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ABSTRACT

To represent a complex network, paths are often employed for cap-
turing relationships among node: random walks for (homogeneous)
networks and metapaths for heterogeneous information networks
(HINs). However, there is structural (and possibly semantic) infor-
mation loss when using paths to represent the subgraph between
two nodes, since a path is a linear structure and a subgraph often is
not. Can we find a better alternative for network embeddings? We
offer a novel mechanism to capture the features of HIN nodes via
metagraphs, which retains more structural and semantic informa-
tion than path-oriented models. Inspired by developments in knowl-
edge graph embedding, we propose to construct HIN triplets using
nodes and metagraphs between them. Metagraphs are generated
by harnessing the GRAMI algorithm, which enumerates frequent
subgraph patterns in a HIN. Subsequently, the Hadamard function
is applied to encode relationships between nodes and metagraphs,
and the probability whether a HIN triplet can be evaluated. Further,
to better distinguish between symmetric and asymmetric cases of
metagraphs, we introduce a complex embedding scheme that is able
to precisely express fine-grained features of HIN nodes. We evaluate
the proposed model, M-HIN, on real-life datasets and demonstrate
that it significantly and consistently outperforms state-of-the-art
models.
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(a) Symmetric metagraphs

(b) Asymmetric metagraphs

Figure 1: Examples of metagraphs.

1 INTRODUCTION

A heterogeneous information network (HIN) is a network with nodes
and edges of multiple types. HINs serve as a richer tool to model
real-life problems than homogeneous networks, as most networks
come with multiple types of nodes and edges.

To be able to work with HINs in a machine learning context,
network representation learning, also known as network embedding
learning, which embeds a network into a low-dimensional space,
has been investigated extensively. Classic network embedding mod-
els [6, 8, 9] that rely on random walks suffer from low capability
of representing HINs, and thus, HIN-specific embedding models
have been proposed. Existing HIN embedding models are mainly
built on the basis of metapath, which is a sequence of node types
with edge types. For example, in Figure 1(a), Sy is a metapath and
it represents a co-author relationship. Different mechanisms have
been devised to model relationships between HIN nodes, e.g., prox-
imity distance [7], heterogeneous SkipGram [2], and the Hadamard
function [5], etc. Using either random walks or metapaths is, how-
ever, insufficient to describe the neighborhood structure of a node
in a complete manner, since there is always an apparent amount of
information loss when extracting and employing paths to represent
neighborhood graphs. For example, in Figure 1(a), Sy is only a lin-
ear structure that merely captures the co-author relationship, and
hence, ignores other relationships between two author nodes, e.g.,
shared-venue. In other words, existing models are not expressive
enough to retain as many features of a HIN as possible. Therefore,
a pressing research question is whether there is a better alternative
for representing HINs.

To answer the question listed above, we put forward a novel
HIN embedding model, namely, M-HIN, which provides a new
perspective to capture the features of a HIN via metagraphs. A
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metagraph is a subgraph of node types with edge types in be-
tween, which is able to frame the connecting subgraph of two node
types, and hence, completely retains the neighborhood structure of
nodes; toy examples are provided in Figure 1. We can observe that
in Figure 1(a), unlike metapaths, a metagraph can jointly model
multiple relationships; for example, S; describes co-author and
shared-venue relationships between two authors, thus having more
semantic information than Sy. Actually, a metapath is a special kind
of metagraph. Inspired by recent advance in representation learning
for knowledge graphs, M-HIN explicitly constructs HIN triplets in
the form of (u, s, v), where u and v are HIN nodes, and s denotes
the metagraph connecting u to v. Compared with existing models
relying on paths, metagraphs preserve more abundant structure
and capture more accurate features of nodes [4]. Subsequently, the
Hadamard function and sigmoid function are leveraged to evaluate
the probability of a HIN triplet being appropriate.

When training the model, we observe that the structure of meta-
graphs could be either symmetric or asymmetric, as illustrated in
Figures 1(a) and 1(b), respectively. The Hadamard function is not
able to describe such complicated relationships between nodes and
metagraphs. To better represent HIN nodes, we choose to further
incorporate a complex space oriented embedding scheme [10] to
handle symmetric and asymmetric relationships between nodes. In
complex space, the entries in the embedding vectors of nodes are
complex-valued; that is, we separate the vectors of nodes into real
and imaginary parts, and transfer the Hadamard function into com-
plex space. Consequently, when s is purely imaginary, the entire
function is correspondingly antisymmetric; when s is real, it is sym-
metric; and similar properties hold for embeddings of metagraphs.

To evaluate M-HIN, we perform experiments on two benchmark
tasks, node classification and link prediction. M-HIN consistently
outperforms state-of-the-art models

2 RELATED WORK

Our research falls into the area of network embeddings, and we list
recent developments in the area. DeepWalk [8] leverages random
walks and applies the SkipGram model to learn network embedding.
node2vec [6] is an extension of DeepWalk, as it adopts a biased
random walk strategy that can better explore the network structure.
LINE [9] harnesses first-order and second-order proximities simul-
taneously to encode local and neighborhood structure information.

While the aforementioned approaches are designed for homo-
geneous networks, there is also dedicated research specifically ex-
ploiting the features of heterogeneous network. metapath2vec [2]
proposes a heterogeneous SkipGram with its context window re-
stricted to one specific type. HINE [7] proposes a metapath-based
notion of proximity, and preserves proximity by minimizing the
distance between nodes’ joint probability as defined by sigmoid
and empirical probabilities. HIN2Vec [5] devises the Hadamard
multiplication of nodes and metapaths to capture features of a
HIN, but symmetric and asymmetric structures inside a HIN are
ignored. In a recent publication the term MetaGraph2Vec [11] has
been coined. However, this publication utilizes heterogeneous Skip-
Grams and combines metapath to form so-called “metagraphs,”
which, in essence, is a path-oriented model.
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3 PROPOSED MODEL

We first provide preliminaries, and then describe the proposed
model, followed by the formulation of its training objective.

3.1 Preliminaries

First, we introduce the definitions of HIN and metagraph. A HIN
is a directed graph G = (V, E, T), where V denotes the set of nodes
and E denotes the set of edges between nodes. Each node and edge
is associated with a type mapping function, ¢ : V. — Ty and
¢ : E — Tg, respectively. Ty and Tg denote the sets of node and
edge types. A HIN is a network where |Ty| > 1 and/or |Tg| > 1. A
metagraph is a subgraph of compatible node types and edge types,
denoted as S = (Tys, Tes), where Ty s and Tgs denote the set of
node types and edge types in a metagraph, respectively.

We use HIN triplets to demonstrate the relationship between
nodes and metagraphs. Specifically, for a HIN triplet (u, s, v), where
u is the first node generated in a metagraph, v the last and s is the
metagraph connecting them, u € Cc? veC?ands € C? are the
representation vectors of u, v and s, respectively, where d is the
dimension of the representation vectors.

3.2 Metagraph HIN (M-HIN)
The probability of whether a HIN triplet holds is denoted as

P(slu, v) = c(Xyo), oy

where X € R™" is a score matrix, n is the number of training
nodes, and ¢ is an activation function and we choose the sigmoid
function. Then we apply the Hadamard function to capture the
relationship of u, v and s, which is represented as

Xuv:ZUQSQV, (2)

where ) is the element-wise summation function.

When training the model, we find that a metagraph may be
symmetric or asymmetric, while the Hadamard function is not
expressive enough to handle such complex relationships. If a meta-
graph is symmetric, replacing the first and last node will not change
the semantics of the original metagraph, as shown in Figure 1(a).
Correspondingly, replacing the head and tail node will change the
semantics of an asymmetric metagraph, as shown in Figure 1(b).

To address this issue, we adapt the schema of complex knowledge
embeddings in [10] to fit the task of network embeddings. For
a HIN triplet (u, s, v), its complex embedding is denoted as u =
Re(u) + iIm(u), v = Re(v) + ilm(v) and s = Re(s) + ilm(s), where
Re(x) € R? and Im(x) € R represent the real and imaginary part
of the vector x € Cd, respectively. Thus, one element of the score
matrix will be changed as

Xm,:Zu@sO\'/, ®3)

where ¥ is the complex conjugate form of v. However, the sigmoid
function in Eq. 1 cannot be applied in complex spaces, thus we only
keep the real part of the objective function which is still able to
handle the symmetric and asymmetric structures well, and we will
illustrate the reason in detail later. So, one element in the score
matrix will eventually be

X,w:Re(ZUQSQ\'/). 4)
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Now that we have obtained the score matrix, the corresponding
score function is defined as

fs(u,v) = Re({u, s,V))
= (Re(u), Re(s), Re(v)) + (Im(u), Re(s), Im(v)) (5)
+ (Re(u), Im(s), Im(v)) — (Im(u), Im(s), Re(v)),

where (:) is the standard element-wise multi-linear dot product.
For example, {(a, b, c) = 31 arbycy, where a, b, ¢ are vectors and k
represents the dimension of a vector.

Eq. 5 is able to handle asymmetric metagraphs thanks to the
complex conjugate of one of the embeddings. In addition, if s is
purely imaginary, i.e., its real part is zero, the score function is
antisymmetric, and if real, the function is symmetric.! By sepa-
rating the imaginary and real part of the metagraph embedding
s, we obtain a decomposition of the metagraph matrix Xs as the
sum of an antisymmetric matrix Im(U © diag(~Im(s)) ©@ V) and a
symmetric matrix Re(U @ diag(Re(s)) ® V). From this we can see
that metagraph embeddings naturally act as weights on each latent
dimension, i.e., Im(s) over the antisymmetric, imaginary part of
(u, v) and Re(s) over the symmetric, real part of (u, v). Actually,

we have that (u,v) = (v, u), meaning that Im({u, v)) is antisym-
metric, while Re((u, v)) is symmetric. Therefore, the mechanism
introduced above enables us to accurately and effectively repre-
sent both symmetric and asymmetric (including antisymmetric)
metagraphs between pairs of nodes.

3.3 Training objective

We first generate metagraphs to build training datasets. Unlike
MetaGraph2Vec [11] that simply combines several metapaths to
construct their so-called “metagraphs,” we directly adopt an existing
state-of-the-art approach, viz., GRAMI [3], to find all subgraphs
that appear frequently in a database according to a given frequency
threshold. Then we use these mined subgraphs to form metagraphs.

To train M-HIN, we prepare the training datasets using a neg-
ative sampling strategy. For each positive HIN triplet (u, s, v), we
generate the negative HIN triplets by randomly replacing u and
v with other nodes, meanwhile restricting them to have the same
type as the replaced one. We also filter out those replaced HIN
triplets remaining positive after sampling. Notice that the number
of candidates of s is much smaller than that of u or v, so the sampled
negative data are generated only by replacing u and v.

After sampling, we have training data in the form of (u, s, v, Yy0),
where Yy, € {1,0} is a binary value indicating whether the HIN
triplet is positive or not. For a training instance (u, s, v, Yy5), if
Yuou = 1, the objective function Oy, s .,) aims to maximize P(s|u, v);
otherwise, P(s|u, v) should be minimized. Thus, we have our objec-
tive function as follows

P(s|u, v), if Yo =1;
Otw.s.v) = {1 ~ P(slu,0), if Yyp = 0.
To simplify our computations, we define log Oy, 5 ) as follows

log Oy, s,0) = Yuw log P(s|u, v) + (1 = Yup)log[1 = P(s|u, v)], (7)

(©)

where P(s|u, v) is defined as
P(s|u, v) = sigmoid(fs(u, v)). 8)

! Mathematically, if f(x,y)=f(y,x), the function is symmetric, otherwise it is asymmetric,
and in particular, if f(x,y)=-f(y,x), the function is antisymmetric.
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Finally, we apply a stochastic gradient algorithm to maximize the
above objective function.

4 EXPERIMENTS

4.1 Experimental setup

To evaluate the effectiveness of M-HIN to represent a HIN, we
conduct experiments on four real-world datasets, extracted from
DBLP,? YELP,> YAGO* and Freebase.”> DBLP is a bibliographic
dataset in computer science. Authors were separated into four
areas: databases, machine learning, data mining and information
retrieval. YELP is a social media dataset, which is about reviews on
restaurants; the restaurants were split into three types—American,
sushi bar and fast food. We also extracted a subset from YAGO
containing knowledge and facts about movies; the movies were
divided into five genres—horror, action, adventure, crime and sci-fi.
The dataset extracted from Freebase is related to video games, con-
sisting of games divided into three kinds—action, adventure, and
strategy. Descriptive statistics are provided in Table 1. The datasets

Table 1: Dataset statistics.

Dataset #nodes #edges #node types # labels
DBLP 276,248 1,205,627 4 4
YELP 162,623 745,439 4 3
YAGO 25,643 40,173 5 4
Freebase 6,909 7,754 4 3

extracted from DBLP and YELP are much larger than the other two
datasets, and we want to prove that M-HIN is scalable to both large
and small datasets. The dataset sizes are in line with those having
been reported in the existing literature.

We include three baselines, DeepWalk, LINE and node2vec, which
were originally designed to represent homogeneous networks. For a
fair comparison, we also include four models, metapath2vec, HINE,
HIN2Vec and MetaGraph2Vec, devised for heterogeneous network
embedding, which all leverage metapaths to capture features of
a HIN, but in different ways. Moreover, we add another model
M-HIN-path, which is a variant of M-HIN that merely employs
metapaths (path patterns generated by GRAMI).

As to parameters for M-HIN and M-HIN-path, the dimensionality
of node vectors was set to 128, the ratio of negative sampling was set
to 5 (i.e., 5 negative samples for each positive sample), the learning
rate in stochastic gradient descent was initialized to 0.025, and the
training epoch was set to 10.

We report on statistical significance with a paired two-tailed
t-test; we mark a significant improvement of M-HIN over HIN2Vec
for p < 0.05 with 4.

4.2 Node classification

In this section we report on the results for the multi-label node
classification task. The labels for each dataset are introduced in
Section 4.1. We calculate the micro-f1 (MIC-F1) and macro-f1 (MAC-
F1) as evaluation metrics.

Table 2 provides the experimental results. The performance of
all models is influenced by the scale of the datasets, and the outputs

Zhttp://dblp.uni-trier.de
Shttps://www.yelp.com/dataset_challenge
“https://old.datahub.io/dataset/yago
Shttps://developers.google.com/freebase/
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Table 2: Experimental results on the node classification task.
DBLP YELP YAGO
Model ~ MIC-F1 MAC-F1 MIC-F1 MAC-F1 MIC-F1 MAC-F1 MIC-F1 MAC-F1

Freebase

DeepWalk 0.197 0.194 0.167 0.151 0.330 0.277 0.542 0.484
LINE 0.186 0.184 0.278 0.280 0.368 0.321 0.520 0.449
node2vec 0.203 0.198 0.179 0.154 0.334 0.281 0.544 0.489
metapath2vec  0.211 0.213 0.265 0.271 0.371 0.332 0.517 0.436
HINE 0.235 0.233 0.281 0.285 0.401 0.366 0.519 0.438
HIN2Vec 0.247 0.242 0.295 0.307 0.432 0.396 0.561 0.502

MetaGraph2Vec 0.219 0.223 0.273 0.286 0.382 0.338 0.524 0.441

M-HIN-path 0.255 0.253 0.304 0.312 0.436 0.401 0.567 0.507
M-HIN 0.262* 0.259* 0.309 0.321* 0.443* 0.408* 0.574* 0.513*

Table 3: Experimental results on the link prediction task.

DBLP YELP YAGO Freebase
Model MAP R@100 MAP R@100 MAP R@100 MAP R@100
DeepWalk 0.122 0.189 0.129 0.192 0.154 0.279 0.244 0.436
LINE 0.117 0.177 0.121 0.182 0.161 0.293 0.218 0.404
node2vec 0.128 0.194 0.133 0.201 0.166 0.288 0.237 0.427
metapath2vec  0.137 0.197 0.148 0.206 0.183 0.293 0.264 0.442
HINE 0.139 0.211 0.164 0.229 0.179 0.290 0.282 0.477
HIN2Vec 0.144 0.218 0.182 0.241 0.206 0.324 0.307 0.503

MetaGraph2Vec 0.141 0.203 0.153 0.217 0.187 0.297 0.271 0.457

M-HIN-path ~ 0.151 0.224 0.185 0246 0213 0332 0315 0.527
M-HIN 0.157* 0.228* 0.191* 0.255* 0.239* 0.355* 0.331* 0.546*

become poorer when the datasets become larger. However, M-HIN
outperforms all other models on every dataset. Specifically, HINE,
metapath2vec and MetaGraph2Vec outperform the homogeneous
network methods DeepWalk, LINE and node2vec but they perform
slightly worse on Freebase, which indicates that metapaths are
a better way to explore the features of a network than random
walks. As mentioned in Section 2, MetaGraph2Vec is basically a
path-oriented model, so it is only slightly better than metapath2vec
with more metapaths combined. HIN2Vec performs consistently
better than HINE, metapath2vec and MetaGraph2Vec along with
the homogeneous models, and we attribute this to the usage of the
Hadamard function that is able to better capture the relationship
between nodes and metapaths than the heterogeneous SkipGram
in metapath2vec and MetaGraph2Vec, and the proximity distance
mechanism in HINE. M-HIN-path outperforms HIN2Vec on all
datasets, which is due to the fact that using the Hadamard function
in complex space could help handling complex metapaths being
symmetric and asymmetric. Moreover, M-HIN performs even bet-
ter than M-HIN-path, which could be attributed to two aspects:
(1) metagraphs are more expressive than metapaths containing
more information between nodes, and (2) complex network em-
bedding is able to deal with complex meta-structures including
metapaths and metagraphs.

4.3 Link prediction

In this section, we report on the outcomes of a link prediction task
using the node vectors learned by M-HIN. Given a HIN, we first
extract a sub-network by selecting an edge class and randomly
removing a certain fraction (20%) of the selected edge class as to-
be-predicted edges. Then after learning the vector embeddings
of the sub-network, we rank node pairs that are more likely to
have missing edges in a supervised way. Specifically, we randomly
extract 1500 nodes to form a training set and adopted five-fold cross
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validation. We use Mean Average Precision (MAP) and the top-m
recall (R@m) as the evaluation metrics and set m to 100.

Table 3 shows the performance on the link prediction task. Over-
all, M-HIN outperforms all other models on every dataset regardless
of their scale. Unlike in node classification, HINE, metapath2vec
and MetaGraph2Vec are consistently better than all homogeneous
models DeepWalk, LINE and node2vec; in the link prediction task,
metapaths play a more important role than random walks and
handle the relationship between nodes more precisely and prop-
erly. HIN2Vec still performs better than HINE, metapath2vec and
MetaGraph2Vec, but worse than M-HIN-path, which confirms the
effectiveness of using the Hadamard function in complex space.
M-HIN obtains the best performance among all the models includ-
ing HIN2Vec and M-HIN-path, demonstrating the advantage of the
representation ability of metagraphs and complex embedding.

5 CONCLUSIONS

In this paper, we propose a new model, namely, M-HIN to handle
the representation learning issues of a HIN. We utilize nodes and
metagraphs between them to construct HIN triplets. Then we apply
the Hadamard function to describe the relationship between nodes
and metagraphs. In addition, we adopt the complex embedding to
deal with the symmetric and asymmetric metagraphs to further
improve the model’s ability of representation. We compare our
model with other baselines on four real-world dataset. M-HIN
significantly and consistently outperforms these baselines on two
tasks, i.e., node classification and link prediction.

In future work, it is of interest to see whether the emerging
graph neural network [1] is applicable to HINs, and how it performs
compared with M-HIN.
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