MAARTEN DE RIJKE A Note on the Interpret-
ability Logic of Finitely

Axiomatized Theories!

Abstract. In [6] Albert Visser shows that ILP completely axiomatizes
all schemata about provability and relative interpretability that are prov-
able in finitely axiomatized theories. In this paper we introduce a system
called TLP¥ that completely axiomatizes the arithmetically valid principles
of provability in and interpretability over such theories. To prove the arith-
metical completeness of ILP“ we use a suitable kind of tail models; as a
byproduct we obtain a somewhat modified proof of Visser’s completeness
result.

1. Introduction

In [5] Albert Visser introduces a logic JLP in a modal language L((J,>)
with a unary operator [J, to be interpreted arithmetically as provability,
and a binary operator >, to be interpreted arithmetically as relative inter-
pretability over some fixed theory U. In [6] he shows that ILP completely
axiomatizes all schemata about provability and relative interpretability that
are provable in X9-sound finitely axiomatized sequential theories U that ex-
tend IAg + SupExp. In this paper we present a complete axiomatization,
called ILPY¥, of all true such schemata; on the way we obtain a somewhat
modified proof of Visser’s completeness result.

The main difference between Visser’s proof of the arithmetical complete-
ness of ILP and ours, is that we use infinite Kripke-like models, instead of
finite ones, to find arithmetical interpretations for unprovable modal formu-
las. The models we use are variations on the tail models for provability logic
as developed by Albert Visser (cf. [4]). We think that the use of tail models
in this setting is rather natural. The advantage of using these models is
two-fold. First of all, it allows us to set up things in such a way, that we can
prove the arithmetical completeness of ILP and ILP* (almost) in one go.

To understand the second advantage, recall that the arithmetical sen-
tences needed to prove the arithmetical completeness of some given logic
A are usually found by embedding models of A into arithmetic. If these
models are finite, the embedding will only be partial, in the following sense.
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Consider a formula A(p) as a polynomial in the truth values of the ps, and
suppose that [B] is a representation in arithmetic of the extension of B in
a given model. To justify the use of the phrase ‘embedding into arithmetic’
we want the equivalence A([p]) « [A(P)] to be provable in our arithmetical
theory, for all formulas A. But, assuming that our arithmetical theory is
¥9-sound, this is not possible when we are working with finite models: for if
M is such a model then for some n, M = O" L « 0"l L. By using infinite
models we will be able to obtain complete embeddings.

The rest of this paper is organized as follows: in §2 the systems ILP and
ILP% are introduced; in §3 we review the arithmetical notions we need and
-assumptions we make for our completeness results. Then, in §4, we state
and prove the arithmetical completeness of ILP and ILP¥.

Two last remarks: we assume that the reader is familiar with the discus-
sion of systems and arithmetization in [7]; he or she is also advised to keep
a copy of Visser’s [6] at hand.

2. The systems ILP and ILP¥

The provability logic L is propositional logic plus all mstance of the schemas
0(A — B) — (OA — OB), OA — O0OA and O(OA4 — A) — OA,; its rules of
inference are A, A — B/B (Modus Ponens), and A/CJA (Necessitation). Let
£(O,>) denote the language of interpretability logic. The interpretability
logic ILP extends L with all instances of the following schemas:

(J1) O(A > B) —» A > B; (J4) A> B — (CA — OB);
(J2) (A>B)A(B>C)— A C; (J5) A OA;
(J3) (A>C)A(B>C)— (A>C); (P) Av B—0O(A> B).

ILP¥ has as axioms all theorems of ILP plus all instances of the schema
of reflection: [JA — A; its sole rule of inference is Modus Ponens. Since
ILP +0OA & -A > 1, we may consider 10 to be defined in terms of ‘>’.

ILP has been shown to be modally complete with respect to two kinds
of (finite) models, notably with respect to Veltman models for ILP in [1,
Theorem 5.2], and with respect to Friedman models for ILP in {6, Theorem
8.1].

DEFINITION 2.1. A Friedman tail model is a tuple M = (w, 0, Q, P, IF)
with ‘

1. Q C w? is transitive, irreflexive and tree-like;
2. P C Q is given by a set X C w such that 0 € X, and 2Py & zQy and
y € X, and such that y € X, yPz implies yQz' Pz, for some 2/,
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3. if 2QyPz then zPz;
4. if n # 0 then 0Qn, and if 0 # n@m then n > m;
5. there is an N € w such that

(a) for every n, m > N, if m < n then nQm;
(b) for every n > N, if for some k, n = 2k + N then mPn for all

m > n,

(c) forevery n > N, Nirpiff ni-piff 0 I p.

An N which satisfies 5 is called a tail element. We define R := Q o P, i.e.,
2Ry iff 3z 2Q2Py. I satisfies the usual clauses, with R as the accessibility
relation for ‘7, and

zh-A>B << Vu(zQu = (Jy(uPyAyl-A) = z(uPzAz - B))).

Finally, if M is a Friedman tail model, and A a formula. Then [A]um =
{zeM: :zl-A}

DEFINITION 2.2. We introduce two operators &,, A, with forcing con-
ditions z 4o, A iff for all y with 2Py, y - A, and 2 IFa, A iff for all y with
©Qy, y - A. We write v,,, v, for = A, =, = Ay = respectively. L(Ap,4,)
denotes the language with the two new operators.

Define a translation ()7 : £(0O,>) — L(Ap,5,) as follows: (-)7 is the
identity on proposition letters and the constants T, L, and it commutes with
the Boolean connectives; furthermore (4 > B)™ :=a, (V,A™ — v, B7).

We write 7£(0, ) for the image of £(TJ, >) under 7, and define 7£(CJ, >)*
to be the sublanguage of L£(A,,A;) in which A, occurs only in front of
implications of the form v,C — v,D. Clearly, then, 7£(0,>) C 7£(0O, >)*.

REMARK 2.3. L(£p,4,) is in fact the language of the bi-modal prov-
ability logic PRL; discussed in [3] (with the modal operators interpreted as
tableauz provability instead of ordinary provability). Using (-)” and 2.7 one
easily verifies that PRL; is a conservative extension of ILP.

PROPOSITION 2.4. Let M be a Friedman tail model, and let A € L(O, >
). Then for alln e M, nl- A « AT.

ProrosITION 2.5. Let M be a Friedman tail model in which P is given
by some set X. Let Ay B € 7L(O,>)*. If n € X and nl-oy B then n - B.

Proor. If A, B € 7£(0,>)* then B has the form v,C — v,D. Moreover,
if n € X and nPm then nRm. These observations yield the result. O
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PrOPOSITION 2.6. 1. Let A € L(O,>) U L(&p,8q). Then [A]m is
either finite or cofinite.
2. 0l A iff for some N and alln > N, nl- A;
3. 0l A iff for some N and alln > N, nlf A

THEOREM 2.7. Let A € L(O,>). Then

1. ILP + A iff for every Friedman tail model M, and alln € M, n I+ A;
2. ILP“ & A iff for every Friedman tail model M, 0 I+ A.

ProoF. By [6, Theorem 8.1] ILP is modally complete with respect to Fried-
man models; since such models are in fact Friedman tail models without tail,
our first claim is immediate. To prove the second one, note first that 0 forces
the theorems of ILP in any Friedman tail model. Closure under Modus Po-
nens is trivial. Assume that 0 - OA, then for all n with ORn, n I--A. So
[A]am is infinite, and hence, by 2.6, cofinite. Thus 0 I+ A, again by 2.6.
Next assume that ILP* I/ A, then, obviously, ILP I/ T(A) — A, where

T(A)= A @B-BA A (C—C),
0BeS(4) Cr-DeS(4)

and S(A) is the set of subformulas of A. So by 1 there is a tail model M
such that for some tail element N in M, N I+ T(A)A-A. An easy induction
now establishes that for C' € S(A) the following facts hold: (1) if N I+ C
then for all m with mRN, m I+ C; and (2) if N ¥ C then for all m with
mRN, mlf C. So 0 A. O

3. Arithmetical completeness: preliminaries

To prove the arithmetical completeness of ILP¥ we want to use several
results from [6]. To be able to do so, we only consider arithmetical theories
that satisfy a number of conditions to be given now. (Details about the
notions used below may be looked up in 2], [5], [6] and [7].)

Officially we will be working in a relational version of the language of
arithmetic, in which successor, addition and multiplication are (2-, 3- and
3-place) relation symbols. We will, however, pretend that we are working
with function symbols. We assume that the theories T we consider are given
by an Ry -formula ar(z) having just z free plus the relevant information
on what the set of natural numbers of T is; ar gives the set of codes of
non-logical axioms of the theory (cf. [7]). We also assume that the numbers
of T satisfy IAp + £y, and that T is finitely axiomatized and sequential.
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Wilkie and Paris [7] show that IAg + Q4 is a completely adequate theory
for arithmetizing syntax. E.g., if T is a theory satisfying the assumptions
made above, we can formalize in 1Ag + Q; (as an Ry -formula) Proofr(z,y),
which represents the relation ‘z is a proof of the formula y from 7°. We
further define Provy(y) := 3z Proofr(z,y).

One of the key results needed to prove our arithmetical completeness
results, is a result by Friedman, extended by Visser, that gives a characteri-
zation of interpretability in terms of consistency. To state it we need a notion
of cut free proof. We follow [6] in choosing tableaux provability. We write
TabProof (2, y) for (a formalization of) the relation ‘z is a tableau proof of
the formula y from T”. Furthermore, TabProvy(y) := Jz TabProofr(z,y),
and TabConr("¢") := —TabProvy("—¢"). Using this notation we can state
the Friedman-Visser characterization as follows: let U be finitely axioma-
tized and sequential, and let Interp;; denote (a formalization of) relative
interpretability over U, then IAy + Exp proves

Interpy ("¢, ") < TabProv gy, ("TabCony("¢") — TabCony ("47)").

A proof of this result may be found in [6, Section 7.4].

4. Arithmetical completeness: the main result

Before setting off, let us briefly outline the arithmetical completeness proofs
we are about to give. Starting with a formula A that is non-provable in JLP
or ILP¥, we find a Friedman tail model refuting A; using a Solovay-like
function defined on this model we define an arithmetical interpretation of
the modal language in arithmetic. Up to this point we will follow Visser’s
original completeness proof for ILP (modulo some changes necessitated by
the fact that we are working with infinite models instead of finite ones). The
way we subsequently prove that the arithmetical interpretation thus defined
really is an embedding of the model refuting A into arithmetic, differs from
Visser’s set up. Finally, we derive the arithmetical completeness of both
ILP and ILP¥.

For the remainder of this paper, let U be a £{-sound extension of IAq +
SupExp that satisfies all the requirements from §3.

Our first aim is to embed Friedman tail models into U. To do so we fix
M = (w, 0, @, P, IF) to be a tail model; we assume that P is given by a set
X as in item 2 of the definition of a Friedman tail model. Define as formulas
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in the language of U:

V(e =1) ik A}, if [A]aq is finite
(& & ldl) = { N{(z #1):ilf A}, i [A]]ﬁ is cofinite.

It is easily verified that 1Ay + Exp proves
o (z € [Alm) A (2 € [Blm) < (2 € [A A Blu);
o (z €[Alr)V (= € [B]lm) < (z € [AV Blum);
oz ¢ [[A]]M — T E I[ﬂA]]M.

Using the Recursion Theorem we define a Solovay-like function H as
follows:

H(0) = 0
y, if H(e)Py and TabProofy(z 4+ 1,"L # y7)
Hz+1) = y, if H(z)Qy and TabProof gup(z + 1,"L # y")
H(z), otherwise
L = the limit of H.

We leave it to the reader to check that the formula ‘H(z) = v’ is Ap(2%),
and that for any 2z, y

L IAo +Exp - 2Qy — (H(z) = H(y) vV H(2)Q H(y));

2. IAq + Exp + ‘L exists’;

3 IAo0+Expt L =2z o Jy(H(y) =z) AVww (H(u) = zAv > u —
H(v) = z);

4. L=0.

DEFINITION 4.1. We define the representation [A]aq of [A]s4 in the lan-
guage of U by [A]m = (L € [A]m).

Let g be any function that takes the proposition letters from £(J,>) (or
L(Ap,8,)) to sentences in the language of arithmetic. Then the arithmetical
interpretation (), of L(L,>) U L(Ap,5,) into the language of arithmetic is
defined by

(p)g = ol (0A4)y = Provy((A);")
(L)g = 0=V (A> B)y = Interpy((4)y""(B)g")
(mA)g = ~(A4) (ap A)g = TabProvy("(4),")
(AAB)g, = (A)gN(B)y (&g A)y := TabProvg,,((4),").
In case g(p) = [pjam for some model M, we write (-)a¢ for (-),.
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ProPosITION 4.2. Let v € II3. Then IAq + Exp F TabProvg,,(¢") —
TabProvy (9.

Proor. Cf. [6, Lemma 8.2]. O
ProrosiTioN 43. U+ L € X.

ProoF. Reason in U: by our earlier remarks the limit I exists. So assume
L =i¢ X. Then, by the definition of H, ¢ > 0 and TabProvg,,("L # i").
Recall that U extends IAp + SupExp. By [6, Consequence 7.3.7], IAg +
SupExp proves II9-reflection for 1Ay + Exp. (This is in fact the only place
where we really need U to be an extension of IAg + SupExp.) Therefore, in
U we have L # i—a contradiction. O

LEMMA 44. Let A € 7L(O,>)*. Then IAg + Exp F [A]pm < (A) .

Proo¥r. Induction on A. The propositional case and the Boolean cases are
immediate from the fact that the limit provably exists and the induction
hypothesis, respectively.

Suppose A =A, B. First we assume that [a, B]a is cofinite. Then
[2p Blm = w. So [a, Bl = Ni{(L #4):il- L} =T. SoIAg + Exp +
[4p Bla, and hence IAg + Exp + (&, B)ag — [8, Blm. To prove the other
direction it suffices to show that 1A + Exp + TabProvy([B]am”). Clearly,
[Blam is cofinite and X C [B]a; therefore (Bl = A{(L #3) i B}
Reason in IAq+Exp: if 7 ¥ B , then TabProvy ("L # ¢"), because U - L € X.

Therefore TabProvy("[Blam").
' Next we assume that [A, B]a¢ is finite. Let {jo,...,7s } be all j with
j kA, B, =B. Then, if i fa, B, there is a j € {jo,...,Js } with ¢Pj. By
the induction hypothesis it suffices to show that IAg + Exp  [a, Blpm <
TabProvy("[B]am”). Reason in 1A, + Exp:

‘"1 Assume TabProvy([Blam"). Let j € {jo,...,Js } Then TabProvy
("L # j). So assume that TabProofy(p+1,"L # j'). If LPj then H(p)Pj—
so H(p+1) = j, which is a contradiction. Therefore, =~LPj, so \/,{(L = i) :
ilka, B

‘1 Assume L = i, ¢ kA, B. Then ¢ # 0. So TabProvg,,("L #
i") or TabProvy("L # i), so by 4.2 TabProvy("L # i7). We also have
for some z, H(z) = 7, and hence TabProvy("3z H(z) = ¢"). This implies
TabProvy(4QL"). Given that U - L € X, this entails TabProvy(iPL").
Finally, ¢Pj implies j I- B. Therefore TabProvy("V/,;{(L =j) :j - B}").

Assume next that A =A, B, and that [A; B]aq is cofinite. Then [A,
Bl = [B]m = w. So by the induction hypothesis IAg + Exp  (B) a4, and
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hence

IAg + Exp + TabProvg,,((B)am")
F <Aq B)M « T
F <Aq B)MH[AQ B]M.

Next we assume that [A, B]a¢ is finite. As in the case of A, B, let
{do,....,4s } be all j with j A, B, =B. Then, if ¢ [fa, B, there is a
7 € {jo,--.,Js } with iQj. By the induction hypothesis it suffices to show
that IAq + Exp + [Ay Bl < TabProvg,,("[BJa’). Reason in IAg + Exp:

‘"t This direction is analogous to the corresponding direction in the
case of A, B.

‘—’: Assume L =1, i IFA, B. Then there exists an z with H(z) =< In
other words, TabProvg,,("3z H(z) = "), and hence TabProvg,,("V/{(L =
k) i =kViQk}"). Now, if i ¢ X, then TabProvg,,("L # i') by the
definition of H. Therefore TabProve,,("Vi{(L = k) : iQk}"). Thus
TabProve,,("Vi{(L = k) : k- B}). I, on the other hand, ¢ € X, then
i lFA, B implies by 2.5 that ¢ I+ B. But then we have TabProvEmp( Vk{ (L=
k): kIF BY)Y).

LEMMA 4.5. Let A € £(0,>). Then IAq + Exp F [AJp < (A)pr.

Proor. Since, by 2.4, for all A € £(0,>), and all ¢, ¢ I A « AT, we
trivially have IAg + Exp - [A]pm © [AT]m. Since A™ € 7£(0,>)*, we can
apply Lemma 4.4 to conclude that IAg + Exp F [A]pm © (AT )M (%).

Recall that by the Friedman-Visser characterization of relative inter-
pretability over finitely axiomatized sequential theories, 1Ay + Exp proves

Interpy ("¢, "¢") «— TabProv g,,("TabCony("¢") — TabCony("¢)").

This characterization allows us to show by induction on A that 1Ay +Exp
(AT pq > (A)pq. Together with (x) this yields the Lemma. O

We need one more definition and a proposition before we can prove the
arithmetical completeness of ILP and ILP“. From now on M is no longer
‘a fixed Friedman tail model.

DEFINITION 4.6. Let M be a Friedman tail model. Define da(k) =
sup{dap(l) +1: kRl }, and

pn. IMIm (dp(m) = n Amif A), if such an n exists
d(4) = .
w, otherwise.
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ProprosiTION 4.7. Let A € £(O,>). Then there is a function g taking
proposition letters to sentences in the language of U such that IAg + Exp +
(A ADOA), © Provi#) (o = 17).

Proor. If d(A) = w then ILP I A, so any g does the trick. If d(4) < w,
then there is a tail model M with tail element N such that dp (V) = n,
and N ¥ A. Define g(p) := [p|am. Then for every k with NRk, k- A A TA.
Moreover, if k = N or kRN, then k | A A OA. Therefore

Ao+ Exp F (AADA), o [AADA, by 45

- [0 4]
e Prov?j(A) (o=17.0
THEOREM 4.8. Let A € £(O,r>). Then ILP + A iff for every interpre-
tation (-)g, U F (A),.

ProoF. The direction from left to right is left to the reader. To prove the
other one, assume that JLP I/ A. Then there is a tail model M and a
tail element N such that dp(N) = d(4) < w, N ¥ A and IAg + Exp F
(ANOA M © Provi® (0 = 1), U F (A)p then U F (A A OA)p,
and hence U + Prov‘[ij(A) ("0 = 1")—contradicting our assumption that U is
¥¢-sound. Conclude that U I/ (A)p. O

THEOREM 4.9. Let A € £L(O,>). Then ILP¥ F A iff for every interpre-
tation (-)g, N = (A),.

ProoF. Again, the direction from left to right is left to the reader. Assume,
to prove the converse, that ILP* I/ A. Then there is a Friedman tail model
M with 0 ¥ A. By 45 N | (A)p < [A]pm. Moreover, N = L = 0. Tt
follows that N = ~(A)y¢. O
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