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Peirce algebras combine sets, relations and various operations linkingthe two in a unifying setting. This note o�ers a modal perspective onPeirce algebras. It uses modal logic to characterize the full Peirce algebras.1 IntroductionThe work of Helena Rasiowa that I am most familiar with is her work on alge-braizations of non-classical logic, and especially with algebraizations of modallogics [17]; in this note I will be concerned with modalizing an algebraic logic.Of course, Rasiowa is also well-known for her work on the interface of logic andcomputer science [18]; in this note, we look at the so-called Peirce algebras thathave arisen in the computational �eld of knowledge engineering, and our aimwill be to settle a purely logical (or algebraic) question, namely, to characterizethe full Peirce algebras. Thus, like much of Rasiowa's work, the topic of thisnote is part of an enterprise to relate modal languages, algebraic languages, andfragments of �rst-order logic.Peirce algebras (Brink et al [5]) have emerged as the common mathematicalstructures underlying many phenomena being studied in program semantics, AIand natural language analysis. Peirce algebras are two-sorted algebras in whichsets and relations co-exist together with operations between them that modeltheir interaction. The most important such operations considered here are thePeirce product : that takes a relation and a set, and returns a setR : A = fx j 9y ((x; y) 2 R ^ y 2 A)g;and right cylindri�cation c which takes a set and returns a relationAc = f(x; y) j x 2 Ag:We will show how Peirce algebras arise as algebraic counterparts of a two-sorted modal language ML2; this language extends the modal formalism CC �1



that was designed by Venema [26] to reason about binary relations. The maincontribution of this note is a characterization of the `intended' or `concrete'frames underlying ML2 and thereby of the full Peirce algebras. Due to spacelimitations important consequences of this result (such as a completeness resultfor these frames) are discussed elsewhere (see De Rijke [20]).The next section quickly reviews relevant algebraic de�nitions. x3 relatesPeirce algebras to other structures found in the literature. x4 introduces modallanguages for describing relational counterparts of Peirce algebras. x5 presentsthe main result, a characterization of the modal frames corresponding to fullPeirce algebras. x6 discusses further results on Peirce algebras, and x7 concludeswith some questions.2 De�nitionsThis section introduces the main de�nitions; we refer to Henkin et al. [6] orRasiowa [17] for further details on algebraic logic.Let U be a set; Re(U) is fR j R � U � Ug. R, S typically denote elementsof Re(U), while A, B typically denote elements of 2U , the power set of U .Recall the following operations on elements of Re(U).top r f(r; s) 2 (U � U) j r; s 2 Ugcomplement �R f(r; s) 2 (U � U) j (r; s) =2 Rgconverse R�1 f(r; s) 2 (U � U) j (s; r) 2 Rgdiagonal Id f(r; s) 2 (U � U) j r = sgcomposition R j S f(r; s) 2 (U�U) j 9u ((r; u) 2 R^ (u; s) 2 S)gWe also consider the following operations from Re(U) and Re(U)� 2U to 2Udomain do(R) fx 2 U j 9y 2 U ((x; y) 2 R)grange ra(R) fx 2 U j 9y 2 U ((y; x) 2 R)gPeirce product R : A fx 2 U j 9y 2 U ((x; y) 2 R ^ y 2 A)g,as well as the following operations going from 2U to Re(U)tests A? f(x; y) 2 (U � U) j x = y ^ x 2 A)gright Ac f(x; y) 2 (U � U) j x 2 Ag.cylindri�cationA relation type algebra is a Boolean algebra with a binary operation ;, aunary operation �, and a constant 1'. The class FRA of full relation algebrasconsists of all relation type algebras isomorphic to an algebra of the formR(U) =(Re(U);[;�; j;�1; Id). RRA is the class of representable relation algebras , thatis, RRA = SP(FRA) (= HSP(FRA) by a result due to Birkho�). RA is theclass of relation algebras , that is, of relation type algebras A = (A;+;�; ;;�; 1')satisfying the axioms 2



(R0) (A;+;�; ;) is a Boolean algebra (R5) x ; 1' = x = 1' ; x(R1) (x + y) ; z = x ; z + y ; z (R6) (x�)�= x(R2) (x + y)�= x�+ y� (R7) (x ; y)�= y�; x�(R4) (x ; y) ; z = x ; (y ; z) (R8) x� ;�(x ; y) � �y.We refer the reader to J�onsson [7, 8] for the essentials on relation algebra.A Peirce type algebra is a two-sorted algebra (B;R; :; c), where B is aBoolean algebra, R is a relation type algebra, : is a function from R � Bto B, and c : B! R. The class FPA of full Peirce algebras consists of all Peircetype algebras isomorphic to an algebra of the formP(U) = �(2U ;[;�; ;); (Re(U);[;�;�1; j; Id); :; c�:The class RPA of representable Peirce algebras is de�ned as RPA = HSP(FPA),the variety generated by FPA. PA is the class of Peirce algebras , that is of allPeirce type algebras A = (B;R; :; c) where B is a Boolean algebra, R is arelation algebra, : is a mapping R�B! B such that(P1) r : (a+ b) = (r : a) + (r : b) (P4) 1' : a = a(P2) (r + s) : a = (r : a) + (s : a) (P5) 0 : a = 0(P3) r : (s : a) = (r ; s) : a (P6) r� : �(r : a) � �a,while c is a mapping B! R such that(P7) ac : 1 = a (P8) (r : 1)c = r ; 1.Reducts of the form (B;R; :) were introduced by Brink [3] as Boolean modules ;see also Henkin et al. [6]. Sources for Peirce algebras are Brink et al. [5] andSchmidt [23].Unlike the one-sorted language of relation algebras, the algebraic languageof Peirce algebras has two sorts of terms: one interpreted in B, the other in R.Terms of the �rst sort are called set terms , terms of the second sort relationterms . Identities between set terms are called set identities ; identities betweenrelation terms are relation identities .3 Peirce algebras and transition logicsBy a modal transition logic I mean a modal-like logic whose intended semanticsuses a collection of transitions to interpret (some of) the expressions of thelogic. Over the past two decades a rich landscape of such transition logicshas arisen. They may be classi�ed according to their repertoire of operators,and according to the status that give to states and transitions. On one endof the spectrum one �nds arrow logic in the sense of Venema [27], that is,logics whose algebras are relation type algebras. Formulas of arrow logic areinterpreted on transitions (or arrows) only, and the modal operators of arrowlogic correspond to the operations familiar from relation algebra. Standard3



modal logic and propositional dynamic logic (PDL, Pratt [16]) are extremes onthe other end of the scale: their formulas are evaluated at states only, althoughin the case of propositional dynamic logic, the programs need transitions fortheir interpretations.Thirdly, there are hybrid systems whose languages come with two sorts offormulas, one referring to states, the other referring to transitions. Van Ben-them [2] presents an abstract approach based on two-sorted structures, withstates and arrows. Marx [15] has results on concrete one- and two-dimensionalinterpretations of sorted transition calculi. Peirce algebras may be viewed asthe full square case of these calculi. In addition to the computational originsof Peirce algebras mentioned earlier, they also arise as the modal algebras of asystem of dynamic modal logic (DML, Van Benthem [1], De Rijke [21]).DML is similar to propositional dynamic logic (PDL) in that it has formulasand programs. The formulas � and programs � of DML are built up as follows� ::= p j ? j :� j � ^ � j do(�) j ra(�) j �x(�)� ::= exp(�) j �� j �� j � \ � j � ; � j �?:Here, exp(�) is the special relation of `expanding one's information with �', and�x(�) is a formula that is true precisely at the �xed points for �. Like PDL,DML only allows equational reasoning with formulas, not with programs.The modal algebras for DML are Peirce algebras over a single relation, theinformation order underlying the exp construct, and to obtain a proper matchbetween DML and Peirce algebras one has to allow multiple exp operators withaccompanying information orders. The corresponding structures give rise to fullPeirce algebras, and conversely. Moreover, the (extended) DML-operators arede�nable in full Peirce algebras, and the operators of full Peirce algebras arede�nable on DML-models. As a result, the complete axiomatization of DMLstructures presented in [21] also generates the `set identities' valid in FPA.To conclude we should mention the dynamic algebras of Kozen [10]. LikePeirce algebras, dynamic algebras are two-sorted algebras of sets and relations.But their relations are organized in a Kleene algebra, not in a relation algebra,and their sets are only assumed to form a semi-lattice; any join complete Peircealgebra gives rise to a dynamic algebra. Another class of algebras closely relatedto Peirce algebras are the extended relation algebras of Suppes [25]. Roughly,an extended relation algebra is term-de�nably equivalent with a Peirce algebrain which the sortal distinctions are left out.4 A modal language for Peirce algebrasIn this section we introduce a modal language for Peirce algebras. The attractivefeature of using modal languages is that they allow us to reason with simple pic-tures; additional motivation for the general program of relating algebraic logic,modal logic and �rst-order logic can be found in Rasiowa [17] or Venema [26].4



4.1 Basic de�nitionsTo start, Table 1 lists the notation we adopt.Full version Abstract version Modal versionrelations R, S x, y �, �top r 1 1bottom ; 0 0diagonal Id 1' �complement � � �converse �1 � 
union [ + [implication ! !composition j ; �sets A, B x, y �,  top > 1 >bottom ? 0 ?complement : � :union [ + _implication ! ! !right cylindri�cation (�)c c1 l�Peirce product : : h�i�Table 1: A plethora of notations.De�nition 4.1 Let � = fp0; p1; : : : g be a countable set of propositional vari-ables. Let 
 be a countable set of atomic relation symbols. The formulas of thetwo-sorted language ML2(�, 
, �, hi, l; �; 
), orML2 for short, are generatedby the rules � ::= ? j > j p j :� j �1 ^ �2 j h�i�;� ::= 0 j 1 j � j a j �� j �1 \ �2 j 
� j �1 � �2 j l�:The �rst sort of formulas will be interpreted as sets and called set formulas ;formulas of the second sort will be interpreted as relations and called relationformulas .De�nition 4.2 A two-sorted frame is a tuple F = (Ws, Wr , I , R, C, F , P ),where Ws \Wr = ;, I � Wr, R � W 2r , C � W 3r , F � Wr �Ws, and P �Ws �Wr �Ws.Given a set U , a two-sorted frame is called the two-sorted Peirce frame overU if, for some base set U , Ws = U and Wr = U � U , andI = f(u; v) 2 U � U j u = vg 5



R = f((u1; v1); (u2; v2)) 2 (U � U)2 j u1 = v2 ^ u2 = v1gC = f((u1; v1); (u2; v2); (u3; v3)) 2 (U � U)3 j u1 = u2 ^ v1 = v3 ^ v2 = u3gF = f((u1; v1); u2) 2 (U � U)� U j u1 = u2gP = f(u1; (u2; v2); u3) 2 U � (U � U)� U j u1 = u2 ^ v2 = u3g:The class of two-sorted Peirce frames is denoted by TPF.A model forML2 is a model based on a two-sorted frame, that is, a structureM = (F; V ) where F is a two-sorted frame, and V is a two-sorted valuation, afunction assigning subsets of Ws to set variables, and subsets of Wr to rela-tion variables. Truth of a formula at a state is de�ned inductively, with theinteresting clauses beingM; xr j= � i� xr 2 IM; xr j= 
� i� 9yr (Rxryr ^ yr j= �)M; xr j= � � � i� 9yrzr (Cxryrzr ^ yr j= � ^ zr j= �)M; xs j= h�i� i� 9yrzs (Pxsyrzs ^ yr j= � ^ zs j= �)M; xr j= l� i� 9ys (Fxrys ^ ys j= �):Here xs, ys, : : : are taken from Ws; xr, yr, : : : are taken from Wr ; see Figure 1for a picture.A formula � is valid on a two-sorted frame F (notation: F j= �) if for allvaluations V and for all states x of the appropriate sort, (F; V ); x j= �.
Figure 1: Relations in a two-sorted frame.
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In models based on Peirce frames all modal connectives receive their intendedinterpretation. That is, one has (u; v) j= � i� u = v; (u; v) j= 
� i� (v; u) j= �;(u; v) j= � �� i� 9w ((u;w) j= �^ (w; v) j= �); u j= h�i� i� 9v ((u; v) j= �^ v j=�); and (u; v) j= l� i� u j= �.To be able to state the connection between two-sorted Peirce frames andPeirce algebras, we recall that the complex algebra (J�onsson and Tarski [9]) orpower structure (Brink [4]) EmF of a two-sorted frame F is given as A = ((2Ws ,�, \, ;, Ws), (2Wr , �, \, m�, m
, m�, ;, Wr), mhi, ml), where, for # an n-ary6



modal operator, m# is an n-ary operator on the power set(s) of the appropriatedomain(s) of F. To be precisem� = fxr j xr 2 I gm
(X) = fxr j 9yr (Rxryr ^ yr 2 X gm�(X;Y ) = fxr j 9yrzr (Cxryrzr ^ yr 2 X ^ zr 2 Y ) gmhi(X;Y ) = fxs j 9yrzs (Pxsyrzs ^ yr 2 X ^ zs 2 Y ) gml(X) = fxr j 9ys (Fxrys ^ ys 2 X) g:For K a class of frames Cm(K) is the class of complex algebras of frames in K.Proposition 4.3 Let F be a two-sorted frame. Then F is a Peirce frame (or:in TPF) i� EmF is (isomorphic) to a full Peirce algebra. In other words:Cm(TPF) = FPA.4.2 Adding a di�erence operatorPeirce frames cannot be characterized in ML2; the reason is that FPA =Cm (TPF) is not a variety as it is not closed under products or subalgebras.However, if we are wiling to extend the modal language, a characterization canbe obtained.More precisely, to characterize the Peirce frames we will use a special modaloperator Ds called the di�erence operator ; its special feature is that it is inter-preted using the diversity relation 6= on set elements:xs j= Ds� i� for some ys 6= xs, ys j= � where xs, ys 2Ws.Observe that on Peirce frames the di�erence operator can be de�ned as followsD0s� := h��i�:Using the di�erence operator we can de�ne other useful operators such as Es,where Es� := � _ Ds� (there exists an object with �), and Os, where Os� =Es(� ^ :Ds�) (there is only one object with �). The reader is referred to DeRijke [19] for details about logics with di�erence operators.5 Characterizing Peirce algebrasIn this section we characterize Peirce frames. We do this in two steps. We �rstde�ne a class of Peirce like frames and characterize those in the languageML2.We then extend the language with the di�erence operator Ds and characterizethe Peirce frames. 7



5.1 A �rst approximationTo characterize the Peirce frames among the two-sorted frames, we need a num-ber of axioms. We �rst list the modal axioms handling the relational componentof two-sorted frames plus the conditions they impose on such frames; they aresimply the modal counterparts of the earlier relation algebraic axioms (R1){(R8), and the corresponding conditions have been calculated by Lyndon [12]and Maddux [13]. We then list the modal counterparts of the Peirce axioms(P1){(P8), and calculate the corresponding conditions on frames. (Recall thata �rst-order condition  is said to correspond to a modal formula � if for allframes F, F j= � i� F j= .) The reader is strongly advised to draw pictureswhile checking the correspondence results.The �rst axiom states that R, the interpretation of 
, is a function; this isproved by standard arguments.(MR0) 
a$ �
�a(CR0) R is a functionSo, in frames validating (MR0) we are justi�ed in interpreting 
 using a unaryfunction f , and evaluating formulas 
� as followsM; xr j= 
� i� M; f(xr) j= �:De�nition 5.1 A two-sorted arrow frame is simply a two-sorted frame F =(Ws, Wr, I , f , C, F , P ) in which the binary relation R used to interpret theoperator 
 is a function from Wr to Wr, denoted by f . A two-sorted arrowmodel is a two-sorted model based on a two-sorted arrow frame, where 
 isinterpreted using the function f as indicated above.Here are the remaining axioms governing the behaviour of �, 
 and �, aswell as the conditions expressed by these axioms.(MR1) a! 

a(CR1) f(f(xr)) = xr(MR2) a � (b � c)! (a � b) � c(CR2) 8yrzrurvr (Cxryrzr ^ Czrurvr ! 9wr (Cxrwrvr ^ Cwryrur))(MR3) (a � b) � c! a � (b � c)(CR3) 8yrwrurvr (Cxrwrvr ^ Cwryrur ! 9zr (Cxryrzr ^ Czrurvr))(MR4) a! � � a, a! a � �(CR4) 9yr (Iyr ^ Cxryrxr), 9yr (Cxrxryr ^ Iyr)(MR5) � � a! a, a � � ! a(CR5) 8yrzr (Cxryrzr ^ Iyr ! xr = zr), 8yrzr (Cxryrzr ^ Izr ! xr = yr)(MR6) 
(a � b)! (
b � 
a)(CR6) 8yrzr (Cf(xr)yrzr ! Cxrf(zr)f(yr))(MR7) (
b � 
a)! 
(a � b)(CR7) 8yrzr (Cxrf(zr)f(yr)! Cf(xr)yrzr)8



(MR8) 
a � �(a � b) \ b! 0(CR8) 8yrzr (Cxrf(yr)zr ! Czryrxr).Next come the axioms governing the behaviour of the Peirce product and cylin-dri�cation.(MP1) haihbip! ha � bip(CP1) 8yry0rzsz0s (Pxsyrzs ^ Pzsy0rz0s ! 9y00r (Pxsy00r z0s ^ Cy00r yry0r))(MP2) ha � bip! haihbip(CP2) 8yry0ry00r zs (Pxsyrzs ^ Cyry0ry00r ! 9z0s (Pxsy0rz0s ^ Pz0sy00r zs))(MP3) h�ip! p(CP3) 8yrzs (Pxsyrzs ^ Iyr ! xs = zs)(MP4) p! h�ip(CP4) 9yr (Pxsyrxs ^ Iyr)(MP5) h
ai:haip ^ p! ?(CP5) 8yrzs (Pxsyrzs ! Pzsf(yr)xs)(MP6) hlpi> ! p(CP6) 8yrzsz0s (Pxsyrzs ^ Fyrz0s ! xs = z0s)(MP7) p! hlpi>(CP7) 9yrzs (Pxsyrzs ^ Fyrxs)(MP8) lhai> ! (a � 1)(CP8) 8ysy0rzs (Fxrys ^ Pysy0rzs ! 9z0r (Cxry0rz0r))(MP9) (a � 1)! lhai>(CP9) 8yrzr (Cxryrzr ! 9y0sz0s (Fxry0s ^ Py0syrz0s)).Lemma 5.2 Let F be a two-sorted arrow frame. Then F j= (MRi) i� F j=(CRi), for 1 � i � 8, and F j= (MPi) i� F j= (CPi), for 1 � i � 9.Proof. As pointed out before, the proof that the above axioms (MRi) correspondto the conditions (CRi) is due to Lyndon and Maddux. For the Peirce axioms(CPi) (1 � i � 9) the correspondence result follows from the general resultsof De Rijke [22]: all axioms listed here are so-called Sahlqvist formulas, andfor such formulas there is an explicit algorithm computing the correspondingrelational condition. Consider, for example, axiom (MP5). For any two-sortedarrow frame F and xs in F we haveF; xs j= (MP5)i� F; xs j= 8a8p�9yrzs (Pxsyrzs ^ a(f(yr)) ^:9y0rz0s (Pzsy0rz0s ^ a(y0r) ^ p(z0s)) ^ p(xs))! ?(xs)�i� F; xs j= 8a8p8yrzs �Pxsyrzs ^ a(f(yr)) ^ p(xs)!9y0rz0s (Pzsy0rz0s ^ a(y0r) ^ p(z0s))�:9



To turn the latter formula into an equivalent �rst-order formula we will �ndspecial instantiations for the universally quanti�ed variables a and p in such away that substituting these instantiations produces a formula that is equivalentto the above one; these instantiations are special because they are the minimalones needed to verify the antecedent of the above formula. Given that theformula is the second-order transcription of a Sahlqvist formula, the required`minimal' instantiations can be read o� from the antecedent: take �u: u =f(yr) for a, and �u: u = xs for p. Substituting these predicates for a and p,respectively, yields the equivalent formula8yrzs �Pxsyrzs ! 9y0rz0s (Pzsy0rz0s ^ y0r = f(yr) ^ z0s = xs)�:And this, in turn, is equivalent to 8yrzs (Pxsyrzs ! Pzsf(yr)xs). aDe�nition 5.3 A two-sorted arrow frame is Peirce like if it satis�es conditions(CR1){(CR8), as well as (CP1){(CP9).Lemma 5.4 Let F be a two-sorted arrow frame. Then F is Peirce like i� F j=V1�i�8MRi ^V1�i�9MPi.5.2 Characterizing two-sorted Peirce framesWe now narrow down the two-sorted Peirce like frames to Peirce frames. Briey,what we need to show that a two-sorted Peirce like frame is a Peirce frame, isthe following� With every relational element we can associate a unique set element as its�rst coordinate and a unique set element as its second coordinate.� With every two set elements we can associate a unique relational elementhaving those set elements as �rst and second coordinate.This boils down to having the following conditions satis�ed by our Peirce likeframes:(CP10) 8xrysy0s (Fxrys ^ Fxry0s ! ys = y0s)(CP11) 8xrysy0s (Ff(xr)ys ^ Ff(xr)y0s ! ys = y0s)(CP12) 8xr9ys (Fxrys)(CP13) 8xr9ys (Ff(xr)ys)(CP14) 8xsys9zr (Pxszrys)(CP15) 8xsyszrz0r (Pxszrys ^ Pxsz0rys ! zr = z0r).Lemma 5.5 Assume that F be a two-sorted Peirce like frame. Then F j=(CP10){(CP13).Observe that conditions (CP10){(CP13) are expressed by the following fourmodal formulas, respectively: 10



(MP10) lp \ lq ! l(p ^ q)(MP11) 
(lp) ^
(lq)! 
l(p ^ q)(MP12) l>(MP13) 
(l>).The proof of this claim is left to the reader.We will now give a representation result for full Peirce algebras. I like tothink that the representation below is more elegant than the usual representa-tions in relation algebra and arrow logic; the latter usually extract points from (aCartesian product of) the diagonal to obtain a base set over which a full algebracan be built. In the case of Peirce algebras we already have our points availablein the domain of set points; we will be able to simply map every relation pointzr in a Peirce frame onto a pair of set points xs, ys already present.We need the following lemma.Lemma 5.6 Let F be a two-sorted Peirce like frame. Then(1) F j= 8xsyszr (Pxszrys ! Fzrxs ^ Ff(zr)ys), and(2) F j= 8xsyszr (Fzrxs ^ Ff(zr)ys ! Pxszrys).Proof. To prove (1) assume Pxszrys. By (CP12) Fzrx0s, for some x0s. By(CP6) xs = x0s, hence Fzrxs. Likewise, by (CP13), (CP5) and (CP6) we haveFf(zr)ys. For (2), assume that Fzrxs, Ff(zr)ys. By (CR4) there exists yr withCzrzryr. By (CP9) this implies there exist y0s, z0s with Py0szrz0s. By (i) Fzry0sand Ff(zr)z0s. (CP10) and (CP11) then yield xs = y0s and ys = z0s. HencePxszrys. aTheorem 5.7 Let F = (Ws;Wr; I; f; C; F; P ) be a two-sorted Peirce like frame.If F j= (CP14), (CP15), then F is isomorphic to the two-sorted Peirce frameover Ws.Proof. If F is a Peirce like frame satisfying (CP14) and (CP15), then, with everyzr 2 Wr we can associate a unique x and y such that Fzrx and Ff(zr)y. De�nea mapping g :Wr ! Ws �Ws by g(z) = (z0; z1), where z0, z1 are the unique xand y with Fzrx and Ff(zr)y. We prove that g is an isomorphism.g is surjective. Let xs, ys 2 Ws. By (CP14) Pxszrys, for some zr. By Lemma5.6 Fzrxs and Ff(zr)ys. Hence g(z) = (xs; ys).g is injective. Let zr, z0r 2 Wr, and assume g(zr) = g(z0r). Then, for some xs,ys we have Fzrxs, Ff(zr)ys, and Fz0rxs, Ff(z0r)ys. By Lemma 5.6 this impliesPxszrys and Pxsz0rys. Hence, by (CP15) zr = z0r.g is a homomorphism. To establish this claim we need to consider 5 cases: I ,f , C, P , F . Here we go.I : let zr 2 I ; we need to show that g(zr) = (xs; xs) for some xs. Choose xs, yssuch that g(zr) = (xs; ys). By de�nition Fzrxs, Ff(zr)ys and so Pxszrys byLemma 5.6. By (CP3) this gives xs = ys.11



f : we need to show that f(g(zr)) = g(f(zr)). If g(zr) = (xs; ys), then Pxszrys,and, by (CP5), Pf(zr)ysxs. Hence, g(f(zr)) = (ys; xs) = f(g(z)).C: we need to show that Cxryrzr implies that g(xr) is the composition of g(yr)and g(zr). That is: if g(xr) = (x0; x1), g(yr) = (y0; y1), g(zr) = (z0; z1), thenx0 = y0, y1 = z0, z1 = x1. Observe that by (CP2) we have Px0yrz0, Pz0zrx1,for some z0. By Lemma 5.6, (CP5), (CP10) and (CP11) this implies the threeidentities.F : here we need to show that Fzrxs implies that if g(z) = (z0; z1) then z0 = xs.But this is immediate from the de�nition of g and (CP10).P : we need to show that Pxszrys implies g(z) = (xs; ys); this is immediate byLemma 5.6.g�1 is a homomorphism. Again, this requires us to consider 5 cases.I : we need to show that whenever g(zr) = (xs; xs), then zr 2 I . If g(zr) =(xs; xs), then Pxszrxs. By (CP4) there is a yr such that Pxsyrxs and Iyr. By(CP15) this implies yr = zr; hence Izr.f : this has already been proved above.C: assume g(xr) is the composition of g(yr) and g(zr), that is, assume g(xr) =(x0; x1), g(yr) = (y0; y1), g(zr) = (z0; z1); We need to show that Cxryrzr. Byde�nition x0 = y0, y1 = z0, z1 = x1; so Px0yrz0 and Pz0zrx1. By (CM1) thelatter implies that for some ur, Px0urx1 and Curyrzr. By (CP15) ur = xr,hence Cxryrzr.F : assume g(zr) = (xs; ys); we need to show that Fzrxs; but this is immediatefrom the de�nitions.P : assume that g(zr) = (xs; ys); we have to show that Pxszrys. But g(zr) =(xs; ys) implies Fzrxs and Ff(zr)ys; now apply Lemma 5.6. aCorollary 5.8 Let F be a two-sorted arrow frame. ThenF 2 TPF i� F j= (CR1){(CR8), (CP1){(CP9), (CP14), (CP15).Recall from x4 that the operator Es is short for Esp � p _Dsp (there exists astate where p holds), and that the operator Os is short for Osp � Es(p^:Dsp)(there exists only one state with p).De�nition 5.9 We de�ne the following two formulas:(MP14) Esp! h1ip(MP15) EsOsp ^ haip ^ hbip! ha \ bip.Lemma 5.10 Let F be a two-sorted Peirce like frame. Then F satis�es (CP14)i� it validates (MP14); it satis�es (CP15) i� it validates (MP15).Proof. We �rst prove that (CP14) is de�ned by (MP14). Assume F 6j= (CP14).Then there exist xs, ys such that xszrys holds for no zr. De�ning a valuationV such that V (p) = fysg refutes (MP14) at xs.12



For the converse, �f F 6j= (MP14), then for some valuation V and state xsin F we have xs j= Esp and xs 6j= h1ip. Hence there exists ys with ys j= p. Asxs 6j= h1ip, we can't have Pxszrys for any zr. Therefore F 6j= (CP14).Next we prove that (CP15) is de�ned by (MP15). Assume F 6j= (CP15).Then there are zr, z0r, xs, ys such that Pxszrys and Pxsz0rys, but zr 6= z0r.De�ning a valuation V such that V (p) = fysg, V (a) = fzrg, V (b) = fz0rgrefutes (MP15) at xs.For the converse, if F 6j= (MP15), then for some valuation V and xs in F wehave xs j= EsOsp ^ haip ^ hbip and xs 6j= ha \ bip. Hence, there exists a uniqueys in F with ys j= p, and there exist zr, z0r with Pxszrys, Pxsz0rys and zr j= a,z0r j= b. As xs 6j= ha \ bip, we must have zr 6= z0r. So F 6j= (CP15). aTheorem 5.11 TPF = fF j F j= V0�i�8 (MRi) ^ V0�i�9 (MPi) ^ (MP14) ^(MP15)g.Proof. This follows from 5.4, 5.8 and 5.10. aAs pointed out in x4, the di�erence operator is de�nable on Peirce frames(cf. the operator D0s). If we take versions of axioms (MP14), (MP15) in whichDs is replaced by D0s, don't we get a characterization of Peirce frames in theoriginal modal languageML2 from Theorem 5.11 after all? The answer is `no.'And the reason is that the semantics of the di�erence operator as a primitiveoperator is based on the diversity relation 6=; for the de�ned di�erence operatorthis does not hold for all two-sorted frames for the language ML2.6 Further resultsBuilding on the characterization result Theorem 5.11 one can give a completeaxiomatization of Peirce frames (or equivalently, of the full Peirce algebras).The result is that the axioms (MR0){(MR8), (MP1){(MP9) extended with thederivation rules of basic modal logic as well as a so-called irreexivity rule forthe de�ned di�erence operator D0s, are complete for Peirce frames; see [20].Building on work of Wadge [28], Maddux [14] develops a sequent system forrelation algebras. This work has recently been extended to Peirce algebras byStebletsova [24].In x2 we briey mentioned a connection between a system of Arrow Logic andPeirce algebras. There is a whole hierarchy of calculi in between this Arrow Logicand the logic of full Peirce algebras, just like there is a hierarchy of subsystemsof relation algebra. About the former hierarchy one can ask the same kind ofquestions as for the latter. For example, where does undecidability strike? Forarrow logic this question was answered in Kurucz et al. [11]. In recent workMarx [15] presents a list of answers for the case of hybrid calculi in which setsand relations coexist. 13



In [20] techniques from modal logic such as bisimulations and the so-calledstandard translation are used are used to describe the expressive power of Peircealgebra.7 ConclusionIn this note we studied Peirce algebras via modal logic. By extending themodal language for the frames corresponding to Peirce algebras, we were ableto characterize the `intended' frames, i.e., the frames corresponding to full Peircealgebras.We already mentioned further work on Peirce algebras that has been reportedelsewhere; to conclude this note we mention an unresolved issue related to theuse of Peirce algebras in knowledge engineering. In terminological reasoningone often needs to be able to count the number of objects related to a givenobject; this is done using so-called number restrictions as in KL-ONE (see [5]).One direction for further work is to try to characterize and axiomatize Peircealgebras with counting.AcknowledgmentsI would like to thank Chris Brink and Yde Venema for their interest and advice.This research was partially supported by the Netherlands Organization forScienti�c Research (NWO), project NF 102/62-356 `Structural and SemanticParallels in Natural Languages and Programming Languages'.References[1] J. van Benthem. Logic and the ow of information. In D. Prawitz et al.,editors, Proc. 9th Intern. Congress of Logic, Method. and Philos. of Science.North-Holland, Amsterdam, 1991.[2] J. van Benthem. Dynamic arrow logic. In J. van Eijck and A. Visser,editors, Logic and Information Flow, pages 15{29. MIT Press, Cambridge(Mass.), 1994.[3] C. Brink. Boolean modules. Journal of Algebra, 71:291{313, 1981.[4] C. Brink. Power structures. Algebra Universalis, 30:177{216, 1993.[5] C. Brink, K. Britz, and R.A. Schmidt. Peirce algebras. Formal Aspects ofComputing, 6:339{358, 1994.[6] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras II. North-Holland,Amsterdam, 1985. 14
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