
MAARTEN DE RIJKE A Note on Graded 

Modal Logic* 

Abstract. We introduce a notion of bisimulation for graded modal logic. Using this 
notion, the model theory of graded modal logic can be developed in a uniform manner. 

We illustrate this by establishing the finite model property and proving invariance and 
definability results. 
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1. Introduction 

The language of graded modal logic (GML) has modal operators 0i (for 
i E N) that can count the number of successors of a given state: a state w in 
a model (W, R, V) satisfies Oiq iff there exist at least n R-related states that 
satisfy ?4. Originally introduced in the early 1970s [9, 10], the language has 
enjoyed an increased interest during the past few years, especially because 
of its considerable expressive power. Formal logical and algebraic results 
on axiomatizability, decidability, and expressive completeness over bounded 
trees have been reported in a number of papers [2, 3, 5, 7, 8, 12, 20], and 
the language has shown up in various guises in knowledge representation, 
generalized quantifier theory, algebraic logic, and fuzzy reasoning [6, 13, 14, 
17, 18]. 

This note is concerned with graded modal logic as a description lan 
guage for reasoning about models. It is part of a larger enterprise to study 
the model theory - and in particular, the expressive power - of restricted 
description languages such as modal and temporal languages, terminological 
logics and feature logics (cf. [1, 15, 16, 19]). Bisimulations have proved to 
be a very powerful tool in this area, but so far a version of bisimulation that 
is appropriate for graded modal logic has not been proposed. As a conse 
quence, the model theory of graded modal logic is not as well developed as 
the model theory of, say, standard modal or temporal logic. In this note we 
propose a notion of bisimulation, called g-bisimulation that 'fits' GML ex 
actly in the sense that a first-order formula is invariant under g-bisimulations 
iff it is equivalent to a graded modal formula (cf. Theorem 4.9 below). 
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272 M. de Rijke 

The remainder of this note is organized as follows. The next section 
introduces the main notions needed. In Section 3 g-bisimulations are defined. 
In Section 4 we first give a quick and intuitive proof for the finite model 
property of GML using g-bisimulations, and then prove the above invariance 
theorem, as well as two results on definability. Section 5 contains some 
concluding comments. 

2. Basic definitions 

Graded modal formulas are built up using propositional variables p, q, 
the constants T and I, boolean connectives , A, and the unary modal 
operators Oi and EJi. We use LGML to denote this language. 

A model is a triple M = (W, R, V), where W is a non-empty set of 
states, R is a binary relation on W, and V is a valuation, that is: a function 
assigning a subset of W to every proposition letter. 

The satisfaction relation is defined in the familiar way for the atomic 
and boolean cases, while for the modal operators we put 

M, w k oib iff 

3V1 .. vi A (Vj , Vk)A A RwvjA A M,vjkq5) 
1 <j~k<, 1 i <j i I <j i < 

and M, w l= nio iff M, w 1= 
The graded modal type of a state is simply the set of all graded modal 

formulas satisfied by the state: tp(w) = {q$ I w l= q}; if necessary we record 
the model M in which w lives as a subscript: tpM(w). Two states w, v are 
graded modally equivalent if tp(w) = tp(v) (notation: w =g v). If X is a set 
of states, we write X l= 0 to denote that for all x E X, x t q. 

Let Li be the first-order language with unary predicate symbols corre 
sponding to the proposition letters in LGML, and with one binary relation 
symbol R. 

Models can be viewed as L1-structures in the usual first-order sense. The 
standard translation takes graded modal formulas 4 into equivalent formulas 
STx(q) in LI. It maps proposition letters p onto unary predicate symbols 
Px, it commutes with the booleans, and the modal cases are given by 

STK(Ojq) = 3Y. yi( A (Yj # Yk) A A (Rxyj A STyj (q))), 
1<,j:Ak<,i I <j i < 

and similarly for the box operators Ei. For all models M and states w 
we have M,w q$ iff M k STx(q)[w], where the latter denotes first-order 
satisfaction of STx(q) under the assignment of w to the free variable of 
STx (X). 
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3. G-bisimulations 

In this section we introduce the main notion of this note: g-bisimulations. 
In [19] bisimulations are advocated as the central tool in the model theory 
of modal logic; see [15, 16] for case studies implementing this strategy for 
Since, Until logic, and for negation-free modal logics. In Section 4 below we 
will use g-bisimulations to establish the finite model property, and to prove 
invariance and definability results for graded modal logic, thus showing that 
g-bisimulations can play a similar central role in the model theory of graded 
modal logic. 

By way of introduction we first consider bisimulations. 

DEFINITION 3.1. Let M1 = (W1, R1, VI), M2 = (W2, R2, V2) be two models. 
A bisimulation between M1 and M2 is a relation Z C (W1 x W2) satisfying 
the following requirements: 
1. Z is non-empty; 
2. if xZy, then x k p iff y k p, for all proposition letters p; 
3. if xZy and Rlxx', then there exists y' E W2 with R2yy' and x'Zy'; 
4. if xZy and R2yy', then there exists x' E WI with R1xx' and x'Zy'. 

We write Z : MI, x ?? M2, y to denote that Z is a bisimulation with xZy. 

Graded modal formulas are not preserved under bisimulations. To see 
this, consider the following two models M1 and M2, where M1 = ({0, 1, 2}, 
{(0,1), (0,2)}, Vi), M2 = ({3,4}, {(3,4)}, V2), and VI and V2 verify all 
proposition letters true in all states; see Figure 1). The relation indicated 
by the dotted line in Figure 1 is a bisimulation between Ml and M2. But 
0 og 3, as 0 02T, while 3 Y02T. 

Mi M2 

0 ~~~~~~~~3 

Fig. 1: Bisimilar but not equivalent 

To obtain a truth-preserving notion of bisimulation for graded modal 
logic, we need the following definitions. If X is a set, we write TP<'(X) 
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274 M. de Rijke 

to denote the collection of all finite subsets of X, and JXI to denote its 
cardinality. Also, we write RX to denote that for all x' E X, Rxx' holds. 

DEFINITION 3.2. Let M1 = (W1, R1, V1), M2 = (W2, R2, V2) be two models. 
A g-bisimulation between M1 and M2 is a tuple Z = (Z1, Z2, ...) of relations 
satisfying the following requirements: 
1. Zi is non-empty; 
2. for all i, Zi C W(Wl) x W(W2); 
3. if XZ2Y, then JXI = IY = i; 
4. if {x}Zj{y}, then x k p iff y k p, for all proposition letters p; 
5. if {x}ZI{y} and ROxX, where XI = i ) 1, then there exists Y E 

<W( W2) with R'yY and XZ Y; 
6. if {x}Z1{y} and R'yY, where Yj = i > 1, then there exists X c 

J:<(Wi) with RixX and XZjY; 
7. if XZ2Y, then 

(a) for all x e X there exists y E Y with {x}Zi{y}, and 
(b) for all y e Y there exists x e X with {x}ZI{y}. 

We write Z : MI, x Leg M2, y to denote that Z is a g-bisimulation with 
{x}Zi {y} 

To grasp the intuition behind Definition 3.2, reconsider the definition of a 
(normal) bisimulation. There, bisimilar states satisfy the same (standard) 

modal formulas in 0, 0 because they satisfy the same proposition letters 
(Definition 3.1, item 2), and because the relevant relational patterns present 
in the one model are mirrored in the other model (Definition 3.1, items 3 
and 4). To guarantee that g-bisimilar states satisfy the same graded modal 
formulas, one requires, firstly, that they satisfy the same proposition letters 
(Definition 3.2, item 4). Next, to preserve formulas of the form 0i4, sets of 
successors of size i present in the one model should be mirrored in the other 
(Definition 3.2, items 5 and 6). If two such sets 'mirror' each other, and all 
the states in the one set agree on a formula, then all the states in the other 
should do so as well (Definition 3.2, items 7(a), (b)). 

PROPOSITION 3.3. Let M1, M2 be two models, and let Z be a g-bisimulation 
with Z: M1,w 7ig M2,W2. Then, wI g W2. 

PROOF. The proof is by induction on formulas. The atomic and boolean 
cases are trivial. For the modal case, assume that WI 1 cjq. Then there 
exists X21 e Yjp'(W1) with R'wjX1, IXi1 = i and XI s b. By Definition 3.2, 
items 5 and 3, there exists X2 e Y<w(W2) with XIZ2X2, R2w2X2, and 
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A Note on Graded Modal Logic 275 

IX21 = i. We're done once we've shown that X2 1 q, for then w2 1= 4q. 
To this end, pick any v2 E X2. By Definition 3.2, item 7(b), there exists 
v1 E Xi with {vI}Z1{v2}. As X1 1 I , we get v1 k +, and by the inductive 
hypothesis this implies v2 k q . 

As a corollary, the models M1 and M2 depicted in Figure 1 are not 
g-bisimilar. 

By restricting the definition of g-bisimulation to just a finite tuple (Z1, 
..., Zk) we arrive at the notion of gk-bisimulation; we write M1, w L4, M2, v 

to denote that there is a gk-bisimulation between w and v. This notion 
of bisimulation is appropriate for the fragment LGML in which all modal 
operators Oi and Oi have subscripts i < k. In particular, for k = 1 we get 
a notion that is equivalent to the standard notion of bisimulation defined in 
Definition 3.1. 

Another restriction, which does not limit the length of the tuple (Z1,...), 
but rather the number of times the clauses in Definition 3.2 can be applied 
starting from a given pair of points. 

DEFINITION 3.4. Let M1 = (W1, R1, V1), M2 = (W2, R2, V2) be two models, 
and let m be a natural number. A g-bisimulation up to m between M1 and 

M2 is a sequence of tuples of relations Z0 = (Z, Z2,..) Z1 (Z1 Z, ) 
Zm = (Zm, Z2,...) satisfying the following requirements: 

1. Z4 is non-empty; 
2. Zm C C Z0 C Y<K(W1) x 9< (W2); 

3. if XZijY, then lXi = JYJ = i (j <i m); 
4. if {rx}Z?'{y}, then x l= p iff y k p, for all proposition letters p; 
5. if {x}Zi+1{y}, where j + 1 < m, and RixX, where (XI = i ) 1, then 

there exists Y E ?<w(W2) with R2yY and XZijY; 
6. if {x}Z+1f{y}, where j + 1 < m, and R2yY, where IYI = i > 1, then 

there exists X C P<w(Wi) with R'xX and XZjY; 

7. like item 7 of Definition 3.2, but with Z2 and Z4 instead of Zi and Z1 
(jSim). 

The notion of a gA-bisimulation up to m is defined similarly. 
We write M1, x ??g M2, y to denote that there is a g-bisimulation up to 

m between M1 and M2, say Z Z, ..., Zm, such that {x}Z?{y}. The notation 
L+k has the obvious meaning. 

Let M = (W, R, V) be a model, and assume w E W. For each n E N 
we define the n-hull Hn(w) around w in M as follows. The 0-hull Ho is 
simply {w}; the (n + 1)-hull is the set Hn+1 := {u I 3v C Hn (Rvu)}. 
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276 M. de Rijke 

We write M, to denote the submodel of M that is generated by w. That 
is, M, is the submodel of M whose domain is Un H,, (w). Clearly, for any 

model M and state w in M, M L+g MW. 
If M is generated by w, we define the restriction of M to depth m, 

notation: M r m, to be the submodel of M whose domain is the set 
U0<j m Hj(w) 

PROPOSITION 3.5. Let M be generated by a w. Then M, w L?m (M [ m), w. 

The degree of a graded modal formula is simply the largest number of 
nested modal operators occurring in it. The index of a formula is the highest 
natural number i such that the modal operator Oi occurs in the formula. 

PROPOSITION 3.6. Let M1, M2 be two models, and let w, v be states in M1 
and M2, respectively. If M1, w tim M2,v, then w and v verify the same 
graded modal formulas of degree at most m. 

4. Results 

In this section we first give a new and intuitive proof of the finite model 
property for graded modal logic using g-bisimulations. We then use g 
bisimulations to prove the main results of this note: invariance and de 
finability. 

4.1. Finite model property. The finite model property for graded modal 
logic was first established in [11]; see also [3, 12]. The proof presented below 
is attractive because it clearly brings out the two obvious reasons why CGML 
has the finite model property; to determine the truth of falsehood of a graded 
modal formula only R-paths wR... Rv of finite length are needed, and every 
state on such a path only needs finitely many successors. 

Let's get to work. Fix a satisfiable formula t with degree m and index k. 
Let M and w be such that M, w k b. We will construct a finite submodel of 

M that is still a model for 0. First, we may assume that M = M, Consider 
M i m; it only has finite R-paths, and (M [ w), w 1 q. Now (M [ m) need 

not be finite, as it may be infinitely branching. 
Consider the sublanguage CGML (q) in which all formulas are built up 

using only proposition letters that occur in q. It is easily verified that there 
are only finitely many non-equivalent formulas in CGML (q) with degree at 

most m and index at most k. 
Our final model (M [ M)i k is defined as follows. Its domain is the union 

of certain subsets Ho), ..., He of the domain of (M [ m). Here Ho = {w}, 
and to define H4+1 (i + 1 <i m) do the following: 
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A Note on Graded Modal Logic 277 

set H+= 0 
for all x E Hj 

for each of the finitely many non-equivalent LGML(0)-formulas b 
select as many as possible (but at most k) R-successors y of x 

with y l= Vt 
add these states to H' 

end. 

The relation and valuation of (M [ 
m)yk are simply the restrictions to the 

domain of (M r m),k. Clearly, (M [ m)?k is finite, and (M [ m)(k 1gk 
(M [ m). 

Putting things together, we arrive at the following result: 

THEOREM 4.7. LGML has the finite model property. 

4.2. Invariance. We need the following notion. A model M is w-saturated 
model (in the sense of first-order logic) if whenever A is a set of formulas 
in ?4, where L' extends Li by the addition of fewer than w new individual 
constants, and A is finitely satisfiable in an ?4-expansion of M, then A is 
satisfiable in this expansion. 

LEMMA 4.8. Let M1, M2 be two w-saturated models, and let wi E W1 and 
W2 E W2. Then tp(wl) = tp(w2) iffwi Wig W2. 

PROOF. The right-to-left implication is Proposition 3.3. For the left to 
right implication, assume that w1 -g w2, and define a series of relations 
Z - (Z1 ... .) between the finite subsets of W1 and W2 by putting (for i ) 1): 

X1ZiX2 iff IXI =1IX21=i and 
Vx1 E X13x2 E X2 tp(x1) = tp(x2) and 
VX2 E X23X1 E X1 tp(Xl) = tP(X2). 

Let us check that this defines a graded bisimulation between wi and w2. 
First, as tp(wl) = tp(w2), Zi is non-empty. Conditions 2, 3, and 4 from 
Definition 3.2 are trivially fulfilled. 

As to condition 5, assume w1Z1w2 and Riw1Xl, where JX1} = i. We 
need to find a finite set X2 C W2 with R'w2X2 and XlZiX2. Assume that 
X1 {v1, ..., vii}. Consider the types generated by the states in XI; 
clearly, some of them may coincide. Let tp1, ..., tpn (n < i) be a minimal 
collection of types such that every tpj coincides with one of tp(vil), 
tp(vii), and such that for every vij there exists a tPk with tPk - tp(vj). 
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278 M. de Rijke 

Next, we need to record, for each type tpl, ..., tpn, by how many states in 
X1 it is generated; for j = 1, ..., n let 

mi = I{Vlk I tpj = tp(Vlk), 1 < k < i}l. 

Then = i; see Figure 2. 

tp 1 tp2 tpn Xi 

Fig. 2: The successor types of wl. 

Consider the following collection of formulas: 

U ({RRxy I 1 <( k < m } U {(yj :A yi) I 1 k Im} ( 1) 

U {ST , () I 0 $E tpj, 1 < k < mj}). 

We want to satisfy the set of formulas (1) at w2 in M2. If we succeed in doing 
so, then, for each type tpj we have forced the existence of mj successors of w2 
satisfying tpj. Putting these successors together gives us a set X2 of size i, as 
required. (To see this, observe first that for each tpj we will have mj states 
at which it is realized; and, second, that no state can realize two different 
types, as types are maximal.) Moreover, it is obvious that for each state xl 
in X1, there will be a state x2 E X2 with {xI}Z1{x2}, and conversely. Thus 

XlZiX2, and we have established condition 5. 
Let us see why all of (1) is satisfiable at w2. Since M2 is w-saturated, it 

suffices to show that (1) is finitely satisfiable at W2. Assume for the sake of 
contradiction that this is not the case. Then there exist finite sets 01 C tpl, 
* On C ton such that 

M2 A ]VY mj ( A Rxyk (2) 
1 jn I <,k <mj 

A A (yjk 7 vy1)A A STi(ij))[W21 
1lk~ol<mj 1,k<,mj 

is not satisfiable. Now (2) is equivalent to 

M W2 , w 'Q Zml(m ,( ) A ... A Omn A On)) 
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But as 
Ml, Wk 1mi(A M P) A. A n A on) 

this contradicts {wI }ZI {w2}. Hence, (1) is finitely satisfiable in w2, as re 
quired. 

Finally, condition 6 is proved analogously to condition 5, and condition 7 
is immediate from the definition of Z. N 

An L1-formula a(x) is invariant under g-bisimulations if for all models 
M1 and M2, all states WI in M1 and w2 in M2, and g-bisimulations Z = 
(Z1,...) between M1 and M2, {wI}ZI{w2} implies that M1 1=k a[wl] iffM2 1 

a 4W2]. 

THEOREM 4.9. (Invariance) Assume that L1 is countable. An LI-formula is 
(equivalent to the translation of) a graded modal formula iff it is invariant 
under g-bisimulations. 

PROOF. The right-to-left implication is simply Proposition 3.3. For the 
other direction, assume that a(x) is preserved under directed simulations. 
By a simple compactness argument it suffices to show that 

GML-Cons(a) := {STx(o) I a l= STx(b) and 0 E LGML} k a. (3) 

To prove (3), assume that M l= GML-Cons(a)[w]; we have to show that 
M l= a[w]. 

The proof of the following claim is left to the reader: 

CLAIM 1. The set {a(x)} U {STx((0) I 0 E tp(w)} is satisfiable. 

Using Claim 1, we find a model N and state v with N k ca[v] and N,v v 

tp(w). The following is immediate: 

CLAIM 2. tPN(V) = tPM(W). 
Now, to conclude the proof we want to 'lift' a from N, v to M, w. To do so, 
take two w-saturated elementary extensions N+, v and M+, w of N, v and 

M,lw, respectively (cf. [4, Theorem 6.1]. Then tpM+(w) = tpN+(v), and so 
by Lemma 4.8 we get that M+, w Peg N+, v. A walk around the following 
diagram completes the proof: 

tpM(W) tpN(V) 

Mw Nv 

M+ Iw L+g N+,v. 
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That is, N k cdv] implies N+ I= ac[v] by elementary extension. As N+, v L9 
M+, w it follows that M+ k= c[w], and hence M 1= a[w], as required. 0 

4.3. Definability. To simplify the presentation, we will work with pointed 
models; these are structures of the form (M, w), where w is a state in M, 
called the distinguished point of (M, w). We will assume that g-bisimulations 
between two pointed models link the singletons containing their distinguished 
points. 

Let X be a class of pointed models. Then X is definable by a set of 
graded modal formulas if there exists a set of formulas A such that X = 
{(M, w) I (M, w) I= A}; X is definable by a single formula if it is definable by 

means of a singleton set; X denotes the class of pointed models outsideX. 
X' is closed under ultraproducts (ultrapowers) if every ultraproduct (ul 

trapower) of models in X is itself in X; X is closed under g-bisimulations 
if every model g-bisimilar to a model in X is in J. 

THEOREM 4.10. (Definability 1) Assume that CGML is countable, and let 
X be a class of pointed models. Then 

1. X is definable by a set of graded modal formulas if A is closed under 
g-bisimulations and ultraproducts, while X is closed under ultrapowers. 

2. X is definable by a single graded modal formula iff X is closed under 
g-bisimulations and ultraproducts, while X is closed under ultraproducts. 

PROOF. 1. The only if direction is easy. For the converse, we can 'bisimulate' 
familiar arguments from first-order model theory. Assume X is closed under 
ultraproducts and g-bisimulations, while X is closed under ultrapowers. Let 
A = f{tp(Mw)(w) I (M,w) E XI} 

We will show that A defines X. First, X k A. Second, assume that 
(M, w) I= A; we need to show (M, w) c X. Consider tP(Mw) (w), and define 
I = {Z C tp(M,w)(w) I ZIE < wl. For each i = {a, . . . ,a} E I there is a 

model (Ni, vi) of i in X. By standard model-theoretic arguments there exists 
an ultraproduct (N, v) = flu(Ni, vi) such that tp(Nv)(v) = tp(M,w)(w). As 

X is closed under ultraproducts (N, v) E X. 
Now, let U' be a countably incomplete ultrafilter, and consider the ul 

trapowers 

(N*, v*) :-f(N, v) and (M*, w*) (M, w). 
u' U' 

Both (N*, v*) and (M*, w*) are w-saturated (cf. [4, Theorem 6.1]), and 
tp(w*) - tp(v*). Hence, by Lemma 4.8, (N*,v*) i+g (M*, w*). By closure 
under ultraproducts (N*, v*) E X, and by closure under g-bisimulations 
(M*, w*) E X. Since X is closed under ultrapowers, we get (M, w) E X, 
as required. 
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2. Again, the only if direction is easy. Assume X, X satisfy the stated 
conditions. Then both are closed under ultrapowers, hence, by item 1, there 
are sets of graded modal formulas A1, A2 defining X and X, respectively. 
Obviously, Al U A2 1= I, so by compactness for some 01, ..., qOn e Al, 4'1, 

* I)m eE A2, we have Ai pi k Vj -ibj. Then X is defined by Ai xi X 

To conclude this section we present an alternative and more manageable 
characterization of the properties definable in graded modal logic. 

THEOREM 4.11. (Definability 2) Assume that CGML contains only finitely 
many proposition letters, and let A' be a class of pointed models. Then A' 
is definable by a single graded modal formula iff, for some k, m E N, X is 
closed under gk-bisimulations up to m. 

PROOF. Clearly, if X is negation-free definable by a single formula of degree 
m and index k, then it is closed under gk-bisimulations up to m. To prove 
the converse, let (MI, wl) E X, and define ? kM to be the conjunction of 
all formulas in tpM(w) of index at most k and degree at most m - as we are 

working in a finite language, we can assume that there are only finitely many 
non-equivalent graded modal formulas of index at k and degree at most m, 
hence we may assume ( ,m to be a (finitary) formula in LGML. 

Using the finite character of the language again, we find that there are 
only finitely many non-equivalent formulas E kJm for (M, w) E X. Let ?pk~m 
be their disjunction. Then ?pkm defines X. For, assume that (MI,wi) k 
0pkm; we need to show that (Ml,wl) E Y. First, from (MI,wl) k spkm it 
follows that for some (M2, W2) E X, (Ml, wi) agrees with (M2, w2) on all 
graded modal formulas of index at most k and degree at most rn. Second, 
the latter fact implies that MI, wl ??m M2, W2. To see this, define tuples of 
relations Z -(Z0, * 4), *.., = (Zr, . Zm) by 

* {x}Z1 {y}, for j =0,. m, iff x and y satisfy the same graded modal 
formulas of index at most k and degree at most j; and 

* XZ Y, for i = 2, ..., k and j = 0, ..., m- 1, iff JXi = IYI =i and 

Vx E X3y E Y {x}Zj {y} and Vy E Y3x C X {x}Z {y}. 
Then Z0, ..., zm is a gk-bisimulation up to m that links M1, w1 to M2, w2. 
As (M2, W2) E X and X is closed under gk-bisimulations up to m, this 
implies (Ml, wl) E X, and we are done. 

5. Conclusion 

In this note g-bisimulations were introduced as a tool for exploring the model 
theory of graded modal logic. Their usefulness was demonstrated by their 
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use in obtaining both known results (the finite model property) and new 
ones (invariance and definability). 

Now that a working notion of bisimulation is available for graded modal 
logic, it may be used to obtain further results on the model (and frame) the 
ory of graded modal logic. Obvious questions to be answered next include 
the following: Can g-bisimulations be used to prove a Goldblatt-Thomason 
style result about the classes of frames definable in LGML? What is the ap 
propriate kind of Ehrenfeucht-Fraisse style games needed to prove analogs 
of the results in this note for the class of finite models? Fragments of LGML 
have been used in terminological reasoning [6]; can these fragments be char 
acterized by adapting the notion of g-bisimulation? 
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