
64

Scalable Representation Learning for Dynamic

Heterogeneous Information Networks via Metagraphs

YANG FANG, XIANG ZHAO, PEIXIN HUANG, and WEIDONG XIAO, National University of

Defense Technology, China

MAARTEN DE RIJKE, University of Amsterdam, The Netherlands

Content representation is a fundamental task in information retrieval. Representation learning is aimed at
capturing features of an information object in a low-dimensional space.Most research on representation learn-
ing for heterogeneous information networks (HINs) focuses on static HINs. In practice, however, networks
are dynamic and subject to constant change. In this article, we propose a novel and scalable representation
learning model,M-DHIN, to explore the evolution of a dynamic HIN. We regard a dynamic HIN as a series of
snapshots with different time stamps. We first use a static embedding method to learn the initial embeddings
of a dynamic HIN at the first time stamp. We describe the features of the initial HIN via metagraphs, which
retains more structural and semantic information than traditional path-oriented static models. We also adopt
a complex embedding scheme to better distinguish between symmetric and asymmetric metagraphs. Unlike
traditional models that process an entire network at each time stamp, we build a so-called change dataset

that only includes nodes involved in a triadic closure or opening process, as well as newly added or deleted
nodes. Then, we utilize the above metagraph-based mechanism to train on the change dataset. As a result
of this setup, M-DHIN is scalable to large dynamic HINs since it only needs to model the entire HIN once
while only the changed parts need to be processed over time. Existing dynamic embedding models only ex-
press the existing snapshots and cannot predict the future network structure. To equip M-DHIN with this
ability, we introduce an LSTM-based deep autoencoder model that processes the evolution of the graph via
an LSTM encoder and outputs the predicted graph. Finally, we evaluate the proposed model, M-DHIN, on
real-life datasets and demonstrate that it significantly and consistently outperforms state-of-the-art models.

CCS Concepts: • Information systems→ Network data models;

Additional Key Words and Phrases: Dynamic heterogeneous information network, network representation
learning, metagraph

This work was partially supported by NSFC under grant Nos. 61872446 and U19B2024, NSF of Hunan Province under grant
No. 2019JJ20024, the Science and Technology Innovation Program of Hunan Province under grant No. 2020RC4046, and the
Hybrid Intelligence Center, a 10-year program funded by the DutchMinistry of Education, Culture and Science through the
Netherlands Organisation for Scientific Research, https://hybrid-intelligence-centre.nl. All content represents the opinion
of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.
Authors’ addresses: Y. Fang, X. Zhao (corresponding author), P. Huang, and W. Xiao, National University of Defense Tech-
nology, Changsha, 410072, China; emails: {fangyang12, xiangzhao, huangpeixin15, wdxiao}@nudt.edu.cn; M. de Rijke, Uni-
versity of Amsterdam, Amsterdam, 1090GH, The Netherlands; email: m.derijke@uva.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1046-8188/2022/03-ART64 $15.00
https://doi.org/10.1145/3485189

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

https://hybrid-intelligence-centre.nl
mailto:permissions@acm.org
https://doi.org/10.1145/3485189

64:2 Y. Fang et al.

ACM Reference format:

Yang Fang, Xiang Zhao, Peixin Huang, Weidong Xiao, and Maarten de Rijke. 2022. Scalable Representation
Learning for Dynamic Heterogeneous Information Networks via Metagraphs. ACM Trans. Inf. Syst. 40, 4,
Article 64 (March 2022), 27 pages.
https://doi.org/10.1145/3485189

1 INTRODUCTION

A heterogeneous information network (HIN) is a network that evolves constantly, with nodes
and edges of multiple types. In practice, most networks are dynamic HINs, such as social net-
works and bibliographic networks. Hence, dynamic HINs serve as a more expressive tool to model
information-rich problems than static networks.
To be able to process a network in a machine learning context, network representation learn-

ing, also known as network embedding learning, which is aimed at obtaining an embedding of a
network into a low-dimensional space, has been investigated extensively. Most research focuses
on static information networks. Classic network embedding models [e.g., 15, 22, 29] utilize ran-
dom walks to explore static homogeneous networks. To represent static heterogeneous networks,
many models have been proposed based on metapaths, using different mechanisms to model the
relationships between HIN nodes [7, 11, 16]. Unlike static network embeddings, the techniques
for dynamic HINs need to be incremental and scalable so as to be able to handle network evolu-
tions effectively. This renders most existing static embedding models, which need to process the
entire network step by step, unsuitable and inefficient. To address this issue, we propose a novel
dynamic HIN embedding model, namedM-DHIN, which provides a scalable method to capture the
features of a dynamic HIN viametagraphs. We first learn the initial embeddings of the whole HIN
at the first time stamp. Leveraging random walks or metapaths as is done by traditional network
embedding methods is insufficient to describe the neighborhood structure of a node in a com-
plete manner [10]. Here, we propose metagraphs to capture the structural information of a HIN. A
metagraph is a subgraph of node types with edge types in between, which captures the connecting
subgraph of two node types, and hence, completely retains the neighborhood structure of nodes;
some toy examples are provided in Figure 1. When training the model, we observe that the struc-
ture of metagraphs can be either symmetric or asymmetric, as illustrated in Figures 1(a) and 1(b),
respectively. To better represent HIN nodes, we incorporate a complex space-oriented embedding
scheme [30] to handle symmetric and asymmetric relationships between nodes. In complex space,
the entries in the embedding vectors of nodes are complex-valued; that is, we separate the vectors
of nodes into real and imaginary parts.
We employ triadic structures, i.e., sets of three nodes, to capture evolutions in a dynamic HIN.

Triadic structures are fundamental building blocks in a network [33] and we describe their evolu-
tion as triadic closure and opening processes [37]. Figure 2 is a toy example of a dynamic HIN, where
U denotes users and T denotes topics subscribed to by users. From time stamp t to t+1, we observe
a newly arriving edge from U2 to T1, meaning that U2 now subscribes to T1, which is a triadic clo-
sure process. Moving from time stamp t + 1 to t + 2, the edge from U2 to U3 disappears, meaning
that U2 unfollows U3, which is a triadic opening process. Unlike traditional static methods that
process the entire network, we introduce a changed training dataset that only includes the nodes
involved in triadic closure or opening processes in between two consecutive time points, as well
as newly added and deleted nodes with their neighbor nodes. That is, after obtaining the initial
complex embeddings, we only update the representations of nodes in the change dataset. When
training, we process the metagraph instances in the change dataset. For example, in Figure 2, from
time t to t + 1, only U1, U2, and T1 will be included in the change dataset, and they will become

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

https://doi.org/10.1145/3485189

Scalable Representation Learning 64:3

Fig. 1. Examples of metagraphs.

Fig. 2. An example of a dynamic HIN model of a social network.

a metagraph instance to be trained. From time t + 1 to t + 2, only U1, U2, and U3 will be included.
Then we apply the complex embedding mechanism again on the change datasets to update the
network embeddings. By doing so, we represent every snapshot of a dynamic HIN over time, thus
capturing its dynamic features. Note that metagraphs will not change along with the HIN, since
they only contain node and edge types acting like a relation. We only update metagraph instances.
The network embeddings generated above can be leveraged to predict the future network struc-

ture. Most existing methods only use the current snapshot to predict a future network, ignoring
information about the network’s historical evolution. We introduce an LSTM-based deep autoen-
coder to utilize all history snapshots for prediction. Concretely, we use a metagraph to form the
adjacency matrix of a node and then collect all the history metagraphs as inputs. The LSTM en-
coder helps the model to capture the history of nodes. Finally, the decoder outputs the predicted
graph.
To evaluate the proposed M-DHIN, we perform experiments on six tasks: link prediction,

changed link prediction, node classification, node prediction, graph reconstruction, and anomaly
detection. The experimental results we obtain show that M-DHIN consistently and significantly
outperforms state-of-the-art models, which verifies the effectiveness of M-DHIN on representing
a dynamic HIN.
This article is an extension of our previous work [10]. In our previous work, we focused on repre-

sentation learning for static HINs via a metagraph-based complex mechanism. Here, we make the
non-trivial extension to dynamic HINs. The main contributions of the article can be summarized
as follows:

• We propose a novel dynamic network embedding model, M-DHIN, that learns representa-
tions of every snapshot of a dynamic HIN via metagraph-based complex embeddings on
so-called change datasets.
• We propose an LSTM-based deep autoencoder mechanism to enableM-DHIN to predict the
future network via history structure evolutions.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:4 Y. Fang et al.

• We evaluate the performance of M-DHIN on six tasks and compare it with state-of-the-art
models; the experimental results show that M-DHIN consistently and significantly outper-
forms the state of the art.

The rest of the article is structured as follows. We introduce related work in Section 2 and present
the preliminaries in Section 3. Then we present M-DHIN, together with a theoretical analysis, in
Section 4. Next, we introduce our experimental setup in Section 5 and present our experimental
results in Section 6. We conclude in Section 7.

2 RELATEDWORK

2.1 Static Network Embeddings

Most previous research on representation learning for information networks focuses on represen-
tation learning for static networks. Network embedding methods originated from dimensionality
reduction approaches [3, 6, 25, 31], which compute eigenvectors of the affinity graph constructed
via feature vectors for nodes. The graph factorization model [1] generates network embeddings by
factorizing the adjacency matrix. These models cannot capture the global network structure, they
have problems with data sparsity, and they come with high computational costs [29].

To preserve the local and global structure of a network, some research proposes to utilize ran-
dom walks or paths of a network. DeepWalk [22] first extracts random walks from a network and
then applies the SkipGram model on random walks to generate network embeddings. LINE [29]
employs both first-order and second-order proximities so as to capture both local and neighbor-
ing structures. node2vec [15] harnesses a biased random walk sampling strategy to represent the
network structure, which is more expressive than DeepWalk. GrapRep [5] explores the high-order
proximities of DeepWalk but suffers from the expensive computation of the power of a matrix
and singular value decomposition (SVD) during the training process. SDNE [31] preserves the
non-linear structural information of a network by using a semi-supervised deep model.
The aforementioned approaches are designed for homogeneous networks. There are many ded-

icated methods specifically expressing features of heterogeneous networks. PTE [28] utilizes the
conditional probability of nodes of one specific type generated by nodes of another type, then
computes the conditional distribution, which should be close to its empirical distribution. meta-
path2vec [7] uses a heterogeneous SkipGram by setting the context window limited to one type.
HINE [16] adopts a proximity measure based on metapaths and preserves proximity by minimiz-
ing the distance between nodes’ joint probability defined by sigmoid and empirical probabilities.
Esim [27] proposes a metapath-guided sampling strategy to improve the model efficiency while
its objective function is partially defined. HIN2Vec [11] utilizes Hadamard multiplication of nodes
and metapaths to exploit features of a HIN, but the symmetric and asymmetric structures inside a
HIN are largely overlooked.
In a recent publication the term MetaGraph2Vec [35] was coined. However, this publication uti-

lizes heterogeneous SkipGrams and combines metapaths to form so-called “metagraphs,” which,
in essence, is a path-oriented model. Additionally, many recent models harness graph neural net-
works to explore the structural information of networks [12, 18, 34]. HetGNN [34] groups nodes
according to their type and applies Bi-LSTM on each group. GEM [20] learns representations
from heterogeneous account-device graphs to detect the malicious account in a static setting.
HAN [32] proposes to represent a heterogeneous network based on the hierarchical attention,
including node-level and semantic-level attentions. Meta-GNN [26] makes use of metagraphs to
extract diverse semantics; however, it does not take symmetric and asymmetric metagraphs into
consideration. PIdentifier [9] designs different metagraphs to formulate the relatedness between

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:5

nodes, which are task specific. It does not consider the symmetric and asymmetric attributes of
metagraphs either, which may hinder its performance.
In our previous work [10] we propose a static HIN embeddingmodel that first adopts the GRAMI

algorithm to generate metagraphs and then harnesses the complex embedding scheme to explore
the features of a HIN. In contrast, in this work, we focus on embedding dynamic HINs and use the
method from our previous work to train the initial snapshot of a HIN.

2.2 Dynamic Network Embeddings

Recently, dynamic network embeddings have begun to draw more attention. Some early research
tries to extend static network embedding models by adding regularizations [36, 38]. Li et al. [19]
borrow the idea of spectral clustering, which is widely used in computer vision tasks. It learns
a robust dynamic affinity matrix using multiple features and decides a set of optimal projection
matrices. Luo et al. [21] realize unsupervised feature selection by building an adaptive reconstruc-
tion graph meanwhile considering its multiconnected-components (multi-cluster) structure. Dyn-
GEM [14] proposes an autoencoder mechanism to capture the dynamics, but it only utilizes one
previous time step snapshot to generate the current graph embeddings. TIMERS [36] leverages
incremental SVD to update the network embeddings and returns SVD values when the error is be-
yond the threshold. DynamicTraid [37] only uses the triadic closure process to describe the evolu-
tion of a dynamic network and is designed for homogeneous networks. DYLINK2VEC [23] focuses
on learning link embeddings in a dynamic network, that is, learning node pair representations in-
stead of node representations. Then it adopts temporal functions to learn dynamic patterns over
time. Furthermore, change2vec [4] utilizes a changed training dataset to only train the changed
part of a dynamic network. It uses metapath2vec to model the snapshot and is unable to predict
the future network. Dyngraph2vec [13] utilizes an LSTM-based deep autoencoder to process the
history snapshots; however, it uses an adjacency matrix to represent the network structure, which
is not very expressive, thus missing relation information between nodes. It is also not scalable to
large networks as the dimension of the adjacency matrix could be large, causing high computa-
tional costs. In addition, it can only process at most 10 time stamp snapshots as reported in its
original paper, since it has to process the complete history information at a time. However, the
model we propose, M-DHIN, is able to process history information step by step, and thus the
sequence length of history embeddings is not limited.
To the best of our knowledge, our model, M-DHIN, is the first to not only represent every

snapshot of the dynamic HIN by modeling the triadic evolution process but also predict the future
structure of the HIN via an LSTM-based deep autoencoder.

3 PRELIMINARIES

In the following, we introduce the notation and definitions of a dynamic HIN andmetagraph. Then
we formulate the problem of dynamic network representation learning for HINs. Table 1 lists the
main terms and notation used.

Definition 3.1 (Dynamic (HIN)). Let G = (V ,E,T) be a directed graph, in which V denotes the
set of nodes and E denotes the set of edges between nodes. Each node and edge are associated
with a type mapping function, ϕ : V → TV and φ : E → TE , respectively. TV and TE denote
the sets of node and edge types. A heterogeneous information network (HIN) is a network where
|TV | > 1 or |TE | > 1; otherwise, it is a homogeneous network. Moreover, a dynamic HIN is a series
of network snapshots denoted as {G1, . . . ,GT ime }. For two consecutive time stamps t and t + 1,
the following conditions should be satisfied: |V t+1 | � |V t | or |Et+1 | � |Et |, where |V t | and |Et |
denote the number of nodes and edges at time stamp t , respectively. We assume that TV and TE

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:6 Y. Fang et al.

Table 1. Terms and Notation

Symbol Definition

n Number of nodes
(u, s,v) HIN triplet containing head node u, tail node v, and metagraph s
u, s, v Embeddings of u, s, and v , respectively
Xuv Score matrix
Y t Node embeddings at time stamp t
Z t Metagraph embeddings at time stamp t
au = [a1u , . . . ,a

t
u] Time sequential adjacency matrix of node u based on metagraphs

y (k) Hidden layers of LSTM-based autoencoder
θ = {W (k),b (k) } Autoencoder weights and biases

remain unchanged during the entire evolution of the network. Figure 2 illustrates an example of
a dynamic HIN.

Definition 3.2 (Metagraph). Ametagraph is a subgraph of compatible node types and edge types,
denoted as S = (TV S ,TES), where TV S and TES denote the sets of node types and edge types in a
metagraph, respectively.
As shown in Figure 1, metagraphs can be classified as symmetric and asymmetric ones; we will

deal with both conditions in the proposed model.

Problem 3.1 (Dynamic HIN Representation Learning). Given a series of dynamic networks

{G1, . . . ,GT ime }, dynamic HIN representation learning is to learn the dynamic low-dimensional

vectors of nodes Y t ∈ C |V t |×d , and d is the dimension of the node representation. In particular, our

proposed method should also obtain the representations of metagraphs Z t ∈ C |S t |×d . These represen-
tations are able to capture the evolving structural properties in a dynamic network.

4 PROPOSED MODEL

In this section, we detail our proposed model M-DHIN in detail. An overview of M-DHIN is
provided in Figure 3. We first introduce a complex embedding mechanism to represent a given
dynamic HIN at the initial time stamp. Then we apply a triadic metagraph dynamic embedding
mechanism to learn the dynamic HIN from time step 2 to time stamp t . Finally, we propose an
LSTM-based deep autoencoder to perform graph prediction at time stamp t + 1.

4.1 Initial Complex Embedding Mechanism

Traditional HIN representation learning methods like DeepWalk, node2vec, and Metapath2vec
need to process the complete HIN at every time stamp for dynamic generation of up-to-date node
vectors, which is time-consuming, inefficient, and not scalable to large dynamic HINs. To address
this issue, we propose a novel model named M-DHIN that is able to capture the main changes of
dynamic networks. The initial step of M-DHIN is similar to static HIN embedding methods, and
it represents the whole network (at the first time stamp) via a complex embedding scheme based
on metagraphs.
Given the initial HIN at time stamp 1,G1 = (V 1,E1), to represent the relationship between nodes

and metagraphs, we introduce the concept of HIN triplets. A HIN triplet is denoted as (u, s,v), in
which u is the first node generated in a metagraph, v the last, and s is the metagraph connecting

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:7

Fig. 3. An overview of M-DHIN.

them. u ∈ Cd , v ∈ Cd , and s ∈ Cd are the representation vectors of u, v, and s , respectively, where
d is the dimension of the representation vectors.

The probability of whether a HIN triplet holds is denoted as

P (s |u,v) = σ (Xuv), (1)

whereX ∈ Rn×n is a scorematrix,n is the number of training nodes, andσ is an activation function;
we choose the sigmoid function.

Notice that a metagraph may be symmetric or asymmetric; that is, if a metagraph is symmetric,
exchanging the first and last node will not change the semantics of the original metagraph, as
shown in Figure 1(a). Correspondingly, exchanging the head and tail node will change the seman-
tics of an asymmetric metagraph, as shown in Figure 1(b).
To address this issue, we adapt the schema of complex knowledge embeddings in [30] to fit

the task of network embeddings. For a HIN triplet (u, s,v), its complex embedding is denoted
as u = Re(u) + iIm(u), v = Re(v) + iIm(v), and s = Re(s) + iIm(s), where Re(x) ∈ Rd and
Im(x) ∈ Rd represent the real and imaginary part of the vector x ∈ Cd , respectively. Afterward,
we introduce the Hadamard function to capture the relationship of u, v, and s in complex spaces,
which is denoted as

Xuv =
∑

u � s � v̄, (2)

where v̄ is the complex conjugate form of v, and � is the element-wise product. However, the
sigmoid function in Equation (1) cannot be applied in complex spaces, and thus we only keep the
real part of the objective function, which is still able to handle the symmetric and asymmetric
structures well, and we will illustrate the reason in detail later. So, one element in the score matrix
will eventually be

Xuv = Re��
∑

u � s � v̄��. (3)

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:8 Y. Fang et al.

ALGORITHM 1: The Initial Complex Embedding Algorithm

Input :
(1) The initial HIN at the first time stamp G1 = (V 1,E1);

(2) Maximum number of iterations: MaxIter ;
Output :

Node embeddings Y 1 and metagraph embeddings Z 1;

1 S1 ← generate the initial metagraph set using GRAMI;

2 (u, s,v) ← generate the HIN triplets based on metagraphs for training;

3 Iterations ← 0;

4 repeat

5 fs (u, v) ← calculate score function to evaluate if a triplet holds using Equation (4);

6 P (s |u,v) ← compute probability of a triplet being positive based on score function using

Equation (11);

7 logO (u,s,v) ← generate the objective function based on P (s |u,v) using Equation (10);

8 u, s, v← update embeddings of nodes and metagraphs using Equation (14);

9 Iterations ← Iterations + 1

10 until convergence or Iterations ≥ MaxIterations;

Now that we have obtained the score matrix, the corresponding score function is defined as

fs (u, v) = Re(〈u, s, v̄〉)
= 〈Re(u),Re(s),Re(v)〉 + 〈Im(u),Re(s), Im(v)〉
+ 〈Re(u), Im(s), Im(v)〉 − 〈Im(u), Im(s),Re(v)〉,

(4)

where 〈·〉 is the standard element-wise multi-linear dot product. For example, 〈a,b, c〉 = ∑k akbkck ,
where a, b, c are vectors and k represents their dimension.

Equation (4) is able to handle asymmetric metagraphs thanks to the complex conjugate of one
of the embeddings. In addition, if s is purely imaginary, i.e., its real part is zero, the score func-
tion is antisymmetric, and if real, the function is symmetric.1 Co-authorship is a symmetric rela-
tion. Citation is an antisymmetric relation: (usually) paper A can only cite paper B but B cannot
cite A; in other words, B is cited by A. By separating the imaginary and real part of the meta-
graph embedding s , we obtain a decomposition of the metagraph matrix Xs as the sum of an
antisymmetric matrix Im(Udiag(−Im(s))V̄) and a symmetric matrix Re(Udiag(Re(s))V̄). From this
we can see that metagraph embeddings naturally act as weights on each latent dimension, i.e.,
Im(s) over the antisymmetric, imaginary part of 〈u, v〉 and Re(s) over the symmetric, real part of
〈u, v〉. We have that 〈u, v〉 = 〈v, u〉, meaning that Im(〈u, v〉) is antisymmetric, while Re(〈u, v〉) is
symmetric. Therefore, the mechanism introduced above enables us to accurately and effectively
represent both symmetric and asymmetric (including antisymmetric) metagraphs between pairs of
nodes.
In this initial step, we use an existing state-of-the-art approach GRAMI [8] to find all subgraphs

that appear frequently in a database satisfying a given frequency threshold. Then we adopt these
mined subgraphs to form metagraphs.
Algorithm 1 summarizes the initial complex embedding algorithm.

1Mathematically, if f (x, y) = f (y, x), the function is symmetric; otherwise it is asymmetric, and in particular, if f (x, y) =
−f (y, x), the function is antisymmetric.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:9

4.2 Dynamic Embedding Mechanism via Triadic Evolution Processes

After processing the full HIN to obtain the initial embeddings, we leverage triadic node blocks
to further capture the structural evolutions of the dynamic HIN. A triad is a set containing three
nodes. If every node is connected to each other, it is called a closed triad, and if there are only two
edges between these three nodes, the triad is called an open triad. As mentioned in Section 1, the
evolution of an open triad structure into a closed structure, i.e., the triadic closure process, is the
fundamental change in the evolution of a dynamic HIN [37]. So in this step, we correspondingly
construct the changed training datasets to include nodes that undergo a triadic closure. Meanwhile,
we cannot ignore that there do exist triadic opening processes in a dynamic HIN; that is, two nodes
in a triad may lose their relationship as time passes. Overall, we determine four common scenarios
to describe the changes of a dynamic HIN:

(1) Added edges form a triadic closure process. We identify all the metagraphs having three node
vectors changing from only two edges in between to a circle connected to each other. Those
metagraphs will be included in the changed training datasets at time stamp t named as
St
chanдe

. For a metagraph s having three nodes v1, v2, and v3, we write (v1,v2) for the edge

between v1 and v2. Then, Stchanдe , obtained after the triadic closure process, is defined as

Stchanдe =
{
s : {(v1,v2) � Et , (v1,v3) ∈ Et , (v2,v3) ∈ Et } � ∅;
{(v1,v2) ∈ Et+1, (v1,v3) ∈ Et+1, (v2,v3) ∈ Et+1} � ∅

}
.

(5)

(2) Deleted edges cause a triadic opening process. We collect all metagraphs having a triad evolv-
ing from a circle into a path with two edges; these nodes at time stamp t will be included in
St
chanдe

. Similarly to the triadic closure process, St
chanдe

after the triadic opening process is

defined as

Stchanдe =
{
s : (v1,v2) ∈ Et , (v1,v2) � Et+1,
{(v1,v2) ∈ Et , (v1,v3) ∈ Et , (v2,v3) ∈ Et } � ∅;
{(v1,v2) ∈ Et+1, (v1,v3) ∈ Et+1, (v2,v3) ∈ Et+1} = ∅

}
.

(6)

(3) An added node. Given an existing node in a metagraph denoted asv1 and a newly added node
v2, Stchanдe will be extended as

Stchanдe = {s : v1,v2 ∈ V t+1,v1 ∈ V t ,v2 � V t , (v1,v2) � Et }. (7)

(4) A deleted node. Given two existing nodes in a metagraph denoted asv1 andv2, supposev2 is
deleted, then St

chanдe
will become

Stchanдe = {s : v1,v2 ∈ V t ,v2 � V t+1, (v1,v2) ∈ Et }. (8)

Figure 4 illustrates the above procedure in detail.
When forming the change set, the main difference between Change2vec and our model is that

they only collect the nodes that have been changed and then form the meta-path in the change set,
which may lose connection with the original network, and many meta-paths may be missed. For
example, two newly added nodes may be connected by a meta-path through the original network
but not connected in the change set. However, in our model, we build the change set based on the
original metagraph; that is, when training the change set, the nodes are trained over the original
metagraph after the changing process. By doing so, ourmodel is better suited for trainingmetapath
and metagraph. In addition, this operation guarantees that the model learns the embeddings not
meant for St

chanдe
, as it still has a connection with the original network. Notice that a node may be

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:10 Y. Fang et al.

Fig. 4. The formation of the change set.

involved in more than one scenario; a node can only be included once in St
chanдe

. This is to avoid

duplicate calculations of a node’s embedding. Once included, a node will be calculated based on
the metagraph it belongs to, and the change process of the metagraph could describe all possible
scenarios a node has experienced.
Once St

chanдe
has been obtained, we only train the set St

chanдe
using the metagraph-based com-

plex mechanism to obtain the embeddings of the changed nodes instead of training the whole
network all over again. Specifically, node embeddings Y t evolve to Y t+1 at time stamp t + 1 by
removing the deleted node representations ({v : v � V t+1,v ∈ V t }), adding embeddings for newly
added nodes ({v : v � V t ,v ∈ V t+1}), and replacing the changed node representations in the
triadic closure or opening processes({v ∈ V t ,v � V t+1,Y t

v � Y
t+1
v }).

Here we introduce the training objective. To obtain dynamic HIN embeddings from time stamp
1 to t with the graph changes observed, we first use a negative sampling strategy to form the
training datasets. First, in a positive triplet (u, s,v) nodes u and v are connected via metagraph s ,
and in a negative triplet (u, s,v) nodes u and v are connected via metagraph s . For each positive
HIN triplet (u, s,v), we generate the negative HIN triplets by randomly replacing u and v with
other nodes, meanwhile restricting them to have the same type as the replaced one. We also filter

out replaced HIN triplets remaining positive after sampling. Notice that the number of candidates of
s is much smaller than that of u orv , so the sampled negative data are generated by only replacing
u and v .

After sampling, we have training data in the form of (u, s,v,Huv), whereHuv ∈ {1, 0} is a binary
value indicating whether the HIN triplet is positive or not. For a training instance (u, s,v,Huv), if
Huv = 1, the objective functionO (u,s,v) aims to maximize P (s |u,v); otherwise, P (s |u,v) should be
minimized. Thus, we have our objective function as follows:

O (u,s,v) =

{
P (s |u,v), if Huv = 1;

1 − P (s |u,v), if Huv = 0.
(9)

To simplify our computations, we define logO (u,s,v) as follows:

logO (u,s,v) = Huv log P (s |u,v) + (1 − Huv) log[1 − P (s |u,v)], (10)

where P (s |u,v) is defined as
P (s |u,v) = sigmoid(fs (u, v)). (11)

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:11

ALGORITHM 2: The Dynamic Embedding Algorithm

Input :
(1) The dynamic HIN at time stamp t , Gt = (V t ,Et);

(2) Maximum number of iterations: MaxIter ;
Output :

Embeddings of changed nodes Y t and embeddings of changed metagraphs Z t ;

1 St
chanдe

← generate the changed dataset using the four scenarios mentioned in Equations (5), (6),

(7), and (8);

2 (u, s,v) ← generate the HIN triplets based on the changed dataset St
chanдe

for training;

3 Iterations ← 0;

4 repeat

5 fs (u, v) ← calculate score function to evaluate if a triplet holds using Equation (4);

6 P (s |u,v) ← compute probability of a triplet being positive based on score function using

Equation (11);

7 logO (u,s,v) ← generate the objective function based on P (s |u,v) using Equation (10);

8 u, s, v← update embeddings of nodes and metagraphs using Equation (14);

9 Iterations ← Iterations + 1

10 until convergence or Iterations ≥ MaxIterations;

Specifically, we aim to maximize the objective function logO (u,s,v) . If the triplet (u, s,v) exists,
Huv = 1, then the objective function will be

logO (u,s,v) = log P (s |u,v). (12)

Maximizing the objective function will maximize the probability P (s |u,v). In turn, we are able
to obtain the embeddings of u, v, and s, which will maximize the probability that (u, s,v) holds.
Similarly, for the negative sample that the triplet (u, s,v) does not exactly exist withHuv = 0, then
the objective function will be

logO (u,s,v) = log[1 − P (s |u,v)]. (13)

Maximizing the objective function will minimize the probability P (s |u,v); correspondingly, the
embeddings of u, v, and s that minimize the probability that (u, s,v) holds will be obtained.
We apply a SGD algorithm [24] to maximize the above objective function with Adaptive Mo-

ment Estimation (Adam) [17]. Specifically, for each training entry (u, s,v,Huv), it goes backward
to adjusts the embeddings u, v, and s based on the the gradients of logO (u,s,v) differentiated by u,
v, and s, respectively.

u := u +
dlogO (u,s,v)

du
(14a)

v := v +
dlogO (u,s,v)

dv
(14b)

s := s +
dlogO (u,s,v)

ds
. (14c)

Algorithm 2 summarizes the dynamic embedding algorithm.

4.3 Graph Prediction via LSTM-based Deep Autoencoder

After completing the two steps above, our model is able to generate the HIN representations at
every time stamp; however, it is incapable to predict future structures in a dynamic HIN. In other

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:12 Y. Fang et al.

Fig. 5. An LSTM-based deep autoencoder.

words, it can only produce the node embeddings based on the observed network evolutions, but
it cannot describe unseen changes that may come in the future. To address this issue, we propose
a deep autoencoder model based on an LSTM that can leverage the previous sequential structural
evolutions to generate the future HIN representation. Figure 5 illustrates this LSTM-based deep
autoencoder.
Note that when predicting the future network, we only train the changed metagraphs, not every

metagraph. As discussed above, each node is included once by one original metagraph, which
could also save training time. And for each changed metagraph included, we train it with the
autoencoder. Correspondingly, each node in a change set will be calculated only once, no matter
whether it is popular or not. In other words, we treat each node equally in the change set. To
predict the future state of a node, it is more important to learn the dynamic process of a node
instead of its popularity. So once the dynamic process of a given node is obtained, we are able to
predict its future state regardless of its popularity.
Our deep autoencoder model consists of an encoder and decoder part. To construct the inputs

of the encoder, for a node, we take its metagraph as neighbor nodes to form its adjacency matrixA.
Then, for any pair of nodes u and v from the metagraph s , the input of the encoder consists of the
time sequential adjacency vectors of u and v , denoted as au = [a1u , . . . ,a

t
u] and av = [a1v , . . . ,a

t
v],

respectively. Specifically, au is a combination of two components. One is a row of adjacency matrix
A that denotes the nodes that are adjacent with u, and it is further mapped into a d-dimensional
vector by a fully connected layer. The other is the dynamic embeddings of node u learned in
Algorithms 1 and 2. Then, the input is processed by the encoder to obtain the low-dimension
representations yu and yv . The decoder aims to predict the neighborhood at+1u and at+1v via the
embeddings at time stamp t , and the predicted adjacency vectors by the deep autoencoder are
denoted as ât+1u and ât+1v .
Concretely, for a nodeu with its neighborhood au ∈ Rdt , in whichd is the embedding dimension

and t is the total time steps, the hidden representation of the first layer is represented as

y (1)
u = fa

(
W (1)

A
au + b

(1)
a

)
, (15)

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:13

in whichW (1)
A
∈ Rd (1)×dt is the parameter matrix in the first layer of the autoencoder, andd (1) is the

representation dimension of the first layer. b (1)a ∈ Rd (1)
is the bias of the first layer of the encoder,

and fa denotes the activation function for which we choose sigmoid here. Then the output of the
encoder, with k layers is computed as

y (k)
u = fa

(
W (k)

A
y (k−1)
u + b (k)a

)
. (16)

To fully capture information about the past evolution of the metagraph, we further apply layers
of LSTMs on the output of the encoder. For the first LSTM layer, its hidden state representation is
computed as

i (k+1)
ut

= δ
(
W (k+1)

i

[
atu ,y

(k+1)
ut−1

]
+ b (k+1)i

)
(17a)

f (k+1)
ut

= δ
(
W (k+1)

f

[
atu ,y

(k+1)
ut−1

]
+ b (k+1)

f

)
(17b)

z (k+1)
ut

= tanh
(
W (k+1)

c

[
atu ,y

(k+1)
ut−1

]
+ b (k+1)c

)
(17c)

c (k+1)
ut

= f (k+1)
ut

� c (k+1)
ut−1 + i

(k+1)
ut

� z (k+1)
ut

(17d)

o (k+1)
ut

= δ
(
W (k+1)

o

[
atu ,y

(k+1)
ut−1

]
+ b (k+1)o

)
(17e)

y (k+1)
ut

= o (k+1)
ut

� tanh
(
c (k+1)
ut

)
, (17f)

in which iut is the value to activate the input gate, fut is the value to activate the forget gate,
zut is the new estimated candidate state, cut is the cell state of the LSTM, out is the value to
activate the output gate, δ represents the activation function for which we use sigmoid here,W ∈
R
d (k+1)×(d+d (k+1)) are parameter matrices, and b ∈ Rd (k+1)

denotes the biases. d (k+1) denotes the
representation dimension of k + 1 layer.
Given l layers of LSTMs, the output of the final LSTM can be represented as

y (k+l)
ut

= o (k+l)
ut

� tanh
(
c (k+l)
ut

)
(18a)

o (k+l)
ut

= δ
(
W (k+l)

LSTM

[
y (k+l−1)
ut

,y (k+l)

ut−1
]
+ b (k+l)o

)
, (18b)

in whichW (k+l)
LSTM

∈ Rd (k+l)×(d (k+l−1)+d (k+l)) . Finally, we aim to minimize the following loss function:

Lt =

(ât+1 − at+1) � B

2F =

(f (a1, . . . ,at) − at+1) � B

2F . (19)

We penalize the incorrect neighborhood reconstruction at time t + 1 by utilizing the embeddings
at time t . Therefore, our LSTM-based deep autoencoder model is able to predict node embeddings
at a future time stamp. To simplify our notation, f (·) represents the function we adopt to generate
the predicted neighborhood at time stamp t + 1 , and we use the above autoencoder framework
as f (·). B ∈ Rd is the hyperparameter matrix to balance the weight of penalizing the observed
neighborhood and � represents the element-wise product.

To predict the HIN embeddings at future time stamp t +1, we optimize the objective function of
the LSTM-based deep autoencoder framework. Specifically, we apply the gradient to the decoder
weights on Equation (19), as follows:

∂Lt

∂W (k+l)
∗

=
[
2(ât+1 − at+1) � B

] ⎡⎢⎢⎢⎢⎣
∂ fa (Y

(k+l−1)W (k+l)
∗ + b (k+l))

∂W (k+l)
∗

⎤⎥⎥⎥⎥⎦ , (20)

whereW (k+l)
∗ is the parameter matrix of the (k + l)-th layer of the autoencoder. After calculating

the derivatives, we also apply the SGD algorithm with Adam to train the model.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:14 Y. Fang et al.

Algorithm 3 details the LSTM-based deep autoencoder for graph prediction. Algorithm 3 in-
cludes the evolvement of changingmetagraphs in Algorithms 1 and 2 to form the adjacencymatrix.
It also makes use of the dynamic embeddings learned in Algorithms 1 and 2 to form atv , which is
the input of the autoencoder.

ALGORITHM 3: Graph Prediction via LSTM-based Deep Autoencoder Algorithm

Input :
(1) The previous HIN from time stamp 1 to time stamp t , {G1,G2, . . . ,Gt };
(2) The previous embeddings learned from time stamp 1 to time stamps Y 1,Y 2, . . . ,Y t ;

(3) Autoencoder parameters θ ;

(4) Maximum number of iterations: MaxIter ;
Output :

Predicted embeddings of nodes Y t+1 at time stamp t + 1;

1 au = [a1u , . . . ,a
t
u]← generate the sequential adjacency vectors of u based on the metagraphs it

belongs.;

2 θ ← RandomInit();

3 Iterations ← 0;

4 repeat

5 Y
(k)
u ← Generate the output of encoder based on au , Y 1,Y 2, . . . ,Y t , and θ using Equations (15)

and (16);

6 y
(k+l)
ut

,o
(k+l)
ut

← generate the final output of LSTM layers using Equation (18b);

7 Lt ← compute the objective function using Equation (19);

8 θ ← update autoencoder parameters by gradient to back-propagate the whole network using

Equation (20);

9 Iterations ← Iterations + 1;

10 until convergence or Iterations ≥ MaxIterations;

11 Obtain node embedding ut+1 ← y
(k+l)
ut

5 EXPERIMENTS

In this section, we first introduce the datasets employed to assess the effectiveness of proposed
model M-DHIN. To compare with M-DHIN, we introduce other state-of-the-art models as base-
lines. Finally, we present the experimental setup forM-DHIN in detail.

5.1 Datasets

To assess the performance of M-DHIN, we conduct experiments using four dynamic datasets, ex-
tracted from DBLP,2 YELP,3 YAGO,4 and Freebase.5 Descriptive statistics for those datasets are
presented in Table 2. For simplicity, we only provide the statistics at the initial time stamp and the
last time stamp with different time spans (month and year).

• DBLP is a bibliographic dataset in computer science. We extract a subset from it using 15
sequential month time stamps from October 2015 to December 2016. Specifically, in October
2015, it contains 110,634 papers (P), 9,2473 authors (A), 4,274 topics (T), and 118 venues (V).

2http://dblp.uni-trier.de.
3https://www.yelp.com/dataset_challenge.
4https://old.datahub.io/dataset/yago.
5https://developers.google.com/freebase/.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

http://dblp.uni-trier.de
https://www.yelp.com/dataset_challenge
https://old.datahub.io/dataset/yago
https://developers.google.com/freebase/

Scalable Representation Learning 64:15

Table 2. Dataset Statistics

Dataset # Nodes # Edges # Node Types # Labels # Time Stamps

DBLP (initial) 207,499 902,362
4 4 15 (month)

DBLP (last) 256,082 1,121,273
YELP (initial) 148,662 676,376

4 3 12 (month)
YELP (last) 183,529 802,023
YAGO (initial) 19,024 34,023

5 4 10 (year)
YAGO (last) 24,439 39,028
Freebase (initial) 6,641 7,213

4 3 12 (month)
Freebase (last) 8,018 8,921

In December 2016, it contains 135,348 papers (P), 116,137 authors (A), 4,476 topics (T), and
121 venues (V). Authors were separated into four areas labeled: database, machine learning,
data mining, and information retrieval.
• YELP is a social media dataset with reviews of restaurants. The extracted dynamic HIN has
12 monthly sequential snapshots from January 2016 to December 2016. It contains 81,240
reviews (V), 43,927 customers (C), 74 food-related keywords (K), and 23,421 restaurants (R)
at the outset, in January 2016. It contains 102,367 reviews (V), 51,299 customers (C), 86 food-
related keywords (K), and 29,777 restaurants (R) in December 2016. The restaurants were
split into three types—American, sushi bar, and fast food.
• YAGO captures world knowledge, and we extract a subset with 10 yearly snapshots about
movies ranging from 2007 to 2016. In 2009, it has 5,334 movies (M), 8,346 actors (A), 1,345
directors (D), 1,123 composers (C), and 2,876 producers (P). In 2018, it has 7,476 movies
(M), 10,212 actors (A), 1,872 directors (D), 1,342 composers (C), and 3,537 producers (P). The
movies were divided into five genres—horror, action, adventure, crime, and sci-fi.
• Freebase also contains world knowledge and facts, and the extracted subset is related to
video games. It consists of 12 monthly snapshots from January 2016 to December 2016. It
contains 3,435 games (G), 1,284 publishers (P), 1,768 developers (D), and 154 designers (S) at
the outset, in January 2016. It contains 4,122 games (G), 1,673 publishers (P), 2,022 developers
(D), and 201 designers (S) in December 2016. The games belong to one of three types—action,
adventure, and strategy.

5.2 Tasks

For our experimental evaluation we consider a diverse set of tasks: (1) link prediction, (2) changed
link prediction, (3) node classification, (4) node prediction, (5) graph reconstruction, and (6) anom-
aly detection. By evaluating the performance of different models on multiple benchmark tasks, we
will be able to assess to which degree a model is able to describe and capture the features of a
dynamic HIN. Link prediction, changed link prediction, and node prediction test a model’s ability
to predict the future evolution of a HIN. Node classification and graph reconstruction test whether
a model is able to generate proper dynamic HIN embeddings. Anomaly detection tests a model’s
capacity to detect unexpected events during the evolution of a dynamic HIN.

5.3 Baselines

We include two types of baselines: one consists of static embedding methods, and the other con-
sists of dynamic embedding methods. For the static embedding methods, we consider both homo-
geneous and heterogeneous methods. DeepWalk [22] and node2vec [15] were originally designed

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:16 Y. Fang et al.

to represent the homogeneous network. metapath2vec [7] and MetaGraph2Vec [11] were devised
for heterogeneous networks using metapaths and metagraphs, respectively. Notice that we did not
apply methods that leverage text information, as our datasets do not contain such information, but
only nodes and edges.

• DeepWalk utilizes random walks to capture the structural information of a HIN and ap-
plies homogeneous SkipGram to learn the representation. It has twomain hyper-parameters,
Walk Length (wl) for random walks, andWindow Size (ws) for the SkipGram mechanism. To
report the best performance, we use grid search to find the best configuration on different
tasks usingwl ∈ {20, 40, 60, 80, 100} andws ∈ {3, 5, 7}.
• node2vec is an extension of DeepWalk as it uses biased random walks to better explore
the structure and it also uses SkipGrams to learn the network embedding. We adopt the
same wl and ws as DeepWalk. For its bias parameters p and q, we use grid search on p ∈
{0.5, 1, 1.5, 2, 5} and q ∈ {0.5, 1, 1.5, 2, 5}.
• metapath2vec adopts metapaths to capture the structural information of a HIN and uses
heterogeneous SkipGrams that confine the context window to one specific type to learn the
embedding. We utilize the samewl andws as DeepWalk.
• MetaGraph2Vec constructs metagraphs by simply combining several metapaths, which is a
path-oriented model in essence. Then it adopts heterogeneous SkipGrams to learn the final
representation. Forwl andws , we set the same values as DeepWalk.

For a fair comparison, we also evaluate the performance of four dynamic embedding models, i.e.,
DynamicTriad, DynGEM, dyngraph2vec, and change2vec.

• DynamicTriad [37] describes the evolution of a network based merely on the triadic closure
process and it is designed for homogeneous networks. β0 and β1 are two hyper-parameters
denoting the weight of the triad closure process and the weight of the temporal smoothness,
respectively.We leverage grid search to find the best configuration from β0 ∈ {0.01, 0.1, 1, 10}
and β1 ∈ {0.01, 0.1, 1, 10}.
• Change2vec [4] first learns the initial embeddings of the dynamic HIN and then samples the
changed node sets to be trained using the metapath2vec model. We set its configuration to
be the same as for metapath2vec.
• DynGEM [14] uses a deep autoencoder to capture the dynamics at time stamp t of a HIN
only using the snapshot at time stamp t − 1. α ,υ1,υ2 are relative weight hyperparameters
chosen via grid search from α ∈ {10−6, 10−5}, υ1 ∈ {10−4, 10−6}, υ2 ∈ {10−3, 10−6}
• dyngraph2vec [13] uses a deep LSTM-based autoencoder to process the previous snapshots
based on the lookback window of length lb, i.e., a training snapshot of length lb. Whereas
M-DHIN trains all the previous time stamp snapshots via metagraph embeddings and uses
an autoencoder to predict only the final snapshot, dygraph2vec learns all snapshot graph
embeddings using an autoencoder. So lb is limited due to restricted hardware resources, no
greater than 10 as reported in [13]. Therefore, lb is chosen from {3, 4, 5, 6, 7, 8, 9, 10}.

As to other parameters like learning rate, embedding dimension, and so forth, we directly adopt
the best setup reported in papers that originally introduced the methods listed.
We also add a variant of M-DHIN namedM-DHIN-MG, which only uses the dynamic complex

embeddings viametagraphswithout a deep LSTM-based autoencodermechanism, so as tomeasure
the effectiveness of the autoencoder as part of our ablation analysis.

5.4 Experimental Setup

To assess the performance of M-DHIN, we leverage grid search to find the best experimen-
tal configuration. Concretely, the node and metagraph embedding dimensions are chosen from

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:17

{32, 64, 128, 256}, the learning rate in SGD from {0.01, 0, 02, 0.025, 0.05, 0.1}, the ratio of negative
sampling from {3, 4, 5, 6, 7}, the number of autoencoder layers from {2, 3, 4}, the number of LSTM
layers from {2, 3, 4}, and the training epochs from {5, 10, 15, 20, 25, 30, 35, 40}. Balancing effective-
ness and efficiency, we choose the following configurations to produce the experimental results
reported in the following sections. The embedding dimension is set to 128, the learning rate to
0.025, the negative sampling ratio to 5 (i.e., five negative samples for each positive sample), the
number of autoencoder and LSTM layers are all set to 2, and the number of training epochs is set
to 20.
All experiments are performed on a 64-bit Ubuntu 16.04.1 LTS system with Intel (R) Core (TM)

i9-7900X CPU, 64 GB RAM, and a GTX-1080 GPU with 8 GB memory.

6 EXPERIMENTAL RESULTS AND ANALYSIS

One by one we report on the experimental results for the six tasks that we consider in this article.
After that we analyze the parameter sensitivity to measure the stability of M-DHIN. We report
on statistical significance with a paired two-tailed t-test; we mark a significant improvement of
M-DHIN over the second best model in each task for p < 0.05 with � .

6.1 Link Prediction

In this section, we present the outcomes of a link prediction task. For static HINs, evaluation on
the link prediction task is usually conducted by first removing a fraction of the edges and then
predicting themissing edges. Link prediction for dynamic HINs consists of predicting the existence
of an edge at time stamp t + 1 based on the all previous time stamps.
We use Mean Average Precision (MAP) and top-m recall (R@m) as the evaluation metrics

and setm to 100. MAP is the mean of the average precision scores for the ranking result of each
node. R@m is the percentage of the ground truth ranked in the top-m returned results. Higher
MAP and higher R@m represent better performance.
Table 3 provides the experimental results. It is obvious that the dataset scale has an effect on

performance, with larger datasets having worse results. M-DHIN consistently and significantly
outperforms all other models on every dataset. Specifically, DeepWalk and node2vec achieve the
worst performance, which we attribute to the fact that they are limited to representing homoge-
neous static networks. MetaGraph2Vec outperforms metapath2vec on each dataset, which indi-
cates that metagraphs are more expressive than metapaths. Notice that all the dynamic embed-
ding methods outperform the static embedding methods as they focus on the changing parts in
a dynamic HIN. DynamicTriad slightly outperforms Metagraph2vec and we attribute this to the
fact that DynamicTriad was originally designed for dynamic homogeneous networks and only
focuses on triadic closure processes, so that it is unable to fully capture the structure evolutions.
Change2vec performs worse than DynGEM, which illustrates that a deep autoencoder is more
effective than a SkipGram-based metapath embedding in describing evolving HIN. dyngraph2vec
outperforms DynGEM and M-DHIN-MG due to the fact that DynGEM and M-DHIN-MG only
harness the graph snapshot at time stamp t , while dyngraph2vec employs the history information
with l lookback, i.e., graph snapshots from t − l + 1 to t via an LSTM mechanism.

ComparingM-DHINwithM-DHIN-MG, the result thatM-DHIN has a better performance veri-
fies the effectiveness of LSTM-based deep autoencoders on predicting the graph at time stamp t+1
by using the history information. M-DHIN even performs better than dyngraph2vec, which indi-
cates that forming adjacency matrices according to a metagraph can offer more accurate structural
information than simply using its neighbor nodes in a certain scale.
In conclusion, M-DHIN achieves the best result by using an LSTM-based deep autoencoder to

realize graph prediction at time stamp t + 1, using the history metagraphs from time stamp 1 to t .

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:18 Y. Fang et al.

Table 3. Experimental Results on the Link Prediction Task

DBLP YELP YAGO Freebase

Model MAP R@100 MAP R@100 MAP R@100 MAP R@100

DeepWalk 0.102 0.162 0.111 0.174 0.131 0.247 0.211 0.394
node2vec 0.104 0.165 0.118 0.176 0.136 0.253 0.216 0.392
metapath2vec 0.115 0.171 0.124 0.181 0.156 0.266 0.232 0.411
MetaGraph2Vec 0.121 0.178 0.127 0.192 0.161 0.274 0.239 0.418
DynamicTriad 0.123 0.179 0.135 0.194 0.167 0.281 0.242 0.422
Change2vec 0.134 0.183 0.142 0.208 0.172 0.290 0.257 0.447
DynGEM 0.139 0.186 0.147 0.213 0.179 0.294 0.267 0.453
dyngraph2vec 0.143 0.193 0.154 0.221 0.187 0.302 0.275 0.462

M-DHIN-MG 0.140 0.192 0.151 0.219 0.183 0.298 0.271 0.459
M-DHIN 0.150� 0.197� 0.159� 0.225� 0.194� 0.309� 0.281� 0.467�

6.2 Changed Link Prediction

In real-world scenarios, only a small part of the HIN links will change over time (by being removed
or added) [37], so in this section we only focus on these changed links and study the process of
their evolutions. In other words, we only consider the changed subset and ignore other nodes in
the training and testing processes in this task. We use MAP and R@100 as evaluation metrics.
Table 4 shows the performance on the changed link prediction task.We observe that themargins

between static network embedding and dynamic network embedding becomemuch larger, and this
is because static network embedding methods consider the whole network and are not sensitive to
the evolution of a dynamic HIN. The performances of DynamicTriad, DynGEM, and dyngraph2vec
becomeworse to a certain extent, as they describe the network changing process in a global way. In
other words, at each time stamp, they process the entire network instead of focusing on changing
parts so as to generate dynamic embeddings. In contrast, Change2vec,M-DHIN-MG, andM-DHIN

all experience an increase in both MAP and R@100 metrics, and we attribute this to the formation
of St

chanдe
, which includes changing nodes only. By only training the St

chanдe
after the initial time

stamp, these three models are able to capture a HIN’s evolving structure more precisely.

6.3 Node Classification

In this section we report on the experimental results for the node classification task. The node
labels to be classified for each dataset are introduced in Section 5.1.We calculate the micro-f1 (MIC-
F1) and macro-f1 (MAC-F1) as evaluation metrics. Higher micro-f1 and macro-f1 scores represent
better performance.
Table 5 provides the experimental results. Overall, M-DHIN outperforms all other models on

every dataset regardless of their scale, which confirms its effectiveness. Specifically, metapath2vec
andMetaGraph2Vec outperform the homogeneous static networkmodels DeepWalk and node2vec
despite the fact that they perform slightly worse on Freebase, which indicates that metapaths are
a better way to explore the features of a network than random walks. As mentioned in Section 5.3,
MetaGraph2Vec is basically a path-oriented model, so it is only slightly better than metapath2vec
withmoremetapaths combined.We also observe that, unlike the results for the link prediction task,
M-DHIN-MG outperforms dyngraph2vec except onMAC-F1 in YELP, andwe hypothesize that this
is because embedding information plays a more important role in node classification than history
information. In other words, our complex embeddings based on GRAMI-generated metagraphs are

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:19

Table 4. Experimental Results on the Changed Link Prediction Task

DBLP YELP YAGO Freebase

Model MAP R@100 MAP R@100 MAP R@100 MAP R@100

DeepWalk 0.092 0.151 0.102 0.163 0.117 0.221 0.201 0.364
node2vec 0.096 0.152 0.106 0.168 0.121 0.229 0.204 0.361
metapath2vec 0.108 0.159 0.112 0.174 0.147 0.233 0.223 0.402
MetaGraph2Vec 0.112 0.164 0.115 0.187 0.155 0.242 0.227 0.406
DynamicTriad 0.121 0.177 0.133 0.189 0.166 0.276 0.238 0.419
Change2vec 0.139 0.187 0.148 0.211 0.176 0.295 0.263 0.452
DynGEM 0.135 0.185 0.145 0.210 0.176 0.292 0.265 0.451
dyngraph2vec 0.141 0.189 0.150 0.217 0.178 0.295 0.267 0.455

M-DHIN-MG 0.145 0.194 0.154 0.222 0.187 0.302 0.272 0.462
M-DHIN 0.157� 0.206� 0.165� 0.230� 0.203� 0.315� 0.285� 0.473�

Table 5. Experimental Results on the Node Classification Task

DBLP YELP YAGO Freebase

Model MIC-F1 MAC-F1 MIC-F1 MAC-F1 MIC-F1 MAC-F1 MIC-F1 MAC-F1

DeepWalk 0.164 0.161 0.123 0.109 0.289 0.264 0.518 0.431
node2vec 0.168 0.166 0.131 0.115 0.293 0.271 0.521 0.433
metapath2vec 0.174 0.172 0.237 0.244 0.301 0.284 0.503 0.411
MetaGraph2Vec 0.177 0.176 0.242 0.245 0.305 0.287 0.509 0.417
DynamicTriad 0.193 0.188 0.261 0.268 0.337 0.308 0.526 0.454
Change2vec 0.197 0.193 0.267 0.271 0.341 0.324 0.533 0.466
DynGEM 0.211 0.207 0.273 0.279 0.347 0.326 0.537 0.471
dyngraph2vec 0.219 0.217 0.278 0.288 0.358 0.333 0.545 0.477

M-DHIN-MG 0.223 0.219 0.282 0.286 0.361 0.338 0.549 0.480
M-DHIN 0.231� 0.227� 0.285� 0.294� 0.366� 0.341� 0.554� 0.484�

more expressive than embeddings generated by an LSTM-based deep autoencoder, even thoughM-

DHIN-MG only utilizes the graph at time stamp t for node classification. Combining both complex
embeddings and history information, M-DHIN performs better thanM-DHIN-MG.

6.4 Node Prediction

In the node prediction task, we predict the label of a node at time stamp t + 1 based on the node
embeddings from time stamp 1 to t . We choose micro-f1 (MIC-F1) and macro-f1 (MAC-F1) as our
evaluation metrics.
Table 6 provides the experimental results for the node prediction task. We observe that the

performance in node prediction is similar to that on the node classification task with M-DHIN

outperforming all baselines on each dataset. Notice that, similar to the link prediction task, dyn-
graph2vec outperforms M-DHIN-MG, which proves that history information attributes more to
prediction-related tasks than embedding information.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:20 Y. Fang et al.

Table 6. Experimental Results on the Node Prediction Task

DBLP YELP YAGO Freebase

Model MIC-F1 MAC-F1 MIC-F1 MAC-F1 MIC-F1 MAC-F1 MIC-F1 MAC-F1

DeepWalk 0.132 0.129 0.117 0.093 0.291 0.269 0.489 0.392
node2vec 0.137 0.135 0.123 0.109 0.295 0.275 0.495 0.398
metapath2vec 0.145 0.141 0.225 0.231 0.307 0.286 0.477 0.379
MetaGraph2Vec 0.149 0.142 0.237 0.233 0.308 0.291 0.482 0.385
DynamicTriad 0.166 0.162 0.249 0.254 0.335 0.302 0.502 0.414
Change2vec 0.169 0.165 0.253 0.261 0.338 0.322 0.507 0.418
DynGEM 0.189 0.181 0.261 0.271 0.353 0.331 0.511 0.431
dyngraph2vec 0.195 0.192 0.269 0.280 0.365 0.338 0.528 0.439

M-DHIN-MG 0.192 0.188 0.267 0.277 0.364 0.334 0.524 0.433
M-DHIN 0.201� 0.199� 0.273� 0.286� 0.369� 0.345� 0.533� 0.447�

6.5 Graph Reconstruction

This task is similar to the traditional link prediction task, that is, to construct graph edges between
pairs of nodes based on node embeddings. Given two nodes u andv , we aim to determine whether
there exists an edge between them via the absolute difference in positions between their corre-
sponding embeddings, i.e., |ut − v

t |. The ratio of existing links in the topm pairs of nodes is the
reconstruction precision. Then we evaluate the experimental performance using the metrics MAP
and R@m.
Table 7 presents the experimental results on the graph reconstruction task. M-DHIN has the

best performance on all datasets, which further proves the advantage of combining metagraph-
based complex embeddings with history information learned by an LSTM-based deep autoencoder.
Notice that Change2vec performs relatively well on this task, outperforming dyngraph2vec on
each dataset except for being slightly worse on R@100 in YELP. We attribute this to the fact that
graph reconstruction relies on relations between nodes. Change2vec leverages metapaths to better
express the relations, while dyngraph2vec’s autoencoder model employs the adjacencymatrix that
focuses on a node’s neighborhood instead of the edges in between. M-DHIN-MG outperforms
Change2vec, and it verifies that our complex embeddings via GRAMI-generated metagraphs are
more expressive in describing relations than traditional metapath-based embeddings.

6.6 Anomaly Detection

The anomaly detection task is to detect newly arriving nodes or edges that do not naturally be-
long to the existing clusters. We use a k-means clustering algorithm to generate clusters based on
the dynamic HIN and then use anomaly injection [2] to create the anomalous nodes and edges.
Specifically, we inject 1% and 5% anomalies to build the testing datasets. We adopt the area under
the curve (AUC) score to evaluate the performance of all models. Higher AUC scores represent
better performance.
Table 8 shows the experimental results of all models.M-DHIN outperforms other baselines, de-

tecting 1% and 5% anomalies in every dataset, consistently and significantly. metapath2vec and
MetaGraph2Vec outperform the homogeneous static network models DeepWalk and node2vec,
which indicates that in identifying anomalies, a metapath is more powerful than a random walk
since it defines certain relations, being more sensitive to outliers, while a random walk regards
every node equally. As mentioned above, MetaGraph2Vec is actually a metapath-based model as it

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:21

Table 7. Experimental Results on the Graph Reconstruction Task

DBLP YELP YAGO Freebase

Model MAP R@100 MAP R@100 MAP R@100 MAP R@100

DeepWalk 0.111 0.171 0.119 0.188 0.147 0.255 0.225 0.412
node2vec 0.114 0.175 0.124 0.190 0.154 0.259 0.229 0.418
metapath2vec 0.122 0.182 0.129 0.197 0.169 0.278 0.241 0.423
MetaGraph2Vec 0.125 0.185 0.133 0.203 0.174 0.283 0.245 0.425
DynamicTriad 0.131 0.191 0.141 0.209 0.176 0.297 0.258 0.429
Change2vec 0.146 0.203 0.164 0.226 0.204 0.318 0.287 0.471
DynGEM 0.135 0.194 0.152 0.217 0.189 0.303 0.265 0.451
dyngraph2vec 0.139 0.199 0.159 0.228 0.197 0.310 0.275 0.464

M-DHIN-MG 0.149 0.207 0.167 0.233 0.208 0.320 0.292 0.477
M-DHIN 0.154�0.211� 0.172�0.239� 0.218�0.327� 0.301�0.483�

Table 8. Experimental Results on the Anomaly Detection Task

DBLP YELP YAGO Freebase

Model 1% 5% 1% 5% 1% 5% 1% 5%

DeepWalk 0.743 0.724 0.712 0.689 0.694 0.676 0.738 0.719
node2vec 0.749 0.727 0.707 0.688 0.692 0.679 0.735 0.722
metapath2vec 0.752 0.735 0.718 0.699 0.701 0.685 0.744 0.727
MetaGraph2Vec 0.756 0.739 0.722 0.704 0.706 0.691 0.748 0.729
DynamicTriad 0.757 0.742 0.724 0.707 0.715 0.693 0.751 0.738
Change2vec 0.784 0.773 0.746 0.728 0.732 0.705 0.776 0.762
DynGEM 0.772 0.748 0.728 0.717 0.721 0.697 0.759 0.743
dyngraph2vec 0.776 0.752 0.733 0.723 0.725 0.701 0.761 0.749

M-DHIN-MG 0.789 0.778 0.752 0.734 0.737 0.706 0.784 0.768
M-DHIN 0.795� 0.783� 0.755� 0.736� 0.745� 0.712� 0.792� 0.773�

simply combinesmetapaths. Change2vec performs better thanDynGEMand dyngraph2vec, which
is due to the fact that a metapath is more expressive than a node’s neighborhood adjacency ma-
trix. An adjacency matrix is unable to describe the specific relationship between nodes; it only
describes the existence of nodes and edges and regards them equally, and thus is not effective
in anomaly detection. Note that M-DHIN-MG outperforms Change2vec, which verifies that our
GRAMI-generated metagraphs are more sensitive than metapaths to anomalies, since metagraphs
can express more sophisticated relation information than metapaths.M-DHIN performs even bet-
ter than M-DHIN-MG, and we attribute this to that employing history information is helpful to
identify whether a newly arriving node or edge is anomalous or not.

6.7 Computational Costs

In this section, we present the computation cost of our model in detail. Table 9 illustrates the
results. The time reported is wall-clock time, averaged over 10 runs. Considering the scale of the
dataset and the hardware we use, the cost of time is acceptable on each task (at most of around 1
hour). It further proves thatM-DHIN is scalable to large dynamic HINs.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:22 Y. Fang et al.

Table 9. Running Times on Each Dataset of M-DHIN

LP CLP NC NP GR AD

Datasets Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

DBLP (Train) 3,484 2,282 2,468 3,023 2,643 4,273
DBLP (Test) 1,638 1,033 1,172 1,436 1,233 2,023
YELP (Train) 2,422 2,133 1,836 2,237 1,927 2,863
YELP (Test) 1,162 1,023 832 1,023 923 1,245
YAGO (Train) 458 327 389 412 399 523
YAGO (Test) 221 153 184 203 191 247
Freebase (Train) 183 132 146 173 166 201
Freebase (Test) 88 58 71 82 75 96

Abbreviations used: LP: link prediction, CLP: changed link prediction, NC: node classification, NP:
node prediction, GR: graph reconstruction, AD: anomaly detection.

Table 10. Ablation Analysis of the Initial Embedding on the DBLP Dataset

LP CLP NC NP GR AD

Model MAP R@100 MAP R@100 MIC-F1 MAC-F1 MIC-F1 MAC-F1 MAP R@100 1% 5%

M-DHIN 0.150 0.197 0.157 0.206 0.231 0.227 0.201 0.199 0.154 0.211 0.795 0.783

M-DHIN\initial 0.124 0.182 0.137 0.178 0.213 0.212 0.183 0.178 0.135 0.196 0.782 0.768

Same abbreviations used as in Table 9.

6.8 Ablation Analysis

To evaluate the effect of the initial embedding, here we conduct the ablation analysis. The variant
of M-DHIN that we consider is denoted as M-DHIN\initial, as it is trained without initial embed-
ding. We only report the experimental outcomes on the DBLP dataset as the findings on the other
datasets are qualitatively similar. Table 10 shows the experimental results of the ablation analy-
sis over initial embedding. We observe that M-DHIN outperforms M-DHIN\initial consistently,
which verifies the effectiveness of the initial embedding.

6.9 Parameter Sensitivity

In this final subsection, we conduct a parameter sensitivity study on each task. Specifically, we
choose node dimension and the ratio of negative sampling for analysis. For simplicity, we only
choose one evaluation metric for each dataset in each task.
For our analysis of the sensitivity of M-DHIN to the choice of dimension, we choose MAP as

our metric for the link prediction, changed link prediction, and graph reconstruction tasks; for
node classification and node prediction, we choose MIC-F1 as the evaluation metric; for anomaly
detection, we choose AUC on 1% anomalies for evaluation. The other parameters are set the same
as those mentioned in Section 5.4. Figure 6 provides the experimental results. Basically,M-DHIN is
not very sensitive to dimension, and in many cases, dimension 128 results in the best performance.
Although in some cases dimension 256 outperforms dimension 128, as higher dimension provides
a higher representation ability, the gap is not very large. To balance effectiveness and efficiency,
we prefer a dimension of 128 for our experiments.

As to the analysis of M-DHIN’s sensitivity to the negative ratio, for link prediction, changed link
prediction, and graph reconstruction tasks, we adopt R@100 for analysis; for node classification
and node prediction, we choose MAC-F1 for parameter analysis; for anomaly detection, we choose

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:23

Fig. 6. Dimension sensitivity analysis.

AUC on 5% anomalies as the analysis metric. We set the other parameters to be the same as those
in Section 5.4. Figure 7 presents the results on different negative ratios. Overall, M-DHIN is not
very sensitive to the choice of negative ratio. We observe that in most cases ratio 5 obtains the
best results. This is due to that with a lower ratio, it tends to cause overfitting issues with too
many ground-truth samples in the training datasets, while with a higher ratio, it tends to have an
underfitting problem with too many negative samples in training datasets. Therefore, we choose
a negative ratio of 5 for our experiments.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

64:24 Y. Fang et al.

Fig. 7. Negative ratio sensitivity analysis.

7 CONCLUSIONS

In this article, we have proposed a model, M-DHIN, to learn representations of dynamic hetero-
geneous information networks (HINs). First, the initial embedding of a dynamic HIN is obtained
via a metagraph-based complex embedding mechanism. After this, a change dataset is introduced
that includes the nodes that have experienced one of four scenarios of evolution, that is, triadic
closure, triadic open, newly arrived, or newly deleted. After that we only train on the change
dataset, which makes M-DHIN scalable. Additionally, we enable M-DHIN to predict the future

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

Scalable Representation Learning 64:25

network structure through an LSTM-based deep autoencoder. It processes historical information
via an LSTM encoder and generates the predicted graph.

We have compared M-DHIN with state-of-the-art baselines on four real-world datasets. M-

DHIN significantly and consistently outperforms these baselines on six tasks, i.e., link prediction,
changed link prediction, node classification, node prediction, graph reconstruction, and anomaly
detection. Our experimental results demonstrate thatM-DHIN is able to represent dynamic HINs
in an effective and comprehensive manner, for predicting the future evolution and detecting ab-
normal changes. In addition, we have also shown that M-DHIN is robust w.r.t. the choice of hy-
perparameters.
M-DHIN can be applied to many real-world applications. For example, it can be used for rec-

ommendation applications. In a shopping context, given a user’s historical click records,M-DHIN

can help predict items of interest, just like the link prediction task. For social networks, M-DHIN

can help to recommend users that might be of interest to a given user, just like the node prediction
task. In addition,M-DHIN can help to detect anomalies in dynamic networks; real-world networks
are always evolving andM-DHIN can help to guarantee that changes of the network are intended.

M-DHIN can be improved in a number of ways. First, M-DHIN lacks in terms of the inter-
pretability of the network dynamics. Hence, in future work we intend to provide more insights
into the evolution of a graph, so as to better understand its temporal dynamics. Second, we aim
to add automatic hyperparameter optimization and reduce the number of parameters to further
improve M-DHIN’s accuracy and efficiency. Third, future work also includes ways of automati-
cally learning useful metagraphs in diverse types of dynamic HINs. Fourth, it is of interest to see
whether recent graph neural network models are applicable to dynamic HINs and how they per-
form in comparison with M-DHIN. Fifth, we intend to study alternative ways of setting the time
resolution so as to replace the analysis of snapshots at discrete time points and thereby further
improve the efficiency. And finally, our decision to only update the embeddings in the change
set may not be able to express the influence of the changing structure at the macro level, espe-
cially for influential nodes. As a potential future improvement, we could first identify influential
nodes and then, given an influential node, we could update the embeddings of all its neighboring
nodes.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers for their constructive feedback.

REFERENCES

[1] Amr Ahmed, Nino Shervashidze, Shravan M. Narayanamurthy, Vanja Josifovski, and Alexander J. Smola. 2013. Dis-
tributed large-scale natural graph factorization. In 22nd International World Wide Web Conference (WWW’13). 37–48.
https://doi.org/10.1145/2488388.2488393

[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly detection and description: A survey.
Data Mining and Knowledge Discovery 29, 3 (2015), 626–688. https://doi.org/10.1007/s10618-014-0365-y

[3] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering.
InAdvances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic]

(NIPS’01). 585–591. http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-
and-clustering.

[4] Ranran Bian, Yun Sing Koh, Gillian Dobbie, and Anna Divoli. 2019. Network embedding and change modeling in
dynamic heterogeneous networks. In Proceedings of the 42nd International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’19). 861–864. https://doi.org/10.1145/3331184.3331273
[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph representations with global structural infor-

mation. In Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM’15).
891–900. https://doi.org/10.1145/2806416.2806512

[6] Michael A. A. Cox and Trevor F. Cox. 2008. Multidimensional Scaling. Springer Berlin. 875–878.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1007/s10618-014-0365-y
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering
https://doi.org/10.1145/3331184.3331273
https://doi.org/10.1145/2806416.2806512

64:26 Y. Fang et al.

[7] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for
heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. 135–144.
[8] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. 2014. GRAMI: Frequent subgraph and

pattern mining in a single large graph. PVLDB 7, 7 (2014), 517–528. https://doi.org/10.14778/2732286.2732289
[9] Yujie Fan, Yanfang Ye, Qian Peng, Jianfei Zhang, Yiming Zhang, Xusheng Xiao, Chuan Shi, Qi Xiong, Fudong Shao, and

Liang Zhao. 2020. Metagraph aggregated heterogeneous graph neural network for illicit traded product identification
in underground market. In 20th IEEE International Conference on Data Mining (ICDM’20), Claudia Plant, HaixunWang,
Alfredo Cuzzocrea, Carlo Zaniolo, and Xindong Wu (Eds.). IEEE, 132–141. https://doi.org/10.1109/ICDM50108.2020.
00022

[10] Yang Fang, Xiang Zhao, Peixin Huang, Weidong Xiao, and Maarten de Rijke. 2019. M-HIN: Complex embeddings for
heterogeneous information networks via metagraphs. In Proceedings of the 42nd International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’19). 913–916. https://doi.org/10.1145/3331184.3331281
[11] Tao-Yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore meta-paths in heterogeneous information net-

works for representation learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-

agement (CIKM’17). 1797–1806.
[12] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable graph convolutional networks. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18). 1416–
1424. https://doi.org/10.1145/3219819.3219947

[13] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec: Capturing network dynamics using
dynamic graph representation learning. Knowledge Based Systems 187 (2020), 104816–104824. https://doi.org/10.1016/
j.knosys.2019.06.024

[14] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep embedding method for dynamic graphs.
CoRR abs/1805.11273 (2018). arXiv:1805.11273 http://arxiv.org/abs/1805.11273.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 855–864.
[16] Zhipeng Huang and Nikos Mamoulis. 2017. Heterogeneous information network embedding for meta path based

proximity. CoRR abs/1701.05291 (2017).
[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference

on Learning Representations (ICLR’15), Conference Track Proceedings. http://arxiv.org/abs/1412.6980.
[18] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. In 5th

International Conference on Learning Representations (ICLR’17), Conference Track Proceedings. https://openreview.net/
forum?id=SJU4ayYgl.

[19] Zhihui Li, Feiping Nie, Xiaojun Chang, Yi Yang, Chengqi Zhang, and Nicu Sebe. 2018. Dynamic affinity graph con-
struction for spectral clustering using multiple features. IEEE Transactions on Neural Networks and Learning Systems

29, 12 (2018), 6323–6332. https://doi.org/10.1109/TNNLS.2018.2829867
[20] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song. 2018. Heterogeneous graph neural

networks for malicious account detection. In Proceedings of the 27th ACM International Conference on Information and

Knowledge Management (CIKM’18), Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava, Rakesh
Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun
Wang (Eds.). ACM, 2077–2085. https://doi.org/10.1145/3269206.3272010

[21] Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander G. Hauptmann, and Qinghua Zheng. 2018. Adaptive un-
supervised feature selection with structure regularization. IEEE Transactions on Neural Networks and Learning Systems

29, 4 (2018), 944–956. https://doi.org/10.1109/TNNLS.2017.2650978
[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning of social representations. In The

20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). 701–710.
[23] Mahmudur Rahman, Tanay Kumar Saha, Mohammad Al Hasan, Kevin S. Xu, and Chandan K. Reddy. 2018.

DyLink2Vec: Effective feature representation for link prediction in dynamic networks. CoRR abs/1804.05755 (2018).
arXiv:1804.05755 http://arxiv.org/abs/1804.05755.

[24] Terry Rooker. 1989. Review of neurocomputing: Foundations of research. AI Magazine 10, 4 (1989), 64–66. https:
//doi.org/10.1609/aimag.v10i4.972

[25] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science
290, 5500 (2000), 2323–2326.

[26] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2019. Meta-GNN: Metagraph neural network for
semi-supervised learning in attributed heterogeneous information networks. In International Conference on Advances

in Social Networks Analysis and Mining (ASONAM’19), Francesca Spezzano, Wei Chen, and Xiaokui Xiao (Eds.). ACM,
137–144. https://doi.org/10.1145/3341161.3342859

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

https://doi.org/10.14778/2732286.2732289
https://doi.org/10.1109/ICDM50108.2020.00022
https://doi.org/10.1145/3331184.3331281
https://doi.org/10.1145/3219819.3219947
https://doi.org/10.1016/j.knosys.2019.06.024
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/TNNLS.2018.2829867
https://doi.org/10.1145/3269206.3272010
https://doi.org/10.1109/TNNLS.2017.2650978
http://arxiv.org/abs/1804.05755
https://doi.org/10.1609/aimag.v10i4.972
https://doi.org/10.1145/3341161.3342859

Scalable Representation Learning 64:27

[27] Jingbo Shang, Meng Qu, Jialu Liu, Lance M. Kaplan, Jiawei Han, and Jian Peng. 2016. Meta-path guided embedding
for similarity search in large-scale heterogeneous information networks. CoRR abs/1610.09769 (2016).

[28] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE: Predictive text embedding through large-scale heterogeneous text
networks. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1165–1174. https://doi.org/10.1145/2783258.2783307

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). 1067–1077.

[30] Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guillaume Bouchard.
2017. Knowledge graph completion via complex tensor factorization. Journal of Machine Learning Research 18 (2017),
130:1–130:38.

[31] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1225–1234. https://doi.org/10.1145/
2939672.2939753

[32] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. 2019. Heterogeneous graph
attention network. In The World Wide Web Conference (WWW’19), Ling Liu, Ryen W. White, Amin Mantrach, Fab-
rizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 2022–2032. https://doi.org/10.1145/
3308558.3313562

[33] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393 (1998),
440–442.

[34] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. 2019. Heterogeneous graph
neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining (KDD’19). 793–803. https://doi.org/10.1145/3292500.3330961
[35] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. MetaGraph2Vec: Complex semantic path aug-

mented heterogeneous network embedding. In Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia

Conference (PAKDD’18), Proceedings, Part II. 196–208. https://doi.org/10.1007/978-3-319-93037-4_16
[36] Ziwei Zhang, Peng Cui, Jian Pei, XiaoWang, andWenwu Zhu. 2018. TIMERS: Error-bounded SVD restart on dynamic

networks. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18), the 30th Innovative Applica-

tions of Artificial Intelligence (IAAI’18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence

(EAAI’18). 224–231. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16674.
[37] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic network embedding by modeling

triadic closure process. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18), the 30th Innova-

tive Applications of Artificial Intelligence (IAAI’18), and the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI’18). 571–578. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16572.
[38] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. 2016. Scalable temporal latent space

inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge and Data Engineering 28,
10 (2016), 2765–2777.

Received November 2020; revised June 2021; accepted September 2021

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 64. Publication date: March 2022.

https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1007/978-3-319-93037-4_16
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16674
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16572

