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Learning objectives and outcomes

Objectives

• We will cover basic concepts and fundamental methods of learning from

interactions for search and recommendation

Outcomes

• As a result of participating in this tutorial, students will be able to implement and

work with basic (counterfactual) learning to rank, bandits and reinforcement

learning for search and recommendation
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Resources

Go to https://irlab.science.uva.nl/2022/07/17/

essir-2022-tutorial-on-user-models-and-interactive-ir/

• Slides (PDF)

• Bibliography (BIB)

5 / 122

https://irlab.science.uva.nl/2022/07/17/essir-2022-tutorial-on-user-models-and-interactive-ir/
https://irlab.science.uva.nl/2022/07/17/essir-2022-tutorial-on-user-models-and-interactive-ir/


Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End



Setting the scene



Plan for this part

• Interactions with users – our perspective on information retrieval: technology to

connect people to information

• Core concepts and examples

• Core problems: learning and evaluating

• Core distinctions: on-policy vs off-policy
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Interactions with users

How can a search engine or recommender system or conversational assistant get better

by interacting with its users?

• Context x – user history, user profile, query, time of day, . . .

• Policy π that selects action a – answer, item, result list, . . .

• Rewards r that are returned – clicks, downloads, purchases, . . .
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Interaction process

Policy can be . . .

• deterministic – function from contexts to actions: π(x) = a

• stochastic – conditional probability of action given context: π(a | x)

Policy interacts with environment and produces log data D = {(xi , ai , ri )}ni=1

• Observe context x – x ∼ P(x)

• Select action a – a ∼ π(a | x)
• Observe reward r – p(r | x , a)
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Examples

• Ad hoc search (not personalized): context – query; action – ranked list of

documents; reward – clicks, dwell time

• Product search (personalized): context – query, user profile, past interactions;

action – grid of items; reward – clicks, conversion

• Ad placement (personalized): context – user profile; action – a slate of ads;

reward – clicks, conversion

• Conversational recommendation: context – user history, conversation history;

action – item; reward – task completion, conversion
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Two core problems

Policy learning

• Find a new policy that improves upon the current policy

Policy evaluation

• Determine the quality – often expressed as the (online) performance – of a given

policy
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Two key distinctions (1)

In CS, algorithms that receive input sequentially operate in online modality

• Typically includes tasks that involve sequences of decisions, like when you choose

how to serve incoming queries in a stream

Batch or offline processing does not need human interaction

• E.g., batch learning proceeds as follows:

Initialize the weights

Repeat the following steps: (Process all the training data; Update the weights)

Typical offline computations in information retrieval:

• Any processing that is not query dependent (crawling, indexing, . . . )

Typical online computations in information retrieval:

• Any processing that depends on users and their input
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Two key distinctions (2)

Evaluation and learning can be on-policy or off-policy

On-policy learning algorithms evaluate and improve the same policy that is being

used to select actions

Off-policy learning algorithms evaluate and improve a policy that is different from

the policy that is used for action selection

• Behavior or logging policy: policy that tells the agent what action to take; used to

collect actions taken and outcomes; not the target policy in off-policy learning
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Online policy evaluation: A/B testing

Deploy two policies πA and πB to get an online estimate of performance

• Collect log data DA = {(xi , ai , ri )}ni=1 and DB = {(xj , aj , rj)}mj=1

• Compute quality as average reward: 1
n

∑n
i=1{ri : (xi , ai , ri ) ∈ DA} for πA and

1
m

∑m
j=1{rj : (xj , aj , rj) ∈ DB} for πB

• Compare the two average rewards
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Online policy evaluation: Interleaving

Again, take two policies πA and πB but now

• Given context x , determine most probably actions aA and aB

• Combine actions aA and aB into action aA⊕B and determine credit assignment

• Execute combined action aA⊕B , observe reward, following credit assignment

function assign credit to πA or πB (or both or neither)

• Repeat, take average, and compare

Several design choices

• How to combine, how to satisfy constraints on actions, how to assign credit, . . .
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From online evaluation to off-policy evaluation

Why evaluate online?

• User behavior is indicative of their preferences
Avoids issues of labeled data: expensive, unethical to create in privacy-sensitive

settings, impossible for small-scale problems, stationary, not necessarily aligned with

actual user preferences, . . .

Why not to evaluate online?

• Online agents take risks to gain knowledge quickly

• Online evaluations are complex

What if we evaluate off-policy?

• Estimate performance of a policy using only log data collected by a behavior policy

• Compare performance of candidate policies safely and help us decide which policy

should be deployed
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Words, words, words

• Counterfactual evaluation = offline A/B testing = off-policy evaluation

• Counterfactual learning = unbiased learning to rank = off-policy learning
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Q&A

Questions, comments, . . .



Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End



Counterfactual learning-to-rank



Plan for this part

• Asking counterfactual questions: “what would have been . . . ”

• Importance sampling

• Learning from logs

• Bias, and correcting for bias
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Movie recommendation from ratings

What to recommend next?
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Extrinsic biases in Missing-Not-At-Random (MNAR) feedback

Popularity bias

More popular items are rated more often.

Positivity bias

Users are more likely to rate movies they

have liked.
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A bit of notation

u / s a user / a user state

d / m / y / a document / movie / slate / action

r / R an observed reward / a reward estimate

D a dataset

π a policy

Ed the event “the user examines document d”

E an expected value

U / N / B a uniform / normal / Bernoulli distribution
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Importance sampling

• Estimate a certain quantity θ (e.g., mean, variance) of one distribution by

sampling from another

• Here we want E(u,m)∼U [r(u,m)] but we only observe biased instances

(uD,mD) ∼ D . . .

• Counterfactual question: what would have been the average ratings under a

uniform distribution?
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Importance sampling

IS correction: In the data, what was

the probability of observing (uD,mD)?

(Wasserman, 2004)

E(uD,mD)∼D

[
r(uD,mD)

pD(uD,mD)

]
=

∑
(u,m)

pD(u,m)

pD(u,m)
r(u,m) ∝ E(u,m)∼U [r(u,m)]
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Variance and extensions

Formal definition of the counterfactual estimator:

r̃ =
1

Nu · Nm

∑
(uD,mD)∈D

r(uD,mD)

pD(uD,mD)

• E [r̃ ] = E(u,m)∼U [r(u,m)]: r̃ is unbiased

• r̃ can have high variance if pD are small

• Tricks to decrease the variance: clipping/normalization (Saito and Joachims,

2021)
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Learning from search logs: a screenshot
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Learning from search logs: a snapshot
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Intrinsic biases in click logs

• Position bias: users are more likely to observe item on top of the page

• Item-selection bias: users cannot observe items which are not returned by the

earch engine

• Trust bias: users may trust the search engine to return relevant results and are

therefore more likely to click on top documents

• . . .
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Importance sampling on slates

Slate: combination of multiple items offered to user at same time

• Search engine result page, playlist, grid with products, carousel, banner ads, . . .

Logging policy πL : πL(y | u) probability that the system chooses slate y for user u.

Under the logging policy, what was the probability of . . .

. . . that slate being returned? (Precup et al., 2000)

RIS =
1

|D|
∑

(u,y,r)∈D

1

πL(y | u)︸ ︷︷ ︸
too small !

·
k∑

j=1

r j
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Importance sampling on slates

Logging policy πL : πL(y | u) probability that the system chooses slate y for user u

Under the logging policy, what was the probability of . . .

. . . that document being placed at that position in the slate? (McInerney et al.,

2020)

Rpos-IS =
1

|D|
∑

(u,y,r)∈D

k∑
j=1

1

πj
L(yj | u)︸ ︷︷ ︸

better but still small

· r j
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Leveraging user models with inverse propensity scoring (IPS)

Examination hypothesis: A clicked document is both examined and relevant

Under the logging policy, what was the probability of . . .

. . . the user examining that document? (Joachims et al., 2017)

RIPS =
1

|D|
∑

(u,y,r)∈D

∑
d∈y

1

P(Ed = 1 | u)︸ ︷︷ ︸
examination prob.

· rd

For example, position-based model: P(Ed = 1 | u, rank(d) = j) = γj

Improvements to handle item-selection and trust bias: policy-aware and affine

estimators (Oosterhuis and de Rijke, 2021).
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Doubly robust estimator (Saito and Joachims, 2021)

• Direct (biased) estimate of the user response: r̃(d |u)
• Simple idea: get a rough, biased estimate of user response and apply the

correction only on the difference with this estimate (less variance-related risk)

RDRE =
1

|D|
∑

(u,y,r)∈D

∑
d∈y

 r̃(d |u)︸ ︷︷ ︸
high-bias, low-variance

+
1

P(Ed = 1|u)
· (rd︸ ︷︷ ︸

unbiased, high-variance

− r̃(d |u))


︸ ︷︷ ︸

unbiased, low-variance
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Fitting importance weights: 3 solutions

Eye tracking experiments

(Joachims et al., 2007)

Swap interventions

(Joachims et al., 2017)

Learning from logs:

Click models
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Click models (Chuklin et al., 2015)

• Interpretable structure with latent

variables and parameterized causal

relations

• Learn parameters by

Expectation-Maximization or Gradient

Descent

Example: Dynamic Bayesian Networks
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Evaluation of click models

Perplexity:

PPL@j = 2−
∑n

i=1 c
i
j log2(p̃

i
j )+(1−c ij ) log2(1−p̃ij )

PPL = 1
k

∑k
j=1 PPL@j ≈ 1.51

Click prediction

DCG =
∑4

j=1
2rel(dj)−1
log2(j+1)

nDCG = DCG(CM)
iDCG ≈ 0.62

Relevance estimation
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Summary

• We want to learn new policy from user feedback but historical data contains

biases

• Importance Sampling applies a correction to observed feedback to recover

unbiased estimates

• IS is unbiased but suffers from high variance: we need to leverage user

models (inverse propensity scoring, doubly robust estimator)

• Propensity weights must be adequately computed and evaluated (eye tracking,

swap interventions, click models)
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Q&A

Questions, comments, . . .



Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten
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09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End



Bandits & Reinforcement learning in IR



Plan for this part

• Learning to interact with new users

• More complex feedback loops

• Long-term satisfaction

• Learning from logs
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Cold start

How to quickly find Maarten’s and Romain’s preferences?
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Reward and regret

For every action a in the set A, we define:

• the reward r(a) ∈ {0, 1}: like or dislike,

• the regret r(a) = r(a∗)− r(a) with a∗ = argmaxa∈A E [r(a)].

The goal can now be formulated as finding a strategy minimizing the expected

cumulative regret R:

R(T ) = E

[
T∑
t=1

r(at)

]
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Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy

Exploration-Exploitation dilemma:

exploiting the knowledge acquired from interactions lowers the regret ...

... but exploring different actions multiple times is required to find the optimal action
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Multi-Armed Bandits (MAB): greedy and ϵ-greedy

Greedy ϵ-Greedy
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MAB: lower bounds of regret (Silver, 2022)

The expected cumulative regret admits a logarithmic lower bound:

R(T ) ⩾ log(T )


∑

a∈A\a∗︸ ︷︷ ︸
harder with more actions

more regret when strongly suboptimal︷ ︸︸ ︷
E [r(a∗)]− E [r(a)]

DKL(r(a)∥r(a∗))︸ ︷︷ ︸
harder when actions look similar

+ o(1)


It is impossible to find a MAB algorithm with bounded expected cumulative regret!
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MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

77 / 122



MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

78 / 122



MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

79 / 122



MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

80 / 122



MAB: Upper Confidence Bound (UCB) (Silver, 2022)

Optimism in the face of uncertainty

UCB achieves logarithmic asymptotic cumulative regret!

81 / 122



Short digression on Bayesian inference

How to maintain an estimate of the full distribution of rewards, and update it after

having interacted ?

Use parameterized families of distributions for the rewards, like N (µ, σ2) or B(µ).

Likelihood

Distribution of rewards

given a parameter.

P(r | θ)

Prior

Best guess of parameter

before interactions.

P(θ)

Posterior

Best guess of parameter

after interactions.

P(θ | r)

Bayes law

P(θ | r)︸ ︷︷ ︸
Posterior

∝
Likelihood︷ ︸︸ ︷
P(r | θ)P(θ)︸︷︷︸

Prior
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MAB: Thompson sampling

• Probability matching: we want to select an action according to its probability of

being optimal.

• Thompson Sampling does this by

1. sampling a parameter value for each action

2. selecting the best action under the chosen parameters

3. observing the reward and updating the corresponding action
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MAB: Thompson sampling (Chapelle and Li, 2011)

• Rewards are clicks/skips: r(a) ∼ B(µa)

• Prior and posterior distributions on µa ? → Conjugate prior is µa ∼ B(αa, βa)

• Simple update: αt+1
a = αt

a + r and βt+1
a = βt

a + (1− r) (α0
a = β0

a = 0)

Beta-bernoulli Thompson Sampling achieves the lower bound!
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What about dwell-time ?

How to quickly find Maarten’s and Romain’s preferences?
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MAB: Thompson sampling for dwell-time

• Rewards are positive real numbers sampled from a normal distribution with fixed

variance: r(a) ∼ N (µa, σ
2)

→ σ can be interpreted as an exploration parameter.

• Prior and posterior distributions on µa? → Conjugate prior is µa ∼ N (νa,
σ2

λ2
a
)

• Update: (λt+1
a )2 = (λt

a)
2 + 1

σ2 and µt+1
a

[
1 + 1

σ2(λt
a)

2

]
= µt

a +
r

σ2(λt
a)

2

Normal-Normal Thompson Sampling achieves a logarithmic lower bound! (Agrawal

and Goyal, 2017)
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Contextual click/dwell-time maximization

What to recommend next to Maarten and Romain?
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Contextual click/dwell-time maximization

Same ... but different!

We still have no prior knowledge about the current user ...

... but we use knowledge from previous users!
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Contextual Bandits: LinTS (Agrawal and Goyal, 2013)

• Rewards are sampled from a normal distribution with fixed variance and where the

mean is a linear combination of context features: r t(a) ∼ N (XT
t µa, σ

2).

• Prior and posterior distributions on µa?

→ Conjugate prior is a multivariate normal distribution µa ∼ N (νa, σ
2 · Λ−1

a ).

• Update: Λt+1
a = Λt

a + XT
t Xt and Λt+1

a νt+1
a = Λt

aν
t
a + rt · Xt .
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Contextual Bandits: LinTS extensions (Riquelme et al., 2018)

σ2
a ∼ Γ−1(αa, βa)

µa | σ2
a ∼ N (νa, σ

2
a · Λ−1

a )

αt+1
a = αt

a + 1/2

βt+1
a = βt

a + 1/2
(
r2t − µt

a
T
Λt
aµ

t
a

)
Unknown variance Non-linear rewards
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Long-term user engagement

How to satisfy Maarten and Romain on the long run?
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Can bandits solve long-term user engagement?

The objectives match (maximize sum of rewards / minimize cumulative regret) ...

... but the methods we used assume that actions are independent of future rewards

conditioned on the current context, i.e., the user is static

→ need explicitly capturing causal effect of recommendations on future user states:

Reinforcement Learning
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MDPs and POMDPs

Partially-observable Markov Decision Process:

• States s ∈ S: user’s mind

• Observations o ∈ O: history, extrinsic context, ...

• Actions a ∈ A: recommendations

• Reward function r : S ×A 7→ R: click, dwell-time, etc.

• Transition probabilities T (s ′|s, a): how recommendations influence the user

• Initial state distribution S(s1): user state when they arrive on the platform

• Observation probabilities Ω(o|s, a): how the user’s mind is revealed

Goal: Maximize the expected cumulative rewards

π∗ = argmax
π

Eτ∼π

[
T∑
t=1

r(st , at)

]
, τ = (s1, a1, . . . , sT , aT )
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RL101: Policy gradients (Sutton and Barto, 2018)

• Objective function J(πθ) = Eτ∼πθ

[∑T
t=1 r(st , at)

]
• Policy gradient theorem:

∇θJ(πθ) = Et∼πθ

[
T∑
t=1

∇θ log πθ(at |st)
T∑

t′=t

r(st′ , at′)

]

• REINFORCE algorithm alternate between two steps:

Collect a trajectory τk from πθk ↔ improve the policy θk+1 = θk + α∇θJ(πθ) |θ=θk
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RL101: Dynamic programming (Sutton and Barto, 2018)

• Q-function: Qπ(a|s) = Eτ∼π,s1=s,a1=a

[∑T
t=1 r(st , at)

]
→ how good action a is in state s

• Bellman Equation: Qπ(a|s) = r(s, a) + Ea′∼π(·|s′) [Q(a′|s ′)]
• Q-Learning alternates between two steps:

Collect experience (s, a, r , s ′) from an ϵ-greedy policy w.r.t Q ↔
improve the Q-function Q(s, a)← (1− α)Q(s, a) + α [r +maxa′∈AQ(s ′, a′)]

• Actor Critic combines policy gradient and dynamic programming (actually slightly

more complex than that ...)
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Limits of RL for S&R

• Online interactions are expensive : we cannot just return random results to users

during training!

• In large scale RS or search engines, we must train from logs while accounting for

the interactivity of system and user ...
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Learning from logs & session optimization

We need to cover many aspects of the query and anticipate for future needs
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Optimizer’s curse and deadly triad

Learning from logged interactions, without interventions, is hard:

• Optimizer’s curse: A maximization process is likely to select an overestimated

solution. With n items of expected rewards r1, . . . , rn, we can have E[r̂k ] = rk and

yet E[r̂k∗ − rk∗ ] > 0 with k∗ = argmaxk r̂k

→ We will be disappointed. (Jeunen and Goethals, 2021)

• Deadly Triad: Optimizer’s curse is much worse when 3 conditions are satisfied:
(van Hasselt et al., 2018)

Off-Policy training

Dynamic programming

Q-function approximation
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Back to importance sampling

Under the logging policy...

... what would have been the probability of observing that sequence of rankings ?

R IS =
1

|D|
∑
τ∈D

T∑
t=1

t∏
i=1

π(ai |si )
πL(ai |si )︸ ︷︷ ︸

product of past IS weights

rt
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What about the variance ?

Even worse than in traditional CLTR!

→ variance grows exponentially with horizon length.

Offline RL: Find a way to recover policies staying within the support of the logging

policy (Levine, 2021)
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Offline RL

Pessimistic Q-Functions

(Kumar et al., 2020)

Filtered Behavior cloning

(Chen et al., 2021)
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Specific challenges in IR

• The environment is highly stochastic: two users with same history may react

differently to a recommendation

• There are a lot of actions: from thousands to billions and above

• How to integrate user models?
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Summary

• We must balance exploration and exploitation to find user preferences quickly

and reliably (Bandits)

• We can augment bandits algorithms with context features to leverage

knowledge from other users (Contextual Bandits)

• We must capture the effect of recommendations on future user behavior to

enable long-term satisfaction (Reinforcement Learning)
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Q&A

Questions, comments, . . .



Agenda

09.00 Start

09.00–09.05 Domestic matters – Maarten and Romain

09.05–09.20 Setting the scene – Maarten

09.20–09.40 Counterfactual learning-to-rank – Maarten

09.40–10.15 Bandits & Reinforcement learning in IR – Romain

10.15–10.25 Conclusion – Maarten and Romain

10.25–10.30 Final Q&A

10.30 End



Conclusion



Plan for this part

• Taking stock

• Directions not covered

• Challenges
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Taking stock

• Using user interactions to evaluate or optimize interactive systems

Online vs off-policy

Counterfactual evaluation / learning

• Counterfactual learning to rank

• Bandits and reinforcement learning
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What we have not covered

• Recent advances in bias-variance trade-offs

• Complex (very large) action spaces

• Tuning hyperparameters

• Working with multiple logging policies

• Dealing with distributional shifts

• Combinations of online & offline, with occasional online exploration to collect new

data (Oosterhuis and de Rijke, 2021)

• Limitations of de-biasing in counterfactual learning to rank (Oosterhuis, 2022)

• Simulation environments

• Libraries and packages
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Challenges

Guarantees on . . .

• Accuracy, also for rare phenomena

• Efficiency during both training and inference

• Reliability when assumptions begin to fail (e.g., on user behavior)

• Reproducibility of experimental results

• Resilience – against distributional shifts and adversarial attacks

• Safety of user data and proprietary data
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Final Q&A
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Q&A

Questions, comments, . . .
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