
Global vs. Local in Basic Modal Logic

Maarten de Rijke1 and Holger Sturm2

1 ILLC, University of Amsterdam, Pl. Muidergracht 24,

1018 TV Amsterdam, The Netherlands. E-mail: mdr@wins.uva.nl
2 Institut für Philosophie, Logik und Wissenschaftstheorie, LMU München,

Ludwigstraße 31, 80598 München, Germany. E-mail: sturm@cis.uni-muenchen.de

Abstract. We discuss results on global definability in basic modal logic,
and contrast our model-theoretic results and proof techniques with known
results about local definability.

1 Introduction

Modal concepts play an important role in many areas of philosophy. While this
statement may seem to be a truism, it is not taken for granted by everybody; an-
alytic philosophers like Frege and Quine have a very sceptical attitude towards
modality. Nevertheless, modal concepts can be found in fields as different as
ontology, philosophy of mind, ethics, philosophy of science, and, more recently,
philosophy of mathematics. There are at least two reasons for the fact that we
are not able to dispense with modal concepts. First, they are deeply tied to
our practicing as intellectuals and language users. Hence, in explicating pre-
theoretic concepts — which is, of course, one of the main concerns of analytic
philosophers — we must take modal concepts into account. Second, it is an
essential philosophical task to separate the things which only hold contingently
from things that are necessarily the case.

The wide-spread use of modal concepts within analytic philosophy is partly
related to the impressive development of the logic of modality, though only
very few profound results from this area have found their way into the realm of
philosophy. Of course, the best-known bridge linking the two fields is provided
by possible world semantics, as it was foreshadowed in Carnap’s work, hidden in
the algebraic work by Tarski and Jónsson, and (re-)invented by Kripke, Kanger
and Hintikka at the end of the 1950s. Possible world semantics is both an
important formal tool on which the model theory of (normal) modal logic is
built, and a very suitable basis for intuitive interpretations: many appealing
philosophical explanations can be couched in terms of possible world semantics.

Leaving subtleties aside, it is correct to say that possible world semantics is a
formal way to restate the Leibnizian idea that the truth of modalized statements
in a world essentially depends on the truth of non-modalized statements in other
worlds. For instance, a sentence like “It is necessarily the case that water is
H2O” is true (in our actual world) if and only if the non-modalized sentence
“Water is H2O” is true in every possible world, or, more precisely, in every
possible world that coincides with the actual world in view of its laws of nature.
When we implement the Leibnizian idea in a formal, model-theoretic framework



and add a binary relation between worlds, we end up with models of the
form M = (W,R, V ), which are the kind of structures on which the formulas of
modal languages1 are usually interpreted. Here, W is a set of possible worlds,
and R is an accessibility relation on W , where Rwv means that v is considered
as a possible world or alternative from the perspective of w. The accessibility
relation gives an enormous increase in the flexibility of the framework. It enables
us to consider several modalities together, and, moreover, the worlds that are
considered as possible alternatives are allowed to change from world to world.
As to the third part of the structure, the task of V is to fix the basic facts in
each world; formally, it is a function that relates each possible world w to the
atomic formulas that are regarded as true in it.

Then, the fundamental semantical relation is ‘truth of a formula ϕ in a
pair (M, w)’, where M is a model and w is a world chosen from this model.
Such a pair is called a pointed model [3, 10] or a model-world pair [1]. We use
(M, w)  ϕ to say that ϕ is true in (M, w). Based on this relation, further
semantical concepts are defined as usual. That a formula ϕ follows from a set
of formulas Γ holds, for instance, if for every pointed model (M, w) in which
all ψ ∈ Γ are true, we have (M, w)  ϕ. Or, in modal terms: it is not possible
that Γ is true somewhere without ϕ being true there as well.

Both the satisfaction relation and the consequence relation reflect a local
perspective on the modal language and its models. Formulas are evaluated
inside models, at some particular world w (the ‘actual’ world). In contrast,
we can take a global perspective, under which models, and not pointed models,
are regarded as the fundamental semantic units. The global counterparts of the
satisfaction and the consequence relation are then defined as follows. A formula
ϕ is said to be true in a model M, abbreviated by M |= ϕ, if ϕ is true in every
pointed model (M, w) based on M; and ϕ follows globally from Γ, if for all
models M with M |= Γ it holds that M |= ϕ. As several authors have observed
[3, 8, 13], a great number of logical properties, like completeness, canonicity,
finite model property, and interpolation, come in two flavors: a local one and
a global one. For instance, the notions of local and global consequence do not
coincide: ✷ψ follows locally from ψ, but not globally, yet the following general
fact holds: a formula ϕ follows locally from a set Γ iff ϕ follows globally from
the set {✷nψ |ψ ∈ Γ, n ∈ ω}. So, in a certain way, the global approach can be
simulated within the local setting.2

On the other hand, the global perspective is worth exploring for its own
sake. Why? First, via a straightforward translation modal formulas ϕ may be
regarded as terms tϕ of an algebraic language, so that ϕ turns out to be true in a
model M iff the equality tϕ = 1 holds in the corresponding algebra M

∗. Hence,
from the algebraic point of view the global setting proves the more natural one.
Second, sometimes we are interested in certain features of the whole model,

1Throughout this paper we only consider the basic modal language, which is the language
we obtain from the boolean propositional language by adding two modal operators, ✷ and
✸. Nevertheless most of the things that are said in the introduction apply to richer modal
languages as well.

2By adding some non-standard modal connectives to our language, the other direction
holds as well; see [13, Appendix B].
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independent of the fact whether they are enforceable by pointwise reasoning.
And third, global constraints on models play a key role in the closely related
area of terminological reasoning.

The latter two points raise an important question: what is the expres-
sive power of the given modal language? Conceptually, one can distinguish
at least two different answers to this question: According to the first, which
completely ignores semantics, the formulas of the formal language are treated
as paraphrases or translations of natural language sentences; briefly, the more
sentences can be paraphrased the more expressive the formal language is. The
second approach measures the expressive power with respect to the properties
of structures definable or describable within the formal language. In a model-
theoretic framework such as the one adopted in this paper, the second approach
is the appropriate one.

The view of properties that underlies this account is purely extensional;
roughly, a property is identified with the class of structures which have this
property. Therefore, a property, that is, a class K of structures is said to be
definable iff there is a set of formulas Γ such that K equals the class of structures
in which Γ holds. This raises the following important question: is there a
general characterization of the classes of structures that are definable in the
above sense? More precisely, what this questions asks for is a characterization
of the elementary classes of the logic under investigation. The answer is usually
given by stating algebraic closure conditions that are necessary and sufficient for
a class K to be definable. Clearly, in the case of modal logic the characterization
problem has two versions: a global and a local one. Our paper contains solutions
for both versions. In Section 3 we deal with the local version, whereas Section 4
is reserved for the global setting.

Semantics-based translations form a valuable tool for investigating the meta-
properties of a logic more deeply, by relating it to other logics. In the case
of basic modal logic there exists a natural translation into first-order logic.
Using this translation we may view modal logic as a fragment of first-order
logic. Moreover, this fragment has a nice semantical characterization in terms
of preservation. A famous result by van Benthem [2] tells us that a first-order
formula lies in this fragment if and only if it is preserved under so-called bisim-
ulations (see Section 3). The global counterpart of this result is proved in
Section 4. Then, in Section 5 we briefly mention a few definability and preser-
vation results concerning particular classes of models. The paper concludes
with some suggestions for future research.

2 Basic Concepts

Fix a countable set P := {pn | n ∈ ω} of proposition letters. The set ML
of modal formulas (over P) is then defined as the least set X such that every
proposition letter from P belongs to X, X, and X is closed under the boolean
connectives ¬, ∨, and ∧ as well as under the modal operators ✷ and ✸.

A model for ML is a triple M = (W,R, V ), where W is a non-empty set, R
a binary relation on W , and V a valuation function from P into the power set
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of W . As usual, the truth of modal formulas is defined recursively with respect
to pairs (M, w), consisting of a model M and a distinguished element w ∈ W .
The atomic and the boolean cases of the definition are clear. For the modal
operators we put

(M, w)  ✸ϕ iff there is a w′ ∈W with Rww′ and (M, w′)  ϕ,

(M, w)  ✷ϕ iff for all w′ ∈W with Rww′ we have (M, w′)  ϕ.

If M is a model and ϕ a modal formula, we use M |= ϕ to say that for all
w ∈W it holds that (M, w)  ϕ.

A pointed model (M, w) may also be regarded as a first-order model suitable
for a first-order vocabulary, lets call it τ , consisting of a countable set {Pn |n ∈
ω} of predicate symbols, a binary relation symbol S and an individual constant
c.3 This, together with the fact that the truth clauses for modal formulas are
stated in a first-order metalanguage, suggests a mapping ST from ML into the
set of first-order sentences over τ :

ST (pn) := Pnc, for n ∈ ω,

ST (¬ϕ) := ¬ST (ϕ),

ST (ϕ ∨ ψ) := ST (ϕ) ∨ ST (ψ),

ST (ϕ ∧ ψ) := ST (ϕ) ∧ ST (ψ),

ST (✸ϕ) := ∃x(Scx ∧ ST (ϕ)[x/c]), 4 ,5

ST (✷ϕ) := ∀x(Scx→ ST (ϕ)[x/c]).

The following lemma is then proved by an easy induction. In fact, this is the
result which allows us to regard modal logic as a fragment of first-order logic.

Lemma 2.1 For every modal formula ϕ, every model M = (W,R, V ) and every
w ∈W : (M, w)  ϕ⇔ (M, w)  ST (ϕ).

3 Local Definability

At the beginning of this section we introduce a well-known type of equivalence
relations between models, so-called bisimulations. What makes them important
is the fact that modal formulas cannot distinguish between bisimilar models,
that is, if there is a bisimulation between two models M and N which relates
worlds w and v, then w and v satisfy exactly the same modal formulas. This
result is stated in Lemma 3.2. Moreover, recent work has shown that bisimu-
lations form an important tool in modal model theory. A central result along
this line is Theorem 3.3 below, which provides an algebraic characterization of
the elementary classes of pointed models, that is, the classes of models that are

3This is possible because, neglecting some harmless notational differences, (M, w) may be
seen as a convenient way of denoting the first-order model (W,R, (V (pn))n∈ω, w).

4Here, and in the following clause, the variable x is assumed to be the first variable chosen
from a list of variables that do not occur in ST (ϕ).

5In general, for a first-order formula α and individual terms t1 and t2, α[t1/t2] denotes the
formula one gets by replacing every occurrence of t2 in α by t1.
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definable by (sets of) modal formulas. This result was first stated and proved
in [10].

Definition 3.1 Let M = (W,R, V ) and N = (W ′, R′, V ′) be models. A rela-
tion Z ⊆W×W ′ is a bisimulation between M andN, if Z satisfies the following
conditions:

B1 For every w ∈ W and v ∈ W ′, if Zwv then (M, w)  pn ⇔ (N, v)  pn,
for every n ∈ ω.

B2 For every w,w′ ∈ W and v ∈ W ′, if Zwv and Rww′, then there is some
v′ ∈W ′ such that R′vv′ and Zw′v′.

B3 For every w ∈ W and v, v′ ∈ W ′, if Zwv and R′vv′ then there is some
w′ ∈W such that Rww′ and Zw′v′.

If Z is a bisimulation such that for every v ∈ W ′ there is some w ∈ W with
Zwv, then Z is called a surjective bisimulation from M to N.

Lemma 3.2 Let Z be a bisimulation between M and N such that Zwv. Then
for every modal formula ϕ, (M, w)  ϕ iff (N, v)  ϕ.

Theorem 3.3 For a class K of pointed models the following equivalences hold.
1. K is (locally) definable by a set of modal formulas iff K is closed under

bisimulations and ultraproducts, and the complement of K, abbreviated by K, is
closed under ultrapowers.

2. K is (locally) definable by a single modal formula iff both K and K are
closed under bisimulations and ultraproducts.

From this theorem we easily obtain van Benthem’s bisimulation theorem:

Corollary 3.4 A first-order sentence α (over τ) is equivalent to the translation
of a modal formula if and only if α is preserved under bisimulations.6

4 Global Definability

In the previous section we took a local perspective on modal logic and its
corresponding first-order fragment. Below we adopt what we call a global point
of view: modal formulas will be considered on the level of models. The main
result of this section characterizes the classes of models that are (globally)
definable by modal formulas. (For a proof see the full version of this paper.)
This time the key notions are ultraproducts and ultrapowers, as before, as well
as surjective bisimulations and disjoint unions. The latter is introduced below.

Definition 4.1 Let {Mi | i ∈ I} be a non-empty family of models, where the
domains of these models are pairwise disjoint. The disjoint union of this family,
abbreviated by

⊎
i∈I Mi, is the following model M = (W,R, V ):

6Here we say that a first-order sentence α is preserved under bisimulations if whenever Z
is a bisimulation between models M and N such that Zwv and (M, w)  α, then (N, v)  α.

5



W :=
⋃

i∈I Wi, R :=
⋃

i∈I Ri, and V (pn) :=
⋃

i∈I Vi(pn), for n ∈ ω.

Theorem 4.2 For a class K of models the following equivalences hold.
1. K is (globally) definable by a set of modal formulas iff K is closed un-

der surjective bisimulations, disjoint unions and ultraproducts, and K is closed
under ultrapowers.

2. K is (globally) definable by means of a single modal formula iff K is closed
under surjective bisimulations and disjoint unions, and both K and K are closed
under ultraproducts.

Obviously, by a straightforward adaption of the standard translation from
Section 3 we may viewML as a fragment of first-order logic on the (global) level
of models as well: we just have to correlate a modal formula ϕ with the universal
closure of its standard translation, that is, with the formula ∀x(ST (ϕ)[x/c]).
By making use of Lemma 2.1 it is then easy to see that for every model M,
M |= ϕ iff M  ∀x(ST (ϕ)[x/c]).

As in the local case, the modal fragment of first-order logic has a semantical
characterization in terms of preservation behavior. This time we can prove that
a first-order sentence α lies in this fragment iff α is preserved under surjective
bisimulations and disjoint unions, where α is said to be preserved under disjoint
unions if for every non-empty family {Mi | i ∈ I} of models such that for every
i ∈ I, Mi |= ϕ, we have

⊎
i∈I Mi |= ϕ.

Corollary 4.3 For a first-order sentence α over τ \{c} the following are equiv-
alent:

1. There is a modal formula ϕ such that |= α↔ ∀x(ST (ϕ)[x/c]).
2. α is preserved under disjoint unions and surjective bisimulations.

Before concluding this section, we want to emphasize that our Theorem 4.2
is not the first global definability result with respect to classes of models. In
[7] Hansoul gave an alternative characterization.7 Using our own terminology
and putting aside the topological notions used by Hansoul, his result can be
stated as follows: A class K of models is globally definable if and only if K

is closed under isomorphisms, generated submodels and disjoint unions, and
for each model M, M ∈ K iff (M∗)∗ ∈ K. Here, by M

∗ we mean the least
modal subalgebra of the complex algebra of M that contains all truth-sets of
the form V (ϕ) := {w ∈W | (M, w)  ϕ}, and by (M∗)∗ we denote its canonical
structure.8 The full version of the present paper contains a detailed analysis of
how the two definability results, Hansoul’s and ours, are related to each other.

5 Universal Classes

Applying arguments and tools similar to the ones that were used in the proofs
of the previous section, we can also obtain global definability and preservation

7In [1] another definability result was proved with respect to infinitary modal languages.
8The experienced reader may realize that Hansoul’s result shows great similarity to a

famous result by Goldblatt [5], which characterizes modally definable classes of generalized
frames.
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results for modal formulas satisfying various syntactic constraints. In the fol-
lowing we restrict our attention to universal formulas. By a universal formula
we mean a modal formula that has been built up from atomic formulas and
negated atomic formulas, using ∧, ∨ and ✷ only.

The main result of this section, Theorem 5.1, provides a precise character-
ization of the conditions under which classes of models are globally definable
by sets of universal formulas. ¿From this we easily get a preservation result for
universal formulas, stated as Corollary 5.2. For lack of space we only mention
these two results; comments, proofs and further results are reserved for the full
paper. For the local counterparts of the above results the reader is referred to
[12].

Theorem 5.1 A class K of models is definable by a set of universal formulas
iff K is closed under surjective bisimulations, disjoint unions, submodels and
ultraproducts.

Corollary 5.2 A modal formula ϕ is globally preserved under submodels iff
there is a universal formula ψ such that ϕ and ψ hold in exactly the same
models.

We hasten to add that similar results also exist for positive, that is negation-
free formulas. In the full paper we characterize the positive classes as the
classes of models that are closed under surjective bisimulations, disjoint unions,
ultraproducts and weak extensions,9 and whose complements are closed under
ultrapowers. In addition, it contains a preservation result for positive formulas.

6 Concluding Remarks

In this paper we have presented a number of definability and preservation results
for (basic) modal logic. Contrary to common practice, we have emphasized the
global perspective. Of course, the above results can only be considered as
a modest beginning; a lot of work remains to be done. Our future research
should concentrate on the following questions:

1. What other local results (and tools) can be adapted to the global setting?

2. In [11] van Benthem’s bisimulation theorem was proved with respect to
finite models. Is it possible to finitize our Corollary 4.3 in the same way?

3. Can we apply our results and methods to more expressive modal lan-
guages, like temporal logic with Since and Until, or PDL?

4. Is there a uniform way of connecting the local and the global setting?
Indeed, we have a general result with respect to preservation, but it is
not completely satisfying. First, it looks slightly proof-generated and,
second, it makes use of the notion of ω-saturated models which restricts
its applicability to modal languages that lie inside first-order logic.

9A model N = (W ′, R′, V ′) is a weak extension of a model M = (W,R,V ), if W = W ′,
R = R′, and V (pn) ⊆ V ′(pn), for every n ∈ ω.
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5. How is our approach related to the work of other authors? In particular,
how is it related to work on the universal modality [4, 6], and to Kracht
and Wolter’s work on transfer results [8, 9]?
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