our present
purposes.

Definition 2.8. Let C = {F1, . . . , Fn} be a set of formulae in NNF containing no
existential quantifiers: theclausificationof C, written as Cls(C), is the result of the
following replacements.

1. ReplaceA∨ (B ∧C) by (A∨ B) ∧ (A∨ C).

2. Replace(A∧ B) ∨C by (A∨ C) ∧ (B ∨C).

3. Replace∀x A by A[x := X], whereX is a designated variable symbol not occurring
in A.

4. If one of theFi has formA∧ B, then replace it byA andB.

The result of Cls is a set of clauses.

2.4. Weakly covering literals

In this section we briefly introduce a class of literals that are calledweakly covering
literals. They first appeared inTammet (1990), and independently in the thesis of Ferm¨uller
(seeFermüller et al., 1993). Weakly covering literals are the basis of many of the classes
that are decidable by resolution, such asE+ and S+. Their usefulness is due to the fact
that when two weakly covering literals are unified, the result is not more complex than the
larger of them. We will shortly state the main facts.

Definition 2.9. A literal is coveringif every functional subterm of it contains all variables
that occur in the literal. A literal isweakly coveringif every non-ground, functional subterm
contains all variables of the literal.

We will not make use of covering literals, but we included the definition for the
sake of completeness. Covering and weakly covering literals are typically the result of
Skolemization, when the prefix ends in an existential quantifier. If a function free atom
a(x, y) in the scope of quantifiers∀x∃y is Skolemized, the result equalsa(x, f (x)), which
is covering. Ifa(x, y) contains functional ground terms, then the result is weakly covering.
For the proofs of the following facts we refer toFermüller et al. (1993). We mention the
facts here so that we can refer to them when we need them in later sections.

Theorem 2.10. Let A and B be weakly covering literals that have an mguΘ . Let
C = AΘ = BΘ . Then
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1. C is weakly covering.
2. One of the following holds: eitherVardepth(C) ≤ Vardepth(A) and Varnr(C) ≤

Varnr(A), or Vardepth(C) ≤ Vardepth(B) andVarnr(C) ≤ Varnr(B).

Theorem 2.10alone does not prevent unbounded growth of the unifier. This is because of
the fact that, although the variable depth ofC is bounded,C may contain arbitrarily large
ground terms. The following controls this problem:

Lemma 2.11. Let C = AΘ = BΘ be a most general unifier of two weakly covering
literals. Letv be the maximum ofVardepth(A) andVardepth(B). Every ground term in C
occurring at a depth greater than or equal tov, occurs either in A or in B.

This restricts the introduction of new ground terms to ground clauses. This will turn
out sufficient for bounding the growth of unified terms. What we have until now is not
sufficient for bounding the side literals in resolved clauses. LetR1Θ ∪ R2Θ be a resolvent
of {A1} ∪ R1 and {¬A2} ∪ R2. Theorem 2.10states thatA1Θ is weakly covering and
bounded in variable depth, but we have said nothing about the literals inRi Θ . First we
state that the side literals are weakly covering, after that we state that their variable depth
is bounded.

Theorem 2.12. Let A and B be literals which are both weakly covering. LetVar(A) ⊆
Var(B), and letΘ be a substitution such that BΘ is weakly covering. Then AΘ is weakly
covering.

Lemma 2.13. Let A and B be literals which are both weakly covering. LetVar(A) ⊆
Var(B), Vardepth(A) ≤ Vardepth(B), and letΘ be a substitution. ThenVardepth(AΘ) ≤
Vardepth(BΘ), andVar(AΘ) ⊆ Var(BΘ).

2.5. The resolution game

The completeness proof of our strategy is based on the resolution game, which was
introduced inde Nivelle (1994)as a device for proving completeness of resolution with
non-liftable orders. We briefly introduce it here, but for a more elaborate description, see
de Nivelle (1994).

Definition 2.14. A resolution gameis an ordered tripleG = (P,A,≺), where

1. P is a set of propositional symbols,
2. A is a set of attributes,
3. ≺ is an order on(P ∪ ¬P)×A, where¬P is defined as{¬p | p ∈ P}.

It must be the case that≺ is well-founded on(P ∪ ¬P) × A. The elements of
(P ∪ ¬P) × A, are calledindexed literals. We will write a : A instead of(a, A). A
clauseof G is a finite multiset of indexed literals ofG.

Interpretationsfor a resolution game are defined in a standard manner, i.e. as propositional
assignments. A clause is true in an interpretation if one of the literals that occurs in it
(ignoring the indices) is true. We now define resolution and factoring for the resolution
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game. We need an explicit factoring rule even for propositional logic, because clauses are
multisets.

Definition 2.15. Let G = (P,A,≺) be a resolution game. Letc be a clause ofG. An
indexed literala : A is maximalin c, if for no indexed literalb : B in c, a : A ≺ b : B.
We define resolution and factoring forG: let c1 = [a : A1] ∪ r1 : R1 andc2 = [¬a :
A2] ∪ r2 : R2 be clauses such thata : A1 and¬a : A2 are maximal in their clauses. Then
r1 : R1∪ r2 : R2 is aresolventof c1 andc2. The expressionsr i : Ri denote finite multisets
of indexed literals. Letc1 = [a : A1, a : A2] ∪ r : R be a clause, such thata : A1 is
maximal inc1. Then[a : A1] ∪ r : R is a factorof c1.

Until now we have nothing unusual, as this is just lock resolution (Boyer, 1971). We now
define reductions, which distinguish the resolution game from lock resolution.

Definition 2.16. Let c be a clause of a resolution gameG. A reductionof c is obtained by
performing zero, or any finite number of the following actions: (1) Deleting an indexed
literal. (2) Replacing an indexed literala : A1 by an indexed literala : A2 with
a : A2 ≺ a : A1.

Definition 2.17. Let C be a set of clauses of a resolution gameG = (P,A,≺). A
saturationC of C is a minimal set for which (1)C ⊆ C. (2) For every resolventc that
can be constructed from two clausesc1, c2 ∈ C, there is a reductiond of c in C. (3) For
every factorc that can be constructed from a clausec1 ∈ C, there is a reductiond of c
in C.

The resolution game is different from lock or indexed resolution (Boyer, 1971), because
in lock resolution the resolvent inherits the indices from the parent clause without any
changes. In the resolution game the indices may change. The reason that this variant of
resolution is called resolution game, is that it can be seen as a game of two players: one
player, called theopponent, is trying to refute the clause set using ordered resolution and
factoring. The other player, called thedefender, tries to disturb the opponent by replacing
clauses by reductions.

Theorem 2.18. Let C be a set of clauses of a resolution gameG. The following two
statements are equivalent:(1) C is unsatisfiable.(2) Every saturation of C contains the
empty clause.

A complete proof can be found inde Nivelle (1994). In terms of games,Theorem 2.18can
be reformulated as follows: ifC is unsatisfiable, then the opponent has a winning strategy,
and ifC is satisfiable, then the defender has a winning strategy.

3. The guarded fragment

In this section we give a decision procedure for the GF. Our decision procedure is
based on ordered resolution, as defined inDefinition 2.3. It is common to restrict the
resolution rule by an ordering, but usually this is done to improve efficiency in cases where
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a proof exists. However, certain orderings can be used to enforce termination in cases
where no proof exists.

We will illustrate this point with an example. LetC be some clause set in which only one
variableX is used, all literals contain this variableX, and it contains no constant symbols.
So{p(X), q(s(X, X), X)} is allowed, but{p(s(X), 0)} is not. Let❁ be an order on literals
that is defined by puttingA ❁ B iff Vardepth(A) < Vardepth(B). Then the following hold:

1. Every ordered resolvent or factor fromC contains exactly one variable, and no
constants. Hence every derivable clause can be renamed such that it contains only
the variableX.

2. If Θ is the mgu of two literalsA and B, each containing exactly one variable and
no constant symbol, thenAΘ andBΘ are also such literals, and Vardepth(AΘ) =
Vardepth(BΘ) is equal to Vardepth(A) or to Vardepth(B).

3. If Vardepth(A) < Vardepth(B), and Θ = {X := t} is a substitution, such
that t contains exactly one variable and no constants, then Vardepth(AΘ) <

Vardepth(BΘ).

As a consequence, the clauses cannot become deeper, and cannot contain more than one
variable. Because the set of literals that can occur in the clauses is finite, the set of derivable
clauses is finite. Hence, the order❁ enforces termination. If one can show the completeness
of resolution with❁, at least for this one-variable class, then one has a decision procedure.
This is straightforward because the order is liftable on the class under consideration. Our
decidability proofs below have the same structure as this example.

3.1. Basics

In order to be able to use resolution we need a notion of guardedness for clause sets, and
a way to translate guarded, first-order formulae into guarded clause sets. The translation
is not completely standard. Standard translations would transform guarded formulae into
non-guarded clauses.

The first step of the transformation is the transformation into NNF. This can be done
without problems, since all of the necessary replacements preserve the GF. When the
formula is in NNF, the guard condition for the existential quantifier is not necessary
anymore. This means that the guard condition inDefinition 2.1 can be weakened to
positively occurring∀-quantifiers, and negatively occurring∃-quantifiers, in the case where
one wants to decide satisfiability. For clause sets we define the following normal form.

Definition 3.1. A clausec is calledguardedif it satisfies the following conditions:

1. Every non-ground, functional term inc contains all variables ofc.
2. If c is not ground, then there is a negative literal¬A in c that does not contain a

non-ground, functional term, and that contains all variables ofc.

A clause setC is calledguardedif its clauses are guarded.

The negative literal in item 2 ofDefinition 3.1 is the guard. Every ground clause is
guarded. The definition of a guarded clause given here differs from the definition in
de Nivelle (1998)but is equivalent. Inde Nivelle (1998)the first condition was given as
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two conditions: (1a) every literal, containing non-ground functional terms contains all
variables ofc, and (1b) every literal inc is weakly covering. It is easily checked that (1a)
and (1b) are equivalent with (1).

Example 3.2. The clause{p(0, s(0)), q(s(s(0)))} is guarded because it is ground. The
clause{¬p(X),¬q(X, Y), r ( f (X, Y))} is guarded by the literal¬q(X, Y). The clause
{¬p(X),¬q(Y), r ( f (X, Y))} is not guarded. Adding a literal¬a(X, Y, X, X, Y) would
result in a guarded clause. The clause{¬p(Y, X), q( f (X), X, Y)} is not guarded. It cannot
be made guarded by adding literals. The empty clause is guarded.

Let us continue with the translation taking guarded formulae into guarded clause sets. We
need a variant of Struct+ of Definition 2.6, which we will call Struct∀.

Definition 3.3. Struct∀ is the structural transformation that is obtained by replacing the
subformulae of the forms∀x(a→ A) or ∀x(¬a∨ A) with free variablesy, by some fresh
nameα(y) and adding a defining formula of the form∀xy (¬a ∨ ¬α ∨ A). The latter
formula is equivalent with∀y(α → ∀x(a→ A)).

Example 3.4. The guarded formula

∃x n(x) ∧ ∀y [a(x, y)→ ¬∃z(p(x, z)∧ (∀x a(x, z)→ (b(z, z) ∧ c(x, x))))]
is translated as follows. First, NNF results in

∃x n(x) ∧ ∀y [¬a(x, y)∨ ∀z(¬p(x, z) ∨ (∃x a(x, z)∧ (¬b(z, z)∨ ¬c(x, x))))].
After that, Struct∀ results in the following set of formulae

∃x [n(x) ∧ α(x)], ∀xy [¬a(x, y)∨ ¬α(x) ∨ β(x)],
∀xz[¬p(x, z)∨ ¬β(x) ∨ (∃x a(x, z)∧ (¬b(z, z)∨ ¬c(x, x)))].

Sk results in

n(c) ∧ α(c), ∀xy[¬a(x, y)∨ ¬α(x) ∨ β(x)]
∀xz[¬p(x, z)∨ ¬β(x) ∨ (a( f (x, z), z) ∧ (¬b(z, z)∨ ¬c( f (x, z), f (x, z))))].

And finally, clausification results in

{n(c)}, {α(c)}, {¬a(X, Y),¬α(X), β(X)},
{¬p(X, Z),¬β(X), a( f (X, Z), Z)},
{¬p(X, Z),¬β(X),¬b(Z, Z),¬c( f (X, Z), f (X, Z))}.

Theorem 3.5. Let F ∈ GF. Then

1. F ′ = NNF(F) ∈ GF,
2. F ′′ = Struct∀(F ′) ∈ GF, and
3. (Sk;Cls)(F ′′) is a guarded clause set.

Proof. We consider the steps made in the transformation: the NNF is characterized by a
set of rewrite rules. LetΦ = ∀x (a → A) or Φ = ∃x (a∧ A) be a guarded quantification.
Φ will remain guarded under each application of a rewrite rule insideA, since none of the
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rewrite rules introduces a free variable. Similarly ifΦ occurs in theX or Y of a rewrite rule
(X op Y) ⇒ · · · then A is copied without problems. The only possible problem occurs
when∀x (a → A) rewrites to∀x (¬a ∨ A), but this case is covered by the definition of
the GF.

The next step is Struct∀. The defining formula∀xy (¬a ∨ ¬α ∨ A) is guarded, since
a is a guard, andA is not affected. Any quantification in which the replaced formula
∀x (¬a ∨ A) occurs, remains guarded after replacement byα(y), because no new free
variables are introduced.

In the result of Struct∀ there are no nested, universal quantifications. Because of this,
every existential quantifier is in the scope of at most one universal quantification, which is
guarded. The result of the Skolemization is a formula in which all universal quantifiers are
guarded, and all functional terms are Skolem terms. They are either constants or contain
all variables of the guarded quantification in which they occur.

Clearly, at the end of this process the formulae∀x (¬a∨A) can be factored into guarded
clauses∀x (¬a ∨ A1), . . . ,∀x (¬a ∨ An). �

3.2. Termination

As announced in the previous section, the first step towards our decidability result for
the GF will be to show that, with a suitable ordering, ordered resolution terminates for the
GF.

We will now define the order on literals. Although we will be using completely standard
ordered resolution, our order is non-standard.

Definition 3.6. We define the following order❁ on literals.

1. A ❁ B if Vardepth(A) < Vardepth(B), or

2. A ❁ B if Var(A) ⊂ Var(B).

Note that the inclusion in the second condition is strict. Strictly seen we cannot call relation
❁ an order because it is not transitive. However,❁ is an order within guarded clauses, in
particular it has the following property:

Lemma 3.7. Every guarded clause c has a❁-maximal literal, and every maximal literal
of c contains all variables of c.

Proof. If c is ground, then every literal is maximal. Ifc is non-ground, and does not
contain a non-ground functional term, then every guard is maximal, since it contains all
variables ofc and there are no deeper literals. Ifc is non-ground, and does contain non-
ground, functional terms, then there are literals containing the deepest occurrence of a non-
ground, functional term. These literals must be maximal, because they contain all variables
of c.

If c is non-ground there is a literal containing all variables ofc. Because of this every
maximal literal must also contain all variables ofc. �
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The result that we aim to prove is that resolution and factoring, restricted by❁, can only
derive a finite set of clauses from a guarded clause set, but first we prove that the property
of being guarded is preserved.

Theorem 3.8.

1. If c1 and c2 are guarded clauses, and c is a❁-ordered resolvent of c1 and c2, then c
is guarded.

2. If c1 is a guarded clause, and c is a factor of c1, then c is guarded.

We show that derived clauses satisfyDefinition 3.1. We first show Condition 1, then
Condition 2.

Claim 1. Condition1 is preserved by resolution and factoring.

Proof. Let c1 = {A1} ∪ R1 andc2 = {A2} ∪ R2 resolve intoc = R1Θ ∪ R2Θ , soΘ is
the mgu ofA1 andA2. Because of the order❁, the literalsA1 andA2 contain all variables
of their respective clauses. This ensures thatA1Θ = A2Θ contains all variables of the
resolventc. Because bothA1 and A2 are weakly covering, every non-ground functional
term in A1Θ contains all variables ofA1Θ and hence ofc.

Let t be a non-ground functional term inc. There are two possibilities:

1. There is a non-ground functional termu in c1 or c2, such thatt = uΘ . W.l.o.g.
assume thatu occurs inc1. Thenu contains all variables ofA1. Because of this,
uΘ contains all variables ofA1Θ . SinceA1Θ contains all variables ofc, the term
t = uΘ contains all variables ofc.

2. There is a variableV in c1 or c2, such thatt is a subterm ofVΘ . Assume w.l.o.g that
V occurs inc1. ThenV also occurs inA1. Hencet , being a subterm ofVΘ , occurs
in A1Θ . This means thatt contains all variables ofc.

Next letc = {A1Θ} ∪ RΘ be a factor ofc1 = {A1, A2} ∪ R. Analogous to the situation
with resolution, one of the literalsA1, A2 contains all variables ofc1. Assume it isA1. The
situation is the same as with resolution:A1Θ = A2Θ contains all variables ofc, every
non-ground functional term inA1Θ contains all variables ofc, etc. However, case 2 is
not possible here (there exists a variableV in c1, such thatt occurs inVΘ ) because the
variableV would occur inA1. This contradicts Vardepth(A1Θ) ≤ Vardepth(A). �

Claim 2. Condition2 is preserved.

Proof. First we consider resolution. If bothc1, c2 are ground, thenc is also ground, and
hence satisfies Condition 2. If one ofc1, c2 is ground, then assume it isc1. BecauseA2
contains all variables ofc2, andA2Θ is ground, the resolventc is also ground in this case.
Now if both c1 andc2 are not ground, then let¬G1, ¬G2 be guards ofc1, c2. In one of
c1, c2, the guard is not resolved upon, because guards are negative. We can assume that
A1 != G1.

1. If Θ does not assign a non-ground, functional term to any variable inA1, then¬G1Θ
is a guard ofc, because¬G1Θ does not contain any non-ground, functional terms,
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and due to the fact thatG1 contains the same variables ofA1, the result¬G1Θ
contains all variables ofA1Θ , which contains all variables ofc, by the proof of the
first claim.

2. Otherwise,Θ assigns a non-ground, functional term to a variable inA1. This is
caused by the fact thatA2 contains a non-ground, functional term, which implies
that A2 != G2. ThenΘ does not assign a non-ground, functional term to any variable
in A2. This means that¬G2Θ can act as guard ofc, by the same argument as before.

The situation with factoring is the same. One ofA1, A2 contains all variables ofc1. Because
of this, the mguΘ cannot assign a non-ground, functional term to a variable inc1. This
implies that every guard ofc1 is still a guard ofc. �
In fact, one can prove that factoring without❁ also preserves the GF. However, in the case
of resolution one really needs the❁-order.

Lemma 3.9. Let C be a finite set of guarded clauses. Letv = Vardepth(C). Let k be the
maximalVarnr(c), for c ∈ C. Then for every❁-derivable clause c the following holds:

1. Varnr(c) ≤ k.
2. Vardepth(c) ≤ v.

Proof. We first prove the first fact. Letc be the resolvent ofc1 and c2. If either of
c1 or c2 is ground, thenc is ground by itself. If bothc1 and c2 are non-ground, then
c contains a guard¬A, which is an instance of a guard of eitherc1 or c2. We can
assume that Varnr(c1), Varnr(c2) ≤ k. Since every variable ofc occurs in¬A, and
Varnr(¬A) ≤ k, we immediately obtain Varnr(c) ≤ k. The case wherec is obtained
by factoring is immediate. In order to prove the second fact, letc be the resolvent of
c1 = {A1} ∪ R1 andc2 = {A2} ∪ R2. By induction there is no literal with Vardepth> v

in c1 or c2. Assume that Vardepth(A1) ≥ Vardepth(A2). Let Θ be the unifier used.
By Lemma 2.10 we have Vardepth(A1Θ) ≤ Vardepth(A1). By Lemma 2.13, we have
Vardepth(Ri Θ) ≤ Vardepth(Ai ). It follows that Vardepth(R1Θ ∪ R2Θ) ≤ v. The case
wherec is obtained by factoring is analogous.�
We would have the complete proof if we had Depth(C) ≤ Depth(C). Unfortunately this is
not the case, but it is possible to prove that no new ground terms are introduced at positions
that are deeper than Vardepth(C).

Lemma 3.10.

1. Let c be a❁-ordered resolvent of clauses c1 and c2. Let v be the greater of
Vardepth(c1) andVardepth(c2). Every ground term t that occurs at a depth greater
than or equal tov, occurs either in c1 or in c2.

2. Let c be a factor of clause c1. Let v = Vardepth(c1). Every ground term occurring
in c at a depth greater than or equal tov, occurs in c1.

Proof.

1. Writec1 = {A1}∪R1, andc2 = {¬A2}∪R2. LetΘ be the mgu ofA1 andA2. We can
assume, without loss of generality, thatt occurs inR1Θ . There are two possibilities:
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(a) There is a variableV in R1, such thatt is a subterm ofVΘ , or t = VΘ .
When this is the case,V occurs inA1, at least as deep as inR1. This ensures
that t occurs inA1, at a depth greater than or equal tov. Hence we can apply
Lemma 2.11, and it follows thatt occurs inA1 or A2.

(b) There is a termu in R1, such thatt = uΘ , andu is not a variable. Ifu is ground,
then we are done. Ifu is non-ground, thenu contains variables at depth greater
thanv. This implies that Vardepth(c1) > v, so this cannot occur.

2. The case wherec is obtained by factoring is analogous.�

From Lemma 3.10an upperbound on the depth of the derivable clauses can be easily
obtained. LetC be the initial clause set. Letv = Vardepth(C) and letd = Depth(C).
Let c be some derivable clause. Since every term occurring at depth≥ v occurs inC, it has
a depth≤ d. Hence Depth(c) ≤ v + d.

Lemma 3.11. Let C be a finite set of guarded clauses. LetC be its closure under❁-
ordered resolution, and (unrestricted) factoring. ThenC has finite size.

Proof. For each derivable clause, both the depth and the number of variables are
bounded. �

We will derive the exact complexity of the decision procedure inSection 3.4.

3.3. Completeness

The final step in our proof of the decidability of the GF by means of resolution consists
of proving completeness of our ordered resolution method. The❁-order is non-liftable.
Both cases inDefinition 3.6cause non-liftability:

1. p(s(0), X) ❁ p(0, s(X)) and p(X, 0) ❁ p(s(X), s(0)). The substitution{X := 0}
results in a conflict.

2. Also¬p(X, X) ❁ ¬q(X, Y) and¬q(X, X) ❁ ¬p(X, Y). The substitution{X :=
Y} results in a conflict.

Because of this we cannot refer to the standard result on the completeness of liftable orders.
Also the completeness results inde Nivelle (1994)do not apply because there one of the
following two conditions should have been met:

1. The order needs to satisfy the propertyAΘ ❁ A, for non-renaming substitutionsΘ .
Our order putsA(X) ❁ A(s(X)), but A(s(X)) is an instance ofA(X).

2. The literals in the clauses must have the same set of variables. The guarded clause
{¬a(X, Y), b(X)} violates this condition.

Fortunately however, although guarded clauses do not satisfy Condition 2, it turns out that
the proof method that was used for Condition 2, can be applied to guarded clauses. The
proof is based on the resolution game. We need some technical preparation.

Definition 3.12. A representation-indexed clauseis a clause of the formc = {a1 :
A1, . . . , ap : Ap} for which there exists a substitutionΘ , such thatAi Θ = ai , for all i .



36 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21–58

If for each variableV that does not occur in anAi , it is the case thatVΘ = V , then we call
Θ thesubstitutionof c. A literal order❁ can be extended to indexed literals as follows:

a : A ❁ b : B iff A ❁ B.

Using this we extend ordered resolution and ordered factoring to representation-indexed
clauses as follows:

Resolution: From{a : A1} ∪ r1 : R1 and{¬a : A2} ∪ r2 : R2 deriver1 : R1Θ ∪ r2 : R2Θ .
Factoring: From{a : A1, a : A2} ∪ r : R derive{a : A1Θ} ∪ r : RΘ .

In both casesΘ is the mgu. The literals resolved upon, and one of the literals factored
upon, must be maximal. Observe that the mgu always exists.

Lemma 3.13. Let C1 be a set of representation-indexed clauses, that has a resolution refu-
tation, using some order❁. Let C2 be obtained from C1 by replacing each representation-
indexed clause{a1 : A1, . . . , ap : Ap} by {A1, . . . , Ap}. Then C2 has a resolution refuta-
tion using❁.

Proof. One can delete the ground instance from every derivable representation-indexed
clause, and show that it is still derivable.�

We will construct a resolution game from a set of representation-indexed clauses. In order
to do this we define an operator[ ] from representation-indexed clauses to indexed clauses
of the type used in the resolution game. Before we can define[ ], we need the following:

Definition 3.14. We assume that there is a fixed enumeration of the set of variables
{X0, X1, X2, . . .}. A literal A is normalif the variableXi+1 occurs only after an occurrence
of the variableXi . (When the literal is written in the standard notation.) Every literalA can
be renamed into exactly one normal literal, which we call thenormalizationof A. We write
A for the normalization ofA.

The literal p(X0, X1, X2) is normal, but its renamingsp(X1, X0, X2) and p(X1, X2, X3)

are not normal. If two literals are renamings of each other, they have the same normaliza-
tion.

Lemma 3.15. Let❁ be the order ofDefinition3.6. If A ❁ B thenA ❁ B.

Definition 3.16. Let Θ = {V1 := t1, . . . , Vn := tn} be a substitution. The complexity of
Θ , written as #Θ equals #t1+ · · · + #tn.

Definition 3.17. We define the following operator[ ] on representation-indexed clauses.
Let {a1 : A1, . . . , ap : Ap} be a representation-indexed clause. LetΘ be its substitution.
Let k = #Θ . Then

[{a1 : A1, . . . , ap : Ap}]
equals the indexed clause

{a1 : (k, A1), . . . , ap : (k, Ap)}.
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The A1, . . . , Ap are the normalizations of theA1, . . . , Ap.

Lemma 3.18. Let c1 = {a1 : A1, . . . , ap : Ap} be a representation-indexed clause. Let
c2 = {a1 : A1Σ , . . . , ap : ApΣ } be an instance obtained with substitutionΣ , such that
there exists a substitutionΞ , for which ai = Ai ΣΞ . Let

[c1] = {a1 : (k1, A1), . . . , ap : (k1, Ap)},
[c2] = {a1 : (k2, A1Σ ), . . . , ap : (k2, ApΣ )}.

Then either for all i ,Ai Σ = Ai , or k2 < k1.

We are now ready for the completeness proof.

Theorem 3.19. Ordered resolution, using❁ as defined inDefinition3.6, is complete for
guarded clause sets.

Proof. Let C be an unsatisfiable guarded clause set. LetC be the set of clauses that can
be obtained fromC using❁-ordered resolution, and❁-ordered factoring. We show thatC
must contain the empty clause. WriteC = {c1, . . . , cn}. Let

Θ1,1, . . . ,Θ1,l1,
...

Θn,1, . . . ,Θn,ln

be a list of substitutions such that the set of clauses

{c1Θ1,1, . . . , c1Θ1,l1, . . . , cnΘn,1, . . . , cnΘn,ln}
is propositionally unsatisfiable. Such a set exists because of Herbrand’s theorem. First we
construct a setChb of representation-indexed clauses, using the Herbrand set. For each
ci = {A1, . . . , Ap} and substitutionΘi, j , the setChb contains the clause

{A1Θi, j : A1, . . . , ApΘi, j : Ap}.
Next we writeChb for the closure ofChb under❁-ordered resolution for representation-
indexed clauses. It is clear fromLemma 3.13that if we can prove thatChb contains the
empty clause, thenC contains the empty clause. In order to prove thatChb does indeed
contain the empty clause, we define the following resolution gameG = (P,A,≺), and
initial clause setCG :

1. The setP of propositional symbols equals the set of atoms that occur asa in the
elementsa : A of Chb.

2. The setA of attributes is constructed as follows: letm be the maximal #Θi, j . Let
L be the set of literalsB for which there is an indexed literala : A in one of the
Chb, such thatB is an instance ofA, anda is an instance ofB. ThenA consists of
the pairs(i , C), for which 0≤ i ≤ m, andC is the normalization of a literal inL.
Observe that the set of attributes is finite.

3. The order≺ is defined from:a1 : (i1, C1) ≺ a2 : (i2, C2) if

(a) i1 < i2, or
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(b) (i1 = i2 andC1 ❁ C2).

4. The initial clause setCG equals{[c] | c ∈ Chb}.
This completes the definition of the resolution game. We will complete the proof by
showing that the set

[Chb] = {[c] | c is derivable fromChb}
is a saturation of(P,A,≺). Then it follows fromTheorem 2.18, that [Chb] contains the
empty clause. From this it follows immediately thatChb contains the empty clause.

It remains to show that[Chb] is a saturation of(P,A,≺). In order to do this we must
show that[Chb] contains a reduction of every factor/resolvent that is derivable from[Chb].

1. Let c1 and c2 be clauses in[Chb] with a resolventc. There must exist clauses
d1, d2 ∈ Chb, such thatc1 = [d1], andc2 = [d2]. Write

d1 = {a : A1} ∪ r1 : R1 andd2 = {¬a : A2} ∪ r2 : R2.

Then we can write

c1 = {a : (k1, A1)} ∪ r1 : (k1, R1) andc2 = {¬a : (k2, A2)} ∪ r2 : (k2, R2).

We use the notationr i : (ki , Ri ) for the side (indexed) literals. They have the form

[r i,1 : (ki,1, Ri,1), . . . , r ili
: (ki,l i , Ri,l i )].

Using Lemma 3.15, we obtain that the indexed literalsa : A1 and¬a : A2 are
maximal in their respective clauses. Hence a resolvent

d = r1 : R1Θ ∪ r2 : R2Θ

is possible, whereΘ is the mgu. We will show that[d] is a reduction ofc. Let Σ be
the substitution of the representation-indexed claused. Let Σ1 be the substitution of
the representation-indexed clause

d1Θ = {a : A1Θ} ∪ r1 : R1Θ .

Analogously letΣ2 be the substitution of the representation-indexed clause

d2Θ = {¬ a : A2Θ} ∪ r2 : R2Θ .

By puttingl = #Σ , we can write

[d] = r1 : (l , R1Θ) ∪ r2 : (l , R2Θ).

Write l1 = #Σ1, l2 = #Σ2. Then

(a) r1 : (l1, R1Θ) is a reduction ofr1 : (k1, R1), usingLemma 3.18.
(b) r2 : (l2, R2Θ) is a reduction ofr2 : (k2, R2), usingLemma 3.18.
(c) l ≤ l1 andl ≤ l2.

Putting this together we obtain that[d] is a reduction ofc.
2. Finally, in the second case, where a clausec1 has a factorc in [Chb] we can directly

applyLemma 3.18. �
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The order❁ as we have defined it inDefinition 3.6 is very basic, and it could be
strengthened further to improve the efficiency, for example with an order on the predicate
symbols.

Theorem 3.20. Resolution+ factoring, using❁, together with the normal form transfor-
mation ofTheorem3.5, is a decision procedure for the GF.

Proof. Follows fromTheorem 3.5, Lemma 3.11andTheorem 3.19. �

3.4. Complexity

The complexity of our decision procedure is double exponentional.Grädelhas shown
in Grädel (1997)that the decision problem for the GF is 2EXPTIME-complete, so our
procedure is theoretically optimal. First we give a general bound on the time needed to
compute a saturation.

Lemma 3.21. Let C be some clause set, letC be its closure under resolution and
factoring. Let S be some clause set, such thatC ⊆ S. Let s be the maximal size of a
clause in S. Let c be the cardinality of S. ThenC can be computed in time c(cs)2 and
space cs.

Proof. The space complexity is dominated by the space that is needed to storeC. The
space needed to storeSequals at mostcs, and this is also an upperbound for the size ofC.

In order to obtain a saturation, the algorithm has to systematically inspect all pairs
of clauses and see if a resolvent or factor is possible. The cost iscs.cs+ cs, which is
dominated by(cs)2. The algorithm halts when no more clauses can be added. This is the
case after at mostc iterations. �

Theorem 3.22. Let S be some signature. Let C be a set of guarded clauses overS,
possibly using variables. Letv be the maximal vardepth of a clause in C, and letG be the
set of ground terms that occur in C. Let a be the maximal arity of a predicate/function
symbol inS. Let n be the maximum of(1) the total number of function symbols+ the
maximal arity of a guard+ the size ofG, and (2) the total number of0-arity predicate
symbols. Then a saturation of C has at most size

2n(av),

and can be obtained in time

23(2n(av)).

Proof. UsingLemmas 3.10 and 3.9, we know that at positions at depthv or deeper, there
are only ground terms fromG. Hence we can treat the literals in the saturation ofC as if
they have a depth ofv + 1, and view theG as additional constants. Define the following
numbers:

a1 be the maximal arity of a predicate symbol,

a2 be the maximal arity of a function symbol,



40 H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21–58

n1 be the total number of function symbols+ the total number of constant symbols

+ the maximal arity of a guard.

n2 be the total number of predicate symbols.

We begin by giving an estimation of the number of positionsP(d) in a term, dependent on
its depthd. The second column in the table givesP(i ) defined in terms ofP(i − 1). The
third column gives explicit forms forP(i ).

d

1 1 1,
2 1+ a1P(1) 1+ a1,
3 1+ a1P(2) 1+ a1+ a2

1,

4 1+ a1P(3) 1+ a1+ a2
1 + a3

1.

So we get

P(d) =
d−1∑

i=0

ai
1 =

ad
1 − 1

a1− 1
≈ O(ad−1

1 ), whena1 > 1.

The number of terms of depthd can then be estimated by

(n1)
(ad−1

1 ).

We could writen1 + 1 instead ofn1 because positions can be empty, when the term does
not use the full possible length, but in that case there is an operator that does not use the
full a1, which compensates for this.

A literal of depthd consists of a possible negation sign, followed by one predicate
symbol, followed by, at most,a2 terms with depthd − 1. The number of possible literals
can be estimated by

2n2(n
(ad−2

1 )

1 )a2.

By remembering thatn = Max(n1, n2), a = Max(a1, a2), and puttingd = v + 1, we can
estimate the number of possible literals as

2n(av).

Then the set of possible clauses has, at most, size

2(2n(av)).

Applying Lemma 3.21, we obtain the given space and time complexity.�

4. The loosely guarded fragment

In this section we show that the LGF can also be decided by resolution. The LGF is a
generalization of the GF, which has been introduced invan Benthem (1997). The guard no
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longer needs to be a single literal as in the GF, but may consist of a group of literals
satisfying certain conditions. One of the main motivations behind the LGF is the following.
Recall that one of the motivations behind the original GF was the search for general
fragments of first-order logic that could explain the good behaviour of modal and modal-
like logics. An important and well-behavedtemporallogic that escapes the GF is temporal
logic with the Since and Until operators. Recall that the semantics ofP Until Q is given
by the following definition:

∃y (Rxy∧ Qy∧ ∀z (Rxz∧ Rzy→ Pz)).

Clearly, this is not a guarded formula, but it does enjoy a special property: the variablez
occurs together with each of the other variablesx andy in at least one atom in the “loose
guard”. This special feature motivates the following definition.

Definition 4.1. The LGF is recursively defined as the following subset of first-order logic
without equality and function symbols.

1. � and⊥ are in LGF.
2. If A is an atom, thenA ∈ LGF.
3. If A ∈ LGF, then¬A ∈ LGF.
4. If A, B ∈ LGF, thenA∨ B, A∧ B, A→ B, A↔ B ∈ LGF.
5. (a) LetA ∈ LGF,

(b) let a1, . . . , an be a group of atomic formulae,
(c) let x be a sequence of variables,
such that for every variable inx, and for every free variable ofai ∧ · · · ∧ an,
there is anai containing them both. Then∀x(a1 ∧ · · · ∧ an → A) ∈ LGF, and
∃x(a1 ∧ · · · ∧ an ∧ A) ∈ LGF. We also allow∀x(¬a1 ∨ · · · ∨ ¬an ∨ A) ∈ LGF.

The definition of LGF can be weakened in the same way as GF, if one considers the
satisfiability problem. The guard condition is only necessary for positively occurring∀-
quantifiers, and for negatively occurring∃-quantifiers. The GF is included in the LGF.

Example 4.2. The transitivity axiom

∀xyz(R(x, y)∧ R(y, z)→ R(x, z))

is not loosely guarded, because an atom containing bothx andz is missing. The following
formula, translatingP SinceQ, is loosely guarded:

∃y(Ryx∧ Qy∧ ∀z(Ryz∧ Rzx→ Pz)).

4.1. Translation to CNF

The strategy that we will use for LGF is based on the strategy for GF. The
transformation to CNF will be almost the same, with an obvious adaption in Struct∀ to
handle loose guards. The resolution strategy will be more involved, as we will discuss in
the next section. We now introduce LGF for clauses, and the transformation.

Definition 4.3. A clause set is calledloosely guardedif its clauses are loosely guarded. A
clausec is loosely guardedif it satisfies the following condition:
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1. Every non-ground, functional term inc contains all variables ofc.
2. If c is non-ground, then there is a set of negative literals¬A1, . . . ,¬Ap ∈ c not

containing non-ground, functional terms, such that every pairX, Y of variables ofc
occurs together in at least one of the¬Ai .

The conjunction of the atomsAi in Item 2 is the loose guard. A clause may have more than
one loose guard.

Theorem 4.4. Using the following transformation, loosely guarded formulae can be
translated into loosely guarded clause sets:

1. F ′ = NNF(F).
2. F ′′ = (Struct∀)(F ′).
3. C = (Sk;Cls)(F ′′).

(Here,Struct∀ has been modified in the obvious way.)

Proof. The proof is analogous to the proof ofTheorem 3.5. However, there is one inter-
esting aspect concerning Struct∀. Transformation Struct∀ replaces universally quantified
subformulae∀x(¬a1 ∨ · · · ∨ ¬an ∨ A) with free variablesy by a fresh atomα(y) and
introduces a definition

∀xy(¬a1 ∨ · · · ∨ ¬an ∨ ¬α(y) ∨ A).

Then the disjunction

¬a1 ∨ · · · ∨ ¬an ∨ ¬α(y)

is a loose guard. To see this, letv1, v2 be a pair of variables occurring inxy. If either v1
or v2 is among thex, thenv1 andv2 occur together in one of the¬ai , because the original
quantification was loosely guarded. If bothv1 andv2 are not among thex, then they are
both among they, and then they occur together in¬α(y). �

4.2. Termination

The ordering strategy for loosely guarded clause sets is more complicated than the
decision procedure for guarded clause sets. This is caused by problems that occur when
we have to select the literals of the loose guard. The completeness proof ofTheorem 3.19
hinges on the fact that it is always possible to select a literal containing all variables of the
clause. This is not possible with loosely guarded clauses, because such a literal may not
exist, as, for example, in clausec0 below. The obvious approach would be to use the closest
possible approximation of the strategy for the GF. When there are literals with non-ground
functional terms, we prefer the literals with maximal Vardepth. When there are no literals
with non-ground functional terms, select the complete loose guard and resolve it away
using hyperresolution (seeDefinition 2.4). Unfortunately at this point growth of Vardepth
is possible, as can be seen from the following example:

Example 4.5. The following clause is loosely guarded:

c0 = {¬a1(X, Y),¬a2(Y, Z),¬a3(Z, X), b1(X, Y), b2(Y, Z), b3(Z, X)}.
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There are no non-ground functional terms, so the clause is a candidate for hyperresolution.
It is possible to construct a hyperresolvent with the following clauses

c1= {¬p1(A), a1(s(A), s(A))},
c2= {¬p2(B), a2(B, t (B))},
c3= {¬p3(C), a3(t (C), C)},

using the substitution

Θ = {X, Y, B, C := s(A), Z := t (s(A))}.
The result equals

{¬p1(A),¬p2(s(A)),¬p3(s(A)), b1(s(A), s(A)), b2(s(A), t (s(A))),

b3(t (s(A)), s(A))},
which has a Vardepth of 2, which is too deep.

Here is an explanation for the problem ofExample 4.5. Clausec0 can hyperresolve with
clausesc2 andc3 using substitution

Θ = {Y, B, X := C, Z := t (C)}.
The result equals:

cpart= {¬a1(C, C),¬p2(C),¬p3(C), b1(C, C), b2(C, t (C)), b3(t (C), C)}.
This clause is loosely guarded, and it is not too deep. To obtain the final hyperresolvent one
needs to resolve upon the literal¬a1(C, C). However,a1(C, C) is not the deepest term in
the clause, and whena1(C, C) is unified witha1(s(A), s(A)) the literalb2(c, t (C)) grows
into a Vardepth of 2. This means that our refinement should allow the construction ofcpart,
but that it should block resolvingcpart with c1.

Instead of allowing the construction of full hyperresolvents,we allow the construction of
partial hyperresolvents that are not too deep. We will prove that whenever a hyperresolvent
can be found using the loose guard, there exists a partial hyperresolvent which does not
grow in Vardepth and which is loosely guarded. In order to do this, we need to go into
details of how the mgu is constructed. For this purpose we repeat the following algorithm
for the construction of most general unifiers. It comes fromFermüller et al. (1993).

Definition 4.6. The following algorithm decides whether or not two literalsA andB have
a unifier. It constructs a most general unifier if there exists a unifier.

First, we define the notion of aminimal differenceof two literals. LetA andB be two
literals, such thatA != B. A minimal difference is a pair(A′, B′) that is the result of the
following decomposition:

1. PutA′ := A, andB′ := B.
2. As long asA′ has the formp(t1, . . . , tn) andB′ has the formp(u1, . . . , un), replace

A′ by ti andB′ by ui , for ani , such thatti != ui .

Using this, the algorithm for computing mgu’s is defined as follows. LetA andB be the
terms to be unified. PutΘ := { }, the identity substitution.
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1. If A = B, thenΘ equals the most general unifier.
2. As long asA != B, let (A′, B′) be a minimal difference. Then

(a) If (A′, B′) has the form(p(t1, . . . , tn), q(u1, . . . , um)), with p != q, or n != m,
then report failure.

(b) If (A′, B′) has the form(V, t), whereV is a variable,V != t , butV occurs int ,
then report failure.

(c) If (A′, B′) has the form(t, V), whereV is a variable,V != t , butV occurs int ,
then report failure.

(d) If (A′, B′) has the form(V, t) whereV is a variable, andV does not occur int ,
then putA := A{V := t}, B := B{V := t}, Θ := Θ · {V := t}.

(e) If (A′, B′) has the form(t, V), whereV is a variable, andV does not occur int ,
then putA := A{V := t}, B := B{V := t}, Θ := Θ · {V := t}.

The procedure ofDefinition 4.6is complete and sound. Up to renaming, the result does not
depend on the choice of the minimal difference. SeeFermüller et al. (1993)for details.

Theorem 4.7. Assume that the literals A1, . . . , An and B1, . . . , Bn and the substitution
Θ satisfy the following conditions:

1. All Ai have no non-ground, functional terms.
2. For all X, Y ∈ Var(A1, . . . , An) there is an Ai such that X, Y ∈ Var(Ai ).
3. All B j are weakly covering and have a non-ground, functional term.
4. If i != j , then Bi and Bj have no overlapping variables.
5. There are no overlapping variables between the Ai and the Bj .
6. Θ is the mgu of(A1, B1), . . . , (An, Bn).

Then it is possible to find a permutation(π1, . . . , πn) with the following properties: write

(A′1, . . . , A′n) = (Aπ1, . . . , Aπn)

and

(B′1, . . . , B′n) = (Bπ1, . . . , Bπn).

There exists an m≤ n, such that, whenΘ ′ is the mgu of(A′1, B′1), . . . , (A′m, B′m), then

1. Varnr(B′1Θ ′) ≤ Varnr(B′1), andVardepth(B′1Θ ′) ≤ Vardepth(B′1).
2. For all i , with 1 ≤ i ≤ m,

Var(B′i Θ ′) ⊆ Var(B′1Θ ′), and Vardepth(B′i Θ ′) ≤ Vardepth(B′1Θ ′).

3. For all i , with 1 ≤ i ≤ m,

Var(A′i Θ ′) = Var(B′i Θ ′), and Vardepth(A′i Θ ′) = Vardepth(B′i Θ ′).

4. For all i , with 1 ≤ i ≤ m, both A′i Θ ′ and B′i Θ ′ are weakly covering.

As a consequence, B′1 limits the complexity of the result.

Proof. Item 3 follows immediately from the fact thatΘ ′ is a unifier. Before we can
establish items 1 and 2 we need the following notion. When a variableV occurs as
Ai (. . . , V, . . .), and a termt asBi (. . . , t, . . .), we say thatV is pairedto t .



H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21–58 45

If all Ai Θ are ground, then the theorem follows trivially. Otherwise, define the following
order❁ on variablesV that occur in the formulaeA1, . . . , An and for whichVΘ is not
ground:

X ❁ Y if X and Y occur together in anAi , as Ai (. . . , X, . . . , Y, . . .),
and in the correspondingBi there isBi (. . . , T, . . . ,U, . . .), with
Vardepth(T) < Vardepth(U).

Then the following property holds:

MAXVAR There exists a❁-maximal variable in(A1, . . . , An).

To see thatMAXVAR holds, argue as follows. If there does not exist a maximal variable
this is caused by the fact that there is a cycle as follows:

V0 ❁ V1 ❁ · · · ❁ Vp ❁ V0.

We show that in this case there does not exist a unifier. The cycle is caused by literals of
the form:

A0(V0, V1), A1(V1, V2), A2(V2, V3), . . . , Ap(Vp, V0),

and

B0(t0, u0), B1(t1, u1), B2(t2, u2), . . . , Bp(tp, up),

with Vardepth(ti ) < Vardepth(ui ). Because theti and ui are weakly covering,
Vardepth(ti Θ) < Vardepth(ui Θ), (ti Θ andui Θ need not be weakly covering, but that
is not important). Becauseui Θ = Vi+1Θ , for i < p, andupΘ = t0Θ it follows that

Vardepth(t0Θ) < Vardepth(t1Θ) < · · · < Vardepth(tpΘ) < Vardepth(t0Θ),

which is impossible. This shows thatMAXVAR holds.
We can now construct the permutation(π1, . . . , πn). Let Z be a maximal variable under

the❁-order. Define(π1, . . . , πn) as the following permutation:

1. Permute the(Ai , Bi ) whereAi containsZ before the(Aj , Bj ), whereAj does not
containZ.

2. After that, sort the(Ai , Bi ) by Vardepth(Bi ), putting theBi with the largest Vardepth
first.

Let m be the index of the lastAi that containsZ. Then the pairs(A′i , B′i ) have the following
property, for 1≤ i ≤ m,

MAXVARDEPTH If Z is matched to a termt of B′i in one of the(A′i , B′i ), then
Vardepth(t) = Vardepth(B′i ).

Suppose for the sake of contradiction that there is a termu in B′i , for which Vardepth(u) >

Vardepth(t). There are three possibilities:

1. u is paired toZ. In that caset andu have to be unified byΘ , which is impossible
because Vardepth(t) = Vardepth(u) and because of the fact thatt andu are weakly
covering.
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2. u is paired to another variable, which contradicts the❁-maximality ofZ, or
3. u is paired to a ground term. This would makeuΘ ground. Since Vardepth(u) > 0,

it follows that u contains all variables ofB′i . But then B′i Θ is ground, and this
contradicts the fact thatZΘ is non-ground.

Let Θ ′ be the mgu of the pairs

(A′1, B′1), . . . , (A′m, B′m).

We have to show that the permutation andΘ ′ have the desired properties 1 and 2. Write
Θ ′ = Σ1Σ2Σ3Σ4Σ5, whereΣ1, . . . ,Σ5 are defined as follows.

(Σ1) Σ1 is the substitution that makes ground all variables in theAi that are paired to a
ground term.Z is not among these variables. Then:

1. Vardepth(B′i Σ1) ≤ Vardepth(B′i ) and Varnr(B′i Σ1) ≤ Varnr(B′i ), becauseΣ1
does not affect theB′i .

2. Vardepth(A′i Σ1) ≤ Vardepth(A′i ), and Varnr(A′i Σ ) ≤ Varnr(A′i ), because
variables are replaced by ground terms.

(Σ2) Σ2 = {Z := t}, wheret is a term of maximal Vardepth occurring inB′1Σ1, andZ
is a ❁-maximal variable. It must be the case that Vardepth(t) > 0, Vardepth(t) =
Vardepth(B′1Σ1) = Vardepth(B′1), and Vardepth(B′1) > 0 by assumption. Because
of this t contains all variables ofB′1 = B′1Σ1. Σ2 does not affect any of theB′i Σ1,
becauseZ occurs only in theA′i . We now have

1. Var(B′1Σ1Σ2) ⊆ Var(A′i Σ1Σ2), because everyA′i Σ1Σ2 containst .
2. Vardepth(A′i Σ1Σ2) = Vardepth(B′1), becauset is the only non-ground and

functional term inA′i Σ1Σ2.
3. Vardepth(B′i Σ1Σ2) ≤ Vardepth(A′i Σ1Σ2) = Vardepth(B′1), because Vardepth

(B′i Σ1Σ2) = Vardepth(B′i ).

(Σ3) Σ3 is the unifier oft with the remaining terms with whicht is paired. These are the
terms with whichZ was paired. Since they are weakly covering, and maximal in the
B′i , we have the following:

1. Vardepth(A′i Σ1Σ2Σ3) ≤ Vardepth(A′i Σ1Σ2). This follows fromTheorem 2.10,
2. Vardepth(B′i Σ1Σ2Σ3) = Vardepth(tΣ1Σ2Σ3). This follows fromTheorem 2.10,

and the fact that the terms with whicht is paired are the terms with maximal
Vardepth.

3. Var(B′i Σ1Σ2Σ3) ⊆ Var(B′1Σ1Σ2Σ3).

(Σ4) Σ4 is a substitution that replaces each of the remaining variables in theA′i by one of
the terms with which it is paired. We have

Var(A′i Σ1Σ2Σ3Σ4) = Var(B′i Σ1Σ2Σ3Σ4)

and

Vardepth(A′1Σ1Σ2Σ3Σ4) ≤ Vardepth(B′1).
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(Σ5) Σ5 is the remaining unification. SinceΣ5 unifies terms with the same set of variables,
Σ5 must assign either a variable, or a ground term to each variable, hence the depth
cannot increase.

The result follows by collecting all the inclusions and inequalities.�

Now that we haveTheorem 4.7, we can define the strategy that we described in the
introduction:

Definition 4.8. The decision procedure consists of the following derivation rules:

1. Let c be a clause. Ifc has a factor, then the construction of this factor is always
allowed.

2. Let c1 = {A1} ∪ R1 andc2 = {¬A2} ∪ R2 be clauses such thatA1 and A2 are
unifiable. Construction of the resolvent is allowed if for eachi = 1, 2 one of the
following holds:

(a) ci is ground, or
(b) ci contains non-ground functional terms, and Vardepth(Ai ) is maximal inci .

3. Letc be non-ground and without functional terms. Write

c = {¬A1, . . . ,¬An} ∪ R,

where¬A1, . . . ,¬An is a loose guard. If there aren clauses

c1 = {B1} ∪ R1, . . . , cn = {Bn} ∪ Rn,

such that either

(a) for eachi , eitherci is ground or
(b) ci contains non-ground functional terms, and Vardepth(Bi ) is maximal inci ,

and a hyperresolvent is possible, then construct a permutation(π1, . . . , πn), and an
m as inTheorem 4.7. Write

(A′1, . . . , A′n)= (Aπ1, . . . , Aπn),

(B′1, . . . , B′n)= (Bπ1, . . . , Bπn),

(R′1, . . . , R′n)= (Rπ1, . . . , Rπn),

and construct a partial hyperresolvent as follows: from

{¬A′1, . . . ,¬A′m,¬A′m+1, . . . ,¬A′n} ∪ R

and

{B′1} ∪ R′1, . . . , {B′m} ∪ R′m
construct

{¬A′m+1Θ
′, . . . ,¬A′nΘ ′} ∪ RΘ ′ ∪ R′1Θ ′ ∪ · · · ∪ R′mΘ ′.
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Making use ofTheorem 4.7, the termination proof is analogous to the termination proof
for the GF.

Lemma 4.9. Let c be a loosely guarded clause. LetΘ be a substitution that does
not assign a non-ground functional term to any variable. Then cΘ is loosely guarded.
Moreover, for every set of literals G⊆ c that form a loose guard of c, the instantiation
GΘ is a loose guard of cΘ .

Theorem 4.10. Let C be a loosely guarded clause set, letv = Vardepth(C). Every clause
that is derivable by the refinement ofDefinition4.8 is loosely guarded, does not have a
Vardepthgreater thanv, and has a loose guard, that is an instance of a loose guard in a
clause of C.

Proof.

1. Suppose thatc has been obtained by factoring from a parent clausec1. It follows in
the same way as in the proof ofTheorem 3.8, that the substitutionΘ does not assign
a non-ground, functional term to a variable inc1Θ . ThenLemma 4.9can be applied,
to obtain thatc is loosely guarded and has a loose guard that is an instance of a loose
guard inc1. It follows immediately from the fact thatΘ does not assign non-ground
functional terms that Vardepth(c1Θ) ≤ Vardepth(c).

2. Letc be obtained fromc1 andc2 by binary resolution, using an mguΘ . One can show
in essentially the same way as in the proof ofTheorem 3.8that each non-ground,
functional term inc contains all variables ofc, and that Vardepth(c) ≤ Vardepth(c1)

or Vardepth(c) ≤ Vardepth(c2). One also obtains that for one ofc1, c2 the following
holds: the substitutionΘ does not assign a non-ground, functional term to any of the
variables inci . This ensures thatc has a loose guard that is an instance of a loose
guard ofci .

3. Let

h=¬G1Θ ∪ · · · ∪ ¬GmΘ
∪ {¬Am+1Θ , . . . ,¬AnΘ} ∪ RΘ ∪ R1Θ ∪ · · · ∪ RmΘ

be obtained by partial hyperresolution from the following loosely guarded clauses:

c = {¬A1, . . . ,¬Am} ∪ {¬Am+1, . . . ,¬An} ∪ R,

c1 = ¬G1 ∪ R1 ∪ {B1},
. . .

cm = ¬Gm ∪ Rm ∪ {Bm}
with substitutionΘ . The¬Gi are the loose guards of clausesci . We will show that
¬G1Θ is a loose guard ofh. FromTheorem 4.7, Part 1, we know thatΘ does not
assign a non-ground functional term to a variable inc1. Therefore we can apply
Lemma 4.9and we know that¬G1Θ ∪ R1Θ ∪ {B1Θ} is a loosely guarded clause,
with loose guard¬G1Θ . Now all the Bi contain all variables of their clausesci .
FromTheorem 4.7, Part 2, it follows that Var(Bi Θ) ⊆ Var(B1Θ). This makes sure
that¬G1Θ is a loose guard ofh.
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Next we must show that every non-ground functional term inh contains all variables
of h. Let t be a non-ground functional term inh. First consider the case wheret
originates from one of the parentsci . If there is a variableV in ci , such thatVΘ = t ,
then this variable occurs inBi . SinceBi Θ is weakly covering (byTheorem 4.7, Part
4), the resultVΘ = t contains all variables ofh. If there is a termu in ci , such
thatuΘ = t , then this term contains all variables ofci . HenceuΘ = t contains all
variables ofci Θ . The case wheret originates fromc is completely analogous.
Finally we show that Var(h) ⊆ Var(c1) and Vardepth(h) ⊆ Vardepth(c1). We
originally have

Var(ci ) ⊆ Var(Bi ), Vardepth(ci ) ≤ Vardepth(Bi ).

This implies that

Var(ci Θ) ⊆ Var(Bi Θ), Vardepth(ci Θ) ≤ Vardepth(Bi Θ).

FromTheorem 4.7, Part 2, we have

Var(Bi Θ) ⊆ Var(B1Θ), Vardepth(Bi Θ) ≤ Vardepth(B1Θ).

Combining this and applying Part 1 ofTheorem 4.7completes the proof. �

It remains to show that the set of derivable clauses is finite and to obtain a complexity
bound. One can prove the analogue ofLemma 3.10in essentially the same way. This makes
it possible to applyTheorem 3.22with the following modification: In point(1), one has to
replace “the maximal arity of a guard”, by “the maximal number of variables in a loose
guard”.

4.3. Completeness

The strategy for the LGF is more complex than the strategy for the GF. The strategy
is also non-liftable, but moreover, it does not have a natural definition that uses orders. In
order to prove its completeness we need to modify the resolution game, such that it can
handle the partial hyperresolution rule.

The closest existing approximation of what we need isA-ordered resolution with
selection, that occurs inBachmair and Ganzinger (1994). We repeat the definition here.

Definition 4.11. Let c be a set of propositional clauses. Let❁ be an order on atoms.
Extend❁ to literals as follows:

A ❁ B implies¬A, A ❁ ¬B, B.

Let σ be a function from sets of literals to sets of literals satisfying:

1. σ(c) ⊆ c, for each clausec.
2. For each clausec, eitherσ(c) contains all❁-maximal literals, orσ(c) contains at

least one negative literal.

Having the selection function, when we construct the resolvent

{¬A} ∪ R1, {A} ∪ R2 ⇒ R1 ∪ R2,
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we impose the condition that

¬A ∈ σ({¬A} ∪ R1), A ∈ σ({A} ∪ R2).

Example 4.12. Assume thata ❁ b. Look at the clausec = {a, b,¬a,¬b}. It is allowed to
haveσ(c) = {b}. It is not allowed to haveσ(c) = {a}. It is allowed to haveσ(c) = {¬a},
or σ(c) = {¬b}.

It is not required to select a single literal, so it is allowed to haveσ(c) = {a, b},
σ(c) = {¬a, b}. In the propositional case, that we have defined here, it is always possible
to makeσ(c) a singleton. Hyperresolution can be seen as a special form of resolution
with selection, by always selecting exactly one negative literal, if there is one. Standard
A-ordered resolution can be obtained by always selecting consistent with❁.

It is shown in Bachmair and Ganzinger (1994)that this restriction of resolution is
complete, and that it can be combined with certain restrictions of paramodulation. The
relation to our strategy can best be explained by usingExample 4.5. We would like to
use selection on clausec0 to select the literals¬a1(X, Y),¬a2(Y, Z),¬a3(Z, X), but this
is not possible, because it depends on the clausesc1, c2, c3, which literals of the loose
guard should be resolved away. There might be different clausesc′1, c′2, c′3, for which other
literals should be selected. However in the completeness proof of resolution with selection
functions, the fact that the selection is made in advance, is not used. All that is used there is
that, if there is a clause{¬a1, . . . ,¬ap}∪R with one of the literals¬a1, . . . ,¬ap selected,
and for eachi there is a clause of the form{ai } ∪ Ri , with ai selected, then there is at least
one clause of the form{¬a1, . . . ,¬ai−1,¬ai+1, . . . ,¬ap} ∪ R ∪ Ri , for somei . This
can be ensured by selecting a fixed literal from the¬a1, . . . ,¬ap in advance, but it is not
necessary. So we need a generalization of the results inBachmair and Ganzinger (1994),
with a non-liftable order, and without having to make the selection in advance. For this we
need to adapt the resolution game.

Definition 4.13. We define the new resolution game as an ordered quadrupleG =
(P,PA,≺, σ ). HereP is a set of propositional atoms, as before.PA is a set of indexed
atoms. It is not required that all pairs of a propositional symbol and an attribute do occur
in PA. Literals andindexed literalsare as before. The order≺ is well-founded as before,
but it is defined onPA instead of(P ∪ ¬P)×A. It is extended to indexed literals by

a : A ≺ b : B ⇒ ± : a A≺ b : ±B.

A clauseis a structure of the formcg % cr . Herecg is a finite multiset of atoms, andcr

is a finite multiset of indexed literals.
For a clausecg % cr , theselection functionequals eithercg or cr . If σ(cg % cr ) = cg,

we say thatcg is selected. In the other case we say thatcr is selected. Ifcr is selected, the
clausecg % cr can be used for binary resolution and factoring. Ifcg is selected, the clause
cg % cr can be used for partial hyperresolution and factoring.

If cr is selected, then it must be the case that for every atoma in cg, and for all indexed
literals a : A that can be built usinga, there is an indexed literalb : B in cr , such that
a : A ≺ b : B.
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We have the following condition on atoms that occur in the left-hand side: if an atoma
occurs in the left-hand side of a clausecg % cr , then there exists ana : A ∈ PA, such that
for all othera : A′, based ona, it is the case thata : A′ ≺ a : A.

Reductionsare obtained by finitely often making the following replacements.

1. Replacingcg ∪ [a] % cr by cg % cr ∪ [¬a : A].
2. Replacingcg % cr ∪ [a : A] by somecg % cr ∪ [a : A′] with a : A′ ≺ a : A.

The modified resolution game has the following derivation rules:

FACTOR 1. If a clausec1 has formcg % [b : B1, b : B2] ∪ R, and the right-hand side
is selected, andb : B1 is maximal, thencg % [b : B1] ∪ R is a factor ofc1.

2. If a clausec1 has form[a] ∪ cg % [¬a : A] ∪ R, the right-hand side is selected,
and¬a : A is maximal, then[a] ∪ cg % R is a factor ofc1.

RES If c1 % R1∪[b : B1], andc2 % R2∪[¬b : B2] are clauses with their right-hand sides
selected, andb : B1 and¬b : B2 are maximal in their clauses, then the following
clause is a resolvent:

c1 ∪ c2 % R1 ∪ R2.

PARTIAL Let

r = [a1, . . . , ap] % R

be a clause, such that the left-hand side[a1 : A1, . . . , ap : Ap] is selected. Let

g1 % [a1 : A′1] ∪ R1, . . . , gp % [ap : A′p] ∪ Rp

be clauses, such that allai : A′i are maximal in their clauses, and all[ai : A′i ]∪Ri are
selected. Letm ≤ p. Then clauses of the following form arepartial hyperresolvents:

g1 ∪ · · · ∪ gm ∪ [am+1, . . . , ap] % R∪ R1 ∪ · · · ∪ Rm.

(We have omitted the permutation for notational reasons.)

Definition 4.14. LetC be a set of clauses. AsaturationC of C is a set of clauses satisfying
the following:

1. C ⊆ C.
2. For every clausecg % cr that can be obtained from clauses inC, either by RES, or

by FACTOR, there is a reductiondg % dr of cg % cr in C.
3. For every group of clausesr ; c1, . . . , cn, such that it is possible to form partial

hyperresolvents, there is at least one reductiondg % dr of one of the partial
hyperresolvents inC.

We have the following completeness theorem:

Theorem 4.15. Let C be a saturation of a clause set C. IfC does not contain the empty
clause, then C has a model.
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Proof. Assume that a saturated clause setC does not contain the empty clause. We show
thatC has a model. The order≺ of the resolution game is well-founded onPA. Without
loss of generality we can assume that≺ is total. Letk be the ordinal of the length of≺. We
inductively construct setsI0, I1, . . . , Iω, . . . up to Ik as follows:

1. I0 = { }.
2. For a successor ordinalλ+ 1, letb : B be the indexed literal on positionλ.

(a) PutIλ+1 = Iλ ∪ {b : B} if either there is a reductionb : B′ of b : B in Iλ, or
there is a clausec in C which has form

c = [a1, . . . , ap] % r : R∪ [b : B],
such that

(i) the right-hand side ofc is selected,

(ii) c cannot be factored,

(iii) b : B is the maximal indexed literal inc,

(iv) for each literalai of the left-hand side ofcg, there is an indexed literal
a : A ∈ Iλ,

(v) there is no literal inr : R, that occurs inIλ.

(b) Put Iλ+1 = Iλ ∪ {¬b : B} on the same conditions as forb : B, but with b : B
replaced by¬b : B.

(c) Otherwise putIλ+1 = Iλ.

Observe that Cases 1 and 2 may overlap. When that happens, we assume that Case 1
is checked before Case 2. Because of this,b : B is added, and¬b : B is not added.

3. For a limit ordinalλ, put Iλ = ⋃
µ<λ Iµ.

We first establish the following property:

JUST For each indexed literal±b : B in Ik, there is a clause of the formc =
[a1, . . . , ap] % r : R∪ [±b : B] in C, such that

1. The right-hand side ofc is selected,
2. c cannot be factored,
3. ±b : B is the maximal indexed literal ofc,
4. for eachai , there is an indexed literal of the formai : Ai ∈ Ik,
5. no literal ofr : R is in Ik.

The problem is to establish (5). It is clearly the case that no literal ofr : R occurs inIλ,
because of Condition v of the construction. The indexed literals±a : A, that are added
later, all have±b : B ≺ ±a : A. Since±b : B is the maximal literal ofc, they cannot be
in c.

Next we will show the following two facts by induction:

A for indexed atomsa : A, it is not the case that botha : A and¬a : A are in Ik,



H. de Nivelle, M. de Rijke / Journal of Symbolic Computation 35 (2003) 21–58 53

and for each clausecg % cr in C, at least one of the following is true:

C1 For ana in cg, there is noA, such thata : A ∈ Ik.
C2 There is ana : A in cr , such thata : A in Ik.
C3 There is a¬a : A in cr , such that¬a : A in Ik.

We write C for the disjunction C1∨ C2∨ C3.
We will establish A and C by induction on the multiset extension≺≺ of ≺. In order

to do this we associate a finite multiset of indexed atoms to each instance of A and C as
follows:

1. To A, applied to an indexed atoma : A, we associate the multiset[a : A].
2. To C, applied to a clause[a1, . . . , ap] % cg we associate the multiset[a1 :

A1, . . . , ap : Ap] ∪ cg. Here eachai : Ai is the maximal indexed atom that can
be constructed fromai .

In the induction proof we need the following property:

REDUCTION Let Sbe a finite multiset of indexed literals. Suppose that we have already
established the induction hypotheses to all finite multisets belowS. Let cg % cr be
some clause, not necessarily inC, with associated multiset belowS. Let dg % dr be
a reduction ofcg % cr that occurs inC. Thencg % cr also satisfies C.

First observe thatdg % dr also has the associated multiset belowS. It is sufficient to show
that REDUCTION is preserved by reductions that consist of one step.

1. Consider the case wherecg % cr ∪ [¬a : A] is a reduction ofcg ∪ [a] % cr . Assume
thatcg % [a] ∪ [¬a : A] satisfies one of C1, C2, C3. Ifcg % cr ∪ [¬a : A] satisfies
C1, thencg ∪ [a] % cr also satisfies C1. Ifcg % cr ∪ [¬a : A] satisfies one of C1,
C2, then one of the literals incr ∪ [¬a : A] occurs inIk. If this literal is in cr , then
cg ∪ [a] % cr clearly satisfies one of C1, C2. If it is¬a : A, then let¬a : A′ be the
maximal indexed literal based ona. By the construction ofIk, it must be the case
that¬a : A′ ∈ Ik. The associated multiset[a : A′] ≺≺ the associated multiset of
cg ∪ [a] % cr . Hence we can apply A to obtain thata : A′ is not in Ik. This means
thatcg ∪ [a] % cr satisfies C1.

2. Consider the case wherecg % cr ∪ [±a : A′] is a reduction ofcg % cr ∪ [±a : A].
If cg % cr ∪ [±a : A′] satisfies C1, thencg % cr ∪ [±a : A] also satisfies C1. If
cg % cr ∪ [±a : A′] satisfies one of C2, C3, and a literal ofcr is in Ik, then clearly
cr % cr ∪ [±a : A] satisfies one of C2, C3. Ifcg % cr ∪ [±a : A′] satisfies one of
C2, C3, and±a : A′ is in Ik, then by the construction ofIk, ±a : A ∈ Ik. Hence
cg % cr ∪ [a : A] satisfies one of C2, C3.

Let S be a finite multiset of indexed atoms. Assume that A and C are true for all instances
with associated multiset belowS. We prove that instances of A and C with associated
multiset equal toS are also true. We do this by analysing the possible instances that have
an associated multisetS. More than one case can be applicable, and it is possible that no
case applies.
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1. If S has the form[a : A], then we have to establish the fact that not botha : A and
¬a : A are inC. Suppose that they were both inC. Then there are clauses

c1 = c1
g % c1

r ∪ [a : A], and c2 = c2
g % c2

r ∪ [¬a : A]
in C satisfying JUST. The resolventc1

g ∪ c2
g % c1

r ∪ c2
r is allowed, and therefore a

reductiondg % dr of it is in C. Now the resolvent has an associated multiset smaller
than S, because it consists of indexed literals strictly belowa : A. We can apply
REDUCTION, and we obtain the fact that the resolventc1

g∪c2
g % c1

r ∪c2
r satisfies C.

We show that this leads to a contraction. If the resolvent satisfies C1, this means that
for one of the atomsa in c1

g ∪ c2
g, there is no indexed atoma : A ∈ Ik. This means

that one of the clausesc1, c2 violates Condition 4 of JUST. If the resolvent satisfies
C2 or C3 this leads to a violation of Condition 5 of JUST in the same way.

2. If there is a clause of the formc = [a1, . . . , ap] % R in C, with the left-hand side
selected, and with associated multisetS, then assume thatc does not satisfy C1. We
will show thatc satisfies either C2 or C3. There must exist clauses

g1 % [a1 : A1] ∪ R1, . . . , gp % [ap : Ap] ∪ Rp

in C, that satisfy JUST. Because of this a partial hyperresolvent is possible. Assume
that there is a reduction of the partial hyperresolvent

h = g1 ∪ · · · ∪ gm ∪ [am+1, . . . , ap] % R∪ R1 ∪ · · · ∪ Rm.

The associated multiset ofh is smaller thanS. This is because in the clauses
gi % [ai : Ai ] ∪ Ri , all indexed literals inRi are strictly smaller thanai : Ai . By the
conditions on selection of the right-hand side, the maximal indexed atoms that can
be built fromgi are strictly smaller thanai : Ai . Each indexed atomai : Ai is less
than, or equal to the maximal indexed atom that can be built fromai . This implies
that the associated multiset ofh can be obtained from the associated multiset ofc,
by replacing some indexed literals by a finite set of strictly smaller indexed literals.
Because of this we can apply REDUCTION, and we obtain the fact thath satisfies
C. We can proceed in essentially the same way as in the previous case. We first show
that h must satisfy C2 or C3, because C1 results in a contradiction. Suppose that
h satisfies C1. If for one of thea2, . . . , ap, there is noAi , such thatai : Ai ∈ Ik,
this contradicts the initial assumption. If for an atoma in one of thegi , there is no
indexed atoma : A ∈ Ik, this contradicts Condition 4 of JUST. Now the fact thath
satisfies C2 or C3 means that there is an indexed literal±a : A that occurs in both
R∪ R1 ∪ · · · ∪ Rm andIk. Because eachgi % [ai : Ai ] ∪ Ri satisfies Condition 5 of
JUST, the only possibility is that the indexed literal±a : A occurs inR. This means
thatc satisfies C2 or C3.

3. If there is a clause of the formcg % cr in C, with the right-hand side selected, which
can be factored and with associated multisetS, then we writec′g % c′r for one of its

factors, and letdg % cr be a reduction that is inC. It is easily checked that both
have an associated multiset strictly smaller thanS, and because of this we can apply
REDUCTION and obtain thatc′g % c′r satisfies C. Then it is easily checked that
cg % cr satisfies C.
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4. If there is a clause of the formcg % cr , with the right-hand side selected, which
cannot be factored and with associated multisetS, then proceed as follows: suppose
thatcg does not satisfy C1. Let±a : A be the (unique) maximal literal incg % cr . Let
λ be its position in the ordering. Then at the moment thatIλ+1 was constructed there
already was an indexed literalc : C ∈ Iλ, for eachc ∈ cg. (Because the right-hand
side ofcg % cr was selected, there do not exist indexed literalsc : C with c ∈ cg

greater than±a : A.) If at the moment thatIλ+1 was constructed,cg % cr did not
satisfy C2 or C3, then±a : A is added toIλ+1. For this reasoncg % cr necessarily
satisfies C2 or C3.

Finally, a model ofC can be extracted fromIk by putting the atomsa, for which there is
an indexed atoma : A in Ik, true. The other atoms are put false. It follows from A, C1, C2,
C3, that this makes every clause inC true. �

Definition 4.16. Let A be literal. Thenormalizationof A is defined as inDefinition 3.14,
but if A is negative, the negation sign is removed in the process.

Let c = {¬a1 : A1, . . . ,¬ap : Ap, b1 : B1, . . . , bq : Bq} be a representation-indexed,
loosely guarded clause with loose guard{¬a1 : A1, . . . ,¬ap : Ap}. Let Θ be its substi-
tution. Letk = #Θ . Then[c] is defined as

[a1, . . . , ap] % [b1 : (k, B1), . . . , bq : (k, Bq)].
Here theAi , Bi are the normalizations of theAi , Bi .

Theorem 4.17. The strategy ofDefinition4.8 is complete for clause sets C in the LGF.

Proof. Once we have the resolution game ofDefinition 4.13, the proof is analogous to the
proof of Theorem 3.19. Let C be an unsatisfiable, loosely guarded clause set. LetC be its
closure under resolution and factoring, using the rules ofDefinition 4.8. We need to show
thatC contains the empty clause. LetChb andChb be obtained as inTheorem 3.19. The
set of propositional symbolsP is defined as the set of propositional atoms inChb. The set
[Chb] is defined as before, but using the new definition of[ ], given inDefinition 4.16. The
setPA is defined as the set of objectsa : (k, A) for which eithera : (k, A) or¬a : (k, A)

occurs in[Chb].
The selection functionσ is defined as follows: let

c = [a1, . . . , ap] % [b1 : (k, B1), . . . , bq : (k, Bq)]
be a clause in[Chb]. If there is an indexed literalbj : (k, Bj ) containing non-ground,
functional terms, then select the right-hand side ofc. Otherwise select the left-hand side.
We must show that when the right-hand side is selected, the clause satisfies the condition
in Definition 4.13. Because theai : (k, Ai ) are part of the loose guard, they do not contain
non-ground, functional terms. LetΣ be the substitution such thatai = Ai Σ . BecauseAi

does not contain non-ground, functional terms, there exist no termsA′ andΣ ′, such that
ai = A′Σ ′, and #Σ < #Σ ′, so we know that #Σ ≥ #Σ ′. We also have #Σ ≤ k. (They are
not necessarily equal becauseAi need not contain all variables in the clause.) From this it
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follows that there are no indexed atomsai : (l , A′i ) ∈ [Chb] with k < l , or k = l , andA′i
contains non-ground, functional terms.

We also need to show that for every atom occurring in a guard, there is a maximal
indexed atom, based ona in PA. This is the case becausePA is finite.

It remains to show that[Chb] is a saturation of the resolution game. This is essentially
analogous to the proof ofTheorem 3.19. The differences are the following:

When, due to substitution, a literal moves from the loose guard to the body of a clause,
this is modelled by the first type of reduction, inDefinition 4.13.

When a partial hyperresolvent is formed, assume that[a1, . . . , ap] % r : (k, R) and

g1 % [a1 : (k1, A1)] ∪ r1 : (k1, R1),

. . .

gp % [ap : (kp, Ap)] ∪ r p : (kp, Rp)

have a partial hyperresolvent. There must exist clauses of the following form inChb,

c = {¬a1 : A1, . . . ,¬ap : Ap} ∪ r : R,

c1 = {¬g1 : G1} ∪ r1 : R1 ∪ {a1 : A1},
· · ·

cm = {¬gm : Gm} ∪ rm : Rm ∪ {am : Am},
· · ·

cp = {¬gp : Gp} ∪ r p : Rp ∪ {ap : Ap}
with partial hyperresolventh =

¬g1 : G1Θ ∪ · · · ∪ ¬gm : GmΘ ∪ {¬am+1 : Am+1Θ , . . . ,¬ap : ApΘ}
∪r : RΘ ∪ r1 : R1Θ ∪ · · · ∪ rm : RmΘ .

Write [h] =
g1 ∪ · · · ∪ gm ∪ [am+1, . . . , ap] % r : (l , RΘ) ∪ r1 : (l , R1Θ) ∪ · · · ∪ r p : (l , RpΘ).

It is sufficient to show that[h] is a reduction of the following partial hyperresolvent

g1 ∪ · · · ∪ gm ∪ [am+1, . . . , ap] % r : (k, R) ∪ r1 : (k1, R1) ∪ · · · ∪ r p : (kp, Rp).

This is essentially analogous to the proof ofTheorem 3.19. It is sufficient to prove that
l ≤ ki , andl ≤ k. This follows from the fact that for eachi , 1 ≤ i ≤ m,

Var(ci Θ) ⊆ Var(cΘ). �

Theorem 4.18. Resolution with factoring, as defined inDefinition4.8, together with the
modified normal form transformation, is a decision procedure for the LGF.

5. Conclusions and further work

We have shown that it is possible to effectively decide the GF and the LGFs by
resolution. The proofs that the resolution refinements are complete and terminating can be
used as proofs for the decidability of these fragments, but they offer more than that. They
also define practical decision procedures, using techniques that are standard to the theorem
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proving community. This has made implementation relatively easy. Since the procedures
could be built on top of an existing resolution prover, they could easily be combined with
an efficient, full first-order theorem prover (de Nivelle, 1999a).

Our decision procedure has interest in itself, but it can also be applied to modal
logics, using the relational translation. From the space point of view, translation into the
GF is not the optimal way for deciding simple modal logics likeK and T , since these
logics are in PSPACE (Ladner, 1977), while the complexity of the GF with fixed arity is
single exponential. However it is not likely that a resolution decision procedure will ever
decide modal logics in PSPACE, since resolution cannot even solve propositional logic in
PSPACE.

We expect that our method has advantages over the direct approaches of resolu-
tion in modal logic (Enjalbert and Fari˜nas del Cerro, 1989; de Nivelle, 1993), because our
method provides a decision procedure, and because it can exploit existing implementations.

We do not expect to be able to improve the functional translation methods
(Schmidt, 1997), at least not with our present translation.

A natural question is, whether or not the results inGrädel and Walukiewicz (1999)can
be obtained by resolution. We are pessimistic but we will investigate the question.
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Grädel, E., 1997. On the restraining power of guards. J. Symb. Log. (to appear).
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