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Heterogeneous information networks (HINs) are a key resource in many domain-speciic retrieval and recommendation

scenarios, and in conversational environments. Current approaches to mining graph data often rely on abundant supervised

information. However, supervised signals for graph learning tend to be scarce for a new task and only a handful of labeled

nodes may be available. Meta-learning mechanisms are able to harness prior knowledge that can be adapted to new tasks.

In this paper, we design a meta-learning framework, calledMETA-HIN, for few-shot learning problems on HINs. To the

best of our knowledge, we are among the irst to design a uniied framework to realize the few-shot learning of HINs and

facilitate diferent downstream tasks across diferent domains of graphs. Unlike most previous models, which focus on a

single task on a single graph, META-HIN is able to deal with diferent tasks (node classiication, link prediction, and anomaly

detection are used as examples) across multiple graphs. Subgraphs are sampled to build the support and query set. Before being

processed by the meta-learning module, subgraphs are modeled via a structure module to capture structural features. Then, a

heterogeneous GNN module is used as the base model to express the features of subgraphs. We also design a GAN-based

contrastive learning module that is able to exploit unsupervised information of the subgraphs.

In our experiments, we fuse several datasets from multiple domains to verifyMETA-HIN’s broad applicability in a multiple-

graph scenario. META-HIN consistently and signiicantly outperforms state-of-the-art alternatives on every task and across

all datasets that we consider.

CCS Concepts: · Information systems→ Network data models.
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1 INTRODUCTION

Heterogeneous information networks (HINs) are ubiquitous. Social networks, knowledge graphs, and interactions

between users and items in search and recommender systems can be modeled as networks with multiple types of

nodes and edges [12, 30, 42, 45]. Unlike homogeneous networks, which assume that every node is of a single

type, HINs have a richer repertoire of means to describe networks. This leads to more efective solutions to a

wide spectrum of information retrieval, data mining, and knowledge discovery tasks, e.g., node classiication,
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link prediction, and recommendation [4, 9].

Representation learning is essential for mining a HIN [28, 29, 60]. Recent eforts resort to graph neural

networks (GNNs) to achieve promising results [24, 55]. During the representation learning process, it is taken for

granted that the majority of labels in the network is available, and the GNNs are trained in a supervised manner.

In practice, however, it is common that only a handful of labels are given, which poses serious challenges to

keeping up the performance. In order to efectively mine HINs with scarce labels, we investigate few-shot learning

problems on HINs in this paper.

Inspired by meta-learning approaches that have been studied extensively in computer vision, there is an

emerging line of research that applies meta-learning to few-shot learning of graph data [2, 8, 13, 22, 61]. In this

line of work, well-trained initial parameters of a base GNN are learned and then the learned base-learner is

adapted to new tasks, following a standard model-agnostic meta-learning (MAML) framework [10].

Current limitations. Various limitations hinder the application of meta-learning approaches to HINs. First,

most of them are designed for homogeneous networks, with relatively few prior publications so far trying to

solve few-shot learning problems on HINs. Second, most of them can only deal with one task on a single graph.

For example, Meta-GNN [61] and Meta-MGNN [13] are only designed for a node classiication task and cannot

be transferred across diferent graphs, especially those having diferent distributions;Meta-Graph [2] is only

designed for a link prediction task on a single graph; Meta-GDN [8] is devised for anomaly detection on a single

graph; andMeta-HIN [32] is designed for cold-start recommendation on a single graph. Third, most previous

methods overlook the unlabeled information in graphs; making full use of abundant unsupervised information

could help improve the performance. Finally, the question of how to leverage the structural information of HINs

has not been studied extensively by existing approaches.

Our proposal. We aim to address the shortcomings listed above, and propose (i) a heterogeneous GNN module

as base model to fully capture heterogeneous information, (ii) a general framework that can be applied across

diferent tasks and graphs, (iii) a GAN-based contrastive module to leverage unsupervised information, and (iv) a

structure module to employ a graph’s structural information. We refer to the above meta-learning framework

for few-shot learning problems on HINs asMETA-HIN. While the tasks addressed by each of the components

may have been studied individually in the context of previously proposed models, our work is among the irst

to incorporate diferent modules to address all of the limitations under a single framework and to demonstrate

the beneits of this uniied approach. In other words, the main novelty of our paper is that we propose a uniied

framework to realize the few-shot learning of HINs and facilitate diferent downstream tasks across diferent

domains of graphs.

Concretely, we irst sample subgraphs from the original graphs to form a support set and query set for both

meta-training and meta-testing datasets. Before sampling, we irst rank the nodes of a certain neighborhood based

on three importance evaluation metrics, i.e., betweenness centrality, eigencentrality, and closeness centrality.

Then we adopt rank-guided heterogeneous walks to sample subgraphs in which inluential nodes and every type

of node will be collected. Note that traditional meta-structure is domain-speciic and pre-deined, which is not

applicable in meta-learning to transfer to unseen tasks and labels. Next, we apply a structure module on the

subgraphs to learn the structural embeddings. Speciically, we adopt an auto-encoder to encode the structural

information, based on the intuition that nodes with similar structure will share similar embeddings. Then we

apply a heterogeneous GNN module to encode the input subgraphs. We irst group the nodes based on their

types and apply a Bi-LSTM to each group. The structural information loss by this operation has been preserved

by the above structure module. Then we aggregate diferent type embeddings via a self-attention mechanism to

generate the inal node embeddings. To make use of unsupervised information, we incorporate a contrastive

module in a meta-learning setting before calculating the support loss and query loss. During training, positive

samples are the nodes from the given subgraph while negative samples are nodes from other subgraphs. Then
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we maximize the mutual information between the node embedding and subgraph embedding. Additionally, a

GAN-based mechanism is introduced to generate high-quality negative samples that are hard to identify, which

further improves the model performance.

Meta-learning. Diferent tasks may have diferent efects on the meta-learner; we employ a self-attention

mechanism to calculate the weights of tasks that will be incorporated into the meta-learning process to boost

the model performance. Unlike previous models that view a task as a batch of node representations, forMETA-

HIN, a task is a batch of subgraphs. By doing so, META-HIN can adapt to new tasks rapidly and thus have a

broader applicability. This explains META-HIN’s ability to handle diferent tasks across diferent graphs. We

simultaneously conduct the following three tasks: (i) node classiication, (ii) link prediction, and (iii) anomaly

detection.1 For the link prediction and anomaly detection tasks, we use a contrastive loss to distinguish positive

samples (existing links and abnormal nodes) and negative samples (non-existing links and normal nodes).

Experiments. To demonstrate thatMETA-HIN is transferable across HINs, aside from using the open academic

graph (OAG) dataset, we combine the OAG, DBLP and Aminer dataset to build a new dataset named ODA. These

three datasets are all bibliographic networks; we further introduce two datasets from diferent domains: YELP

and YAGO. META-HIN consistently and signiicantly outperforms the state-of-the-art models on the three tasks

across diferent datasets.

Contributions. In short, our main contributions can be summarized as follows:

• We design a uniied framework META-HIN to realize the few-shot learning of HINs and facilitate diferent

downstream tasks across diferent domains of graphs.

• We sample subgraphs to be trained so that META-HIN is applicable to three tasks and transferable across

diferent HINs.

• We adopt a structural module, a heterogeneous module, and a GAN-based contrastive module to capture

the structural information, heterogeneous features, and unlabeled information of a subgraph, respectively.

• We show that META-HIN signiicantly and consistently outperforms state-of-the-art alternatives on three

tasks across multiple HINs.

2 RELATED WORK

2.1 Graph neural network

To learn the representation of a network, many researchers propose variants of GNN models which have shown

promising performance.

Some models are based on spectral graph theory. One line of GNN research is based on spectral graph

theory [3, 6, 19, 24, 26, 27]. For example, Bruna et al. [3] conduct spectral convolution operations on the whole

graph. To improve scalability, graph convolutional networks (GCNs) [24] leverage the irst-order approximation

of spectral graph convolutions. Such spectral operations are always conducted on the whole graph which may

cause eiciency issues. Therefore, another line of research named spatial GNN has been proposed [11, 16, 35, 37].

For example, GraphSAGE [16] adopts a random walk to sample the neighboring nodes to be processed further

via CNN or LSTM operation. Gao et al. [11] sample subgraphs and adapt them to be processed via a normal

convolution layer.

There are also many variants of GNNs [25, 49, 58], fusing neighboring sub-structures to learn the network

embedding. For example, GAT [49] harnesses masked self-attention layers to learn the weights of nodes in a

neighborhood. GIN [54] applies injective multiset functions for neighborhood aggregation by parameterizing

universal multiset functions with neural networks.

1With minor additional eforts, META-HIN can be adapted to handle more downstream tasks under the proposed framework, which is left to

future work.
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However, these models are all devised for homogeneous networks by aggregating nodes or walks regardless

of their types. Few methods focus on the representation of HINs. Therefore, we propose a heterogeneous GNN

encoder to fully capture the type information behind a HIN.

2.2 Contrastive learning

Contrastive learning is a line of self-supervised learning that can capture the unlabeled information of a HIN. In

natural language processing, to learn word embeddings, word2vec [34] uses co-occurring words and negative

sampling to capture similarity from data. In computer vision, self-supervised image representation is learned by

minimizing the distance between two views of the same image [14, 18, 46]. For example, He et al. [18] present

momentum contrast (MoCo) for visual representation learning by constructing a dynamic dictionary and a

moving-averaged encoder.

Recently, contrastive learning approaches devised for graph data are also being proposed. GCC [41] adopts

the InfoNCE loss [48] and uses the instance discrimination task [53] to distinguish the nodes from the same

subgraph and other subgraphs. DGI [50] aims to maximize the mutual information between node representation

and graph representation. GMI [40] proposes to make a contrast between a center node representation and

its local patch representation learned from structural information and node features. Infograph [44] is based

on DGI, which maximizes the mutual information between the local representation and global representation,

and uses GIN as the base GNN encoder. GraphCL [15] generates two randomly perturbed subgraphs of a given

node, and maximizes the mutual information between them. Hassani and Ahmadi [17] propose structure-space

augmentation to increase the number of views and contrast node and graph embeddings across views. Mu

et al. [36] propose an alignment strategy based on mutual information maximization, which aligns the explicit

disentangled representations based on knowledge with the implicit disentangled representations learned from

user-item interaction

We incorporate contrastive learning with a meta-learning setting to leverage unsupervised information.

2.3 Few-shot learning

Few-shot learning models can be grouped into two types, i.e., (i) based on metric-based learning, and (ii) based on

gradient-based learning. The former is to learn a generative metric that is able to compare and match few-samples,

while the latter leverages a speciic meta-learner to learn the well-initialized parameters of the base model, which

will be further adapted to new tasks.

In this paper, we mainly focus on gradient-based learning for graph data. Cui et al. [5] address cold-start

issues in sequential knowledge graphs within a meta-learning framework. Niu et al. [38] address a few-shot

knowledge graph completion problem, using relational learning incorporated with the gated and attentive

neighbor aggregator. Jiang et al. [23] also focus on knowledge graph completion, and propose a meta pattern

learning framework to predict new facts of relations under a few-shot setting. Meta-GNN [61] deals with the node

classiication problem; it obtains prior knowledge by training similar few-shot learning tasks and classiies nodes

from new classes with a few labeled samples. It applies a GNN encoder on the entire graph, whileMETA-HIN

trains subgraphs individually via a GNN encoder. AMM-GNN [51] and RALE [31] also only deal with the node

classiication task; the former employs attribute matching and the latter adopts the relative location of a hub-node.

Meta-Graph [2] focuses on the link prediction task; it introduces a graph signature function to bootstrap fast

adaptation to new graphs. For Meta-GNN and Meta-Graph, a task is a batch of node representations while

for META-HIN it is a batch of subgraphs. This important diference allows META-HIN to be adapted to new

tasks rapidly, leading to broader applicability on diferent meta-learning problems and graphs. Meta-GNN and

Meta-Graph are only applicable to a single graph.

G-META [22] is applied to node classiication and link prediction; it follows a standard MAML framework and

ACM Trans. Inf. Syst.
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Fig. 1. The meta-learning framework.

uses a GNN as its base model. It also trains on subgraphs, so it can be applied across diferent graphs. However,

in its own setting, for the multiple-graph scenario, it chooses diferent protein networks that are from the same

domain. GFL [56] faces the same issue as it employs auxiliary graphs of the same distribution to facilitate its

performance. In our experiments, the multiple-graph scenario is composed of graphs from the same domain

as well as diferent domains. Meta-MGNN [13] focuses on the molecular property prediction task on a single

graph, which can be regarded as node classiication. It also makes use of unlabeled information via generative

learning. This unsupervised module is incorporated with a MAML framework to deal with a few-shot problem.

Meta-GDN [8] focuses on anomaly detection on a single graph. It introduces a new graph neural network, namely

a graph deviation network (GDN), as its base model. Zhuang et al. [62] propose a dataset designed for few-shot

learning on HINs. However, it is not practical as it creates 80 classes for every node, which is quite rare in

real-world settings. MetaHIN [32] regards HINs as auxiliary information of a user-item network, and it only uses

meta-paths with at most three steps including user and item to help model network features. Unlike other graph

few-shot learning methods that explore the whole network, MetaHIN leverages limited network features and is

limited to recommendation task on a single graph.

The main novelty of our paper is that we propose a uniied framework to address all the limitations the previous

studies have, realize the few-shot learning of HIN and facilitate diferent downstream tasks across diferent

domains of graphs. We also equip our model with a structural module to fully capture the structural information

and a heterogeneous module to capture network heterogeneity. And we also incorporate contrastive learning

into meta-learning to leverage unsupervised information.

3 THE PROPOSED MODEL META-HIN

3.1 Preliminaries and overview

Let � = (� , �,� ) denote a heterogeneous information network (HIN), in which � and � denote the node set and

edge set, respectively; �� and �� denote the node type set and edge type set, respectively. A HIN is a network

where |�� | > 1 and/or |�� | > 1. We use G = {�1,�2, . . . ,�� } to denote a set of graphs and Y = {�1, �2, . . . , �� }

to denote the label set. Only a handful of labeled nodes are given, and the goal of our work is to learn the initial

parameters � of a meta-learner, and then adapt the learner to new graphs, tasks, and labels, that is, to correctly

map new nodes to new labels given the limited number of labeled nodes.

The gradient based meta-learning is shown as Fig. 1. During the meta-learning process, there exist two kinds

of update operations, that is, a local update and a global update. Speciically, irstly the model locally updates the

parameter � to � ∗� on the support set (learning process), and it searches for the task-speciic desired parameters.

Based on the task-speciic parameter � ∗� , the model further updates its global parameters to minimize the loss of

query set over diferent tasks (learning-to-learn process). Finally, the learned global parameters � can it into

various tasks.
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Fig. 2. The META-HIN framework. The heterogeneous subgraph sampling strategy (let) is detailed in Section 3.2; the

structure module (center, top) in Section 3.3; the meta-learning module (right) in Section 3.4, with the heterogeneous GNN

module (right, botom) described in Section 3.4.1 and the contrastive module (right) in Section 3.4.2.

A visual sketch of the proposed meta-learning framework for heterogeneous information networks (META-HIN)

is given in Fig. 2. The original input HINs will irst be processed by a heterogeneous subgraph sampling strategy,

so as to form the meta-training and meta-testing subgraph datasets. Then the subgraphs will irst be sent to a

structure module, capturing the structural information of these subgraphs. The learned structural embeddings

will be sent to a meta-learning module as input. In the meta-learning module, the base model is the heterogeneous

GNN module which is used to capture network heterogeneity. The contrastive module is also introduced during

meta-learning, so that unsupervised information can also be leveraged. Under the meta-learning framework, in a

�-shot meta-training phase, for each task T� sampled from distribution � (T ), only � data samples will be used

for training (i.e., the support set, denoted as G� ), and the remainder will be used for evaluation (i.e., the query set,

denoted as G′
� ). During meta-training, the parameters � will irst be updated on the support set, and then further

optimized on the query set using some loss function. After a suicient amount of training, meta-testing employs

the learned parameters � ∗ as initialization to adapt to new tasks quickly with only � samples (as the support set).

3.2 Sampling strategy

To construct meta-training and meta-testing datasets, we sample the subgraphs from the given graph sets G.

As illustrated in [22], sampling local subgraphs will not cause a loss of necessary information compared to the

entire graph. Since it is tricky to propagate information through the whole graph using only a handful of nodes,

in this paper, we also choose to sample subgraphs for training and testing. In addition, sampling subgraphs also

enables our model to transfer knowledge across diferent graphs [22].

Speciically, to form the subgraph, we irst rank the neighboring nodes of the given labeled node based on

their structural importance. To measure structural importance, we adopt the concept of node centrality from [1].

We include three commonly used centrality metrics, i.e., (i) betweenness centrality, (ii) eigencentrality, and

(iii) closeness centrality. Betweenness centrality is used to measure the fraction of shortest paths passing through a

given node, it evaluates a node’s ability to connecting the network. Eigencentrality calculates a node’s importance

based on its neighboring nodes’ importance. Closeness centrality is used to compute the total length of the shortest

ACM Trans. Inf. Syst.
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paths between the given node and others, which measures how close a node to other nodes in a network. We

assign learnable weights to these metrics.2

Next, we adopt a so-called rank-guided heterogeneous walk to construct the subgraph, which is meant to capture

heterogeneous and structural features of a node’s neighbor. For a given node �1, the sampling walk irst reaches

out to node �2 having the highest rank of �1’s adjacent nodes. Then it will search for node �3 having the highest

rank of �1 and �2’s adjacent nodes. This walk will not stop until it collects a pre-determined number of nodes. In

order to equip the model with a sense of heterogeneity, we constrain the number of diferent types to be collected

in the sequence so that every type of node can be included.

The nodes are sorted based on each node’s rank, which serves as a kind of sequential information.

Unlike traditional sampling strategies like randomwalks, breadth-irst search or depth-irst search, our sampling

strategy is able to extract important and inluential neighboring nodes for each node by selecting nodes with

a higher rank; this allows us to capture more representative structural information of a neighborhood. Our

sampling strategy collects all types of nodes for each neighborhood while traditional strategies ignore the nodes’

types. Empirical results with an analysis are provided in Section 5.2.

Note that meta-paths, meta-graphs, or network schemas can also be used to explore the heterogeneity of a

HIN. However, they are domain-speciic and usually pre-deined by domain experts, which makes it hard to apply

them in the meta-learning setting to transfer the prior knowledge to new tasks.

3.3 Structure module

Before applying the meta-learning module to transfer knowledge to diferent tasks and graphs, we irst introduce

a structure module to preserve the structural information of a subgraph. Speciically, we adopt the autoencoder

mechanism to preserve the graph structure. For each subgraph, we have its adjacency matrix � = {�1, �2, . . . , ��},

in which �� is a row of � representing the nodes that are adjacent with node � . Then it is fed into the encoder to

obtain the latent representation of node � as follows:

ℎ
(1)
� = � (� (1)�� + �

(1) ), (1)

ℎ
(� )
� = � (� (� )ℎ

(�−1)
� + � (� ) ), (2)

in which � is the number of layers of the encoder, which we set to 2 in practice;� (� ) is the parameter matrix of

the �-th layer; � (� ) is the bias of the �-th layer; and � is the activation function.

In the decoder we reverse the above process to obtain the reconstructed output �̂� . The objective function of

the autoencoder is to minimize the reconstruction error of the input and output. Mathematically,

Lstructure =

�︁

�=1

∥(�̂� − �� )∥
2
2 . (3)

This reconstruction criterion forces nodes with a similar structure to have similar representations. To alleviate

the sparsity issue, we impose more penalty on non-zero elements than on zero elements. Then the loss function

is deined as:

Lstructure =

�︁

�=1

∥(�̂� − �� ) ⊙ �� ∥
2
2 (4)

= ∥(�̂ −�) ⊙ �∥2� , (5)

in which �� = {��, � }
�
�=1, and ��, � = 1 if there exists no edge between nodes � and � , otherwise ��, � = � > 1; ⊙ is

2Additional metrics that are of particular interest to the user could also be added to the above three metrics. In our implementation, we use

the above three metrics to illustrate the efectiveness of META-HIN.
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Fig. 3. Framework of the heterogeneous GNN module.

element-wise product.

The optimized latent representations of nodes in the structural module will be sent to meta-learning module

as the input node embeddings.

3.4 Meta-learning module

After representing the structural information of the subgraphs, we introduce the meta-learning framework to

deal with the few-shot setting. We irst introduce a heterogeneous GNN module to encode subgraphs. Then

comes the contrastive module to make use of unlabeled information.

3.4.1 Heterogeneous GNN module. Fig. 3 presents the framework of the heterogeneous GNN module. We irst

group the nodes of the subgraph based on their types, that is, nodes with the same type are grouped together.

This operation transforms a subgraph into a node sequence. As shown in the Fig. 3, after heterogeneous node

grouping, it is simply a node sequence with no edges in between. This operation will corrupt the structure of the

subgraph, however, the structural information has already been preserved by the structure module. And this

operation also allows us to model the heterogeneity by processing type-based feature information. Then we apply

a Bi-LSTM on these groups to extract type-speciic features. A Bi-LSTM is able to process sequence-like data,

learn deep feature interactions between nodes in the subgraphs, and obtain larger expressive capability for node

representation. The representation of the �-th node of the group is denoted as �� . Then the hidden representation

ℎ�
��

of type �� after the Bi-LSTM layer can be represented as:

ℎ���
=

∑

�∈��
��

Bi-LSTM{�� }

|��
��
|

, (6)

where ��
��

denotes the node group having type �� ; the Bi-LSTM is composed of a forward LSTM and a backward

LSTM. The forward LSTM is speciied as follows:

j� = � (W� ��� +Wℎ�ℎ�−1 +W� ���−1 + b� ), (7)

f� = � (W� � �� +Wℎ�ℎ�−1 +W� � ��−1 + b� ), (8)
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Fig. 4. Framework of the contrastive module.

z� = tanh(W���� +Wℎ�ℎ�−1 + b� ), (9)

�� = f� ⊙ ��−1 + j� ⊙ z� , (10)

o� = � (W���� +Wℎ�ℎ�−1 +W���� + b� ), (11)

ℎ� = o� tanh(�� ), (12)

where ℎ� ∈ R�/2 denotes the output hidden representation, W ∈ R(�/2)×(�/2) and � ∈ R�/2 are learnable

parameters, denoting weight and bias, respectively; � denotes the activation function; j� , f� , o� are the input gate

vector, forget gate vector and output gate vector, respectively. The output of the forward and backward LSTMs

are concatenated, along with a mean-pooling layer to generate the hidden embedding of a speciic type.

We combine the type-speciic embeddings via an attention mechanism to generate the inal representation of

the given node. The reason for using an attention mechanism is that diferent types of node may have a diferent

impact on the given node. Mathematically,

ℎ� =
︁

�� ∈{� }

��,�ℎ���
, (13)

��,�
=

exp{� (�Tℎ�
��
)}

∑

�� ∈{� } exp{� (�
Tℎ�

��
)}
, (14)

where � denotes the activation function, for which we use a LeakyReLU ; � ∈ R� is the attention parameter.

3.4.2 Contrastive module. Fig. 4 presents the framework of contrastive learning. Many previously proposed meta-

learning models ignore unsupervised information in a few-shot setting. However, only employing supervised

signals may limit the performance because only a handful of labeled nodes may be available. Therefore, we

introduce a contrastive module to make full use of unlabeled nodes in the graph.

After the structural module and heterogeneous GNN module, we obtain the node embeddings of a subgraph

denoted as � = {ℎ1, ℎ2, . . . , ℎ�}. We summarize the node embeddings of a subgraph using a readout function to

generate the subgraph embedding �. That is, � = READOUT(� ), where READOUT may be any permutation

ACM Trans. Inf. Syst.
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invariant function; we simply use mean pooling here. Our goal is to maximize the mutual information between

the node representation and the subgraph representation. In this way, the subgraph representation is able to

represent aspects of the data that are shared across all substructures.

For contrastive learning, for a given subgraph, the positive sample is the node that belongs to the subgraph,

and the negative sample is a node from other subgraphs. Note that there will not be duplicate nodes in a single

task. The negative node embeddings of another subgraph are denoted as � ′
= {ℎ′1, ℎ

′
2, . . . , ℎ

′
�}.

Next, we present a discriminator D(ℎ� , �) that calculates the probability score between this node and a subgraph

pair. The score will be higher if the node belongs to the subgraph.

To deine the loss function, we adopt a noise-contrastive type objective with a standard binary cross-entropy

loss between positive and negative samples [20]. Mathematically, the combination can be represented as:

Lcontrastive =

�︁

�=1

E� [logD(ℎ� , �)] +

�︁

�=1

E� ′

[

log(1 − D(ℎ′� , �))
]

. (15)

By doing so, the mutual information between node embedding ℎ� and subgraph embedding � is maximized via

Jensen-Shannon divergence between positive and negative samples [39]. Note that each node embedding obtained

in the given subgraph is required to compute the mutual information with the representation of this subgraph.

To further boost the model performance, we introduce a GAN-based mechanism to generate negative samples

that are hard to be distinguished. In addition to the discriminator discussed above, a generator is introduced.

They are trained in an alternating fashion. Aside from distinguishing original negative and positive samples,

the discriminator is also irst trained to identity the negative samples generated from the generator. Then the

generator is trained to generate high-quality negative samples to fool the discriminator.

3.4.3 Supervised loss. Here we use the supervised signal to calculate the training loss. For the node classiication

task, we irst apply a multi-layer perception (MLP) on top of the subgraph embedding � , denoted as: �̂ = MLP(�).

Next, we leverage the cross entropy loss between the predicted labels and ground-truth labels:

L
classiication

supervised
= −

1

�

�︁

�=1

CrossEntropy(�� , �̂� ), (16)

where� denotes the number of samples.

The link prediction and anomaly detection could be regarded as binary classiication tasks. However, instead of

simply adopting binary entropy loss, we borrow the idea of contrastive learning and employ the contrastive loss.

Speciically, for link prediction, an existing link is the positive signal, and for anomaly detection, an abnormal

node is regarded as positive. Note that link prediction could be realized by a pair of nodes in the subgraph. Then

we introduce a Noise-Contrastive Estimation (NCE) Loss [48] as follows:

Lcontrastive
supervised = −log

exp(�T�+/�)
∑�

�=1 exp(�
T��/�)

, (17)

where � is the node embedding of the support set, � is the node embedding of the query set, and � is the

temperature hyperparameter; we set � = 0.07.

3.4.4 Joint loss. For a given task T� , the joint loss of the meta-training process is a combination of the contrastive

loss and supervised loss. Mathematically,

LT� (� ) = �Lconstrative + (1 − �)Lsupervised, (18)

where � is the trade-of parameter; we set � = 0.2.
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3.4.5 Optimization-based meta-learning. Given the support set G� and query set G′
� , the optimization approach

irst adapts the initial model parameters � to � ′� for each learning task in support T� independently. A batch of

training samples will be leveraged to calculate the updated parameter � ′� . This process can be represented as:

� ′� = � − �∇�LT� (� ), (19)

where � is the step size. Suppose we have a task distribution T� ∼ � (T ), then we employ stochastic gradient

descent (SGD) to update the model parameters across all tasks in the query set. Mathematically,

� = � − �∇�

︁

T�∼� (T)

� (T� )L
′
T�
(� ′� ), (20)

where � is the meta-learning rate and L′
T�
is the joint loss over query set of T� . Note that diferent tasks may

contribute diferently to the meta-learner. We add a self-attention layer to measure the task weight � (T� ). We

irst calculate the task embedding. Given the task T� , its representation �T� is calculated as the average of all

node embeddings of T� . Mathematically,

�T� = AVERAGE(ℎT�
�
�=1). (21)

Then � (T� ) is computed as follows:

� (T� ) =
exp(� (�T�T� ))

∑

T� ′ ∈T
exp(� (�T�T� ′ ))

, (22)

where � is the activation function and we leverage LeakyReLU ; � ∈ R� is the attentive parameter.

During the meta-testing phase, we repeat the above process using the inal updated parameter � ∗. We learn � ∗

from knowledge across all meta-training tasks and it is the optimal parameter to adapt to unseen tasks quickly.

Summary. Algorithm 1 presents the overall learning procedure of META-HIN. Given heterogeneous graphs

and randomly initialized parameters � as input, the algorithm constructs a support set and a query set via its

heterogeneous subgraph sampling strategy (line 1). Then we sample a batch of tasks (line 3) and for all tasks,

we sample � support graph instances (line 5). After that we iterate over the sampled graphs (line 6ś10), where

in each graph we irst generate structural node embeddings and then feed them into the heterogeneous GNN

module for an update. We obtain the task embedding based on the node embeddings (line 11). We calculate the

loss function (line 12) and update the parameter based on the loss (line 13). After this, we sample � query graph

instances (line 14) and follow a similar procedure as with the support set to learn the node embeddings and

loss function (line 15ś20). Then we calculate the task weight (line 22) to update the inal adapted parameters �

(line 23).

Complexity analysis. We conduct a complexity analysis of our training procedure, which is calculated as

� (� · |T | · |S| · �), where � denotes the number of epochs, |T | denotes the number of meta-training tasks, |S|

denoted the number of subgraphs, and � denoted the dimension of node embeddings. � and � are usually small,

so the complexity of the proposed model is linear with � ( |T | · |S|).

4 EXPERIMENTAL SETUP

We detail our datasets, baseline models, and parameter settings.

ACM Trans. Inf. Syst.
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Algorithm 1: The learning algorithm of META-HIN.

Input :Heterogeneous Graphs G = {�1,�2, . . . ,�� }, Randomly initialized � ;

1 Construct support set G� and query set G′
� via Heterogeneous subgraph sampling strategy;

2 while not done do

3 Sample batch of tasks T� ∼ � (T );

4 for all T� do

5 Sample � instances {G�1,G�2, . . . ,G�� } ∈ G� ;

6 for i=1 to k do

7 Generate structural node embedding via structure module;

8 Feed structural embedding into heterogeneous GNN module;

9 Calculate node representation via Eq. (13);

10 end

11 Calculate task embedding via Eq. (21);

12 Calculate LT� via Eq. (18);

13 � ′� = � − �∇LT� ;

14 Sample � instances {G′
�1,G

′
�2, . . . ,G

′
��
} ∈ G′

� ;

15 for j=1 to n do

16 Generate structural node embedding via structure module;

17 Feed structural embedding into heterogeneous GNN module;

18 Calculate node representation via Eq. (13);

19 end

20 Calculate L′
T�

via Eq. (18);

21 end

22 Calculate task weight � (T� ) via Eq. (22) ;

23 � = � − �∇�

∑

T�∼� (T) � (T� )L
′
T�
(� ′� ).

24 end

4.1 Datasets

We irst adopt three bibliographic graph networks, i.e., (i) OAG,3 (ii) DBLP,4 and (iii) AMiner,5 which are all

heterogeneous information networks with four types of nodes (i) authors, (ii) papers, (iii) venues, and (iv) topics.

As for the label information, the authors in these networks are split into ive areas: (i) information retrieval,

(ii) database, (iii) natural language processing, (iv) data mining, and (v) machine learning. Unlike most previous

research focusing on a single graph, here we mix the OAG, DBLP, and AMiner datasets to construct a new dataset

named ODA.

The OAG, DBLP, and AMiner datasets are all from the same domain. We include two other social graphs

from diferent domains. One is YELP,6 containing restaurant reviews and four types of node: (i) customers,

(ii) restaurants, (iii) reviews, and (iv) food-related keywords. The restaurants are labeled as (i) Chinese food,

3https://www.openacademic.ai/oag/
4http://dblp.uni-trier.de
5https://www.aminer.cn/data
6https://www.yelp.com/dataset_challenge
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Table 1. Dataset statistics.

Dataset #nodes #edges #node types # label

OAG 432,362 1,837,362 5 5

DBLP 357,362 1,547,364 5 5

AMiner 263,473 1,022,362 5 5

ODA 1,053,197 4,407,088 5 5

YELP 213,476 1,622,327 4 3

OYE 645,838 3,459,689 9 8

YAGO 273,276 2,452,371 5 5

OYA 705,638 4,289,733 10 10

(ii) fast food, and (iii) sushi bar. The other social graph that we add is YAGO,7 which contains movie information

with nodes having ive types: (i) movie, (ii) director, (iii) actor, (iv) producer, and (v) composer. The movies are

labeled as (i) action, (ii) adventure, (iii) sci-i, (iv) crime, and (v) horror. Next, we create two mixed datasets. One

combines OAG and YELP, denoted as OYE; the other combines OAG and YAGO, denoted as OYA.

To conduct the tasks on a single large graph, we only choose OAG to be analyzed for simplicity.8

The dataset statistics are shown in Table 1.

We have three tasks to be analyzed, i.e., node classiication, link prediction and anomaly detection. To simplify

our presentation, for our single-graph experiments on those tasks, we opt to zoom in on a single large graph,

namely OAG.

4.2 Algorithms used for comparison

We adopt two GNN models that are directly trained on the supervised information, i.e., GCN [24], which is a

spectral graph model, and GraphSage [16], which is a spatial model.

Three baselines speciically designed for heterogeneous information network representation are also compared,

i.e., HetGNN [57], HAN [52], and HGT [21].

We also include baselines designed for few-shot problem on graphs, i.e., Meta-Graph [2], Meta-GNN [61],

G-META [22], Meta-MGNN [13], and Meta-GDN [8]. Detailed information about these models can be found in

Section 2.

To increase the number of models used for comparison in a multi-graph scenario, we also include meta-learning

baselines that are not speciically designed for graph data. KNN [47] irst embeds the meta-training set using

a GNN, and each query example is represented via the label of the voted K-closest example in the support set.

Finetune [47] irst learns the embeddings of the meta-training set and then the models are ine-tuned on the

meta-testing set. ProtoNet [43] employs prototype learning on each subgraph embedding and then follows the

standard few-shot learning procedure. MAML [10] chooses a MAML framework as the meta-learner.

4.3 Parameters

As our sampling strategy, we set the length of our rank-guided heterogeneous walk to 20, in other words, the

number of nodes in a subgraph is 20. The update step in training tasks is set to 10 and the update step in testing

tasks to 20. We use 10 shots for each task.

In node classiication, nodes of two labels will be used for meta-testing datasets and nodes of other labels will

7https://old.datahub.io/dataset/yago
8For the user with particular interest, single-graph experiment on DBLP, AMiner, YELP, YAGO is also welcomed. In our implementation, we

use OAG to illustrate the model efectiveness on a single graph.
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Table 2. Results on the multi-label node classification task.

OAG ODA OYE OYA

Model ACC F1 ACC F1 ACC F1 ACC F1

GCN 0.332 0.438 0.278 0.321 0.217 0.236 0.207 0.226

GraphSage 0.387 0.452 0.284 0.302 0.221 0.272 0.218 0.263

HetGNN 0.395 0.463 0.292 0.307 0.228 0.279 0.224 0.278

HAN 0.398 0.468 0.289 0.305 0.232 0.283 0.228 0.283

HGT 0.407 0.472 0.298 0.313 0.239 0.288 0.235 0.290

Meta-GNN 0.457 0.523 N/A N/A N/A N/A N/A N/A

Meta-MGNN 0.559 0.637 N/A N/A N/A N/A N/A N/A

G-META 0.538 0.621 0.468 0.521 0.372 0.381 0.362 0.379

KNN 0.497 0.589 0.427 0.463 0.304 0.323 0.293 0.321

Finetune 0.413 0.538 0.389 0.413 0.291 0.312 0.272 0.295

ProtoNet 0.472 0.548 0.411 0.421 0.297 0.327 0.283 0.301

MAML 0.485 0.611 0.419 0.409 0.299 0.328 0.295 0.312

META-HIN 0.581▲ 0.655▲ 0.516▲ 0.551▲ 0.397▲ 0.414▲ 0.395▲ 0.411▲

be involved in meta-training tasks. In link prediction, we separate 30% of the edges for the support set and 70% of

the edges for the query set; the negative edges are randomly sampled having the same number of positive edges.

The detailed settings for link prediction can be found in [59]. In both link prediction and anomaly detection, there

are no overlapping edges to be predicted and anomalies to be detected between meta-training and meta-testing

datasets.

The dimensions of all embeddings in META-HIN are set to 128. We use grid search to ind the best parameter

coniguration. The task number is chosen from {4, 8, 16, 32, 64}; the inner update learning rate � is chosen from

{0.01, 0.005, 0.001, 0.0005}, and the meta-level learning rate � is also chosen from {0.01, 0.005, 0.001, 0.0005}. The

optimal parameters are task-speciic and dataset-speciic. For the other models, we adopt the best conigurations

reported in the source publications.

The model parameters are trained on training datasets, and they are not tuned on testing datasets.

We report on statistical signiicance with a paired two-tailed t-test and we mark a signiicant improvement of

META-HIN over the best baseline for � < 0.05 with ▲ .

5 RESULTS AND ANALYSIS

We present the results of META-HIN on three tasks: (i) node classiication, (ii) link prediction, and (iii) anomaly

detection. We also conduct an ablation analysis and study the parameter sensitivity.

5.1 Results of tasks

5.1.1 Node classification. Here we report on the results for the multi-label node classiication task. We adopt

multi-class classiication accuracy, ACC, and F1 value as evaluation metrics (ive-fold average).

Table 2 presents the experimental results on the node classiication task; the highest scores are set in bold. N/A

means the model does not work in the graph meta-learning problem.

META-HIN consistently and signiicantly outperforms the baselines on every dataset, which veriies the model’s

efectiveness. Concretely, GCN, and GraphSage, which lack speciic few-shot learning facilities, achieve the worst

performance; they are trained in an end-to-end supervised manner but there are only handful of labeled nodes

ACM Trans. Inf. Syst.
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Table 3. Results on the link prediction task.

OAG ODA OYE OYA

Model AUC F1 AUC F1 AUC F1 AUC F1

GCN 0.632 0.536 0.472 0.417 0.324 0.275 0.259 0.236

GraphSage 0.648 0.547 0.483 0.421 0.327 0.281 0.264 0.243

HetGNN 0.657 0.553 0.489 0.434 0.335 0.289 0.272 0.255

HAN 0.661 0.558 0.493 0.438 0.341 0.293 0.278 0.260

HGT 0.669 0.567 0.503 0.447 0.354 0.304 0.285 0.271

Meta-Graph 0.723 0.645 N/A N/A N/A N/A N/A N/A

G-META 0.771 0.673 0.621 0.523 0.421 0.396 0.393 0.385

KNN 0.711 0.623 0.534 0.473 0.397 0.357 0.348 0.333

Finetune 0.682 0.601 0.523 0.444 0.356 0.326 0.311 0.298

ProtoNet 0.726 0.647 0.598 0.492 0.407 0.364 0.365 0.358

MAML 0.731 0.658 0.592 0.485 0.412 0.371 0.371 0.363

META-HIN 0.808▲ 0.696▲ 0.657▲ 0.558▲ 0.449▲ 0.426▲ 0.414▲ 0.408▲

that can be leveraged. HetGNN, HAN, and HGT perform slightly better for leveraging heterogeneous features,

but are still incomparable to models equipped with few-shot techniques. Meta-GNN trains on the entire graph,

which limits its performance and speaks to the efectiveness of our subgraph sampling strategy; a subgraph is

suicient to capture local features while an entire graph may introduce noise and may be too sparse to be trained.

On a single graph (OAG), Meta-MGNN is the best performing baseline as it also employs unlabeled information

using generative learning. However,META-HIN still outperforms it and we attribute this to the fact that in addition

to the unsupervised information, META-HIN harnesses structural information and heterogeneous features.

Additionally, for models designed for graph meta-learning, only G-META andMETA-HIN can be applied across

diferent graphs.META-HIN outperforms G-META consistently on every dataset; this relects the advantage of

our structural module, contrastive module, and heterogeneous GNN module. How these modules contribute to

META-HIN’s performance is examined in detail in Section 5.2. As to other few-shot learning methods ś KNN,

Finetune, ProtoNet, and MAML ś, META-HIN consistently outperforms them across diferent graphs, which

conirms that META-HIN’s meta-learning framework is more efective on graph data.

5.1.2 Link prediction. Here we report on the results for the link prediction task. We adopt the AUC value and

the F1 value as evaluation metrics (ive-fold average).

We present the link prediction results in Table 3, with the highest results set in bold. N/A means that a model

does not work in the graph meta-learning problem. As in the node classiication task, GCN and GraphSage

perform the worst because of the limited supervised information. HetGNN, HAN, and HGT perform poorly

with no few-shot tricks applied. Meta-Graph, like Meta-GNN in the node classiication task, trains on the entire

graph causing its worse performance compared to G-META and META-HIN. G-META still performs worse

thanMETA-HIN, consistently across diferent graphs, which, again, veriies the efectiveness of META-HIN by

leveraging structural information, unsupervised information, and heterogeneous features.

5.1.3 Anomaly detection. In this task, since there are no ground-truth anomalies available in the original datasets,

we adopt an anomaly injection model [7] to insert sets of anomalies. We inject structural anomalies, which are

actually a set of small cliques. A small clique is regarded as a typical abnormal sub-structure since nodes in the

clique are more closely linked to each other than average; 5% of the datasets are created as anomalies that need

to be detected. We adopt AUC-ROC and AUC-PR as evaluation metrics. AUC-ROC evaluates the probability
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Table 4. Results on the anomaly detection task.

OAG ODA OYE OYA

Model ROC PR ROC PR ROC PR ROC PR

GCN 0.472 0.278 0.387 0.212 0.253 0.115 0.215 0.089

GraphSage 0.488 0.283 0.389 0.218 0.262 0.121 0.217 0.095

HetGNN 0.499 0.295 0.402 0.231 0.275 0.133 0.232 0.103

HAN 0.487 0.289 0.397 0.226 0.271 0.128 0.227 0.099

HAT 0.506 0.302 0.406 0.233 0.279 0.138 0.241 0.108

Meta-GDN 0.654 0.445 N/A N/A N/A N/A N/A N/A

KNN 0.606 0.378 0.444 0.278 0.278 0.196 0.248 0.152

Finetune 0.572 0.353 0.402 0.248 0.257 0.165 0.236 0.132

ProtoNet 0.622 0.378 0.478 0.391 0.289 0.211 0.259 0.205

MAML 0.616 0.389 0.481 0.398 0.296 0.217 0.264 0.211

META-HIN 0.671▲ 0.459▲ 0.532▲ 0.432▲ 0.334▲ 0.255▲ 0.293▲ 0.242▲

that a randomly chosen anomaly has a higher score than a normal node. AUC-PR is the area under the curve

of precision against recall at diferent thresholds; it only assesses a model’s performance on the positive class

(abnormal nodes); it is calculated as the average precision deined in [33].

Table 4 shows the performance on the anomaly detection task. The highest scores are set in bold. N/Ameans that

the model is not applicable on these datasets. Note that G-META, which is able to deal with node classiication and

link prediction, cannot be applied to the anomaly detection task. This conirmsMETA-HIN’s broad applicability; it

can deal with three meta-learning tasks. GCN, GraphSage, HetGNN, HAN, and HGT perform the worst, and other

general few-shot learning methods, KNN, Finetune, ProtoNet, and MAML, are not comparable toMETA-HIN.

The best performing baseline on a single graph is Meta-GDN, which is designed for few-shot graph anomaly

detection, but it cannot be applied in a multiple-graph scenario.META-HIN performs the best across diferent

graphs, which further conirms META-HIN’s efectiveness and broad applicability.

5.2 Ablation analysis

We analyze the contribution of diferent components of META-HIN via an ablation analysis.

5.2.1 Evaluation setup. To evaluate the contribution of the structure module, we add a variant, denoted as

META-HIN\structure, from which we remove the structure module.

To evaluate the efect of the contrastive module, we introduce a variant, denoted as META-HIN\contrastive, in

which we remove the contrastive module. And to evaluate the efect of the GAN mechanism, we introduce a

variant denoted as META-HIN\GAN, in which we only use the original negative samples from the graph.

As to the heterogeneous GNN module, since we still need an encoder to encode the subgraph features, this

module cannot simply be removed. Instead, we introduce two variants for comparison. That is, our heterogeneous

GNN module is replaced by a GCN and GraphSage, respectively, denoted as META-HIN(GCN) and META-

HIN(GraphSage), respectively.

To evaluate the efect of our choice of contrastive loss in the link prediction and anomaly detection task, we

introduce a variant using the traditional binary cross entropy loss, which is denoted as META-HIN(BCE).

To evaluate the efect of our self-attention mechanism to calculate the task weights, we introduce a variant

assigning equal weights for each task, denoted as META-HIN(Equal).

We also assess the efect of our sampling strategy. We introduce three variants for comparison: (i) a breadth-irst
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Table 5. Results of the ablation analysis on the OYE dataset. Abbreviations used: MC ś multi-label node classification, LP ś

link prediction, AD ś anomaly detection.

MC LP AD

Model ACC F1 AUC F1 AUC-ROC AUC-PR

META-HIN\structure 0.359 0.383 0.398 0.378 0.279 0.195

META-HIN\contrastive 0.353 0.364 0.386 0.371 0.255 0.191

META-HIN\GAN 0.382 0.401 0.442 0.420 0.319 0.247

META-HIN(GCN) 0.368 0.383 0.402 0.394 0.298 0.208

META-HIN(GraphSage) 0.371 0.390 0.408 0.401 0.305 0.218

META-HIN(BCE) N/A N/A 0.427 0.406 0.317 0.236

META-HIN(Equal) 0.375 0.395 0.428 0.411 0.318 0.239

META-HIN(BFS) 0.372 0.384 0.411 0.393 0.296 0.227

META-HIN(DFS) 0.364 0.380 0.402 0.384 0.285 0.225

META-HIN(random) 0.353 0.375 0.397 0.366 0.272 0.216

META-HIN\betweenness 0.382 0.402 0.432 0.408 0.306 0.242

META-HIN\eigen 0.377 0.397 0.436 0.413 0.312 0.233

META-HIN\closeness 0.385 0.404 0.426 0.402 0.316 0.238

META-HIN 0.397 0.414 0.449 0.426 0.334 0.255

search (BFS) strategy,META-HIN(BFS); (ii) a depth-irst search (DFS) strategy,META-HIN(DFS); and (iii) randomly

sampling the neighboring nodes,META-HIN(random). Recall that we adopt three centrality metrics to measure

the importance of a node before applying our sampling strategy. Here, we introduce three variants to assess

the contribution of these centrality metrics. The irst excludes the betweenness centrality denoted as META-

HIN\betweenness; the second excludes the eigencentrality denoted as META-HIN\eigen; the third excludes

closeness centrality denoted as META-HIN\closeness. Each variant assigns equal weights to the two remaining

centrality metrics.

5.2.2 Results. We report the experimental outcomes on the two combined datasets with diferent domains, i.e.,

OYE and OYA datasets; the indings on the OAG and ODA are qualitatively similar.

Table 5 presents the experimental results of our ablation analysis on the OYE dataset. Both the structure module

and the contrastive module play a vital role for the meta-learning tasks, as one captures the graph structural

information and the other describes the unsupervised information. More concretely, the contrastive module has

a greater impact than the structure module as removing it causes a bigger drop in performance. Additionally,

incorporating the GAN mechanism with a contrastive module also contributes to the performance improvement.

It also veriies that the compatibility of each module is good since combining them all will generate the best

model performance.

As for the replacements of our heterogeneous GNN module, both of the variants, i.e.,META-HIN(GCN) and

META-HIN(GraphSage), perform worse thanMETA-HIN, which we attribute to the fact thatMETA-HIN leverages

heterogeneous information.

The variant of META-HIN that uses BCE loss instead of a contrastive loss, performs worse thanMETA-HIN,

which is due to the fact that a contrastive loss function is better able to distinguish the binary labels by maximally

separating the positive samples from the negative samples.
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Table 6. Results of the ablation analysis on the OYA dataset. Abbreviations used: MC: multi-label node classification, LP: link

prediction, AD: anomaly detection.

MC LP AD

Model ACC F1 AUC F1 AUC-ROC AUC-PR

META-HIN\structure 0.352 0.367 0.376 0.362 0.236 0.183

META-HIN\contrastive 0.347 0.356 0.359 0.352 0.219 0.177

META-HIN\GAN 0.377 0.393 0.403 0.388 0.266 0.203

META-HIN(GCN) 0.359 0.375 0.382 0.372 0.252 0.195

META-HIN(GraphSage) 0.364 0.381 0.387 0.379 0.257 0.201

META-HIN(BCE) N/A N/A 0.402 0.386 0.269 0.227

META-HIN(Equal) 0.368 0.381 0.395 0.392 0.276 0.224

META-HIN(BFS) 0.365 0.369 0.386 0.371 0.257 0.204

META-HIN(DFS) 0.357 0.362 0.374 0.362 0.245 0.192

META-HIN(random) 0.345 0.357 0.365 0.348 0.235 0.178

META-HIN\betweenness 0.371 0.384 0.399 0.391 0.273 0.225

META-HIN\eigen 0.365 0.380 0.404 0.394 0.374 0.214

META-HIN\closeness 0.375 0.386 0.392 0.384 0.278 0.229

META-HIN 0.395 0.411 0.414 0.408 0.293 0.242

Assigning equal weights to the node classiication, link prediction, and anomaly detection tasks reduces

the performance of META-HIN, which supports our intuition that diferent tasks contribute diferently to the

meta-learner.

As to alternative sampling strategies, META-HIN(BFS) performs better than both META-HIN(DFS) and META-

HIN (random), which illustrates that aggregating a node’s closest neighbors is more representative than sampling

far-away nodes or randomly chosen nodes.META-HIN, in turn, outperformsMETA-HIN(BFS); generating the

subgraph by selecting nodes with a higher importance results in better depiction of node’s neighborhood

information.

In summary, the individual design choices we made for the components of META-HIN are justiied in the

sense that obvious alternatives consistently lead to a performance drop.

5.3 Parameter sensitivity analyses

Next, we conduct a parameter sensitivity analysis of META-HIN. Two parameters are chosen for our analysis:

(i) the maximum number of nodes of a subgraph, and (ii) the number of shots used for meta-learning. For each task,

we only choose one metric for assessment: F1 value for multi-label node classiication, AUC for link prediction,

and AUC-ROC for anomaly detection. Fig. 5 and 6 present the results of our parameter analyses.

Fig. 5 shows the sensitivity to the maximum number of nodes of the input subgraph. As the number of nodes

increases from 0 to 20 (on the X-axis), the model performance correspondingly improves rapidly. A subgraph

with only a few nodes may not be able to fully capture the features of a node’s neighborhood. However, when

the number of nodes exceeds 20, it negatively impacts the model performance. Including too many far-away

nodes may introduce noise: the immediate neighborhood already provides suicient neighborhood information.

Based on this analysis, we select the maximum number of nodes of the subgraph to be 20 in our experiments.

As to the number of shots used for meta-learning, unsurprisingly, including more shots leads to better
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Fig. 5. Sensitivity w.r.t. the maximum number of nodes of sequences.

performance (see Fig. 6). The use of more training and testing samples consistently helps to improve the

performance. However, in a few-shot setting, the shots that could be chosen are limited (by deinition); choosing

the number of shots to be 10 is a reasonable balance between efectiveness and practical limitations.

6 CONCLUSION

Heterogeneous information networks (HINs) are an essential resource in many information retrieval scenarios.

We have proposed a novel meta-learning model, META-HIN, to address the few-shot learning problem for HINs.

META-HIN is the irst model that is applicable to three tasks (i.e., node classiication, link prediction, and anomaly

detection) across diferent HINs. As part of META-HIN, we have introduced a structure module, a heterogeneous

GNN module, and a GAN-based contrastive module to make efective use of structural, heterogeneous and

unsupervised information in a network, respectively. For the link prediction and anomaly detection tasks, we

choose a contrastive loss to train the meta-learner. A self-attention mechanism is applied on the training tasks as

diferent tasks have diferent inluences on the meta-learner.

In our experiments,META-HIN consistently and signiicantly outperforms state-of-the-art methods on every
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Fig. 6. Sensitivity w.r.t. the number of shots for meta-learning.

task across datasets, which demonstrates the advantage of META-HIN. We conduct an ablation analysis to

evaluate the efect of diferent modules or strategies we adopt. The results verify the efectiveness of META-HIN’s

design.META-HIN can deal with both single-graph scenario and multiple-graph scenarios, while in a multi-graph

scenario, aside from graphs from the same distribution, graphs from other domains can also be processed. In

addition, META-HIN is able to handle three tasks in a general framework, with each having speciic training loss.

We also conduct parameter sensitivity analyses to demonstrate the stability of our model.

This work ills the gap on addressing the few-shot learning issues on HINs. It can be used in broader real-life

applications such as recommendation. Many recommender systems face cold-start issues with limited items or

users, which is a typical few-shot scenario. Our technique is promising to alleviate the above issue if one views

the recommender system as a HIN. With only a handful of labels, when coming a new item,META-HIN could

help predict which user might be interested like the link prediction task. In addition, anomaly detection could

also be conducted byMETA-HIN in real-life inancial or social networks to ind the abnormal elements which are

rare and limited labeled.

META-HIN can be improved in several ways. First of all, attribute information exists in many HINs, which could
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be further incorporated into our framework in future work. Secondly, we aim to realize automatic hyperparameter

optimization and reduce the number of parameters to further improve META-HIN’s accuracy and eiciency.

Furthermore, In contrastive module, we could design more sophisticated negative samples for the model to

contrast and diferentiate, so as to enhance the model to mine the unsupervised information. Additionally, real-life

networks are always evolving, so it is also of interest to design an algorithm to deal with the few-shot learning

on dynamic HINs.
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