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]. ]. Meeting Some Neighbours

Maarten de Rijke

11.1 Introduction

Over the past several years the computer science community seems to have lost interest
in dynamic logic and related systems somewhat. In the philosophical community, on
the other hand, more and more people have felt a need for systems in which changes
and processes can be modelled. This has lead to the birth of quite a number of systems
blessed with the predicate ‘dynamic’.

In this chapter one such system, called DML, is taken as a starting point, and its
connections with alternative dynamic proposals are examined. Specifically, a revision
operator is defined in DM L which can be shown to satisfy most of the postulates such
operators are currently supposed to satisfy. Further links are established with termino-
logical logic, Veltman’s update semantics, and preferential reasoning. Technical results
pertaining strictly to the dynamic modal system of this chapter are given in a companion
paper.

The purpose of this chapter is to discuss links between a recent proposal for reasoning
about the dynamics of information, called dynamic modal logic or DML, and other
such proposals, as well as connections with some other formalisms in philosophical logic,
cognitive science and AI. The key phrases common to most of the systems that come up
in this note are {minimal) change and reasoning about information.

As many dynamic-like formalisms have been proposed over the last few years, the
danger that several researchers might be re-inventing the wheel is not entirely fictitious.
For that reason I think it is important to have occasional comparisons across platforms.
As a result of such comparisons results known in one domain may shed light on problems
in the other domains, allowing the field at large to benefit. And at a more down to earth
level the obvious advantage of such comparisons is that they may serve as partial maps
of rapidly changing research areas. Thus, the purpose of this note is to sketch such a
partial map by comparing or unifying some related dynamic systems using the DML
formalism.

What’s commonly considered to be the minimal requirement for a system to be called
dynamic, is that it has a notion of state, and a notion of change or transition from one
state to another. States and transitions are precisely the basic ingredients of the system
DML; in addition it has various systematic connections between those basics. Although
DML may at first appear to be a somewhat unorthodox modal system, it can be analyzed
using fairly traditional tools from modal logic, yielding results on its expressive power.
the hardness of the satisfiability problem for the language, and axiomatic completeness.

The main benefits of using DML as a guide-line for linking a number of dynamic
proposals are the fact that many dynamic proposals are, so to say, de-mystified by being
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embedded in a system itself comprising of two well-known components (Boolean algebra
and relational algebra); the embedding of such proposals into (a fragment of) DML
suggests natural additions to, and generalizations of, these proposals. Moreover, the
work presented here shows how fairly orthodox dynamic proposals like DML can be
used fruitfully far beyond their traditional boundaries.

In 11.2 I describe the basics concerning DM L, including two ways of dealing with the
states of DM L models: one can either take the usual view as states as objects devoid of
any structure, or one can endow them with an internal structure and logic of their own.

After that I move on to two connections between DML equipped with ‘structure-
less’ states and other systems. In 11.3 an example from cognitive science and Al is
considered when I model certain postulates for theory change inside DM L. In 11.4, a
link is established between DM L and terminological logic and knowledge representation.
I obtain an exact match between DML and a KL-ONE dialect, called the Brink and
Schmidt language, plus an axiomatization of the representable algebras underlying this
language.

In 11.5 and 11.6 the states of our DM L-models will be equipped with structure. This
is needed in 11.5 to link DML to a system of update semantics from the philosophical
logic tradition proposed by Frank Veltman, while 11.6 contains some suggestions on how
one would have to go about dealing with preferences and other more complex systems in
DML.

Section 11.7 rounds off the chapter with some conclusions and questions.

11.2 DML: A Quick Review

11.2.1 Basics

The system of dynamic modal logic DM L figuring in this note first appeared in what’s
more or less its present form in (Van Benthem [4]), but parts of it can be traced back
to Van Benthem[2]. The original application of the system was reasoning about the
knowledge of a single agent, and the “epistemic moves” this agent makes in some cognitive
space to acquire new knowledge. Thus, in DML provisions have been made to talk
about transitions that represent the acquisition of new knowledge, and about transitions
representing the loss or giving up of knowledge. Moreover, these transitions may be
structured in a variety of ways. To sum up, the DM L-language has Boolean ingredients
to reason about the static aspects of the agents knowledge, and relational ingredients to
reason about the dynamic aspects thereof. In addition there are systematic connections
between the two realms, as depicted in Figure 11.1.

After some cleaning up had been performed, a stable version of the language was given
in (De Rijke [23]). Here it is:
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modes
propositions procedures
BA -
(BA) projections (RA)
Figure 11.1
DML, the basic ingredients
Atomic formulas: pe€ ®,
Formulas: @ € Form(®),
Procedures: a € Proc(®).

o 5= p| L| T |1 — 2| do(a) | ra(e) | fix(e),
a=-exp(p)|con(p)|ai Naz|ag;az| —ala |e?.
1 will refer to elements of Form(®) U Proc(®) as expressions.

The intended interpretation of the above connectives and mappings is the following. A
formula do(a) (ra(a)) is true at a state z iff z is in the domain (range) of «, and fix(a) is
true at x if z is a fixed point of a. The interpretation of exp(y) (read: expand with ¢) in
a model M is the set of all moves along the “informational ordering” in 9 that take you
to a state where ¢ holds; the interpretation of con(y) (read: contract with ) consists
of all moves backwards along the ordering to states where ¢ fails; 7 is the “test-for-¢”
relation, while the intended interpretation of the operators left unexplained should be
clear.

The models for this language are structures of the form 9 = (W,C, [-], V), where & C
W2 is a transitive and reflexive relation (the informational ordering), [-] : Proc(®) —
2WXW and V : & — 2%, The interpretation of the modes is:

M,z = do(a) iff Iy ((x,y) € [a]),
M,z |=ra(e) iff Iy ((y,z) € [a]),
M,z = fix(a) iff (z,z) € [a],

while the relational part is interpreted using the mapping []:

[exp(p)] = Azy. (zSyAMy = ),
[con(p)] = Azy.(zTyAM,y ),
[ang] = [e]Nn[Al,

8] = la; 18],
II-*CY]] _Ila]}a
[a] = {(=y):@z)eld},
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[ = {(z.2):MzEe}

Obviously, ra and fix are definable using the other operators, however, for conceptual and
notational convenience they will be part of the official definition of the language. Further
examples of operators definable in terms of the others will be given below.

I will refer to this language as the DM L-language, and in more formal parts of this
chapter also as DM L(C, @), where ® is the set of proposition letters. A natural extension
is obtained by considering multiple basic relations { C; };¢s instead of the single relation
C; I will write DML({C; }ier, ®) for the language thus extended. (In this extended
language the expansion and contraction operators will be indexed with the relations
they are based upon, viz. exp(p); and con(p);.)

In its formulation in Van Benthem [4] the DM L-language also contained minimal versions
u-exp(-) and p-con(-) of the expansion and contraction operators, respectively, where

[p-exp(p)] =
xay. ((@,y) € fexp(@)] A3z (2 C 2 Ty A (3,2) € [exp(e)]) ),

and likewise for p-con(y). However, there is no need to add them explicitly to the
language, as both are definable:

[p-exp(@)] = [exp() N —(exp(p); (exp(T) N =(T7)))],
and similarly for p-con(yp).
11.2.2 Some Results

Let me mention some of the work that has been done on DML. De Rijke [23] gives
an explicit axiomatization of validity in DM L, comprising of 36 axioms, and 4 deriva-
tion rules (including a so-called ‘unorthodox’ Gabbay-style irreflexivity rule). For future
reference let me record this result:

THEOREM 11.1 There exists a complete, finitary axiomatization of validity in the
language DM L({C; }ier, ®).

De Rijke [23] uses a difference operator D (‘truth at a different state’) to characterize
some of the modes and projections, for example

pA-Dp— (fix(a NSB) « do(an B;p?))

is an axiom in his axiomatization governing the interaction of fix and N.
The same paper also establishes the undecidability of satisfiability in DM L. In addi-
tion it gives a number of subsystems and extensions of DM L whose satisfiability problems
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are decidable; in particular, deleting (; and ) or just — yields decidable fragments again,
as does restricting the class of models to those based on trees. Furthermore, exact de-
scriptions, both syntactic, and semantic by means of appropriate bisimulations, are given
for the first-order counterpart of DM L.

11.2.3 Some Connections

There are obvious connections between DML and propositional dynamic logic (PDL,
cf. Harel [18]). The ‘old diamonds’ () from PDL can be simulated in DML by putting
()¢ := do(c;p?). And likewise, the expansion and contraction operators are defin-
able in a particular mutation of PDL where taking converses of program relations is
allowed and a name for the informational ordering is available: [exp(p)] = [C; ¢?] and
[con(p)] = [E ;-¢?]. The operator do(a) can be simulated in standard PDL by (a)T.
An obvious difference between DML and PDL is that (at least in it’s more traditional
mutations) PDL only has the regular program operations U,; and *, while DML has
the full relational repertoire U, —, and ;, but not the Kleene star. Another difference
is not a technical one, but one in emphasis; whereas in PDL the Boolean part of the
language clearly is the primary component of the language, in DM L some effort is made
to give the relational part the status of a first-class citizen as well by shifting the notation
towards one that more clearly reflects the aspects of relations which we usually consider
to be important.

A related formalism whose relational apparatus is more alike that of DML is the
Boolean modal logic (BM L) studied by Gargov and Passy [14]. This system has atomic
relations p,, p2, - - -, & constant for the Cartesian product W x W of the underlying domain
W, and relation-forming operators N, U and —. Relations are referred to within the BM L-
language by means of the PDL-like diamonds (a). Since BM L does not allow either ;
or as operators on relations, it is a strict subsystem of DM L({ p1,p2,---},®).

Further connections between DM L and related work have been given in (Van Benthem
[4]). These include links with Hoare Logic, and with various styles of non-standard
inference.

11.2.4 Adding Structure

Usually no assumptions are made on the nature of the states of modal models. But for
some applications of modal or temporal logics it may be necessary to be more specific
about their nature. (Cf. (Gabbay, Hodkinson and Reynolds [11]) for a whole array of
examples.) In such a structured setting models will have the form 20t = (Wy,...), where
the global components of the model are given by the... , while the set W, is a set
of models {m };cr each of which may have further structure. For instance, they may
themselves be of the form m = (W;, R, V;). Clearly, two languages are involved here: a
global language which talks about global aspects of the structure, but which does not deal
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with local aspects, and, secondly, there is local language used to reason only about the
internal structure of the elements of the model 9. Below, in 11.5 and 11.6, I will equip
the states of DM L-models with structure in different ways, each with an appropriate
local language, but in every case DM L will be the global language.’

11.3 On Postulates for Theory Change

In this section I will first discuss to which extent Gardenfors’ theory on the dynamics of
belief and knowledge can be dealt with in the DM L language. After that I will discuss
two alternative proposals, and finally I will tie up some loose ends.

11.3.1 The Gardenfors Postulates

Consider a set of beliefs or a knowledge set T.2 As our perception of the world as
described by T changes, the knowledge set may have to be modified. In the literature
on theory change or belief revision a number of such modifications have been identified
(cf. (Alchourrén, Gérdenfors and Makinson [1]), and (Katsuno and Mendelzon [20}));
these include expansions, contractions and revisions. If we acquire information that does
not contradict T, we can simply ezpand our knowledge set with this piece of information.
When a sentence ¢ previously believed becomes questionable and has to be abandonded,
we contract our knowledge with . Somewhat intermediate between expansion and
contraction is the operation of revision, this is the operation of resolving the conflict that
arises when the newly acquired information contradicts our old beliefs. The revision of
T by a sentence ¢, T * ¢, is often thought of as consisting of first making changes to T,
so as to then be able to expand with . According to general wisdom on theory change,
as little as possible of the old theory should be given up in order to accommodate for
newly acquired information.

Gardenfors and others have proposed a set of rationality postulates that the revision
operation must satisfy. To formulate these, let a knowledge set be a deductively closed
set of formulas. Given a knowledge set 7" and a sentence ¢, T * ¢ is the revision of T by
. T + ¢ (“the expansion of T by ¢”) is the smallest deductively closed set extending

Tu{e}.

Basic Gdrdenfors postulates for revision
(¥1) T *y is a knowledge set.

IThe essential syntactic restriction corresponding to the above global-local distinction is that operators
from the global language are not allowed to occur inside the scope of operators from the local language.
By results of Finger and Gabbay [9], if both the local and the global language have some nice property
P, then so does their composition, provided that the above syntactic restriction is met; here P can be a
property like enjoying a complete recursive axiomatization, decidability, or the finite model property.
2This subsection was inspired by a reading of (Fuhrmann {10}).
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*¥2) @ &€Txo.

x3) TxpCT+o.

x4) I-pé¢TthenT+pCTx*ep.

x5} If L € T x p then ¢ Is unsatisfiable.
x6) IfpeothenT*xp=Tx.

Additional Girdenfors postulates for revision

5*73 Tx(pAY)C(T*p)+9.
x8) If b ¢ T+ then (T*p)+1v CT*(pA).

For an intuitive explanation of this postulates I refer the reader to (Alchourrén et al [1],
Gérdenfors [12]).

To represent the revision operator in DML some choices need to be made. First,
we have to agree on some kind of structure in which our theories will be represented,
and in which transitions between theories will take place. To keep things simple, and
exclude what I consider to be aberrations in this context (like densely ordered sequences
of theories), let us assume that our structures are well-founded ones (in addition to being
pre-orders, of course).

Next, we have to decide how to represent theories or knowledge sets. The natural
option suggested by standard practice in epistemic logic is to do this. Let C abbreviate
exp(T), and let [C]p be short for =(C)—p. Then, I represent theories as sets of the
form wg = {¢ : M,w | [Clp },for some w in the model M. Then “p € T” may be
represented as “[C]e,” that is, as ~do(exp(T); ~¢?).

A third choice needs to be made to represent the ezpansion operator [+p]y (“¢ belongs
to every theory resulting from expanding with ¢”). Here I opt for:

[+l := ~do(u-exp([E]e); ~[E[Y?)-

So, a formula [+¢]y is true at some point z if in every ‘minimal’ £-successor y of x
where [C]¢ holds (i.e. where ¢ has been added to the theory), the formula [E]¢ is true
(i.e. 9 is in the theory). Obviously, [C]t may be viewed as the special case of [+ol9,
where one expands with ¢ = T.

Representing the revision operator [xp]y (“ belongs to every theory resulting from
revision by ¢”) is a slightly more complex matter. Recall that revision of T' by ¢ is
explained as removing from T all (and only those) sentences that are inconsistent with
¢, and subsequently expanding T' by .3 Mimicking the removal from T of the formula
that causes the inconsistency with ¢ by p-con([C]—¢), and the subsequent expansion
with ¢ as before, I end up with the following definition:

3lsaac Levi has in fact suggested that revisions should be defined in terms of such contractions and
revisions.
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[ripl = —do([u-con([C]=0); -exp((El)]; ~[C]?). ¢

Before actually translating the revision postulates into DM L, let me mention a possible
point of discussion here. In my approach the expansion and revision operators lack the
functional character they have in the Gardenfors approach. This is due, of course, to the
fact that the underlying C-paths to points where “p € T™ holds or fails for the first time,
need not be uniquely determined. I don’t see this as a shortcoming of the way I’ve set up
things. On the contrary, one can view this as an attempt to take the non-deterministic
character of everyday expansions and revisions seriously, instead of dismissing it as being
“non-logical”.

Another source of indeterminism is that, starting from a given
node/theory and a formula ¢ that you want to expand with, you may have to pass
several other nodes/theories before ending up at an outcome of the expansion, while a
move to contract by ¢ at this outcome need not take you all the way back to your starting
point.?

Finally, despite the fact that expansions and revisions may have multiple outcomes in
my setup, they need not have a single one, i.e., expansions and revisions need not be
defined in every situation.

Given the above points some of the postulates (x1)—(x8) are bound to come out invalid
when translated into DM L. But on the other hand, they also allow for some choices
when doing the translation. The statement ¢ ¢ T * ¢ may be read as “ib does not belong
to any theory resulting from revision by ¢,” or as “for some outcome T of revising T
by ¢, ¥ ¢ T'.” The modal counterparts of these options are

~do([u-con([CJe); a-exp([Sle)li (147),

or [ty]y for short, and —[*p]y, or

do[-con([Z]~); p-exp((Elil; ()7,

respectively. These subtleties will make some difference for postulate (x8).

On a similar note, as expansions and revisions need not be defined in every situation,
one might consider adding a clause ~[+¢]L (—[*p]Ll) saying “and if expansion (revision)
with ¢ is at all possible” to some of the Gardenfors postulates. However, for none of the
postulates this has any visible effects.

4This definition is clearly in accordance with the earlier maxim “change as little as possible of the old
theory.”

5In other words: it may be that you need to expand with some formulas %1,...,%, before you can
expand with ¢. Admittedly, this kind of interference may be undesirable, especially when %y, ...,%n
and ¢ are logically independent; on the other hand, this interference might be useful to model various
kinds of non-logical dependencies between formulas.
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(G2)  [*xplp

(G3)  [+plY — [+el¥,

(G4)  —[Clme A [+ely — [xely,

(G5)  [xp]lL — [+,

(G6) e P/ [xplx < [*Ylx,

(G7) [ AD)x — [*o][+dlx,

(G8a)  —[xp]— A [x@][+]x — [x(v A¥)]x,
(G8b) i)y A [xp][+]x — (o AP)]x-

Table 11.1
Translating the Gérdenfors postulates.

Which translations does this give, then? Translating x € T+ ¢ as [+y]x, with [E]x as
the limiting case where T + ¢ is in fact T' (or T+ T), and, likewise, translating x € T'* ¢
as [*py, I arrive at Table 11.1, where Gn is the translation of postulate (*r). Observe
that there is no schema corresponding to postulate (1) in Table 11.1; this one seems to
resist a direct translation, but its validity is guaranteed given the choices I have made.

Which of the schemata G2-G8b is valid on the well-founded DM L-models we are
considering here? First, the translation G2 of (*2) comes out valid, as an easy calculation
shows. To see that G3 is valid, assume that in some model we have z = [+¢]#. So there
is & minimal C-successor y of = with y |= [Clp, —[C]. Let us verify that = |~ [xply.
Clearly, y |= [C]p implies = £ [C]-¢, so (z,2) € [u-con([E]-p)]. In addition (z,y) €
[u-exp([E)e)]. Hence, as y |= ~[C]v, we must have

z | do|-con([C]-; p-exp([Cle)l; ~[SH?),

which is what we were after. Ergo, G3 is valid on all DM L-models.

Next comes G4. Suppose that z = =[C]—p, [+¢], but that = = [xp]. We derive a
contradiction. By z & [yi there is a minimal C-predecessor y of  with y = —[E]—¢.
But as z = —[C]—, = itself must be this y. But then, by assumption, z |= do(p-exp(|E
Jo; —[C]9?), that is: for some minimal C-successor z of z, z = [Ely, —[C]¥. But by
z = [+, we must also have z |= [E]4, yielding the required contradiction. Hence G4
is valid.

G5 is trivially valid, as its antecedent can never be satisfied. The validity of G6 is also
obvious, so let us consider G7. Seeing that it is valid requires a small argument. Assume
that in some model we have z [~ [*(p A g)]r — [*p][+¢]r. Then there are y, z, u such that

1. y is a minimal C-predecessor of z with y = [E]-p,
2. zis a minimal E-successor of y with z = [Clp,

3. w is a minimal C-successor of z with u |= [Clq, —~[E]r.

To arrive at a contradiction assume that
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4.z [xpAglr

Then, by (1) and an easy argument, y must be a minimal C-predecessor of z with

5 yE[Cl-(Ag.

To arrive at a contradiction, we will show that u = [C]r — conflicting with (3). By (4)
and (5), if u is a minimal C-successor of y with u = [C](p A ¢), we must have u = [C]r.
If, on the other hand, u is not such a successor, then, as u = [C](p A ¢) by (2) and (3),
there must be a v such that

6. v is a minimal C-successor of y with v |= [C]{(p A ¢) and v C u,

because we have assumed our structures to be well-founded. But then, by (4) and (5),
v k= [C]r, and by (6), v = [C]r, and we have reached our contradiction. This implies

that G7 is valid.
p.q p
[ ] [ ]
/ P / 2

———— _
[ [ ] [

Y2 1 / g
»aqT

e — o

Ys z3

Figure 11.2
Refuting G8a

In G8a the antecedent -1 ¢ T % ¢ of (x8) is translated as —[xp]—1. The instance
—[xp]gA[*p][+g]r — [*(pAg)]r of G8a is refuted at z in the model depicted in Figure 11.2.
To see this, notice first of all that [*(p A ¢)]r is refuted at T because

(2, 22) € [p-con([E]~(p A q)); p-exp([E](p A 0)); ~[E]r7].
Second, —[*p]—q holds at z as

(z, z3) € [u-con([Z]-p); u-exp([E]p); [Cl¢?].

Third, [#p][+q]r holds at z because there’s only one “revise by p, expand by ¢” path
leading from =z, notably (z, z3), and at the end of that path [C]r holds. (In particular,
(z,22) is not a “revise by p, expand by ¢” path since (z,y2) ¢ [u-con([C]-p)].)

There are several aspects to the invalidity of G8a, and it’s worth identifying them. For
a start, we are able to perform a contraction with —p (moving from z to y;) before we
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can contract with —(p A g) (move from z to y; to y2). As a consequence it is consistent
to have (z,2) € [u-con([C]-(p A ¢))] \ [z-con([E]-p)].¢ A related point is this. Since in
our indeterministic set-up we have interpreted —1 ¢ T x ¢ as “for some result of revising
by ¢, —1 is not in that result,” we are able to have a revision with p that contains —q,
notably z;, while at the same time having one that does contain g. And as expansions
need not always be defined in my set-up a revision with p (the move from x to y; to z)
need not be a revision with p A gq.

Some of the causes underlying the invalidity of G8a can be eliminated. For example,
reading —1p ¢ T x ¢ as “for all results T” of revising T by ¢” as in G8b, some of the
indeterminism can be lifted. In particular, points like z; in Figure 11.2 will then be
forbidden. Nevertheless, G8b is still not valid, as the reader may verify. Although
one might go still furhter towards ensuring that expansions and revisions are defined
when needed, I don’t think that all aspects of indeterminism can be done away with.
Specifically, I don’t think that the kind of dependencies noted in footnotes 5 and 6 can
be removed. In conclusion: there is no reasonable translation of (*8) into DM L that will
make it come out valid.

I have so far tried to give a modal analysis of the Gérdenfors postulates inside DML,
yielding a formal machinery for reasoning about Theory Change. The surplus value of
having the full relation algebraic repertoire available in conjunction with Gardenfors style
expansion and revision operators will be discussed towards the end of this section. At this
point I want to pursue the fact that one postulate, viz. (x8), did not come out valid despite
some alterations to its initial translation. This failure may prompt three reactions. One
can leave things as they are, and not be bothered by the invalidity of (x8); as (+8) has
been criticized extensively in the literature, this choice could be well argued for (cf. for
example (Ryan [25])). Alternatively, one can change the rules of the game somewhat
by changing the relevant postulate to one that no longer rests on the assumptions that
expansions and revisions be functional and always defined. A third possibility would
be to look for an alternative (modal) modelling of the postulates in DML or some
other formalism. Two proposals pursuing the second option will be discussed in the
following two subsections. Readers interested in alternative (modal) modellings of the
Géardenfors postulates and of postulates proposed by others are referred to (Fuhrmann
[10]) and (Grahne [15]).

6 As another consequence, the so-called recovery postulate for contraction (T CT— ¢+, or in modal
terms [Cly — [—¢|[+p], where [—¢] has the obvious interpretation) is not valid in my set-up. This
may not be such a bad thing as the recovery postulate is commonly considered to be the intuitively least
compelling of the Girdenfors postulates for contracting, cf. (Hansson {17]).
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11.3.2 The Lindstrom-Rabinowitz postulates

While discussing the indeterminacy arising in the context of revision of probabilistic
functions modelling belief states, one proposal Lindstrom and Rabinowitz [22] come up
with, is letting belief revision be a relation rather than a function. They argue that this
way of looking at belief revision is natural if one thinks that an agent’s policies for belief
change may not always yield a unique belief set as the result of a revision. Let a belief
revision relation be a ternary relation R between knowledge sets, (consistent) formulas
and knowledge sets. Lindstrom and Rabinowitz propose postulates (R0)—(R4) below for
all 7, S, U and ¢, 1.

Lindstrém-Rabinowitz postulates for revision as a relation

R0)  There exists a 7" such that TR, 1.

R1) ITR,S thenype S.

R2) I TU{e} is consistent and TR,S, then S =T + .

R3) Ifp <1 and TR,S, then TR, S.

R4) IfTR,S, SRyU and SU {1} is consistent, then TR, a4 U.

The intuitive reading of TR,S is: S is a (possible) outcome of revising T’ by ¢. Postu-
late (RO) corresponds to the requirement that revision should be defined for all T' and
(consistent) ¢. Postulates (R1)-(R3) are the relational counterparts to the Gérdenfors
postulates (%2), (x3) and (%4), (x6), and (x8), respectively. Lindstrém and Rabinowitz
don’t give relational counterparts to (%5) and (7). (R4) is new.

How can the Lindstréom-Rabinowitz postulates be accounted for in DM L? As before
we let knowledge sets be represented as sets of the form wg = {¢: M, w = [Cle }. And
following the definition of [xy]y, the obvious choice for the relation R, seems to be

Ry = [u-con([E]~p); p-exp([Cle)]-
So TR,S iff 3t,s (T =tg AS=sgA(t,s) € Ry).

Given this representation, one can reason about the revision relation R and its prop-
erties using the DM L apparatus. For instance, idempotency properties like

fix(Ry; Ry )

can now be tested for. I leave it to the reader to check that (RO) fails under this
representation, and that (R1)—(R3) are all valid. Asto (R4), in order to make sense of it
in DM L we have to decide how to represent “SU{ 9 } is consistent” in DM L. One natural
candidate is “[C]—~y ¢ sp,” where spy represents S. But this reading does not make (R4)
come out valid in DML. An easy counter model is given in Figure 11.3, with T =
to, S = so, U = un, v = p and ¢ = ¢. In Figure 11.3 (s,t) € Ry, (t,u) € Ry, s ¥ [C]g,
but (s,u) ¢ Rprg. Hence, in DML an agent has the possibility to distinguish between
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Figure 11.3
A counter model for (R4)

revising his knowledge by ¢ (without excluding v as an unacceptable proposition) and
subsequently revising by 1 on the one hand, and revising by the conjunction ¢ Ay on the
other hand. Thus, in DML there’s still more (room for) indeterminism than is allowed
for by the Lindstrém-Rabinowitz postulates.

11.3.3 The Katsuno-Mendelzon Postulates for Indeterministic
Revision

Katsuno and Mendelzon [21] give a model-theoretic characterization of all revision oper-
ators that satisfy the Gérdenfors postulates (#1)—(%8). They show that these operators
are precisely the ones that accomplish a revision with minimal change to the class of
models of the knowledge set. This minimality is measured in terms of total pre-orders
among models of the “initial” knowledge set. Katsuno and Mendelzon also study varia-
tions on the ordering notions and the corresponding postulates; in one of their variations
they change the above total pre-orders to partial ones, and formulate postulates char-
acterizing the corresponding indeterministic revision operators. Below I will translate
these postulates into DM L.

The Katsuno-Mendelzon postulates are formulated for knowledge sets T' that are as-
sumed to be represented by a propositional formula 17 such that T = {¢ : ¥r F ¢ }.
The notation ¥ o p is used to denote the revision of (the knowledge set represented by) 1
with (the formula) u. Katsuno and Mendelzon propose seven postulates for indetermin-
istic revision, the first five of which are in fact equivalent to the Gérdenfors postulates
(x1)—(x7), and thus valid (when translated) in DM L. Here are the remaining two.

Katsuno-Mendelzon postulates for indeterministic revision

éR?g If ¢ o py implies pg and 9 o g implies pq, then 9 o p; is equivalent to 9 o pg.
R8)  (¢opu1) A (o pz) implies ¢ o (u1 V pa).
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Intuitively, (R7) says that if u» holds in every result of revising with u1, and g; holds
in every result of revising with p2, then the revision with p; and the revision with po
have the same effect. Postulate (R8) says that every knowledge set that may be arrived
at after revising with p1, and also after revising with ps, must be among the knowledge
sets obtained after revising with p; V po.

Given these intuitive readings of (R7) and (R8) the following seem to be the natural
translations of these postulates into DM L. (R is the revision relation defined in the
previous subsection.)

M8 Lo T R A i

Although (+8) or G8a has now been weakened to (R7) A (R8) or (KM7) A (KMS8), this
weaker version is still not valid in DM L. In Figure 11.4 the instance [*p]g A [xqlp —

p.q qT
\y N
./

([*p]r & [*q]r) of (KMT) fails at z. As before, one thing that makes the model depicted
there a counter model for (KM7) is the fact that expansions and revisions need not
always be defined in my set-up. In particular, (KM7) would not fail at z in Figure 11.4
if it were possible to expand with ¢ at y. Furthermore, in Figure 11.5 the instance
[*(pV @)]r — =do((R,NRy); —[C]r?) of (KMB8) fails at . What this seems to amount to
is that in DML an agent can get to know a (non-trivial) disjunction without having to
know either disjunct. Apparently this possibility is excluded by the Katsuno-Mendelzon
postulates.

A Look Back

Figure 11.4
Refuting (KM7)

Let’s step back and review some points made in this section. One of the main features
of the revision and expansion operators defined in this section as opposed to other for-
malisms for theory change, is that in my set-up revisions and expansions need not always
be defined. Just as one can argue for giving up the functionality or determinism implied
by the Gérdenfors postulates by saying that an agent’s strategies for belief revision may
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Figure 11.5
Refuting (KM8)

not always tell him how to choose between possible outcomes,—one can also argue for
the possibility of revisions and expansions not being defined at all by pointing out that
an agent’s strategy for belief revision may not always tell him how to revise or expand.
Everyday life examples to this effect are easily found.

As was pointed out before, revisions and expansions as defined in this section lack
the total independence of sentences implicitly assumed by, for instance, the Gérdenfors
postulates for belief contraction (cf. footnotes 5, 6). This lack of independence might be
useful for modelling non-logical relations between beliefs.

Apart from the above two deviations this section shows that it is possible to define
revision and expansion operators in a fairly standard dynamic modal formalism like
DML that satisfy most of the postulates given by Gérdenfors, Lindstrém-Rabinowitz,
or Katsuno-Mendelzon.

There are several advantages to having revision and expansion operators satisfying
those postulates defined using the well-known Boolean and relation algebraic repertoire.
To a large extent this embedding de-mystifies the enterprise of theory change. Next, in
this larger repertoire one is no longer restricted to classical combinations of expansions
and revisions, but further operations become visible as well. One can think of sequential
composition of revisions, of reversals or ‘un-doings’ of revisions, and given that revisions
and expansions need not always be defined in my set-up, one might introduce conditional
revisions or expansions, where the conditions could read something like “after having
contracted with = you should always be able to expand with ¢.”

Having the revision and expansion operations embedded in a Boolean and relation
algebraic setting also reveals possible generalizations. One might consider weaker forms
of revision in which some of the minimality requirements are weakened. Second, this
section discussed revision, that is, changing beliefs as a result of newly obtained infor-
mation about a static world; one could also try and define so-called updates in DML;
an update is a theory change reflecting a change in the world. As shown in (Katsuno
and Mendelzon [20]) updates can be characterized by a set of postulates similar to the
Gérdenfors postulates. Another obvious generalization is to allow for several copies of
these operators, possibly interacting in certain prescribed ways, to model not only the
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belief change of several agents simultaneously but also the belief changes resulting from
interaction between the agents.

Below the states of DM L-models will be equipped with structure, a move that could
be made here as well, allowing the theories that are being revised to explicitly have
structure. One can think here of a hard core of sentences not admitting revisions, sur-
rounded by sentences which do admit revisions but which need not all have the same
epistemic status; the latter kind of sentences would then be ranked according to their
“epistemic entrenchment”, and the revision process would need to take this into account
(compare (Gérdenfors and Makinson {13])).

11.4 Terminological Languages

As Blackburn and Spaan [5] put it, in recent years modal logicians have considered a
number of enriched modal systems that bear on issues of knowledge representation. One
example is Schild’s [26] in which the correspondence between terminological languages
and modal logic is used to obtain complexity results for terminological reasoning. In this
section the correspondence between DML and one particular terminological proposal
will be described.

Recall that terminological languages provide a means for expressing knowledge about
hierarchies of concepts. They allow the definition of concepts and roles built out of
primitive concepts and roles. Concepts are interpreted as sets (of individuals) and roles
are interpreted as binary relations between individuals. For instance, traveler and
Amsterdam may be concepts, and has-flown-to may be a role. Compound expressions
are built up using various language constructs. Quite a number of proposals for such
constructs have been and still are being put forward (cf. (Schmidt [27]) for a comprehen-
sive survey). Here I will link DML to a KL-ONE dialect discussed by Brink and Schmidt
[7]); T will refer to this language as the Brink and Schmidt language.

The operations considered by Brink and Schmidt are the usual Boolean ones for the
concepts plus the usual RA-operations for the roles. In addition they consider a binary
operator ¢ taking a role and a concept, and returning a concept: Q(R,C) = {z :
Jy ((z,y) € RAy € C) }, and a mapping (-)° called (left) cylindrification taking concepts
to roles: C° = {(z,y) : z € C}. Other operations usually considered in terminological
languages are role quantifications of the form (SOME has-flown-to amsterdam)and (ALL
has—-flown-to amsterdam). These expressions can be read as “objects having flown (at
least once) to Amsterdam” and “objects all of whose flying trips went to Amsterdam”.
The quantifications (SOME R C) and (ALL R C) can be defined in Brink and Schmidt’s
language as O(R,C) and —Q(R, —C), respectively.

Here’s an example; while the present author is abroad one thing he may try to achieve
is “writing a paper and not phoning to a Dutch person”, or:
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O(writing, paper) A ~{Q(phone N (dutch A human)®, T),

where T is the Boolean 1.

The main questions in terminological reasoning are satisfiability problems (does a con-
cept (role) have a non-empty denotation in some interpretation), and the subsumption
problem (a concept (role) C subsumes a concept (role) D iff in every interpretation the
denotation of C is a superset of the denotation of D). For example, on the understanding
that amsterdam is in europe the concept

(ALL has-traveled-to amsterdam)N
(SOME has-flown-to north-of-paris)

is subsumed by
(ALL has-flown-to europe).

As conjunction and negation are available in this languae, the subsumption problem can
be reduced to the satisfiability problem.

What’s the connection between Brink and Schmidt’s terminological language and DM L?
Clearly, the terminological concepts are simply the propositions of DML, and the roles
have their counterparts in the extension DM L({C; }:iecr, ®) of DML in which multiple
‘primitive’ relations C; are available. So the two systems have the same basic ingredients.
But what about their operators? Are they interdefinable, for example? Tables 11.2
and 11.3 show that in fact they are.

Ole,p) = {z:Fy((z,y) €[] AMy =)} = do(a;97?),
¢ = {(z,y): Mz} = ¢ (6U-6),
Table 11.2
From terminological logic to DML . ...
do(a) = O(al), exp(p) = LNy,
ra(a) = O(a,l), con(p) = L N(=)°,
fix(a) = O{(ané),1), e? = sN-.
Table 11.3

. and conversely.

To illustrate this connection, here’s an example expressing the concept “people having
flown only to cities called Amsterdam” in DM L:
human A do(has-flown-to; (city A amsterdam)?) A

—do(has-flown-to; —(city A amsterdam?)).

The above connection may be formulated ‘officially’ by means of two mappings between
the two languages, thus establishing the following result.



Meeting Some Neighbours 187

ProposITION 11.1 Brink and Schmidt’s language for terminological reasoning with

primitive concepts ® and primitive roles {C; };cs is a notational variant of the modal
language DM L({C; }icr, ®).

Thus, the main issues in terminological reasoning, viz. satisfiability and subsumption,
may be re-formulated as satisfiability problems in (an extension of) DML, and results
and topics from the modal domain can be transferred to the terminological domain, and
vice versa. To substantiate this claim, let me give some examples.

COROLLARY 11.1 Modulo the translation induced by Table 11.3, the axioms and
inference rules of DM L({ C; };er, ®) are a sound and complete axiomatization of sub-
sumption of concepts in the Brink and Schmidt language.

We can be very brief about the proof of Corollary 11.1: apply 11.1 and 11.1. Indirectly,
the axioms and rules also of DM L{{C; }ier, @) also axiomatize subsumption of roles
in the Brink and Schmidt language; this is because any equation a = 3 between roles
(relations) can be mimicked at the level of concepts (propositions) by

EQUAL(w, 8) := A(—do(anN —B) A =do(—a N §)).

Although the following result is not new (cf. Schmidt-Schau$ [28]), its proof too comes
very easy given Proposition 11.1, and the fact that satisfiability in DML is undecidable
(by De Rijke [23, Theorem 5.1}).

COROLLARY 11.2 Satisfiability and subsumption in the Brink and Schmidt language
are undecidable.

As is well known, part of the Knowledge Representation community is concerned with
finding tractable terminological systems, either by limiting the expressive power of the
representation language, or by limiting the inference capabilities of the formalisms. This
has resulted in the description of quite a number of decidable or even tractable systems,
many of which can be seen as fragments of the Brink and Schmidt system. By 11.1, this
work is relevant to the search for decidable or tractable fragments of DM L.

Here’s a final possibility for exchange between the modal and terminological domain.
Terminological reasoning often deals with number restrictions like ( > 2 has-flown-to
amsterdam) (which can be read as “objects having flown to Amsterdam at least twice”)
to perform numerical comparisons. The modal logic of these counting expressions (by
themselves) has been analyzed by Van der Hoek and De Rijke {19]. The link between
terminological languages and DML established in 11.1 suggests that it may be worth
the effort to add the counting quantifiers to DM L, and examine the resulting language.

To finish this section let me cast the connection between the Brink and Schmidt language
and DML in algebraic terms. Schmidt [27] equips the Brink and Schmidt language
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with an algebraic semantics called Peirce algebras. To understand what these are we
have to go through one or two definitions. First of all, a Boolean module is a structure
M = (B, R, 0), where B is a Boolean algebra, R is a relation algebra and ¢ is a mapping
R x B — B such that

Ml O(r,a+b)=0(r,a) +0(r,b) M4 O(6,a) =a,
M2  O(r+s,a) = O(r,a) + 0(s,a) M5 $(0,a) =0,
M3 O(r,0(s,a)) = O((r; 5), a) M6  O(r,0(r,a)) <d'.

Just as Boolean algebras formalize reasoning about sets, and relation algebras formalize
reasoning about relations, Boolean modules formalize reasoning about sets interacting
with relations through ¢. In the full Boolean module M(U) = (B(U),R(U), ) over a
set U # 0 the operation ¢ is defined as described earlier, by

O(R,C)={z:Jy((z,y) e RAyeC)}.

(See (Brink [6]) for a formal definition of Boolean modules and some examples.) Boolean
modules are almost, but not quite, the right algebraic semantics for Brink and Schmidt’s
terminological language. To obtain a perfect match, what we need in addition to the set
forming operation ¢, is an operation that forms new relations out of sets. This yields
the notion of a Peirce algebra, which is a two-sorted algebra P = (B,R, 0, (+)°) with
(B,R, 0) a Boolean module, and (-)° : B — M a mapping such that for every a € B,
r € R we have

P1  ¢(a% 1) =a,
P2 O(r,1)¢=mr;1l.

In the full Peirce algebra P(U) over a set U # 0, ()¢ is defined, as before, as C° =
{(z,y) : € C'}. The algebraic apparatus of Peirce algebras has been used by Brink
and Schmidt [7) as an inference mechanism in terminological representation

Where does DML come in here? Because of Proposition 11.1, the modal algebras
for the DM L-language L({ =i }icr1, ®) are the Peirce algebras generated by the relations
{C; }ier and the propositions ®. Let a set identity be one of the form a = b where a,b
are terms living in the Boolean reduct of a Peirce algebra (observe that a,b may contain
the relational operations as well as ¢ and (-)¢). Then, the completeness result 11.1 may
be interpreted as follows.

PROPOSITION 11.2 The set identities valid in all representable Peirce algebras are
completely axiomatized by the algebraic counterpart of the modal axiom system for the
language DM L({ C; }ier, ®).”

7Although, strictly speaking, the completeness result 11.1 only axiomatizes validity on pre-ordered
DM L-structures, the construction does not depend in an essential way on these structural assumptions.
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Axiomatic aspects of the full two-sorted language over Peirce algebras, invlobing both

set identities and identities between terms denoting relations, are studied by De Rijke
[24].

11.5 Structured States: Update Semantics

In both this and the next section I will equip the states of DM L-models with additional
structure to be able to link DML with other dynamic proposals. The formalism I will
consider in the present section is Veltman’s update semantics [30]. In this system the
standard explanation of the meaning of a sentence being its truth-conditions, is replaced
by: “you know the meaning of a sentence if you know the changes it brings about in
the information state of anyone who accepts the information conveyed by the sentence.”
According to this point of view the meaning of a sentence becomes a dynamic notion,
an operation on information states. In this dynamic approach phenomena surrounding
the instability and changing of information caused by modal qualifications like ‘might,’
‘presumably’ and ‘normally’ can be adequately accounted for, as is shown by Veltman
using a number of systems. The simplest one, called US; here, has in its vocabulary a
unary operator might and a connective ‘o’, in addition to the usual Boolean connectives;
in U S, one can reason about an agent acquiring new information about the actual facts.

DEFINITION 11.1 The language of US;(®) is given by the following definition.

Atomic formulas: p € @,
Simple formulas: @ € Form,(®),
Formulas: 1 € US1(®).

pu=p|L]-p|e1 Ve |mightp,
Y u=p |1 e

The important restriction is that no e is allowed to occur in the scope of a might.

The intuitive reading of might ¢ is that one has to agree to might ¢ if ¢ is consistent
with one’s knowledge; otherwise might ¢ is to be rejected. The operator e is simply the
composition of (the functions expressed by) formulas.

DEFINITION 11.2 The semantics of the update system US] is as follows. Let W C
2%: a subset of W is an information state. Formulas are interpreted as functions in
2% — 2W  that is, as functions from information states to information states. Let
o C W. 1 write [p]o for the result of updating o with .
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[p]o‘ = Uﬂ{w:pew}’
[—@0]0' = 0 \ [SO]U’
levile = [gloU o,
might plo = { 0 gtl[li]l'zvl;sée@

[pedle = []([#lo).

Veltman discusses several notions of valid consequence. Since these are not my prime
concern here (but see below), I will confine myself to explaining the notion “US; = ¢”
as “for all information states o, [-p]o = 0.”

Van Eijck and De Vries [8] have established a connection between US; and the modal
system S5 (see also [16]). This construction underlies the embedding of US; into DML
presented below; what it amounts to is that US; is a forinalism for reasoning about
S5-models and certain transitions between them. This inspires the following definition.

DEFINITION 11.3 A structured DM L-model is a tuple 9 = (W, C,[-]) where T
is a global relation on Wy, and W, is a set of (finite) pointed S5-models of the form
m = (W,R,w,V) such that we W, R=W x W, and V is a valuation. Moreover, the
following conditions should be satisfied:

o mLC niff misasubmodel of n,
o ifm=(W,RwV) e Mthen (W,R,v,V) € M for all v € W, and n € M for all

nCm.

The formal language appropriate for reasoning about such 2-level structures, DM L(S5),
is defined as follows. Starting from a set of proposition letters ®, S5-formulas are built
using the operators L, M in the usual way. Let ®' be the resulting set; this is the set of
local formulas. They serve as ‘proposition letters’ for the global language DM L; that is:
DM L(S5) formulas are obtained from &’ by applying the usual DM L-connectives to its
elements.

The important semantic clauses then read as follows, for m =
(W,R,w,V):

MmpEp iff weV(p)
M, mE= My iff for some v € W with wRv, (W, R,v,V) E ¢,

that is, the value of such formulas is computed locally. For ‘purely global’ formulas, on
the other hand, the value is computed globally, as in the following example:

M, m |=do(C) iff for somene P, mLCn.
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DEFINITION 11.4 Define a translation (-)Jr of the USi-language into DM L{S5) as

follows:
@ = »p
ot = -
vl = ol vyl
mighte)f = Myl

(po)l = oA dO([Q; (Lt A9T)?)
N— 13 (Lol AvhyD; (@ n - 83 (2ot Awh).

The intuitive reading of (might <p)]L is that we locally check whether there is a point
verifying (pT. The intuitive interpretation of (¢ 1/))T is that (¢ 1/;)T holds at m =
(W,R,w,V) if m | <pT and for S = {z € m : (W,R,z,V) = (pT} we have that
(8,8%,w, V1S E 1. Notice that ()]L takes U/S;-formulas into a decidable fragment of
DML(S5).

PROPOSITION 11.3 Let ¢ be a formula in US;(®). Then we have US; | ¢ iff
DML(S5) k= .

Proof Suppose US; ¥ ¢. Then for some W C 2%, and ¢ C W, [~y|o # 0. Define
M= (W97 E, [[}]), where Wg =

{(0,06%z,V,):0c CW,zco,(peV,(y)ifpey, foryeo)},

and C and [-] have their standard interpretation. Then, by a simple formula induction, we

have that V4Vo C WVj € o (j € [0 iff (0,02,5,Vs) E ). It follows that DM L(S5) &
T

pl.

To prove the opposite direction we proceed as follows. Assume that for some 9t and
m € M we have D, m & goT. Let m = (W, W2, w, V). By standard modal logic we may
assume that in m every ‘relevant’ state description of the form (=)po A (—)p1A ... A(—)pn
(where py, . . ., b, are all the proposition letters occurring in ), occurs only once in m. We
may also assume that for every n = (W3, Ry, w1, V1) € 9, (W1, R1, V1) is a substructure
of (W,W?2,V). Now, let W/ = 2{po:--Pn} and for n € M let ¢, C W be the set of state
descriptions realized in n. Then, by a simple inductive proof, we have for all formulas 3
containing at most the proposition letters po,...,pn, and all n = (Wi, Ry, w1, Vi) € M,

nkE wT iff wy € [1]on, which completes the proof.

Proposition 11.3 may be interpreted as saying that the ‘internal’ notions of US; can
be turned into internal notions of DM L. But some of the ‘external’ or meta-notions of
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US; can also be turned into internal notions of DM L. Veltman [30] discusses various
notions of valid consequence for his update systems, including

©1,..,0n 19 HE for all o such that [p;lo =0,
we have [pjc =0 (1 <i< n), and
@1y 2 if i for all o, we have that

[W1(enl(. - - ([p1lo) .- ) = len](. .- ([palo) .. ).
In DM L(S5) these notions become

Orrer om0 i ALl A ALgl — LyT), and
(plv""(Pn’=2'¢’ iff AL(((pl.O(pn)T—)qu),

respectively, where 9, m | Ay iff for all n € M we have M, n = x.

Given the embedding of US; into DM L, some natural extensions and generalizations
become visible. Besides might one can consider other tests, the most obvious of which
are definable in DML, like an operator testing whether updating with a formula ¢ will
change the current state, or one testing whether the current state is at all reachable
via an update with ¢, or whether a pre-given goal state may be reached by performing
certain updates.

11.6 Structured States: Preferences

Among the structures of logic L there may be some models that are preferred for one rea-
son or another. Preferences may differ between applications, thus giving rise to different
notions of preferential inference. Shoham [29] offers a general to preferential reasoning in
which there is a (strict partial) order of preference < on L-models on top which minimal
consequence is defined as “truth of the conclusion in all <-minimal or most-preferred
L-models of the premisses.” By specifying the relation < in alternative ways many for-
malisms with non-monotonic aspects can be shown to fit this general preferential scheme.

Given the embedding of US; into DM L of 11.5 as an example, it should be obvious how
preferential reasoning can be mimicked in DM L: let T be the preferential ordering, and
let the states of our DM L-models simply be L-models. Then ‘@ preferentially entails 9’
is true in the global structure 9 iff M |= A(p A —~do(E ;¢?) — ). Via this equivalence
all preferential reasoning can be performed inside DM L.

Just as the preference relation embodies certain dynamic aspects of the underlying L,
it itself could alsc be subjected to change. This point may be illustrated with a system
US5 which is slightly more complex than US;, and which has also been introduced by
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Veltman [30]. In US> one is not only able to reason about changing knowledge as new
information comes in, but also about changing expectations; the latter are modelled
using a notion of optimality with respect to a pre-order. Modelling this system in DML
requires adding a separate S4-like component for expectations to the structured states
of 11.5, in addition to the S5-like component for knowledge. An agents refinement or
revision of his expectations can then be modelled inside such DM L-structures by making
moves to points with a suitably altered ‘expectations’ component.

11.7 Final Remarks

Let me point out what I consider to be the main points of this chapter. It has brought out
connections and analogies between dynamic formalisms from cognitive science, philoso-
phy and computer science by using a fairly traditional dynamic modal system (DML)
in a flexible way, far beyond its traditional boundaries.

Putting DM L to work in this manner had the surplus advantage of de-mystifying some
of those formalisms, and through these applications natural alternatives and generaliza-
tions of formalisms in those areas became visible.

Finally, structuring states as in 11.5 and 11.6 of this note may be seen as initial steps of
a larger program of adding structure to objects. As to adding structuring the transitions
between states, rather than or in addition to structuring the states, there seems to be a
problem. When transitions are equated with pairs of objects rather than treated as first-
class citizens in their own right, there does not seem to be an obvious way to structure
them. But Van Benthem [3] proposes a system of arrow logic in which the transitions or
arrows have a primary status in the ontology, without necessarily being identified with
pairs of states. Eventually this might be the way to go if one wants to be able to structure
transitions as well as objects.
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