
User Models and Interactive IR

ESSIR 2022

Romain Deffayet1,2 and Maarten de Rijke2

1Naver Labs Europe, 2University of Amsterdam

July 19, 2022, 09.00–10.30

r.e.deffayet@uva.nl, m.derijke@uva.nl

Romain Deffayet

PhD student at

Naver Labs Europe and the

University of Amsterdam

Maarten de Rijke

University professor at the

University of Amsterdam

2 / 122

Based on joint work and conversations with Ali Vardasbi, Harrie Oosterhuis,

Jean-Michel Renders, Maria Heuss, Shashank Gupta

Materials based in part on (Chuklin et al., 2015; Oosterhuis and de Rijke, 2018;

Oosterhuis et al., 2020; Saito and Joachims, 2021)

3 / 122

Learning objectives and outcomes

Objectives

• We will cover basic concepts and fundamental methods of learning from

interactions for search and recommendation

Outcomes

• As a result of participating in this tutorial, students will be able to implement and

work with basic (counterfactual) learning to rank, bandits and reinforcement

learning for search and recommendation

4 / 122

Resources

Go to https://irlab.science.uva.nl/2022/07/17/

essir-2022-tutorial-on-user-models-and-interactive-ir/

• Slides (PDF)

• Bibliography (BIB)

5 / 122

https://irlab.science.uva.nl/2022/07/17/essir-2022-tutorial-on-user-models-and-interactive-ir/
https://irlab.science.uva.nl/2022/07/17/essir-2022-tutorial-on-user-models-and-interactive-ir/

Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End

Setting the scene

Plan for this part

• Interactions with users – our perspective on information retrieval: technology to

connect people to information

• Core concepts and examples

• Core problems: learning and evaluating

• Core distinctions: on-policy vs off-policy

8 / 122

Interactions with users

How can a search engine or recommender system or conversational assistant get better

by interacting with its users?

• Context x – user history, user profile, query, time of day, . . .

• Policy π that selects action a – answer, item, result list, . . .

• Rewards r that are returned – clicks, downloads, purchases, . . .

9 / 122

Interactions with users

How can a search engine or recommender system or conversational assistant get better

by interacting with its users?

• Context x – user history, user profile, query, time of day, . . .

• Policy π that selects action a – answer, item, result list, . . .

• Rewards r that are returned – clicks, downloads, purchases, . . .

10 / 122

Interactions with users

How can a search engine or recommender system or conversational assistant get better

by interacting with its users?

• Context x – user history, user profile, query, time of day, . . .

• Policy π that selects action a – answer, item, result list, . . .

• Rewards r that are returned – clicks, downloads, purchases, . . .

11 / 122

Interactions with users

How can a search engine or recommender system or conversational assistant get better

by interacting with its users?

• Context x – user history, user profile, query, time of day, . . .

• Policy π that selects action a – answer, item, result list, . . .

• Rewards r that are returned – clicks, downloads, purchases, . . .

12 / 122

Interactions with users

How can a search engine or recommender system or conversational assistant get better

by interacting with its users?

• Context x – user history, user profile, query, time of day, . . .

• Policy π that selects action a – answer, item, result list, . . .

• Rewards r that are returned – clicks, downloads, purchases, . . .

13 / 122

Interaction process

Policy can be . . .

• deterministic – function from contexts to actions: π(x) = a

• stochastic – conditional probability of action given context: π(a | x)

Policy interacts with environment and produces log data D = {(xi , ai , ri)}ni=1

• Observe context x – x ∼ P(x)

• Select action a – a ∼ π(a | x)
• Observe reward r – p(r | x , a)

14 / 122

Interaction process

Policy can be . . .

• deterministic – function from contexts to actions: π(x) = a

• stochastic – conditional probability of action given context: π(a | x)

Policy interacts with environment and produces log data D = {(xi , ai , ri)}ni=1

• Observe context x – x ∼ P(x)

• Select action a – a ∼ π(a | x)
• Observe reward r – p(r | x , a)

15 / 122

Examples

• Ad hoc search (not personalized): context – query; action – ranked list of

documents; reward – clicks, dwell time

• Product search (personalized): context – query, user profile, past interactions;

action – grid of items; reward – clicks, conversion

• Ad placement (personalized): context – user profile; action – a slate of ads;

reward – clicks, conversion

• Conversational recommendation: context – user history, conversation history;

action – item; reward – task completion, conversion

16 / 122

Examples

• Ad hoc search (not personalized): context – query; action – ranked list of

documents; reward – clicks, dwell time

• Product search (personalized): context – query, user profile, past interactions;

action – grid of items; reward – clicks, conversion

• Ad placement (personalized): context – user profile; action – a slate of ads;

reward – clicks, conversion

• Conversational recommendation: context – user history, conversation history;

action – item; reward – task completion, conversion

17 / 122

Examples

• Ad hoc search (not personalized): context – query; action – ranked list of

documents; reward – clicks, dwell time

• Product search (personalized): context – query, user profile, past interactions;

action – grid of items; reward – clicks, conversion

• Ad placement (personalized): context – user profile; action – a slate of ads;

reward – clicks, conversion

• Conversational recommendation: context – user history, conversation history;

action – item; reward – task completion, conversion

18 / 122

Examples

• Ad hoc search (not personalized): context – query; action – ranked list of

documents; reward – clicks, dwell time

• Product search (personalized): context – query, user profile, past interactions;

action – grid of items; reward – clicks, conversion

• Ad placement (personalized): context – user profile; action – a slate of ads;

reward – clicks, conversion

• Conversational recommendation: context – user history, conversation history;

action – item; reward – task completion, conversion

19 / 122

Two core problems

Policy learning

• Find a new policy that improves upon the current policy

Policy evaluation

• Determine the quality – often expressed as the (online) performance – of a given

policy

20 / 122

Two key distinctions (1)

In CS, algorithms that receive input sequentially operate in online modality

• Typically includes tasks that involve sequences of decisions, like when you choose

how to serve incoming queries in a stream

Batch or offline processing does not need human interaction

• E.g., batch learning proceeds as follows:

Initialize the weights

Repeat the following steps: (Process all the training data; Update the weights)

Typical offline computations in information retrieval:

• Any processing that is not query dependent (crawling, indexing, . . .)

Typical online computations in information retrieval:

• Any processing that depends on users and their input

21 / 122

Two key distinctions (1)

In CS, algorithms that receive input sequentially operate in online modality

• Typically includes tasks that involve sequences of decisions, like when you choose

how to serve incoming queries in a stream

Batch or offline processing does not need human interaction

• E.g., batch learning proceeds as follows:

Initialize the weights

Repeat the following steps: (Process all the training data; Update the weights)

Typical offline computations in information retrieval:

• Any processing that is not query dependent (crawling, indexing, . . .)

Typical online computations in information retrieval:

• Any processing that depends on users and their input

22 / 122

Two key distinctions (1)

In CS, algorithms that receive input sequentially operate in online modality

• Typically includes tasks that involve sequences of decisions, like when you choose

how to serve incoming queries in a stream

Batch or offline processing does not need human interaction

• E.g., batch learning proceeds as follows:

Initialize the weights

Repeat the following steps: (Process all the training data; Update the weights)

Typical offline computations in information retrieval:

• Any processing that is not query dependent (crawling, indexing, . . .)

Typical online computations in information retrieval:

• Any processing that depends on users and their input

23 / 122

Two key distinctions (1)

In CS, algorithms that receive input sequentially operate in online modality

• Typically includes tasks that involve sequences of decisions, like when you choose

how to serve incoming queries in a stream

Batch or offline processing does not need human interaction

• E.g., batch learning proceeds as follows:

Initialize the weights

Repeat the following steps: (Process all the training data; Update the weights)

Typical offline computations in information retrieval:

• Any processing that is not query dependent (crawling, indexing, . . .)

Typical online computations in information retrieval:

• Any processing that depends on users and their input
24 / 122

Two key distinctions (2)

Evaluation and learning can be on-policy or off-policy

On-policy learning algorithms evaluate and improve the same policy that is being

used to select actions

Off-policy learning algorithms evaluate and improve a policy that is different from

the policy that is used for action selection

• Behavior or logging policy: policy that tells the agent what action to take; used to

collect actions taken and outcomes; not the target policy in off-policy learning

25 / 122

Two key distinctions (2)

Evaluation and learning can be on-policy or off-policy

On-policy learning algorithms evaluate and improve the same policy that is being

used to select actions

Off-policy learning algorithms evaluate and improve a policy that is different from

the policy that is used for action selection

• Behavior or logging policy: policy that tells the agent what action to take; used to

collect actions taken and outcomes; not the target policy in off-policy learning

26 / 122

Two key distinctions (2)

Evaluation and learning can be on-policy or off-policy

On-policy learning algorithms evaluate and improve the same policy that is being

used to select actions

Off-policy learning algorithms evaluate and improve a policy that is different from

the policy that is used for action selection

• Behavior or logging policy: policy that tells the agent what action to take; used to

collect actions taken and outcomes; not the target policy in off-policy learning

27 / 122

Online policy evaluation: A/B testing

Deploy two policies πA and πB to get an online estimate of performance

• Collect log data DA = {(xi , ai , ri)}ni=1 and DB = {(xj , aj , rj)}mj=1

• Compute quality as average reward: 1
n

∑n
i=1{ri : (xi , ai , ri) ∈ DA} for πA and

1
m

∑m
j=1{rj : (xj , aj , rj) ∈ DB} for πB

• Compare the two average rewards

28 / 122

Online policy evaluation: Interleaving

Again, take two policies πA and πB but now

• Given context x , determine most probably actions aA and aB

• Combine actions aA and aB into action aA⊕B and determine credit assignment

• Execute combined action aA⊕B , observe reward, following credit assignment

function assign credit to πA or πB (or both or neither)

• Repeat, take average, and compare

Several design choices

• How to combine, how to satisfy constraints on actions, how to assign credit, . . .

29 / 122

Online policy evaluation: Interleaving

Again, take two policies πA and πB but now

• Given context x , determine most probably actions aA and aB

• Combine actions aA and aB into action aA⊕B and determine credit assignment

• Execute combined action aA⊕B , observe reward, following credit assignment

function assign credit to πA or πB (or both or neither)

• Repeat, take average, and compare

Several design choices

• How to combine, how to satisfy constraints on actions, how to assign credit, . . .

30 / 122

From online evaluation to off-policy evaluation

Why evaluate online?

• User behavior is indicative of their preferences
Avoids issues of labeled data: expensive, unethical to create in privacy-sensitive

settings, impossible for small-scale problems, stationary, not necessarily aligned with

actual user preferences, . . .

Why not to evaluate online?

• Online agents take risks to gain knowledge quickly

• Online evaluations are complex

What if we evaluate off-policy?

• Estimate performance of a policy using only log data collected by a behavior policy

• Compare performance of candidate policies safely and help us decide which policy

should be deployed

31 / 122

From online evaluation to off-policy evaluation

Why evaluate online?

• User behavior is indicative of their preferences
Avoids issues of labeled data: expensive, unethical to create in privacy-sensitive

settings, impossible for small-scale problems, stationary, not necessarily aligned with

actual user preferences, . . .

Why not to evaluate online?

• Online agents take risks to gain knowledge quickly

• Online evaluations are complex

What if we evaluate off-policy?

• Estimate performance of a policy using only log data collected by a behavior policy

• Compare performance of candidate policies safely and help us decide which policy

should be deployed

32 / 122

From online evaluation to off-policy evaluation

Why evaluate online?

• User behavior is indicative of their preferences
Avoids issues of labeled data: expensive, unethical to create in privacy-sensitive

settings, impossible for small-scale problems, stationary, not necessarily aligned with

actual user preferences, . . .

Why not to evaluate online?

• Online agents take risks to gain knowledge quickly

• Online evaluations are complex

What if we evaluate off-policy?

• Estimate performance of a policy using only log data collected by a behavior policy

• Compare performance of candidate policies safely and help us decide which policy

should be deployed
33 / 122

Words, words, words

• Counterfactual evaluation = offline A/B testing = off-policy evaluation

• Counterfactual learning = unbiased learning to rank = off-policy learning

34 / 122

Q&A

Questions, comments, . . .

Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End

Counterfactual learning-to-rank

Plan for this part

• Asking counterfactual questions: “what would have been . . . ”

• Importance sampling

• Learning from logs

• Bias, and correcting for bias

38 / 122

Movie recommendation from ratings

What to recommend next?

39 / 122

Extrinsic biases in Missing-Not-At-Random (MNAR) feedback

Popularity bias

More popular items are rated more often.

Positivity bias

Users are more likely to rate movies they

have liked.

40 / 122

A bit of notation

u / s a user / a user state

d / m / y / a document / movie / slate / action

r / R an observed reward / a reward estimate

D a dataset

π a policy

Ed the event “the user examines document d”

E an expected value

U / N / B a uniform / normal / Bernoulli distribution

41 / 122

Importance sampling

• Estimate a certain quantity θ (e.g., mean, variance) of one distribution by

sampling from another

• Here we want E(u,m)∼U [r(u,m)] but we only observe biased instances

(uD,mD) ∼ D . . .

• Counterfactual question: what would have been the average ratings under a

uniform distribution?

42 / 122

Importance sampling

IS correction: In the data, what was

the probability of observing (uD,mD)?

(Wasserman, 2004)

E(uD,mD)∼D

[
r(uD,mD)

pD(uD,mD)

]
=

∑
(u,m)

pD(u,m)

pD(u,m)
r(u,m) ∝ E(u,m)∼U [r(u,m)]

43 / 122

Importance sampling

IS correction: In the data, what was

the probability of observing (uD,mD)?

(Wasserman, 2004)

E(uD,mD)∼D

[
r(uD,mD)

pD(uD,mD)

]
=

∑
(u,m)

pD(u,m)

pD(u,m)
r(u,m) ∝ E(u,m)∼U [r(u,m)]

44 / 122

Variance and extensions

Formal definition of the counterfactual estimator:

r̃ =
1

Nu · Nm

∑
(uD,mD)∈D

r(uD,mD)

pD(uD,mD)

• E [r̃] = E(u,m)∼U [r(u,m)]: r̃ is unbiased

• r̃ can have high variance if pD are small

• Tricks to decrease the variance: clipping/normalization (Saito and Joachims,

2021)

45 / 122

Learning from search logs: a screenshot

46 / 122

Learning from search logs: a snapshot

47 / 122

Intrinsic biases in click logs

• Position bias: users are more likely to observe item on top of the page

• Item-selection bias: users cannot observe items which are not returned by the

earch engine

• Trust bias: users may trust the search engine to return relevant results and are

therefore more likely to click on top documents

• . . .

48 / 122

Importance sampling on slates

Slate: combination of multiple items offered to user at same time

• Search engine result page, playlist, grid with products, carousel, banner ads, . . .

Logging policy πL : πL(y | u) probability that the system chooses slate y for user u.

Under the logging policy, what was the probability of . . .

. . . that slate being returned? (Precup et al., 2000)

RIS =
1

|D|
∑

(u,y,r)∈D

1

πL(y | u)︸ ︷︷ ︸
too small !

·
k∑

j=1

r j

49 / 122

Importance sampling on slates

Slate: combination of multiple items offered to user at same time

• Search engine result page, playlist, grid with products, carousel, banner ads, . . .

Logging policy πL : πL(y | u) probability that the system chooses slate y for user u.

Under the logging policy, what was the probability of . . .

. . . that slate being returned? (Precup et al., 2000)

RIS =
1

|D|
∑

(u,y,r)∈D

1

πL(y | u)︸ ︷︷ ︸
too small !

·
k∑

j=1

r j

50 / 122

Importance sampling on slates

Logging policy πL : πL(y | u) probability that the system chooses slate y for user u

Under the logging policy, what was the probability of . . .

. . . that document being placed at that position in the slate? (McInerney et al.,

2020)

Rpos-IS =
1

|D|
∑

(u,y,r)∈D

k∑
j=1

1

πj
L(yj | u)︸ ︷︷ ︸

better but still small

· r j

51 / 122

Leveraging user models with inverse propensity scoring (IPS)

Examination hypothesis: A clicked document is both examined and relevant

Under the logging policy, what was the probability of . . .

. . . the user examining that document? (Joachims et al., 2017)

RIPS =
1

|D|
∑

(u,y,r)∈D

∑
d∈y

1

P(Ed = 1 | u)︸ ︷︷ ︸
examination prob.

· rd

For example, position-based model: P(Ed = 1 | u, rank(d) = j) = γj

Improvements to handle item-selection and trust bias: policy-aware and affine

estimators (Oosterhuis and de Rijke, 2021).

52 / 122

Doubly robust estimator (Saito and Joachims, 2021)

• Direct (biased) estimate of the user response: r̃(d |u)
• Simple idea: get a rough, biased estimate of user response and apply the

correction only on the difference with this estimate (less variance-related risk)

RDRE =
1

|D|
∑

(u,y,r)∈D

∑
d∈y

 r̃(d |u)︸ ︷︷ ︸
high-bias, low-variance

+
1

P(Ed = 1|u)
· (rd︸ ︷︷ ︸

unbiased, high-variance

− r̃(d |u))


︸ ︷︷ ︸

unbiased, low-variance

53 / 122

Fitting importance weights: 3 solutions

Eye tracking experiments

(Joachims et al., 2007)

Swap interventions

(Joachims et al., 2017)

Learning from logs:

Click models

54 / 122

Fitting importance weights: 3 solutions

Eye tracking experiments

(Joachims et al., 2007)

Swap interventions

(Joachims et al., 2017)

Learning from logs:

Click models

55 / 122

Fitting importance weights: 3 solutions

Eye tracking experiments

(Joachims et al., 2007)

Swap interventions

(Joachims et al., 2017)

Learning from logs:

Click models

56 / 122

Click models (Chuklin et al., 2015)

• Interpretable structure with latent

variables and parameterized causal

relations

• Learn parameters by

Expectation-Maximization or Gradient

Descent

Example: Dynamic Bayesian Networks

57 / 122

Evaluation of click models

Perplexity:

PPL@j = 2−
∑n

i=1 c
i
j log2(p̃

i
j)+(1−c ij) log2(1−p̃ij)

PPL = 1
k

∑k
j=1 PPL@j ≈ 1.51

Click prediction

DCG =
∑4

j=1
2rel(dj)−1
log2(j+1)

nDCG = DCG(CM)
iDCG ≈ 0.62

Relevance estimation

58 / 122

Summary

• We want to learn new policy from user feedback but historical data contains

biases

• Importance Sampling applies a correction to observed feedback to recover

unbiased estimates

• IS is unbiased but suffers from high variance: we need to leverage user

models (inverse propensity scoring, doubly robust estimator)

• Propensity weights must be adequately computed and evaluated (eye tracking,

swap interventions, click models)

59 / 122

Q&A

Questions, comments, . . .

Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End

Bandits & Reinforcement learning in IR

Plan for this part

• Learning to interact with new users

• More complex feedback loops

• Long-term satisfaction

• Learning from logs

63 / 122

Cold start

How to quickly find Maarten’s and Romain’s preferences?

64 / 122

Reward and regret

For every action a in the set A, we define:

• the reward r(a) ∈ {0, 1}: like or dislike,

• the regret r(a) = r(a∗)− r(a) with a∗ = argmaxa∈A E [r(a)].

The goal can now be formulated as finding a strategy minimizing the expected

cumulative regret R:

R(T) = E

[
T∑
t=1

r(at)

]

65 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
66 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
67 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
68 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action.
69 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
70 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy ϵ-Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
71 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy ϵ-Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
72 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy ϵ-Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
73 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy ϵ-Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
74 / 122

Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy ϵ-Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
75 / 122

MAB: lower bounds of regret (Silver, 2022)

The expected cumulative regret admits a logarithmic lower bound:

R(T) ⩾ log(T)


∑

a∈A\a∗︸ ︷︷ ︸
harder with more actions

more regret when strongly suboptimal︷ ︸︸ ︷
E [r(a∗)]− E [r(a)]

DKL(r(a)∥r(a∗))︸ ︷︷ ︸
harder when actions look similar

+ o(1)


It is impossible to find a MAB algorithm with bounded expected cumulative regret!

76 / 122

MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

77 / 122

MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

78 / 122

MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

79 / 122

MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

80 / 122

MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

81 / 122

Short digression on Bayesian inference

How to maintain an estimate of the full distribution of rewards, and update it after

having interacted ?

Use parameterized families of distributions for the rewards, like N (µ, σ2) or B(µ).

Likelihood

Distribution of rewards

given a parameter.

P(r | θ)

Prior

Best guess of parameter

before interactions.

P(θ)

Posterior

Best guess of parameter

after interactions.

P(θ | r)

Bayes law

P(θ | r)︸ ︷︷ ︸
Posterior

∝
Likelihood︷ ︸︸ ︷
P(r | θ)P(θ)︸︷︷︸

Prior

82 / 122

MAB: Thompson sampling

• Probability matching: we want to select an action according to its probability of

being optimal.

• Thompson Sampling does this by

1. sampling a parameter value for each action

2. selecting the best action under the chosen parameters

3. observing the reward and updating the corresponding action

83 / 122

MAB: Thompson sampling (Chapelle and Li, 2011)

• Rewards are clicks/skips: r(a) ∼ B(µa)

• Prior and posterior distributions on µa ? → Conjugate prior is µa ∼ B(αa, βa)

• Simple update: αt+1
a = αt

a + r and βt+1
a = βt

a + (1− r) (α0
a = β0

a = 0)

Beta-bernoulli Thompson Sampling achieves the lower bound!

84 / 122

MAB: Thompson sampling (Chapelle and Li, 2011)

• Rewards are clicks/skips: r(a) ∼ B(µa)

• Prior and posterior distributions on µa ? → Conjugate prior is µa ∼ B(αa, βa)

• Simple update: αt+1
a = αt

a + r and βt+1
a = βt

a + (1− r) (α0
a = β0

a = 0)

Beta-bernoulli Thompson Sampling achieves the lower bound!

85 / 122

MAB: Thompson sampling (Chapelle and Li, 2011)

• Rewards are clicks/skips: r(a) ∼ B(µa)

• Prior and posterior distributions on µa ? → Conjugate prior is µa ∼ B(αa, βa)

• Simple update: αt+1
a = αt

a + r and βt+1
a = βt

a + (1− r) (α0
a = β0

a = 0)

Beta-bernoulli Thompson Sampling achieves the lower bound!

86 / 122

MAB: Thompson sampling (Chapelle and Li, 2011)

• Rewards are clicks/skips: r(a) ∼ B(µa)

• Prior and posterior distributions on µa ? → Conjugate prior is µa ∼ B(αa, βa)

• Simple update: αt+1
a = αt

a + r and βt+1
a = βt

a + (1− r) (α0
a = β0

a = 0)

Beta-bernoulli Thompson Sampling achieves the lower bound!

87 / 122

MAB: Thompson sampling (Chapelle and Li, 2011)

• Rewards are clicks/skips: r(a) ∼ B(µa)

• Prior and posterior distributions on µa ? → Conjugate prior is µa ∼ B(αa, βa)

• Simple update: αt+1
a = αt

a + r and βt+1
a = βt

a + (1− r) (α0
a = β0

a = 0)

Beta-bernoulli Thompson Sampling achieves the lower bound!

88 / 122

What about dwell-time ?

How to quickly find Maarten’s and Romain’s preferences?

89 / 122

MAB: Thompson sampling for dwell-time

• Rewards are positive real numbers sampled from a normal distribution with fixed

variance: r(a) ∼ N (µa, σ
2)

→ σ can be interpreted as an exploration parameter.

• Prior and posterior distributions on µa? → Conjugate prior is µa ∼ N (νa,
σ2

λ2
a
)

• Update: (λt+1
a)2 = (λt

a)
2 + 1

σ2 and µt+1
a

[
1 + 1

σ2(λt
a)

2

]
= µt

a +
r

σ2(λt
a)

2

Normal-Normal Thompson Sampling achieves a logarithmic lower bound! (Agrawal

and Goyal, 2017)

90 / 122

Contextual click/dwell-time maximization

What to recommend next to Maarten and Romain?
91 / 122

Contextual click/dwell-time maximization

Same ... but different!

We still have no prior knowledge about the current user ...

... but we use knowledge from previous users!

92 / 122

Contextual Bandits: LinTS (Agrawal and Goyal, 2013)

• Rewards are sampled from a normal distribution with fixed variance and where the

mean is a linear combination of context features: r t(a) ∼ N (XT
t µa, σ

2).

• Prior and posterior distributions on µa?

→ Conjugate prior is a multivariate normal distribution µa ∼ N (νa, σ
2 · Λ−1

a).

• Update: Λt+1
a = Λt

a + XT
t Xt and Λt+1

a νt+1
a = Λt

aν
t
a + rt · Xt .

93 / 122

Contextual Bandits: LinTS extensions (Riquelme et al., 2018)

σ2
a ∼ Γ−1(αa, βa)

µa | σ2
a ∼ N (νa, σ

2
a · Λ−1

a)

αt+1
a = αt

a + 1/2

βt+1
a = βt

a + 1/2
(
r2t − µt

a
T
Λt
aµ

t
a

)
Unknown variance Non-linear rewards

94 / 122

Long-term user engagement

How to satisfy Maarten and Romain on the long run?

95 / 122

Can bandits solve long-term user engagement?

The objectives match (maximize sum of rewards / minimize cumulative regret) ...

... but the methods we used assume that actions are independent of future rewards

conditioned on the current context, i.e., the user is static

→ need explicitly capturing causal effect of recommendations on future user states:

Reinforcement Learning

96 / 122

MDPs and POMDPs

Partially-observable Markov Decision Process:

• States s ∈ S: user’s mind

• Observations o ∈ O: history, extrinsic context, ...

• Actions a ∈ A: recommendations

• Reward function r : S ×A 7→ R: click, dwell-time, etc.

• Transition probabilities T (s ′|s, a): how recommendations influence the user

• Initial state distribution S(s1): user state when they arrive on the platform

• Observation probabilities Ω(o|s, a): how the user’s mind is revealed

Goal: Maximize the expected cumulative rewards

π∗ = argmax
π

Eτ∼π

[
T∑
t=1

r(st , at)

]
, τ = (s1, a1, . . . , sT , aT)

97 / 122

RL101: Policy gradients (Sutton and Barto, 2018)

• Objective function J(πθ) = Eτ∼πθ

[∑T
t=1 r(st , at)

]
• Policy gradient theorem:

∇θJ(πθ) = Et∼πθ

[
T∑
t=1

∇θ log πθ(at |st)
T∑

t′=t

r(st′ , at′)

]

• REINFORCE algorithm alternate between two steps:

Collect a trajectory τk from πθk ↔ improve the policy θk+1 = θk + α∇θJ(πθ) |θ=θk

98 / 122

RL101: Dynamic programming (Sutton and Barto, 2018)

• Q-function: Qπ(a|s) = Eτ∼π,s1=s,a1=a

[∑T
t=1 r(st , at)

]
→ how good action a is in state s

• Bellman Equation: Qπ(a|s) = r(s, a) + Ea′∼π(·|s′) [Q(a′|s ′)]
• Q-Learning alternates between two steps:

Collect experience (s, a, r , s ′) from an ϵ-greedy policy w.r.t Q ↔
improve the Q-function Q(s, a)← (1− α)Q(s, a) + α [r +maxa′∈AQ(s ′, a′)]

• Actor Critic combines policy gradient and dynamic programming (actually slightly

more complex than that ...)

99 / 122

Limits of RL for S&R

• Online interactions are expensive : we cannot just return random results to users

during training!

• In large scale RS or search engines, we must train from logs while accounting for

the interactivity of system and user ...

100 / 122

Learning from logs & session optimization

We need to cover many aspects of the query and anticipate for future needs
101 / 122

Optimizer’s curse and deadly triad

Learning from logged interactions, without interventions, is hard:

• Optimizer’s curse: A maximization process is likely to select an overestimated

solution. With n items of expected rewards r1, . . . , rn, we can have E[r̂k] = rk and

yet E[r̂k∗ − rk∗] > 0 with k∗ = argmaxk r̂k

→ We will be disappointed. (Jeunen and Goethals, 2021)

• Deadly Triad: Optimizer’s curse is much worse when 3 conditions are satisfied:
(van Hasselt et al., 2018)

Off-Policy training

Dynamic programming

Q-function approximation

102 / 122

Back to importance sampling

Under the logging policy...

... what would have been the probability of observing that sequence of rankings ?

R IS =
1

|D|
∑
τ∈D

T∑
t=1

t∏
i=1

π(ai |si)
πL(ai |si)︸ ︷︷ ︸

product of past IS weights

rt

103 / 122

What about the variance ?

Even worse than in traditional CLTR!

→ variance grows exponentially with horizon length.

Offline RL: Find a way to recover policies staying within the support of the logging

policy (Levine, 2021)

104 / 122

Offline RL

Pessimistic Q-Functions

(Kumar et al., 2020)

Filtered Behavior cloning

(Chen et al., 2021)

105 / 122

Specific challenges in IR

• The environment is highly stochastic: two users with same history may react

differently to a recommendation

• There are a lot of actions: from thousands to billions and above

• How to integrate user models?

106 / 122

Summary

• We must balance exploration and exploitation to find user preferences quickly

and reliably (Bandits)

• We can augment bandits algorithms with context features to leverage

knowledge from other users (Contextual Bandits)

• We must capture the effect of recommendations on future user behavior to

enable long-term satisfaction (Reinforcement Learning)

107 / 122

Q&A

Questions, comments, . . .

Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End

Conclusion

Plan for this part

• Taking stock

• Directions not covered

• Challenges

111 / 122

Taking stock

• Using user interactions to evaluate or optimize interactive systems

Online vs off-policy

Counterfactual evaluation / learning

• Counterfactual learning to rank

• Bandits and reinforcement learning

112 / 122

What we have not covered

• Recent advances in bias-variance trade-offs

• Complex (very large) action spaces

• Tuning hyperparameters

• Working with multiple logging policies

• Dealing with distributional shifts

• Combinations of online & offline, with occasional online exploration to collect new

data (Oosterhuis and de Rijke, 2021)

• Limitations of de-biasing in counterfactual learning to rank (Oosterhuis, 2022)

• Simulation environments

• Libraries and packages

113 / 122

Challenges

Guarantees on . . .

• Accuracy, also for rare phenomena

• Efficiency during both training and inference

• Reliability when assumptions begin to fail (e.g., on user behavior)

• Reproducibility of experimental results

• Resilience – against distributional shifts and adversarial attacks

• Safety of user data and proprietary data

114 / 122

Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End

Final Q&A

116 / 122

Q&A

Questions, comments, . . .

References i

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In

Proceedings of the 30th International Conference on International Conference on Machine Learning

- Volume 28, ICML’13, pages III–1220–III–1228. JMLR.org, 2013.

S. Agrawal and N. Goyal. Near-optimal regret bounds for thompson sampling. J. ACM, 64(5), 2017.

O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In Proceedings of the 24th

International Conference on Neural Information Processing Systems, pages 2249–2257. Curran

Associates Inc., 2011.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.

Decision transformer: Reinforcement learning via sequence modeling. In NeurIPS 2021: Conference

on Neural Information Processing Systems, 2021.

A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Synthesis Lectures on

Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers, August 2015.

O. Jeunen and B. Goethals. Pessimistic reward models for off-policy learning in recommendation. In

Fifteenth ACM Conference on Recommender Systems, pages 63–74. ACM, 2021.

118 / 122

References ii

T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of

implicit feedback from clicks and query reformulations in web search. ACM Trans. Inf. Syst., 25(2):

7–es, 2007.

T. Joachims, A. Swaminathan, and T. Schnabel. Unbiased learning-to-rank with biased user feedback.

In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pages

781–789. ACM, 2017.

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement

learning. In Proceedings of the 34th International Conference on Neural Information Processing

Systems. Curran Associates Inc., 2020.

S. Levine. A gentle introduction to offline reinforcement learning.

https://www.youtube.com/watch?v=tW-BNW1ApN8, 2021.

J. McInerney, B. Brost, P. Chandar, R. Mehrotra, and B. A. Carterette. Counterfactual evaluation of

slate recommendations with sequential reward interactions. In KDD ’20: The 26th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,

2020, pages 1779–1788. ACM, 2020.

119 / 122

https://www.youtube.com/watch?v=tW-BNW1ApN8

References iii

H. Oosterhuis. Reaching the end of unbiasedness: Uncovering implicit limitations of click-based

learning to rank. arXiv preprint arXiv:2206.12204, 2022.

H. Oosterhuis and M. de Rijke. Differentiable unbiased online learning to rank. In CIKM 2018:

International Conference on Information and Knowledge Management, pages 1293–1302. ACM,

October 2018.

H. Oosterhuis and M. de Rijke. Unifying online and counterfactual learning to rank. In WSDM 2021:

14th International Conference on Web Search and Data Mining. ACM, March 2021.

H. Oosterhuis, R. Jagerman, and M. de Rijke. Unbiased learning to rank: Counterfactual and online

approaches. In Companion Proceedings of the Web Conference 2020, pages 299–300. ACM, April

2020.

D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for off-policy policy evaluation. In

Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00, pages

759–766, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

C. Riquelme, G. Tucker, and J. Snoek. Deep bayesian bandits showdown: An empirical comparison of

bayesian deep networks for thompson sampling. In ICLR 2018, 2018.

120 / 122

References iv

Y. Saito and T. Joachims. Counterfactual learning and evaluation for recommender systems:

Foundations, implementations, and recent advances. In Fifteenth ACM Conference on

Recommender Systems, pages 828–830. ACM, 2021.

F. Sarvi, M. Heuss, M. Aliannejadi, S. Schelter, and M. de Rijke. Understanding and mitigating the

effect of outliers in fair ranking. In WSDM 2022: The Fifteenth International Conference on Web

Search and Data Mining. ACM, February 2022.

D. Silver. RL Course – Lecture 9: Exploitation and exploration. http://youtube.com, 2022.

R. Sutton and A. Barto. Reinforcement Learning : An Introduction. MIT Press, 2018.

H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil. Deep reinforcement

learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

L. A. Wasserman. All of Statistics. Springer, 2004.

121 / 122

User Models and Interactive IR

ESSIR 2022

Romain Deffayet1,2 and Maarten de Rijke2

1Naver Labs Europe, 2University of Amsterdam

July 19, 2022, 09.00–10.30

r.e.deffayet@uva.nl, m.derijke@uva.nl

