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A Lindstrom Theorem for Modal
Logic

MAARTEN DE RIJKE

ABSTRACT. A modal analogue of Lindstrém’s characterization of
first-order logic is proved. Basic modal logics are characterized as
the only modal logics that have a notion of finite rank, or, equiv-
alently, as the strongest modal logic whose formulas are preserved
under ultraproducts over w. Also, basic modal logic is the strongest
classical logic whose formulas are preserved under bisimulations and
ultraproducts over w.

1 Introduction

In the semantics of concurrent programs modal logics are used to give log-
ical descriptions of bisimulations and other notions of process equivalence
(Hennessy and Milner 1985). Hence, from a computational point of view it
is important to gain a thorough understanding of the relation between
modal logic and bisimulations. Independently, the connection between
equivalence relations on classes of models and notions of logical equiva-
lence is an important topic in abstract model theory (Barwise and Feferman
1985, Chapter XIX).

Van Benthem (1976) characterizes modal formulas as the fragment of
first-order logic whose formulas are preserved by bisimulations between
models. And De Rijke (1995) shows that two models are modally equival-
ent iff they have bisimilar ultrapowers. The present paper adds a further
characterization result to this list: it uses bisimulations to prove a modal
analogue of Lindstrém (1969)’s well-known characterization of first-order
logic.

Lindstrém’s result states that, given a suitable explication of a ‘classi-
cal logic’, first-order logic is the strongest logic to possess the Compactness
and Léwenheim-Skolem properties. To prove an analogous characteriza-
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tion result for modal logic we need to agree on a number of things. We
need to determine the logic we want to characterize; to this end we define
basic modal logic in §2 below. Next, we have to agree on a notion of ab-
stract modal logic; to this end we introduce bisimulations in §3. Then, in
§4, we isolate the property distinguishing basic modal logic in addition to
its invariance for bisimulations: the property of having a notion of finite
rank. In §5 a notion of abstract modal logic is defined; in this definition
bisimulations play an essential role. We then prove that basic modal logic
is the only modal logic that has a notion of finite rank in §6; we show
that this property is equivalent to preservation under ultraproducts over
w; as a corollary we find that an abstract classical logic coincides with basic
modal logic whenever its formulas are preserved under bisimulations and
ultraproducts over w. We conclude with some comments and questions.

2 Basic modal logic

When interpreted on models (as opposed to frames) modal formulas live
inside a fragment of first-order logic. So to specify a modal language we
need some notation from first-order logic. We use 7, 71, ... to denote (rela-
tional) vocabularies of classical languages; and for T a classical vocabulary,
a T-structure is a tuple of the form 2 = (A, R, ...), where A is a non-empty
domain, and the Rs interpret all the relation symbols in 7; Str[r] denotes
the class of 7-structures. We write R% to denote the interpretation of R in
the model 2.

Definition 2.1 (Languages) For 7 a classical vocabulary with unary pred-
icate symbols, the finitary basic modal language over 7 is the modal lan-
guage denoted BML(7) having proposition letters pg, p1, ... corresponding
to the unary predicate symbols in 7, and also having n-ary modal operators
# with patterns specifying their truth-conditions:

by = Ax. 3y ... 3z, (Rezr ... 2n A Pi(z1) A A Po(zn)),

for every (n + 1)-ary relation symbol R in 7. In addition BML(7) has the
usual Boolean connectives, and constants L and T.

The standard modal language is BML(7) where T only contains a single
binary predicate R (in addition to a collection of unary predicates); in the
standard modal language we write & (‘diamond’) rather than # for the
modal operator.

Definition 2.2 (Models) We interpret basic modal languages on 7-struc-
tures of the form (W, Ry, Rz, ..., P, Ps,...), where P;, P,, ... interpret
the proposition letters of the modal language. As usual we will let valua-
tions V take care of proposition letters; thus we will write (W, Ry, Ra, ..
V'), where V(p;) = P;. Then, the relation A, a = ¢ is defined as follows:

WAalEp iff a€V(p)

R
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AakEl if a#a
AakE=T if a=a
Wak-¢ iff Aalto
AaEony iff AakE¢ and AafEv
Aol #(fr,. . 0n) HE 3by .. by (Ruaby ... by AN (U, b; E ¢)).

As an aside, using the above truth definition, a translation ST can be
defined that takes modal formulas to formulas in the classical language in
which those patterns live. The translation ST maps proposition letters
onto unary predicates, it commutes with the Booleans, and to translate
modal operators it uses their patterns. The result is that for all modal
formulas ¢: (W,R1,Ra,...,V),a E ¢ iff (W,R1,Ry,...,V) E ST(¢)[q]
(Benthem 1976).

Convention 2.3 Throughout this paper models for modal languages are
always pointed models of the form (2, a), where 2 is a relational structure
and a is an element of A (its distinguished point) at which evaluation takes
place.

Our main reasons for adopting this convention are the following. First,
the basic semantic unit in modal logic simply is a structure together with
a distinguished node at which evaluation takes place. Second, some of
the results below admit smoother formulations when we adopt the local
perspective of pointed models. Of course, this local perspective dates back
(at least) to Kripke's original publication (Kripke 1963). The usual global
perspective (‘A & ¢ iff for all @ in A: A,a | ¢’) is obviously definable
using the local point of view.

3 Bisimulations

In this section we define bisimulations. One of the defining properties of
an abstract classical logic is the Isomorphism property which states that
it is impossible to distinguish isomorphic structures by means of formulas
from the abstract logic. In abstract modal logic this property is replaced
by a Bisimilarity property which states that bisimilar structures are be
indistinguishable by modal means. In addition to this, bisimulations will
play an important role below as a technical tool.

Definition 3.1 (Bisimulations) For 7 a classical vocabulary and 2, B €
Str[r], we say that (2,a) and (%B,d) are r-bisimilar, (&4,a) <, (*B,b),
if there exists a non-empty relation Z between the elements of 2 and B
(called a T-bisimulation, and written Z : (%,a) <, (B,b)) such that the
following hold.

1. Z links the distinguished points of (A, a) and (*B,b): Zab.
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2. For all unary predicate symbols P in 7 and ag in 2 and by in B,
Zagbg implies ay € P iff by € P3.

3. If Zagbo, ay,...,an € A and (ag,a1,...,a,) € R¥, then there are b,
..., by € B such that (b, by,...,b,) € R® and Za;b;, where 1 <i <
n and R is an (n + 1)-ary relation symbol in 7 (forth condition).

4. If Zagbo, by,...,b, € B and (bo,b1,...,b,) € R®, then there are
ai, ..., ap € A such that (ag,ai,...,an) € R% and Za;b;, where
1 <7 <nand Risan (n+1)-ary relation symbol in 7 (back condition).

Many familiar constructions on relational structures arise as special ex-
amples of bisimulations: isomorphisms, disjoint unions, p-morphism, and
generated submodels. For the first three the reader is referred to Gold-
blatt (1987) for definitions; as we will need generated submodels in the
sequel, we will define that construction here.

(™, a) is a generated submodel of (*B,b) whenever (i) a = b, (ii) the
domain of 2 is a subset of the domain of B, (iii) R is simply the restriction
of R® to %, and (iv) if ag € A and RBagby ...b,, then by,...,b, arein .
If X is a subset of the domain of 2, then the submodel generated by X is
the smallest generated submodel of 2 whose domain includes X; if X is a
singleton {a} we simply refer to the submodel generated by a rather than
{a}. If (A, a) is a generated submodel of (%B,b), there is a 7-bisimulation
Z: (Y, a) 2, (B,b) defined by Zzy iff z = y.

Definition 3.2 (In-degree) For A a model, ¢ in &, the in-degree of c is
HaeA<| JReT,i>1(c=a; and R¥a; ...a;...a,) }|.

Thus, the in-degree of ¢ is the number of times it occurs as an argument
in a relation: Rz...c....

Definition 3.3 (Depth) The second notion we need measures the distance
from a given element in a model to its distinguished point. Let (%, a) be a
T-structure; the 7-hulls H around a are defined as follows

o H(2,a) = {a},
o H?*1(A,a) = HM™A,a) U {bin A | for some R € 7, u € H*(U,a)
and vy,...,v, in 2A: b is one of the v; and R¥uv; ...v,}.

So, the 7-hull H} around a contains all elements in % that can be reached
from a in at most n relational steps.

For ¢ in (%, a), the depth of ¢ in (2,a) is the smallest n such that
¢ € H*(2, a).

For n € w, the model (& [ n,a) is the restriction of (A, a) to points of
depth m; it is defined as the submodel of (2, a) whose domain is H™(, a).

Below we will want to get models that have nice properties, such as a
low in-degree or finite depth for each of its elements. To obtain such models
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the notion of forcing comes in handy. Fix a vocabulary 7. A property P of
models is <, -enforceable, or enforceable, iff for every (2, a) € Str[r], there
is a (*B, b) € Str[r] with (¥,a) =, (B,b) and (B, b) has P.

Proposition 3.4 The property “every element has finite depth” is enforce-
able.

Proof. Let % € Str[r]. Let (*B,a) be the submodel of % whose do-
main is |J, H*(™,a). In (B, a) every element has finite depth. Moreover,
(A, a) 2, (B, a). O

Proposition 3.5 below generalizes the unraveling construction from stan-
dard modal logic with a single diamond ¢ (Sahlqvist 1975) to arbitrary
vocabularies.

Proposition 3.5 The property “every element has in-degree at most 1 is
enforceable.

Proof. We may assume that (2,a) is generated by a. Expand 7 to a
vocabulary 7 that has constants ¢ for all elements ¢ in 2. Define a path
conjunction to be a first-order formula that is a conjunction of closed atomic
formulas (over 71) taken from the smallest set X such that
(i) a=aisin X;
(ii) (@ = @) A Racy ...¢, is in X for any R and ci,...,cn such that
R%acy .. .cn:
(iti) if @ A RE¢; ...%p is in X and for some S and 4, S%¢;d; .. .dn, then
the conjunction a A RZ; ...%n A SCid; .. .dm is in X.

A path conjunction o = o' A Sddy ...d,, is admissible for a constant ¢ in
7+ \ 7 if ¢ is one of the d; occurring in the last conjunct of a.

Define a model 8 whose domain contains, for every constant ¢in 7%\,
a copy Cq, for every « that is admissible for ¢. Define

R®zc, .. iff ay=...=an=aARe ...T"
And define a valuation V' on B by putting ¢, € V'(p) iff ¢ € V(p). Finally,
define a relation Z between 2 and B by putting Zzy iff y = z, for some

path conjunction a. Then Z : (%, a) 2, (B, az=7)- a

A short historical note to conclude this section: in modal logic bisim-
ulations were introduced by Van Benthem (1976) as p-relations. In the
computational tradition bisimulations date back to Park (1981). In essence
bisimulations are trimmed down versions of the Ehrenfeucht-Fraissé games
found in classical logic (Barwise and Feferman 1985). Further references,
on modal and computational aspects of bisimulations, can be found in Van
Benthem and Bergstra (1993).
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4 Properties of basic modal logic

We will characterize basic modal logic by showing that it is the only modal
logic satisfying a modal counterpart of the original Lindstrém conditions:
having a notion of finite rank. First, we need to show that modal formulas
are invariant under bisimulations.

For BML(7) a basic modal language over 7, let (A, a) =gac(-) (B, d)
denote that (2U,a) and (*B,b) satisfy the same BML(7)-formulas.

Proposition 4.1 Let 7 be a classical vocabulary, and let BML(T) be a
basic modal language over 7. Then €. C =pamc(r)-

One of the distinguishing features of basic modal logic is that it has a
notion of finite rank which gives a fixed upperbound on the depth of the
elements that need to be considered to verify a formula.

Definition 4.2 (Basic modal rank) Define the rank of a basic modal for-
mula, rank(¢), as follows:

rank(p) = 0
rank(-¢) = rank(¢p)
rank(p A¢) = max({rank(¢),rank(y)})

rank(#(¢1,...,¢n)) 1 + max{rank(¢;) | 1 <i < n}.

Proposition 4.3 Let ¢ be a basic modal formula with rank(¢) < n. Then
(&L a) ¢ iff (A Tn,a) ¢

We write (2, a) =Bmc(n) (B, b) for (2, a) and (*B,b) verify the same
BML(7)-formulas of rank at most n.

Lemma 4.4 Let 7 be a finite vocabulary. Then, modulo logical equivalence,
there are only finitely many basic modal formulas with o fized finite rank.

Proof. The proof is by a induction on rank. For n = 0, there are only
finitely many proposition letters. For the induction step, choose a set ¥
of modal formulas of rank < n such that every every such formula has
an equivalent in 3. Now consider disjunctive normal forms over ‘atoms’
#1(0110 - Omi)s o #Fr(Drys oo, Pmy ), where all @5 are in T and the #;,

.., # are all the modal operators in the finite language. O

Proposition 4.5 Let 7 be a finite vocabulary. Let (/,a), (B,b) be two
models such that every element has in-degree at most 1 and depth at most
n. If (A, a) =G pr (B, ), then (A,a) =, (B,b).

Proof. Define Z C A x B by

zZy iff depth(z) =depth(y) =m and (%, x) EE;}Z(T) (B, v).

We claim that Z : (U, a) 2, (B,b). To prove this, we only show the forth
condition. Assume zZy and R¥zz;...x1s, where depth(z) = depth(y) =
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m. Then n —m > 1. Let # be the modal operator whose semantics is
based on R.

As 7 is finite there are only finitely many non-equivalent formulas of
rank at most n—m—1. Let 1); be the conjunction of all non-equivalent basic
modal formulas of rank at most n — m — 1 that are true at z; (1 <1 < k).
Then (A, z) = #(¥1,...,%k) and #(¢1,...,%:) has rank n — m. Hence,
as 22y, (B,,y) E #(%1,...,¥x). So there exist vy, ..., yx in B such that
R‘Byyl Yk and (%,yi) l': 'lpz (1 <1< k)

Now, as all states have in-degree at most 1, depth(z;) = depth(y;) =
m+1 and (2, z;) 571;7\/(112(2) (B,y:) (1 <i < k). Hence (A, 2;) 2, (B, v:)-
This proves the forth condition. a

5 Abstract modal logic

Lindstréom’s Theorem starts from a definition of an abstract classical logic
as a pair (£, =¢) consisting of a set of formulas £ and a satisfaction relation
=, between L-structures and L-formulas that satisfies three ‘book keeping’
conditions, an Isomorphism property, and a Relativization property which
allows one to consider definable submodels (cf. Chang and Keisler Chang
and Keisler 1973, Definition 2.5.1). Then, an abstract logic extending first-
order logic coincides with first-order logic iff it satisfies the Compactness
and Lowenheim-Skolem properties. We will now set up our modal analogue
of Lindstrdm’s Theorem along similar lines.

Somewhat analogous to an abstract classical logic an abstract modal
logic is characterized by three properties: two book keeping properties,
and a Bisimilarity property to replace the Isomorphism property.

Definition 5.1 (Abstract modal logic) An abstract modal logic is a pair
(L, =) with the following properties; £ is its set of formulas, and =, is
its satisfaction relation, that is, a relation between (pointed) models and
L-formulas.

(i) Occurrence property. For each ¢ in L there is an associated finite lan-
guage L£(74). The relation (%, a) = ¢ is a relation between L-formulas ¢
and structures (2, a) for languages £ containing £(74). That is, if ¢ is in
L, and 2 is an £-model, then the statement (2,a) ¢ ¢ is either true or
false if £ contains £(74), and undefined otherwise.
(ii) Ezpansion property. The relation (2,a) =r ¢ depends only on the
reduct of 2 to £(74). That is, if (%,a) =z ¢ and (B,a) is an expansion of
(2, a) to a larger language, then (B,b) =, ¢.
(iii) Bisimilarity property. The relation (%,a) |=c ¢ is preserved under
basic bisimulations: if (2,a) €, (B,b) and (%, a) ¢ ¢, then (B,b) ¢ ¢
A few remarks are in order. First, to define an abstract modal logic
we only need two bookkeeping properties (the Occurrence and Expansion
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properties), whereas more are usually needed to define an abstract classical
logic; in particular we don’t need modal counterparts of the Renaming and
Relativization properties (Barwise and Feferman 1985, pages 27-31, Chang
and Keisler 1973, page 128).

Comparing the above definition to the list of properties defining an
abstract classical logic, we see that it’s the Bisimilarity property that de-
termines the modal character of an abstract modal logic.

Remark 5.2 Recall that Propositional Dynamic Logic (PDL) has modal
operators (a), where o is taken from some index set, and z = (a)¢ iff
for some y, both R,zy and y = ¢. Thus the pattern for modal operators
(a) is just the basic modal one from Definition 2.1. PDL-formulas are
preserved under bisimulations that respect all the relations R,. So PDL
is an example of an abstract modal logic.

The language of standard temporal logic has operators F', with z = F¢
iff for some y, both Rry and y = ¢, and P, with z = P¢ iff for some y,
both Ryz and y = ¢. The pattern for F' is just a basic modal pattern in
the sense of Definition 2.1, but the one for P isn’t. As this language ‘looks
back and forth’ along the relation R it violates the Bisimilarity property,
hence it is not a abstract modal logic.

Next, we need to say what we mean by ‘(L, ) extends basic modal
logic’ and by closure under negation.

Definition 5.3 We say that (L, =) extends basic modal logic if for every
basic modal formula there exists an equivalent C-formula, that is, if for
each basic modal formula ¢ there exists an £-formula 4 such that for any
model (2, a), (A,a) E ¢ iff (A, a) ¢ ¥.

We say that (£,}=c) is closed under negation if for all L-formulas ¢
there exists an L£-formula —¢ such that for all models (2, a), (U, a) = ¢ iff
(,a) I 9.

PDL is an example of an abstract modal logic that extends basic modal
logic.

Logics in the sense of Definition 5.1 deal with the same class of pointed
models as basic modal logic, and only the formulas and satisfaction relation
may be different. This implies, for example, that intuitionistic logic or the
nominal modal logic of (Blackburn 1993), whose repertoire contains special
proposition symbols, is not an abstract modal logic: their models need
to satisfy special constraints. The original Lindstrém characterization of
first-order logic suffers from similar limitations (by not allowing w-logic as
a logic, for example).

We will use the property of having a finite rank to single out the (finitary)
basic modal language BML among its extensions.



