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Abstrac t .  Ill [6] Albert Visser shows that I L P  completely axiomatizes 
all schemata about provabihty and relative interpretability that are prov- 
able in finitely axiomatized theories. In this paper we introduce a system 
called I L P  ~ that  completely axiomatizes the arithmetically valid principles 
of provability in and interpretabihty over such theories. To prove the arith- 
metical completeness of I L P  ~ we use a suitable kind of tail models; as a 
byproduct  we obtain a somewhat modified proof of Visser's completeness 
result. 

1. I n t r o d u c t i o n  

In [5] Albert Visser introduces a logic I L P  in a modal language s ~>) 
with a unary  operator [3, to be interpreted arithmetically as provability, 
and a binary operator ~>, to be interpreted arithmetically as relative inter- 
pretability over some fixed theory U. In [6] he shows that I L P  completely 
axiomatizes all schemata about provability and relative interpretability that  
are provable in E~ finitely axiomatized sequential theories U that ex- 
tend IA0 + SupExp. In this paper we present a complete axiomatization, 
called I L P  ~, of all true such schemata; on the way we obtain a somewhat 
modified proof of Visser's completeness result. 

The main difference between Visser's proof of the arithmetical complete- 
ness of I L P  and ours, is that  we use infinite Kripke-like models, instead of 
finite ones, to find ari thmetical  interpretations for unprovable modal fornm- 
las. The models we use are variations on the tail models for provability logic 
as developed by Albert Visser (cf. [4]). We think that the use of tail models 
in this setting is rather  natural.  The advantage of using these models is 
two-fold. First of all, it allows us to set up things in such a way, that we can 
prove the ari thmetical  completeness of I L P  and I L P  ~ (almost) in one go. 

To unders tand the second advantage, recall that the arithmetical sen- 
tences needed to prove the arithmetical completeness of some given logic 
A are usually found by embedding models of A into arithmetic. If these 
models are finite, the embedding will only be partial, in the following sense. 

1Research supported by the Netherlands Organization for Scientific Research (NWO). 
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Consider a formula A(iff) as a polynomial in the t ru th  values of the los, and 
suppose that  [B] is a representation in ari thmetic of the extension of B in 
a given model. To justify the use of the phrase 'embedding into ar i thmetic '  
we want the equivalence A(~o-]) ~ [A(/%)] to be provable in our ar i thmetical  
theory, for all formulas A. But, assuming that  our ari thmetical  theory is 
E~ this is not possible when we are working with finite models: for if 
.A4 is such a model  then for some n, .A4 ~ [2"~_L ~ [2,~+11. By using infinite 
models we will be able to obtain complete embeddings. 

The rest of this paper is organized as follows: in w the systems I L P  and 

I L P  ~ are introduced; in w we review the ari thmetical  notions we need and 
assumpt ions  we make for our completeness results. Then, in w we state 
and prove the arithmetical completeness of I L P  and I L P  "~. 

Two last remarks: we assume that  the reader is familiar with the discus- 
sion of systems and ari thmetization in [7]; he or she is also advised to keep 
a copy of Visser's [6] at hand. 

2. T h e  s y s t e m s  I L P  a n d  I L P  "~ 

The provability logic L is propositional logic plus all instance of the schemas 
D(A ~ B) -+ ([:]A ~ E]B), [:]A ~ E][2A and [~(�89 --* A) -+ [:]A; its rules of 
inference are A, A ~ B / B  (Modus Ponens), and A/[:]A (Necessitation). Let 
s E>) denote the language of interpretabili ty logic. The interpretabil i ty 
logic I L P  extends L with all instances of the following schemas: 

(J1) [ 2 ( A - - + B ) ~ A ~ > B ;  (J4) A t > B ~ ( O A ~ O B ) ;  
(J2) (AE>B) A ( B ~ C ) ~ A E > C ;  (J5) A t > O A ;  
(J3) (AE>C) A (B E> C) ~ (A E> C) ; (P) A E> B -+ [2(A E> B). 

I L P  ~ has as axioms all theorems of I L P  plus all instances of the schema 
of reflection: [2A ~ A; its sole nile of inference is Modus Ponens.  Since 
I L P  R [2A ~ -~A ~> l ,  we may consider '[3' to be defined in terms of 'E>'. 

I L P  has been shown to be modally complete with respect to two kinds 
of (finite) models,  notably with respect to Veltman models for I L P  in [1, 
Theorem 5.2], and with respect to Friedman models for I L P  in [6, Theorem 
s.q. 

DEFINITION 2.1. A Friedman tail model is a tuple A4 = (w, 0, Q, P,  Ik} 
with 

1. Q C_ w 2 is transitive, irreflexive and tree-like; 
2. P _C Q is given by a set X C_ w such that  0 E X,  and ~Py r ~Qy and 

y 6 X,  and such that  y 6 X ,  y P z  implies y Q z ' P z ,  for some z'; 
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3. if mQyPz then zPz;  
4. if n ~ 0 then OQn, and if 0 ~ n Q m  then n > m; 
5. there is an N E w such that 

(a) for every n, m >_ N, if m < n then nQm; 

(b) for every n _> N, if for some k, n = 2k + N then m P n  for all 
m >  n; 

(c) for every n _> N, N I~- p if[ n I~- p iff 0 I~- p. 

An N which satisfies 5 is called a tail element. We define R := Q o P, i.e., 
x~Ry if[ 3z x~QzPy. IF- satisfies the usual clauses, with R as the accessibility 
relation for '[]', and 

xlt-AE> B ~ V u ( x Q u  ~ ( 3 y ( u P y A y l ~ - A )  ~ 3 z ( u P z A z l ~ - B ) ) ) .  

Finally, if A4 is a Friedman tail model, and A a formttla. Then I A ~  := 
{~ e J~4 : x I~- A}.  

DEFINITION 2.2. We introduce two operators Ap, Aq with forcing con I 
ditions x IF-Ap A iff for all y with mPy, y IF A, and m I~-Aq A iff for all y with 
mQy, y IF A. We write vp, vq for ~ Ap -~, -~ Aq -~ respectively. s 
denotes the language with the two new operators. 

Define a translation (-)~" : s ~ s as follows: (.)~" is the 
identity on proposition letters and the constants T, • and it commutes with 
the Boolean connectives; fi~rthermore (A E> B) ~ :=zxq (VBA ~ ~ vpB~). 

We write Ts E>) for the image of s c>) under T, and define r s  E>)* 
to be the sublanguage of s  in which Aq occurs only in front of 
implications of the form vpC -~ VpD. Clearly, then, rE(El, ~) C vs ~)*. 

REMARK 2.3. s is hl fact the language of the bi-modal prov- 
ability logic PRL1 discussed in [3] (with the modal operators interpreted as 
tableaux provability instead of ordinary provability). Using (.)r and 2.7 one 
easily verifies that  PRL1 is a conservative extension of I L P .  

PROPOSITION 2.4. Let A4 be a Friedman tail model, and let A E s c> 
). Then for all n E .M, n I~- A ~ A r. 

PROPOSITION 2.5. Let .hi be a Friedman tail model in which P is given 
by some set X .  Let AqB Erf(D,E>)*.  If  n E X and nlF-Aq B then nl~- B. 

PROOF. If /xq B E Ts C>)* then B has the form vpC ~ VpD. Moreover, 
if n E X and n P m  then nRm.  These observations yield the result. [] 
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PROPOSITION 2.6. 1. Let A E s  U s 
either finite or co finite. 

2. 0 IF A iff for some N and all n >_ N, n IF A; 
3. 0 I~ A iff for some N and all n >_ N, n I~/ A. 

Then [A].~ is 

THEOREM 2.7. Let A C E([2, c>). Then 

1. I L P  ~- A iff for every Friedman tail model .h/l, and all n E .hA, n IF A; 
2. I L P  ~ F A if-j: for every Friedman tail model .hA, 0 IF A. 

PROOF. By [6, Theorem 8.1] I L P  is modally complete with respect to Fried- 
man  models; since such models are in fact Friedman tail models without  tail, 
our first claim is immediate.  To prove the second one, note first that  0 forces 
the theorems of I L P  in any Friedman tail model. Closure under  Modus Po- 
nens is trivial. Assume that  0 IF [:]A, then for all n with ORn, n IF A.  So 
[ A ~  is infinitel and hence, by 2.6, cofinite. Thus 0 IF A, again by 2.6. 

Next assume that  I L P  ~ ~/A, then, obviously, I L P  ~/T(A) -~ A, where 

T(A) := A ([:]B - ~  B)A A 
[::]BeS(A) C~> D ES( A ) 

and S(A) is the set of subformulas of A. So by 1 there is a tail model  .h4 
such that  for some tail element N in .h/i, N I~- T(A) A -~A. An easy induct ion 
now establishes that  for C E $(A) the following facts hold; (1) if N I~- C 
then for all m with m R N ,  m IF C; and (2) if N I~ C then for all m with 
m R N ,  m I~ C. S o 0 1 ~ A .  [] 

3. A r i t h m e t i c a l  c o m p l e t e n e s s :  p r e l i m i n a r i e s  

To prove the ari thmetical  completeness of I L P  ~ we want to use several 
results from [6]. To be able to do so, we only consider ar i thmetical  theories 
that  satisfy a number  of conditions to be given now. (Details about  the 
notions used below may be looked up in [2], [5], [6] and [7].) 

Officially we will be working in a relational version of the language of 
ari thmetic,  in which successor, addition and mult ipl icat ion are (2-, 3- and 
3-place) relation symbols. We will, however, pretend that  we are working 
with function symbols. We assume that  the theories T we consider are given 
by an R+-formula aT(Z) having just ~ free plus the relevant information 
on what  the set of natural  numbers of T is; aT gives the set of codes of 
non-logical axioms of the theory (cf. [7]). We also assume that  the numbers  
of T satisfy IA0 + ~1, and that  T is finitely axiomatized and sequential. 
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Wilkie and Paris [7] show that IA0 + ~1 is a completely adequate theory 
for ar i thmetizing syntax. E.g., if T is a theory satisfying the assumptions 
made  above, we can formalize in IA0 + ~1 (as an R+-formula) P r o o f T ( x , y ) ,  

which represents the relation 'z is a proof of the formula y from T'. We 
further define P r o v T ( y ) : =  3z ProofT(z ,y) .  

One of the key results needed to prove our ari thmetical  completeness 
results, is a result by Friedman, extended by Visser, that  gives a characteri- 
zation of interpretabi l i ty  in terms of consistency. To state it we need a notion 
of cut free proof. We follow [6] in choosing tableaux provability. We write 
TabProofT(~,  y) for (a formalization of) the relation 'x is a tableau proof of 
the formula y f rom T'.  Furthermore,  TabProvT(y) := 3~ TabProofT(z ,  y), 
and T a b C o n T ( ~  ") := -~TabProvT(~-,~p~). Using this notat ion we can state 
the Friedman-Visser characterization as follows: let U be finitely axioma- 
tized and sequential, and let In te rpy  denote (a formalization of) relative 
interpretabi l i ty over U, then IA0 + Exp proves 

Interpu(rcpT, rr  7) ~ TabProvE~p(rTabConu(r~ 7) ~ Tabeonu(rCDD. 

A proof  of this result may be found in [6, Section 7.4]. 

4. A r i t h m e t i c a l  c o m p l e t e n e s s :  t h e  m a i n  r e s u l t  

Before setting off, let us briefly outline the arithmetical completeness proofs 
we are about  to give. Start ing with a formula A that  is non-provable in I L P  

or I L P  ~, we find a Fr iedman tail model refuting A; using a Solovay-like 
function defined on this model  we define an arithmetical interpretat ion of 
the modal  language in ari thmetic.  Up to this point we will follow Visser's 
original completeness proof  for I L P  (modulo some changes necessitated by 
the fact that  we are working with infinite models instead of finite ones). The 
way we subsequently prove that  the arithmetical interpretat ion thus defined 
really is an embedding of the model  refuting A into arithmetic,  differs from 
Visser's set up. Finally, we derive the arithmetical completeness of both  
I L P  and I L P  ~ . 

For the remainder  of this paper, let U be a El~ extension of IA0 + 
SupExp that  satisfies all the requirements from w 

Our first aJ_m is to embed Friedman tail models into U. To do so we fix 
A/t = (w, 0, Q, P,  IF- / to be a tail model; we assume that  P is given by a set 
X as in i tem 2 of the definition of a Friedman tail model. Define as formulas 
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in the language of U: 

{ V i { ( z ;  i ) : i l~A} '  
(z C [ A ~ t ) : =  Ai{( z / ) :  i l~ A},  

if [ A ] ~  is finite 
if [ A ] ~  is cofinite. 

It is easily verified that  IA0 + Exp proves 

�9 (z E [ A ~ )  A (m E [B]]~) ~ (z C [A A B ] ~ ) ;  

�9 (x e [A~z~) V (z e [B]M) ~ (z E [A V B ] ~ ) ;  

Using the  Recursion Theorem we define a Solovay-like function H as 
follows: 

H(0) = 0 
y, if H(z)Py and Tabe roo fu (z  + 1,~L # y~) 

H(x + 1) = y, if H(z)Qy and TabProofE~p(z + 1,rL ~ y~) 
H(x), otherwise 

L = the limit of H. 

We leave it to the reader to check that  the formula 'H(z)  = u' is Ao(2"), 
and that  for any z, y 

1. IA0 + Exp F xQy -~ (tt(~) = H(y) V tt(z)QH(y)); 
2. IA0 + Exp F 'L exists'; 

3. IA0 + E x p  F L = z ~ 3y(H(y)  = x) A W v ( H ( u )  = x A v  > u -~ 
H(~) = ~); 

4. L - - 0 .  

DEFINITION 4.1. We define the representation [A]~ of [A~gt in the lan- 
guage of u by := (L e 

Let g be any function that  takes the proposit ion letters f~om s ~>) (or 
E(Ap, Aq)) to sentences in the language of arithmetic.  Then the arithmetical 
interpretation (.)g of s c>) U s into the language of ar i thmetic  is 
defined by 

(p)g := [p]~ (E]A)B := Provu(r(A)g ') 
(• := '0 = 1' (A E> B)B := Interpu(r(A)e~,~(B}a ~) 

(-~A)g . -  ,(A}g (ApA)g := TabProv~(~(A}e ') 
(A A B)a := (A)a A (B}g (Aq A)a := TabProvs.~p(~(A)g~). 

In case g(p) = ~v]A4 for some model 2~4, we write ( - )~ for (.}g. 
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PROPOSITION 4.2. Let r �9 H ~ Then IA0 + Exp F- TabProvs~p(r~b ") 
TabProvu(~r 

PROOF. Cf. [6, Lemma 8.2]. [] 

PROPOSITION 4.3. U ~- L �9 X. 

PROOF. Reason in U: by our earlier remarks the limit L exists. So assume 
L = / ~ X. Then, by the definition of H, i > 0 and TabProvE.,p(~L r i7). 
Recall that U extends IA0 + SupExp. By [6, Consequence 7.3.7], IA0 + 
SupExp proves II2~ for IA0 + Exp. (This is in fact the only place 
where we really need U to be an extension of IA 0 + SupExp.) Therefore, in 
U we have L ~ / - - a  contradiction. [] 

LEMMA 4.4. Let A E rs E>)*. Then IAo + Exp ~- [A]za ~ (A)~.  

PROOF. Induction on A. The propositional case and the Boolean cases are 
immediate from the fact that the limit provably exists and the induction 
hypothesis, respectively. 

Suppose A --Ap B. First we assume that [AB B]za is cofinite. Then 
lap B].,~ = w. So [Ap B].,,,4 - A,:{ (L ~4/) : i Ik _L } = T. So IAo + Exp ~- 
[Ap B]2ct, and hence IA 0 + Exp ~- (Ap B)2a ~ [Ap B]2a. To prove the other 
direction it suffices to show that IA0 + Exp ~- TabProvu(r[B]~).  Clearly, 
[B].~t is cofinite and X C [ B ~ ;  therefore [B]~ = Ai{(L # i) : i l~ z B}. 
Reason in IA0 +Exp: i f i  I~ z B ,  then TabProvv(rL #/~), because U F- L E X. 
Therefore TabProvu(=[B].~t'). 

Next we assume that [Ap B ] ~  is fmite. Let { j0 , . . . , j~  } be all j with 
jlF-Ap B, -~B. Then, ifil~ZApB, there is a j  E { j0 , . . . , j~}  w i t h i P j .  By 
the induction hypothesis it stfffiees to show that IA0 + Exp ~- [Ap B]Z4 
TabProvu(flB]:,~). Reason in IA0 + Exp: 

' ~ ' :  Assume TabProvu(r[B]za'). Let j �9 {j0, .- .  ,j~ }. Then TabProvu 
(rL # j~). So assume that TabProofu(p+ 1, rL # 3_'7). If LPj then H(p)Pj--  
so H(p+ 1) = j, which is a contradiction. Therefore, ~LPj, so Vi{ (L = _/): 
i It-Ap B }. 

' ~ ' :  Assume L = _/, i [[-Ap B. Then i r 0. So TabProvsxp(rL r 
z_ "7) or TabProvu(rL r /7), so by 4.2 TabProvu(~L r i7). We also have 
for some x, H(z) = i, and hence TabProvcr(r3z H(z) = i~). This implies 
TabProvu(=iQL~). Given that U F- L E X, this entails TabProvu(~iPLT). 
Finally, iPj implies j I~- B. Therefore TabProvu(=Vj{ (L = j ) :  j I~- B }7). 

Assume next that A =Aq B, and that [Aq B~za is cofinite. Then IAq 
B]2vt = [B~.~t = w. So by the induction hypothesis IA0 + Exp F- (B)~ ,  and 
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hence 

IAo + Exp ~- TabProvE=p(~(B)~ ') 

(Aq [Aq 

Next we assume that  [Aq B~j~ is finite. As in the case of Ap B, let 
{ J0 , . . - , j~  } be all j with j It-Aq B, -~B. Then, if i I/Aq B, there is a 
j E { j 0 , . . .  ,j~ } with iQj. By the induction hypothesis it sttffices to show 
that IA o + Exp ~- [Aq B]j~ +-+ TabProVE~p(~[B]~). Reason in IAo + E x p :  

' ~ ' :  This direction is analogous to the corresponding direction in the 
case of Ap B. 

'-~': Assume L = i, i I~Aq B. Then there exists an x with H(~) = i. In 
other words, TabProvE~p(~3x H(z)  = i7), and hence TabProvs,p(~Vk{ (L = 
k_) : i = k V i Q k } 7 ) .  Now, if i ~ X,  then TabProvE~p(~L # i7) by the 
definition of H. Therefore TabProvE~p(~V~{(L = k_) : iQk }7). Thus 
TabProvExp(~Vk { (L = k_k_): k I~- B }7). if, on the other hand, i e X,  then 
i IF-Aq B implies by 2.5 that i IF- B. But then we have TabProVE~p(~Vk{ (L = 
k ) : k l s  B}7). [] 

LEMMA 4.5. Let A E s ~>). Then IAo + Exp ~- [A]~ ~ ( A ) ~ .  

PROOF. Since, by 2.4, for all A E s and all i, i IF- A ~ A ~-, we 
trivially have IAo + Exp ~- [A]~ ~ [A~]~. Since A ~ C Tf_,([3, ~>)*, we can 
apply Lemma 4.4 to conclude that IA0 + Exp F-[A]~ ~ (A')aa (*). 

Recall that by the Friedman-Visser characterization of relative inter- 
pretability over finitely axiomatized sequential theories, IAo + Exp proves 

Interpu(rg~, re  7) ~ TabProv~p(~TabConu(r~, 7) ~ TabConu(rr 

This characterization allows us to show by induction on A that IA0 + E x p  F- 
(A~'/~ ~ (A/.M. Together with (,) this yields the Lemma. [] 

We need one more definition and a proposition before we can prove the 
arithmetical completeness of I L P  and I L P  ~. From now on 34 is no longer 
a fixed Friedman tail model. 

DEFINITION 4.6. Let .M be a Friedman tail model. Define dz4(k) := 
sup{ aj.(l)  + 1: kiv }, and 

I #n. 3.M3m(dr = nA  m l / A ) ,  if such an n exists 
d(A) :7-- / w, otherwise. 
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PROPOSITION 4.7. Let A E s >). Then there is a function g taking 
proposition letters to sentences in the language of U such that IA0 q- Exp F 

d(A) "r,', (AAE]A)g ~ r r o v  U t u  =1~).  

PROOF. If d(A) = w then I L P  F A, so any g does the trick. If d(A) < w, 
then there is a tail model d~ with tail element N such that d ~ ( N )  = n, 
and N I~ A. Define g(p) := ~v].~4. Then for every k with NRk,  k rF A A E3A. 
Moreover, if k = N or k R N ,  then k Ik z A A [:]A. Therefore 

IAo + Exp F (A A E]A}g ~ [A A [:]A]~, by 4.5 

[Da(A) • 
d(A) 

trover (r0 = 1~). [] 

THEOREM 4.8. Let A E s >). Then I L P  F A iff for every interpre- 
tation (')o, U t- (A)o. 

P ~ o o F .  The direction from left to right is left to the reader. To prove the 
other one, assume that I L P  ~/ A. Then there is a tail model A4 and a 
tail element N such that d ~ ( N )  = d(A) < w, N I~ z A and IA o + Exp F 
(A A E]A)~ ,~ d(A),'r-~ +-+ r r o v  U ( v  = 1"). If U e (A}M then U F (AAE]A}r 

d(A) 
and hence U F r r o v  U (r0 = l~)--contradicting our assumption that U is 
E~ Conclude that U t/(A)~4. [] 

THEOREM 4.9. Let A E s >). Then I L P  ~ F A iff for every interpre- 
tation (')o, N ~ (A)o. 

PROOF. Again, the direction from left t o  right is left to the reader. Assume, 
to prove the converse, that I L P  ~ t~ A. Then there is a Friedman tail model 

34 with 0 A. By 4.5 N # Moreover, N L = 0. It 
follows that  N # -~(A)~, [] 
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