
MAARTEN DE RIJKE

A SYSTEM OF DYNAMIC MODAL LOGIC

ABSTRACT. In many logics dealing with information one needs to make statements not
only about cognitive states, but also about transitions between them. In this paper we
analyze a dynamic modal logic that has been designed with this purpose in mind. On
top of an abstract information ordering on states it has instructions to move forward or
backward along this ordering, to states where a certain assertion holds or fails, while
it also allows combinations of such instructions by means of operations from relation
algebra. In addition, the logic has devices for expressing whether in a given state a certain
instruction can be carried out, and whether that state can be arrived at by carrying out a
certain instruction.

This paper deals mainly with technical aspects of our dynamic modal logic. It gives
an exact description of the expressive power of this language; it also contains results on
decidability for the language with ‘arbitrary’ structures and for the special case with a
restricted class of admissible structures. In addition, a complete axiomatization is given.
The paper concludes with a remark about the modal algebras appropriate for our dynamic
modal logic, and some questions for further work.

The paper only contains some sketchy examples showing how the logic can be used
to capture situations of dynamic interest, far more detailed applications are given in a
companion to this paper (De Rijke [33]).

1. INTRODUCTION

Over the past decade logicians have paid more and more attention to
dynamic aspects of reasoning. Motivated by examples taken from such
diverse disciplines as natural language semantics, linguistic analysis of
discourse, the philosophy of science, artificial intelligence and program
semantics, a multitude of logical systems have been proposed, each of
them equipped with the predicate “dynamic”. At present it is not clear at
all what it is that makes a logical system a dynamic system. One of the
very few general perspectives on dynamic matters is due to Van Benthem
[6]. This paper studies a dynamic modal language (DML) designed
within this perspective by Van Benthem [4, 6]. Before introducing the
formal aspects of DML, let me sketch the main ideas underlying it.

Nowadays many logical systems focus on the structure and processing
of information. Often these calculi do not aim at dealing with what is
true at information states, but rather with transitions between such states.
Cognitive notions, however, have a dual character. Actual inference, for
instance, is a mixture of more dynamic short-term effects and long-term
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static ones. Thus, in a logical analysis of dynamic matters it is desirable
to have two levels of propositions co-existing. In addition, the two levels
may mutually influence each other; the effects of transitions are often
couched in static terms, and the processing of pieces of static information
may give rise to instructions as to getting from one cognitive state to
another. The general format for DML, then, is one of two levels, of
states and of transitions, plus systematic interactions between them.

Given this choice of basic ingredients we are faced with a number of
questions, including:

1. what are states and transitions?
2. what are the appropriate connectives?
3. which relations model the interaction between states and transitions?
4. do we evaluate formulas only at states, or also at transitions?

In DML we opt for the following We abstract from any particular choice
of states, and take them to be primitive objects without further structure.
Although recent years have witnessed the emergence of calculi in which
transitions are primitive objects too (in [5, 37] they are called arrows),
here our transitions will simply be ordered pairs of states. In our choice
of connectives we will be rather conservative: we use propositions with
the usual Boolean operations to talk about states, and we use the usual
relation algebraic operations (including converse) to combine procedures
that denote sets of transitions. Among our procedures there will be a
relation v denoting an abstract notion of information growth or change,
which we will assume to be a preorder; given this choice one can some-
times think of the elements of our structures as the cognitive states an
agent passes through searching for knowledge.

As to the interaction between states and transitions, states are linked to
transitions via modes, and transitions are linked to states via projections,
as in Figure 1 below. The choice of projections and modes will, of course,
depend on the particular application one has in mind; here, we chooce a
very basic set. The projections we consider return, given a procedure as
input, its domain, range and fix points. Given our interests in dynamic
matters here, they form a natural choice, expressing, for instance, whether
or not in a given state a certain change is at all possible. The modes we
consider take a formula φ as input, and return the procedure consisting of
all moves along the information ordering to states where φ holds, or all
moves backwards along the ordering to states where φ fails; in addition
there is the simple “test-for-φ” relation.

The issue whether we evaluate formulas at states, transitions, or both,
is a subtle one. Our language has syntactic items referring to relations,
but the notions of validity and consequence are couched solely in terms of
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Figure 1. Propositions and procedures.

formulas denoting sets of states; thus DML cannot express the identity
of two relations directly – only the effects of making transitions can be
measured. That is: DML-formulas can only be evaluated at states, not
at pairs. De Rijke [34] deals with a truly two-sorted language in which
states and transitions have, so to say, equal rights.

I believe that DML is not just another device for reasoning about
dynamics and change, but, rather, that it provides a more general frame-
work in which other proposals can be described and compared. A number
of such descriptions and comparisons have been given by Van Benthem
[4, 6] and De Rijke [33]; §3 below contains a brief survey. Jaspars [21],
and Jaspars and Krahmer [22] use DML as a medium for comparing
different systems of dynamic semantics, and making them compatible.

The main purpose of this paper is to study the language DML in
precise and formal detail. After some initial definitions in §2, §3 con-
tains examples of the uses of the DML; these include Theory Change,
Update Semantics, and Dynamic Inference. In §4 the expressive power
of the language is studied; a precise syntactic description is given of the
first-order counterpart of DML, as well as a characterization in terms of
bisimulations. In §5 (un-)decidability results for satisfiability in DML
are given. §6 provides a complete axiomatization of validity in the lan-
guage of DML. Some quick remarks about the kind of modal algebras
appropriate for the language studied here are made in §7. Finally, §8
contains concluding remarks.

2. SOME DEFINITIONS

Let Φ be a set of proposition letters. We define the dynamic modal
language DML(Φ), or just DML for short. Its formulas and procedures
(typically denoted by φ and α, respectively) are built up from proposition
letters (p ∈ Φ) according to the following rules

φ ::= p | ⊥ | > | ¬φ | φ1 ∧ φ2 | do(α) | ra(α) | fix(α),

α ::= exp(φ) | con(φ) | α1 ∩ α2 | α1 ;α2 | −α | α̌ | φ?.
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DML-formulas are assumed to live in a set Form(Φ), the procedures
in a set Proc(Φ), and the elements of Form(Φ)∪Proc(Φ) are referred
to as DML-expressions.

At several occasions we will refer to a version of DML with multiple
base relations vi taken from a set Ω, with corresponding modes expi;
we use DML(Φ,Ω) to refer to this language.

The intended interpretation of the above connectives and operators is
the following. A formula do(α) (ra(α)) is true at a state x iff x is in
the domain (range) of α, and fix(α) is true at x if x is a fixed point
of α. The interpretation of exp(φ) (read: expand with φ) is the set of
all moves along the information ordering v leading to a state where φ
holds; the interpretation of con(φ) (read: contract with φ) consists of all
moves backwards along the ordering to states where φ fails. As usual,
φ? is the “test-for-φ” relation, while the intended interpretation of the
operators left unexplained should be clear.1

The models for DML are structures of the form M = (W,v, [[·]], V ),
where v⊆W 2 is transitive and reflexive relation (the information order-
ing) [[·]]: Proc(Φ)→ 2W×W , and V : Φ→ 2W is a valuation assigning
subsets of W to proposition letters.2 The interpretation of the projections
is the following:

M, x |= do(α) iff ∃y((x, y) ∈ [[α]]),

M, x |= ra(α) iff ∃y((y, x) ∈ [[α]]),

M, x |= fix(α) iff (x, x) ∈ [[α]].

A model M is standard if it interprets the relational part of the language
as follows:

[[exp(φ)]] = λxy. (x v y ∧M, y |= φ),

[[con(φ)]] = λxy. (x w y ∧M, y 6|= φ),

[[α ∩ β]] = [[α]] ∩ [[β]],

[[α ; β]] = [[α]] ;[[β]],

[[−α]] = −[[α]],

[[α̌ ]] = {(x, y) : (y, x) ∈ [[α]]},
[[φ?]] = {(x, x) : M, x |= φ}.

As usual, we say that a formula φ is a consequence of a set of formulas
∆ if for every (standard) model M and every x in M,M, x |= ψ, for all
ψ ∈ ∆, implies M, x |= φ.

Observe that ra and fix are definable using the other operators; the
contraction mode con(·) is equivalent to exp(¬φ)̌ . Whenever this is con-
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venient we will assume that exp only has > as its argument; this is
justified by the equivalence [[exp(φ)]] = [[exp(>) ;φ?]].

The original definition ofDML as given in Van Benthem [4] included
the minimal projections µ-exp(·) and µ-con(·) whose definitions read

[[µ-exp(φ)]] = λxy. (x v y ∧M, y |= φ ∧
¬∃x(x v z < y ∧M, z |= φ)), and

[[µ-con(φ)]] = λxy. (x w y ∧M, y 6|= φ ∧
¬∃x(x w z = y ∧M, z 6|= φ)).

They have been left out because they are definable:

(x, y) ∈ [[µ-exp(φ)]] iff

(x, y) ∈ [[exp(φ) ∩ −(exp(φ) ; (exp(>) ∩ −>?))]],

and similarly for µ-con(φ).
There are obvious connections between DML and Propositional

Dynamic Logic (PDL, [20]). The “old diamonds” 〈α〉 from PDL can be
simulated in DML by putting 〈α〉φ := do(α ;φ?). And conversely, the
expansion and contraction operators are definable in a particular mutation
of PDL where taking converses of program relations is allowed and a
name for the information ordering is available: [[exp(φ)]] = [[v ;φ?]]. The
domain operator do(α) can be simulated in standard PDL by 〈α〉>. A
difference between the two is that (standard) PDL only has the regular
program operations ∪, ; and the Kleene star ∗, while DML has the full
relational repertoire ∪,−,ˇ and ;, but not ∗. Another difference is not a
technical difference, but one in emphasis: whereas in PDL the Boolean
part of the language clearly is the primary component of the language
and the main concern lies with the effects of programs, in DML one
focuses on the interaction between the static and dynamic component.

A related formalism whose relational apparatus is more alike that of
DML is the Boolean Modal Logic (BML) studied by Gargov and Passy
[16]. This system has atomic relations ρ1, ρ2, . . . , a constant for the uni-
versal relation ∇, and relation-forming operators ∩,∪ and −. Relations
are referred to within BML by means of the PDL-like diamonds 〈α〉.
Since the language of BML does not allow either ; or ˇas operators on
relations, it is a strict subset of DML(Φ,Ω).

3. SOME EXAMPLES

It is high time for an example or two. Here’s a simple-minded one.
Suppose you’re sitting in a room, waiting for the start of a talk by a
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famous logician who is known for his lively presentation, and who has
done a lot of work on non-monotonic logic. So, after some time the lights
are dimmed and logician comes in (l). You can see that he’s carrying a
birds cage with a bird in it, although you can not see what kind of bird it
is. Having read the relevant literature you conclude that the bird must be
a penguin (p) called Tweety (t). However, the first thing the speaker says,
while holding up the cage and pointing at the bird in it, is: “This bird is
not called Tweety”. In that case, you think, it’s probably not a penguin
either. The speaker continues: “I want to do a little experiment with you.
I want you to think of a name for this bird; any name will do, as long
as it’s not Tweety”. Being a cooperative member of the audience you
think of a name other than Tweety, say Bob (b) . . . Some of the changes
brought about in your initial informational state during this story may
schematically be represented as

exp(l) ;(exp(p) ∩ exp(t)) ; con(t) ; con(p) ;(exp(b) ∩−exp(t)),

where ; is the usual relational composition as defined in §2.

Theory Change

One of the original motivations for the invention of DML was to obtain
a formalism for reasoning about the cognitive moves an agent makes
while searching for new knowledge or information; possible moves one
should be able to formulate included acquiring new information, and
giving up information, as was illustrated in the above example. It later
turned out that along similar lines DML can be used to model postulates
for Theory Change. I will briefly sketch this.

Consider a set of beliefs or a knowledge set T . As our perception of
the world as described by T changes, the knowledge set may have to
be modified. In the literature on theory change a number of such modi-
fications have been identified [1, 24], including expansions, contractions
and revisions. If we acquire information that does not contradict T , we
can simply expand our knowledge set with this piece of information.
When a sentence φ previously believed becomes questionable and has to
be abandoned, we contract our knowledge with φ. Somewhat intermedi-
ate between expansion and contraction is the operation of revision: the
operation of resolving the conflict that arises when the newly acquired
information contradicts our old beliefs. The revision of T by a sentence
φ is often thought of as consisting of first making changes to T , so as to
then be able to expand with φ. According to general wisdom on theory
change, as little as possible of the old theory is to be given up in order
to accommodate for newly acquired information.
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Gärdenfors and others have proposed an influential set of rationality
postulates that the revision operation must satisfy. By defining revision
and expansion operators inside DML all of the postulates (except one)
can be modeled inside DML. We briefly sketch how this may be done.
First, one represents theories T as nodes in a model, and statements of the
form “φ ∈ T ” as modal formulas [v]φ (i.e. ¬do(exp(>) ;¬φ?)). Then,
following the above maxim to change as little as possible of the old
theory, one defines an expansion operator [+φ]ψ (“ψ belongs to every
theory that results from expanding with φ”) as

[+φ]ψ := ¬do(µ-exp([v]φ) ;¬[v]ψ?).

So, [+φ]ψ is true at a node x if in every minimal v-successor y of x
where [v]φ holds (i.e. where φ has been added to the theory), the formula
[v]ψ is true (i.e. ψ is in the theory). Next, one defines a revision operator
[∗φ]ψ (‘ψ belongs to every theory resulting from revising by φ’) by first
minimally removing possible conflicts with φ, than minimally adding φ,
and subsequently testing whether ψ belongs to the result:

[∗φ]ψ := ¬do((µ-con([v]¬φ) ; µ-exp([v]φ)) ;¬[v]ψ?).

Given this modeling the Gärdenfors postulates can be translated into
DML. As an example we consider the 3rd postulate, also known as
the inclusion postulate: “the result of revising T by φ is included in
the expansion of T with φ”, or T ∗ φ ⊆ T + φ. Its translation reads:
[∗φ]ψ → [+φ]ψ. It is easily verified that this translation is valid on
all DML-models. In fact, nearly all of Gärdenfors [15]’s postulates for
revision and contraction come out true in this modeling. The only one that
fails is the 8th postulate, also known as “conjunctive vacuity” Fuhrmann
[12]; its failure is caused by the information ordering v in DML-models
not being a function. De Rijke [33] provides further details.

Update Semantics

Further formalisms to which DML has been linked include condition-
al logic and other systems that somehow involve a notion of change.
But, whereas the applications to Theory Change and conditionals do not
require the states in DML-models to have any particular structure, others
do.

For example, one version of Frank Veltman’s Update Semantics [36]
may be seen as a formalism for reasoning about models of the modal sys-
tem S5 (where each S5-model represents a possible information state of
a single agent) and certain transitions between such models. By imposing
the structure of S5-models on the individual states in a DML-model,
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the latter becomes a class of S5-models in which the DML-apparatus
can be used to reason about global transitions between S5-models, while
the language of S5 can be used to reason about the local structure of
the S5-models. The global transitions can then be interpreted as vari-
ous kinds of updates; [33] shows how Veltman’s might-operator and
sequential conjunction can be accounted for in this way. Furthermore,
notions of consequence considered by Veltman for Update Semantics
can be modeled using the DML-apparatus.

Dynamic Connectives; Dynamic Inference

Many of the dynamic operators that have been proposed in the liter-
ature can be defined in DML. The underlying reason for this is that
most dynamic proposals have some kind of two-dimensional structures
in common as their underlying models, and that the operators considered
are usually only concerned with certain pre- and postconditions of transi-
tions in such structures – DML is strong enough to reason about the pre-
and postconditions of all transitions defined by the standard operations
on binary relations, and many more besides. For instance, the residuals
of Vaughan Pratt’s action logic [29] can be defined in DML:

α⇒ β = {(x, y) : ∀z((z, x) ∈ [[α]]→ (z, y) ∈ [[β]])}
= −(α̌ ;−β),

α⇐ β = {(x, y) : ∀z((y, z) ∈ [[α]]→ (x, z) ∈ [[β]])}
= −(−β ; α̌ ).

Let δ denote the diagonal relation; i.e., δ := >?. As pointed out by
Van Benthem [6] the test negation proposed by Groenendijk and Stokhof
[17] becomes

∼ α = {(x, x): ¬∃y((x, y) ∈ [[α]])} = δ ∩ −(α ;>?).

A logical system is sometimes dubbed dynamic because it has dynam-
ic connectives as in the above examples, and sometimes because it has
a dynamic notion of inference. Quite often the latter can also be simu-
lated in DML. Here are some examples taken from Van Benthem [6].
The standard notion of inference |=1 (“every state that models all of the
premises, should also model the conclusion”) may represented as

φ1, . . . , φn |=1 ψ iff fix(φ1?) ∧ · · · ∧ fix(φn?)→ fix(ψ?).

A more dynamic notion |=2 taken from Groenendijk and Stokhof [17],
which may be paraphrased as “process all premises consecutively, then
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you should be able to move to a state where the conclusion holds”, has
the following transcription in DML:

φ1, . . . , φn |=2 ψ iff ra
(
exp(φ1) ; · · · ; exp(φn)

)
→ do(exp(ψ)).

A third notion of inference, |=3, found for example in Van Eijck and
De Vries [10] which reads “whenever it is possible to consecutively
expand with all premises, then it should be possible to expand with the
conclusion”, can be given the following representation:

φ1, . . . , φn |=3 ψ iff do
(
exp(φ1) ; · · · ; exp(φn)

)
→ do(exp(ψ)).

4. THE CONNECTION WITH CLASSICAL LOGIC

When interpreted on models ordinary modal formulas are equivalent to a
special kind of first order formulas. To be precise, these first order transla-
tions form a restricted 2-variable fragment of the full first order language,
one that can easily be described syntactically, and for which a semantic
characterization can be given in terms of so-called p-relations or bisim-
ulations (cf. Van Benthem [3, 35] for details). Likewise, the first order
transcriptions of modal formalisms used to reason about relation algebras
live in a 3-variable fragment of the full first order language; they too can
be given precise syntactic and semantic descriptions (cf. De Rijke [35]).

Of course, the above two are special cases of a much more general
phenomenon, namely the relation between patterns or important features
of structures and bisimulations that precisely preserve these patterns on
the one hand, and (extended) modal formulas whose validity is invari-
ant under such bisimulations on the other hand (again, cf. [35]). In the
present case of the DML-language it is also possible to give a precise
syntactic description of its first order transcriptions (this will be done in
§4.1), and the notion of bisimulation can be adapted to obtain a semantic
characterization of these first order transcriptions (in §4.2).

4.1. Translation into First Order Logic

The usual translation (·)∗ taking modal formulas to first order ones (over a
vocabulary {R, P1, P2, . . .}) can be extended to the full DML-language
without too much trouble (cf. [3] for the standard modal case). However,
whereas standard modal formulas translate into formulas having one free
variable in a two-variable fragment, expressions in the DML-language
translate into formulas of a three-variable fragment that may contain up
to two free variables.
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My approach will be a bit more general than the one suggested by
the truth definition given in §2; instead of v I will use an abstract binary
relation symbol R to translate the modal operators and the ‘dynamic’
constructs.

DEFINITION 4.1. Let τ be the (first order) vocabulary {R, P1, P2, . . .},
with R a binary relation symbol, and the Pi’s unary relation symbols. Let
L(τ) be the set of all first order formulas over τ (with identity). Define
a translation (·)∗ taking DML-formulas to formulas in L(τ) as Table 1,
where [y/x]α denotes the result of substituting y for all free occurrences
of x in α.

PROPOSITION 4.2. Let θ be an expression in DML(Φ). Then, for any
A, and for any x, y ∈ A, we have

1. A, x |= θ iff A |= θ∗[x], if θ ∈ Form(Φ), and
2. (x, y) ∈ [[θ]]A iff A |= θ∗[x, y], in case θ ∈ Proc(Φ).

The (·)∗-translations of DML-formulas can be described exactly using
the following definition.

DEFINITION 4.3. Fix individual variables x1, x2, x3 as before, and let
τ = {R, P1, P2, . . .} be as before. Let x, y range over {x1, x2},
with the understanding that x 6≡ y. The set of first order formulas (with
identity) L1,2

3 (τ) is the smallest set X such that

1. x1 = x1, Pix1 ∈ X;
2. if φ(x1), ψ(x1) ∈ X, then so are their conjunction, disjunction, and

negations;
3. Rx1x2, (x1 = x2) ∈ X;
4. if φ(x, y), ψ(x, y) ∈ X, then so are their conjunction, disjunction,

and negations;
5. if φ(x, y) ∈ X, then so is φ(y, x);
6. if φ(x, y) ∈ X, then so is ∃x2φ(x, y);
7. if φ(x, y), ψ(x, y) ∈ X, then so is ∃x3(φ(x, x3) ∧ ψ(x3, y));
8. if φ(x, y), ψ(x1) ∈ X, then so is φ(x, y) ∧ ψ(x2).

PROPOSITION 4.4. Every expression in the DML-language translates
into a formula in L1,2

3 (τ) via (·)∗. And conversely, for every φ ∈ L1,2
3 (τ)

there is an expression θ ∈ DML(Φ) such that |= θ∗ ↔ φ.

Proof. One may use an inductive argument to see that every expression in
DML(Φ) translates into a formula in L1,2

3 (τ) via the mapping (·)∗. For
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TABLE 1.

The standard translation.

(>)∗ = (x = x) (p)∗ = P (x)

(¬φ)∗ = ¬φ∗ (φ ∧ ψ)∗ = φ∗ ∧ ψ∗

(do(α))∗ = ∃y(α∗) (ra(α))∗ = ∃y[y/x, x/y](α∗)

(fix(α))∗ = [x/y](α∗)

(α ∩ β)∗ = α∗ ∧ β∗ (−α)∗ = ¬(α∗)

(α̌ )∗ = [y/x, x/y]α∗ (α ; β)∗ = ∃z([z/y]α∗ ∧ [z/x]β∗)

(exp(φ))∗ = (xRy)∧ [y/x]φ∗ (φ?)∗ = (x = y) ∧ φ∗

(con(φ))∗ = (yRx)∧ ¬[y/x]φ∗

the converse, define a mapping (·)†: L1,2
3 (τ)→ DML(Φ) as follows:

(x1 = x1)† = >
(Px1)† = p

(φ(x1) ∧ ψ(x1))† = φ(x1)† ∧ ψ(x1)†

(φ(x1) ∨ ψ(x1))† = φ(x1)† ∨ ψ(x1)†

(¬φ(x1))† = ¬φ(x1)†

(Rx1x2)† = exp(>)

(Rx2x1)† = con(⊥)

(x1 = x2)† = >?

(φ(x, y) ∧ ψ(x, y))† = φ(x, y)† ∩ ψ(x, y)†

(¬φ(x, y))† = −φ(x, y)†

(φ(x, y) ∨ ψ(x, y))† = φ(x, y)† ∪ ψ(x, y)†

(∃x2φ(x1, x2))† = do(φ(x1, x2)†)

(∃x2φ(x2, x1))† = ra(φ(x1, x2)†)

∃x3(φ(x, x3) ∧ ψ(x3, y))† = φ(x, y)† ;ψ(x, y)†

(φ(x, y) ∧ ψ(x2))† = φ(x, y)† ; (>? ∩ (ψ(x1)†?)).

Then,
for all φ ∈ L1,2

3 (τ), and all M, ~x, we have M, ~x |= φ iff M, ~x |= φ†. 2

Let X be a set of (first order) formulas, and let K be a class of models.
Then the DML-language is called expressively complete with respect
to X over K if for all χ ∈ X there is a DML-expression φ such that
K |= φ∗ ↔ χ. If K is the class of all models I will suppress ‘over K’.
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The two-variable fragment L2(τ) is the set of all first order formulas
over τ using only two variables.

COROLLARY 4.5. The DML-language is expressively complete with
respect to the two-variable fragment L2(τ) of first order logic over
{R, P1, . . .} with identity.

Proof. This is immediate from 4.4: since the two-variable fragment L2(τ)

over {R, P1, . . .} (with identity) is contained in L1,2
3 (τ), it follows that

DML(Φ) is expressively complete for that fragment. 2

An alternative proof for Corollary 4.5 can be given, by defining an explic-
it algorithm for transforming L2(τ) in DML-expressions. Since this
would take up too much space here without yielding additional insights,
I omit the details.

What about expressive completeness of the DML-language with
respect to the full first order language? It may amuse the reader to check
that the temporal operator UNTIL, whose truth definition is

M, x |= UNTIL(p, q) iff

∃y(xRy ∧ Py ∧ ¬∃z(xRzRy ∧ z 6= y ∧ ¬Qz)),

can be defined by

do(exp(p) ∩ −[exp(¬q) ; (R ∩ −δ)]),

where δ is the diagonal relation, defined by δ = >?. Of course, the
definition of SINCE , the backward-looking version of UNTIL, is simi-
lar. Hence, by Kamp’s theorem (cf. Kamp [23]), the DML-language is
expressively complete with respect to the full first order language over
continuous linear orders.

An obvious question here is whether the Stavi connectives SINCE ′

and UNTIL′ are definable in the DML-language, and, thus, by a result
of Jonathan Stavi, whether the DML-language is expressively complete
with respect to the language of first order logic over all linear orders (cf.
Gabbay [14]). Here, UNTIL′(p, q) is defined by

∃y
(
xRy ∧ ∀z(xRzRy → Qz)

)
∧(1)

∀y
(
xRy ∧ ∀z(xRzRy → Qz)→

(
Qy ∧ ∃x(yRx∧

∀z(yRzRx→ Qz))
))
∧(2)

∃y
(
xRy ∧ ¬Qy ∧ Py ∧ ∀z(xRzRy ∧ ∃y(xRyRz∧
¬Qy)→ Pz)

)
.(3)

LOGID222.tex; 16/04/1998; 10:20; v.7; p.12



A SYSTEM OF DYNAMIC MODAL LOGIC 121

Of course SINCE ′(p, q) is the “backward-looking” version of UNTIL′(p,
q). In the DML-language the operator UNTIL′(p, q) can be defined as
follows:

do
(
R ∩−[exp(¬q) ;R]

)
∧(4)

¬do
(
R ∩ −[exp(¬q) ;R]∩(5)

−
[
exp(q) ∩ do

(
R ∩−[exp(¬q) ;R]

)
?
])
∧

do
(
exp(¬q ∧ p) ∩ −

[(
exp(¬p) ∩ (exp(¬q) ;R)

)
;R
])
.(6)

I leave it as an exercise to check that (1), (2) and (3) are defined by the
DML-formulas (4), (5) and (6), respectively.

4.2. Bisimulations

I will now characterize L1,2
3 (τ), and hence, by 4.4, the DML-language,

semantically. The key notion here will be an appropriate kind of bisim-
ulations, generalizing the so-called p-relations of [3, Theorem 3.9] and
[32, Theorem 4.7].

A 2-partial isomorphism f from M to N is simply an isomorphism
f : M0

∼= N0, where M0, N0 are substructures of M and N, respec-
tively, whose domains have cardinality at most 2. A set I of 2-partial
isomorphisms from M into N has the back and forth property if

for every f ∈ I with |f | ≤ 1, and every x ∈M (or y ∈ N) there

is a g ∈ I with f ⊆ g and x ∈ domain(g) (or y ∈ range(g)).

I write I: M ∼=2 N if I is a non-empty set of 2-partial isomorphisms and
I has the back and forth property.

By 4.5 the full 2-variable fragment of L(τ) is contained in the DML-
language. Hence any relation between models that is to preserve truth of
DML-formulas should ‘act’ like a (partial) isomorphism on sequences
of length at most 2. Indeed, modulo one additional requirement the latter
completely characterizes the DML-language (cf. 4.11).

DEFINITION 4.6. A bisimulation between M1 and M2 is a relation B ⊆
(W1 ×W2) ∪ (W 2

1 ×W 2
2 ) such that

1. B 6= ∅,
2. ~xB~y implies lh(~x) = lh(~y), where lh(~x) is the length of ~x,
3. if x1x2By1y2 then x1By1 and x2By2,
4. if x1x2By1y2 and x3 ∈ M1 then there is a y3 ∈ M2 such that
x1x3By1y3 and x3x2By3y2, and similarly in the opposite direction,

5. for I = {∅} ∪ B we have I: M1
∼=2 M2.
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EXAMPLE 4.7. The conditions in Definition 4.6 are rather strong, as
is witnessed, for instance, by the fact that two finite linear models
are isomorphic iff they are bisimilar, in the sense of 4.6. The truth of
this claim may be seen as follows: any two finite linear models that
have the same first order theory are isomorphic, and on linear mod-
els the two notions of first order equivalence and of being equiva-
lent for all DML-formulas coincide, by our remarks in §4.1; further-
more, by Proposition 4.10 two models that are bisimilar verify the same
DML-formulas.

However, on the class of all finite models bisimilarity and isomor-
phism do not coincide. Here are two models establishing this claim:

M: •1 •2 •3 •4 M
′: •1′ •2′ •3′ ,

where for all points (in M and M′) have the same valuation. Define
B ⊆ (W ×W ′) ∪ (W 2 ×W ′2) by putting

B = {(i, i′): 1 ≤ i, i′ ≤ 3}
∪ {(ij, i′j′): 1 ≤ i, j, i′, j′ ≤ 3, and

((i = j and i′ = j′) or (i 6= j and i′ 6= j′))}
∪ {(i4, j′k′), (4i, j′k′): 1 ≤ i ≤ 3, 1 ≤ j′ 6= k′ ≤ 3}
∪ {(44, i′i′): 1 ≤ i′ ≤ 3}.

The reader may verify that this is indeed a bisimilation between M and
M′; hence, bisimulations and isomorphisms do not coincide on all finite
models.

EXAMPLE 4.8. Given two finite models M1, M2 with ~x ∈M1, ~y ∈M2

such that for all φ ∈ L(τ), M1, ~x |= φ iff M2, ~y |= φ, one may define
a ‘canonical’ bisimulation between M1 and M2 that connects ~x and ~y,
by putting

~uB~v iff for all φ ∈ DML(Φ), M1, ~u |= φ iff M2, ~v |= φ.

(That this does indeed define a bisimulation is essentially because M1

and M2, being finite, are saturated, cf. the proof of 4.11.) It follows that
two finite DML-models are bisimilar iff they satisfy the same formu-
las.

PROPOSITION 4.9. Let B be a bisimulation between M and N. Then

1. domain(B) = M, range(B) = N

2. if x ∈ M, y ∈ N, xBy and x′ = M, then there is a y′ ∈ N with
xx′Byy′, and similarly in the opposite direction.
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An L(τ)-formula φ(~x) is invariant for bisimulations if for all models
M1, M2 and all bisimulations B between M1 and M2, and all ~x ∈
W1, ~y ∈W2 such that ~xB~y, we have M1, ~x |= φ iff M2, ~y |= φ.

PROPOSITION 4.10. L1,2
3 (τ)-formulas are invariant for bisimulations.

Proof. By induction on DML-expressions plus an application of 4.4.
Here are some cases in the inductive proof. Let B be a bisimulation
between M and N.
do(α). Suppose xBy. Then

M, x |= do(α) =⇒ for some x′((x, x′) ∈ [[α]]M),

=⇒ ∃y′(xx′Byy′ ∧ (y, y′) ∈ [[α]]N),

by 4.9(2) and IH,

=⇒ N, y |= do(α).

exp(φ). Suppose xx′Byy′. Then

(x, x′) ∈ [[exp(φ)]]M =⇒ (x, x′) ∈ RM and M, x′ |= φ,

=⇒ (y, y′) ∈ RN and N, y′ |= φ

by 4.6(5) and IH,

=⇒ (y, y′) ∈ [[exp(φ)]]N.

α ; β. Suppose xx′Byy′. Then

(x, x′) ∈ [[α ;β]]M =⇒ for some x′′((x, x′′) ∈ [[α]]M and

(x′′, x′) ∈ [[β]]M),

=⇒ ∃y′′(xx′′Byy′′ ∧ x′′x′By′′y′ ∧
(y, y′′) ∈ [[α]]N ∧ (y′′, y′) ∈ [[β]]N),

by 4.6(4) and IH,

=⇒ (y, y′) ∈ [[α ;β]]N. 2

It’s the converse of 4.10 that is more interesting:

THEOREM 4.11. A first order formula φ(~x) in L(τ) is equivalent to an
L1,2

3 (τ)-formula only if it is invariant for bisimulations.

Proof. The proof is an extension of [32, Theorem 4.7]; see also [35].
Define

E(φ) = {ψ ∈ L1,2
3 (τ): φ |= ψ and FV (ψ) ⊆ FV (φ)}.

We show that E(φ) |= φ. Then, by compactness the result follows.
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So assume M, ~w |= E(φ). Introduce new constants ~w to stand for the
objects ~w. Set L∗(τ) = L(τ) ∪ {~w}, and expand M to an L∗(τ)-model
in the obvious way. For {ψ} ∪ T ⊆ L(τ), ψ∗ and T ∗ have the obvious
meaning.

Define T = {ψ ∈ L1,2
3 (τ): M, ~w |= ψ,FV (ψ) ⊆ FV (φ)}. By com-

pactness there is an L∗(τ)-model N∗ such that N∗ |= T ∗∪{φ∗}. By stan-
dard model theory there are ω-saturated extensions M∗1 = (W1, . . . , ~w1) �
M∗ and N∗1 = (W2, . . . , ~w2) � N∗ such that ~w1 and ~w2 both realize T ,
and N∗1 |= φ∗.

Define a relation B ⊆ (W1 ×W2) ∪ (W 2
1 ×W 2

2 ) between (the L(τ)-
reducts of) M∗1 and N∗1, by putting

x1By1 iff for all ψ(x) ∈ L1,2
3 (τ), and M1, x1 |= ψ

iff N1, y1 |= ψ, and

x1x2By1y2 iff for all ψ(x, y) ∈ L1,2
3 (τ), M1, x1, x2 |= ψ

iff N1, y1, y2 |= ψ.

I claim that B is in fact a bisimulation between M1 and N1. To see this,
let us check that the conditions of 4.6 hold. Firstly, we have B 6= ∅
because ~w1B ~w2 holds. For, suppose that ψ(~x) ∈ L1,2

3 (τ); then ψ ∈ T ,
hence M, ~w2 |= ψ; and similarly in the opposite direction.

Conditions 2 and 3 are trivial, and to see that 4 is fulfilled, assume
that x1x2By1y2 and x3 ∈M1. What I need to show is: ∃y3(x1x3By1y3∧
x3x2By3y2). To this end set

Ψ(x, y) = {ψ(x, y) ∈ L1,2
3 (τ): M

∗
1, x1, x3 |= ψ},

Ξ(x, y) = {ψ(x, y) ∈ L1,2
3 (τ): M

∗
1, x3, x2 |= ψ}.

Then Ψ(y
1
, y) ∪ Ξ(y, y

2
) is finitely satisfiable in (N∗1, y1

, y
2
). Hence,

since N∗1 is ω-saturated, it is satisfiable in (N∗1, y1
, y

2
). But this means

that for some y3 ∈ W2, x1x3By1y3 and x3x2By3y2, as required. The
other half of Condition 4 may be established in a similar way.

Next, we have to check that for I = {∅} ∪ {(~x, ~y) : ~xB~y} we have
I: M1

∼=2 N1. Now obviously, since each of (¬)Pix, (¬)x = y, (¬)Rxy

and (¬)Ryx is in L1,2
3 (τ), any f ∈ I must be a 2-partial isomorphism. So

all we have left to do, is show that I has the back and forth property. But
this may done along the lines of the proof that Condition 4 is satisfied.

To conclude, B is a bisimulation between M1 and N1. So, by invari-
ance for bisimulations N∗1 |= φ∗ implies M∗1 |= φ. Since M∗1 � M∗ it
follows that M∗ |= φ∗, and so M, ~w |= φ. 2

Using 4.11 some results about definability of classes of DML-models
can easily be derived. For an elegant formulation of these results it

LOGID222.tex; 16/04/1998; 10:20; v.7; p.16



A SYSTEM OF DYNAMIC MODAL LOGIC 125

is convenient to consider so-called pointed models as our fundamental
structures (as in Kripke’s original publications) . Here, a pointed model
is a structure of the form (W,v, [[·]], V, w), where (W,v, [[·]], V ) is an
ordinary DML-model, and w ∈W .

COROLLARY 4.12. Let M be a class of pointed models. Then M is
definable by means of aDML-formula iff it is closed under bisimulations
and ultraproducts, while its complement is closed under ultraproducts.

Proof. Similar to [32, Theorem 4.8]; see also [35, §6]. 2

5. DECIDABILITY

In the preceding sections we have seen several examples showing that
the DML-language is an expressive one. Of course, this power does
not come without a price: we will show that satisfiability in the DML-
language is not decidable. After that we show that decidability may be
restored either by restricting the language, or by restricting the class of
structures used to interpret the DML-language.

5.1. The Full Language Interpreted on Pre-Orders

As a language, DML is somewhere in between the language of S4t,
the temporal analogue of the modal logic of pre-orders S4, and full
relational algebra. It is well-known that the latter is undecidable. Since
in the intermediate case of DML we only have the operations of relation
algebra on top of a single relation, it may be hoped that we are closer to
S4t than to relational algebra, and hence that DML is decidable.

But here is already an important difference between the two: S4t
enjoys the finite model property, while DML does not. To see this, recall
that δ is the diagonal relation defined by >?, and define an operator E
by putting Eφ := do((δ ∪ −δ) ; φ?); so E behaves like an existential
quantifier; the operator A is defined as the dual of E: Aφ := ¬E¬φ.

• R := exp(>),

• ∞ := ¬Edo((R ∩ −δ) ∩ Ř ).

Then, since∞ forces the absence of loops, the formula Ado(R∩−δ)∧∞
is satisfiable only on infinite DML-models. And in fact we have the
following result:

THEOREM 5.1. Satisfiability in DML is
∏0

1-hard.
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Figure 2. The unbounded tiling problem.

Proof. This is a reduction of a known
∏0

1-complete problem, a so-called
unbounded tiling problem (UTP), to satisfiability in DML. The version
of the UTP that I will use here is given by the following data. Given a
set of tiles T = {d0, . . . , dm}, each having 4 sides whose colors are in
C = {c0, . . . , ck}, is there a tiling of N×N? The rules of the tiling game
are

1. every point in the grid is associated with a single tile,
2. adjacent edges have the same color.

Now, the version of the UTP presented here is known to be
∏0

1-
complete (cf. Harel [19]). So to prove the theorem it suffices to define,
for a given set of tiles T , a formula φT in the DML-language such that

1. its models look like grids,
2. it says that every point is covered by a tile from T ,
3. and that colors match right and above neighbors,

and show that φT is satisfiable iff T can tile N × N. Let’s get to work
now. To make a grid, define

• LEAVE(φ) := (φ? ;R),

• ONE := (R ∩ −δ) ∩ −[(R ∩ −δ) ; (R ∩−δ)];
then, for all M, and for all x, y ∈M,

(x, y) ∈ [[ONE]]M iff xRy ∧ x 6= y ∧ ¬∃z(xRz∧
x 6= z ∧ zRy ∧ z 6= y),
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• UP := [ONE ∩ LEAVE(p ∧ q) ∩ exp(p ∧ ¬q)]
∪ [ONE ∩ LEAVE(p ∧ ¬q) ∩ exp(p ∧ q)]
∪ [ONE ∩ LEAVE(¬p ∧ q) ∩ exp(¬p ∧ ¬q)]
∪ [ONE ∩ LEAVE(¬p ∧ ¬q) ∩ exp(¬p ∧ q)],

• RIGHT := [ONE ∩ LEAVE(p ∧ q) ∩ exp(¬p ∧ q)]
∪ [ONE ∩ LEAVE(¬p ∧ q) ∩ exp(p ∧ q)]
∪ [ONE ∩ LEAVE(p ∧ ¬q) ∩ exp(¬p ∧ ¬q)]
∪ [ONE ∩ LEAVE(¬p ∧ ¬q) ∩ exp(p ∧ ¬q)],

• LEFT is defined similarly,

• EQUAL(α, β) := ¬Edo(α ∩−β) ∧ ¬Edo(β ∩ −α), where

E is the existential modality defined above:

Eφ := do((δ ∪−δ) ; φ?)

• CR := EQUAL
(
(UP ; RIGHT), (RIGHT ; UP)

)
∧

EQUAL
(
(UP ; LEFT), (LEFT ; UP)

)
.

Here, finally, is the formula that will force our models to contain a copy
of N× N:

• GRID := (p ∧ q) ∧Ado(UP) ∧Ado(RIGHT) ∧ CR ∧∞,

where A is the dual of the modality E.
Next we have to define formulas that force 2 and 3. Let T = {d0, . . . ,

dm} and C = {c0, . . . , ck} be given. For each color ci ∈ C introduce four
proposition letters, suggestively denote by up = ci, right = ci, down =
ci, left = ci. Identifying each tile d ∈ T with its four sides I assume that
each tile d is represented as

(up = ci1 ∧ right = ci2 ∧ down = ci3 ∧ left = ci4)

∧
( ∧
c∈T\{ci1}

¬up = c ∧ · · · ∧
∧

c∈T\{ci4}
¬left = c

)
.

Then, put

• COVER := A
∨
d∈T d,

and

• MATCH := A

(∧
c∈C(up = c→ [UP]down = c)

∧ ∧c∈C(right = c→ [RIGHT]left = c)

)
.
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Put φT := GRID∧COVER∧MATCH. Then φT is satisfiable in a DML-
model iff T can tile N × N. The if-direction is trivial, since if a tiling
exists φT is satisfiable in N × N, simply by verifying (p ∧ q) in (0, 0),
switching the truth values of p and q while going right and up through the
grid, respectively, while the tiling will tell you how to satisfy COVER
and MATCH. Conversely, the domain of any DML- model in which φT
is satisfied in some point x, must contain a copy of N× N with x as its
origin; as COVER and MATCH are satisfied in x there must be a tiling
of this copy of N× N. 2

COROLLARY 5.2. Satisfiability in DML is
∏0

1-hard.

One may get a reduction of the UTP to DML-satisfiability with some-
what less than what I have used in the proof of 5.1. For instance, it is
not necessary to actually have a real grid inside models satisfying the
‘reduction formula’ φT ; instead it suffices to have structures satisfying a
Church-Rosser like property like ∀xyz(Rxy∧Rxz → ∃u(Ryu∧Rzu)).

5.2. Fragments and Special Frame Classes

In the literature on arrow logics and other modal logics related to relation
algebra one quite find various strategies for overcoming undecidability
results (cf. for example [2]). Examples include relativization, restricted
the language, and restricting the class of models considered. Let us briefly
consider what the latter two strategies might give us; in the setting of
dynamic logics such as the dynamic modal logic of this paper, the first
strategy is pursued in [27].

What are natural and reasonably large fragments of the DML-langua-
ge that are decidable? To answer this, let’s step back a second and see
what made the proof of 5.1 work. Essentially, we were able to build a
grid there, thanks to the availability of ;,∩ and −. Thus, when looking
for reasonably large decidable fragments of the DML-language, giving
up some of these three might get us results. Indeed, giving up ; (and ,̌
by the way) restricts DML to the Boolean modal logic of Gargov and
Passy as mentioned in §2, and this is a decidable system (cf. [16]). Alter-
natively, giving up – again yields decidability by Danecki [9]. Of course,
in these fragments some of the more complex operators like E, A, and
µ-exp(·), µ-con(·) will no longer be definable, thus it remains to be seen
whether adding any of these to the above fragments preserves decidabil-
ity.

Another approach towards obtaining decidability is not to restrict the
language, but to restrict the structures used to interpret the language. As
an example I will consider the class of all trees. Just to be precise, by a
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tree is a meant a structure (W,v) with {v} ⊆ W 2 a transitive, asym-
metric relation such that for each x ∈W the set of v-predecessors of x
is linearly ordered by v.

Let ThDML(TREES) denote the set of DML-formulas valid on the
class TREES of all trees. In §6.3 I will axiomatize ThDML(TREES), but
for the moment all we need to know about it, is that it lacks the finite
model property. (To see this simply consider the formula Ado(R) ∧∞
from §5.1.) Thus, to establish decidability of this theory some oth-
er tools will have to be employed. Of course, one obvious candidate
is Rabin’s Theorem [31]; to apply this result the semantics of
ThDML(TREES) has to be embedded in SωS, the monadic second order
theory of infinitely many successor functions. Here, I will take an eas-
ier way out by appealing to a result by Gurevich and Shelah [18]. Let
LGS be the language of monadic second order with additional unary
predicates, i.e. it has individual variables and unary predicate variables
(ranging over branches) as well as a binary relation symbol < and unary
predicate constants P0, P1, . . .. And let ThGS(TREES) be the set of LGS
formulas valid on all trees. Then obviously, the question whether a giv-
en DML formulas φ is valid on all trees, boils down to the question
whether its standard translation φ∗ is a theorem of ThGS(TREES). But
by [18] the latter question is decidable.

THEOREM 5.3. Given a DML formula φ, the question

“Is ThDML(TREES) ∪ {φ} satisfiable?”

is decidable.

Several variations on the above, variations, moreover, that will still yield
decidable theories, are quite natural and worth considering. They include,
for example, the set of DML formulas valid all trees of finite depth, or
the DML formulas valid on all well-founded trees.

6. COMPLETENESS

To provide a complete axiomatization of validity in DML we will use
a special modal operator D, called the difference operator, that may be
defined by Dφ := do(−δ ;φ?) in DML; that is, Dφ is true at a state
if φ is true at a different state. We will first sketch a construction for
a completeness proof in a language containing D only; full details of
this construction are presented in Venema [38], generalizing construc-
tions found in Gabbay and Hodkinson [13]. Then, in §6.2, we present
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a complete calculus DML for our dynamic modal language. Finally, in
§6.3, DML is proved complete using the completeness construction for
the difference operator.

6.1. How to Use the D Operator

Let me first present the logic DL governing the D operator:

DEFINITION 6.1. Let D abbreviate ¬D¬. Besides the classical tautolo-
gies DL has the following axioms

(D1) D(p→ q)→ (Dp→ Dq),

(D2) p→ DDp,

(D3) DDp→ p ∨Dp.

Its rules of inference are Modus Ponens, Universal Generalization for D,
Substitution and a special Irreflexivity Rule for D:

(MP) φ→ ψ, φ/ψ,

(UG6=) φ/Dφ,

(SUB) φ/σφ, for any substitution instance σφ of φ,

(IRD) p ∧ ¬Dp→ φ/φ, provided p does not occur in φ.

Let O = {D} ∪ {♦1,♦2, . . . ,♦1̌ ,♦2̌ , . . .} be a collection of unary
modal operators. I will write �i for the dual ¬♦i¬ of ♦i, and I suppose
that for every ♦ ∈ O we have its converse ♦̌ available in O (the converse
of D is D itself). For the time being I assume the language does not
contain any operators like do, ra, or fix.

Let Λ be a logic which contains the axioms of DL plus �i(φ →
ψ)→ (�iφ→ �iψ), φ→ �i♦ǐ φ, φ→ �ǐ ♦iφ, and ♦iφ→ φ ∨Dφ, for
every ♦i ∈ O, and which has MP, UG�i , IRD, and SUB as its rules of
inference.

DEFINITION 6.2. Let Λ be a logic as specified above. A theory ∆ is
Λ-consistent if ∆ 6`Λ ⊥.

Let Φ be a collection of proposition letters. A theory ∆ is called a Φ-
theory if all proposition letters occurring in formulas in ∆ are elements
of Φ. ∆ is called a complete Φ-theory if φ ∈ ∆ or ¬φ ∈ ∆, for all
formulas built up using proposition letters in Φ.

∆ is a distinguishing Φ-theory if (i) for some proposition letter p,
p∧¬Dp ∈ ∆, and (ii) whenever ♦1(φ1 ∧♦2(φ2∧ · · · ∧♦mφm) · · ·) ∈ ∆,
then for some proposition letter p,

♦1(φ1 ∧ ♦2(φ2 ∧ · · · ∧ ♦m(φm ∧ p ∧ ¬Dp)) · · ·) ∈ ∆.
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LEMMA 6.3. Let Σ be a consistent theory in Λ, and let p be a propo-
sition letter not occurring in any formula in Σ. Suppose φ1 ∧ ♦1(φ2 ∧
♦2(· · · ∧ ♦m−1φm) · · ·) ∈ Σ. Then the union of Σ and {φ1 ∧ ♦1(φ2 ∧
♦2(· · · ∧ ♦m−1(φm ∧ p ∧ ¬Dp)) · · ·)} is consistent.

Proof. Cf. [13, Corollary 2.2.3]. 2

LEMMA 6.4 (Extension lemma). Let Σ be a Λ-consistent Φ-theory. Let
Φ′ ⊇ Φ be an extension of Φ by a countably infinite set of proposition
letters. Then there is a complete, Λ-consistent, distinguishing Φ′-theory
∆ containing Σ.

Proof. This is similar to the proof of [13, Theorem 2.3.1] or [38, Lem-
ma 4.6]. Nevertheless, it is short enough to be included here.

Define ∆ =
⋃
n<ω ∆n, where each ∆n is a consistent Φ′-theory,

satisfying |∆n \∆1| < ω, for all n. To define these ∆ns, let p ∈ Φ′ \Φ.
Then, by 6.3, Σ∪{p∧¬Dp} is Λ-consistent. Set ∆1 = Σ∪{p∧¬Dp}.

Let φ2, φ3, . . . be an enumeration of all Φ′-formulas, and suppose
that ∆n has been defined and has the properties cited. Define ∆n+1 =
∆n ∪En, where

(∗) En = {¬φn}, if ∆n ∪ {φn} is not Λ-consistent,

(∗∗) En = {φn}, if ∆n ∪ {φn} is Λ-consistent, and φ is

not of the form ♦1(ψ1 ∧ ♦(ψ2 ∧ · · · ∧ ♦mψm) · · ·),

(∗ ∗ ∗) if φn does have this form, then since |∆n \∆1| < ω,

there are proposition letters p1, . . . , pm ∈ Φ′ \ Φ that

do not occur in ∆n. Set

En = {φn,♦1(ψ1 ∧ p1 ∧ ¬Dp1 ∧ ♦2(· · · ∧ ♦m(ψm ∧
pm ∧ ¬Dpm)) · · ·)}.

It is obvious that ∆n+1 is Λ-consistent if it has been defined according
to (∗) or (∗∗). But, by repeated applications of 6.3 it is also consistent
when defined according to (∗ ∗ ∗). I leave it to the reader to check that
∆ is complete, Λ-consistent and distinguishing. 2

DEFINITION 6.5. Let Φ be a countably infinite set of proposition letters.
LetWc be the set of all complete, Λ-consistent, distinguishing Φ-theories.
On Wc we define relations Rc♦, for ♦ ∈ O, by putting ∆1Rc♦∆2 iff for
all Φ-formulas φ, if �φ ∈ ∆1, then φ ∈ ∆2 (or equivalently: if φ ∈ ∆2

then ♦φ ∈ ∆1, or equivalently: if �̌ φ ∈ ∆2 then φ ∈ ∆1).
We use RcD to denote the relation defined using the D operator.

LEMMA 6.6 (Successor lemma). Let ∆1 ∈Wc. Assume ♦iφ ∈ ∆1. Then
there is a ∆2 ∈Wc with ∆1Rc♦i∆2 and φ ∈ ∆2.
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Proof. Cf. [13, Proposition 2.3.2] or [38, Lemma 4.7]. 2

We now turn to defining a model in which the interpretation of the D
operator is real inequality.

Define ∆ ∼D ∆2 if ∆1 = ∆2 or ∆1RcD∆2. By [32, Theorem 3.2]
or [38, Lemma 4.9] ∼D is an equivalence relation. A subset of Wc is
called connected if it is a ∼D-equivalence class. By an easy argument
one can show that RcD is real inequality when restricted to a connected
subset of Wc (cf. [32, Theorem 3.2] or [38, Lemma 4.11]). Also, since
Λ contains the axioms ♦iφ→ φ∨Dφ, any connected subset of Wc must
be closed under Rc♦i .

DEFINITION 6.7. A d-canonical frame for Λ is a tuple Fd = (Wd, {Rd♦:
♦ ∈ O}), where Wd is a connected subset of Wc, and Rd♦ = Rc♦ |
(Wc ×Wc).

A d-canonical model for Λ is a tuple Md = (Fd, Vd), where Fd is
d-canonical frame, and Vd is given by ∆ ∈ Vd(p) iff p ∈ ∆.

LEMMA 6.8 (Truth Lemma). For all formulas φ in the language con-
taining the modal operators in O, and all ∆ ∈Md, we have Md,∆ |= φ
iff φ ∈ ∆.

Proof. We argue by induction on φ, and only treat the case φ ≡ ♦ψ. If
Md,∆1 |= ♦ψ, then there is a ∆2 ∈ Wd with ∆1Rd♦∆2 and Md,∆2 |=
ψ. By the induction hypothesis ψ ∈ ∆2. Since ∆1Rd♦∆2 this implies
♦ψ ∈ ∆1.

Conversely, by the Successor Lemma and the remarks preceding Def-
inition 6.7 ♦ψ ∈ ∆1 implies that for some ∆2 ∈ Wd, ∆1Rd♦∆2 and
ψ ∈ ∆2. By the induction hypothesis this gives Md, ∆ |= ψ, and hence
Md, ∆1 |= ♦ψ. 2

6.2. DML

The next step is to define a logic in DML and see how we can adapt
the techniques of the previous subsection to it. In order to apply the
completeness construction involving the irreflexivity rule (IRD), we need
to have an Extension Lemma and a Successor Lemma. And to obtain
those, it is essential that for every modality we have a converse modality
available. We will use the modal operators D and do(α ; ·?), for α a
procedure in DML, as input for the construction. The converse of the
latter is do(α̌ ; ·?); D is its own converse.

We will also add inclusion axioms stating that any binary relation is
included in ∇, the universal relation. As pointed out above, the inclusion
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axioms will allow us to generate along the relation RcD in the provi-
sional canonical model to arrive at the final canonical model without
destroying the Truth Lemma. We add inclusion axioms for each of our
modal operators do(α ; ·?).

With these modifications we can define a canonical model for a
dynamic modal logic DML, and establish an Extension and Successor
Lemma, and, finally, a Completeness Theorem for this logic.

DEFINITION 6.9. Let [α]φ? abbreviate the formula ¬do(α ;¬φ?); Eφ
is short for φ ∨ Dφ ; con(φ) abbreviate (exp(¬φ))̌ , exp(φ) is short for
(exp(>) ;φ?); and δ is short for >?.

Besides enough classical tautologies, and the axioms of DL (taken as
axioms over DML(Φ)) the system DML has the following axioms:

Definitions

(DML0) do(α)↔ do(α ; δ),

(DML1) ra(α)↔ do(α̌ ),

(DML2) fix(α)↔ do(α ∩ δ).
Basic axioms

(DML3) [α](p→ q)→ ([α]p→ [α]q),

(DML4) do(α ; p?)→ p ∨Dp.

Relation connectives

(DML5) do(α ∩ β ; p?)→ do(α ; p?) ∧ do(β ; p?),

(DML6) E(p ∧ ¬Dp)→
(
do(α ; p?) ∧ do(β ; p?)

→ do(α ∩ β ; p?)
)
,

(DML7) do((α ;β) ; p?)↔ do(α ; do(β ; p?)?),

(DML8) E(p ∧ ¬Dp)→ (do(α ; p?)↔ ¬do(−α ; p?)),

(DML9) p→ [α]do(α̌ ; p?),

(DML10) p→ [α̌ ]do(α ; p?).

Test

(DML11) do(p? ; q?)↔ (p ∧ q).

Structure

(DML12) do
(
exp(>) ;

(
do(exp(>) ; p?)

)
?
)
→ do(exp(>) ; p?),

(DML13) p→ do(exp(>) ;>?).

Besides those of DL, the rules of inference of DML are:

(UGα) φ/[α]φ, for α ∈ Proc(Φ).
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Observe that for every relational connective in our language DML
has one or two axioms describing its behaviour implicitly, that is, in
the context of a formula of the form do(· ; ·?). As DML-formulas are
evaluated at points, not at pairs or transitions, it is impossible to state
explicitly how the relational connectives should behave.

6.3. Completeness of DML

Now that we have defined our logic we can prove a completeness result;
as announced before we will use the construction from §6.1. As input
for the construction we will use the modal operators D and do(α ; ·?),
for α a procedure in DML in which all occurrences of exp are of the
form exp(>) only.

THEOREM 6.10. The system DML is sound and complete with respect
to its standard models.

Proof. Proving soundness is left to the reader. To prove completeness,
define O to be {D, do(α ; ·?) : α ∈ Proc(Φ′)}, where it is assumed that
all occurrences of exp are of the form exp(>) only.

We build up the proof in a number of steps.
Canonical Relations. The canonical relation RcD is defined as in 6.5.

For the modal operators do(α ; ·?) the canonical relation Rcα is defined
by putting Rcα∆1∆2 if for all φ, φ ∈ ∆2 implies do(α ;φ?) ∈ ∆1.

Successor Lemma. Let ∆1 be a maximal consistent distinguishing
theory. If ∆2 contains a formula of the form Dφ or do(α ;φ?), then the
required RcD-successor or Rcα-successor exists: if Dφ ∈ ∆1, then there
is a maximal consistent distinguishing ∆2 with φ ∈ ∆2 and RcD∆1∆2,
and if do(α ;φ?) ∈ ∆1, then there is a maximal consistent distinguishing
∆2 with φ ∈ ∆2 and Rcα∆1∆2.

Provisional Canonical Model. A provisional canonical model Mc is
defined by putting Mc = (Wc, RcD, Rcexp, [[·]]c, Vc), where Wc is the
set of all maximal DML-consistent distinguishing theories, RcD is as
defined before; Rcexp = Rcα, for α = exp(>), is the informational
ordering; [[α]]c = Rcα, and Vc(p) = {∆ : p ∈ ∆}.

Observe that the provisional canonical model may still be a non-
standard model for DML: RcD need not connect every two different
point in Wc, even though it is symmetric and irreflexive.

Final Canonical Model. To obtain a final canonical model which is
based on a standard frame for DML we generate along the relation RcD.
More precisely, take any ∆1 in Wc, and consider all ∆2 with RcD∆1∆2;
let W f be the resulting subset of Wc. For all procedures α, let Rfα be
the restriction of Rcα to W f .
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A final canonical model for DML is a tuple Mf = (W f , RfD, R
f
exp,

[[·]]f , V f ), with W f , RfD as above, Rfexp = Rfα for α = exp(>), [[α]]f =

Rfα, and V f (p) = Vc(p) ∩W f .

Structure Lemma. Any final canonical model Mf for DML is a stan-
dard model for DML.

Proof. To show that Mf is standard, we have to show that RfD is real
inequality, that the relational connectives behave properly, and that Rfexp
is transitive and reflexive. A useful feature of the canonical model that
is worth recalling before we start off, is that by construction for any ∆
in Mf there is a proposition letter p∆ such that p ∧ ¬Dp ∈ ∆.

First of all, RfD is real inequality in Mf . As to the relational connec-
tives, consider ∩. By (DML5)

[[α ∩ β]]f = Rfα∩β ⊆ Rfα ∩R
f
β = [[αf ]] ∩ [[β]]f .

For the converse inclusion, assume that (∆,Σ) ∈ [[α]]f ∩ [[β]]f . Let p be a
unique proposition letter in Σ. ThenE(p∧¬Dp), do(α ; p?), do(β ; p?) ∈
∆. Hence, by axiom (DML6), do(α ∩ β ; p?) ∈ ∆. But this is possible
only if (∆,Σ) ∈ [[α ∩ β]]f , as required.

By using axiom (DML7) it is easily verified that [[α ; β]]f = [[α]]f ; [[β]]f .
To see that [[−α]]f = −[[α]]f , argue as follows. Assume (∆,Σ) ∈

[[−α]]f . Let p be a unique proposition letter with p ∈ Σ. Then E(p ∧
¬Dp), do(−α ; p?) ∈ ∆. Therefore, ¬do(α ; p?) ∈ ∆, by axiom (DML8).
It follows that (∆,Σ) 6∈ [[α]]f . For the converse inclusion, assume (∆,Σ)
6∈ [[α]]f . Choose a unique proposition letter p in Σ. Then, by the Suc-
cessor Lemma, E(p∧¬Dp), ¬do(α ; p?) ∈ ∆, and, by axiom (DML8),
do(−α ; p?) ∈ ∆. But this is possible only if (∆,Σ) ∈ [[−α]]f .

To prove that the converse operationˇis standard, use axioms (DML9)
and (DML10). For the test operation ? one uses (DML11).

Finally, to see that Rfexp has the right structural properties, viz. that
it is transitive and reflexive, use axioms (DML12) and (DML13). As
we have assumed that the only argument of exp is >, we don’t have to
establish any further properties of Rfexp. 2

Truth Lemma. Let Mf be a final canonical model. For all ∆ ∈ W f

and all DML+-formulas φ, we have M,∆ |= φ iff φ ∈ ∆.

Proof. The proof is by induction on φ; the only interesting cases are Dφ
and do(α), for α any procedure. We only treat the case do(α).

If do(α) ∈ ∆1 then, by (DML0), do(α ;>?) ∈ ∆1. By the Successor
Lemma there exists ∆2 with (∆1,∆2) ∈ [[α]]. Hence, ∆1 |= do(α).
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Conversely, if ∆1 |= do(α), choose ∆1 such that (∆1,∆2) ∈ [[α]]. As
> ∈ ∆2 it follows that do(α ;>?) ∈ ∆1. So, by another application of
(DML0), do(α) ∈ ∆1. 2

Of course, from the Truth Lemma one can derive the completeness of
DML using a standard argument. 2 Two remarks are in order. First, I

want to stress that nothing in the proof of Theorem 6.10 depends in an
essential way on the relation underlying relation exp being a pre-order.
Also, the proof and result easily generalize to a logic DML(Φ ; Ω) in
an extension DML(Φ ; Ω) of DML, where one has propositions Φ as
before, and multiple base relations vi (i ∈ Ω), none of which needs to
be a pre-order.

Second, building on the proof of Theorem 6.10 one look at spe-
cial model classes. As an example, the class of trees is axiomatized by
adding the following axioms to DML. Let 〈<〉φ abbreviate do((exp(>)∩
−δ) ;φ?), and let [<] be the dual of 〈<〉. (And similarly for 〈=〉 and [=].)

(T1) p ∧ ¬Dp→ [<][=]¬p,

(T2) 〈w〉(p ∧ ¬Dp)→ [=](〈<〉p ∨ p ∨ 〈<〉p).

Axiom T1 will make sure that in the canonical model the relation < is
asymmetric, while axiom T2 will guarantee that sets of predecessors in
the canonical model are linearly ordered by <.

7. WHICH ALGEBRAS?

In this section I will define modal algebras appropriate for the dynamic
modal language DML. I will need one or two preliminary definitions.
First, a Boolean module is a structure M = (B,R,♦), where B is a
Boolean algebra, R is a relation algebra and ♦ is a mapping R×B→ B

such that

M1 ♦(r, a + b) = ♦(r, a) + ♦(r, b),

M2 ♦(r + s, a) = ♦(r, a) + ♦(s, a),

M3 ♦(r,♦(s, a)) = ♦((r ; s), a),

M4 ♦(δ, a) = a,

M5 ♦(0, a) = 0,

M6 ♦(ř ,♦(r, a)′) ≤ a′.

Just as Boolean algebras formalize reasoning about sets, and relation
algebras formalize reasoning about relations, Boolean modules formal-
ize reasoning about sets interacting with relations through ♦. In the full
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Boolean module M(U) = (B(U),R(U),♦) over a set U 6= ∅ the opera-
tion ♦ is defined by

♦(R,A) = 〈R〉A = {x : ∃y((x, y) ∈ R ∧ y ∈ A)}.

(See Brink [7] for a formal definition of Boolean modules and some
examples.)

Now, Boolean modules are almost, but not quite, the modal alge-
bras appropriate for DML. To obtain a perfect match, what we need
in addition to the set forming operation or projection ♦, is an operation
that forms new relations, i.e., a mode. This brings us to the notion of
a Peirce algebra, which is a two-sorted algebra P = (B,R,♦, c) with
(B,R,♦) a Boolean module, and (·)c : B→ R a mapping, called (left)
cylindrification, such that for every a ∈ B, r ∈ R we have

• ♦(ac, 1) = a, and

• ♦(r, 1)c = r ; 1.

In the full Peirce algebra P(U) over a set U 6= ∅, (·)c is defined as
Ac = {(x, y) : x ∈ A}. The algebraic apparatus of Peirce algebras has
been used as an inference mechanism in terminological representation
(cf. Brink, Britz and Schmidt [8]).

The precise connection between the DML and Peirce algebras is:

the modal algebras for the dynamic modal language DML(Φ) are the Peirce algebras
generated by a single relation R and the “propositions” Φ.

To see this, it suffices to show that ♦ and (·)c are definable in DML,
and that do, ra, fix and exp, con, ? are definable in full Peirce algebras
generated by R and Φ:

♦(α, φ) = {x: ∃y((x, y) ∈ [[α]]M ∧M, y |= φ)}
= do(α ;φ?),

φc = {(x, y): M, x |= φ} = φ? ; (δ ∪ −δ),

and

do(α) = ♦(α, 1), exp(φ) = R ∩ φč ,
ra(α) = ♦(α̌ , 1), con(φ) = Ř ∩ (¬φ)č ,
fix(α) = ♦((α ∩ δ), 1), φ? = δ ∩ φc.

Given Theorem 6.10, the connection between DML and Peirce algebras
established here may be interpreted as saying that (the obvious algebra-
ic counterpart of) DML completely axiomatizes the set identities (i.e.,
identities s = t between terms denoting sets) valid in all representable
Peirce algebras over a single relation R, and propositions Φ.
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Of course, as DML is closely related to propositional dynamic log-
ic PDL (cf. §2), modal algebras for DML are closely related to the
dynamic algebras D = (B,K,♦) of Kozen [26] and Pratt [30]. These too
are structures that serve to interpret a two-sorted language: propositions
are represented in a Boolean algebra B as in our case, but relations (or
programs) are represented in a Kleene algebra K = (K,∪, ;, 0,∗ ), where
∗ is the Kleene star. However Kleene algebras need not be Boolean ones,
and in most definitions they don’t include a converse operation .̌ Like
Boolean modules dynamic algebras have a projection ♦ : K ×B → B;
but in most definitions they are not equipped with any modes.

8. WHAT’S NEXT?

In this paper we analyzed a dynamic modal language DML whose dis-
tinctive aspect is its attention for the interplay between static objects and
dynamic transitions. The dynamic language turned out to be a powerful
one, and to have a number of applications in other areas of logic. The
expressive power of DML was exemplified by the fact that it coincides
with a large fragment of first-order logic, that its satisfiability problem is
undecidable, and that we needed a difference operator D and an irreflex-
ivity rule to match its expressive power. Nevertheless, the language of
DML could still be analyzed with general tools and techniques from
modal logic.

Several natural extensions of the language studied here present them-
selves. Given the close connections between DML and PDL, it may
seem natural to add the Kleene star ∗ that is present in PDL to DML.
But DML with Kleene star has a Σ1

1-complete satisfiability problem;
this may be proved by using a recurrent tiling problem (RTP): given a
finite set of tiles T , and a tile d1 ∈ T , can T tile N × N such that d1

occurs infinitely often on the first row? The RTP is a Σ1
1-complete prob-

lem [19]. To obtain a reduction of the RTP to satisfiability in DML plus
Kleene star, we define a formula φRT as the conjunction of the formula
φT used in the proof of Theorem 5.1 and a formula REC to be defined
shortly. We use a new propositional symbol row0 which can only be true
at nodes on the bottom row of a grid; we will ensure that there exists
an infinite number of worlds where row0 holds and the tile d1 is placed.
Now, define REC to be the conjunction of row0, A[UP]¬row0 and

[RIGHT∗](row0 → do(RIGHT∗ ; (row0 ∧ d1)?)).

As in the proof of Theorem 5.1 it may be shown that T recurrently tiles
N×N iff φRT is satisfiable. This proves a Σ1

1 lower bound. A Σ1
1 upper
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bound is found by observing that a formula in DML plus Kleene star
is satisfiable iff it is satisfiable on a countable model.

As pointed out in Section 7, DML axiomatizes the set identities valid
in all representable Peirce algebras. A natural next question is: what
about the two-sorted modal language that deals with set identities as
well as relation identities? De Rijke [34] provides an answer: among
other things that paper uses a completeness construction similar to the
one used in Section 6 of the present paper to come up with a complete
axiomatization for this two-sorted modal language.

As pointed out in Sections 1 and 3, for some applications it may be
necessary to be more precise about the structure of the states in DML-
models, rather than treating them as some kind of ‘black boxes’. Using
a result by Finger and Gabbay [11], if we have a complete ‘local’ logic
governing what happens inside these boxes, this local system can be
amalgamated with the DML as a global system on top of it – while
preserving such properties as completeness. Likewise, it may be useful
to add (more) structure to the transitions or changes as well; one can
think of formalisms involving intricate plans or processes here as an
area where this could be of use.

To conclude, here are some technical questions.

1. In Section 5 we mentioned a number of systems closely related to
DML with a decidable satisfiable problem. An obvious question
is to locate the boundary (in terms of fragments of DML) where
the satisfiability problem becomes undecidable more precisely, and
to identify as large as possible a decidable fragment of DML. In
particular, what if we start with as few relational connectives as
possible but with the minimal expansion and contraction operators
µ-exp and µ-con – will we still have decidability?

2. From De Rijke [32] it is known that adding the irreflexivity rule
(IRD) to the basic modal logic of the D-operator does not add any
new consequences. What about DML? With DML it is not clear
whether the (IR)D-rule adds anything to DML in terms of new con-
sequences.

3. In Section 5 we found several fragments of DML with a decidable
satisfiability problem. What is their complexity?
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NOTES

1 This terminology exp(·) and con(·) derives from one of the uses of DML, viz.
as a setting in which the basic operations studied in Theory Change, expansions and
contractions, are modeled. See §3 for some details.

2 A quick remark about the properties of v. It seems a reasonable minimal requirement
to let this abstract relation of information growth or change be a pre-order. Pre-orders
have a long tradition as information structures, viz. their use as models for intuitionistic
logic. Of the technical results presented below none hinges on v being a pre-order.
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2. Andréka, H., Kurucz, Á., Németi, I., Sain, I. and Simon, A. (1996): Exactly which
logics touched by the dynamic trend are decidable? In L. Pólós, M. Masuch,
M. Marx (eds.), Arrow Logics and Multi-Modal Logics, Studies in Logic, Lan-
guage and Information, CSLI Publications.

3. Van Benthem, J. (1983): Modal Logic and Classical Logic. Bibliopolis, Naples.
4. Van Benthem, J. (1989): Modal logic as a theory of information. Technical Report

LP-89-05, ILLC, University of Amsterdam.
5. Van Benthem, J. (1991): Language in Action. Nort-Holland, Amsterdam.
6. Van Benthem, J. (1900): Logic and the flow of information. In D. Prawitz,
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