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Abstract. Peirce algebras combine sets, relations and various operations linking the two in a unifying 
setting. This paper offers a modal perspective on Peirce algebras. Using modal logic a characterization 
of the full Peirce algebras is given, as well as a finite axiomatization of their equational theory that uses 
so-called unorthodox derivation rules. In addition, the expressive power of Peirce algebras is analyzed 
through their connection with first-order logic, and the fragment of first-order logic corresponding to 
Peirce algebras is described in terms of bisimulations. 
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1. Introduction 

This paper is part of an enterprise to relate modal languages, algebraic languages, 
and fragments of first-order logic. We will take a fragment of first-order logic for 
reasoning about binary relations, sets and certain interactions between them, and 
consider the algebraic framework of Peirce algebras that has recently been designed 
to capture this fragment (Brink (1994)). We will show how Peirce algebras arise as 
algebraic counterparts of a two-sorted modal language AA s this language extends 
the modal formalism UU(5 that was designed by Venema (1991) to reason about 
binary relations. In .ML;2 one can characterize the 'concrete' modal frames corre- 
sponding to full Peirce algebras (see De Rijke (1994)). Using this characterization 
we obtain a completeness result for 'concrete' frames. The reason why we work 
in the modal language .ML;2 rather than in its algebraic or first-order counterpart 
is that it allows us to reason with simple pictures and diagrams, and that powerful 
techniques for proving modal completeness in rich modal languages have recently 
become available through results of Venema (1993). Moreover, via the notion of 
bisimulation the modal perspective offers a new method for thinking about the 
expressive power of certain algebraic theories. 

In the paper we move back and forth between algebraic logic, modal logic 
and first-order logic. Although we focus on Peirce algebras as our starting point, 
we hope that the general message will become clear: to understand fragments of 
first-order logic it may be very fruitful to view them either as modal or algebraic 
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Fig. 1. 

First-order logic 

Algebraic logic / / ~  ~ Modal logic 

languages, and to understand these one can often exploit known results from each 
of the vertices in Figure 1. 

The paper is organized as follows. The next section quickly reviews basic alge- 
braic definitions; it also describes areas where Peirce algebras emerge. Section 3 
briefly discusses the relation between relation algebra and Peirce algebras. Sec- 
tion 4 introduces the modal language .A4Z:2 for describing the modal counterparts 
of Peirce algebras. Section 5 quickly recalls a characterization of the 'real' or 
'concrete' modal frames (corresponding to full Peirce algebras) given elsewhere, 
and Section 6 builds on this characterization to give a finite axiomatization of these 
concrete frames. Section 7 examines the relation between first-order logic and the 
modal language A4Z~2, and Section 8 concludes with some questions. 

2. Preliminaries 

Peirce algebras have emerged as the common mathematical structures underlying 
many phenomena being studied in program semantics, AI and natural language 
analysis; they are also the modal algebras underlying the dynamic modal logic 
studied in De Rijke (1992b). Peirce algebras are two-sorted algebras in which 
sets and relations co-exist together with operations between them that model their 
interaction. The most important such operations considered here are the Peirce 
product: that takes a relation and a set, and returns a set 

R: A= {x l 3Y((x,y) � 9 1 4 9  

and right cylindrification c which takes a set and returns a relation 

dC={(x,y) DxeA}. 

In this section we define Peirce algebras, and list some application areas where 
they arise. Let U be a set; Re(U) is {R I R C_ U x U}. R, S typically denote 
elements of Re(U), while A, B typically denote elements of 2 U, the power set of 
U. 

Recall the following operations on elements of Re(U). 
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top IV ] {(r,s) E (U x U)[r,s ~ U} 

complement [ - R  [{(r,s) E (U x U) l(r,s) ~ R} 

oonverse In- '  1((~, ~) c (u x U)I (~,~) ~ R} 

diagonal l id  [ {(r,s) E (V • V) lr = s} 

composition ]RI s I e (u  x u)  ((r, e n A e s)} 

We also consider the following operations from Re(U) and Re(U) • 2 U to 2 U 

domain ]do(R) I{x E U]3y E U((x,y) e R)} 

range Ira(R) [ { x E U I 3 Y E U ( ( y , x )  ER)} 

Peirceproduct ] R : A  I { x e U I 3 Y E U ( ( x ' y )  E R A y E A ) } '  

as well as the following operations going from 2 U to Re(U) 

tests [A? I{(x'Y) E ( U •  

right A c ((x,y) E (U x U) Ix E A}. 
cylindrificafion 

A relation type algebra is a Boolean algebra with a binary operation ;, a 
unary operation ", and a constant 1'. The class FRA of full relation algebras 
consists of all relation type algebras isomorphic to an algebra of the form ~ ( U )  = 
(Re(U), U, - ,  ],-1, Id). RRA is the class of representable relation algebras, that 
is, the class of subalgebras of products of algebras in FRA; so RRA = SP(FRA) 
(by a result due to Birkhoff RRA is also closed under homomorphic images: 
RRA = HSP(FRA)) .*  Furthermore, RA is the class of relation algebras, that is, 
of relation type algebras 9 / =  (A, + , - ,  ;, ", 1 ') satisfying the axioms 

(R0) (A, +, - )  is a Boolean algebra (R5) x; 1' = x = 1'; x 
(R1) ( x + y ) ; z = x ; z + y ; z  (R6) ( x ' ) ' = x  
(R2) (x + y)" = z" + y" (R7) (x; y)" = y'; x" 
(R4) (z;y);z = x;(y;z) (R8) z ' ; - ( x ; y )  ___ -y .  

The reader is referred to J6nsson (1982; 1991) for the essentials on relation alge- 
bra. 

A Peirce type algebra is a two-sorted algebra (f13, ~ ,  :, c), where f13 is a Boolean 
algebra, 9~ is a relation type algebra, : is a function from 9~ • f13 to f13, and c : f13 ~ fit. 
The class FPA of full Peirce algebras consists of all Peirce type algebras isomorphic 
to an algebra of the form 

~ ( U )  = ((2 U, U, - ,  0), (Re(U), U, - , -1 ,  I, Id), :, c). 

* The reader is referred to any standard text on universal algebra for further details, e.g., Burris 
and Sankappanavar (1981). 
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The class RPA of representable Peirce algebras is defined as RPA = HSP(FPA) ,  
the variety generated by FPA. PA is the class of Peirce algebras, that is of all 
Peirce type algebras 9.1 = (f13, 91, :, c) where ~ is a Boolean algebra, 91 is a relation 
algebra, : is a mapping 91 x ~ ~ ~ such that 

(P1) r : ( a + b ) = ( r : a ) + ( r : b )  (P4) l ' : a = a  
(P2) ( r + s ) : a = ( r : a ) + ( s : a )  (P5) O : a = O  
(P3) r : ( s : a ) = ( r ; s ) : a  (P6) r ~ : - ( r  : a) _< - a ,  

while c is a mapping ~ ---, 91 such that 

(P7) a c : 1 = a (P8) ( r : l ) C = r ; 1 .  

Algebras of the form (f13, 91, :) were introduced by Brink (1981) as Boolean mod- 
ules. Sources for Peirce algebras are Brink, Britz and Schmidt (1994) and Schmidt 
(1993). 

Unlike the one-sorted language of relation algebras, the algebraic language of 
Peirce algebras has two sorts of terms: one interpreted in f13, the other in 9l. Terms of 
the first sort are called set terms, terms of the second sort relation terms. Identities 
between set terms are called set identities; identifies between relation terms are 
relation identities. 

Brink et al. (1994) link Peirce algebras to dynamic algebras. Like Peirce algebras 
these are two-sorted algebras of sets and relations, but their relations are organized 
in a Kleene algebra, not in a relation algebra. It may be shown that any join-complete 
Peirce algebra gives rise to a dynamic algebra. 

Another class of algebras closely related to Peirce algebras, is the class of 
extended relation algebras studied by Suppes (1976). Roughly, these are term- 
definably equivalent with Peirce algebras in which the sortal distinctions have 
been dropped. 

WHERE PEIRCE ALGEBRAS EMERGE 

In a number of areas frameworks are studied that have Peirce algebras in common 
as their underlying mathematical structures: knowledge representation, natural 
language analysis, weakest prespecifications, arrow logic, and modal logic. 

In terminological languages one expresses information about hierarchies of 
concepts. They allow the definition of concepts and roles built out of primitive 
concepts and roles using various language constructs. Concepts are interpreted as 
sets, and roles as binary relations. Brink et al. (1994) propose a terminological 
language/4-  whose operations are a notational variant of the operations of (full) 
Peirce algebras. For instance, L/- has an operation restrict that takes a relation and 
a set and returns a relation: (restrict R C) = {(x, y) I (x, y) E R A ff E C}. As 
5/-  and (full) Peirce algebras share the same ontology, and the same operations, 
Peirce algebras supply a semantic interpretation for the terminological language 
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L/-, in which the basic terminological concerns, viz. subsumption and satisfiability 
problems, re-appear as derivability issues in equational logic. 

The next example involves the extended relation algebras mentioned earlier; 
as Suppes (1976) and B/3ttner (1992) show, those structures arise in attempts to 
equip fragments of natural language with variable free semantics. I will illustrate 
the main point with an example from Schmidt (1993). Consider a natural language 
fragment described by a phrase structure grammar G as in the left-hand side of 
(1), where S, NP, VP, TV, PN have their usual meaning: 'sentence,' 'noun phrase,' 
'verb phrase,' 'transitive verb' and 'proper noun.' 

s + v v  [m,] _ IVy] 
v v  Tv  + [a'v] : 

vN [vN]. 
(1) 

Production rules in the grammar are associated with a semantic function [.] in 
a compositional way as indicated in the right-hand side of (1). In other words, 
semantic trees are construed in parallel with syntactic derivation trees. The semantic 
trees are linked to extended relation algebras via a valuation that maps terminal 
symbols of G onto an element of the algebra, where nouns are mapped onto sets 
and transitive verbs onto binary relations, thus equipping our natural language 
fragment with a variable free semantics. 

The use of relation algebra in proving properties of programs goes back at least 
to De Bakker and De Roever (1973). The calculus of weakest prespecifications 
of Hoare and He (1987) is used as a formal tool in program specification. In 
this calculus programs are binary relations that may be combined using relation 
algebraic connectives. A special class of relations is called conditions; they express 
conditional statements, and are defined as the right ideal elements, that is, elements 
R for which R = R; V. As the right ideal elements form a Boolean algebra, the 
natural algebraic setting for the calculus of weakest prespecifications is a Peirce 
algebra with programs living in a relation algebra, conditions living in a separate 
Boolean algebra, and c and : being used to move across from one to the other, cf. 
Brink et al. (1994). 

Arrow logic arises as an effort to do transition logic without the computational 
complexity that comes with transition logics based on the identification of transi- 
tions as ordered pairs. Instead, arrow logic as developed by Van Benthem (1991) 
takes transitions seriously as dynamic objects in their own right. The general pro- 
gram proposes a re-design of systems of transition logic to isolate the genuine 
computational aspects from the mathematical modeling aspects. Van Benthem 
(1994) contains samples of this program; in particular, it discusses a two-sorted 
arrow logic whose models have both states and arrows, and whose formulas are 
sorted accordingly. The models of this (decidable) arrow logic may be viewed as 
an 'arraw-ized' version of our Peirce algebras; the decidability result is obtained 
by abstracting away from any set-theoretical assumptions concerning objects and 
operations of Peirce algebras. For instance, a test q~? is successfully performed at 
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an arrow xa if there exists a state ys that is 'test-related' to Xa and which satisfies 
r Xa ~ r iff for some state Ys, Txays  and ys ~ r 

In the setting of information processing Van Benthem (1994) and De Rijke 
(1992b) study a system of dynamic modal logic called DML. DML is similar to 
propositional dynamic logic (PDL) in that it has formulas and procedures. The 
formulas r and programs a of DML are built up as follows 

r ::= p I _L-~r I r A r I do(a) [ ra(a) I fix(o~) and 

a ::= e x p ( r  I ~" I ~n~ I~;~  Ir 9. 

Here exp(r is the special relation of 'expanding one's information with r and 
fix(a) is formula that is true precisely at fixed points for a. Like PDL, DML 
only allows equational reasoning with formulas - not with programs. The modal 
algebras for DML are Peirce algebras over a single relation, the information order 
underlying the exp construct. To obtain a proper match one has to allow multiple 
exp constructs, each with its own underlying information order. The corresponding 
structures give rise to full Peirce algebras, and conversely. Moreover, the (extended) 
DML-operators are definable in full Peirce algebras, and the operators of full Peirce 
algebras are definable on DML-models: 

DML[ do(a) l exm(r r 

FPA l(V:a) l(IZi:r162 ~NId 

FPA I ~ : r  r 

DML [ do(a; r r (6 u -(6)). 

This implies that the complete axiomatization of DML structures presented in De 
Rijke (1992b) also generates the 'set equations' valid in FPA. 

3. Peirce algebras and relation algebras 

Brink et al. (1994) show that the equivalence ' r  : a = b iff r; a c = b c' holds for 
all Peirce algebras; they also show that the Boolean elements in a Peirce algebra 
are precisely the right ideal elements, that is the elements satisfying r = r; 1: 

THEOREM 3.1 (Brink et al. (1994)) Let (fl~,9~, :, c) be a Peirce algebra. Then 
and ({r E R [ r = r; 1}, + , . , - , 0 ,  1) are isomorphic. 

This result has a number of consequences. On the face of it, it seems to suggest 
that Peirce algebras are not required to study interactions between sets and relations: 
relation algebras suffice. However, following Brink et al. (1994) we argue that for 
application purposes, Peirce algebras are the more natural framework for modeling 
such interactions. Consider terminological reasoning. Peirce algebras are not just 
a mathematical framework; they model the application domain with great clarity. 
Viewing terminological reasoning in terms of right ideal elements adds nothing 
comparable. 
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But one can also make a mathemat ica l  case for Peirce algebras. For example, 
as is well known, there is no mathematical need to work with Boolean algebras 
- one can work with Boolean rings instead. But no one would deny that thinking 
of Boolean algebras in non-ring-theoretic terms has been very useful. Moreover, 
Peirce algebras have a very natural representation theory: the usual representa- 
tion techniques in relation algebra and arrow logic usually extract points from (a 
Cartesian product of) the diagonal to obtain a base set over which a full algebra 
can be built; Peirce algebras have all the required points available in their Boolean 
reduct, thus allowing for a very direct representation result - see De Rijke (1994) 
for details. Finally, the fact that one can reduce one theory to another does not 
prove that one should  abandon the former theory in favour of the latter. 

Theorem 3.1 certainly has interesting logical consequences: representable Peirce 
algebras cannot be finitely axiomatized. The idea is that any finite axiomatization of 
representable Peirce algebras would yield a finite axiomatization of representable 
relation algebras, and by Lyndon (1950) this is impossible. Assume that E is a 
finite axiomatization of RPA. E may contain set identities a = b; replace these 
by relation identities a c = b c - by Brink et  al. (1994) the first identity is valid 
(and hence derivable) iff the latter is. So we may assume that E contains only 
relation identities. These may still contain occurrences of the Peirce product or 
of the cylindrification operator; to obtain purely relational axioms we need to get 
rid of such occurrences. By Brink et  al. (1994), cylindrification commutes with 
all operations; in particular, (r : a) ~ = r; a ~. Further, as all identities in E are 
assumed to be relational, every occurrence of:  is in the scope of a c. Using this we 
can remove all occurrences of :, and push all occurrences of c down to the atomic 
level. 

Let s = t be a relation identity thus transformed. Using the fact that the Boolean 
elements are precisely the right ideal elements (Theorem 3.1), we translate s = t 
into a quasi-identity of the form 

r~: : r ~ ; 1  & . . .  & r~. = r~,;1 --+ [ r a l / a l c , . . .  ,ra~/anC](8 - ~  t ) ,  

where al ,  . . . ,  an are all the Boolean terms occurring in s = t, and r a l ,  . . . ,  ran 

are fresh relation terms. 
This results in a finite axiomatization of R RA by means of quasi-identities. Now 

RRA is a discriminator variety, and by general results from universal algebra, in 
discriminator varieties every quasi-identity is equivalent to an identity (Burris and 
Sankappanavar (1981)). Hence, we have obtained a finite axiomatization of R RA 
by means of identities - the desired contradiction. Thus, we conclude that RPA is 
not finitely axiomatizable. 

4. M o d a l i z i n g  Pe irce  a lgebras  

Our first goal in this section is to briefly review the equational theory of modal 
logic. We do this by introducing a modal language for Peirce algebras. On the face 



234 

TABLE I. A plethora of notations. 
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relations 
top 
bottom 
diagonal 
complement 
converse 
union 
implication 
composition 

Full version Abstract version Modal version 

R , S  

V 
0 
Id 

- -1  

U 

I 

1 
0 
1' 

+ 

~,f3 
1 

0 
6 

| 

U 

0 

sets 
top 
bottom 
complement 
union 
implication 

A , B  
T 
• 

O 
_..+ 

a,b 

1 
0 

+ 

r162 
T 
• 

- '1  

V 
- . . +  

right cylindrification c cl ~. 
Peirce product : : (.). 

of it this may seem like a detour; however, by the end of the section it will be clear 
that this is actually a very effective route towards our goal of determining the logic 
of Peirce algebras. Table I lists the notation we adopt. 

DEFINITION 4.1. Let �9 = {P0, P 1 , . . .  } be a countable set of propositional vari- 
ables. Let f~ be a countable set of atomic relation symbols. The formulas of the 
two-sorted language .Ms | o, (>, ~; ~; f~), or .AAE2 for short, are generated 
by the rules 

r ::= _1_ I T I P I -~r I r A 02 I (OZ>0 and 

o~ ::= 0 { 1 {6la }-o~ {oq n oe2 { Ooe l~l o ~2 l I~. 

The first sort of formulas will be interpreted as sets and called set formulas; for- 
mulas of the second sort will be interpreted as relations and called relation formulas. 

DEFINITION 4.2. A two-sorted frame is a tuple ~ = (Ws, Wr, I,  R, C, F ,  
P), where Ws N Wr = 0, I C_ Wr, R c_ 2Wr, C C_ 3W~, F C_ W~ • Ws, and 
P C W ~ • 2 1 5  

Given a set U, a two-sorted frame is called the two-sorted Peirceframe over U 
if, for some base set U, W~ = U and Wr = U • U, and 

I= e u• 
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R = {((Ul,Vl) , ( i t2 ,  V2) ) e 2(U x U) IUl = v2 A u2 = Vl} 

C = {((Ttl,Vl),(zt2,v2),(~t3, v3) ) 

3(u x u)  I Ul = u2 A v~ = ~3 /~ v2 = ~3} 

F = {((?~l,Vl),U2) e (U x U) x U l u  1 = u 2 }  

P -- {(Ul,(U2, v2),u3) E U x (V x U) x V I Ul = u 2 A v  2 = u3}. 

The class of two-sorted Peirce frames is denoted by TPF.  
A model for 34/22 is a model based on a two-sorted frame, that is, a structure 

93l = (3, V) where 3 is a two-sorted frame, and V is a two-sorted valuation, a 
function assigning subsets of Ws to set variables, and subsets of W~ to relation 
variables. Truth of a formula at a state is defined inductively, with the interesting 
clauses being 

~ , x ~ 5  i f f x ~ C I  

~ , x ~  p |  iee 3y, (Rx~y, A y~ ~ ~) 

9)I, xs p (c~)r iff 3y~z, (Px,yrZs A Yr P c~ A zs p r 

Here xs, Ys, . . .  are taken from Ws; x~, Yr, . . .  are taken from Wr. 
In models based on Peirce frames all the modal connectives receive their 

intended interpretation. That is, one has (u, v) ~ 5 iff u = v; (u, v) ~ | 
i f f ( v ,u )  ~ a ; ( u , v )  ~ a o f l i f f 3 w ( ( u , w )  ~ o ~ A ( w , v )  ~ f l ) ; u  ~ ( a ) r  
3v ((~,~) p ~A v p r and (~,v) p Ir iff,, P r 

Remark 4.3. We adopt a local perspective on satisfiability and consequence. 
The two-sorted setting of this paper calls for some comments. To avoid messy 
complications we define consequence only for one-sorted sets of formulas E, and 
formulas ~ of the same sort (compare Section 6.1). For K a class of frames we put 
E ~K ~ iff for all models (3, V) with 3 E K, and for every element x in 3 of the 
appropriate sort: 

(3, V), x ~ P, implies (3, V), x ~ ~. 

For one-sorted sets of formulas, notions like satisfiability are defined as usual. 

To be able to state the connection between two-sorted Peirce frames and Peirce 
algebras, we recall that the complex algebra ~ra 3 of a two-sorted frame 3 is given 
as ~ = ((2 Ws, - ,  f'l, 0, Ws), (2 W~ , - ,  N, m6, m| rno, 0, Wr), m 0 , rni),  where, 
for # an n-ary modal operator, m# is an n-ary operator on the power set(s) of the 
appropriate domain(s) of 3. To be precise 

m~ = {x~ [x~ ex}  
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= 

m o ( X , Y )  = 
= 

m i ( X )  = 

13y (Rx y  A �9 X)} 

13y,(Fx y,A y, �9 X)}. 

For K a class of frames Cm(K) is the class of complex algebras of frames in K. 
The following justifies our introduction of TPF and the modal language A4s 

as tools for understanding full Peirce algebras: if ~ is a two-sorted frame, then 
is a Peirce frame (or: in TPF) iff ~m~ is (isomorphic) to a full Peirce algebra. In 
other words: Cm(TPF)  = FPA. Thus, instead of studying full Peirce algebras by 
algebraic means we can as well study two-sorted Peirce frames by modal means. 

However, Peirce frames can not be characterized in A4L:2; the reason is that 
F PA = C m (T P F) is not a variety as it is not closed under products or subalgebras. 
However, if we are wiling to extend the modal language, a characterization can be 
obtained. 

More precisely, to characterize the Peirce frames we will use special modal 
operators called difference operators; their special feature is that they are interpreted 
using the diversity relation ~,  one for each domain in a two-sorted frame. We use 
D~ and D~ to denote them: 

x8 ~ Dsr ifffor some gs r xs, y~ ~ r where xs, Ys E W~ 
x~ ~ D~a iff for some y~ ~ x~, y~ ~ a where x~, y~ �9 W~. 

Using the difference operators we can define other useful operators such as E, where 
E (  := ~ V D~ (there exists an object with ~), and O, where O( = E( (  A ~D~) 
(there is only one object with (); these defined operators will be indexed with an 
s or an r. The reader is referred to De Rijke (1992a) for details about logics with 
difference operators. 

Observe that on Peirce frames the difference operators can be defined as fol- 
lows 

Dtsr  ( -5 ) r  and D~rc~:= ( - 5 o c ~ o  1) 1 3 ( l o c ~ o - 6 ) .  

5. Characterizing Peirce frames 

As a prelude to the completeness result for two-sorted Peirce frames, we briefly 
present a characterization of two-sorted Peirce frames; we refer the reader to De 
Rijke (1994) for proofs and details. We proceed in two steps. 

In the first step we characterize a class of Peirce like frames. We need a number 
of axioms governing the structure of Peirce frames. We first list the modal axioms 
handling the relational component of two-sorted frames plus the conditions they 
impose on such frames; they are simply the modal counterparts of the earlier relation 
algebraic axioms (R1)-(R8), and the corresponding conditions have been calculated 
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by Lyndon (1950) and Maddux (1982). We then list the modal counterparts of  the 
Peirce axioms (P1)-(P8), and calculate the corresponding conditions on frames. 
(Recall that a first-order condition 7 is said to correspond to a modal formula ~ if 
for all frames ~, ~ ~ 7 iff ~ ~ ~; if 7 corresponds to (, we also say that ~ defines 
or expresses %) 

The first axiom states that R, the interpretation of | is a function; this is proved 
by standard arguments. 

(MR0) | ~ - |  (CR0) R is a function 

So, in frames validating (MR0) we are justified in interpreting | using a unary 
function f ,  and evaluating formulas |  as follows 

A two-sorted arrow frame is simply a two-sorted frame ~ = (Ws, Wr, I ,  f ,  C, 
F,  P )  in which the binary relation R used to interpret the operator | is a function 
from Wr to Wr, denoted by f .  A two-sorted arrow model is a two-sorted model 
based on a two-sorted arrow frame, where | is interpreted using the function f as 
indicated above. 

Here are the remaining axioms governing the behavior of 5, | and o, as well as 
the conditions expressed by these axioms. 

(MR1) a --, |174 (CR1) 
(MR2) a o (b o c) --~ (a o b) o c (CR2) 

(MR3) (a o b) o c --+ a o (b o c) (CR3) 

(MR4) a ~ 6 o a ,  a - - * a o 5  (CR4) 
(MR5) 6 o a ~ a , a o 6 ~ a  (CR5) 

(MR6) | o b) --, (| o | (CR6) 
(MR7) (| o | --* | o b) (CR7) 
(MR8) | a - ( a  o b) fq b --+ 0 (CR8) 

f ( f (x~))  = x.  
Vyrz~u~vr (Cx~y~z~ A Czrurvr 

3Wr (CxrwrVr A Cw~y~u~) ) 
VyrWrUrVr (Cxrwrvr A CwryrUr -'+ 

3zr (Cx~yrzr A Czrurv.)) 
3y~ (Iy~ A Cxryrx~), 3y~ (Cxrx~yr A Iyr) 
Yy.z~ (Cx.y.zr  A Iyr ~ x~ = z~), 

Vy~z. (Cx~y~z~ A Iz~ ~ x~ = y~) 
(C f(x )y z  

Vy~z~ (Cx~ f(y~)z~ --~ Cz~y~x~). 

Next come the axioms governing the behavior of the Peirce product and cylindri- 
fication. 

(MP1) (a)(b)p --* (a o b)p (CP1) 

(MP2) (a o b)p--* (a)((b)p) (CP2) 

(MP3) (6)p --* p (CP3) 
(MP4) p --+ (6)p (CP4) 

V i I (Px~y~z~ A r t YrYrZsZs Pz~y~zs 
I I  I I I  l 

I I t  I I I  Vy~y~y~ z.  (Px~y~z~ A Cy~y~y~ -~  
I I I I I  A 

Vy~z~ (Px~y~z~ A Iy~ --~ x~ = z~) 
3y~ (Px~y~x~ A Iy~) 
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(MP5) (| A p ~ _L (CP5) 
(MP6) (~p)T --~ p (CP6) 
(MP7) p ~ (Ip)T (CP7) 
(MP8) ~(a)T ---* (a o 1) (CP8) 
(MP9) (ao 1) -+ I(a)T (CtO) 

Yy~z, (Px,y , .z ,  ~ P z ,  f(y~.)x~) 
Vy~.z~zr~ (Pxsyrzs  A s ~ xs = z~) 
qy~z, (Px,y~.z, A Fy~.x,) 
Vy, y,z; (Fx~y,  A Py ,  y ' z ,  ~ 3z~ (Cx,.y,.z,.))' ' 

--, 3y',z', ^ P y % z ' ) ) .  

It follows from the general results of De Rijke (1993) that the above axioms 
(MRi) and (MPi) correspond to the conditions (CMi) and (CPi). All axioms listed 
here are so-called Sahlqvist formulas, and for such formulas there is an explicit 
algorithm computing the corresponding relational condition. Here we compute one 
such correspondence result 'by hand.' We consider axiom (MP7) and condition 
(CP7), i.e., p --~ (~p)T and 3yrzs (PxsyrZs  A F y r x s ) .  

Assume first that xs is a set element in some frame ~ in which (MP7) is valid. 
This means that (MP7) is true at xs under the special valuation that assigns p to x,  
(and only to xs).  It follows that x # (~p)T, that is: there are Yr, zs with Pxsy~zs  

I with Fyrxls and I _ and Yr ~ ~P. By the latter conjunct, there must be a x s x s ~ p 
I .  but as p is true at x8 only, we must have xs = xs. 

Y~ 

For the converse, assume that we are in a situation as depicted above, that is, 
Pxsy~zs ,  Fy~xs  and xs ~ p. We need that x~ ~ (~p)T. As Fy~x~ and x~ ~ p, it 
follows that Yr ~ ~P. From this and PxsyrZs  we get xr ~ (~p}T, as required. 

DEFINITION 5.1. A two-sorted arrow frame is Peirce like if it satisfies condi- 
tions (CR1)-(CR8), as well as (CP1)-(CP9). The class of Peirce like frames is 
denoted by TPLF. 

LEMMA 5.2. Let ~ be a two-sorted arrow frame. Then ~ E TPLF iff ~ ~ (MPi). 

We now arrive at the second stage in our characterization result: we narrow 
down the two-sorted Peirce like frames to two-sorted Peirce frames. Briefly, what 
we need, to show that a two-sorted Peirce like frame is a two-sorted Peirce frame, 
is the following 

- With every relational element we can associate a unique set element as its first 
coordinate and a unique set element as its second coordinate. 

- With every two set elements we can associate a unique relational element 
having those set elements as first and second coordinate. 

This boils down to having the following conditions satisfied by our Peirce like 
frames: 
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(CP10) 
(CP11) 
(CPl2) 
(CP13) 
(CP14) 
(CP15) 

Vx,y~y~ (Fx,y~ A Fx, f~  -* y~ = y~) 
V i 

Vx,3y~ (Fx~y~) 
Vx 3y  
Vx~y~3z, (Pxsz~y~) 

' A z ,  = V x S y s  rZ r 

We leave it to the reader to check that Peirce-like frames validate each of 
(CP10)-(CP13), and that those conditions can be defined in A4s 

To pin down the Peirce frames we add two axioms, corresponding to (CP14) 
and (CP15); those axioms involve a difference operator. Recall from Section 4 that 
the operator Es is short for Esp --- p V D~p (there exists a state where p holds), 
and that the operator Os is short for O~p - (p A ~D,p)  (I) is true only here). 

We define the following two formulas: 

(MP14) Esp ~ (1)p 

(MP15) EsOsp A (a)p A (b)p ~ (a fq b)p. 

It can then be shown that if ~ is a two-sorted Peirce like frame, then ~ satisfies 
(CP14) and (CP15) iff it validates (MP14) and (MP15), respectively. 

Putting things together, De Rijke (1994) obtains a characterization of Peirce 
frames: 

THEOREM 5.3. TPF = {~ [ ~ ~ Ao<i<8 (MRi) A Ao<i<9 (MPi) A (MP14) A 
(MP15)}. 

6 .  C o m p l e t e n e s s  

We will now use our characterization of Peirce frames to obtain a complete axiom- 
atization of Peirce frames. We will use a strategy due to Yde Venema (1991; 
1993) to prove completeness of derivation systems involving difference operators. 
For this strategy to be applicable our logic should satisfy the following condi- 
tions: 

- It needs to have difference operators; these difference operators should satisfy 
certain axioms and rules. 

- Converses, and more generally, conjugates for all modal operators (see below), 
and axioms expressing the appropriate relationships between conjugates. 

- Inclusion axioms for all modal operators, stating that for any of the acces- 
sibility relations in our Peirce frames, a move along one of these relations 
must either lead to the same point or to a point that can be reached by using a 
difference operator. 

To actually verify that the above conditions are satisfied we have to work our way 
through a number of cumbersome technicalities. Below we start by axiomatizing the 
Peirce like frames as a first approximation. We then add all the required operators 
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and axioms, and apply Venema's strategy to arrive at our completeness result for 
Peirce frames. And finally we briefly discuss a slight simplification of the logic. 

6.1. A FIRST APPROXIMATION 

As a first step we axiomatize the logic of Peirce like frames in the language 
M/22. 

LetMLPL be the minimal normal modal axiom system in Ms o, | 0,  I) 
that has (MR0)-(MR8) and (MP1)-(MP9) as axioms. So, besides (MR0)-(MR8) 
and (MP1)-(MP9), MLPL has the Boolean axioms for --,, A, _1_, T; the Boolean 
axioms for - ,  fq, 0, 1; and distribution axioms for the modal operators: 

| : ~ (a  --~ b) --* (~a -~ ~b), where ~ a  -- - |  
o : (a-* b ) - 6 c ~  ((a-dc) --~ (bgc)),whereo~~3 = _ - ( - a o - 3 )  
o : a ~ (b -~  c) -~ ((~ ~ b) -~ (~ ~ ~)) 

(} : [a ~ b'~p--~ ([a]p ~ [b~p),where [a~r = -~(-a)-~r 

: i(P ~ q) --+ (IP --* ~q), where'~r =- -~--r 

In addition, MLPL has the derivation rules modus ponens (MP), substitution (SUB), 
and necessitation (NEC), for all modal operators. The latter covers the following: 

(NEC| a / ~  (NEC 0) a/[o;jlr (NECo) ala~3 
(NECp r (NEC<>) ,~/l[d!lr (r,mCo) /~/o~3. 

For L a (two-sorted) modal logic we define an L-derivation to be a list of 
formulas from the language of L such that every formula is either a substitution 
instance of an axiom of L, or obtained from earlier formulas in the list by means 
of a derivation rule of L. An L-theorem is any formula that can occur as the last 
item in a derivation. We write ~-L ~ for ~ is an L-theorem, and E }-L ~ for: there 
are 0-1,..., an E E such that }-L (o-1 A . . .  A o-n) ~ ~ (if ~ is a set formula), or 
}-L (0-1 N . . .  N o-n) ~ r (if ~ is a relation formula). (Compare Remark 4.3.) 

THEOREM 6.1. MLPL is strongly sound and complete for TPLF. 
Proof. To prove the theorem one may use the standard canonical model con- 

struction, or one may observe that all MLPL-axioms are Sahlqvist formulas, and 
derive immediately that MLPL is complete with respect Peirce like frames satisfy- 
ing the conditions (CRi) and (CPi) (see De Rijke and Venema (1995)). [] 

6.2. A COMPLETE AXIOMATIZATION OF PEIRCE FRAMES 

To be able to apply Venema's strategy we need to add (to the logic MLPL and its 
language) difference operators with their axioms and rules, conjugates with their 
axioms and rules, and so-called inclusion axioms. We now consider each of those 
components. Fortunately, it will turn out that nearly all of the required additions 
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can already be defined or derived within MLPL. 

Axioms for the difference operators. Instead of adding primitive difference opera- 
tors, we consider the derived ones D~ and D ' :  

D~sr := ( -6 ) r  and Dra'  : = ( - 6 o a o X )  U ( l o a o - 6 ) .  

(Compare Section 4.) The difference operators are governed by the following 
axioms and rules: 

(MD1) D(k --, l) ---+ (Dk --+ D/), where D - -~D--, 
(MD2) DDk ~ k V Dk 
(MD3) k --+ DDk 
(NEED) ~ / D~ 
(IRD) k A -,Dk ~ ~/~, provided k does not occur in (. 

Axiom (MD1) is the usual distribution law for normal modal operators; (MD2) 
expresses that the diversity relation is pseudo-transitive (that is, it satisfies the 
condition Vxyz (Rxy A Ryz  --~ x = z V Rxz)),  and (MD3) expresses that it is 
symmetric. To understand the irreflexivity rule (IRD) we first reason semantically: 
assume that ~ is satisfiable at some state x and that k is an atomic symbol that 
does not occur in ~; as the diversity relation ~ is irreflexive we find that by making 
k true only at x we can satisfy the conjunction k A -~Dk A ~ .  So, if ~ is satisfiable, 
so is ~ (  A k A -~Dk for any k not occurring in ~. Turning to validity: the rule ' if 
t- k A -~Dk --* ~ then ~ ~ provided that k does not occur in ~' is sound. 

We will show below that except for the irreflexivity rules each of the axioms 
(MD1)-(MD3) and the rule (NECD) is derivable in MLPL for the defined differ- 
ence operators. 

Axioms for conjugated operators. Let R be an (n + 1)-ary relation. A frame 
= ( . . . ,  R, . . . )  is called versatile for R if there are relations R1, . . . ,  R,~ such 

that for all x0, . . . ,  xn one has (x0, . . . ,  Xn) E R iff ( X l , . . . , x n ,  x0) E R1 iff 
. . .  iff (x~ ,xo , . . .  ,X~-l)  E R~. Once we know that a frame is versatile for R, it 
suffices to mention just a single R, and suppress the other relations. 

Let # be an n-ary modal operator whose semantics is based on an (n + 1)-ary 
relation R; the conjugates o f #  are n operators #1, . . . ,  #n whose semantics are 
based on (n + 1)-ary relations R1 . . . . .  R,~, respectively, such that R, R1, �9 . . ,  Rn 
form a versatile system, and 

x ~ # i ( (1 , . . . , ( ,~)  iff 3 y l . . . y n  ( R x y l . . . y n  A Aiyi  ~ ~i). 

Unary modal operators whose underlying relation is symmetric form their own 
conjugates; also, a frame is versatile for a binary relation B if it contains the con- 
verse B -1 of B. 
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We will now define conjugated operators for all modal operators in A4/22~ Note 
that the defined difference operators D~s, Dtr, and the converse operator @ are 
self-conjugated; so we do not need to add conjugates for them. For ~ we define a 
conjugate ~ by putting ~a  := (a)T; so ~ takes a relation formula and returns a 
set formula. For (.). we define two conjugate operators ('}1 and (')2' by putting 
(~b)lff3 1= @(I~b) n I~3, and (r := (|162 For o we also add two operators, 
written o1 and 02, defined by a ol fl :=/3 o @a and a o2 fl := @/3 o a. 

All in all, we have have introduced the following abbreviations: 

:=  

(r := | 1 6 2  o~o 1/3 := /3o| 

:=  o2/3 := 

To motivate the above, observe that Yr ~ (P> 1 q means that there exist xs,  zs with 
Pzsy~xs  and xs ~ p, zs ~ q; hence, y~ ~ (| n (Iq) (= (P)xq). Second, 
zs ~ (p>2a iff there exist xs, y~ with Pxsy~zs  and xs ~ p, y~ ~ a. Hence 
zs ~ (@a)p (= (p}2a). Similar remarks pertain to Ol, 02. 

We force the appropriate modal operators to be each others conjugates by 
imposing the axioms below; Tr abbreviates -~  ~r and ~ a  abbreviates ~ - a .  

(MP16) a --* ~ a  
(MP17) p ~ ~ p  
(MP18) p A (-(q>lP)q --~ I 

(MP19) a n ('~(P)2ahP ~ 0 

(MP20) p h <-~(a>p>2a ---* _L 

(MP21) a n -(b Ol a) o b ---) 0 
(MP22) a n - ( b o 2 a )  o l b ~ 0  
(MP23) a n -(b o a) o2 b --* 0 

The first of the above two axioms are well-known from temporal logic; they sim- 
ply express that ~ and ~ are interpreted using converse relations; likewise, axioms 
(MP18)-(MP23) express that (.)., <'>1", (')2' and o, Ol, 0 2 form conjugate triples, 
cf. Venema (1991). 

Inclusion axioms. One special feature of the difference operators is that if one 
moves along one of the accessibility relations using the modal operators o, I, | 
or () ,  one either gets back to the starting point or to a point that one must be able 
to reach using one of the difference operators. This feature is implemented by the 
following so-called inclusion axioms: 

(INC1) (a)p ---+ E'~p 
(INC2) | ---* E" a 
(INC3) a o b ~ E'~a A E" b 

(INC4) (D'~(lq)>T -+ E'sq 
(INC5) $(D'8(a}T) ---+ E'a.  
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The logic of Peirce frames. We axe ready now to define the modal logic of two- 
sorted Peirce frames and to prove its completeness. 

DEFINITION 6.2. We define one more axiom system: MLP. Its language is Ads 
Its axioms are those of MLPL (Section 6.1), and its rules of inference are those of 
MLPL plus the following two irreflexivity rules: 

(IR~) p A -~D'~p ~ r / r where p does not occur in r 
(IRr) a n -D~a ~ a / a, where a does not occur in a. 

To prove MLP complete using Venema's strategy, we need to show that it derives 
the axioms and rules for the difference operators and conjugate operators, as well 
as the inclusion axioms. Showing this is in fact the heart of the completeness proof. 

THEOREM 6.3. Let 2x U {~} be a set of AdZ;s-formulas. Then A k ~ in MLP iff 
A ~TPF ~" 

Proof Proving soundness is left to the reader. As to completeness, by Lem- 
mas A.2 and A.3 MLP satisfies all the requirements needed for an application of 
Venema's strategy as described at the start of this section: both the axioms for 
the difference operators and the conjugated operators and the inclusion axioms 
are derivable in derivable in MLP, and the necessitation rules for the difference 
operators and the conjugated operators are all derived rules of MLP. So by Venema 
(1993, Theorem 7.7) MLP is strongly complete for the class of frames validating 
axioms (MR1)-(MRS) and (MP1)-(MP15). Hence, by our characterization result 
Theorem 5.3, MLP is strongly complete for Peirce frames. That is, A ~TPF 
implies A ~- ~. [] 

To conclude this section we briefly discuss the number of irreflexivity rules 
that we need. From our observations in Section 3 we know that we need at least 
some non-standard means to get a complete axiomatization for Peirce frames. To 
rephrase this somewhat inaccurately, we need at least one irrettexivity rule. Further, 
by Theorem 6.3. we know that we need at most two. However, we can get by with 
just one, namely the irreflexivity rule for D~. The one for D~8 can be replaced by 
the derived vale 

(a n -D~a n 6)T A ~D' s (a N -Dtra n 6)T ~ r / r 
provided a does not occur in r (2) 

As with the irreflexivity rule for Dis, the intuition is that if r is consistent then it is 
consistent to have ~b together with a 'unique name'.  With the rule (2) a unique name 
for a set element (namely ( a n  - D ~  n ~)T A -~D~8(a N - D ~  n (5)3-) is borrowed 
from a unique name for a diagonal element - and being relation elements such 
elements will get unique names by the irreflexivity rule for D~. 

It can be shown that (2) is a derived rule in MLP minus the irreflexivity rule for 
Dt~, but the proof is too cumbersome (and uninformative) to be included here. 
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TABLE II. The first-order translation for .A4s 

ST,( 'r)  = (~, = ~,) 
Sty(p) = P(~,) 

ST~(-~r = -~Sr~(r 
Sr~(r A r  = ST~(r ^ ST~(r 
STi((a)r = 3xj (STij(a) A STj(r 

STIj(1) - ( x , = x , ) A ( x j = x j )  
STq(6) - (x, = xj)  
ST~j(a) = A(x~,xj) 

ST,j(-,~) = -~STq(,~) 
ST~j (~ n ~) = Srq (~) A STq (~) 

Srq( |  = srs~(~) 
STq(~ o ~) = Sxk (ST~k(~) A STkj(Z)) 

ST~j(Ir - ST~(r ^ (xj = x~). 

7. E x p r e s s i v e  p o w e r  

Consider the triangle 'algebraic logic - modal logic - first-order logic' depicted 
in the introduction again. In sections 4--6 we concentrated on the 'algebraic logic 
- modal logic' side of the triangle to arrive at a complete axiomatization. In the 
present section we will put together some results from the modal literature that 
bear on the 'modal logic - first-order logic' side. Concretely, we will characterize 
the fragment of first-order logic that corresponds to the modal language .A4s 
using an appropriate notion of bisimulation; along the way we obtain a definability 
result. 

When interpreted on Peirce models (that is, on models based on Peirce frames), 
.A4s become equivalent to first-order formulas of the following kind. Let 
7 be the (first-order) vocabulary {P1, P2, �9 �9 �9 A1, A2, . . .} ,  where the Pi's are unary 
relation symbols corresponding to the atomic set variables Pi in our language, and 
the Ai's are binary relation symbols corresponding to the atomic relation variables. 
Let s be the set of all first-order formulas over ~- (with identity). 

We now define a translation ST taking A4s to formulas in/:;(T). 
Fix three distinct individual variables Xl, x2, and x3, and let i, j ,  k denote distinct 
objects in {1,2, 3}. Consider Table II. For r a set formula in A,4s we define 
the standard translation ST(C) of r by ST(C) := ST1(r and if a is a relation 
formula in .A/[/~2, w e  define its standard translation by ST(a)  :=  ST12(ce ). 

Peirce models may be viewed as models for s to interpret the predicate 
symbols in s we simply use the the values that the valuation assigns to the 
corresponding modal symbols. 

PROPOSITION 7.1. Let r be a set formula in ./~/E2, O~ a relation formula in 
Ads and fir a Peirce model. For any x in 9~t, 9Yt, x ~ r iff 9~ ~ ST(r For 
any x, y in 9:rt, 97t, (x,y) ~ a iff 9X ~ ST(a)[xy]. 
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So, on models every ,ME,2-formula is equivalent to a first-order formula, or more 
precisely, to a first-order formula containing at most three variables. A natural ques- 
tion at this point is to ask for special semantic features that isolate the fragment of 
/2(~-) that corresponds to .M/~2. Similar questions have been raised and answered 
before in the literature on modal logic; we refer the reader to Van Benthem (1976; 
1991) and De Rijke (1992a; 1995) for examples. Bisimulations have turned out to 
be an important tool in answering such questions - and in our case too we will use 
an appropriate notion of bisimulation. 

DEFINITION 7.2. A bisimulationfor .ML2 between ~1 and 9Jr2 is a non-empty 
relation Z _C (WI x W2) t0 (W12 • W~) such that 

1. Zxy implies lh(x) = lh(y), where lh(x) is the length of x, 
2. if Z(Xl x2) (YlY2) then Zxlyl, Zx2Y2, and Z(X2Xl) (YzYl), 
3. if Zxlyl then xl and Yl agree on all set variables p, 
4. if Z(xlx2)(yl Y2) then (Xl, x2) and (Yl, Y2) agree on all relation variables a 

and on 6, 

5. if ZXlyl and x2 E OJtl, then there exists Y2 in 9Y~2 with Z(xlx2)(ylY2), and 
similarly in the opposite direction, if Z(XlX2)(ylY2) and x3 E 9:rtl, then there 
exists Y3 in 9)t2 with Z(xlx3)(yly3) and Z(x3x2)(y3y2), and similarly in the 
opposite direction. 

(As an aside, it is clear from the standard translation that .A4122 contains the equiva- 
lent of the full 2-variable fragment of/2(7). Hence, as the latter is characterized by 
its invariance under 2-partial isomorphisms (see Van Benthem (1991, Chapter 15)), 
any relation between models that is to preserve truth of .ME2-formulas should at 
least act like a family of 2-partial isomorphisms. This is indeed the case.) 

PROPOSITION 7.3. Bisimilar states satisfy the same .MZ;2-formulas. More pre- 
cisely, let 9Yq, 9~2 be Peirce models, and let Z be a bisimulation for .h4/22 between 
~1 and ffJt2. 

For any Xl in 9Ytl, Yl E ff)t2, and for any set formula r if we have ZXlYl, then 
~ l , X l  ~ r yl ~ r 

Likewise, for any xl,  x2 in 93tl, Yl, Y2 E 9:rt2, and for any relation formula r if 
we have Z(xlx2)(yly2), then 9Ytl, (Xl, x2) ~ a iff ffJt2, (Yl, Y2) ~ a. 

In fact, the above preservation result Proposition 7.3 is characteristic for Ad/22- 
formulas; below we will briefly sketch a proof of this claim. We first observe 
that the converse of Proposition 7.3 does not hold: .A4/22-equivalent models need 
not be bisimilar (see Goldblatt (1994), Hollenberg (1994), De Rijke (1995) for a 
counterexample). Following Goldblatt (1994) and Hollenberg (1994), we call a 
class K of Ad/22-models a Hennessy-Milner class if every pair of models in K is 
A4/22-equivalent iff it is bisimilar. As an example, the class of finite .M s 
is a Hennessy-Milner class, as is the class of w-saturated models (in the sense 
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of standard first-order model theory); we refer to Goldblatt (1994), Hollenberg 
(1994), De Rijke (1995) for further details. 

Call a first-order formula A E s  invariantfor bisimulations if for all s  
models 9R, 9R' and all tuples x, x' in 9R and 9R', respectively, and all binary 
relations Z between 9~ and 9~', we have that if Z is bisimulation linking x and z', 
then 97t ~ A[x] iff 97t' ~ A[x']. 

THEOREM 7.4. Let A(x) E E(T) be a first-order formula in one or two free 
variables. Then A(x) is invariant for bisimulations iff it is equivalent to (the trans- 
lation of) an .hA s 

Proof. The direction from right to left is Proposition 7.3. Proving the converse 
requires more work. We will sketch the proof. Assume A(x) = A(x) has just a 
single free variable, and assume A(x) is invariant for bisimulations. Consider the 
set of modal consequences of A in a single free variable: 

MOD-CON(A) = {ST(C) I A ~ ST(r r is a set formulain AAE2}. 

By compactness it suffices to show that MOD-CON(A) ~ A. For then there exists 
a finite P C_ MOD-CON(A) such that F ~ A (and conversely) and A r is an 
ME2-formula.  

Assume 9~t ~ MOD-CON(A)[w]. We have to show that 9Jr ~ A[w]. Our first 
observation is that by a simple compactness argument the set X := {A} U { ST (~p) ! 
~ ,  w ~ r  is consistent. Let 01 be a model with 01 ~ X[v], for some v. Note that 
w in 9Jr and v in 02 satisfy the same .MEE-formulas. 

If ~ and 01 both lived in a Hennessy-Milner class, then the fact that w and 
v satisfy the same .Ms would imply that there exists a bisimulation 
between ~ and 01 that links w and v, and from this we would be able to infer 

~ A[w], which would complete the proof. We can get away with slightly less: 
it is enough to make a detour through a Hennessy-Milner class, as follows. By 
general model-theoretic considerations from first-order logic, both 97t and 01 have 
w-saturated elementary extensions 97t* and 01'; it follows that w in 9~t* and v in 
01" satisfy the same .ME2-formulas, and that 01" ~ A[w]. The class of w-saturated 
models is a Hennessy-Milner class, hence there exists a bisimulation between ~Jt* 
and 0I* that links w and v. By invariance under bisimulations we get ~rt* ~ A[w]. 
As 97t* is an elementary extension of ffft we infer that ~t  ~ A[w] - and we are 
done. [] 

COROLLARY 7.5. Let K be a class of A4E2-models that is defined by a set of 
first-order formulas. Then K is modally definable iff it is closed under bisimulations. 

COROLLARY 7.6. A class of AAs is modally definable iff it is closed 
under bisimulations and ultraproducts, and its complement is closed under ultra- 
powers. 
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Further definability results along these lines may be obtained using general 
techniques from modal model theory; see De Rijke (1995) for details. 

8. Concluding remarks 

In this paper we studied Peirce algebras via modal logic. Known techniques from 
modal completeness theory supplied us with a finite axiomatization of Peirce 
frames, and thereby of the equational theory of full Peirce algebras, and general 
results from modal model theory helped us to analyze the expressive power of 
Peirce algebras. 

A lot remains to be done. Some questions were already mentioned in the main 
body of the paper. To conclude, here are further questions. 

In Section 2 we briefly mentioned a connection between a system of Arrow 
Logic and Peirce algebras. There is a whole hierarchy of calculi in between this 
Arrow Logic and MLP, the logic of Peirce frames, just like there is a hierarchy 
of subsystems of relation algebra. About the former hierarchy one can ask the 
same kind of questions as for the latter. For example, where does undecidability 
strike? Is there an arrow version of Peirce algebras which is sufficiently expressive 
for applications (say, in terminological logic), but still decidable? Recent work by 
Marx (1994) presents partial answers, but more work needs to be done. 

Another point in connection with the use of Peirce algebras in terminological 
logic is this. In terminological reasoning one often needs to be able to count the 
number of objects related to a given object; this is done using so-called number 
restrictions (see Brink et al. (1994)). The modal logic of such counting expressions 
is analyzed by Van der Hoek and De Rijke (1992). One direction for further work 
is to combine the results of the latter with the results of the present paper. 

Finally, a more general point. We have used unorthodox derivation rules like 
the irreflexivity rule to arrive at our completeness result. To which extent do such 
rules capture our operators? We know from De Rijke (1992a) that the irreflexivity 
rule goes a long way towards determining the difference operator. But what about 
the other operators, like o, ~, :?Which aspects of their behavior are determined by 
our unorthodox derivation rules? 
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Appendix 

A. Two l emmas  

We still need two lemmas to round off  the completeness theorem for MLP: one 
saying that the axioms for the difference operators and the conjugated operators, 
as well as the inclusion axioms are derivable in MLP,  and another lemma showing 
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that the necessitation rules for the difference operators and the conjugated operators 
are derived rules of MLP. 

We need the following proposition which is proved in De Rijke (1994). 
PROPOSITION A.1. Let 3' be a two-sorted Peirce like frame. Then 

1. ~ ~ Vxsysz~. (Pxszrys -"+ Fzrxs A Ff(zr)ys) ,  and 
2. ~ ~ Vxsy~zr (Fzrxs A Ff(zr)y8 ~ Pxszrys). 

LEMMA A.2. MLP proves axioms (MD1)-(MD3) for the difference operators D~ 
and D~r. It also proves the distribution axioms for the defined operators ()1, ()2, ol, 
and 02, as well as (MP14), (MP15), (MP16)-(MP23) and (INC1)-(INC5). 

Proof We use the completeness of MLPL established in Theorem 6.1 to argue 
semantically that MLPL, and hence MLP, proves the axioms mentioned. 

Showing that MLPL proves the distribution axioms is left to the reader. (MD81), 
(MDs2) are easy consequences of (CP1) and (CP3); (MDr 1)-(MDr3) are proved 
by Venema (1991, Proposition 3.3.38); (INC1) is easy and (INC2), (INC3) are dealt 
with by Venema (1991, Proposition 3.3.38); (INC5) is an easy consequence of(CP1) 
and (CP8); (MP14), (MP16)-(MP20) are easy, and (M21)-(MP23) are in Venema 
(1991, Proposition 3.3.38). This only leaves (MDs3), (INC4) and (MP15). 

(MD~3) p ~ -,(-5)--,(-5)p. Assume that x~ ~ p, ( -5)- , ( -5)p.  We will 
derive a contradiction. As xs ~ ( -5}- , ( -5)p  there are Yr, zs with Pxsyrzs, 
Yr r I and z~ ~ -~(-5)p. By (CP5) this implies Pzsf(yr)xs .  Now, if f(Yr) q~ I 
then z8 ~ (-5)p, and we have arrived at the desired contradiction. So it suffices to 
show f (yr ) q~ I. Assume f (Yr ) E I, then, as Px~yrzs and Pz~f  (yr )x~ there exists 

If C I I  Yr with YrYrf(Yr), by (CP1). Hence, by (CR5) and f(y~) E I Cyryrf(Yr). By 
(CR1) and (CR7) this implies Cf(yr)yr f (yr) ,  and by (CR5) this in turns yields 
f(Yr) = Yr. Therefore Yr E I - a contradiction. 

(INC4) ( ( -5  o Iq o 1) U (1 o ~q o - 5 ) ) T  ---* q V (-5)q. Assume xs satisfies 
the antecedent of the axiom, say xs ~ @6 o ~q o 1)T. Then there are yr, zs with 
Pxsy~zs and y~ ~ - 5  o ~q o 1. This means that there are y~, y~/, z~r, zrr I such that 
C I I I  , ' ~  I I  I I I  I I YrYrYr, ~YrZrZr and Yr ~ -6 ,  and z r ~ ~q. The latter implies that there is an 

' with , I x s Fzrx  s and x~s ~ q. 
Yr 

I y ' / / i  i i, 
, I 

X s ~ -'~" ,I 

It suffices to show that / i Pxsyrxs,  for then xs ~ (-5)q. Now, to see that Pxsy'rxls, 
observe that 

I I I  I I I I I  Px~y~zs A Cy~y~y r =~ Pxsyrzs A Pzsy~Z~ , (3) 

I I I  ~ t l  I I I  / by (CP2). Furthermore, Pzsy r zs and wyrZrZ r imply that for some for some z s 
I I  ~ I l I I  z s , t ' zszrz  s , by (CP2). Next, '-" ' i , / , ~'zszrz s implies Fz~zs by Proposition A. 1. On the 
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/ _ 1  But, other hand, we already have that Fz~rx~ s, so by (CP10) it follows that z s - x 8. 
I ! then, by (3) we must have PxsYrXs, as required. 

The case that xs ~ (1 o ~q o - 5 ) T  is proved entirely analogously. 
(MP15) ((p A -~(-5)p) V (-5)(p A ~(-5)p)) A (a}p A (b}p ~ (a N b)p. 

I Assume first that x~ ~ p A ~(-5)p  A (a)p A (b)p. Then, for some Yr, y~, z~, z~ we 
have Pxsy,.zs, Pxsy~rz~s and Yr ~ a, Y~r ~ b, and zs, z~ ~ p. 

a ~A p ( r_ 
Yr Zs 

Xs y, , 
~ Zs 

b " P 

I Observe that xs ~ =(-5)p implies Yr, Y~ E I.  Hence, by (CP3), x~ = z~ = z~. 
Furthermore, PxsYrZs implies Pzsf(yr)xs; together with Pxsy~rz~ s and (CP1) this 

C " i YrYrYr" By (CR5) yields a y~ such that Yr f (yr)Yr, and so by (CR8) such that C ~ " 
we find Y~r = Yr and y~r ~ = f(Yr). So we have Cf(yr)f(Yr)f(Yr), and by (CR8) 
Cf(y )yrf(yr). As yr ~ I implies f(Yr) E I, (CR5) now gives Yr = f(yr). All 
in all we find Yr = f(Yr) = Y~ = Y~. Hence x~ ~ (a n b)p. 

Assume next that xs ~ (-5}(p A ~(-5)p)  A (a)p A (b)p. Then there are Yr, Y~r, 
/ / P x -  " z "  / i t  ' " with Pxsyrzs, Pxsyrz,,  sYr s, and Yr ~ I, Yr ~ a, Yr ~ b, y~l and zs, zs, zs 

I II andz~,z~,z~ ~ p ,  andz~ ~ (-5)p. 

T -w ! 
X s y l  r Z s 

b yr 

Yr Zs 

P Z  - I / / Z /  C I I I  I I l l  I By (CP1) there is a yt r" with sYr 8 and Yr f(Yr)Yr" If Yr r I ,  then z, ~: p 
a contradiction. Hence - ~" y~ E I wit Cy r f(Yr)Yr. - Yr E I. Likewise we find a " " h " " 

By (CR8) and (CR5) we have Y~r = Yr and y~ = Yr. Hence Yr ~ a N b, and 
xs ~ (a fq b)p. [] 

LEMMA A.3. The necessitation rules for the defined operators ~, (')1% (')2", 
ol, 02 and D~s, D~r are derived rules in MLP. 

Proof. By way of example we show that the two necessitation rules for ()2 are 
derived rules. Assume f-Mze o~; we need ~-MLP ~-r Now, by (NEC| and 
(MR0), ~-MLP C~ implies ~MLP QC~. Hence, by (NEC0) we have ~-MLP ~@a~r 
and by definition of ()2 this means  ~-MLP ~']2o~. Next, assume  ~ M L P  4; we need 
~MLP ~ r  but this is immediate from (NEC| [] 


