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Abstract Let’s go back to Van Benthem’s chapter. There, we saw many exam-
ples of everyday scenarios of communication in action, ranging from very simple
ones (such as asking for directions) to far more intricate ones where the flow of
information is far from immediately obvious (such as cryptographic protocols).
Understanding these scenarios from a logical point of view requires increasingly
more sophisticated representation formalisms, in which the information states of
the parties involved get richer and in which the reasoning performed gets more
complex. From a computational point of view there are many challenging aspects
to these scenarios, having to do with computational complexity, with algorithms
for reasoning, with algorithms for generating representations of natural language
expressions, and with the interaction between the logical and linguistic processes
that seem to be underlying them. Indeed, these are the issues we face whenever
we want to communicate with language in a computational setting, whether in a
multi-agent setting or in a setting with a single agent who is accessing natural
language texts.

1 Introduction

Reasoning is a notoriously hard problem, and so is the process of building
representations of natural language texts that can usefully be fed to our
reasoning engines. As we know from modern logic since the 1930s in the
fundamental work of Gödel and Turing, making a logical language reason-
ably expressive can make valid reasoning in it undecidable: i.e., beyond the
scope of any algorithm whatsoever. So, there is no miracle cure. We rather
have to understand the balance between expressive power and computational
complexity, looking for logical architectures that represent some optimum.

How far can we go? At which point does reasoning become pro-
hibitively hard? And what level of analysis of a piece of text is attain-
able given certain real-world constraints on our computational resources?
Rich representation structures are hard to generate and hard to manipulate;
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systems that need to work in real-time can only handle relatively shallow
information structures. Indeed, there is an inevitable tension between in-
formational expressiveness and computational complexity. And this tension
shows in all current natural language systems. The richer your syntactic
and semantic analyses, the more complex the workings of any correspond-
ing system for handling meaning or communication. Therefore, we see many
kinds of shallow, partial, and underspecified representations: one tries to do
tasks at the shallowest level possible.

This, then, is our main interest: what is the balance between inference
and representation? There are many aspects to this: When does it matter
to go for deep levels of analysis and rich representations? Does the quality
of results for a given task improve substantially when we go for much richer
representations?. . . These are very abstract questions, so let’s make things
more concrete.

An Example: Entailment Checking

We take a brief look at the following task: determining entailment relations
between natural language texts. This is a task that naturally occurs as a
subtask in a number of modern natural language processing systems. In dia-
logue systems [37], for instance, we want the system to be informative, that
is, the system should only assert a piece of information if it does not follow
from the information that has already been exchanged with the user. An-
other example is provided by multi-document summarization [9, 44], where
one may try to build a summary by starting from a given document and
only adding parts from other documents that are not implied by the infor-
mation that we have already included. Figure 1 shows an example of two
segmentized documents, both covering a plane crash in Taiwan. A superfi-
cial glance reveals some obvious entailments; for instance, AP 2 is at least
as informative as Reuters 4 and as Reuters 5. On the other hand, it
seems clear that AP 2 does not contain the specific information mentioned
in Reuters 3.

Now, what kind of entailment checking is appropriate? And what kind
of algorithms should we use? And what kind of representations should they
work on? In deciding these matters, the following criteria are among the
main ones:

• the robustness and coverage of methods for generating representations
that our system can work on,

• the computational costs (and behavior) of the entailment checks, and
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Figure 1: Two Segmentized Documents (Topic 6).

Reuters (31 Oct 2000 16:39 GMT) AP (31 Oct 2000 16:25 GMT)

Reuters 1: TAIPEI (Reuters) - A Singa-
pore Airlines plane bound for Los Angeles
crashed during a typhoon at Taiwan’s in-
ternational airport on Tuesday, an airport
police official said.
Reuters 2: It was not immediately
known how many of the 159 passengers
and 20 crew were killed or injured, Civil
Aeronautics Administration deputy di-
rector Chang Kuo-cheng told reporters.
”The plane burst into flames and ex-
ploded shortly after takeoff,” an airport
police official told reporters.
Reuters 3: Local television was report-
ing that over 120 injured had been taken
to hospital.
Reuters 4: The SIA Boeing 747-400 was
taking off during a storm and hit by strong
winds. It hit two other planes on the tar-
mac, including a China Airlines plane, po-
lice said. A Taiwan vice transport minis-
ter said no one was on board the other two
planes.
Reuters 5: The injured were rushed to
hospital. No other details were immedi-
ately available.

...

AP 1: TAIPEI, Taiwan (AP) - A Singa-
pore Airlines jetliner bound for Los Ange-
les crashed on takeoff in a storm Tuesday
night and slammed into another plane on
the runway, a Taiwanese official said.
AP 2: There were 179 people on board
Singapore Airlines Flight SQ006, which
local media reports said was a 747. It was
not immediately known how many peo-
ple were hurt or killed, but local media
reports said some injured people were be-
ing taken to the hospital. Strong winds
seemed to have forced the plane down.
There was an explosion as it struck a
China Airlines plane on the runway at
Taipei’s Chiang Kai-shek International
Airport, emergency official Wu Bi-chang
said. Local media reports said the China
Airlines plane was empty.
AP 3: The crash occurred at 11:18 p.m.
local time, and rescue workers were being
dispatched to the scene, Wu said. Min-
utes later, the flashing lights of rescue ve-
hicles were visible on the wet tarmac. Lo-
cal media reports said there was a fire on
the runway after the crash but that it had
been extinguished.

...

• the type of outcomes or output that we want to have.

Below we discuss these criteria in a bit more detail.

Generating Representations. Whichever tool we use for entailment
checking, it needs to operate on representations of the input documents.
Semanticists have tended to opt for rich representation formalisms that are
able to capture as many relevant aspects as possible; Dekker’s and Van
Eijck’s chapters are examples of this. In practice, ‘rich’ often means ‘in-
cludes (at least) first-order logic.’ What does it take to generate first-order
logic representations of documents? Traditionally, this involves a number of
levels, including syntactic structure, logical form, and some form of contex-
tual interpretation [2]. Despite important advances, relevant tools (such as
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parsers) lack the robustness and coverage needed to efficiently generate deep
semantic representations of arbitrary natural language documents. More-
over, the traditional demand that representations be precise and unambigu-
ous may lead to representations whose size is exponential (or worse) in the
size of the input document. Practicable methods for generating first-order
representations are rare.

An obvious way out is to turn to more light-weight representations
that can be obtained by more shallow and more robust language process-
ing techniques. Partial parsing or chunk parsing can be used to build such
representations in an efficient and robust manner, while avoiding full disam-
biguation [1, 33].

Bags of (stemmed) words, possibly filtered through a stopword list,
are even more shallow representations of natural language documents. At
the cost of giving up virtually all syntactic structure, bag-of-words represen-
tations provide very concise representations that are easy to generate, and
that are typically used for large text collections [8].

Computational Costs. How hard is it to reason with pieces of informa-
tion in a given representation format? If first-order logic is the representa-
tion formalism of choice, the entailment problem is obviously undecidable.
Admittedly, recent advances in first-order theorem provers and model gen-
erators do seem to make them of practical use in some classes of linguistic
problems [11]. And there is hope that the development of test suites for,
e.g., discourse understanding will allow the tuning of automated inference
systems to excel at strategies that support efficient inference for seman-
tics [24]. But, we are dealing with an undecidable problem; in practice this
means that minor variations in do-able instances may cause time outs and
exploding memory usage.

There are two obvious replies to this problem. One is to ignore it and
to accept the fact that there are problem instances for which the available
computational resources are guaranteed not to suffice. The other is to stick
to wide coverage but to simplify the reasoning task so that it is guaranteed
to behave well on each problem instance.

Type of Outcomes. There is another fundamental issue here. Most rea-
soning methods in computational semantics are based on strict, binary log-
ical reasoning, and if they produce an outcome at all, it will be a strict yes
or no. As any textbook on artificial intelligence will explain, there are many
reasons why approximate reasoning should be preferred in some cases. For
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the purposes of entailment checking in computational semantics, two reasons
are particularly relevant.

First, in many practical situations, such as document summarization,
we are content with approximate answers, and prefer approximate answers
to having no answer at all. Second, as we will see below (Section 3), usually,
the strict binary entailment relation only holds between text segments si,d in
document d and sj,d′ in document d′ (in that order) whenever si,d is a copy
of sj,d′ or an extension of a copy of sj,d′ . In other words, if only Boolean
answers are allowed, the entailment relation may be too sparse (i.e., hold
between too few pairs of text segments) to be of any practical use.

Which entailment checking method works best? We offer no universal an-
swer, but in Section 3 we report on the development of a test set aimed at
evaluating such methods.

Motivation

Why are we interested in the balance between inference and representation
in informational tasks? Shouldn’t computer scientists be spending their
time devising information accessing methods that are better, faster, and
more powerful? They should, and many of us actually do. But many re-
searchers want to understand the inherent strengths and weaknesses of their
methods. The motivation for this quest is three-fold. First of all, there is
intellectual curiosity. From the early Greeks’ experiments in working out
the circumference of the earth, to the latest probings beyond the borders of
the observable universe, man has asked questions about our universe, and
our place in it [20]. Similarly, when dealing with today’s core asset — infor-
mation —, computer scientists want to discover what can be inferred from
it and what cannot, and how costly it is when it can.

A second reason for being interested in the balance between inference
and representation is to encourage new paradigms. Knowledge representa-
tion and automated reasoning systems have now reached a level of sophisti-
cation where they can be put to good use, as witnessed, for instance, by the
Doris system developed by Bos [12]. Understanding just when and why
such tools can be used for informational tasks, would be important for re-
searchers from the automated reasoning and computational logic communi-
ties. Understanding the limitations of existing representation and inference
methods will help us to develop alternatives.

A third reason is simply to avoid futile efforts. The (short) histories
of computational logic and natural language processing are full of ideas
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and methods that look nice in principle, but don’t work. Indeed, many
researchers try to use deep analyses where these simply don’t work. The
more we understand these matters, the less we will waste our time and
energy on such endeavors.

So much for our key interest and its motivations. Let’s turn now to
the type of answers that we’d like to see and how we go about finding them.

Finding Answers

Since our main interest lies with inference and representation, and the bal-
ance between them, the sort of results that we’re after concern methods for
generating representations and for reasoning with them, as well as means
for evaluating these methods. But how do we evaluate? Theoretical studies
are important to us because they can provide us with an analysis of the
computational complexity and termination behavior of our reasoning meth-
ods. They can provide us with an analysis of the expressive power of our
representation languages. Theoretical analyses can also give us insights into
the descriptive requirements of the domains we’re trying to model [53], or
in the mathematical relationships between, for instance, different parsing
methods. For further examples of theoretical studies that are relevant for
our purposes, see the chapters by Van Benthem and by Venema.

While theoretical studies paint part of the picture, for a fuller under-
standing of the interaction between inference and representation, empirical
studies are needed as well. Theoretical tools are not always available to
answer the questions we want answered. Theoretical analyses can produce
results on worst-case computational complexity of reasoning methods, but
this may be too coarse and tends to focus exclusively on worst-case sce-
narios. Moreover, actual systems that implement algorithms will have the
same algorithmic complexity, which is not very useful in determining the
effectiveness of, for instance, optimizations.

Moreover, some questions are inherently experimental and cannot be
addressed by theoretical tools. For instance, how far can we push first-order
inference techniques in natural language understanding? Empirical testing
provides insights not produced by studying theoretical analyses: it directly
gives resource consumption, in terms of computation time and memory use.
It factors in all the pieces of a system, not just the basic algorithms itself.
Moreover, empirical testing can be used not only to compare different sys-
tems, but also to tune a system or to show what sort of inputs the system
handles well, or poorly.

As we will see below, several kinds of inputs can be used for empirical
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testing, ranging from randomly generated problem sets to standard doc-
ument collections equipped with a ‘gold standard’ of the correct answers.
What we actually want to measure while carrying out experimental analyses,
depends on many ingredients, including the specific task that an algorithm
or system is supposed to address. To evaluate an inference engine, for in-
stance, the most common measures of performance are time and space: the
shorter the time it takes the system to yield a proof (or a counterexample),
the smaller the space used, the better the system is considered to be. In
other settings, other metrics besides time and space are also of interest. For
a system designed for building syntactic or semantic representations of natu-
ral language texts, one measures how often the system gets it right, and how
many of the right answers it produces. In a system designed for providing
information retrieval we are dealing with a user’s information request that
can be vague; the retrieved documents may have to be ranked according to
their relevance to the query. Thus, information retrieval systems require the
evaluation of how precise the answer set is.

This Chapter

We have indicated how simple communication scenarios give rise to a wide
range of computationally interesting issues, even in the setting of a single
agent that deals with natural language texts. Our focus is on the balance
between inference and representation, and our goal here is to make this
theme more concrete by reviewing some relevant research efforts within the
Logic in Action project and its follow-ups. While we will not ignore theo-
retical analyses, our emphasis will be on experimental evaluation. We start
by looking at reasoning; after that we consider reasoning with actual rep-
resentations of natural language texts, and, finally, we look at experimental
evaluations by means of real-world tasks. One word of warning: much of
the material below is concerned with ongoing work, where the final (and in
some cases: even the first) answers have not been found yet.

2 Reasoning

The working logical representation language of any logic introduction is
first-order predicate logic, a reasonably expressive representation formalism
for natural language. While it has been argued that it is too weak to be
used as a universal representation formalism for natural language, there
is a clear sense in which it is too strong: no effective algorithm can test
its valid forms of reasoning in their entirety. There are logical systems
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that put the balance differently. A central example is modal logic, which
restricts the power of first-order quantification to ‘locally accessible’ objects
in the domain of discourse, thereby achieving a consequence problem which
is decidable. Let’s have a look at some theoretical and experimental aspects
of modal logic as they relate to our special interests.

Theoretical Aspects: Expressive Power

Recall from Van Benthem’s chapter that formulas of the basic propositional
modal language are built up from atomic proposition letters, the boolean
connectives ¬ and ∧, and the modal operators 3 and 2. Models for this lan-
guage are triples of the form (W,R, V ), where W is the domain of discourse,
R is a binary relation on W (often called the accessibility relation), and V
is a valuation function that indicates how atomic information is distributed
over the objects in the domain of discourse. Truth of a modal formula φ at
a state or object w (in symbols: M,w |= φ) is defined by recursion, with the
following key clauses:

• (W,R, V ), w |= 3φ if there exists v ∈W with Rwv: (W,R, V ), v |= φ;

• (W,R, V ), w |= 2φ if for all v ∈W with Rwv: (W,R, V ), v |= φ.

Here, then, is the essential definition; see also Venema’s chapter.

Definition 1 A bisimulation between two models M1 = (W1, R1, V1) and
M2 = (W2, R2, V2) is a non-empty relation Z between the domains W1 and
W2 of M1 and M2, respectively, that satisfies the following conditions:

1. Z-related objects satisfy exactly the same proposition letters;

2. if w1 and w2 are Z-related and a transition can be made from w1 to
v1 via the accessibility relation in M1, then, in M2, a similar move can
be made along the accessibility relation from w2 to some state v2 in
M2 that is Z-related to v1;

3. similar to the previous item, but now every move along the accessibility
relation in M2 should mimicked by a similar move in M1.

Let us call two objects in two models bisimilar if there exists a bisimulation
between them. The expressive power of modal formulas can now be captured
as follows. First, we note that modal formulas can be mapped into first-order
predicate logic, in a satisfiability preserving way, simply by observing that
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proposition letters are nothing but unary predicates and that the above
truth definitions for 3 and 2 can be transcribed in first-order logic. Then
the following equivalence may be proved.

Theorem 2 Let φ(x) be a first-order definable property of states in modal
models (W,R, V ). Then, φ(x) is equivalent to a modal formula if and only
if φ(x) cannot distinguish between bisimilar objects.

In other words, the modally definable properties are exactly those that can-
not distinguish between bisimilar states. The beauty of this result is not
just that it gives us an exact handle on the expressive power of the basic
modal language, but also that its bisimulation analysis can be generalized,
extended, and exported in many directions [51]. Moreover, it can be used
to map out the relative expressive power of languages by finding properties
that are expressible in one language, but not expressible in another (which
is where bisimulations come in).

Bisimulation-based analyses can actually be pushed down from the
whole language to the specific operators and constructs that a language ad-
mits. For instance, as we will shortly see, in certain description logics, the
3-operator is only allowed to have the constant > (‘true’ or ‘verum’) as
its argument; by dropping the clause ‘that is Z-related to v1’ at the end of
item 2 of Definition 1, we get a new notion of bisimulation that precisely
characterizes this restricted modal language. Similarly, the semantic contri-
bution of the disjunction ∨ can be captured by changing bisimulations from
relations that link objects to objects into relations that link objects to sets
of objects [42].

This observation becomes especially useful when thinking about the
expressive power of so-called description logics. Description logics [18] are a
collection of formal languages originating from the area of Knowledge Rep-
resentation in artificial intelligence. They split the available information
about a situation into two parts, global and local, using a ‘T-Box’ and an
‘A-Box.’ The T-Box contains terminological information: definitions of the
basic and derived notions and of the ways they are related. The A-Box
contains assertional information: specific information about particular in-
dividuals. The formulas put in these boxes are built up from ‘concepts’
(denoting sets of objects) and ‘roles’ (denoting binary relations between ob-
jects). Description logics differ in the constructions they admit for building
complex concepts and roles. For instance, the well-known description logic
FL− has the following ingredients:
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• atomic concepts (which single out sets of objects that share a prop-
erty),

• two constant concepts > (‘top’, the set of all objects) and ⊥ (‘bottom’,
the empty set),

• universal quantification of the form ∀R.C (which stands for the set of
objects d such that any e that is related to d via the relation R, has
the property C),

• conjunctions of concepts C u D (which stands for the set of objects
satisfying both C and D), and

• unqualified existential quantification of the form ∃R.> (which stands
for the set of objects d that are R-related to some object).

The description logic AL extends FL− by allowing negations of atomic
concepts; and ALC extends AL by allowing arbitrary negations.

Put somewhat loosely, description logics are modal logics with added
facilities for the structured representation of information. In particular, the
concepts that can be constructed in ALC correspond directly and precisely
to formulas of multi-modal logic.

This close connection between modal and description logic has enabled
the transfer of tools and techniques between the two fields. To give but one
example, the earlier bisimulation-based analysis of ordinary modal logic can
be extended to characterize and compare the expressive power of descrip-
tion logics: map description logics into first-order logic, and characterize the
resulting fragments in terms of suitable notions of bisimulation. Figure 2,
taken from [42], contains a complete classification of the relative expressive
power of the so-called AL- and FL−-hierarchies of description logics. These
results are currently being ported to the restricted setting of finite mod-
els [36], and extensions that allow one to cope with the earlier A-Boxes and
T-Boxes, have been discussed by Areces and de Rijke [3, 4].

A Mismatch? So far, we’ve seen a classification of the expressive power of
a family of description logics. But what do we know about the computational
costs of reasoning in these logics? Given our focus on the balance between
inference and representation, we’d like to know to which extent differences
in expressive power are mirrored by differences in computational costs.

The strong emphasis on reasoning methods in the description logic
community has given rise to a wide range of complexity-theoretic results. In
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FL−

FLE− FLU− AL FLN− FLR−

FLEU− ALE FLEN− FLER− ALU FLUN− FLUR− ALN ALR FLNR−

ALC FLEUN− FLEUR− ALEN ALER FLENR− ALUN ALUR FLUNR− ALNR

ALCN ALCR FLEUNR− ALENR ALUNR

ALCNR

Figure 2: Classifying expressive power.

particular, for all of the languages mentioned in Figure 2, the computational
complexity of the satisfiability problem is known [19]. These complexity
results can be coupled to the expressivity classification given in Figure 2, or
can they? Let’s have a look:

• The satisfiability problems for AL and ALN are both decidable in
polynomial time, but according to our analysis ALN is strictly more
expressive than AL.

• The satisfiability problems for ALE , ALR, and ALER are all NP-
complete, yet ALER is the most expressive of these.

• The satisfiability problems for ALU and ALUN are coNP-complete,
but ALUN is strictly more expressive than ALU .

• The satisfiability problems for ALC, ALUR, ALNR, ALCN , ALCR,
ALEN , ALENR, ALUNR, and ALCNR are all PSPACE-complete,
yet the logic ALCNR is the most expressive of these.

What is the upshot? Description logics whose satisfiability problems are
complete for the same complexity class need not have the same expressive
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power in our sense. There are two sides to this. First, at equal computa-
tional costs one may wish to opt for the most expressive logics — can we
perhaps identify cut-off points where any further extensions to the expressive
power pushes the complexity to a higher class?. Second, what is the pre-
cise relation between these alternative ways of classifying description logics?
Should we compare model-theoretic classifications of the expressive power
of description logics to the complexity of other reasoning tasks? To model
checking perhaps? Or should we look at average-case complexity instead of
worst-case complexity?

Experimental Aspects: The Random Modal QBF Test Set

As we’ve just seen, theoretical investigations into the balance between in-
ference and representation naturally give rise to experimental issues: deter-
mining any useful average-case complexity by theoretical means is essentially
impossible. . . In the area of propositional satisfiability checking there is large
body of experimental knowledge; see e.g., [25] for a recent showcase. In con-
trast, empirical aspects of modal satisfiability checking have only recently
drawn the attention of researchers. We now have a number of test sets, some
of which have been evaluated extensively [6, 31, 26, 35, 34]. In addition, we
have a clear set of guidelines for performing empirical testing in the setting
of modal logic [31, 34].

Below we report on an empirical evaluation of one of the test sets
that is currently in use for evaluating modal satisfiability solvers, viz. the
random modal QBF test set. The first random generation technique used in
testing modal decision procedures, the random 3CNF2m test methodology,
was proposed in [26]; its subsequent development is described in [34]. The
random modal quantified Boolean formula (QBF) test set was proposed by
Massacci [45], and used in the 1999 and 2000 editions of the TANCS system
comparisons [65]. It is based on the idea of randomly generating QBFs and
then translating these into modal logic. Let us explain these two steps in
more detail.

Generating QBFs. QBFs have the following shape: Q1v1 . . .Qnvn CNF (v1,
. . . , vn), where each Q is either ∀ or ∃. That is, QBFs are prenex formulas
built up from proposition letters, using the booleans, and ∀v β and ∃v β
(where v is any proposition letter).

What is involved in evaluating a QBF? We start by peeling off the
outermost quantifier; if it’s ∃v, we choose one of the truth values 1 or 0 and
substitute for the newly freed occurrence of v; if it’s ∀v, substitute both 1
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and 0 for the newly freed occurrences of v. In short, while evaluating QBFs
we are generating a tree, where existential quantifiers increase the depth,
and universal quantifiers force branching.

In the random modal QBF test set, 4 parameters play a role: c, d, v,
k:

• c is the number of clauses of the randomly generated QBF;

• d is the alternation depth of the randomly generated QBF; it is not
the modal depth of the modal translation (more on this below);

• v is the number of variables used per alternation;

• and k is the number of different variables used per clause.

The QBF-validity problem is the problem of deciding whether a QBF with-
out free variables is valid; it is known to be PSPACE-complete.

Here’s a concrete example. Using d = 3 and v = 4 we can generate

∀
4︷ ︸︸ ︷

v34v33v32v31 ∃
4︷ ︸︸ ︷

v24v23v22v21 ∀
4︷ ︸︸ ︷

v14v13v12v11 ∃
4︷ ︸︸ ︷

v04v03v02v01︸ ︷︷ ︸
3

CNF (v01, . . . , v34).

Each clause in CNF (v01, . . . , v34) has k different variables (default 4) and
each is negated with a certain probability (default 0.5). The first and the
third variable (if it exists) are existentially quantified. The second and
fourth variable are universally quantified. This aims at eliminating trivially
unsatisfiable formulas. Other literals are either universally or existentially
quantified variables with a certain probability (default 0.5). The depth of
each literal is randomly chosen from 1 to d.

By increasing the parameter d from odd to even, a layer of existential
quantifiers is added at the beginning of the formula, and, conversely, when
d increases from even to odd, a layer of universal quantifiers is added.

Translating into Modal Logic. The QBF that is produced by the ran-
dom generator is translated into the basic modal logic with the usual boolean
operators and 2, 3, using a variant of an encoding due to Ladner [43]. The
core idea is to capture, by means of a modal formula, the ‘peel off quantifiers
and substitute’ evaluation process for a given input QBF. The translation
forces branching in the structure of the possible model whenever a universal
quantifier is found in the original formula; it keeps the branches separate,
and makes sure there are enough modal levels in the model. It forces the
structure of the possible model to be a tree, and the resulting formula is
satisfiable iff the original formula is.
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Some Test Results. With these preliminaries out of the way, we can
report on some test results due to Heguiabehere and de Rijke [30]. To eval-
uate the QBF test set, we used 3 satisfiability solvers for modal logic. First,
we used the general first-order prover SPASS [61], version 1.0.3, extended
with the layered translation of modal formulas into first-order formulas as
presented in [5]. Second, we used MSPASS version V 1.0.0t.1.2.a [50]. And,
third, we used *SAT version 1.3 [64]. To facilitate future comparisons we
used as many default settings as possible; for details on the settings, please
consult [30].

We generated 64 instances of each problem, and the outputs of the
generator were translated to the formats of the provers being used; in one
case we had to convert modal formulas to first-order logic formulas. The
resulting file sizes were linear in c, even though the linear coefficient varied
from one solver to another.

Our main measurements concerned both CPU time elapsed (with a
10800 second timeout) and a time independent measure: the number of
clauses generated for SPASS and for MSPASS, and the number of unit prop-
agations for *SAT.

We ran a large number of sweeps with each of the three provers, with
v = 2 and increasing d from 1 to 4 (and to 5 in the case of *SAT), while
increasing c from 1 to 100. The resulting CPU times and the number of
clauses generated/unit propagations are depicted in Figure 3; the curves
for d = 1, d = 2 do not extend to the right-hand side of the plots, as the
formulas being generated with these settings are simply too small to be able
to accommodate larger numbers of clauses. Many things are worth noting
about Figure 3; due to lack of space, we only mention one: the shape of the
curves is strongly dependent on the solver used.

Horrocks, Patel-Schneider, and Sebastiani [34] have put forward a long
list of general criteria for evaluating modal test methodologies. In essence,
they boil down to demanding a reproducible sample of an interesting por-
tion of the input space with appropriate difficulty. We briefly discuss some
of these criteria as they relate to the modal QBF test set. Clearly, repro-
ducibility is guaranteed for the modal QBF test set. However, the modal
QBF test set only seems to represent a restricted area of the whole input
space; that is, it scores low on representativeness. There are three reasons
for this. First, the QBF test set provides poor coverage of the satisfiable
region, and especially of the easily satisfiable region; most of the modally
encoded QBF-formulas generated with values of v and d that are within
reach of today’s tools, are hard and unsatisfiable, as suggested by Figure 4.

Second, the modally encoded QBFs are of a very special shape, which
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Figure 3: Results on QBF test sets, v = 2, d = 1–4 (5), 64 samples/point,
mean values. (Top): clauses generated/unit propagations, log scale. (Bot-
tom): CPU time in seconds, log scale. (Left): SPASS. (Middle): MSPASS.
(Right): *SAT.

seems to lead to the so-called staircase phenomenon for some solvers; see
Figure 3 (Left), where curves cross as the d parameter is increased, both for
CPU times and clauses generated. And third, the v and d parameters end
up being substantially overlapping and interrelated as part of the translation
of QBFs into modal formulas. A strong point in favor of the QBF test set is
that it is possible to generate hard problems with a large modal depth which
are still within reach of today’s modal satisfiability solvers; in this respect
the QBF random test methodology fares better than the New 3CNF2m test
methodology, as reported in [34].

The QBF test set scores low on the satisfiable vs. unsatisfiable balance:
it has a strong preference for generating unsatisfiable instances. The levels
of difficulty offered by the test set are sufficient, as they range from next
to trivial to too hard for today’s systems. The tests terminate and provide
information in a reasonable amount of time. But, the set suffers from over-
size, which forces one to consider both time dependent and time independent
measurements for determining the performance of solvers.

Summarizing, the random modal QBF test methodology provides use-
ful test sets that should, however, not be used as the sole measure in the
evaluation of modal satisfiability solvers. In particular, the standardized
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tests provided by TANCS (with c = 20 and v = d = 2) do not provide
informative measurements.

There’s a lot more to say about the modal QBF test set. For a start, we
are currently running the test set with provers other than the three consid-
ered here. Moreover, plans for further work include explorations beyond the
default settings (more literals, different encodings of QBFs into modal prob-
lems, alternative settings for the various probabilities), as well as systematic
comparisons with other test methodologies. An interesting (but more ab-
stract) question is if and how the measurements produced by a structured
problem such as the modal QBF test set are qualitatively different from
results obtained with unstructured randomly generated problems.

3 Reasoning and Representing

While evaluations of satisfiability solvers — propositional, modal, or other-
wise — are interesting and essential for determining the quality of reasoning
components, they are not completely satisfactory for our purposes: under-
standing the interplay between inference and representation. Obviously, to
make progress on our core theme we need to consider both inference and
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Figure 4: *SAT results for d = 1–4 (5), c = 1–50, 64 samples/point, mean
values. (Top): Satisfiable fraction. (Bottom): Unit propagations. (Left):
v = 2. (Middle): v = 3. (Right): v = 4.
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the representations on which inference acts.
Before looking at look at experimental tasks that involve both in-

ference and representation, let’s briefly explore the scientific background:
computational semantics [57]. An new textbook takes ‘computational se-
mantics’ to mean the business of using a computer to actually build logical
representations of fragments of natural language (semantic construction)
and reason with the result (inference) [10].

It’s fair to say that computational semantics is characterized by a
strong emphasis on theoretical analyses, both linguistically, logically, and
computationally; Van Eijck’s chapter provides a very nice example of this.
In other areas of natural language understanding, developments have gone in
the opposite direction. Indeed, experimental evaluation has excited a great
deal of interest in the language engineering world as of late [23, 32, 60]. Not
only do we want to know which programs perform best, but also, the devel-
opers of a program want to know when modifications improve performance,
and how much, and what combinations of modifications are optimal.

We will now take a look at two test sets for computational semantics,
one dates back to the mid 1990s, the other is currently being developed.

The FraCaS Test Suite

The FraCaS (A Framework for Computational Semantics) project was a
European project that ran during the mid 1990s [21]. It was aimed at
bringing together the various approaches to computational semantics that
existed at the time, and at investigating their potential for applications.
(Incidentally, one of the Spinoza project members, Jan van Eijck) was leader
of the Dutch site that took part in FraCaS.)

As part of the FraCaS project, a semantic test suite has been devel-
oped [16]. The test suite is meant to be a basis for a useful and theory/system
independent semantic tool. Inference tasks are seen as the best way of testing
a the semantic capacity of a natural language processing system, but while
the use of random and/or (modified) past inputs has become the standard
practice for testing and evaluating automated reasoning techniques and op-
timizations, for controlled experiments in inference and representation we
need test sets with the following three key ingredients:

1. a document collection from which to extract representations, as well
an explicit and detailed definition of the task to be carried out with
these representations,
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2. a ‘gold standard’ corpus of correct answers, so it is possible to say how
much of the time a program gets it right, and

3. a baseline, i.e., a ‘minimal’ or ‘maximal’ score against which the per-
formance of competing methods can be compared.

The document collection and task definition in the FraCaS test suite take the
following form: the system is given some natural language input T , usually
consisting of a very small number of sentences, and is then presented with
a claim S and asked to determine whether S follows from T . Since tests
should be neutral as regards the semantic representation formalisms they
use, the test claim S is offered in the form of a natural language sentence
(like the input T ).

Inference tasks of the form just described form a continuum, ranging
from formalizing an argument and deriving the conclusion from the premises
to the kind of text analysis that is often taught in high schools, where a stu-
dent is presented with a text and then with certain questions about it. The
test suite contains both valid and invalid inferences, loosely grouped together
into various linguistic and semantic phenomena. These include generalized
quantifiers, plurals, (nominal) anaphora, ellipsis, adjectives, comparatives,
temporal reference, verbs, and attitudes. Here are a few examples.

(3.81) Smith, Jones, and Anderson signed the contract.
Did Jones sign the contract?

[Yes]

(3.334) Smith hoped that ITEL had won the contract in 1992.
Did ITEL win the contract in 1992?

[Don’t know]

The numbers refer to the numbers of these examples in the FraCaS test
suite, which contains over 3000 inference tasks like these. The comment in
square brackets indicates the correct answer; nearly all of the answers to the
tasks in the test suite are amongst the following: ‘yes’, ‘no’, ‘don’t know’,
‘yes, on one reading’.

Unfortunately, the FraCaS test suite does not come with a baseline
score, thus making it hard to use the suite for comparison between ap-
proaches. Moreover, as far as we are aware, only a very small part of the
test suite (< 5%) has actually been used for evaluation purposes [63].
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Towards a Test Set for Computational Semantics

We now report on an ongoing effort aimed at devising a test set that allows
us to evaluate inference in computational semantics. The aim of the test
set is to allow us to identify good notions of inference for computational
semantics.

Lots of recent work on inference in computational semantics has fo-
cused on so-called intra-document entailment checking, where one tries to
find and exploit inferential links within a single document. Informativity
checking has been one of the most popular instances; informativity is an
often used notion in natural language processing and understanding, and
Blackburn et al. [11] show that informativity can be treated as an entail-
ment problem: a piece of information NEW is informative with respect to
a discourse context OLD and general world knowledge KB just in case the
implication OLD∧KB→ NEW is not valid. Gardent and Webber [24] show
how informativity may be used in the discourse interpretation of phenomena
such as noun-noun compounds, metonymy, and definite noun phrases.

In contrast, the test set that we are about to describe focuses on
inter-document entailment checking between segments of natural language
text taken from (possibly) different documents; the example and real-world
tasks that were mentioned in Section 1 provide settings in which this flavor
of inference can be found, either implicitly or explicitly.

As we pointed out above, for controlled experiments in inference and
representation we need test sets with the following key ingredients: a doc-
ument collection, a gold standard, and a baseline score. Let’s take a brief
look at these ingredients for a test set that is being set up by Monz and de
Rijke [46] within the Logic in Action project. The document collection is a
small corpus consisting of (open domain) news stories from AP news wire,
BBC, CNN, L.A. Times, Reuters, USA Today, Washington Post, Washing-
ton Times. At present the collection consists of 98 documents organized in
30 topics; this was done by hand. All documents belonging to a single topic
were released on the same day and describe the same event; see Figure 1
for two documents from Topic 6. The documents were segmented into para-
graphs; in news stories these tend to be short, and we found that they rarely
exceed 4 sentences. For preliminary evaluation purposes, only Topics 1–21
were used; see Table 1 for some figures.

Let’s consider the gold standard now. Its aim is to create ideal en-
tailment judgments for comparison with automatically generated ones. For
each topic, 2 documents were selected at random; at present (summer 2001)
a human subject has determined all entailment relations between segments
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Table 1: Statistics on Topics 1–21, 69 documents.

average per topic
number of documents 3.3 docs.
document length 612 words
total length of documents 2115 words
length of longest document 783 words
length of shortest document 444 words
segments per document 16.4
total number of segments 55.9

in different documents (but within the same topic). Judgments were made
on a scale 0–2, according to the extent to which one segment was found to
entail another. More specifically, for pairs of segments si,d in document d
and sj,d′ in document d′, the pair (si,d, sj,d′) was to be assigned a score of
2 if everything expressed by the second segment (sj,d′) is already expressed
by the first segment (si,d). A score of 1 was to be assigned if the contents
of an important subsegment of sj,d′ is expressed by the first segment, si,d.
In all other cases the pair (si,d, sj,d′) was to be assigned a 0. Out of 12083
potential entailment pairs, 501 (4.15%) received a score of 1, and only 89
(0.73%) received a score of 2.

Providing a baseline score requires a couple of things. First of all,
a method for computing entailments between text segments. We used a
computationally efficient method that works on very minimal representa-
tions that can easily be generated for arbitrary domains, and that provides
graded outcomes instead of strict yes/no answers. It is based on a familiar
similarity measure from information retrieval. For a given topic, let N de-
note the total number text segments in the topic, and ni denotes the number
of segments in which a given term ti occurs. The weight of term ti within a
given topic is its inverse document frequency :

idfi = log
(
N

ni

)
.

Terms that occur in many segments have a lower score than terms that occur
in only a few. The intuition is that terms with a higher idf -score are better
suited for discriminating between segments in a topic; the log is only used
to dampen differences between the weights.

We now explain how to compute the entailment score entscore(si,d, sj,d′)
of two segments si,d (in document d) and sj,d′ (in document d′). The idea
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is this: how much of the content of sj,d′ is already in si,d? Put differently:
how many of the content-bearing terms in sj,d′ occur in si,d? To answer this
question, we compare the sum of the weights of terms that appear in both
segments to the sum of the weights of all terms in sj,d′ :

entscore(si,d, sj,d′) =
Σtk∈(si,d∩sj,d′ )idfk

Σtk∈sj,d′ idfk
.

Clearly, entscore varies from 0 to 1. Moreover, entscore is not a notion
of similarity: in general, entscore(si,d, sj,d′) 6= entscore(sj,d′ , si,d). Now, to
work with entscore and conclude that si,d entails sj,d′ we need a positive
entailment threshold : some value λ ∈ (0, 1] such that if entscore(si,d, sj,d′) ≥
λ then si,d entails sj,d′ , otherwise it does not.

What else do we need to establish a baseline score? Well, we need to
assess entscore, so that other methods can be compared against it. Some
terminology: a correct entailment pair is a pair (si,d, sj,d′) for which si,d does
indeed entail sj,d′ according to the gold standard. And a computed entail-
ment pair is a pair (si,d, sj,d′) for which entscore has produced a value above
the entailment threshold. Now, for the important evaluation measures. We
use precision to determine the accuracy of the entailment checking method:

Precision =
# of correct entailment pairs computed
total # of entailment pairs computed

.

We use recall to measure the extent to which our entailment checking method
is exhaustive:

Recall =
# of correct entailment pairs computed

total # of correct entailment pairs
.

Note that both precision and recall depend on the entailment threshold
being used: with a low entailment threshold, expect a larger number of
computed entailment pairs, and hence a larger number of correctly computed
entailment pairs; that is, with a low entailment score, recall will increase.

Using human judgments for two selected documents per topic, we com-
puted average recall and precision values at 11 different entailment thresh-
olds, ranging from 0 to 1, with .1 increments, and averaged over all topics.
We used a human rating of either > 0 or of > 1 to classify an entailment
pair as correct. The resulting plots are given in Figure 5.
As expected, precision is higher when human judgments > 0 are used to
determine the correct entailment pairs than with human judgments > 1.
Initially, precision increases as the threshold is increased, but there are drops:
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Figure 5: (Left): Average precision with human judgments > 0 and > 1.
(Right): Average recall with human judgments > 0 and > 1.

for some topics the threshold is higher than the maximum entailment score,
so precision drops to 0. As to recall, as expected, recall is higher when
human judgments > 1 are used than with human judgments > 0.

Since precision and recall suggest two different optimal entailment
thresholds, there is an obvious question: what is the optimal threshold if
precision and recall are equally important? In information retrieval, various
methods have been suggested for generating a single performance number,
which combines precision and recall aspects, to quantify the usefulness of
retrieval methods. One of these is the harmonic mean F of recall and
precision [56] which is computed as

F =
2

1
Recall + 1

Precision

.

The F -score assumes a high value only when both recall and precision are
high. We have plotted the average F -scores in Figure 6 (Left). The optimal
entailment threshold for human judgments > 0 seems to be around 0.2, and
approximately 0.4 for human judgments > 1. This conforms to the intuition
that a higher entailment threshold is more effective when human judgments
are stricter.
In Figure 6 (Right) we have plotted F -scores per topic, with human judg-
ments > 0. The average over these curves corresponds to the solid line
in (Left), and, indeed, the shape of the solid line in (Left) can be recognized
in (Right). Note that there is some variance between the topics, and that
there are some clear outliers, such as Topic 1 and Topic 2.
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Figure 6: (Left): Average F -scores with human judgments > 0 and > 1.
(Right): F -scores across topics, with human judgments > 0.

The F -score suggests that 0.2 (0.4) is to be taken as entailment thresh-
old for identifying entailing segments with a human judgment score of at
least 1 (2). This results in an overall precision of 0.33 (0.28) and an overall
recall of 0.48 (0.48). Precision and recall figures in the 30% and 40% range
are not optimal, but computing entailment is a hard task, and relatively
poor results should not come as a surprise. But, even when working with
extremely simple representations, our experiments indicate that almost half
of all entailment relations can be identified! Identifying only a third of them
correctly may seem unsatisfactory, but, again, entailment relations are very
sparse.

Summarizing, we have described the development of a test set for com-
putational semantics; the main task for whose evaluation this test set is
designed, is computing entailment relations between (open domain) text
segments. With this test set (and the baseline scores that it comes with) it
is now possible to evaluate computational semantic systems on realistic open
domain texts. In particular — and returning to our main theme —, one can
start investigating the extent to which deeper levels of semantic analysis
yield better recall or precision scores. In ongoing work, Hammarstrom [27]
is exploring the use of bag-of-words representations similar to the ones used
for obtaining the baseline; for instance, stopword lists and the use of various
knowledge sources such as WordNet [68] are being explored. In addition,
Hammarstrom is investigating argument structures that have been obtained
by partially parsing the input documents, to compute entailment relations.
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4 Real-World Tasks

The evaluation work on which we reported in the previous section is subject
to a number of criticisms. One objection is that quantitative evaluation
discourages novel approaches and risk taking. But this is unlikely to apply
as long as reputations do not depend on the outcome. A second objection is
that setting up the evaluations, and participating in them is a lot of work;
this may well be the case, even for a small-scale scenario such as the one
described here, and we are hopeful that it does not create a competitive (as
opposed to collaborative) attitude, but, instead, that working on the same
problem will prove productive [38].

There is, however, a more serious objection to the empirical evaluation
efforts such as the ones described in Section 3: unless the tasks are carefully
chosen, they will draw energy away from the fundamental problems in the
field. Is computing entailment relations between text segments a useful se-
mantic task? It can clearly be identified as a separate task, but if we are
trying to understand the balance between inference and representation, how
much do the intermediate outputs that we get from computing entailment
relations tell us? How much do they tell us about the impact of deeper
representations on the overall performance for various natural language pro-
cessing applications?

Information retrieval (IR) is a set of techniques that serves the primary
purpose of finding documents that are relevant to an information need [8].
In other words, IR is concerned with accessing the content of documents,
which might lead one to believe that this is a real-world task with a clear
potential for natural language processing (NLP), and, in particular, for se-
mantics. For years, researchers in NLP have attempted to use increasingly
sophisticated levels of linguistic analysis to improve the quality of IR meth-
ods [62]. However, most NLP methods do not improve IR effectiveness,
and years of experimental evaluation (of mainly English queries and English
documents) have lead some to claim that, in IR, NLP errors hurt more than
NLP techniques help [67].

Is there no place whatsoever for NLP in IR? Of course not! Very
basic NLP is very common in IR: think of tokenizing, stopping, stemming.
And more advanced but fairly robust NLP is also common, in the form of
phrase identification and named entity extraction. But truly advanced NLP
is problematic. It is likely to be more useful for tasks other than strict
document retrieval. In the remainder of this section we take a brief look
at two things: the importance of low-level NLP tools for IR, and a recent
development in IR research that has lead to the formulation of a task where
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advanced NLP does make a difference.

Non-English Information Retrieval

The Cross-Language Evaluation Forum (CLEF, [14]) aims at promoting
research in cross-language IR by providing an infrastructure for the testing
and evaluation of IR systems operating on European languages, and by
creating test suites of reusable data which can be employed by researchers
for benchmarking purposes. These objectives are being addressed through
the organization of a series of annual system evaluation events. CLEF 2001
was the second event in this series, and it offered four main evaluation tracks:
multi-lingual, bilingual, and monolingual (non-English) retrieval, as well as
domain-specific system evaluation.

The Derive project [17] is one of the spin-offs of the Logic in Action
project. Monz and de Rijke, the principal investigators in Derive, took part
in the CLEF 2001 evaluation in three monolingual tasks: Dutch, German,
and Italian [47]. We were particularly interested in the effects of shallow mor-
phological analyses: stemming or lemmatization, and compound splitting.
For the purposes of this chapter, we restrict ourselves to a brief description
of our results for Dutch and German.

All submitted runs used FlexIR, an information retrieval system devel-
oped by Christof Monz [47]. The main goal underlying FlexIR’s design is to
facilitate flexible experimentation with a variety of retrieval components and
techniques. FlexIR is implemented in Perl; it is built around the standard
UNIX pipeline architecture, and supports many types of scoring, indexing,
and retrieval tools.

The retrieval model underlying FlexIR is the standard vector space
model [8]. All our official runs for CLEF 2001 used the Lnu.ltc weighting
scheme [13] to compute the similarity between a query and a document.
Blind feedback was applied to expand the original query with related terms;
term weights were recomputed by using the standard Rocchio method [54],
where we considered the top 10 documents to be relevant and the bottom
250 documents to be non-relevant. We allowed at most 20 terms to be added
to the original query.

Inflectional Morphology. Previous retrieval experimentation [22] in En-
glish did not show consistent improvements by applying morphological nor-
malization such as rule-based stemming [52] or lexical stemming [29]. For
languages that are morphologically richer than English, such as Dutch, Ger-
man, Italian or Spanish, we have a similar mixed picture from CLEF 2000
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and other experiments. Kraaij and Pohlmann [40] report that for Dutch the
effect of stemming on on retrieval performance is limited; it tends to help
as many queries as it hurts. For German and French, the results are similar
to those for English [49].

Although versions of Porter’s stemmer are available for both Dutch
and German, we decided to use a lexical-based stemmer, or lemmatizer,
because it tends to be less aggressive than rule-based stemmers, and we
conjectured that this might benefit further morphological analyses such as
compound splitting (see below). The lemmatizer is part of the TreeTagger
part-of-speech tagger [55]. Each word is assigned its syntactic root by lexi-
cal look-up. Number, case, and tense information is removed, leaving other
morphological processes such as nominalization intact. As an example in
German, Vereinbarung (English: agreement) and German: vereinbaren (En-
glish: agree) are not conflated.

Compound Splitting. Compound splitting is not an issue in English
since almost all compounds, such as Computer Science, peace agreement,
etc. are separated by a white space, disregarding some exceptions such
as database or bookshelf. In Dutch and German compounds are not sep-
arated and compound building is a very common phenomenon. Kraaij and
Pohlman [41] show that compound splitting leads to a significant improve-
ment of retrieval performance for Dutch, and Moulinier et al. [49] obtain
similar results for German.

In some of our runs for Dutch and German we used a compound
splitter. Our compound splitter for Dutch was built using the Dutch lex-
icon provided by Celex [7], while our German compound splitter used the
part-of-speech information provided by TreeTagger. We limited ourselves to
noun-noun compounds. For instance, the German compound Friedensver-
trag (English: peace agreement) is split into Frieden+s Vertrag.

For retrieval purposes, each document in the collection is analyzed
and if a compound is identified, all of its parts are added to the document.
In some cases, compound splitting can give rather awkward results, e.g.,
German: trompet (English: trumpet) is split into trom (drum) and pet (cap).
Whereas ‘drum’ is semantically related to ‘trumpet,’ this is not obvious for
‘cap.’ The current version of our compound splitters are not tuned for
retrieval purposes; for instance, we did not try to avoid the addition of
unrelated compound parts.
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Some Runs. Following the TREC philosophy, information needs at CLEF
are called topics; each topic consists of three parts: a brief title field; a one-
sentence description field; and a more complex narrative field specifying the
relevance assessment criteria. At CLEF 2001 a total of 50 topics was used
for evaluation purposes.

For both Dutch and German we submitted three types of runs:

• M (Morphological) The title and the description field of the topic are
used to generate the retrieval query (this was a mandatory require-
ment to be met by at least one of the runs). Words are morphologi-
cally normalized and compounds are split (Dutch and German). Blind
feedback is applied to the top 10 documents adding at most 20 terms
to the original query.

• Nv (Näıve) The title and the description field of the topic are used
to generate the retrieval query. Blind feedback is applied to the top
10 documents adding at most 20 terms to the original query. In con-
trast to runs of type M, no morphological normalization or compound
splitting are applied.

• T (Title only) The same retrieval and document processing techniques
are used as for runs of type M, but query formulation is restricted to
the title field of the topic.

There are several motivations for this set of runs. Type M runs were intended
to be the most effective runs, using techniques which are generally believed
to improve retrieval effectiveness. Type T runs use the same techniques
as type M runs, but queries are much shorter and, therefore, more closely
resemble queries posed by a non-expert. Type Nv runs were intended as a
contrast to type M runs, where no language specific techniques are applied.

Some Results. Let’s look at some of the results of our CLEF 2001 sub-
missions. The measures used are precision (what fraction of the retrieved
documents is relevant) and recall (what fraction of the relevant documents
has been retrieved), combined into a single so-called precision-recall curve.
Figure 7 displays the interpolated precision-recall curves for both Dutch and
German, with precision interpolated at the 11 standard recall levels (0%,
10%, . . . , 100%). A look at the non-interpolated avg. precisions for type M
and type Nv runs (Table 2) reveals that morphological normalization does
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Figure 7: 11pt interpolated avg. precision for all submitted runs.
(Left): Dutch. (Right): German.

result in significant improvements1 in effectiveness: ≈ 25% for German and
even ≈ 54% for Dutch. It is not obvious why the improvement for Dutch
is so much bigger than for German. One reason could be that our precision
scores for Dutch are, in general, considerably lower than for German. Our
results suggest that the improvement brought about by compound splitting
(plus stemming) is independent from the underlying retrieval engine.

Table 2: Non-interpolated avg. precisions of Type M runs vs. Type Nv runs.

Dutch German
Näıve (Nv) 0.1833 0.3342
+ Morphological Analysis (M) 0.2833 (+54.6%) 0.4172 (+24.8%)

Another interesting question is to compare queries that were formulated by
using the title and the description field of the topic to queries that were
formulated by using the title of the topic only. Queries based on title infor-
mation only are much shorter and more closely resemble queries a non-expert
would ask. Table 3 shows that for both Dutch and German the decrease in
effectiveness is certainly significant but not too dramatic.

Table 3: Non-interpolated avg. precisions of TD-queries vs. T-queries.

Dutch German
Morphological Analysis (M) 0.2833 0.4172
Title only (T) 0.2418 (−14.6%) 0.3342 (−19.9%)

1Note that ‘significant improvement’ here refers to the definition in [59], where changes
of more than 5% are considered significant.



Computing with Meaning 103

These and other experiments that we have carried out for CLEF 2001
strongly confirm the believe that morphological normalization does improve
retrieval effectiveness significantly. Since the morphological analyses car-
ried out here were still rather restricted, it would be interesting to see what
impact additional analyses, e.g., stripping off prefixes and recognizing nom-
inalizations, would have.

Question Answering

Low-level natural language processing does have an important role to play
in information retrieval, and probably even more so in retrieval with non-
English languages. However, to satisfy our interest in understanding the
balance between representation and inference, we consider a task where
deeper levels of analysis seem appropriate and effective. This task is question
answering, as introduced in TREC-8.

TREC [66] is short for ‘Text REtrieval Conference,’ a series of con-
ferences run by NIST and organized by the IR research community that
has been going since 1991. The focus was originally on ‘large’ text collec-
tions (multi-Gb), but nowadays it includes many IR-related tracks, including
question answering. The question answering (QA) track began in 1999, at
TREC-8. The QA track is motivated by the following observations. IR
typically retrieves or works with documents: the task is to find documents
that are relevant, or to rank and group documents on the same topic. How-
ever, people often want a sentence fragment or phrase as the answer to their
question:

• Who was the first man to set foot on the moon?

• What is the moon made of?

• How many members are in the U.S. Congress?

The QA track signifies a move away from document retrieval and towards
answer retrieval.

The documents used in the task consist mostly of newspaper articles
and thus contain information on a wide variety of subjects. In TREC-8
(1999) participants were given 200 fact-based, short-answer questions such
as those mentioned above. Each question was guaranteed to have at least
one document in the collection that explicitly answered the question.

Participating systems returned a ranked list of five strings per ques-
tion, such that each answer string was believed to contain an answer to the
question. Answer strings were limited to either 50 or 250 bytes, and could
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either be extracted from the corresponding document or automatically gen-
erated from information contained in the document.

Human assessors read each string and made binary decisions as to
whether the string actually did contain an answer to the question in the
context provided by the document. Given a set of judgments for the answer
strings, the score computed for a submission was mean reciprocal rank,
defined as follows. An individual question received a score of 1/n, where
n is the rank at which the first correct response was returned, or 0 if none
of the five responses contained a correct answer. The score of a submission
was then the mean of the individual questions’ reciprocal ranks.

While the same basic task was performed in the TREC-8 and TREC-9
QA tracks, there were some differences. The set of questions was larger for
TREC-9 (693 instead of 200), and the document collection was larger as well
(3 Gb instead of 2 Gb). Another difference between the TREC-8 and TREC-
9 QA tracks was the use of question variants. The TREC-9 question set
contained 500 questions, plus an additional 193 that were syntactic variants
of one of the 500. The purpose of the syntactic variants was to investigate
whether QA systems are robust to the variety of different ways a question
can be phrased.

The TREC-10 QA track consists of three separate tasks, called the
main task, the list task, and the context task. The main task is similar to
the task in previous QA tracks, and consists of 500 questions, some of which
may not have answers in the document collection. The list task consists of
25 questions in the same format as the main task, each of which requires
information from more than one document to produce the answer. For
example, a list question such as Name the countries the Pope visited in
1994 requires finding multiple documents that describe the Pope’s visits
and extracting the country from each. Systems aimed at the list task need
to identify duplicate reports of the same visit so that countries are listed only
once per visit. The context task is a first attempt to force systems to exploit
context when answering questions. An example series of questions is: Whose
band used “Moonlight Serenade” as its theme song?, What instrument did
he play?, Who was the lead trumpeter?, and Name another song the band
was famous for.

NLP Applicability. Many participants in the QA tracks in TREC-8 and
TREC-9 used a variant of the following general strategy. The system first
attempted to classify a question according to the type of its answer as sug-
gested by its question word. For instance, a question that begins with ‘where’
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(Where is Belize located? ) implies that a location is being sought. Next the
system retrieved a small portion of the document collection using standard
document retrieval technology and the question as the query. The system
performed a shallow parse of the returned documents to detect entities of
the same type as the answer. If an entity of the required type was found
sufficiently close to the question’s words, the system returned that entity as
a response.

This general strategy clearly indicates the potential for the (successful)
use of NLP. Let’s illustrate this by means of some examples. Consider the
following question: How many calories are there in a Big Mac? We need
to be able to recognize that ‘Big Mac’ is a phrase or a name, and that the
question requires a number as an answer. More generally, as part of the
first step in the general strategy we need to detect phrases and recognize
named entities (persons, locations, companies, organizations, . . . ). We also
need to classify questions with respect to the type of answer they require,
which calls for a combination of (partially) parsing the question and pattern
matching.

Moreover, there seems to be room for the use of semantics in ques-
tion answering. Let’s give just two examples, related to anaphora resolution
and synonym detection/word-sense disambiguation. Consider the follow-
ing question from TREC-8: Who invented the paper clip? The document
collection contained the following answer snippet:

The paper clip, weighing a desk-crushing 1,320 pounds, is a
faithful copy of Norwegian Johan Vaaler’s 1899 invention,. . . to
honor the Norwegian who invented the office helper 90 years ago.

Clearly, a modicum of anaphora resolution seems essential for question an-
swering; experimental evidence seems to support this [48]. As to synonym
detection/word-sense disambiguation, consider the following question: Who
invented the electric guitar? The only relevant snippet in the document
collection is

Adolph Rickenbacker was a Swiss immigrant who patented the
first solid-body electric guitar.

A very strict matching between the argument structure derived from the
question and the one derived for the text snippet above will not result in
a match: one should allow for partial matches and for matches with syn-
onyms or even hyponyms. WordNet [68] is the obvious resource for the
relevant information, but as many experiments in IR have shown, without
disambiguation the use of WordNet can lead to significant topic drift.
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The University of Amsterdam at TREC-10. We took part in the QA
track in TREC-10 (2001) using a variant of the general strategy outlined
above; see Figure 8 for a high-level overview of the system.

Figure 8: Architecture of the University of Amsterdam’s question answering
system for TREC-10.

We invested considerable effort in making sure that the initial document
retrieval step was of high quality. To this end the FlexIR system mentioned
was fine-tuned; results from TREC-9 indicated that this is helpful. We used
WordNet [68] as a source of related words for the initial query and as a
means of determining whether an entity extracted from a passage matched
the required answer type. We used comparatively simple answer extraction
and selection techniques.

This was our first participation in TREC. True to the Olympic spirit,
our main aim was to take part and set a baseline on which to build and
improve in future years. At the time of writing, our scores are not available
yet.

2002 and Beyond. An ambitious roadmap for question answering re-
search was recently developed; it describes a program aimed at increasing
the complexity of the types of questions that can be answered, the diversity
of sources from which the answers can be drawn, and the means by which
answers are displayed [28]. The roadmap also includes a five year plan for
introducing aspects of these research issues as subtasks of the TREC ques-
tion answering track. The QA track in TREC-10 includes the first steps of
this roadmap, in the form of the list task and context task mentioned above.

The question answering track provides a very attractive setting for
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experimenting with varying levels of analysis and for exploring the balance
between inference and representation. Our question answering plans for the
immediate future involve more sophisticated question classification, corefer-
ence resolution, and inference-based answer justification.

5 Conclusion

In this chapter we have offered a glimpse at recent computational work
within the Logic in Action project and its follow-ups. The focus was on
computational aspects of logic, language and communication, with a spe-
cial interest in the balance between inference and representation. While
we did not ignore theoretical analyses, our emphasis was on experimental
evaluation.

Evaluation is itself a first-class research activity: creating effective
evaluation methods drives rapid progress and better communication within
a research community [32]. Experience in competitive evaluations for both
automated reasoning tasks (such as satisfiability testing in propositional
logic or theorem proving in modal or first-order logic) as well as for natu-
ral language processing tasks (such as speech recognition, dialogue systems,
information retrieval and information extraction) has been that the focus
provided by an evaluation brings research communities together, forces con-
sensus on what is critical about the field, and leads to the development of
common resources, all of which then stimulates further progress [38].

Many of the more computationally oriented follow-ups to the Spinoza
project Logic in Action have a strong evaluation component. This is es-
pecially true for the Pionier project Computing with Meaning [15] which
will be lead by the present author and which is in its start-up phase at the
time of writing. The focus of the project is on the very theme that featured
so prominently in the present chapter: balancing inference and represen-
tation in dealing with natural language texts. The theme will be pursued
along a number of dimensions: logically (amongst others, by studying at
expressive power and computational complexity, as illustrated in Section 2),
computationally (amongst others, by developing and analyzing tests sets
and benchmarks as illustrated in Section 3), and from a natural language
processing point of view (amongst other, by further developing the kind
question answering systems described in Section 4).

A final remark: while this chapter and the Computing with Mean-
ing project have a strong emphasis on single-agent communication (i.e., the
chapter mostly deals with a single agent coping with textual information),
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there are obvious multi-agent settings where the ideas discussed in this chap-
ter can be put to good use. Promising examples include dialogue manage-
ment and understanding systems as exemplified by the SIRIdUS project [58]
and computer games as exemplified by Koller’s recent work [39].
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