ML & Neural Approaches for Information Retrieval (Part 1)

Andrew Yates Assistant Professor, UvA

@andrewyates

July 20, 2022 The 13th European Summer School in Information Retrieval

UNIVERSITEIT VAN AMSTERDAM

About me

Assistant Professor at University of Amsterdam (2021-)

• Information retrieval, neural networks, natural language processing, (consumer) medical domain, personal knowledge graphs, ...

Previously

- Postdoc then Senior Researcher (2018-2021) at Max Planck Institute for Informatics
- PhD (2016) in Computer Science from Georgetown University, Washington, DC
- BSc in Computer Science from Illinois Institute of Technology, Chicago

for Text Ranking

BERT and Beyond

Jimmy Lin Rodrigo Nogueira Andrew Yates

Synthesis Lectures Human Language Technologies

Graeme Hirst, Series Editor

Collaborators: Siddhant Arora, Arman Cohan, Jeffrey Dalton, Doug Downey, Sergey Feldman, Nazli Goharian, Kevin Martin Jose, Jimmy Lin, Sean MacAvaney, Thong Nguyen, Rodrigo Nogueira, Wei Yang, Xinyu Zhang, ...

query_id 940547	x
text when did rock n roll begin?	v
trec-dl-2020/p_bm25	trec-dl-2020/p_bm25rm3
1 Source: 15.0555	1 * 5 Rel: 2 Score: 3.1425
text:with rock ' n roll didn't begin and end with the TURTLES legacy; there	text: the Rock and Roll King. Better known perhaps as the Father of R·
is much more to the story. Mark was part of the LA's in-crowd in the '60s,	n Roll or Originator of Rock n Roll is Bill Haley of Bill Haley and his Come
hanging out with some of the biggest names in rock ' n r	Bill Haley started Rock and Roll in 1953 when Elvis
2 6 Rel: 0 Score: 14.4202	2 10 Rel: 2 Score: 3.1140
text:g of Rock 'n' Roll at Elvis' home, Graceland. The full Graceland	text:r of Rock n Roll or Originator of Rock n Roll is Bill Haley of Bill Ha
experience will take you from Elvis' humble beginnings through his rise to	and his Comets. Bill Haley started Rock and Roll in 1953 when Elvis
superstardom. See how a rock 'n' roll legend lived and relax	Presley was still in the 11th grade. Some people refer to
	8 3 #6 Rel: 2 Score: 3.1029

Capreolus: Toolkit for Neural Ad Hoc Retrieval

ir_datasets: Catalog

🔽: Data available as automatic download

1: Data available from a third party

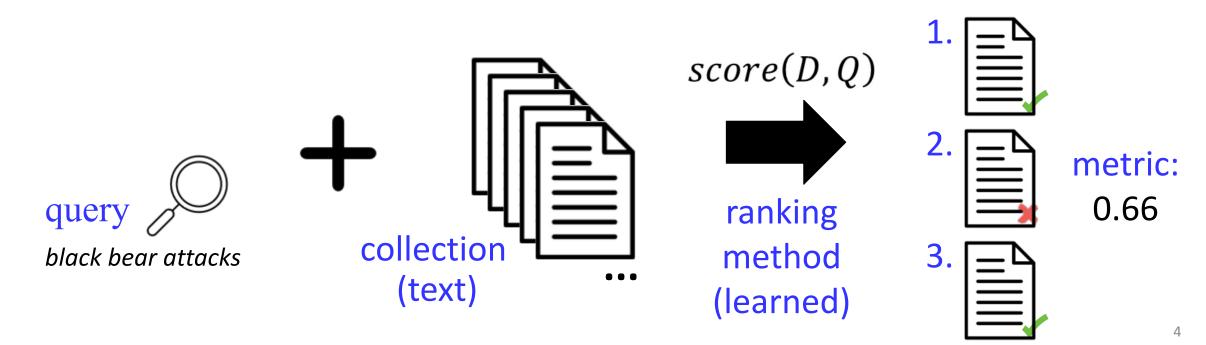
1: Data inherited from a parent dataset (highlights which one on hover)

Dataset	docs	queries	qrels
antique	\checkmark		
antique/test	1	\checkmark	\checkmark
antique/test/non-offensive	1	\checkmark	V
antique/train	1	\checkmark	V
antique/train/split200-train	Ť	\checkmark	\checkmark
antique/train/split200-valid	1	\checkmark	V
aol-ia	<u>.</u>	\checkmark	\checkmark

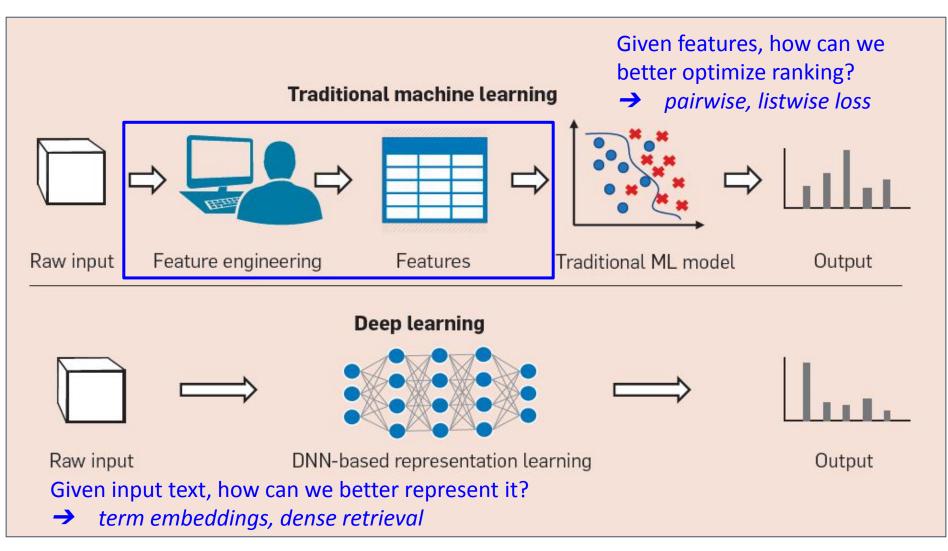
Introduction

Methods that use relevance judgments to learn how to rank results

- → ML approaches learn to rank based on hand-crafted features (e.g., BM25 score between Q and D, spam score for D, etc)
- → Neural approaches learn improved text representations for ranking



Introduction

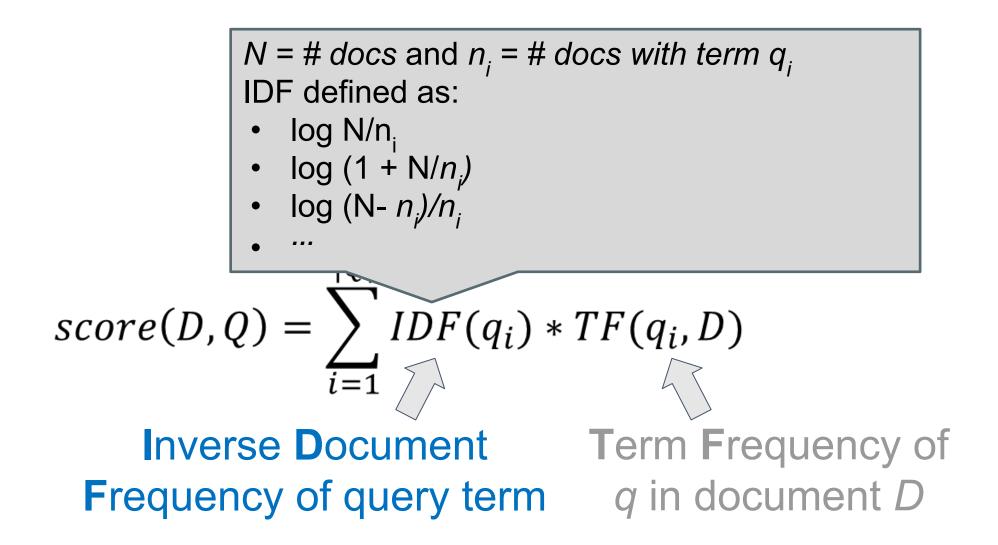


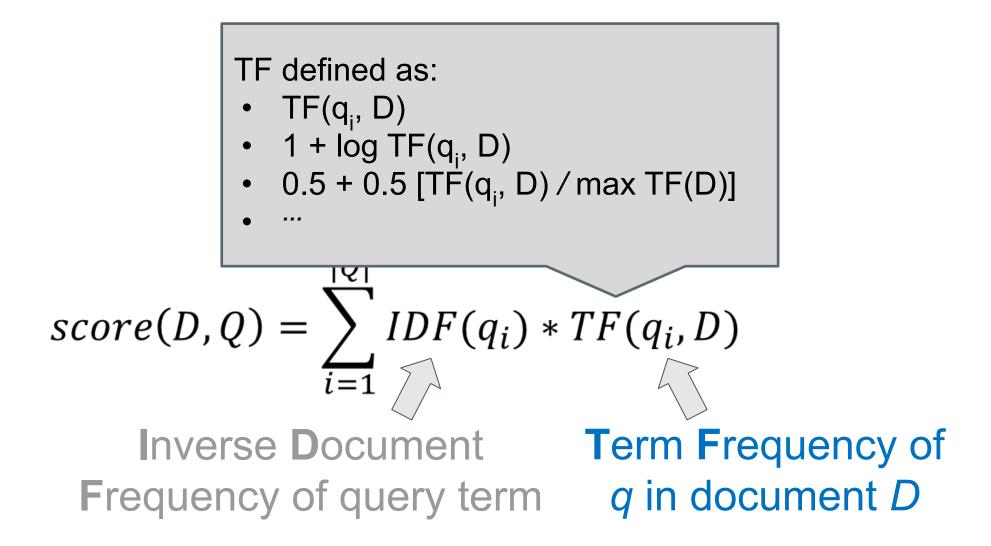
Source: Techniques for Interpretable Machine Learning. Du, Liu, Hu. Communications of the ACM. 2020.

Advantage #1: less handcrafting

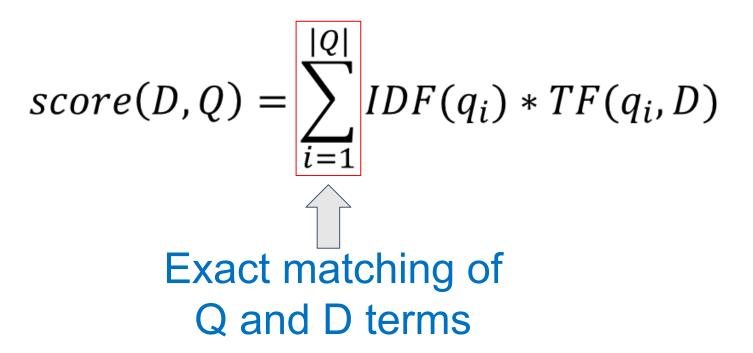
$$score(D,Q) = \sum_{i=1}^{|Q|} IDF(q_i) * TF(q_i,D)$$

Inverse Document
Frequency of query term
(collection stat) Term Frequency of
(document stat)



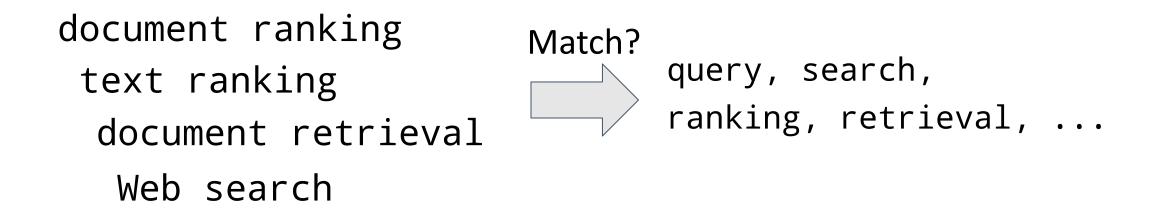


Advantage #2: soft matching of terms



Non-neural approaches: translation models, topic models like pLSI, ...

Advantage #2: soft matching of terms

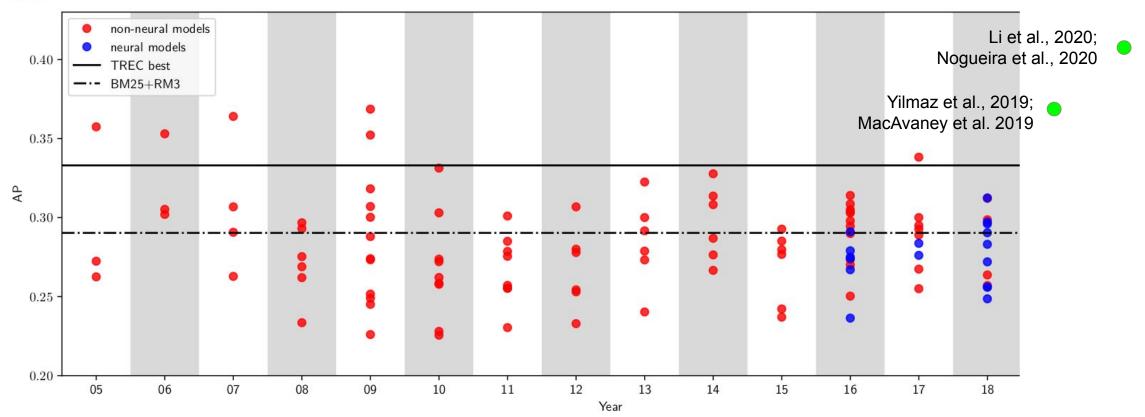


Enrich query or document representations to move beyond exact matching

- Unsupervised: pseudo-relevance feedback
- Neural: embeddings, document expansion, ...

Search quality improvements

Robust04 Dataset (news articles)



Search quality improvements

MS MARCO Passage Dataset (Web pages)

Rank	Model	Submission Date	Eval	Dev
1	BERT + Small Training Rodrigo Nogueira and Kyunghyun Cho - New York University [Nogueira, et al. '19] and [Code]	January 7th, 2019	35.87	-8 points!
2	IRNet (Deep CNN/IR Hybrid Network) Dave DeBarr, Navendu Jain, Robert Sim, Justin Wang, Nirupama Chandrasekaran – Microsoft	January 2nd, 2019	28.06	
3	Neural Kernel Match IR (Conv-KNRM)(1)Yifan Qiao, (2)Chenyan Xiong, (3)Zhenghao Liu, (4)Zhiyuan Liu-Tsinghua University(1, 3, 4); Microsoft Research Al(2) [Dai et al. '18]	Novmeber 28th, 2018	27.12	29.02
4	Neural Kernel Match IR (KNRM) ((1)Yifan Qiao, (2)Chenyan Xiong, (3)Zhenghao Liu, (4)Zhiyuan Liu-Tsinghua University(1, 3, 4); Microsoft Research AI(2) [Xiong et al. '17]	December 10th, 2018	19.82	21.84
5	Feature-based LeToR: simple-feature based RankSVM (1)Yifan Qiao, (2)Chenyan Xiong, (3)Zhenghao Liu, (4)Zhiyuan Liu-Tsinghua University(1, 3, 4); Microsoft Research AI(2)	December 10th, 2018	19.05	19.47
6	BM25	Novmeber 1st, 2018	16.49	16.70
10 noin	timprovement: PM25 ve beet neural			

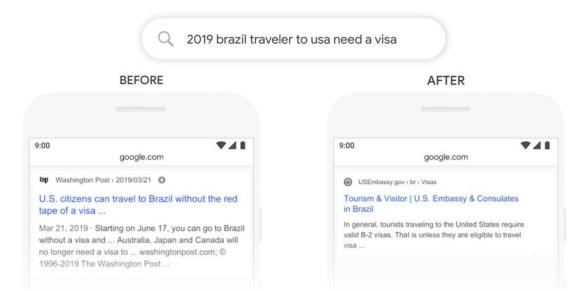
19 point improvement: BM25 vs. best neural 8 point improvement: neural pre-LLM vs. LLM

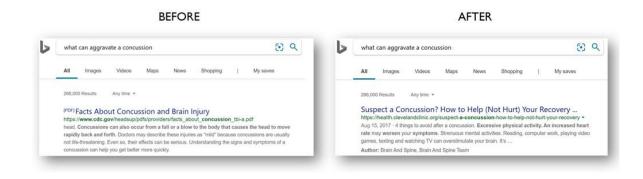
MRR@10 On

MRR@10 On

Search quality improvements: industry

Google Search





We're making a significant improvement to how we understand queries, representing the **biggest leap** forward in the past five years, and one of the biggest leaps forward in the history of Search. Starting from April of this year (2019), we used large transformer models to deliver the largest quality improvements to our Bing customers in the past year.

Outline

- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

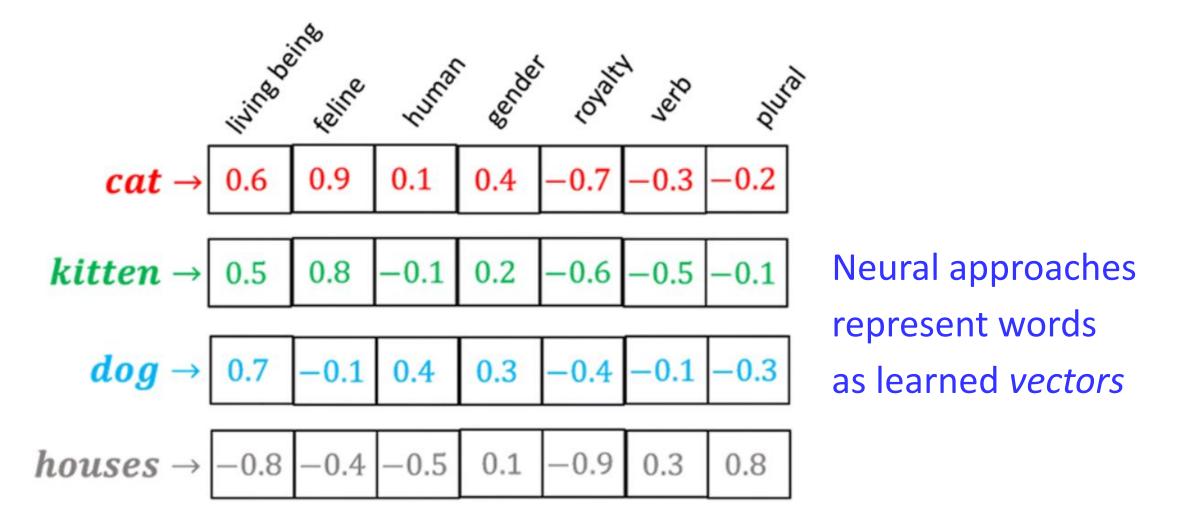
From exact matching to soft matching

Key point: neural methods replace *exact* matching with *soft* matching

With traditional methods, soft matching is possible (but it's less effective)

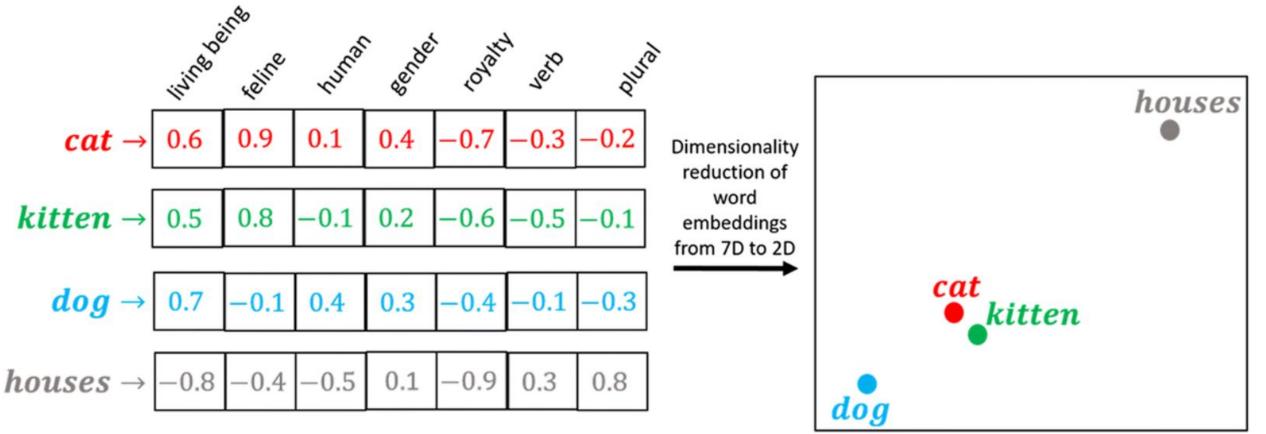
- *Stemming* handles matches like singular vs. plural and different tenses *swam, swimming, swim, swims* replaced with *swim*
- Query expansion approaches handle context by adding related terms to query Query contains *bank*, referring to turning a plane
 Add related terms to query: *flight*, *airplane*, *ailerons*, *spoilers*, ...

Soft matching via embeddings



Soft matching via embeddings

Vector "embedding" allows comparisons of different terms



Source: https://medium.com/@hari4om/word-embedding-d816f643140

Ranking with embeddings

Score can be produced by placing document terms in *similarity buckets*, then computing relevance based on the size of each bucket

		sim = 1.0	0.6 < sim < 1.0	sim <= 0.6
Query Terms	curbing	4 terms	3 terms	20 terms
	population	1 term	8 terms	40 terms
	growth	2 terms	2 terms	15 terms

Similarity Buckets

Weights: *a*, *b*, *c* Score(*curbing*, D) = 4*a + 3*b + 20*c Score(Q, D) = Score(*curbing*, D) + Score(*population*, D) + Score(*growth*, D)

Guo, Fan, Ai, Croft. A Deep Relevance Matching Model for Ad-hoc Retrieval. CIKM 2016.

Deep Relevance Matching Model (DRMM)

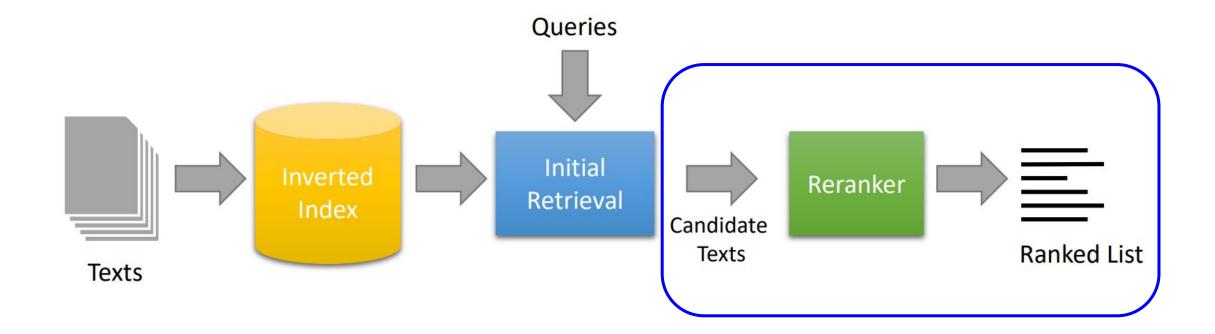
Input: query Q and a document D to score

Scoring procedure:

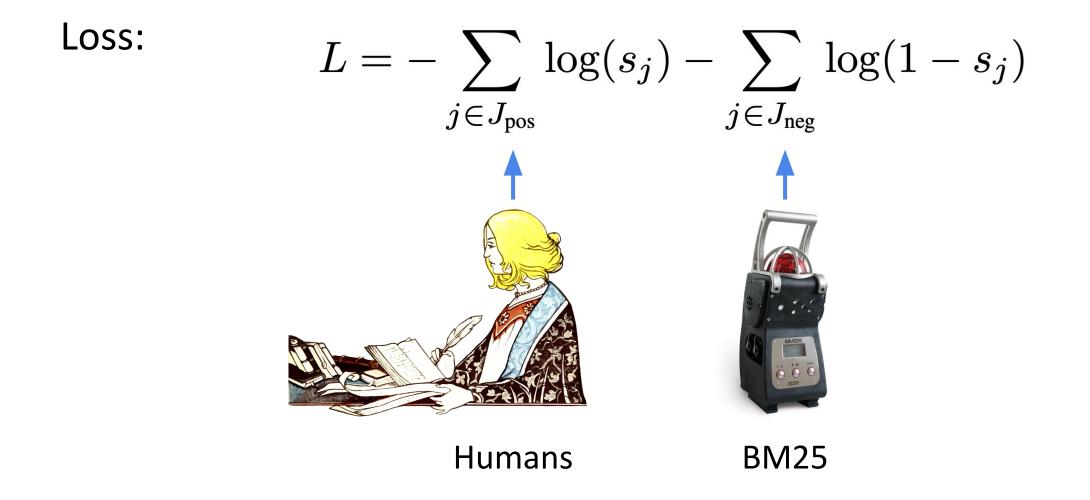
Load document & embeddings into memory, then compute similarity with query

- 1. Load document D from the forward index, representing it as a list of term IDs
- 2. Use term IDs to index into embedding matrix, representing D as a list of embeddings
- 3. Compute histogram *h(t)* for each query term, capturing the cosine similarities between the embeddings of *t* and each doc term
- 4. Compute term score z(h(t)) using a feedforward network
- 5. Compute weight g(t) for each query term (IDF or using embedding)
- 6. Compute relevance score as summation of z(h(t)) * g(t) over all query terms

Reranking with DRMM



Training DRMM



Outline

- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

Contextualized embeddings

Idea: a word's representation should vary with context

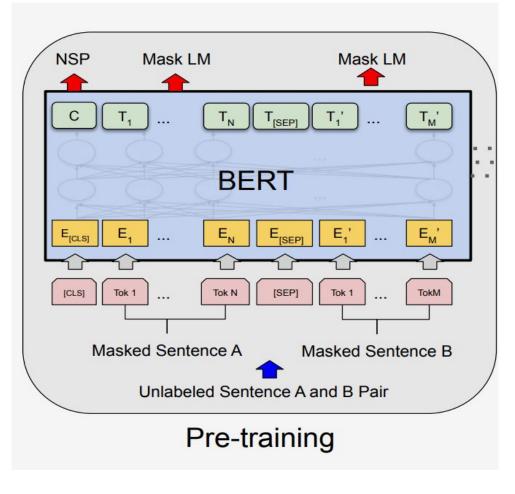
- → Generate embeddings based on given text (e.g., query, document, sentence)
- → If the context is unique, so is the embedding

In contrast with word2vec, GloVe, FastText, etc, which

- learn one static embedding per word
- learn embeddings based on co-occurrences of word pairs
 e.g., (pet, dog) more likely than (pet, alligator) ... than (pet, taxes)

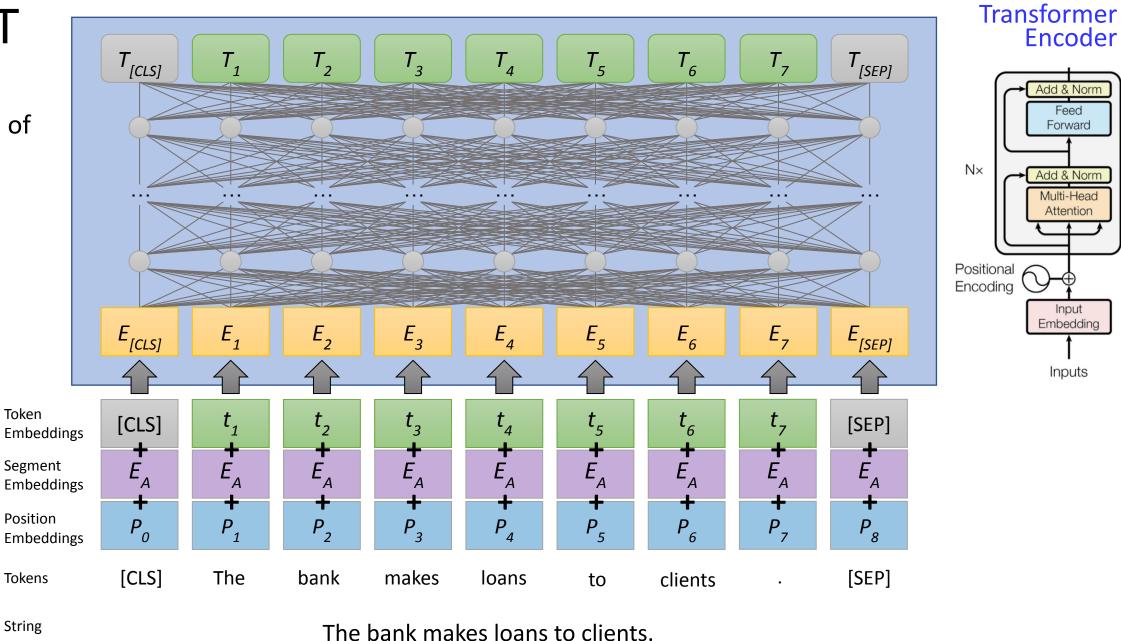
Canonical approach: BERT

What is BERT?

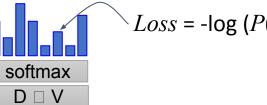


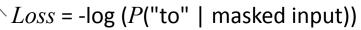
Self-supervised: ∞ training data

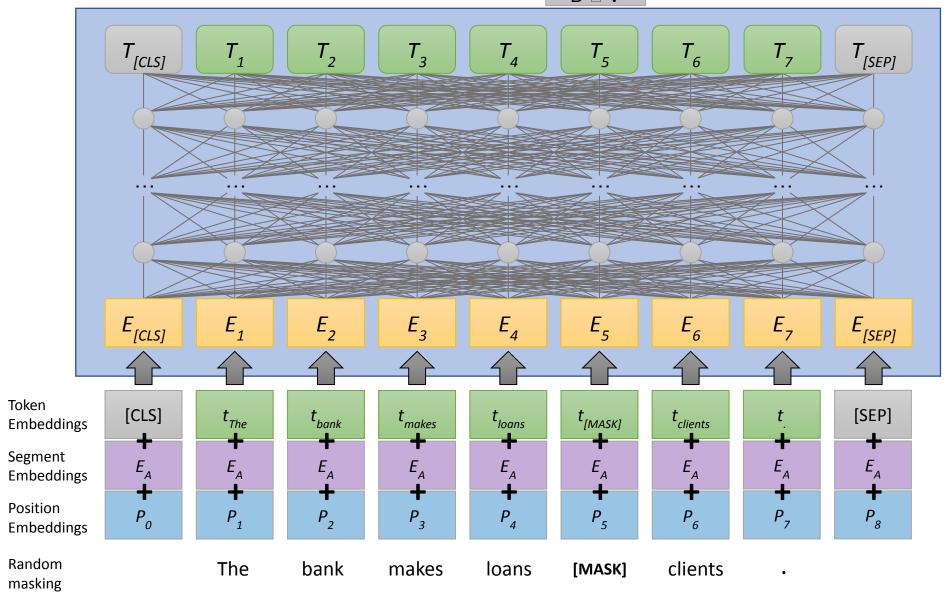
string \rightarrow sequence of vectors



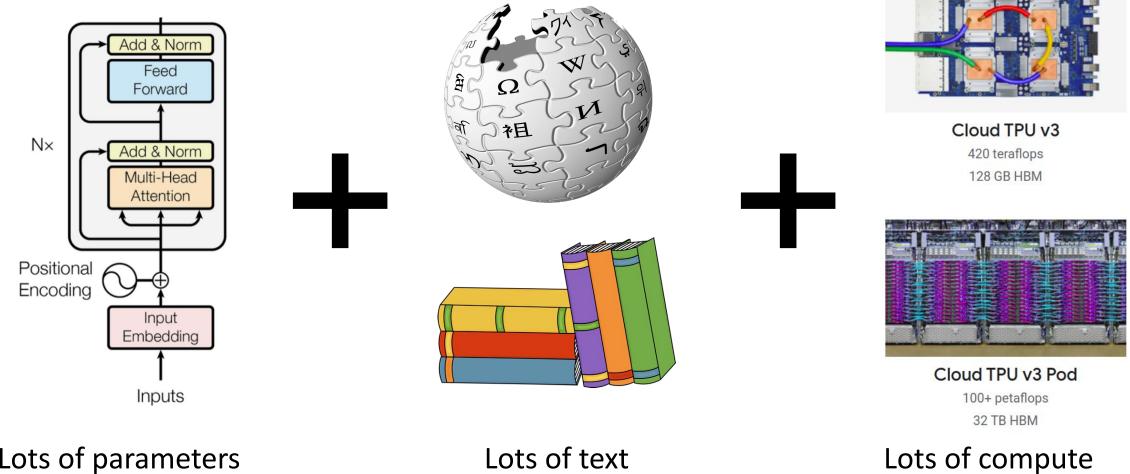
Pretraining: Masked Language Modeling







Pretraining ingredients



Lots of parameters (stack of transformers) Lots of text

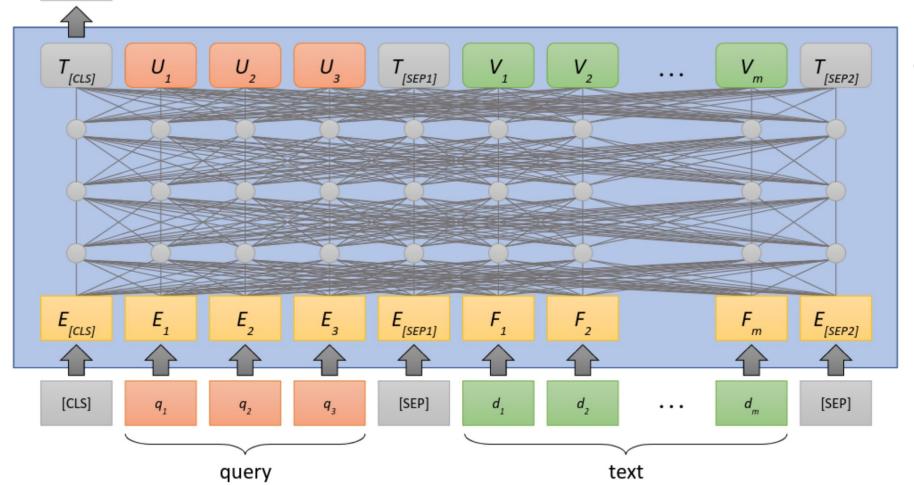
Outline

- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

Three families of approaches

score(D,Q)

S



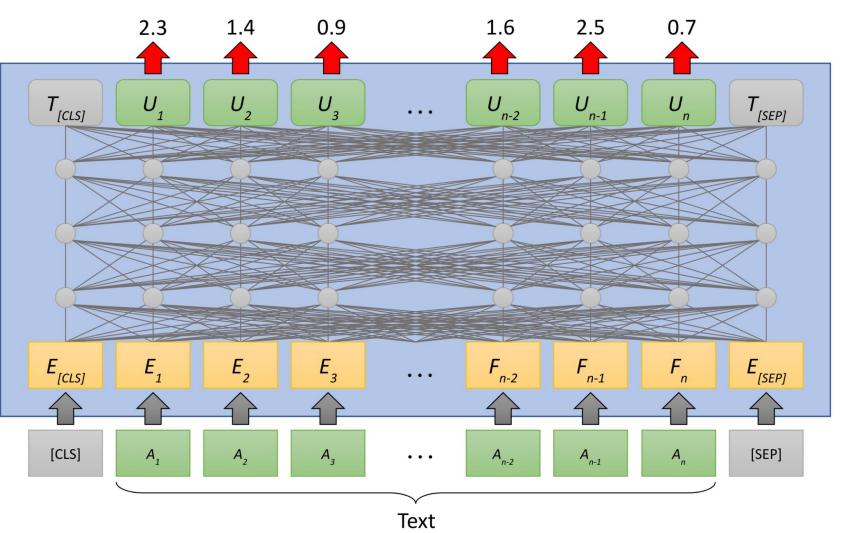
Cross-encoder

- Input: Q-D pair
- Model outputs score
- Slow but robust

(Family in previous results)

Data structure: Forward index

Three families of approaches



Learned sparse retrieval

- Input: Q or D
- Model outputs new term weights (replacing TF-IDF)
- Newest / least studied family

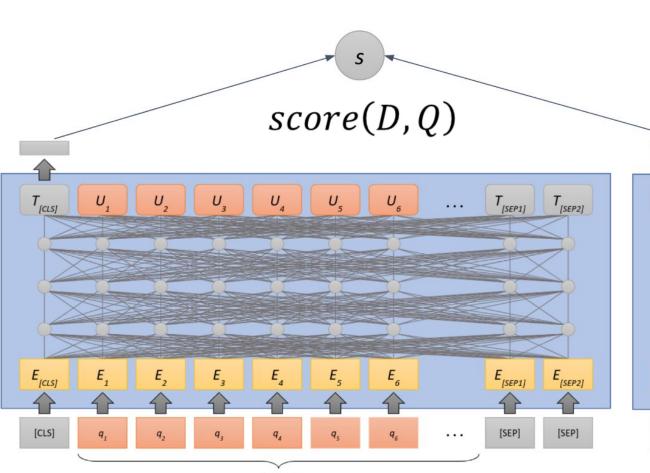
Data structure:

Inverted index



30

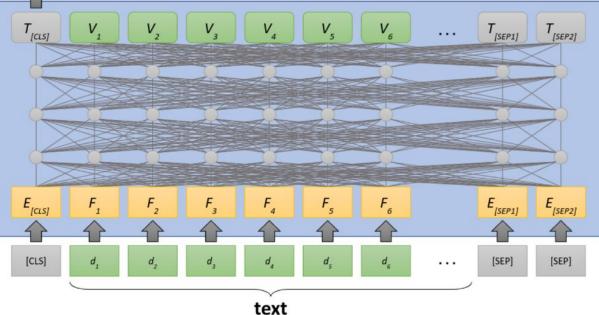
Three families of approaches



query

Bi-encoder

- Input: Q or D
- Model outputs vector
- Score by comparing Q, D vectors
- Faster, less effective & less robust **Data structure:** ANN index



Outline

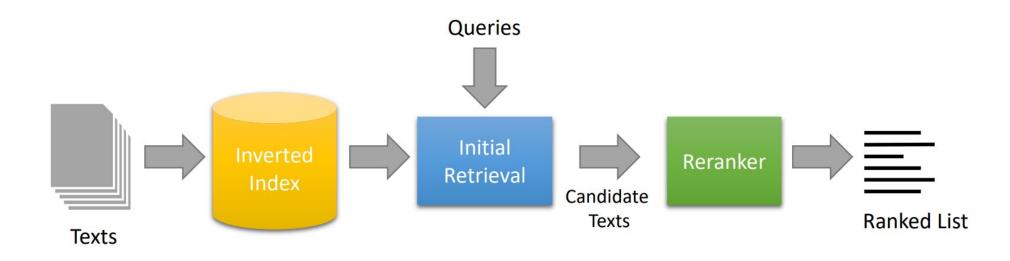
- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

Re-ranking with cross-encoders

How can we leverage a transformer's improved representations?

Transformer receives Q and D as input, then...

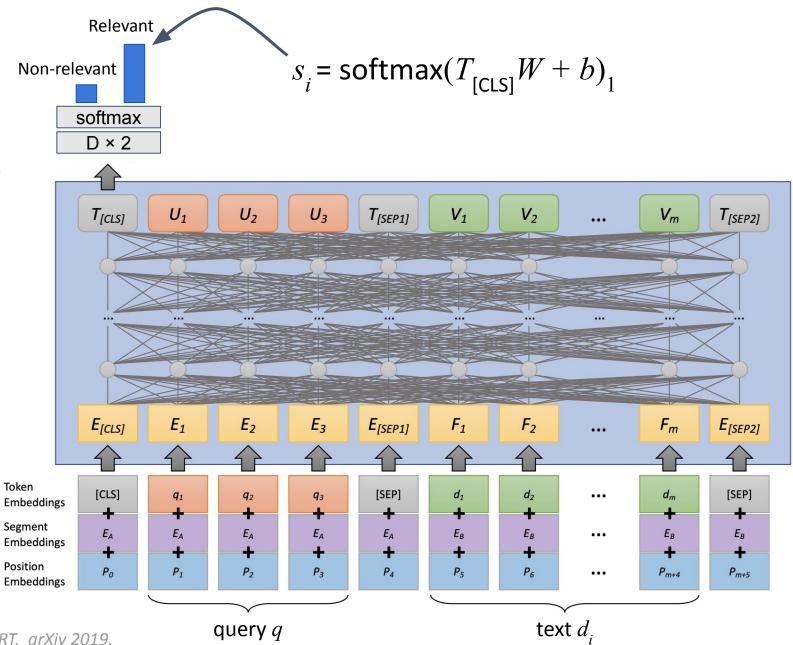
- monoBERT: predicts relevance score directly
- CEDR: produces contextualized embeddings



monoBERT reranker

We want:

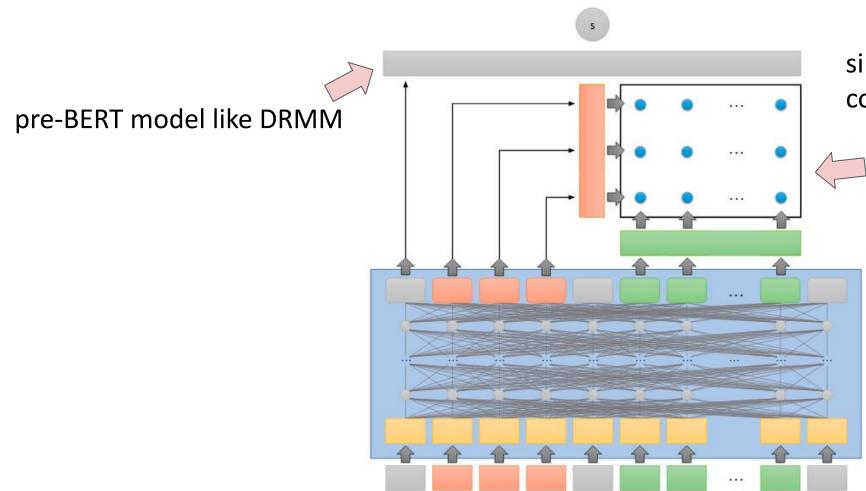
$$s_i = P(\text{Relevant} = 1 | q, d_i)$$



Results: monoBERT on TREC Deep Learning

	nDCG@10	MAP	Recall@1k
BM25	0.506	0.377	0.739
+ monoBERT	0.738	0.506	0.739
BM25 + RM3	0.518	0.427	0.788
+ monoBERT	0.742	0.529	0.788

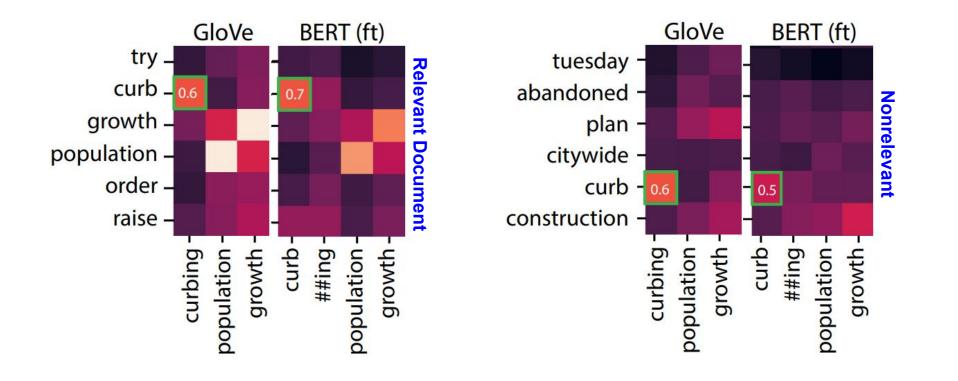
CEDR: Reranking with contextualized embeddings



similarity matrix using contextualized embeddings

MacAvaney, Yates, Cohan, Goharian. CEDR: Contextualized Embeddings for Document Ranking. SIGIR 2019.

CEDR: Reranking with contextualized embeddings



Results: CEDR on Robust04

	Method	Input Representation	Robust04 nDCG@20
(1)	BM25	n/a	0.4140
(2)	Vanilla BERT	BERT (fine-tuned)	[B] 0.4541
(3a)	PACRR	GloVe	0.4043
(3b)	PACRR	BERT	0.4200
(3c)	PACRR	BERT (fine-tuned)	[BVG] 0.5135
(3d)	CEDR-PACRR	BERT (fine-tuned)	[BVG] 0.5150
(4a)	KNRM	GloVe	0.3871
(4b)	KNRM	BERT	[G] 0.4318
(4c)	KNRM	BERT (fine-tuned)	[BVG] 0.4858
(4d)	CEDR-KNRM	BERT (fine-tuned)	[BVGN] 0.5381
(5a)	DRMM	GloVe	0.3040
(5b)	DRMM	BERT	0.3194
(5c)	DRMM	BERT (fine-tuned)	[G] 0.4135
(5d)	CEDR-DRMM	BERT (fine-tuned)	[BVGN] 0.5259

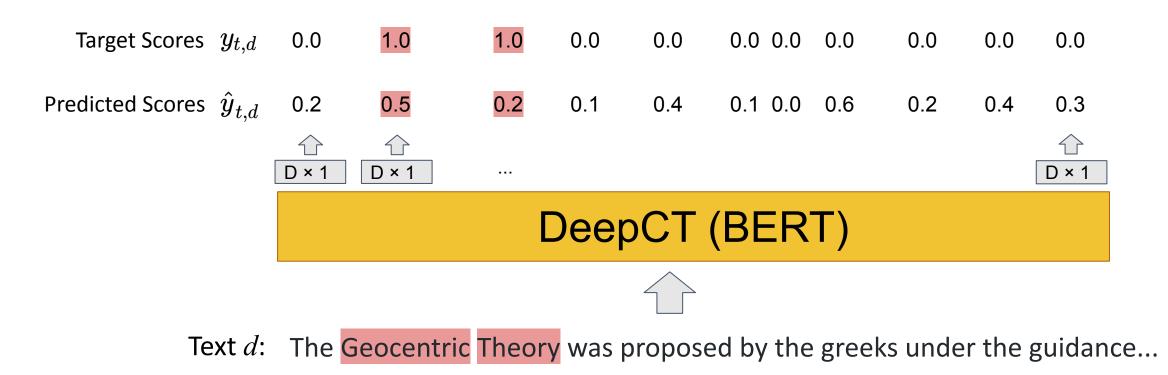
MacAvaney, Yates, Cohan, Goharian. CEDR: Contextualized Embeddings for Document Ranking. SIGIR 2019.

Outline

- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

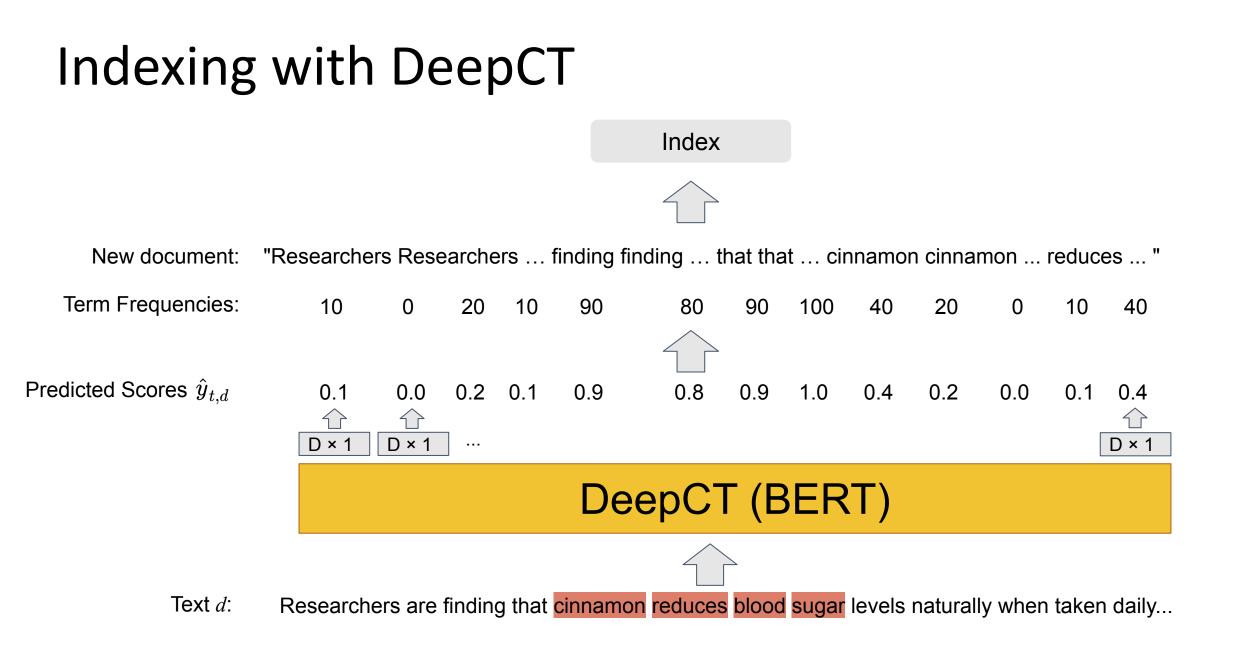
DeepCT

$$\mathrm{loss} = \sum_t ({\hat{y}}_{t,d} - y_{t,d})^2$$



Relevant query q: "who proposed the geocentric theory"

Dai, Callan. Context-aware sentence/passage term importance estimation for first stage retrieval. 2019.



Results: DeepCT on MS MARCO

Model	MRR@10	R@1000
BM25	0.184	0.853
+ monoBERT	0.372	0.853
DeepCT	0.243	0.913

SPLADE: Sparse Lexical and Expansion Model

Key improvement: leverage the **MLM head** for weighting and expansion

→ Recall that MLM head predicts what term should fill in a [MASK]

Input: a query Q or document D

Output: a sparse vector of dimension |V|, to be indexed

- 1. For each term in the input, use MLM head to predict scores for |V| terms
- 2. For each term in the vocabulary V, take maximum score as the term's weight
- 3. Use weights from #2 to represent the input (Q or D) as a |V| vector; index

Results: SPLADE on MS MARCO

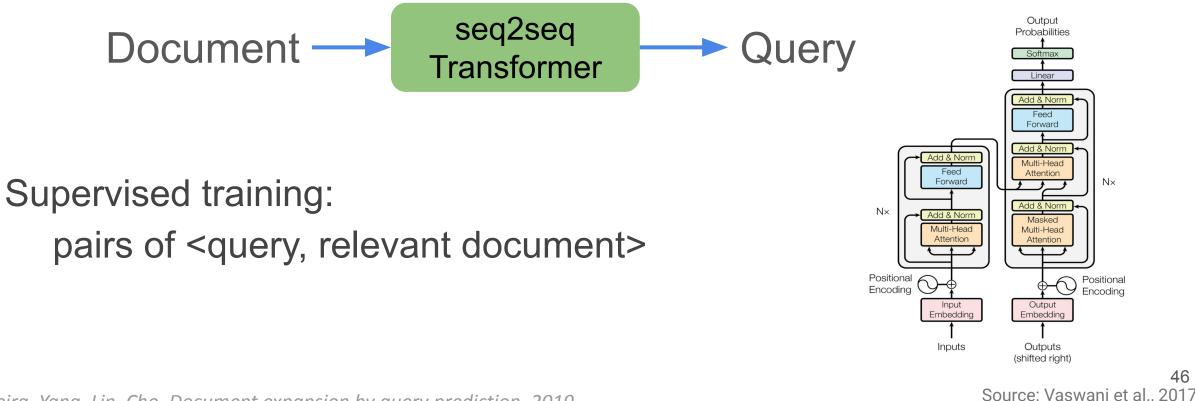
Model	MRR@10	R@1000	
BM25	0.184	0.853	
+ monoBERT	0.372	0.853	
SPLADE	0.369	0.979	
SPLADE-Doc	0.322	0.946	

Outline

- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

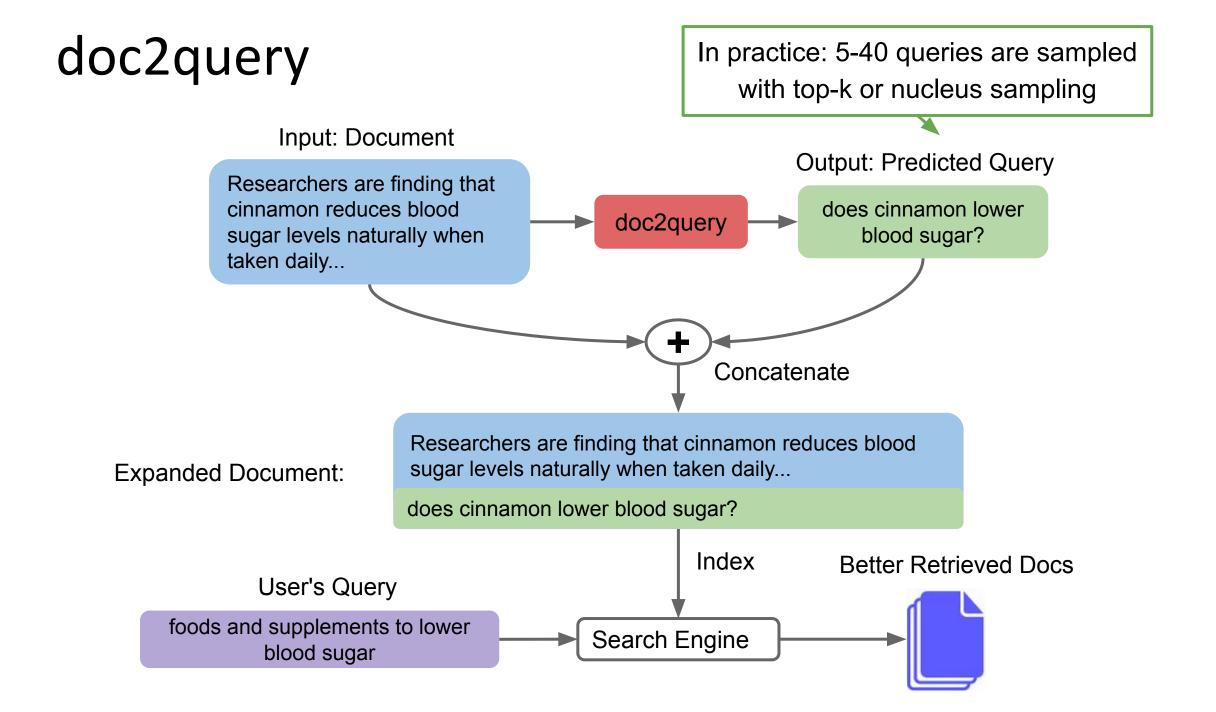
Document expansion: doc2query

Idea: generate possible queries from a given document, then use them to **expand** the document



46

Noqueira, Yang, Lin, Cho. Document expansion by query prediction. 2019.



Examples from MS MARCO

Input Document:	July is the hottest month in Washington DC with an average temperature of 27C (80F) and the coldest is January at 4C (38F)	Excluding
	with the most daily sunshine hours at 9 in July. The wettest	stop-words:
Predicted Query: Target query:	month is May with an average of 100mm of rain. weather in washington dc what is the temperature in washington	69% copied
Input Document:	The Delaware River flows through Philadelphia into the Delaware Bay. It flows through and aqueduct in the Roundout Reservoir and then flows through Philadelphia and New Jersey before emptying into the Delaware Bay.	<u> </u>
Predicted Query:	what river flows through delaware	
Target Query:	where does the delaware river start and end	
Input Document:	sex chromosome - (genetics) a chromosome that determines the sex of an individual; mammals normally have two sex chromosomes chromosome - a threadlike strand of DNA in the cell nucleus that carries the genes in a linear order; humans have 22 chromosome pairs plus two sex chromosomes.	
Predicted Query:	what is the relationship between genes and chromosomes	
Target Query:	which chromosome controls sex characteristics	

Results: doc2query on MS MARCO

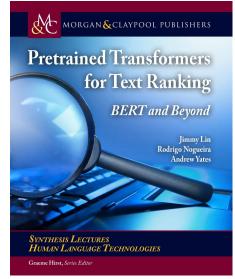
	MRR@10	R@1000
Original Document	.184	.853
+ Expansion New Words	.195	.907
+ Expansion Copied Words	.221	.893
+ Expansion Copied + New	.277	.944
Only Expansions (no original document)	.263	.927

Outline

- Introduction
- Ranking with soft matching
- Transformers & contextualized embeddings
- Transformer approaches for ranking
 - Re-ranking with cross-encoders
 - Learned sparse retrieval
 - Document expansion
- Conclusion

Conclusion

- Neural IR approaches can substantially improve search
- Learned sparse retrieval approaches compatible with an inverted index
- Cross-encoder approaches for reranking
- Dense retrieval (bi-encoders) next

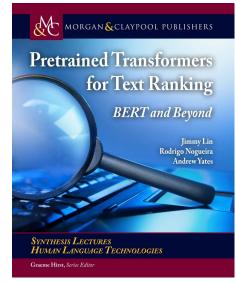


<u>https://arxiv.org/abs/2010.06467</u> <u>https://bit.ly/tr4tr-book</u>

Conclusion

- Neural IR approaches can substantially improve search
- Learned sparse retrieval approaches compatible with an inverted index
- Cross-encoder approaches for reranking
- Dense retrieval (bi-encoders) next

Thanks!



<u>https://arxiv.org/abs/2010.06467</u> <u>https://bit.ly/tr4tr-book</u>