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THE JOURNAL OF SYMBOLIC LoGic 

Volume 57, Number 2, June 1992 

THE MODAL LOGIC OF INEQUALITY 

MAARTEN DE RIJKE 

Abstract. We consider some modal languages with a modal operator D whose semantics is based on the 
relation of inequality. Basic logical properties such as definability, expressive power and completeness are 
studied. Also, some connections with a number of other recent proposals to extend the standard modal 
language are pointed at. 

?1. Introduction. As is well known, standard (propositional) modal and temporal 
logic cannot define all the natural assumptions one would like to make on the 
accessibility relation. One obvious move to try and overcome this lack of expressive 
power is to extend the languages of modal and temporal logic with new operators. 
One particular such extension consists in adding an operator D whose semantics is 
based on the relation of inequality. The proposal to consider the D-operator is due 
to several people independently, including Koymans [15] and Gargov, Passy and 
Tinchev [10]. This particular extension of the standard modal language is of 
interest for a number of reasons. First of all, it shows that some of the most striking 
deficiencies in expressive power may be removed with relatively simple means. 
Secondly, several recent proposals to enhance the expressive power of the standard 
language naturally give rise to considering the D-operator; thus the language with 
the operators K and D appears as a kind of fixed point amongst the wide range of 
recently introduced extensions of the standard language. And thirdly, many of the 
interesting logical phenomena that one encounters in the study of enriched modal 
languages are illustrated by this particular extension. 

Applications of the D-operator can be found in [9], where it has been used in the 
study of various enriched modal languages, and in [15], where it is applied in the 
specification of message passing and time-critical systems. 

The main subject of this paper is the modal language Y?(O, D) whose operators 
are K and D. The remainder of ?1 introduces the basic notions, and examines which 
of the (anti-) preservation results known from standard modal logic remain valid 
in the extended formalism. Next, ?2 compares the expressive powers of modal lan- 
guages that contain the D-operator with a number of other modal languages. In 
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?3 we present the basic logics in some languages with the D-operator, and we give 
complete axiomatizations for several special structures; in it we prove that, given the 
right basic logic in @?(D), all finite extensions thereof are complete; we also discuss 
analogues of the Sahlqvist theorem for Y?(K, D) and Y?(F, P, D). ?4 then deals with 
definability, both of classes of frames and of classes of models. 

1.1. Basics. The (multi-) modal languages we consider have an infinite supply of 
proposition letters (p, q, r,.. .), propositional constants I, T and the usual Boolean 
connectives. Furthermore, they contain one or more unary modal operators. The 
standard language Y?(K) has operators K and 0ii, with K being regarded as 
primitive, and D being defined as -- ---. (In general, /(01,..., J) denotes the 
(multi-) modal language with operators 01,... , 0.) We use p, ?, x,... to denote 
(multi-) modal formulas. The semantic structures are frames, i.e. ordered pairs 
<W, R> consisting of a nonempty set W with a binary relation R on W. To save 
words, we assume that E denotes the frame <W, R>. In addition to these frames, 
structures called models will be used, consisting of a frame Y together with a 
valuation V on E assigning subsets of W to proposition letters. We assume that X 

denotes the model <K, V>. 
X# p [w] is defined as usual, the important case being: ad # K9[w] iff, for 

some v E W, Rwv and X # p [v]. For temporal logic the clause for K is replaced by 
two clauses for F and P: X # F-p[w] iff, for some v E W, Rwv and X # ok]; 

# - P(Pw] iff, for some v E W, Rvw and t/ # fPEw]. The semantics of the D- 
operator is given by X # Dqp D w] iff, for some v =# w, /# p [v]. From this, notions 
like X/ # p, YF h [w], and EF p are defined as usual. 

G and H are short for - F7 and - P , respectively. The dual - D7 of D is 
denoted by D. Using the D-operator, some useful abbreviations can be defined: 
Ep := p v Dp (there exists a point at which p holds); Ap := p A Dp (p holds at 
all points); Up := E(p A m Dp) (p holds at a unique point). 

The fact that some notions are sensitive to the language we are working with is 
reflected in our notation: e.g. we write E -- D W to mean that E and W validate 
the same p E Y?(K, D), and Tho D(E) for the set of formulas in Y?(K, D) that are 
valid on E. 

We will sometimes refer to the first-order languages %o and Y?: %o has one binary 
predicate symbol R as well identity; Sf1 extends Yo with unary predicate symbols 
P1, P2,.. ., P, Q, ... corresponding to the proposition letters of the (multi-) modal 
language. First-order formulas will be denoted by ot, /3,..... o. is called locally 
definable in f(01,0...., 0n) if for some (p E f(01,...., 0), for all A, and all w E W, 
YF # o[w] iff F o p[w]; it is called (globally) definable in Y?(01,.. ., 0n) if for some 
(pe ?(01,...,0J),forallY,YF =oiffY F p. 

1.2. (Anti-) preservation and filtrations. It is well known that standard modal 
formulas are preserved under surjective p-morphisms, disjoint unions and generated 
subframes: 

DEFINITION 1.1. 1. A surjective function f from a frame r to a frame 2 is called 
a p-morphism if (i) for all w, v E1 W1, if R1wv then R2f(w)f(v); and (ii) for all w E W, 
and v E W2, if R2f(w)v then there is a u Ec W1 such that R1wu and f(u) = v. 

2. 3; is called a generated subframe of a frame F2 if (i) W1 c W2; (ii) R1 = 

R 2 r (W2 x W2); and (iii) for all w E- W1 and v E W2, if R2wv then v E W1. 
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3. Let 3(i E I) be a collection of disjoint frames. Then the disjoint union i cIt 
is the frame <U{W: i e I}, U{Ri: i e I}>. 

Here are some examples showing that adding the D-operator to Y?(K) gives an 
increase in expressive power: 

1. <op -+ Dp defines Vx Rxx; 
2. p v Dp --> Op defines R =W2; 

3. 0 T v DO T defines R 0. 
Using the above preservation results, it is easily verified that none of these three 

conditions is definable in Y?(K). And conversely, the fact that they are definable in 
Y(O,D) implies that we no longer have these preservation results in Y(O,D). 
Moreover, they can be restored only at the cost of trivializing the constructions 
concerned. 

A fourth important construction in standard modal logic is the following: 
DEFINITION 1.2. Let E be a frame, and X c W. Then LR(X) = {W E W: VV E W 

(Rwv -+ v e X)}. The ultrafilter extension ue(Y) is the frame <W~F, R>, where 

W. is the set of ultrafilters on W, and RF U1 U2 holds if, for all X c W, LR(X) E U1 
implies X E U2. 

Standard modal formulas are anti-preserved under ultrafilter extension, i.e. if 
ue(Y) # p then EF # . (Cf. [4, Lemma 2.25].) Perhaps surprisingly, for formulas 
yp E ((O, D) this result still holds good, as one easily deduces from the follow- 
ing result. 

PROPOSITION 1.3. Let V be a valuation on E. Define the valuation Vf on ue(Y) by 
putting V>(p) = {U: V(p) E U}. Then, for all ultrafilters U on W and all formulas 
p Ec YfO. D), we have <ue(Y), VUs> # p[U] iff V(p) E U. 

PROOF. We argue by induction on p. The cases =p, Ar, - A x% 0K are proved 
in [4, Lemma 2.25]. The only new case is p D-Do. Suppose V(DO) = {w: 3v =# w 
(v E V(0))} E U. We must find an ultrafilter U1 =# U such that <ue(f), V>> > 
f[U1]. First assume that U contains a singleton, say, U = {X c W: X - {wo}}. 

Then wo E V(Df), so there exists a v =# wo with v E V(E). Since v =# wo, we must 
have {v} 0 U. Let U1 be the ultrafilter generated by {v}; then U =# U1. Further- 
more, v E V(E) implies V(E) E U1, and hence <ue(Y), V5Z> # [U1], by the induc- 
tion hypothesis. It follows that <ue(Y), Va> # Df[U]. Next, suppose that U does 
not contain a singleton. Since V(Df) E U, we find some wo E V(DO). Let v be a 
point such that v =A wo and v E V(E). Then {v} 0 U, and we can proceed as in the 
previous case. 

Conversely, assume that V(DO) 0 U. We have to show that <ue(Y), V> 
# DOf[U]. Since V(DO) 0 U, we have that X = {w: Vv(v =# w -+ v 0 V(0))} E U, 
and hence X =A 0. Let wo E X. Clearly, if wo 0 V(?), then X = W and V(?) = 0. 
Consequently, for all ultrafilters U1 =# U we have V(/) 0 U1. So, by the induc- 
tion hypothesis, <ue(Y), Vs> O [U1], and hence <ue(Y), V>> #A DOf[U], as re- 
quired. If, on the other hand, wo E V(E), then X = {wo} = V(o), and U is generated 
by X. It follows that, for any ultrafilter U1 =# U, X = V(O) U1. So by the in- 
duction hypothesis we have <ue(Y), VUs> # f[U1] for such U1. This implies 
<ue(fl, VF> [A DO[U]. QED. 

COROLLARY 1.4. For any frame E and all p E Y(O, D), if ue(F) # p then 
Cip. 

COROLLARY 1.5. ]X Rxx is not definable in S(OD). 
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PROOF. Evidently, E = <N, < > [ Jx Rxx. Elementary reasoning shows that, 
for any nonprincipal ultrafilter U on N, Rj UU. Hence, ue(Y) # ]x Rxx. Now 
apply 1.4. QED. 

Another important notion from standard modal logic is that of a filtration. It has 
a straightforward adaptation to Y(K, D): 

DEFINITION 1.6. Let Cal and /2 be models, and let z be a set of formulas 
p E SY(O, D) closed under subformulas. A surjective function g: S /&2 is an 
extended filtration with respect to f if 

1. for all w, v E W1, if R1wv then R2g(w)g(v), 
2. for all w E- W1 and all proposition letters p in X, w E V1(p) iff g(w) E V2(p), and 
3. for all w Ec W1 and all A? E X, if tJ2 # Ap[g(w)] then 4 # Ap[w], where 

A E {K0,D}. 
PROPOSITION 1.7. If g is an extended filtration with respect to z from X/, to /2, 

then, for all w E- W1 and all 9p E X, /W/ V p[w] iff /2 V [g(w)] 
Recall that the standard example of a filtration in ordinary modal logic is the 

modal collapse: given a model # and a set f that is closed under subformulas, it is 
defined as the model di', where, for g(w) = {? e f: 9 1 p[w]} and W' =g[W], 
R'g(w)g(v) holds iff, for all Elip E X, Lilp E g(w) implies p E g(v), and V'(p) = {g(w): 
p E g(w)}. To obtain an analogue of the modal collapse for Y(K, D), take the ordi- 
nary modal collapse, and double the points that correspond to more than one point 
in the original model. A simple inductive proof then shows that corresponding 
(doubled) points verify the same formulas. 

Using the extended collapse one may show in a standard way that formulas 
p E Y?(O, D) satisfy the finite model property (and, hence, that the validities in 
Y?( O, D) form a recursive set): such a p Ec Y(O, D) has a model iff it has a model with 
at most 2 . 2' worlds, where n is the length of p. De Smit and van Emde Boas [19] 
show that for p E @?(D) one can do considerably better: such a formula has a model 
iff it has a model with at most 4n worlds, where n is the length of p. Thus, the 
satisfiability problem for pure D-formulas is NP-complete. The satisfiability for 
(K,D)-formulas is certainly PSPACE-hard; it is unknown, however, whether this 
problem is in PSPACE. 

?2. Some comparisons. In this section we compare modal languages with the D- 
operator to some languages without it. It is not our aim to give a complete 
description of all the aspects in which languages of the former kind differ from, or 
are the same as, languages of the latter kind, but merely to highlight some of the 
features of the former languages. 

2.1. The language Y(D). 
PROPOSITION 2.1. All formulas p E YS(D) define first-order conditions. 
PROOF. Using the ST-translation as defined in ?4.2, such formulas can be 

translated into equivalent second-order formulas containing only monadic predi- 
cate variables. By a result in [1, Chapter IV] these formulas are in turn equivalent to 
first-order ones. QED. 

Proposition 2.1 marks a considerable difference with Y( OK): as is well known, not 
all Y(K)-formulas correspond to first-order conditions. In the opposite direction, 
there are also some natural conditions undefinable in Y?(O) that are definable in 
A(D). For example, using the preservation of standard modal formulas under 
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generated subframes and disjoint unions, it is easily verified that no finite cardinality 
is definable in Y(O); on the other hand, although 2.1 implies that "infinity" is not 
definable in Y(D), we do have 

PROPOSITION 2.2 (KOYMANS). All finite cardinalities are definable in Y(D). 
PROOF. For n E N, IWI < n is defined by 

A Upi- V E(pi A pj), 
1 i<n+1 1 <i<j<n+ 1 

while IWI > n is defined by 

A( V pi E V (pi A Dpi). QED. 
1 <?i<n 1 ?i<n 

THEOREM 2.3 (Functional Completeness). On frames Y(D) is equivalent with the 
language of first-order logic over =. 

PROOF. All first-order formulas over identity can be defined as a Boolean 
combination of formulas expressing the existence of at least a certain number of 
elements. By 2.2 these formulas are definable in Y(D). The converse follows from 2.1. 

QED. 
2.2. The languages Y(O, D) and Y(O). One way to compare the expressive 

powers of two languages is to examine their ability to discriminate between special 
(read: well-known) structures. For example, in contrast to StO), Y(O. D) is able to 
distinguish Z from N: <N, < > #,,D <Z, < >. This follows from the fact that the 
existence of a (different) predecessor is expressible in Y(O, D) by means of the 
formula p A D-p -DOp. 

SO VXSy(X =A Y A Ryx) is an R%-condition on frames which is definable in 
Y(O, D) but not in Y(O). Other well-known R-conditions undefinable in Y(O) 
are irreflexivity and anti-symmetry. By the next result, these conditions do have an 
Y( O. D)-equivalent: 

PROPOSITION 2.4. All HI'-sentences in R, = of the purely universal form 

VP1 VPmVXi * VXn BOOL(PiXj, Rxixj, xi = xj) 

are definable in Y(O, D). 
PROOF. Let Pl,..., pm and q1,...,qn be proposition letters such that each of 

P1i,*,Pm is different from each of q1,...,qn. Now take Uq1 A ... A Uqn - 
BOOL(E(qi A p4) E(qi A Kqj), E(qi A qj)). QED. 

It is well known that two finite rooted frames that validate the same formulas 
p E K(O) are isomorphic. This is improved upon in (O, D): 

COROLLARY 2.5. If F1 and 2 are finite frames, then 1 _=, D i2 if = -2- 

PROOF. Finite frames are isomorphic iff they have the same universal first-order 
theory. So from 2.4 the result follows. Alternatively, one may give, for each finite 
frame A, a "characteristic formula" %. such that, for all X, W V -x iff G E 

(cf. ?4.1). QED. 
Let us call a set T of (multi-) modal formulas (frame) categorical if, up to 

isomorphism, there is only one frame validating T; T is called A-categorical if, up to 
isomorphism, T has only one frame of power A validating it. (A-) categoricity is an 
important notion in first-order logic that is meaningless in standard modal 
languages: by some elementary manipulations one easily establishes that if Y # T 
for some , where T is a theory in either Y( OK) or Y(F, P), and if I is a set of indices, 
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then for each i E I there is a frame F # T such that F 5 Fj if i =# j. In contrast, 
for any finite frame Y the complete (K,D)-theory ThOD(F) is easily seen to be 
categorical by 2.4. 

The classical example of an w-categorical theory in first-order logic is the 
complete theory of the rationals. By standard techniques one can show that Tho(Q) 
is not w-categorical; but ThO D(Q) is wo-categorical: 

PROPOSITION 2.6. The complete ( O.D)-theory of Q is wo-categorical. 
PROOF. It suffices to give formulas p E YS(O, D) which are equivalent to the 

axioms for the theory of dense linear order without endpoints: 

VXyZ(X < y A y < Z -X < Z), OOp-K Op, 

VXy(X < y A y < X -X = y), p A D p El(Op -p), 

Vx (x < x), Op -+ Dp, 

Vxy(x = y v x < y v y < x), p- Oq v D(q- Op), 

VxyIz(x < y -x < z A Z < y), Op - OOp, 

]xy(x # y), DT, 

Vx]y(x < y), OT, 

Vx]y(y<x), p A D p- Op v DOp. QED. 

The special form of the antecedents of the second and last (O. D)-formula in the 
above list is worth noting. When such an antecedent is true it forces p to act as a so- 
called nominal, i.e., to hold at precisely one point; this then enables us to describe the 
behavior of < locally, at the unique point at which p holds. (See ?2.4 for more on 
nominals.) 

Recall that a modal sequent is a pair a = <F0, 00> where FO and 00 are finite sets 
of (multi-) modal formulas; E 1= a if, for every V, if <K, V> I= FO then there is a 
0 E 00 with <K, V> I= 0. A class K of frames is sequentially definable if there is a 
set L of modal sequents such that K {E: Vc E L(Y I= a)}. Kapron [14] shows 
that in @?(O) sequential definability is strictly stronger than ordinary definability. 
By our remarks in ?1.2 and the fact that validity of sequents is preserved under 
p-morphisms (cf [14]), it follows that definability in ?(O, D) is still stronger. 
Furthermore, in Y(O, D) the notions of ordinary and sequential definability 
coincide; as is pointed out in [13] this is due to the fact that we can define the 
"universal modality" A in ?(O, D): 

PROPOSITION 2.7. Let K be a class of frames. K is sequentially definable in 
Y?(O. D) iff it is definable in YffO. D). 

PROOF. One direction is clear. To prove the other one, assume that K is defined 
by a set L of sequents. For each a = <{(90, . .pn} {t0 f**,.. .,* m} > E L put a* := 
AO<i<n A(P VO<i<MAO, Then K is defined by { a*: a E L}. QED. 

It should be clear by now that adding the D-operator to Y?( OK) greatly increases 
the expressive power. Limitations are easily found, however. As we have seen, ]x 
Rxx is still not definable in Y?( O, D). And just as with the standard modal language 
we find that on well-orders a sort of "stabilization of discriminatory power" occurs 
at a relatively early stage (cf. [5] for a proof of this result for the standard modal 
language). To prove this we recall that the clusters of a transitive frame E are the 
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equivalence classes of W under the relation x y iff (Rxy A Ryx) v x = y. Clusters 
are divided into three kinds: proper, with at least two elements, all reflexive; simple, 
with one reflexive element; and degenerate, with one irreflexive element. 

THEOREM 2.8. If (p E Y(O, D), and F is a well-ordered frame with F # y0, then 
there is a well-ordered frame W such that i < wt2 and i V cp. 

PROOF. Suppose that for some V and w E W we have X = <K, V> I= -m ([w]. 
Let Z- be the set of subformulas of m yo, and define Z := Z- u { 0 /: DO e Z - }. Let 
X1& be the (extended) collapse of X with respect to Z. Then f is transitive and 
linear. Consequently, S# may be viewed as a finite linear sequence of clusters. 

Next, X1 will be blown up into a well-ordered model /#2 by replacing each cluster 
with an appropriate well-order. If C = {w} is a degenerate cluster, then C is itself a 
well-order, and we do nothing. Nondegenerate clusters {w1, . . ., Wkj are replaced by 
a copy of w; the valuation is adapted by verifying p in a newly added n iff n = i mod k 
and wi E V1(p). The resulting model is a well-order, and since /, is finite it will have 
order type <w 

If w Ec W1, we write w for a point or points corresponding to w in ,/2. Then, for all 
1 E Z and w Ec W1, X1 1= f[w] iff A2 i f[0]. This equivalence is proved by 

induction on A. The only nontrivial case is when X-= DX and ,k2 F DX[iF]. In that 
case one uses the fact that DX E Z implies OX E Z. QED. 

From 2.8 and [5, Theorem 5.2] it follows that the well-orders of type <aW * k 
+ n (k < w, n < w) all have distinct (K, D)-theories, while for k > w we have W * k 
+ n -OD( * wt) + n. 

2.3. The languages Y( O, D) and f(F, P). On strict linear orders the D-operator 
becomes definable in f(F, P): on such frames we have F # (P(p v Fy0) - D9. In 
fact, this may be generalized somewhat; call a frame Y n-connected (n > 0) if, for any 
w, v E W with w : v, there exists a sequence W.. . ., Wk such that w1 = w, Wk = v 
and for each j (1 < j < k) either Rwjwj+ 1 or Rwj+ ,wj. Then, using a suitable transla- 
tion, one may show that on irreflexive n-connected frames every (O, D)-formula is 
equivalent to one in Y(F, P). This shows that new results about standard modal 
languages may be obtained by studying extended ones: for it follows from 2.4 that on 
the class of irreflexive n-connected frames every purely universal HI-sentence in R, 
= is definable in Y(F, P). 

By the next result there is no converse to our previous remarks: P is not definable 
in Y(O, D), not even on strict linear orders. 

THEOREM 2.9. 1. <Q. < > WFP <R, < >, 
2. <Q. < > =O,D <R, < > 
PROOF. The first part is well known. To prove the second part, assume first that, 

for some (p E Y((O, D) and valuation V, <R, <, V> # p. Using the ST-translation as 
defined in ?4.2, we find that <R, <, V> 1= 3x ST(-i p). Hence, by the Lowenheim- 
Skolem theorem, <Q. <, V'> I= ]x ST(-i p), where V'(p) = V(p) [ Q, for all prop- 
osition letters p. It follows that <Q. < > P p. 

Conversely, assume that, for some (p E Y(O, D) and a valuation V, <Q. <, V> 
# p. Define Z and X1 as in the proof of 2.8. Then X1 is transitive, linear and 
successive (both to the right and to the left). A model /2 may then be constructed 
by replacing each cluster by an ordering of type i if it is the leftmost cluster, and 
otherwise, if it is degenerate it and its nondegenerate successor (by [18, Lemma 1.1] 
X1 does not contain adjacent degenerate clusters) are replaced in one go by an 
ordering of type 1 + A; after that, the remaining nondegenerate clusters are also 
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replaced by 1 + A. The valuation may then be extended to newly added points in 
such a way that an induction similar to the one in the proof of 2.8 yields /#2 [A (. 

QED. 
2.4. The language $(O, D) and some other enriched languages. In [6] a simple 

method of incorporating reference into modal logic is presented by introducing 
a new sort of atomic symbols nominals-into the modal language. These new 
symbols combine with other symbols of the language in the usual way to form 
formulas. Their only nonstandard feature is that they are true at exactly one point in 
a model. Let An( OK) denote the language S( OK) with nominals added to it. From [6] 
we know that Yn(O) is much more expressive than Y(O): important classes of 
frames undefinable in Y(O) become definable in Yn(O). But it turns out that 

t( O, D) is even more expressive than An( OK). To see this, let no, n1, n2, ... range over 
nominals, let PoP1, P2,.- denote the proposition letters in Yo(K) and Y(O, D), 
and define z: Yn(K) )-+ Y(OKD) by putting z(Pi) = P2j and z(ni) = P2i+1, and by 
letting - commute with the connectives and operators. Given a formula p EC Yn(K), 
let nj,..., nk be the nominals occurring in p, and define (cp)* e $(O, D) to be 
Uz(n ) A ... A U(nk) -) 

PROPOSITION 2. 10. Every class of frames that is definable in Yj(K) is definable in 
$(O, D), but not conversely. 

PROOF. The first part follows from the observation that, for any formula 
(p Ec Yn(K) and any model <W,R, V>, <W,R, V> V cp[w] iff <W,R, V*> I= cp*[w], 
where V*(p) = V(i?-'(p)). The second part follows from 2.2 and the fact that 1 is 
the only cardinality definable in Yn(K) (cf. [6]). QED. 

In [6] and [9] the extension Yn(O, A) of Yn(K) is studied here A is the operator 
defined in ?1. 1, whose semantics is given by X& 1= A p[w] iff, for all v E W, At k= ( [v]; 
it is sometimes called the shifter (in [6]), or the universal modality (in [9]). By the 
above observations Yn(K, A) is no more expressive than Y(K, D). Moreover, by a 
nice result in [9] the converse holds as well: 

THEOREM 2.11 (Gargov and Goranko). A class of frames is definable in Yo( K, A) 
if it is definable in $(K, D). 

Combining results from this section and earlier ones together with results from 
[9] and [13], we arrive at the following picture: 

Ys(O,A) 

< n Hi>) (OD) 

S~~~n(?) ~ o Ie 
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(Here, K(oy'q is Y(K) with sequential definability; each box contains languages 
that are equivalent with respect to definability of frames, and arrows point to 
more expressive languages.) 

?3. Axiomatics. We first study logics in the language Y(D); we show that, given 
the right basic logic in $(D), all its finite extensions are complete. After that we 
consider the basic logics in $(O, D) and $(F, P, D), as well as some logics axi- 
omatizing familiar classes of frames, or special structures. Finally, we will discuss 
Sahlqvist theorems for $(K, D) and $(F, P, D). 

3.1. The logics in $(D). 
DEFINITION 3.1. DL is propositional logic plus the following schemata: 

(A1) D(p -q) - (Dp - Dq), 

(A2) p -+ DDp (symmetry), 

(A3) DDp -+ (p v Dp) (pseudotransitivity). 

As rules of inference it has modus ponens, substitution, and a "necessitation rule" 
for D: 

[p =>Dp. 

THEOREM 3.2 (Koymans). Let 2: u {cp} c S(D). Then 2: FDL- (P iff2: IP. 
PROOF. Soundness is immediate. To prove completeness, assume 2:Tf.DL- (P, 

and let A - 2: u {J- p} be a maximal DU -consistent set. Consider W= 
{F: 3n(RD)n AF}, where F ranges over maximal DL--consistent sets and RD is 
the canonical relation defined as follows: RDrlT2, iff, for all Di e F1, / e F2. Then 

VXY(RDXY -+ RDyx) and Vxyz(RDZY A RDYZ -+ RDXZ V X = Z). 

If there are any RD-reflexive points, let c be such a point; replace it with two points 
C1, C2, and adapt RD by putting RDClC2, and conversely, and by putting RDCiW 
(RDWCi) if RDCW (RDWc) (i = 1, 2). In the resulting structure RD is real inequality, and 
p is refuted somewhere. QED. 

Hence, one may be inclined to think that DL is the basic logic in $(D), just 
as K is the basic logic in $(K). However, DU is, so to speak, not as stable as K: 
in $(K) incompleteness phenomena occur only with more exotic extensions of K 
(cf. [2]); in contrast, here is a very simple incomplete extension of DL-: 

EXAMPLE 3.3. Consider the system DL + (cp -) Dp). Then DL + (cp -) Dp) 

I I, since no frame validates DL + (cp -) Dp). On the other hand, DL + 
(cp - Dcp) F/ I1. To see this, recall that a general frame is a triple R = < W, R, YF>, 
where F c- P(W) contains 0, and is closed under the Boolean operations as well 
as the operator LR (cf. 1.2); valuations on a general frame should take their values 
inside O. Now let R = <W,R,YF>, where Y = <{O,1},0> and F = {0, {0,1}} 
(so D is interpreted using the relation R = 0). Then R # DL + (cp Dp). There- 
fore, DL + (cp -) Dp) is incomplete. 

To avoid incompleteness phenomena such as those sketched above, we follow 
some suggestions by Yde Venema and Valentin Goranko, and add the following rule 
of inference to DL-: 

(IR) If, for all proposition letters p not occurring in p, [-p A Dnp -+ p, then [-p. 
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The idea of using special kinds of derivation rules to obtain completeness results 
originates with Dov Gabbay, who used an irreflexivity rule to axiomatize the set of 
K-formulas valid on irreflexive frames (cf. [8]). A rule analogous to (IR) has been 
used to obtain completeness results for axiom systems in languages with nominals 
(cf. [6], [8], and [10]). 

Let DL denote DL- plus the rule (IR). Note that, given the substitution rule, (IR) 
is in fact equivalent to a finitary rule: if, for some proposition letter p not occurring 
in p, [-p A D-ip -+ p, then [-9. Our next aim is to prove that, in terms of general 
consequence, DL has no effects over DL-. To this end it suffices to show that DL 
precisely axiomatizes the basic logic in $(D). 

Let L - DL be a logic. A set of formulas F is called L-nice if F is maximal L- 
consistent, and if, for some proposition letter p, p A D-i p E F. 

PROPOSITION 3.4. Let L - DL. Every L-consistent set can be extended to an 
L-nice set. 

PROOF. This is a combination of the usual Lindenbaum construction plus ap- 
plications of the rule (IR). Note that we may have to add new proposition letters 
to our language. (Cf. [10] or [21] for details.) QED. 

An i-canonical general frame for a logic L extending DL in $(D) is a tuple 
AL= <W, RD, #'>L such that W is a set of L-nice sets RD-generated by a single 
L-nice set, i.e., W = {T: ]n ? 0 (RD)n2:T} for some L-nice 2:; RD = {<2:, F>: for all 

Dp E 2:, (p E F}; and YK = {X c W: 3]p E $(D) VA E W(p E A +-,A -E X)}. Finally, 
EL is an i-canonical frame if it is the full frame underlying some i-canonical general 
frame. 

PROPOSITION 3.5. Let AL be an i-canonical general frame for some logic L 
extending DL in Y(D). Then RD is real inequality. 

PROOF. By definition RD holds between any two different elements of W. To see 
that it holds only between different elements of W, letA ie W. Since A is L-nice, we 
p A D -p E AJ, for some proposition letter p. Hence, nRDA 'A. QED. 

THEOREM 3.6. Let 2: u {(p} c f(D). Then 2: FDL 9P iff2: # I. 
PROOF. Soundness is immediate. To, prove completeness, assume that 2: F/DL 9P 

By 3.4, 2: u {-i A} can be extended to a nice set 2:'. Consider an i-canonical frame 
Y = <W, RD> such that 2:' e W. Let V be the canonical valuation, i.e., V(p) = 
{F E W: p E F}. Then < W. RD, V> = 1 9[X2:']. QED. 

It follows from 3.2 and 3.6 that the rule (IR) is superfluous in the basic logic. 
However, it does yield new consequences in extensions of DL: DL + (p - D9p) is 
inconsistent, and thus complete. (To see that it is inconsistent, note first that, for any 
proposition letter p, DL + ((p - D9p) F- (p A D -p -1 I); hence, by the rule (IR), 
DL + ((p -) Dp) F- I.) Better still, if a simple extension of a logic L is an extension 
of L with only finitely many axiom schemas, then, with the rule (IR) added to our 
basic logic in $(D), we can prove the completeness of every simple extension of the 
basic logic in $(D). To do so we need a number of lemmas and definitions, the 
first of which will be given next. 

DEFINITION 3.7. Let AL = <W, RD, #'>L be an i-canonical general frame for a 
logic L - DL. A set X c W is definable in RL if X E Ol A valuation V is definable in 

AL if, for every 9 E $(D), V(9p) is definable. 
PROPOSITION 3.8. Let AL = < W, RD, '>L be an i-canonical general frame for a 

logic L - DL. Let X c W be finite or cofinite. Then X is definable in AL. 
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PROPOSITION 3.9. Let AL = < WK RD, #'>L be an i-canonical general frame for a 

logic L - DL. Let V be a valuation. If, for all proposition letters p, V(p) is either finite 

or cofinite, then V is definable in AL. 
PROOF. This follows from 3.8 and the fact that, for any p, V(Dcp) is either 0, W, 

or the complement of a singleton. QED. 

Our strategy for proving the completeness of every simple extension of DL is as 

follows. Instead of trying to push validities on an i-canonical general frame down to 

its underlying full frame (as is done in e.g. the original proof of Sahlqvist's theorem; 

cf. [17]), we will try and lift refutations on an i-canonical frame up to the i-canonical 

general frame it is derived from. Our main tool in doing so is a version of the 

Ehrenfeucht-Fraisse theorem for monadic first order logic over identity. (For full 

details and a proof of this result we refer the reader to [22, ?1.7].) 

For the time being we will work in a fixed finite language having Po,.. Pk - - as its 

only proposition letters. The monadic first order language into which this restricted 

modal language translates via the ST-translation is denoted Yk; So yk only has k 

unary predicate letters PO,..- PkI. Let XI = <W,PO,.-.,Pk -> be an Sk-model. 

If X c W, then X0 = X and X' = W\X. For s E 2k the s-slot is 

W-4= ps(O) O... ps(k -1) 

An s-slot is Pi-positive (Pi-negative) if s(i) = 0 (s(i) = 1). 

Let X = <WP0,. . .,Pk_> and A' = <W',P'0,. . .,P'-1> be two Sk-models. 

We write X--n At' if X# and /' satisfy the same Sk-sentences of quantifier rank 

at most n. For two sets X, Y we write X -n Y iff lXi = IYI < n or JXI, IYI ? n; by 

extension we put X n A' iff, for all s E 2", W< n Wy'. 

THEOREM 3.10. For any two yk-models X# and JI' we have 1 n= iff 

LEMMA 3.1 1. Let (p E $(D). Let W be any nonempty set. If, for some valuation V, 

<W, V> [ (/p, then there is a valuation V' with <W, V'> [ (p and such that V'(p) is 

either finite or cofinite for all proposition letters p. 

PROOF. Let X = <W, V>. Let n be the quantifier rank of Vx ST(cp). Assume 

Po,- -,Pk-' are the proposition letters occurring in (p. For proposition letters 

q not occurring in (p, we may assume that V(q) = 0. Write Po.... Pk-, for 

V(p0), .. ., V(pk- )- We will give a procedure for turning an infinite and coinfinite 

extension of one of the proposition letters PO, . . ., Pk - 1 into a finite or cofinite one. 

If needed, we can repeat this procedure for the remaining proposition letters to 

establish the lemma. 

Assume that P0 is infinite and coinfinite. Now, P0 is the union of all Po-positive 

s-slots, and Pc is the union of all P0-negative s-slots (s E 2k). Thus, there must 

be tr e 2k with t Po-positive and r P0-negative such that both W' and W' 

are infinite. Choose n elements w0,..., w, -' e We. We define a valuation V' as 

follows. Informally, the idea is to put all elements of W\{wo,... ., wn- I} into We. 

Formally, 

*V (po) = (V(Po)\w W ) U { WO, * n - X In- 

while for pi with i > 0, 
* if t and r are both Pi-positive or both Pi-negative, then V'(pi) = V(pi), 
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* if t is Pi-positive and r is Pi-negative, then V'(pi) = (V(pi)\W') U 

{wO, ,Wn _ 1}, and 
* if t is Pi-negative and r is Pi-positive, then V'(pi) = V(pi) u 

(Wt *\{Wo, .. * Wn- 1}). 

Note that if V(pi) (i : 0) was already finite or cofinite, then so is V'(pi). Let 
= <W, V'>. Then X &' n A, as is easily checked. Thus, by 3.10, X-' = Add and 

so A' # ? 

If V'(po) is (still) neither finite nor cofinite, we repeat the above procedure until all 
Po-positive slots are finite. An upper bound for the number of times we may have to 
do this is 2k-1. QED. 

THEOREM 3.12. Let Cp E Y(D). Then DL + p is complete. 
PROOF. Let L denote DL + Cp. Assume F/L Cp. Then for some i-canonical general 

frame RL = < W, RD, #'>L we have RL P ,. To prove the theorem we show that 
EL = < W, RD> V L, andEL PA /. The latter is immediate from AL P /. To prove the 
former, assume thatEL [A #p. So, for some valuation V, <EL, V> P (p. By 3.11 there 
is a valuation V' such that <E, V'> P p, and such that V'(p) is finite or cofinite for 
all proposition letters p. But then, by 3.9, V' is definable in RL. Hence RL P (p, a 
contradiction. QED. 

3.2. Logics in Y(O, D) and Y(F, P, D). The basic logic DLm in Y(O, D) is 
DL + K + (Op -+ p v Dp); its rules of inference are those of DL plus those of K. 
The basic logic DLt in '(F, P, D) is DL + Kt + (Fp -+ p v Dp); its rules of inference 
are those of DL plus those of Kt. 

An i-canonical general frame for a logic L extending DLm in Y(O, D) is a tuple 
RL= <W,RD,R , '>L, where W and RD are as in ?3.1, while YF = {X c W: 
3]p e '(K,D) VA E W((p eJ A-+ J e X)}, and R = {<Z,T>: for all Eil /i Z, / e F}. 
As before, an i-canonical frame is a full frame underlying an i-canonical general 
frame. Analogous definitions may be given for extensions of DLI, where the ca- 
nonical relations are denoted RF, Rp, and RD. 

THEOREM 3.13. 1. Let Z u {(p} c [(O,D). Then Z KDLmp Pff k I=p .- 

2. Let Zu {} pc (F,P,D). Then ZFDL pf if 2 I=- 
PROOF. Similar to the proof of 3.6. Note that by the additional axiom Op 

p v Dp, any set W of maximal DLm-consistent sets that is closed under RD is also 
closed under R.. Analogous remarks hold for DL, and the canonical relations RF 

and Rp. QED. 
Next we present axioms in Y(O, D) for some special structures and familiar 

classes of frames. Here is a list of axioms together with the corresponding conditions 
on frames: 

(A4) 0op -+ Kp transitivity, 

(A5) p -+ op reflexivity, 

(A6) P A Dn p -e L (KOp -+ P) anti-symmetry, 

(A7) Op -+ Dp irreflexivity, 

(A8) p - > Oq v D(q -+ Op) linearity, 
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(A9) ?T successiveness to the right, 

(A 10) P A D-i p --+ Op v DOp successiveness to the left, 

(Al1) EZ(Elp -+ p) -+ (OKIp -+ p) discreteness, 

(A 12) Op -o KXp denseness. 

THEOREM 3.14. 1. DLm + (A4)-(A6) is complete with respect to partial orders. 
2. DLm + (A4) + (A7) is complete with respect to strict partial orders. 
3. DL. + (A4) + (A8) is complete with respect to linear orders. 
4. DLm + (A4) + (A7) + (A8) is complete with respect to strict linear orders. 
PROOF. Assume that Z 1/- p in DLm + (A4)-(A6). As in the proof of 3.6 we can 

construct an i-canonical frame containing an element that extends Z u {U- p}. Using 
the characteristic axioms, it is routine to check that Y is a partial order. (Note that 
to be able to apply (A6) we need to know that every point (i.e. maximal consistent 
set) in the i-canonical frame contains a "unique" proposition letter.) Also, one easily 
verifies that p is refuted under the canonical valuation. Cases 2, 3, and 4 of the 
theorem may be proved in a similar way. QED. 

THEOREM 3.15. 1. DLm + (A4) + (A7)-(A9) + (All) axiomatizes ThOD(N). 
2. DLm + (A4) + (A7)-(A1 1) axiomatizes ThOD(Z). 
3. DLm + (A4) + (A7)-(A9) + (A12) axiomatizes ThOD(Q) (=ThOD(R) by 2.9). 
PROOF. To prove 1, 2 and 3, start by constructing an i-canonical frame as in the 

proof of 3.6. In the case of 3 the resulting structure will be isomorphic to <Q. < >. In 
the case of 1 or 2 one may apply an appropriate version of the techniques of [18] to 
turn the frame into a frame based on N or Z. QED. 

What about decidability of the above logics? Using extended filtrations (cf. 1.7), 
one easily establishes that both DLm + (A4)-(A6) and DLm + (A4) + (A8) have the 
finite frame property (f.f.p.); from this their decidability follows in a standard way. 

As for DLm + (A4) + (A7), note that it does not have the f.f.p.: any frame Y with 
# [ DLm + (A4) + (A7) andF # m Lii < T must be infinite. However, DLm + (A4) 

+ (A7) does have the finite model property (f.m.p.)-thus showing that Segerberg's 
theorem (which says that the f.f.p. and the f.m.p. are equivalent in Y(K)) fails in 
Y(K, D). In fact, DLm + (A4) + (A7) may be shown to be complete with respect to 
the class of finite models X = <E, V> which satisfy Y # DLm + (A4), and, for any 

?p E 9(O, D), if {w: Rww} q V(p) # 0, then IV(4)1 ? 2. Soundness is immediate. 
The easy proof of the completeness is too lengthy to be included here, so we only 
mention some steps in it. By 3.14 there is a model JV = <#, V> with Y I= DLm 
+ (A4) + (A7) and & P p [w], for some w 4 &. Let Z3 - p be some finite set of 
formulas that is closed under subformulas, and that satisfies KI e Z = Di e Z. We 
define a nonstandard model ' as follows; let g, W', R', and V' be as in our remarks 
following 1.7; define RD by RDg(v)g(u) iff, for all Di e g(v), t e g(u). Then, using RD as 
the interpretation of D, #' [ Cp, and, moreover, R' is transitive, R' C RD, RD holds 
between any two different points, and ' is finite. Next, one may use the "doubling- 
points" technique of 3.2 to obtain a model &" [ p in which RD is real inequality, 
and which satisfies all our requirements. 

Using the fact that DLm + (A4) + (A7) has the f.m.p., one may establish the 
decidability of this logic. The decidability of DLm + (A4) + (A7) + (A8) and of 
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ThO D(Q) may be proved in a similar fashion. To obtain decidability results for 

ThOD(N) and ThOD(Z) one may apply Rabin-Gabbay techniques (cf. [6, Chapter 5] 
for a similar move in Yn(F, P)). 

We end this subsection with a general question due to Gargov and Goranko [9]. 
Let L extend K in Y(O) with schemas {pi: i e I}. The minimal extension of L in 
Y(O, D) is DLm plus the schemas pi read as schemas over Y(O, D). The transfer 
problem is the following: if L has property P, does its minimal extension have P? 
Here we will consider only one of the many obvious properties one may study in this 
context: incompleteness. 

Let L be a logic in Y( O). To show that if L is incomplete, then so is its minimal 
extension L' in Y( O, D), it suffices to show that L' is conservative over L. To this end, 
assume L FL (p. Then, by the completeness of K, we find a model 4, and a w E X, 
such that I L* u {-i (p} [w], where L* is the set of all $(O)-instances of the 
axioms of L. Now, obviously, X I= DL., and also X I= L**[w], where L** is the 
set of Y( O, D)-instances of the axioms of L (this is because, for any set V(?), V(Dp) 
is either 0, V(T), or the complement of V(p)). But then L' e/ cp. 

(As an aside, new and fairly simple incomplete logics occur as well: let X be 
DLm + (KAp -- Dp) + (K>Kp -O Khp) + (ECOp -, OF]>il). Then X l= I since K(p -, 

Dp defines irreflexivity of R, while, given K>Kp -O Khp, EL Op -- OF] [p defines 

Vx3y(Rxy -+ Vz(Ryz -) z = y)). However, by a routine argument involving general 
frames, X F/ I.) 

3.3. On Sahlqvist theorems for $(O, D) and $(F, P, D). We start with some 
preliminary remarks. A formula in $(O, D) is called a Sahlqvist formula if it is a 
conjunction of formulas of the form if j(?p t/i, where i E { i, D}, / is positive 

(in the usual syntactic sense), and p is a so-called Sahlqvist antecedent, i.e., it is built 
up from formulas, 1 ...tm(n )p withf e I El , D}) using only v, A, K and D. (Sahlqvist 
forms in $(O) or $(F, P, D) are defined similarly.) A formula is called a weak 
Sahlqvist form if it is a Sahlqvist form in which the Sahlqvist antecedents do not 
contain any formulas of the form i1 ... El ... tp (with ii either empty or as before). 

The Sahlqvist theorem for $(O) says that for a Sahlqvist form (p e $(O), we 
have that p corresponds to a first-order condition Cp on frames, and that K + p is 
complete with respect to the class of frames satisfying Cq, (cf. [17]). Our next aim is to 
give a proof of the correspondence half of a Sahlqvist theorem for $(O, D). We 
need the following notation. For the remainder of this section we use T (TO, T1, ... .) as 
a binary relation symbol to stand for either identity, R, or inequality. The set 
operators MT and LT are defined by MT(S) = {w: 3v(wTV A v e S)} and LT(S) = 

(MT(SC))c. T may be associated with (modal) operators t and f in the following 

way. If T is the identity, both t and f are the identity function; if T = R, then t = K 

and i = E; if T is inequality, then t = D and t = D. 
To each modal formula p we associate a set operator FP as follows. Let P1, .. ,k 

be sets, and let P abbreviate P..._, Pk. Then FPi(P) = Pi (1 < i < k), while, for 

other nonmodal p, FP is the obvious Boolean set operation. Also, F"P(S1,.. ., Sj) 
= MR(F0(Sl,. . ., S.)), and FD(p(S1,. . . S") = M (FP(S1,. .. ., S)). The functions FD4 

and FD9 are defined dually. 
LEMMA 3.16. For any sets X and Y. X LT1 ... LTn(Y) iff Min ... MI1(X) - Y. 

THEOREM 3.17. Let (p be a Sahlqvist formula in 9Y(O, D). Then p corresponds to a 

first order condition on frames, effectively obtainable from (p. 
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PROOF. Similar to the proof of [4, Theorem 9.10] or [17, Theorem 8]. Assume p 
has the form t, ... **m(I --+ X) with ii e { El D } (the more general case is a straight- 
forward generalization). Let PI, ..., Pk be all the proposition letters occurring in p. 
Having <W, R> = p means having VP, v, u(vT, **.T.U A u E F(P)-+ u E 
FX(P)), where T,,..., Tm are the relations corresponding to 1,.... e respectively. 
Using such equivalences as 

V ... (O A X c FP , A V ... (a A x E Ffi(P) + T), 
i= 1,2 

V . ((O A x c- F"P(P) a) ) V .. Vy('O A x Ty A y c- FP(P) a) ), 

V ...Q( A x cFt tnF P(P)) T) V- V ... (O-) T V X Ftl tnP(p)), 

this formula may be rewritten as a conjunction of formulas of the form 

(1) VPXU(A A Axij xE LT (LT(P.j) ) -1V u)Fxi() 

where P is a quantifier-free formula in So ordering its variables in a certain way 
(each variable occurs to the right of an R or # only once), and where all xjis are 
monotone. By 3.16 we have A7 1 Xi; E LTnij *Ti)iff U- I Mlij 
c Pj. Thus by universal instantiation (1) implies the first-order formula 

h /ml Mk \ 

(2) Vxu- - V uj E Fxi( U Mf lil ..1 Mfnij({x'1}),.. Mfi M 
j=l \i=l i=l J 

But, conversely, by the monotonicity of the functions Fxi (2) implies (1), and we 
are done. QED. 

What about the completeness half of a Sahlqvist theorem for '( O, D)? An earlier 
version of this paper did contain a proof for the completeness half. However, Yde 
Venema found a serious mistake in it; he subsequently proved a full Sahlqvist 
theorem for M(F, P, D). Unfortunately, his proof has no adaptation to the Sahlqvist 
fragment of M(0, D), for it relies heavily upon the fact that if a set X is definable 
(in the sense of Definition 3.7, but with some obvious changes) in an i-canonical gen- 
eral frame for a logic L c M(F, P, D), then so is the cone {y: xRFY for some 
x E X}. In general, such cones need not be definable in general frames for logics 
in M(O,D) (cf. [21]). For a special subclass of Sahlqvist forms we do have the 
following result. 

THEOREM 3.18. Let (p be a weak Sahlqvist form in H( K, D). Then (p corresponds to 
a first-order condition C4, effectively obtainable from (p, and DLm + (p is complete with 
respect to the class of frames satisfying C(0. 

PROOF. The correspondence half is a subcase of 3.17. For a proof of the 
completeness half we refer the reader to [21]. QED. 

Although the class of weak Sahlqvist forms is strictly smaller than the class of all 
Sahlqvist forms, it is still a large one, which contains M( O, D)-equivalents of many 
important first-order conditions on binary relations. For example, by inspecting 
the proof of 2.4 one can see that it contains equivalents of all Horn-like first- 
order sentences of the form Vx(c x/), where o and /3 are positive quantifier-free 
SO-formulas. 
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?4. Definability. We first make a remark or two about definability of classes of 
frames. After that we give a characterization of the 4O-formulas that are equivalent 
to a 0, D-formula on models, and apply this result to obtain a model-theoretic 
characterization of the definable classes of models. 

4.1. Definability of classes of frames. The study of definability of classes of 
frames in Y(O. D) in the spirit of [I 1] has been undertaken in [9] and [12]. For the 
sake of completeness we repeat the main definability result from the latter papers. 

A general ultraproduct of frames - is an ultraproduct of the full general frames 
<F, 2wi>. (Cf. [4].) 

DEFINITION 4.1. .F' is a collapse of the general frame a = <KZ, *'1> if F' is a 
subframe of F and if there exists a subframe (Q of a such that (aF')+ = (0)' and, 
for each x e W', {y: Rxy} c [R'(x)],+, where [X],+ is the least element of ((i)+ 
containing X, and (-)+ is the mapping defined in [4, Chapter 4] that takes (general) 
frames to modal algebras. 

THEOREM 4.2 (Gargov and Goranko). A class of frames is definable in Y( O, D) iff 
it is closed under isomorphisms and collapses of general ultraproducts of frames. 

Gargov and Goranko arrived at 4.2 by using an appropriate kind of modal 
algebras. For an important special case a purely modal proof may be given: 

PROPOSITION 4.3. A class K of finite frames is definable in Y(K, D) if it is closed 
under isomorphisms. 

PROOF. Let Y be a finite frame with W = {w1,. . ., w,}, and J k Th 0,D(K). 
Assume Pi, .. ., p. are different proposition letters. Define X9; by 

A Epi AA V (pi ADpi)) AA(A (pi--IP)) 
1I <i<n / cIcn I ci$jcn 

A A( /\ (pi-+Opj) 1 < i, j< n 

where 0 K> if Rwiwj holds, and 0 O otherwise. Then, for any frame A, there 
is a valuation V with <(,V> # -X5F iff IN Y. In particular F i# --iX. Hence 
MXF 0 Th0,D(K). Thus, for some 1 e K, ?s -iX. So ~Fe K. QED. 

4.2. Definability of classes of models. Standard modal formulas, when inter- 
preted on models, are equivalent to a special kind of first-order formulas. Adding 
the D-operator does not change this. 

DEFINITION 4.4. Let x be a fixed variable. The standard translation ST(9p) of a 
formula q e ?(K, D) is defined as follows: it commutes with the Boolean con- 
nectives, and ST(p) = Px, ST(OO) = 3y(Rxy A ST(0)[x:= y]), and ST(DO) = 

3y(x # y A ST(0[x:= y]), where y is a variable not occurring in ST(o). 
Since the equivalences M! I= qew] iff X 1= ST(gp)[w] and X# 1= iff X 1= 

Vx ST(9) hold, well-known facts about Yj become applicable for Y(O, D). ?f- 

formulas of the form ST(qp) for some (P E Y(O, D) can be described independently 
in the following way: 

DEFINITION 4.5. The set of MD-formulas is the least set X of Yl-formulas such 
that Px E X, for unary predicate symbols P and all variables x; if a E X then ma 
E X; if a, # E X have the same free variable, then a A fi e X; and if a e X, x, y are 
distinct variables, and y is a's free variable, then 3y(Rxy A at), 3y(x 0 y A a1) E X. 
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The semantic characterization of MD-formulas we give generalizes a corre- 
sponding result for Y(0) in [4]. However, whereas the proof given there uses an 

elementary chain construction, the proof we present uses saturated models. Clearly, 
the characterization will also be a characterization of the (translations of the) 
( , D)-formulas in Y 

DEFINITION 4.6. A binary relation Z is called a p-relation between two models h'# 

and ,h2 if the following four conditions hold: 
1. If Zwv, then w and v verify the same proposition letters. 
2. If Zwv, w' Ec W1 and R1ww', then Zw'v' for some v' E W2 with R2vv'; if Zwv, 

v' E W2 and R2vv', then Zw'v' for some w' E W1 with R1ww'. 
3. If Zwv, w' Ec W1 and w = w', then Zw'v' for some v' E W2 with v = v'; if Zwv, 

v' E W2 and v = v', then Zw'v' for some w' E W1 with w : w'. 
4. dom(Z) = W1 and ran(Z) = W2. 
An f-formula oc(xl,.. ., xn) is invariant for p-relations if, for all models l' and 2, 

all p-relations Z between ,/, and J/2, and all w1,. . ., w% e W1 and w'1,. . ., w e W2 
such that Zw1w' ,. ., w we have (X 1 c[w1,.. .,wn] iff '2 [W'l, .Wn] 

THEOREM 4.7. An f1-formula containing exactly one free variable x is equivalent 
to an MD-formula iff it is invariant for p-relations. 

PROOF. A simple induction proves that every MD-formula is invariant for p- 
relations. 

Conversely, assume that the Y-formula o has this property, and suppose x is oc's 
free variable. Define MD(oc) := {/3: /3 is an MD-formula, oc l= /3, FV(,B) c {x}}. We 
will prove that MD(oc) - oc. Then, by compactness, there is a /3 e MD(oc) with 

l= oc /3. Assume /# 1= MD (o)[w]; we have to show that & 1= oc[w]. Introduce a 

new constant w to stand for the object w, and define Y* = Yu u { w}. Expand 11 to 
an Y*-model J* by interpreting w as w. In the remainder of this proof we use the 
following notation: if /3 e Y' then /3*--,B[x w]; and if T is a set of Yl-formulas 
then T*:= {,B*: ,e T}. 

Let T := {,B: X' I ,B[w], /3 is an MD-formula, FV(,B) c {x}}. By compactness 
we find an Y*-model 4/* with 4/* I= T* u {oc*}. By [7, Theorem 6.1.1] there 
are w-saturated elementary extensions Ih*=: <W1, R1, wl, V1> >- J1* and 4"14 

<W2,R2,w2,V2>?>4* such that both w1 and w2 realize T, and such that 

Define a relation Z c W, x W2 between (the Y-reducts of) Sh* and A* by 

putting Zwv iff, for all (p e f(0, D), 

<W1,R1, V1> 1= [w] iff <W2,R2, V2> 1= Ev]. 

We verify that Z is in fact a p-relation by checking the conditions of 4.6. Condition 1 
is trivial. We only check half of condition 2: assume that R1ww' and Zwv, with 
w, w' e W1 and v e W2. We have to prove 3v' e W2(R2vv' A Zwv'). Define P:= 
e(p c- Y(O,D): ,I* h- (p[w']}. Then ST(Y') u {Rvy} is finitely satisfiable in (X*,v). 

Hence, by saturation, (X A, v) 1= ST(Y') u {Rvy} [v'], for some v' e W2. But then we 
have Zw'v'. Condition 3 is similar to condition 2, and condition 4 is immediate from 
condition 3 and the fact that Zw1w2. 

Finally, by invariance for p-relations, X* 1= oc* yields (x* 1 c*. Since 
M*< -hM* it follows that di* 1= ocx*, and so h 1= oc[w]. QED. 
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Next we apply 4.7 to obtain a definability result for classes of models. To this 
end we find it convenient to take frames <E, w> with a distinguished world w (as 
in Kripke's original publications) as the basic notion of frame. Similarly, the basic 
notion of model is taken to be <E, w, V>. 

THEOREM 4.8. Let M be a class of models. Then M = {Jh (=<W,R,w, V>): 
- p [w] } for some ?p E f( O, D) iff M is closed under p-relations and ultraproducts, 

while its complement is closed under ultraproducts. 
PROOF. Introduce a new constant w to stand for the object w, and define 

A* := Y, u {w}. As before we write fl* for fl[x := w]. 
If M={h J (=<W,R,w,V>): 4f=(p[w]} for some (p9e(O,D), then Mis 

closed under p-relations and ultraproducts. The complement of M is defined by 
{-i ST(9p)*}, hence closed under ultraproducts. 

For the other direction, suppose that X/ and its complement satisfy the stated 
conditions. Since X/ is closed under p-relations, it and its complement are closed 
under isomorphisms. So by [7, Corollary 6.1.16] there is an f*-sentence oX* such 
that, for all Re*models a', X/ E M iff X/ 1 oO'*. From the fact that M is closed 
under p-relations one easily derives that o is closed under p-relations between 
"ordinary" models. Therefore, by 4.7 o is equivalent to an MD-formula with the 
same free variable. Hence o is equivalent to ST((p) for some formula 9 E SY(O, D). 

QED. 
REMARK 4.9. In [16] Piet Rodenburg uses a proof similar to the one we gave for 

4.7 to characterize the definable classes of models of intuitionistic propositional 
logic. A reading of this characterization led to 4.8. 
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