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Abstract. We present results on global definability in basic modal logic,
and contrast our model-theoretic results and proof techniques with known
results about local definability.

1 Introduction

In modal logic, the fundamental semantic relation is ‘truth of a modal formula ϕ
in a pair (M, w),’ where M is a model and w is a world chosen from this model.
Such a pair is called a pointed model [5, 18] or a model-world pair [1]. We use
(M, w) 
 ϕ to say that ϕ is true in (M, w). Based on this relation, further
semantical concepts are defined as usual. That a formula ϕ follows from a set
of formulas Γ holds, for instance, if for every pointed model (M, w) in which
all ψ ∈ Γ are true, we have (M, w) 
 ϕ. Or, in modal terms: it is not possible
that Γ is true in some possible state without ϕ being true there as well.

Both the satisfaction relation and the consequence relation reflect a local
perspective on the modal language and its models. Formulas are evaluated
inside models, at some particular world w (the ‘actual’ world). In contrast, we
can take a global perspective, under which models, and not pointed models,
are regarded as the fundamental semantic units. The global counterparts of
the satisfaction and the consequence relation are then defined as follows. A
formula ϕ is said to be true in a model M, abbreviated by M |= ϕ, if ϕ is
true in every pointed model (M, w) based on M; and ϕ follows globally from
Γ, if for all models M with M |= Γ it holds that M |= ϕ. As several authors
have observed [5, 13, 22], a large number of logical properties, like completeness,
canonicity, finite model property, and interpolation, come in two flavors: a local
one and a global one. For instance, the notions of local and global consequence
do not coincide: 2ψ follows locally from ψ, but not globally, yet the following
general fact holds: a formula ϕ follows locally from a set Γ iff ϕ follows globally
from the set {2nψ | ψ ∈ Γ, n ∈ ω}. So, in a sense, the global approach can
be simulated within the local setting; moreover, by adding some non-standard
modal connectives to our language, the other direction holds as well; see [22,
Appendix B] for details.
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On the other hand, the global perspective is worth exploring for its own
sake. Why? First, via a straightforward translation modal formulas ϕ may
be regarded as terms tϕ of an algebraic language, so that ϕ turns out to be
true in a model M iff the equality tϕ = 1 holds in the corresponding algebra
M

∗ [5]. Hence, from the algebraic point of view the global setting proves the
more natural one. Second, principles of supervenience, as they were applied in
different areas of philosophy, are usually discussed on the level of models [12].
Third, sometimes we are interested in certain features of the whole model,
independent of the fact whether they are enforceable by pointwise reasoning [1].
And fourth, global constraints on models play a key role in the closely related
area of terminological reasoning [6].

The latter two points raise an important question: what is the expressive
power of the given modal language? In other words: which properties of struc-
tures are definable or describable within the language? The view of properties
that underlies this account is purely extensional; roughly, a property is identi-
fied with the class of structures which have this property. Therefore, a property,
that is, a class K of structures, is said to be definable if there is a set of formulas
Γ such that K equals the class of structures in which Γ holds. We can rephrase
our original question as follows: is there a general characterization of the classes
of structures that are definable in the above sense? What this questions asks for
is a characterization of the elementary classes of the logic under investigation.
Answers to such questions are usually given by stating algebraic closure condi-
tions that are necessary and sufficient for a class K to be definable. Clearly, in
the case of modal logic the characterization problem has two versions: a global
and a local one. Our paper contains solutions for both versions. In Section 3 we
deal with the local version, whereas Section 4 is reserved for the global setting.

Semantics-based translations form a valuable tool for investigating the meta-
properties of a logic more deeply, by relating it to other logics. In the case of
basic modal logic there exists a natural translation into first-order logic. Using
this translation we may view modal logic as a fragment of first-order logic.
Moreover, this fragment has a nice semantical characterization in terms of its
preservation behavior. A famous result by van Benthem [2] tells us that a first-
order formula lies in this fragment if and only if it is preserved under so-called
bisimulations (see Section 3). The global counterpart of this result is proved
in Section 4. Then, in Section 5 we compare our global definability results to
earlier results obtained by Hansoul [11]. We mention a number of definability
and preservation results concerning particular classes of models in Sections 6.
We conclude with some suggestions for future research in Section 7.

2 Basic Concepts

Fix a countable set P := {pn | n ∈ ω} of proposition letters. The set ML of
modal formulas (over P) is defined as the least setX such that every proposition
letter from P belongs to X, X contains the logical constant ⊥ (falsum), and X
is closed under the boolean connectives ¬, ∨, and ∧ as well as under the modal
operators 2 and 3.
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A model for ML is a triple M = (W,R, V ), where W is a non-empty set,
R a binary relation on W , and V a valuation function from P into the power
set of W . As usual, the truth of modal formulas is defined recursively with
respect to pairs (M, w), consisting of a model M and a distinguished element
w ∈ W . The atomic and boolean cases of the definition are clear. For the
modal operators we put

(M, w) 
 3ϕ iff there is a w′ ∈W with Rww′ and (M, w′) 
 ϕ,

(M, w) 
 2ϕ iff for all w′ ∈W with Rww′ we have (M, w′) 
 ϕ.

If M is a model and ϕ a modal formula, we use M |= ϕ to say that for all
w ∈ W it holds that (M, w) 
 ϕ. If Φ is a set of modal formulas, M |= Φ says
that M |= ϕ for every ϕ ∈ Φ. Mod(Φ) denotes the class of models M such
that M |= Φ. A class K of models is globally definable if there is a set Φ with
K = Mod(Φ). Analogously, we call a class K of pointed models locally definable
if K = {(M, w) | (M, w) 
 Φ}, for some Φ ⊆ ML.

A pointed model (M, w) may also be viewed as a first-order model suitable
for a first-order vocabulary, say τ , consisting of a countable set {Pn | n ∈ ω}
of predicate symbols, a binary relation symbol S and an individual constant
c.1 This, together with the fact that the truth clauses for modal formulas are
stated in a first-order metalanguage, suggests a standard translation ST from
ML into the set of first-order sentences over τ :

ST (pn) = Pnc, for n ∈ ω

ST (⊥) = ⊥

ST (¬ϕ) = ¬ST (ϕ)

ST (ϕ ∨ ψ) = ST (ϕ) ∨ ST (ψ)

ST (ϕ ∧ ψ) = ST (ϕ) ∧ ST (ψ)

ST (3ϕ) = ∃x(Scx ∧ ST (ϕ)[x/c])2 ,3

ST (2ϕ) = ∀x(Scx→ ST (ϕ)[x/c])

The following lemma is then proved by an easy induction. In fact, this is the
result which allows us to regard modal logic as a fragment of first-order logic.

Lemma 2.1 For every modal formula ϕ, every model M = (W,R, V ) and every
w ∈W : (M, w) 
 ϕ if and only if (M, w) 
 ST (ϕ).

As has been emphasized in the introduction, throughout this paper there are
two consequence relations in use, a local one, |=l, and a global one, |=g. The first
is defined with respect to pointed models, the second with respect to models.
Below, these two relations will also be applied to (sets of) first-order sentences.
For instance, let ∆ ∪ {α} be a set of first-order sentences over τ , then ∆ |=l α
says that for every pointed model (M, w), (M, w) 
 ∆ implies (M, w) 
 α.

1This is possible because, neglecting some harmless notational differences, (M, w) may be
seen as a convenient way of denoting the first-order model (W,R, (V (pn))n∈ω, w).

2Here, and in the following clause, the variable x is assumed to be the first variable chosen
from a list of variables that do not occur in ST (ϕ).

3In general, for a first-order formula α and individual terms t1 and t2, α[t1/t2] denotes the
formula one gets by replacing every occurrence of t2 in α by t1.
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3 Local Definability

In this section we introduce a well-known type of equivalence relations between
models, so-called bisimulations. What makes them important is the fact that
modal formulas cannot distinguish between bisimilar models, that is, if there
is a bisimulation between two models M and N which relates worlds w and v,
then w and v satisfy exactly the same modal formulas. This result is stated
in Lemma 3.2. Moreover, recent work has shown that bisimulations form an
important tool in modal model theory. A central result along this line is Theo-
rem 3.3 below, which provides an algebraic characterization of the elementary
classes of pointed models, that is, the classes of pointed models that are de-
finable by (sets of) modal formulas. This result was first stated and proved in
[18].

Definition 3.1 Let M = (W,R, V ) and N = (W ′, R′, V ′) be models. A non-
empty relation Z ⊆W ×W ′ is a bisimulation between M and N, if Z satisfies
the following conditions:

B1 For every w ∈W and v ∈W ′, if Zwv then (M, w) 
 pn ⇔ (N, v) 
 pn, for
every n ∈ ω.

B2 For every w,w′ ∈ W and v ∈ W ′, if Zwv and Rww′, then there is some
v′ ∈W ′ such that R′vv′ and Zw′v′.

B3 For every w ∈ W and v, v′ ∈ W ′, if Zwv and R′vv′ then there is some
w′ ∈W such that Rww′ and Zw′v′.

We write (M, w) ∼ (N, v) to say that there is a bisimulation Z from M to N

with Zwv.
If Z is a bisimulation such that for every v ∈ W ′ there is some w ∈ W

with Zwv, then Z is called a surjective bisimulation from M to N. Z is a total
bisimulation from M to N, if for every w ∈W there is some v ∈W ′ with Zwv.

Lemma 3.2 Let Z be a bisimulation between M and N such that Zwv. Then
for every modal formula ϕ, (M, w) 
 ϕ iff (N, v) 
 ϕ.

Theorem 3.3 For a class K of pointed models the following equivalences hold.

1. K is (locally) definable by a set of modal formulas iff K is closed under
bisimulations and ultraproducts, and the complement of K, abbreviated by
K, is closed under ultrapowers.

2. K is (locally) definable by a single modal formula iff both K and K are
closed under bisimulations and ultraproducts.

Proof. We only give a sketch. For details the reader is referred to [5].
1. The only if direction follows from Lemma 3.2 and a well-known result

from classical model theory. For the converse suppose that K and K fulfill
the closure conditions stated above. Clearly, K is also closed under bisimu-
lations. Define Φ := {ϕ ∈ ML | ∀(M, w) ∈ K : (M, w) 
 ϕ}. Obviously,
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K ⊆ {(M, w) | (M, w) |= Φ}. For the other direction, assume (M, w) 
 Φ.
Put ∆ := {ST (ψ) | (M, w) 
 ψ}. It is easy to see that ∆ is finitely sat-
isfiable in K, that is, for every finite subset δ of ∆ there is a pointed model
(Nδ, vδ) ∈ K in which δ holds. By standard first-order reasoning we find an
ultraproduct (N, v) :=

∏
δ⊆ω∆(Nδ, vδ)/U such that (N, v) 
 ∆, and, since

K is closed under ultraproducts, (N, v) ∈ K. Moreover, by the choice of ∆,
(N, v) ≡ML (M, w). Now, a modal version of the Keisler-Shelah theorem tells
us that there exist ultrapowers (N′, v′), (M′, w′) of (N, v), (M, w) respectively
such that (N′, v′) ∼ (M′, w′). Utilizing the closure conditions on K we ob-
tain (N′, v′) ∈ K and (M′, w′) ∈ K in turns. Finally, that K is closed under
ultrapowers, implies (M, w) ∈ K. This completes the first part of the proof.

2. Again, the only if direction is straightforward. The other direction follows
from the first claim by an easy compactness argument. a

From this theorem we easily obtain van Benthem’s bisimulation theorem:

Corollary 3.4 A first-order sentence α (over τ) is equivalent to the translation
of a modal formula if and only if α is locally preserved under bisimulations.4

In [20], Sahlqvist described a general method of transforming a pointed model
(M, w) into a tree-like model, called the unraveling of (M, w), which is bisimilar
and thus modally equivalent to the original model.

Definition 3.5 Let M = (W,R, V ) be a model and w ∈ W . The unraveling
of (M, w) is the model (Mu, wu), defined as follows. The domain W u consists
of all finite sequences (w0, w1, . . . , wn) of elements from W such that w0 = w
and Rwiwi+1, for every i < n. Let Ru(w0, . . . , wn)(v0, . . . , vm) if m = n + 1,
Rwnvm and wi = vi for every i ≤ n. Put (w0, . . . , wn) ∈ V u(p) if wn ∈ V (p).
And, finally, let wu := (w).

It is easy to see that the canonical mapping f(M,w) : (w0, . . . , wn) 7→ wn defines
a bisimulation from (Mu, wu) to (M, w). Moreover, if the original model M is
generated by w, then f(M,w) is surjective.

4 Global Definability

In the previous section we took a local perspective on modal logic and its
corresponding first-order fragment. Below we adopt what we call a global point
of view: modal formulas will be considered on the level of models. The main
result of this section characterizes the classes of models that are (globally)
definable by modal formulas. This time, the key notions are ultraproducts and
ultrapowers, as before, as well as surjective bisimulations and disjoint unions.
The latter are introduced below.

4Here we say that a first-order sentence α is locally preserved under bisimulations if when-
ever Z is a bisimulation between models M and N such that Zwv and (M, w) 
 α, then
(N, v) 
 α.

5



Definition 4.1 Let {Mi | i ∈ I} be a non-empty family of models. The disjoint
union of this family, abbreviated by

⊎
i∈I Mi, is the model M = (W,R, V ),

where

• W :=
⋃

i∈I(Wi × {i});

• for (w, i), (v, j) ∈W , we put R(w, i)(v, j), if i = j and Riwv; and

• we set (w, i) ∈ V (pn), for n ∈ ω and (w, i) ∈W , if w ∈ Vi(pn).

Obviously, by a straightforward adaptation of the standard translation from
Section 2 we may view ML as a fragment of first-order logic on the (global) level
of models as well: we just have to correlate a modal formula ϕ with the universal
closure of its standard translation, that is, with the formula ∀x(ST (ϕ)[x/c]).
By making use of Lemma 2.1 it is then easy to see that for every model M,
M |= ϕ iff M 
 ∀x(ST (ϕ)[x/c]).

As in the local case, the modal fragment of first-order logic has a semantic
characterization in terms of its preservation behavior. This time we can prove
that a first-order sentence lies in this fragment iff it is preserved under surjective
bisimulations and disjoint unions, where a formula ϕ is said to be preserved
under disjoint unions if for every non-empty family {Mi | i ∈ I} of models
such that for every i ∈ I, Mi |= ϕ, we have

⊎
i∈I Mi |= ϕ.

Lemma 4.2 For a set ∆ of first-order sentences over τ \ {c} the following are
equivalent:

1. There is a set Φ ⊆ ML with Mod(Φ) = Mod(∆).

2. Mod(∆) is closed under disjoint unions and surjective bisimulations.

Proof. For the implication from 1 to 2 it is sufficient to prove that modal for-
mulas are preserved under disjoint unions and surjective bisimulations. Here,
we only deal with disjoint unions; the case for surjective bisimulations can be
proved similarly. Let ϕ ∈ ML and let M := (W,R, V ) be the disjoint union of
a family {Mi | i ∈ I} of models, where Mi |= ϕ holds for each i ∈ I. Choose
(w, i) ∈ W . By definition, w ∈ Wi. Then, our assumption yields Mi |= ϕ,
hence (Mi, w) 
 ϕ. Now it is easy to see that the following clause defines a
bisimulation Z between Mi and M: for every w′, w′′ ∈ Wi put Zw′(w′′, i), if
w′ = w′′. Thus we obtain (M, w) 
 ϕ by Lemma 3.2. Since w was chosen
arbitrary, this yields M |= ϕ.

For the other implication, suppose that ∆ is a set of first-order sentences
such that Mod(∆) is closed under disjoint unions and surjective bisimulations.
Define Φ := {ϕ ∈ ML | ∆ |=g ∀x(ST (ϕ)[x/c])}. By an application of
Lemma 2.1 we obtain Mod(∆) ⊆ Mod(Φ). To prove the converse inclusion,
let M be a model with M |= Φ. Choose an ω-saturated elementary extension
M

′ = (W ′, R′, V ′) of M. Clearly, M
′ |= Φ.

Next we prove the following claim

(?) for each w ∈ W ′ there is a pointed model (Nw, vw) and a relation Zw

such that Zw : (Nw, vw) ∼ (M′, w) and Nw |= ∆.

6



Assuming for a moment that (?) has already been proved, we can proceed as
follows. First, let N :=

⊎
w∈W ′ Nw. Since ∆ is preserved under disjoint unions

and Nw |= ∆ holds for each w ∈W ′, we infer N |= ∆. Second, define a relation
Z as follows: for every (v, w) from N and every w′ ∈ W ′ put Z(v, w)w′ if
v = w′. Moreover, by a routine argument, it is easy to prove that Z forms a
surjective bisimulation from N to M

′. Thus, as ∆ is preserved under surjective
bisimulations, M

′ |= ∆. As M
′ is an elementary extension of M, we get M |= ∆.

This establishes Mod(Φ) ⊆ Mod(∆), as desired.
Therefore, to conclude the proof it remains to establish (?). So, let w ∈W ′.

Define Γ := ∆ ∪ {ST (ψ) | ψ ∈ ML, (M′, w) 
 ψ}. Γ is finitely satisfiable.
For suppose not. Then there is a modal formula ψ such that (M′, w) 
 ψ
and ∆ |=l ¬ST (ψ), hence ∆ |=l ST (¬ψ). Since the constant c does not occur
in ∆, we obtain ∆ |=g ∀x(ST (¬ψ)[x/c]). Thus, by definition, ϕ ∈ Φ. But
this contradicts the assumption M

′ |= Φ. Thus Γ is finitely satisfiable, and
so, by compactness, satisfiable. Hence, there is a pointed model (Nw, vw) with
(Nw, vw) |= Γ. Without any restrictions we may assume that (Nw, vw) is ω-
saturated. From (Nw, vw) |= Γ we easily obtain Nw |= ∆ and (Nw, vw) ≡ML

(M′, w). Now, from modal logic we know that if two ω-saturated models are
modally equivalent, then they are bisimilar. Hence there exists a bisimulation
Zw between (Nw, vw) and (M′, w). This establishes (?) and concludes the proof
of the lemma. a

Theorem 4.3 For a class K of models the following equivalences hold.

1. K is (globally) definable by a set of modal formulas iff K is closed under
surjective bisimulations, disjoint unions and ultraproducts, and K is closed
under ultrapowers.

2. K is (globally) definable by means of a single modal formula iff K is closed
under surjective bisimulations and disjoint unions, and both K and K are
closed under ultraproducts.

Proof. 1. Suppose K is globally definable by a set Φ of modal formulas, that
is K = Mod(Φ). Obviously, K is also definable by a set of first-order sentences,
namely by ∆ := {∀x(ST (ϕ)[x/c]) | ϕ ∈ Φ}. So, a well-known result from
model theory tells us that K is closed under ultraproducts, and K under ultra-
powers. That K is closed under disjoint unions and surjective bisimulations is
an immediate consequence of Lemma 4.2.

For the other direction assume that K fulfills the closure conditions stated
in 1. It follows that K and K are closed under isomorphisms. For note that
if a function f is an isomorphism from a model M onto a model N, then f
is a surjective bisimulation from M to N, and the inverse of f is a surjective
bisimulation from N onto M. From general first-order model theory we infer
that K is first-order definable, that is: there is a set ∆ of first-order sentences
such that K = Mod(∆). By assumption, Mod(∆) is closed under disjoint unions
and surjective bisimulations. An application of Lemma 4.2 concludes the first
part of the proof.
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2. For the only if direction suppose that K is definable by a modal formula
ϕ. Hence, by the first claim, K is closed under surjective bisimulations, disjoint
unions and ultraproducts. Further, it is easy to see that K is first-order definable
by the single sentence ¬∀x(ST (ϕ)[x/c]). Hence K is closed under ultraproducts.
This concludes the only if direction.

For the other direction, suppose that K and its complement satisfy the clo-
sure conditions stated above. By the first claim there is a set Φ of modal
formulas such that K = Mod(Φ). Moreover, as in the proof of the first claim
we infer that K and K are closed under isomorphisms. Therefore, K is defin-
able by means of a single first-order sentence α, that is K = Mod(α). Ob-
viously, the set {α} ∪ {∀x(ST (ϕ)[x/c]) | ϕ ∈ Φ} is not satisfiable. Hence,
by compactness, there are modal formulas ϕ1, . . . , ϕn ∈ Φ such that {α} ∪
{∀x(ST (ϕ1)[x/c]), . . . ,∀x(ST (ϕn)[x/c])} is not satisfiable. It is easy to see that
the conjunction ϕ := (ϕ1 ∧ · · · ∧ ϕn) defines K. a

Corollary 4.4 For a first-order sentence α over τ \{c} the following are equiv-
alent:

1. There is a modal formula ϕ such that |= α↔ ∀x(ST (ϕ)[x/c]).

2. α is preserved under disjoint unions and surjective bisimulations.

Proof. The claim follows from Lemma 4.2 by compactness. a

Our next aim is to relativize Corollary 4.4 to the setting of finite models, which
brings us into the area of finite model theory. Though it has its origins in
classical model theory and complexity theory, finite model theory has developed
into an independent research area with its own methods and a whole stock of
fascinating results (see [7] for an excellent overview). The investigation of finite
models owes its importance to the deep connections between complexity classes
and the expressive power on finite models of particular logics. In addition, the
study of finite models forms a natural task in computational linguistics as well
as in database theory. In the context of modal logic the viewpoint of finite
model theory has first been taken in a paper by Rosen [19]. The main result of
this paper shows that van Benthems bisimulation result remains true over the
class of finite models. Below we will adopt this result to the global setting.

We need some new notions and notation. We write M ≡fo
n N to denote

that M and N agree on all first-order sentences of quantifier rank at most n.
Moreover, we need so-called n-approximations ∼n to bisimulations; we say that
(M, w) ∼n (N, v) if there exists a sequence of relations Z0, . . . , Zn, each on the
domains of M and N, such that

1. Z0wv.

2. For all m < n, if Zmw
′v′, and Rw′w′′, then there is some v′′ in N such

that Rv′v′′ and Zm+1w
′′v′′ (and vice-versa).

3. For all m ≤ n, if Zmw
′v′, then (M, w′) 
 pn iff (N, v′) 
 pn, for every

n ∈ ω.
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Next, we need a technical lemma that combines a number of results due to
Rosen [19] into a single statement.

Lemma 4.5 There is a unary function f with the following property. Let r ∈
ω, and assume that (M, w) ∼f(r) (N, v). Then there exist models (M∗, w∗) ∼

(M, w) and (N∗, v∗) ∼ (M, w) with (M∗, w∗) ≡fo
r (N∗, v∗) as displayed in the

following diagram:

(M, w)
∼f(r)

(N, v)

∼ ∼

(M∗, w∗)
≡

fo
r (N∗, v∗)

Moreover, it may be assumed that there is a surjective bisimulation linking
(M∗, w∗) to (M, w), and a surjective bisimulation linking (N, v) to (N∗, v∗).

Proof. The proof is a combination of Lemmas 2, 3, and 4 in Rosen [19] plus the
well-known observation that every model is a p-morphic image of the disjoint
union of its point-generated submodels. a

Theorem 4.6 For a first-order sentence α the following are equivalent:

1. There is a modal formula ϕ such that ∀x(ST (ϕ)[x/c]) and α are equiva-
lent.

2. α is preserved under surjective bisimulations (between finite models) and
finite disjoint unions.

Proof. The direction from 1 to 2 follows from Theorem 4.3. For the other
direction suppose α is a first-order sentence that satisfies the closure conditions
stated in 2. Let τ be the smallest (finite) vocabulary in which α lives. For every
n ∈ ω, define

∆n := {∀x(ST (ϕ)[x/c]) | ϕ ∈ τ, dg(ϕ) ≤ n, α |= ∀x(ST (ϕ)[x/c])}.

Observe that we may assume each ∆n to be finite.
It suffices to show that, for some n ∈ ω, ∆n |= α, for then α will be

equivalent to a finite conjunction of formulas of the required universal form
(which is itself equivalent to a formula of the required form). To arrive at a
contradiction, let us assume that

(†) ∆n 6|= α, for each n ∈ ω.

Then, for every n ∈ ω, there is a model Mn such that Mn |= ∆n and Mn 6|= α.
The following observations will prove to be useful below:

1. ∆n is true in every point-generated submodel of Mn.

2. There is a point-generated submodel of Mn which falsifies α.
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The last observation follows from Mn 6|= α, by the closure conditions on α. As
a consequence, we may assume that Mn itself is point-generated, say by wn.
By a well-known result from modal logic, there is a modal formula θ of degree
n such that for every pointed model (N, v), (N, v) |= θ if and only if there is
an n-bisimulation from (N, v) to (Mn, wn), in symbols (N, v) ∼n (Mn, wn). It
is easy to see that the formula (α ∧ ST (θ)) is satisfiable. Otherwise we would
obtain α |= ∀x(ST (¬θ)[x/c]), hence ∀x(ST (¬θ)[x/c]) ∈ ∆n, which contradicts
Mn |= ∆n. So there is a pointed model (Nn, vn) with (Nn, vn) |= θ, thus
(Nn, vn) ∼n (Mn, wn), and N |= α. Again, we can assume that Nn is point-
generated, namely by vn.

Thus, we have shown the following:

(?) for each n ∈ ω there are point-generated models (Nn, vn), (Mn, wn) such
that (Nn, vn) ∼n (Mn, wn), Nn |= α and Mn 6|= α.

Now, to arrive at a contradiction, we reason as follows. Let r be the quan-
tifier rank of α. Use (?) with n = f(r), where f is the function mentioned in
Lemma 4.5. Then we find models (Mf(r), wf(r)) 6|= α and (Nf(r), vf(r)) |= α
with

(Mf(r), wf(r)) ∼f(r) (Nf(r), vf(r)).

By the conclusion of Lemma 4.5, we obtain models (M∗, w∗) and (N∗, v∗) with

(Mf(r), wf(r)) ∼ (M∗, w∗) ≡fo
r (N∗, v∗) ∼ (Nf(r), vf(r)).

As Mf(r) 6|= α and as there is a surjective bisimulation linking (M∗, w∗) to
(Nf(r), vf(r)), we can conclude that M

∗ 6|= α. Similarly, we find that N
∗ |= α

— but this contradicts (M∗, w∗) ≡fo
r (N∗, v∗). Hence, we conclude that our

original assumption (†) was mistaken. That is: there exists n with ∆n |= α, as
required. a

5 Hansoul’s Theorem

In the previous section we presented an algebraic characterization of the el-
ementary classes of ML. This result is not the first global definability re-
sult with respect to classes of models. In [11], Hansoul gave an alternative
characterization.5 The purpose of this section is to relate Hansoul’s definability
result to ours. In Theorem 5.6 we compare the conditions that were imposed
by Hansoul on a class K to be definable by a set of modal formulas with the
conditions that were used in our Theorem 4.3. We will show that both sets of
conditions are equivalent in the sense that a class K satisfies Hansoul’s condi-
tions if and only if it satisfies ours.

Before we state Hansoul’s result, it will be helpful to recall some modal
notions. Let M := (W,R, V ) be a model. For each ϕ ∈ ML we define V (ϕ) as
the set {w ∈W | (M, w) 
 ϕ}. By a well-known construction we can associate
an algebra AM := (AM,∩, ·

c,W, lR) with the model M. This algebra consists
of the following ingredients: AM is the set of all truth-sets of the form V (ϕ),

5In [1] another definability result was proved with respect to infinitary modal languages.
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with ϕ ∈ ML, ∩ and ·c are the set-theoretic operations of intersection and
complement, respectively, and lR is the algebraic counterpart of the necessity
operator, defined as follows, for X ∈ AM:

lR(X) := {w ∈W | ∀v ∈W (Rwv → v ∈ X)}.

It is easy to verify that AM is a modal algebra. Then, the canonical structure
of AM, C(M) in symbols, is the following model (WM, RM, VM):

• for WM, we take the set of ultrafilters over AM;

• for w, v ∈WM, we put RMwv if ∀X ∈ AM(lR(X) ∈ u⇒ X ∈ v);

• finally, for u ∈WM, we put u ∈ VM(p) if V (p) ∈ u.

An important feature of C(M) is stated in Lemma 5.1. The proof is fairly
standard, and we skip it here (for details, see [5]).

Lemma 5.1 Let M be a model. For every modal formula ϕ and every ultrafilter
u ∈WM, (C(M), u) 
 ϕ if and only if V (ϕ) ∈ u.

We are now ready to state Hansoul’s result in our own words, avoiding the
topological notions used by Hansoul.

Theorem 5.2 (Hansoul’s Theorem) A class K of models is globally defin-
able if and only if K is closed under isomorphisms, generated submodels and
disjoint unions, and for each model M, M ∈ K iff C(M) ∈ K.6

Throughout this section we make use of a special class of models, so-called
modally saturated models. By a modally saturated model we mean a model
M := (W,R, V ) that satisfies the following condition: for every w ∈ W and
Φ ⊆ ML, if for each finite subset Φ′ ⊆ Φ there is some v ∈ W with Rwv and
(M, v) 
 Φ′, then there is some v ∈W with Rwv and (M, v) 
 Φ.

For things to come the reader should have the following two facts concerning
modally saturated models in mind:

(i) Modal saturation is a weaker notion than ω-saturation; that means that
every ω-saturated model is modally saturated, but the converse fails.

(ii) The class of modally saturated models forms a so-called Hennessy-Milner
class, that is a class of models in which the relation of modal equivalence
between pointed models from this class is a bisimulation.

Both results are well-known; for proofs the reader may consult [5].
The main result of this section, Theorem 5.6, will, essentially, be proved by

combining the following three lemmas.

6The experienced reader may realize that Hansoul’s result shows great similarity to a
famous result by Goldblatt [9], which characterizes modally definable classes of generalized
frames.
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Lemma 5.3 Let M := (W,R, V ) be a model and let N := (W ′, R′, V ′) be an
ω-saturated elementary extension of M. Then there exists a total and surjective
bisimulation from N to C(M).

Proof. Suppose N is an ω-saturated elementary extension of a model M. By
(i), N is modally saturated. Further, by a routine argument, it is easy to
check that C(M) is modally saturated as well. Next, define Z as follows: for
w ∈ W ′ and v ∈ WM, put Zwv if (N, w) ≡ML (C(M), v). According to (ii),
Z is a bisimulation from N to C(M). It remains to show that Z is total and
surjective.

For totality, choose w ∈ W ′. Define ∆w := {ϕ ∈ ML | (N, w) 
 ϕ}.
Let ϕ ∈ ∆w. Then (N, w) 
 ϕ. Hence (N, w) 
 ST (ϕ), by Lemma 2.1.
Thus N 
 ∃x(ST (ϕ)[x/c]). Since N is an elementary extension of M, we infer
M 
 ∃x(ST (ϕ)[x/c]). So there is some v ∈W such that (M, v) 
 ϕ. Since ∆w

is closed under conjunction, it follows that ∆w is finitely satisfiable in M. From
this we easily obtain that X := {V (ϕ) | ϕ ∈ ∆w} has the finite intersection
property. Moreover, X ⊆ AM. Hence, there is some ultrafilter u ∈ WM with
X ⊆ u. Thus, we get V (ϕ) ∈ u, for every ϕ ∈ ∆w. By an application of
Lemma 5.1 we then obtain (C(M), u) 
 ϕ, for every ϕ ∈ ∆w. This establishes
(N, w) ≡ML (C(M), u), which yields, by definition, Zwu. So we have shown
that Z is total.

To prove that Z is surjective, let u ∈ WM. Put Γu := {ϕ ∈ ML |
(C(M), u) 
 ϕ}. Choose ϕ ∈ Γu. By Lemma 5.1, V (ϕ) ∈ u. Thus V (ϕ) 6= ∅.
Hence, there is some w ∈ W such that (M, w) 
 ϕ. From this we deduce that
Γu is finitely satisfiable in M; for note that Γu is closed under conjunctions.
Clearly, then, Γu is finitely satisfiable in N as well. Since N is ω-saturated, Γu

is satisfiable in N. Hence there is some v ∈W ′ with (N, v) 
 Γu, and therefore,
Zvu. So Z is surjective. This completes the proof of the lemma. a

Lemma 5.4 Let M := (W,R, V ) and M
′ := (W ′, R′, V ′) be models, and let Z

be a total and surjective bisimulation from M to M
′. Then C(M) and C(M′)

are isomorphic.

Proof. Suppose M, M
′ and Z satisfy the conditions stated above. It suffices to

show that the associated algebras AM and AM′ are isomorphic. To prove this,
we only need to verify that the mapping f : V (ϕ) 7→ V ′(ϕ) is an isomorphism
between AM and AM′ . Obviously, the domain of f is AM.

To see that f is a function, suppose that V (ϕ) = V (ψ). Choose v ∈ V ′(ϕ).
As Z is surjective, there is some w ∈ W with Zwv. Hence w ∈ V (ϕ). Thus
w ∈ V (ψ), by assumption. From this we obtain v ∈ V ′(ψ). Therefore, V ′(ϕ) ⊆
V ′(ψ). A similar argument yields the other direction. So V ′(ϕ) = V ′(ψ). Hence
f is a function.

The injectivity of f can be proved in a similar way. This time one makes
use of the fact that Z is total. It remains to show that f is a homomorphism
in the sense that it commutes with the algebraic operations ∩, ·c and lR. But
this is an easy task which we leave to the reader. a
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Lemma 5.5 Let K be a class of models that is closed under isomorphisms,
generated submodels, disjoint unions and ultrapowers. Then K is closed under
ultraproducts.

Proof. The claim of this lemma is a version of a well-known result from the
theory of frames due to Goldblatt [9]. We only need to replace the family M by
a family of frames, and we immediately get Goldblatt’s Theorem 1.16.4. Since
Goldblatt’s proof can easily be adjusted to the context of models, we dispense
with a proof. However, we will give a hint that should help the reader to find
the proof: Suppose M := {Mi | i ∈ I} is a non-empty family of models and
suppose N is an ultraproduct of this family. Then one has to show that N is
isomorphic to a generated submodel of some ultrapower for the disjoint union
of M. When this has been done, the claim of the lemma follows as an easy
corollary. a

Before we get to the main result of this section, a short remark is in order. In
Theorem 4.3 we required that a class K of models be closed under ultraproducts
for it to be modally definable. A careful examination of the proof of this
theorem shows that we can do with a slightly weaker condition. It suffices
to call for closure under ultraproducts modulo ultrafilters of a special sort,
namely countably incomplete ultrafilters. The reason why this suffices is rather
obvious: countably incomplete ultrafilters provide ω-saturated ultraproducts,
and the latter are the kind of ultraproducts we are in need of.

Theorem 5.6 For a class K of models the following conditions are equivalent:

1. K is closed under surjective bisimulations, disjoint unions and ultraprod-
ucts modulo countably incomplete ultrafilters, and K is closed under ultra-
powers modulo countably incomplete ultrafilters.

2. K is closed under generated submodels, isomorphisms and disjoint unions,
and for each model M, M ∈ K iff C(M) ∈ K.

Proof. For the only if direction assume that K satisfies the closure conditions
stated in 1. Clearly, K is closed under generated submodels and isomorphisms.
Next, suppose M ∈ K. Choose a countably incomplete ultrafilter U over ω
and let M

′ := (W ′, R′, V ′) be the ultrapower of M modulo U . By the closure
conditions on K, M

′ ∈ K. Further, from general first-order model theory we
know that M

′ is ω-saturated. Hence, by Lemma 5.3, there is a total surjective
bisimulation Z from M

′ to C(M). As K is closed under surjective bisimulations,
we obtain C(M) ∈ K. For the other direction suppose C(M) ∈ K. Let M

′ and Z
be as above. It is easy to see that Z−1 is a surjective bisimulation from C(M)
to M

′. Thus, M
′ ∈ K. Since K is closed under ultrapowers, we obtain M ∈ K.

This concludes the proof of the only if direction.
For the converse, assume that K satisfies the closure conditions stated in

2. To show that K is closed under surjective bisimulations, let M and M
′ be

models such that M ∈ K, and suppose that Z is a surjective bisimulation from
M to M

′. Let N := (W ′′, R′′, V ′′) be the submodel of M generated by the
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domain of Z. As K is closed under generated submodels, N ∈ K. Moreover, it
is obvious that Z ∩ (W ′′ ×W ′) is a bisimulation from N to M

′ which is total
and surjective. Hence, by Lemma 5.4, C(N) ∼= C(M′). By the closure under
C, C(N) ∈ K. As K is closed under isomorphisms, C(M′) ∈ K, which yields
M

′ ∈ K. This shows that K is closed under surjective bisimulations.
Let M ∈ K, and let N be an ultrapower modulo a countably incomplete

ultrafilter of M. By the closure conditions on K, C(M) ∈ K. From Lemma 5.3
we infer that N ∈ K if and only if C(M) ∈ K. Hence N ∈ K. Thus K is closed
under the right kind of ultrapowers. By a similar argument we can show that
K is closed under suitable ultrapowers. An application of Lemma 5.5 concludes
the proof. a

As a corollary to Theorem 5.6 we find that Hansoul’s characterization of the
globally definable classes of models (Theorem 5.2) is equivalent with ours (The-
orem 4.3).

6 Universal Classes

Applying arguments and tools similar to the ones in the previous section, we
can also obtain global definability and preservation results for modal formulas
satisfying various syntactic constraints. Below, we restrict our attention to
universal formulas. By a universal formula we mean a modal formula that has
been built up from atomic formulas and negated atomic formulas, using ∧, ∨
and 2 only. We use Π to denote the set of universal formulas. Analogously,
the set Σ of existential formulas is defined as the smallest subset of ML that
contains all atomic formulas and their negations, and is closed under ∧, ∨ and
3.

When we drop clause B3 in Definition 3.1, we arrive at the notion of simula-
tion. We write (M, w) ; (N, v) to denote that there is a simulation Z from M

to N with Zwv. It is easy to prove that universal formulas are anti-preserved
under simulations, that is, if (M, w) ; (N, v) then for every universal formula
ϕ, if (N, v) 
 ϕ then (M, w) 
 ϕ.

The main result of this section, Theorem 6.3, provides a precise character-
ization of the conditions under which classes of models are globally definable
by sets of universal formulas. From this we easily get a preservation result
for universal formulas, stated as Corollary 6.4. In the proof of Lemma 6.2,
which forms the key to the proof of Theorem 6.3, we make use of the following
lemma. (For a proof the reader is referred to [21]; this work also contains local
counterparts of the results of this section.)

Lemma 6.1 Let (M, w), (N, v) be unraveled pointed models with (M, w) ;

(N, v). Then there is an unraveled model (N′, v) such that (M, w) ⊆ (N′, v)
and a surjective bisimulation from (N, v) to (N′, v).

Lemma 6.2 For a set Φ of modal formulas the following are equivalent:

1. There is a set Ψ of universal formulas such that Mod(Φ) = Mod(Ψ).
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2. Mod(Φ) is closed under submodels.

Proof. For the implication from 1 to 2 we need to show that universal formulas
are preserved under submodels, which can be proved by an easy induction. For
the other direction, suppose Φ is a set of modal formulas such that Mod(Φ) is
closed under submodels. Define Ψ := {ψ ∈ Π | Φ |=g ψ}. We must show that
Ψ |=g Φ. So suppose M := (W,R, V ) is a model with M |= Ψ. It suffices to
prove that Φ holds in each point-generated submodel of M.

To see why this is enough, let M
′ be the disjoint union of the set of all point-

generated submodels of M. Now, suppose we have shown that Φ holds in each
point-generated submodel of M. Since Mod(Φ) is closed under disjoint unions,
this yields M

′ |= Φ. Moreover, it is easy to see that there exists a surjective
bisimulation from M

′ to M. By closure under surjective bisimulations we obtain
the desired result.

So, let w ∈W , and let Mw be the submodel of M which is generated by w.
Clearly, Mw |= Ψ. Our next aim is to show that there is a model Nw, generated
by a point v, such that Nw |= Φ and each existential formula true in (Mw, w)
also holds in (Nw, v). To do this, it is enough to show that the following two
sets Γ1 and Γ2 are simultaneously satisfiable:

Γ1 := {∀x(ST (ϕ)[x/c]) | ϕ ∈ Φ}

Γ2 := {ST (ψ) | ψ ∈ Σ, (Mw, w) 
 ψ}.

Suppose not. Then there are ψ1, . . . , ψn ∈ Σ with (Mw, w) 
 ψi, for i ≤ n, such
that Γ1 |=l ¬(ST (ψ1)∧· · ·∧ST (ψn)). Hence Γ1 |=l ¬ST (ψ1∧· · ·∧ψn). Let ψ :=
(ψ1∧· · ·∧ψn). Since Σ is closed under conjunctions, ψ ∈ Σ. Hence ST (ψ) ∈ Γ2.
Now, note that c does not occur in Γ1. So we obtain Γ1 |=g ∀x(¬ST (ψ)[x/c]),
hence Γ1 |=g ∀x(ST (¬ψ)[x/c]). The latter implies Φ |=g ψ

∗, where ψ∗ is the
negation normal form of ψ. Obviously, ψ∗ ∈ Π, hence ψ∗ ∈ Ψ, which contradicts
Mw |= Ψ. From this we can conclude that Γ1 ∪ Γ2 is satisfiable.

So there is a pointed model (Nw, v) with Nw |= Φ and such that for each
existential formula ψ, if (Mw, w) 
 ψ then (Nw, v) 
 ψ. Choose ω-saturated
elementary extensions (M′

w, w), (N′
w, v) of (Mw, w), (Nw, v) respectively. By

a standard argument we obtain (M′
w, w) ; (N′

w, v). Further, let (Mu
w, w),

(Nu
w, v) be the unraveling of (M′

w, w), (N′
w, v) respectively. It is easy to see

that (Mu
w, w) ; (Nu

w, v) holds. By an application of Lemma 6.1 we obtain
a pointed model (N, vw) with (Mu

w, w) ⊆ (N, v) and a surjective bisimulation
from (Nu

w, v) to (N, v). See Figure 1.

(Mw, w)
�

(M′
w, w) (Mu

w, w)
⊆

(N, vw)

; ; ∼

(Nw, v) (N′
w, v) (Nu

w, v)

Figure 1: A chain of models
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To conclude the proof, we argue as follows. By construction it holds that
Nw |= Φ, hence, by elementary extension, N

′
w |= Φ. Consider the submodel

N
′′ of N

′ that is point-generated by vw. Observe that the converse relation of
f(N′′,vw) forms a surjective bisimulation from N

′ to N
u. This, together with

Theorem 4.2, implies N
u
w |= Φ and, hence, N |= Φ. That Φ is preserved

under submodels implies M
u
w |= Φ. Again, by making use of the fact that

modal formulas are preserved under surjective bisimulations and elementary
extensions, we finally obtain Mw |= Φ. This concludes the proof. a

Theorem 6.3 A class K of models is definable by a set of universal formulas
iff K is closed under surjective bisimulations, disjoint unions, submodels and
ultraproducts.

Proof. Suppose K is globally definable by a set of universal formulas. Then
K satisfies the above closure conditions by Theorem 4.3 and Lemma 6.2. For
the other direction we reason as follows. Suppose K is closed under surjective
bisimulations, disjoint unions and ultraproducts. Since every model is (isomor-
phic to) a submodel of its ultrapowers, K is closed under ultrapowers as well.
Thus by Theorem 4.3 there is a set Ψ of modal formulas such that Mod(Ψ) = K.
Using the closure of K under submodels, an application of Lemma 6.2 concludes
the proof. a

Corollary 6.4 A modal formula ϕ is globally preserved under submodels iff
there is a universal formula ψ such that ϕ and ψ are true on exactly the same
models.

Proof. The claim of the corollary follows from Lemma 6.2 by compactness.
Recall that the set of universal formulas is closed under conjunction. a

We hasten to add that similar results also exist for positive, that is negation-free
formulas: formulas built up from proposition letters using only ∧, ∨, 3 and 2.
In particular, in Theorem 6.5 we give necessary and sufficient conditions for a
class of models K to be globally definable by a set of positive formulas.

In the following, a model N = (W ′, R′, V ′) is said to be a weak extension of
a model M = (W,R, V ), if W = W ′, R = R′, and V (pn) ⊆ V ′(pn), for every
n ∈ ω.

Theorem 6.5 A class K of models is definable by a set of positive formulas iff
K is closed under surjective bisimulations, disjoint unions, weak extensions and
ultraproducts, and K is closed under ultrapowers.

Proof. The proof closely resembles the proof of Theorem 6.3; hence, we only
give a brief sketch. For a start, one has to find a kind of bisimulations suitable
for positive formulas. These are positive bisimulations, where a relation Z is
said to be a positive bisimulation, if Z satisfies B2 and B3 from Definition 3.1
together with the following weakening of clause B1: for w ∈W , v ∈W ′, if Zwv
then (M, w) 
 pn implies (N, v) 
 pn, for every n ∈ ω. Then, one has to prove
the following statement (see [21]):
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Suppose (M, w), (N, v) are unraveled pointed models and Z is a
positive bisimulation from (M, w) to (N, v). Then there exist unrav-
eled models (M′, w), (N′, v) such that (N′, v) is a weak extension of
(M′, w), and there are surjective bisimulations from (M, w), (N, v)
to (M′, w), (N′, v) respectively.

Next, using this result, one can show that a set of modal formulas Φ is preserved
under weak extensions if and only if there is a set of positive formulas Ψ with
Mod(Ψ) = Mod(Φ). The characterization for positive classes then follows by
an easy argument, similar to the argument in the proof of Theorem 6.3. a

From this theorem we easily infer a preservation result for positive formulas:

Corollary 6.6 A modal formula ϕ is globally preserved under weak extensions
iff there is a positive formula ψ such that ϕ and ψ are true on exactly the same
models.

7 Concluding Remarks

In this paper we have presented a number of definability and preservation results
for (basic) modal logic. Contrary to common practice, we have emphasized the
global perspective. Of course, the above results can only be considered as
a modest beginning; a lot of work remains to be done. Our future research
should concentrate on the following aspects and questions.

First, what other local results (and tools) can be adapted to the global
setting? For example, consider existential formulas and try to prove results
in the spirit of Section 6. Note that, on the global level, a modal existential
formula like 3p does not translate into an existential first-order sentence, but
into a sentence with the prefix ∀∃. Another interesting task is to analyze modal
Horn formulas along the same line; for local results see [21].

Second, in recent years logicians have introduced bisimulations for a great
number of modal and modal-like languages and proved (local) definability re-
sults with respect to them. Examples are temporal languages with Since and
Until [15], description logics [17] and negation-free languages [16]. Many of the
results proved in these papers can be globalized along the lines followed in Sec-
tion 4. How far does this method go? In particular, does it also apply to modal
languages that live outside first-order logic, like PDL or infinitary languages?

Third, to go one step further, it would be worthwhile to look for a uniform
way of connecting the local and the global setting. Indeed, we have a general
result with respect to preservation, but it is not completely satisfactory. First,
it looks slightly proof-generated and, second, it makes use of the notion of ω-
saturated models which restricts its applicability to modal languages that lie
inside first-order logic. However, the result may serve as a good starting point
for further work.

In this context, Kracht and Wolter’s work on transfer results [13, 14] deserves
attention. They investigate the metalogical properties of modal logics, thereby
considering both levels, the local and the global one. Though they take a
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different perspective on modal logic — their aim is to explore the lattice of
normal modal logic — there are interesting connections between their research
and ours. This holds, in particular, when we no longer analyze definability with
respect to the class of all models only, but consider definability within certain
subclasses (induced by special frame properties) as well.

Fourth, we may also change tack, and try to match up the semantic oper-
ations that were used in this paper with syntactic characterizations in the fol-
lowing sense. Find syntactic characterizations for the classes of models closed
under surjective bisimulations, and establish a preservation result for surjective
bisimulations. Tackle analogous questions for disjoint unions as well.

The case of surjective bisimulations is fairly easy. By a standard argument
we are able to prove that a class K is

∨
-definable iff K is closed under surjective

bisimulations and ultraproducts, and K is closed under ultrapowers. Here,
by

∨
-definable we mean definable in the set Θ := {∀x(ST (ϕ1)[x/c]) ∨ · · · ∨

∀x(ST (ϕn)[x/c]) | ϕi ∈ ML}. The corresponding preservation result may
again be obtained as an immediate consequence. It tells us that a first-order
sentence (over τ \ {c}) is equivalent to some ϕ ∈ Θ if and only if it is preserved
under surjective bisimulations.

The case of disjoint unions turns out to be much harder. Van Benthem [3]
gave a characterization of the first-order sentences that are invariant under
disjoint unions. This result only considers the frame language, that is the first-
order vocabulary consisting of the relation symbol S and the identity symbol.
It is easy to turn van Benthem’s result into a result that characterizes the
sentences in the modal language, that is τ \ {c}, that are preserved under
disjoint unions. Moreover, by using techniques developed in the present paper,
we are able to give a similar characterization for the language we obtain by
dropping the identity symbol. Although this is a nice result, it strikes us as
not completely satisfactory. What we are after is a characterization of those
first-order sentences that are preserved — and not invariant — under disjoint
unions. The solution to this problem must be left to future research.

As a final point, we mention the connections that exist between the results in
this paper and work on the universal modality [8, 10]. These links are interesting
for a number of reasons. First, the global translations of ML-formulas are
expressible in the language with the universal modality. In general, the universal
modality makes it possible to talk about global properties from the local point of
view. Second, in [4] van Benthem formulated a preservation theorem that says
that a first-order sentence is equivalent to a modal formula from the universal
language if and only if it is preserved under total bisimulations. And third,
the algebraic criteria that were given in [10] for a class of generalized frames
to be definable in the language with universal modality may be adopted to the
level of models. This should lead to a characterization result in the style of
Hansoul’s theorem. Moreover, the latter result and van Benthem’s theorem
might be linked up in the spirit of our Theorem 5.6.
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