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Introduction

One of the core challenges in information retrieval (IR) is ranking a collection of
data entities, such as documents, multimedia or commercial products, based on their
relevance to a specific information need as expressed, for instance, in a textual query
[17]. Online search engines and recommendation systems have become essential tools
for addressing user information needs. A key element within these systems is the ranker,
which orders documents according to their relevance to the user’s query [143]. Research
in the IR community has increasingly focused on the use of machine learning to develop
robust ranking models, known as learning to rank (LTR) methods [92].

In this thesis, we focus on product ranking. This is a specific form of ranking in
which user needs extend beyond information discovery. Virtually all major retailers
operate their own product search engines, with popular platforms handling millions
of search requests daily [77]. E-commerce platforms often provide extensive choices
organized within numerous categories, making it nearly impossible for users to find
desired items without an effective search engine [137]. The goal of LTR models
for product search is to increase user satisfaction by identifying the most relevant
products and minimizing the barriers involved in searching, discovering and purchasing
items [77, 156].

Product search has unique characteristics that separate it from general web search.
One of these characteristics is the way products are displayed on e-commerce platforms.
Unlike web search, which relies primarily on text-based documents, product search
involves a diverse set of features, including textual (e.g., title and description), numerical
(e.g., price and user ratings), and visual elements (e.g., images and star ratings). The
presence of textual information, which is only one aspect of product representation in
product search, introduces unique challenges. Textual data, such as product titles and
queries, are often brief and lack the structure of full sentences, instead consisting of
phrases or simple keyword combinations. This limits the effectiveness of traditional
lexical matching techniques, such as BM25 [131], which rely on richer text data.

Recent learning-to-match methods have improved web search by capturing semantic
similarities between queries and documents rather than relying only on exact term
matching [137, 181]. Using techniques such as word embeddings and neural networks,
these models can better understand the context, allowing them to link related terms and
improve relevance even without exact matches [105, 114]. However, the limited textual
data in product search introduces challenges when applying these models, which were




1. Introduction

originally designed for web search. This thesis provides insights that help e-commerce
practitioners choose high-performance methods suited to the unique demands of product
search.

Another unique aspect of product search, particularly on so-called two-sided e-
commerce platforms, is the need to satisfy two distinct user groups: customers and
providers [138]. Customers, who are end-users looking for relevant and appealing
products to purchase, seek relevant items that meet their needs. Providers or suppliers
of the products being sold aim to maximize the exposure of their products in search
results, as greater visibility can lead to interaction and ultimately increase revenue [156].
Therefore, when an LTR model aims to optimize the rankings to satisfy both customers
and providers, accurate exposure estimation becomes crucial. Many factors can influ-
ence how items are exposed on search engine result pages. An important factor is the
position of the item in the ranked list. The well-known position-based model (PBM)
suggests that items in higher positions receive more user attention and thus more ex-
posure [16, 72]. However, position is not the only factor. Inter-item dependencies, i.e.,
how items relate to each other and stand out from one another, also play a significant
role in shaping exposure distribution [16, 138].

In this thesis, we examine a specific case of inter-item dependencies: the effect of
an outlier item within a ranked list. We define outliers as items that noticeably deviate
from others in the list based on certain features, making them stand out and capture user
attention [138, 140]. For example, in an e-commerce search, a single item marked with
a “Best Seller” tag can be considered as an outlier, as this feature differentiates it from
the rest and can draw additional user attention.

We introduce and formalize the concept of outlier items in ranking. Additionally,
we explore the impact of outliers on fairness in ranking, assessing how these outlier
items affect exposure distribution and, consequently, the fairness towards providers
in two-sided e-commerce platforms. Moreover, we investigate whether this shift in
exposure distribution alters user click behavior. We propose a method to estimate
exposure distribution in the presence of outlier items from the bias in user clicks and
correct for this bias to achieve unbiased LTR. Lastly, we analyze the visual saliency of
various presentational features and how they influence item outlierness within search
results in product search scenario.

1.1 Research Outline and Questions

We give a brief overview of the scope of this thesis and the main research questions that
will be answered.

The unique characteristics of product search make it challenging to achieve the
same ranking performance as general web search using models specifically designed
for web search. As pointed out above, a key challenge is the limited amount of textual
data in product search, where product titles and queries are often short and unstructured,
typically comprising phrases or simple keyword combinations rather than complete
sentences. This limitation amplifies the so-called vocabulary gap compared to other IR
tasks [158]. The vocabulary gap arises when documents and queries, represented as bags
of words, use different terms to convey the same concepts. While BM25 [131] remains
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1.1. Research Outline and Questions

a robust tool in practical search engines, a growing range of neural learning-to-match
methods has been developed to address this gap. These methods go beyond simple
lexical matching by embedding queries and documents in finite-dimensional vector
spaces and learning their degree of similarity within this space [105, 114]. In Chapter 2
we provide insights into using recent learning-to-match methods for product search by
answering the following question:

RQ1 How do learning-to-match models perform in ranking for product search com-
pared to each other in terms of efficiency and accuracy?

We conduct a comprehensive comparison of supervised learning-to-match methods for
product search, evaluating both effectiveness and efficiency in terms of training and
testing costs. Our experiments involve 12 learning-to-match models and used both
public and proprietary datasets, each with ~50,000 queries, to ensure reproducibility
and maintain ecological validity [9, 86].

Continuing to explore the distinct characteristics of product search, we focus on
factors that influence item exposure in ranked lists, as accurate exposure estimation is
crucial for satisfying both user groups, customers and providers, on two-sided platforms.
Traditional ranking systems typically order items by relevance to maximize user utility,
but in e-commerce, ranking must also ensure fair exposure for providers. Several studies
have proposed fair ranking policies to give protected groups, such as various providers, a
balanced share of exposure. However, most exposure-based methods [21, 103, 107, 135,
148, 149] assume that exposure is determined solely by position [16, 72], overlooking
the impact of inter-item dependencies [16, 138]. In Chapter 3, we hypothesize that a
specific type of inter-item dependency, that is, the presence of an outlier product in a
ranked list, exists in search logs and can influence exposure distribution. We address
the problem of not accounting for this effect by asking the following question:

RQ2 Do outlier items exist in search logs, and how can their effect on exposure-based
fair ranking algorithms be mitigated?

We demonstrate the presence of outliers in realistic datasets through an analysis of data
from the TREC Fair Ranking track [22]. Additionally, we conduct an eye-tracking study
that shows that the order in which users scan items and the exposure each item receives
are influenced by the presence of outliers. Based on these findings, we formalize
“outliernes” as a new phenomenon within ranking. We propose OMIT, a method
designed to mitigate the presence and effects of outliers in ranked lists. With OMIT, it is
possible to reduce outliers without compromising user utility or position-based fairness
for items.

In Chapter 3, we confirm that outlier items alter exposure distribution in ranked
product lists. To effectively use exposure-based models for fair ranking, we propose
avoiding outliers and, consequently, their effects on exposure. In Chapter 4 our aim is to
estimate exposure distribution rather than avoiding it. We hypothesize that user clicks
can serve as a proxy for item exposure and address the following research question:

RQ3 Does outlier bias exist in click data? How can we estimate its impact and correct
for this bias?
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We conduct a user study to compare the click-through rate (CTR) of specific items under
two conditions: displayed as outliers and as non-outliers within the ranked list. Our
findings show that CTR is consistently higher when an item is presented as an outlier.
Furthermore, an analysis of real-world search logs validates these results, indicating
that, on average, outlier items receive significantly more clicks than non-outliers in the
same lists. These observations confirm our hypothesis regarding the existence of outlier
bias in click data. To correct for this bias, we propose OPBM, a click model based
on the examination hypothesis that accounts for both outlier and position bias. We
apply regression-based expectation maximization to estimate click propensities using
our OPBM model.

In the previous two chapters, we demonstrated that outlier products influence both
user attention patterns and click behavior. In those analyses, we either focused on a
single product feature or assumed all outlier items had a uniform effect on these shifts,
regardless of the specific feature defining their outlier status. However, it is reasonable
to expect that users perceive different features differently. For example, a product
with a bold “Best Seller” tag might immediately catch more attention than one with a
low review score, since users tend to notice the bold discount tag more than a smaller
numerical feature [138]. In our final research chapter, we seek to understand more
precisely how various presentational features impact users’ behavior when examining
product lists. We analyze the visual saliency of these features to better understand
how attention is distributed across product lists and how specific features influence the
stand-out effect of outlier items within a list. This investigation leads us to our last
research question:

RQ4 How do different presentational features shape users’ perception of outliers and
influence exposure distribution in e-commerce search results?

We design visual search experiments to investigate how features like price, star rating,
and discount tags affect users’ ability to identify outliers, providing initial insights
into the immediate observability of these attributes. Next, we conduct eye-tracking
experiments to validate and deepen our understanding by observing user behavior in a
more realistic, simulated e-commerce environment. We also incorporate visual saliency
analysis to predict which product features would naturally attract attention based on
their visual properties.

1.2 Main Contributions

This section describes a list of the main contributions in this thesis.
Theoretical contributions

* We introduce, study and formalize the problem of outlierness in ranking and its
effects on exposure distribution and fairness (Chapter 3).

* We propose OMIT, an efficient approach that mitigates the outlierness effect on
fairness (Chapter 3).
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* We identify and study a new type of click bias, originating from inter-item
dependencies, called outlier bias (Chapter 4).

* We propose an outlier-aware click model, OPBM, that accounts for outlier items
(if they exist), as well as position bias (Chapter 4).

Empirical contributions

* We provide a comprehensive comparison of supervised learning-to-match meth-
ods for product search, in terms of both effectiveness and efficiency of training
and inference costs, considering 12 learning-to-match method and two datasets
(Chapter 2).

* We conduct an extensive eye-tracking user study in two search domains to support
our hypothesis about the existence of an effect of outliers on items’ exposure
(Chapter 3).

* We perform an empirical verification of the effectiveness of OMIT to remove
outliers while balancing utility and fairness (Chapter 3).

* We provide an extensive analyses of both user study results and real-world search
logs to confirm our hypothesis about the existence of outlier bias in search click
data (Chapter 4).

* We empirically show the effectiveness of our outlier-aware model, OPBM, in
estimating click propensities, by analysis based on real-world data and semi-
synthetic experiments (Chapter 4).

* We demonstrate how different presentational features impact user perception of
outlierness in e-commerce search result pages, highlighting the key role of visual
complexity in attention distribution (Chapter 5).

* We analyze the influence of bottom-up visual factors on item outlierness in
product lists, confirming the effectiveness of the graph-based visual saliency
model in detecting visual anomalies in ranked lists (Chapter 5).

* We conduct eye-tracking experiments to demonstrate the impact of top-down
factors on user attention, showing that these factors can override bottom-up visual
signals in online shopping scenarios (Chapter 5).

* We show that outlier items and their close neighbors in ranked lists attract more
attention and receive increased exposure (measured by engagement time), regard-
less of their position, due to their distinct observable features (Chapter 5).

Resource contributions

* The source code for OMIT (Chapter 3) is released under an open source license;
see https://github.com/arezooSarvi/OMIT_Fair_ranking.

* The source code for the experiments with OPBM (Chapter 4) is released un-
der an open source license; see https://github.com/arezooSarvi/
outlierbias.



https://github.com/arezooSarvi/OMIT_Fair_ranking
https://github.com/arezooSarvi/outlierbias
https://github.com/arezooSarvi/outlierbias

1. Introduction

1.3 Thesis Overview

The thesis starts with the current chapter. In this chapter, we introduce the main subject
of the thesis, which is the specifics of applying LTR models to product search. In
Chapter 2, we investigate using supervised learning-to-match methods for product
search. We conducted a comprehensive comparison of 12 methods for the task of query-
product matching and provide insights that help practitioners choose a well-performing
method in terms of effectiveness and efficiency in real-world use cases.

In Chapter 3, we discuss fair ranking towards providers in two-sided platforms and
show how inter-item dependencies can affect the performance of such algorithms. We
introduce the phenomenon of outlierness and study its effect of exposure distribution
and subsequently fairness in ranking. Lastly, we propose a novel method to mitigate the
negative impact of this effect.

This is followed by Chapter 4, where we estimate the impact of this inter-item
dependency, i.e., outlierness, on user examination probabilities. We introduce a new type
of click bias, that is, outlier bias. We propose a click model based on the examination
hypothesis, which accounts for both outlier and position bias.

Finally, in Chapter 5, we explore how different presentational features influence the
perception of outliers in e-commerce search results. We design experiments to measure
actual user attention and engagement while examining a product list, providing a more
comprehensive view of how outlier features capture and sustain attention in real-world
scenarios.

This thesis covers two interconnected but distinct areas of research in LTR for
e-commerce search: supervised learning for query-product matching and fairness in
ranking. The transition between these areas reflects the natural evolution of my research
focus, driven by both theoretical insights and practical challenges in real-world e-
commerce platforms.

Chapter 2 focuses on textual data to improve relevance for consumers by optimizing
the match between user queries and product descriptions. In this chapter, we address
the vocabulary gap, a significant challenge in product search matching. As the research
progressed, we realized that the way results are presented and how users perceive them
are also crucial factors in product search. Additionally, e-commerce platforms are often
two-sided, meaning that rankings impact not only consumers but also providers. This
realization led to the second phase of this research, covered in Chapters 3-5. In these
chapters, we shift our focus from textual data to observable features and from ranking to
user perception. We explore how the interdependencies between the ranked items affect
provider fairness, click bias, and user attention. In the conclusion, we offer several
suggestions for follow-up research that builds on insights from the two areas of research
in LTR for e-commerce search that we pursue in the thesis.

All chapters are based on separate articles. We aim to keep the articles in their
original state as much as possible. Because of this, it is unavoidable to have some
overlap in the description of some baseline methods or core notation.

6
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1.4 Origins

In this section, we list the publications that form the basis for each chapter:

Chapter 2 is based on the following paper:

 F Sarvi, N. Voskarides, L. Mooiman, S. Schelter, and M. de Rijke. A comparison
of supervised learning to match methods for product search. SIGIR Workshop on
eCommerce, 2020

Sarvi: Conceptualization, Investigation, Software, Writing — original draft, Project
administration, Formal analysis, Visualization. Voskarides: Investigation, Super-
vision, Writing — review & editing. Mooiman: Resources. Schelter: Supervision,
Writing — review & editing. De Rijke: Funding Acquisition, Supervision, Method-
ology, Writing — Review & Editing.

Chapter 3 is based on the following paper:

» F Sarvi, M. Heuss, M. Aliannejadi, S. Schelter, and M. de Rijke. Understanding
and mitigating the effect of outliers in fair ranking. In WSDM, pages 861-869,
2022.

Sarvi: Conceptualization, Investigation, Methodology, Software, Writing — origi-
nal draft, Project administration, Formal analysis, Visualization. Heuss: Method-
ology, Writing — original draft, Formal analysis, Visualization. Aliannejadi:
Supervision, Investigation, Writing — review & editing. Schelter: Supervision,
Writing — review & editing. De Rijke: Funding Acquisition, Supervision, Method-
ology, Writing — Review & Editing.

Chapter 4 is based on the following paper:

* F Sarvi, A. Vardasbi, M. Aliannejadi, S. Schelter, and M. de Rijke. On the impact
of outlier bias on user clicks. In SIGIR, pages 18-27, 2023.

Sarvi: Conceptualization, Investigation, Methodology, Software, Writing — origi-
nal draft, Project administration, Formal analysis, Visualization. Vardasbi: Formal
analysis, Software. Aliannejadi: Supervision, Investigation, Writing — review &
editing. Schelter: Supervision, Writing — review & editing. De Rijke: Funding
Acquisition, Supervision, Methodology, Writing — Review & Editing.

Chapter 5 is based on the following two papers:

* F. Sarvi, M. Aliannejadi, S. Schelter, and M. de Rijke. How to make an outlier?
Studying the effect of presentational features on the outlierness of items in product
search results. In CHIIR, pages 346-350, 2023.

* F. Sarvi, M. Aliannejadi, S. Schelter, and M. de Rijke. Understanding visual
saliency of outlier items in product search. arXiv preprint arXiv:2503.23596,
2025
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Sarvi: Conceptualization, Investigation, Software, Writing — original draft, Project
administration, Formal analysis, Visualization. Aliannejadi: Supervision, Writing
— review & editing. Schelter: Writing — review & editing. De Rijke: Funding
Acquisition, Supervision, Methodology, Writing — Review & Editing.

The writing of the thesis also benefited from work on the following publications:

* A. Vardasbi, F. Sarvi, and M. de Rijke. Probabilistic permutation graph search:
Black-box optimization for fairness in ranking. In SIGIR, pages 715-725, 2022.

* M. Heuss, F. Sarvi, and M. de Rijke. Fairness of exposure in light of incomplete
exposure estimation. In SIGIR, pages 759-769, 2022.

* F Sarvi. Understanding the effect of outlier items in e-commerce ranking. In
WSDM, pages 1226-1227, 2023.




A Comparison of Supervised Learning to
Match Methods for Product Search

The vocabulary gap is a core challenge in information retrieval (IR). In e-commerce
applications such as product search, the vocabulary gap is reported to be a bigger
challenge than in more traditional application areas in IR, such as news search or
web search. As recent learning-to-match methods have made important advances in
bridging the vocabulary gap for these traditional IR areas, we investigate their potential
in the context of product search. Concerning RQ1, in this chapter we provide insights
into the use of learning-to-match methods for product search. We compare both the
effectiveness and efficiency of these methods in a product search setting and analyze
their performance on two product search datasets, with ~50,000 queries each. One is an
open dataset made available as part of a community benchmark activity at CIKM 2016.
The other is a proprietary query log obtained from a European e-commerce platform.
This comparison is conducted towards a better understanding of trade-offs in choosing a
preferred model for this task. We find that 1. models that have been specifically designed
for short text matching, like MV-LSTM and DRMMTKS, are consistently among the
top three methods in all experiments; however, taking efficiency and accuracy into
account at the same time, ARC-I is the preferred model for real world use cases; and
2. the performance from a state-of-the-art BERT-based model is mediocre, which we
attribute to the fact that the text BERT is pre-trained on is very different from the text we
have in product search. We also provide insights into factors that can influence model
behavior for different types of query, such as the length of retrieved list, and query
complexity, and discuss the implications of our findings for e-commerce practitioners,
with respect to choosing a well-performing method.

2.1 Introduction

Online shopping is gaining popularity [156]. E-commerce platforms offer rich choices
in each of (often) many categories to the point that finding the desired article(s) can
be impossible without an adequate search engine. In this context, an effective product

This chapter was published as F. Sarvi, N. Voskarides, L. Mooiman, S. Schelter, and M. de Rijke. A
comparison of supervised learning to match methods for product search. SIGIR Workshop on eCommerce,
2020.




2. A Comparison of Supervised Learning to Match Methods for Product Search

search engine benefits not just users, but also suppliers.

Implications of the vocabulary gap in product search.. The vocabulary mismatch
between query and document poses a critical challenge in search [87]. The vocabulary
gap occurs when documents and queries, represented as a bag-of-words, use different
terms to describe the same concepts. Although BM25 [131] continues to be a reliable
workhorse in practical search engines, there is a growing collection of neural learning-to-
match methods aimed specifically at overcoming the vocabulary gap. These methods go
beyond lexical matching by representing queries and documents in finite-dimensional
vector spaces and learning their degree of similarity in this space [105, 114]. In product
search, the vocabulary gap may be a larger problem than in other IR domains [158].
Product titles and queries tend to be short, and titles are not necessarily well-structured
sentences, but consist of phrases or simple combinations of keywords.

Semantic matching. While product search leverages a wide range of ranking fea-
tures [156], features that do not rely on popularity or past interaction behavior are also
considered important. Semantic matching is one of the most important techniques to
improve the ranking in product search [156, 158]. Several semantic matching methods
have already been applied in the area of product search to generate latent representa-
tions for queries and product descriptions [156, 189, 190]. Surprisingly, despite recent
advances in supervised learning-to-match methods (see Section 2.2 for an overview),
relatively little is known about the performance of these methods in the context of
product search. In this chapter, we fill this gap by addressing the following research
question:

RQ1 How do learning-to-match models perform in ranking for product search com-
pared to each other in terms of efficiency and accuracy?

Our experimental study. We conduct a systematic comparison of 12 supervised
learning-to-match methods in the product search task. We compare the ranking perfor-
mance of these methods in terms of Normalized Discounted Cumulative Gain (NDCQG),
at positions 5 and 25 (an estimate of first page length in a search session) on two product
search datasets, both with more than 50,000 queries. One dataset is an open dataset
made available during a benchmarking activity at CIKM 2016, the other dataset is a
proprietary dataset obtained from a large European e-commerce platform (Sections 2.3
and 2.4).

Our main experimental finding of this chapter (detailed in Section 2.5) is the follow-
ing: modern learning-to-match methods are able to make an improvement of 134.46%
in terms of NDCG at position 5 of the list, in addition to a lexical baseline that is based
on BM2S5 in the CIKM 2016 dataset, while on the proprietary dataset this improvement
is not greater than 29.93%. We attribute this finding to the fact that in our proprietary
dataset almost all items presented on the first result page have a high lexical overlap
with the query, while in the public dataset the word overlap between the query and the
product descriptions is about 1.8%, which is very low [178]. This implies that for the
public dataset there are more opportunities for semantic methods to prioritize some
items over the others.

We find a high degree of correlation between the performance of the learning to match
methods on our two datasets. Except for a special case, ARC-I, we see the same models
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corresponding to the top 5 scores achieved for both datasets. We find that models
that have been specifically designed for short text matching, such as MV-LSTM and
DRMMTKS, are consistently among the top three methods in all experiments, whereas
the performance of a BERT-based model is mediocre. Moreover, we show model
behavior regarding different aspects of queries, namely query length and popularity,
and explain similarities and differences between the two datasets. We also look deeper
into the queries for which either of the two matching methods, lexical or semantic,
is preferred and discuss their characteristics. We found that for most queries in both
datasets semantic matching can improve the ranking, however, since the fraction of
queries hurt is substantial, we conclude that query-dependent selection of matching
function would be beneficial.

Implications for e-commerce practitioners. The effectiveness in terms of NDCG is
not the only criterion in selecting a learning-to-match model for a real-world use case.
As Trotman et al. [155] point out, efficiency (both at training and inference time) is a
major consideration for product search on e-commerce platforms. We therefore analyze
our results with a focus on choosing a suitable model for production deployments, and
discuss how this choice is influenced by the trade-off between computation time and
model performance (Section 2.6). We have seen that ARC-I provides a good balance
between, on the one hand, effectiveness improvements over and above a lexical baseline,
with minimum effort required for fine-tuning, and, on the other hand efficiency.

2.2 Related work

Product search. Many approaches have been proposed for product search, ranging
from adaptations of general web search models [43] to using versions of faceted search
to speed up browsing of products [159, 160]. To help select optimal approaches, Sondhi
et al. [150] propose a taxonomy for queries and costumer behavior in product search.
Independent of the type of query, it is customary to consider a cascade of two or more
steps in producing a search engine Result Page (SERP): first we retrieve all potentially
relevant items; then, using one or more re-ranking or learning to rank steps, we decide
which items to put on top [155].

There are specific challenges involved in applying learning to rank to product search;
Karmaker Santu et al. [77] study these in an e-commerce setting. The signals used
for matching queries and products in this learning to rank setup are diverse. E.g.,
Wau et al. [178] combine three types of feature: 1. statistical features (e.g., total show
count, click count, view count, purchase count of a product); 2. query-item features
(e.g., content-based query-description matching); and, finally, 3. session features about
co-clicked items in sessions. Ludewig and Jannach [95] also consider a broad range
of ranking features in a hotel ranking setting, with features ranging from descriptive
statistics and latent features to product and location features. In this chapter, we focus,
specifically, on query-item features and contrast their effectiveness for product search.

Learning to match. Many learning-to-match methods based on deep neural networks
have recently been introduced and used in a range of retrieval tasks; see, e.g., [105, 114]
for overviews. In product search, in addition to [95, 178], Bell et al. [18] develop an

11



2. A Comparison of Supervised Learning to Match Methods for Product Search

e-commerce-specific learning-to-match function based on query specific term weights
and Zhang et al. [190] use interaction data between queries and products contained in
a graph, along with text embeddings generated by a deep learning-to-match model to
rank a list of products. Magnani et al. [98] devise (deep) learning-to-match models for
product search, based on different types of text representation and loss functions.

Comparing learning to match methods. Systematic comparisons of (deep) learning-
to-match methods are rare. Exceptions include work by Linjordet and Balog [91], who
examine the impact of dataset size on training learning-to-match models.

Guo et al. [54] summarize the current status of neural ranking models, as well as
their underlying assumptions, major design principles, and learning strategies. They
survey the published results of some neural ranking models for ad-hoc retrieval and
QA tasks, but mention that it is difficult to compare published results across different
papers since even the smallest changes in experimental setup can lead to significant
differences.

Brenner et al. [27] contrast the use of learning-to-match models on web search vs.
on product search and find a complex trade-off between effectiveness and efficiency.
Ludewig et al. [96] benchmark four neural approaches in the context of session-based
recommendation against a nearest neighbors-based baseline and identify important
lessons for reproducibility. Yang et al. [184] apply five neural ranking models on
the Robust04 collection to examine whether neural ranking models improve retrieval
effectiveness in limited data scenarios.

What we add on top of the previous work listed above is a systematic study of
the effectiveness and efficiency of learning-to-match methods for product search. To
facilitate reproducibility, we use the methods implemented in the MatchZoo library [55]
for our study, like [91], as well as a BERT-based baseline. We summarize those methods
in Section 2.3 of this chapter, and in Sections 2.4 and 2.5 we detail our experimental
setup and outcomes.

2.3 Learning To Match Methods

In this chapter, we summarize the learning-to-match methods that we evaluate in our
experimental study. Guo et al. [53] propose a categorization of learning-to-match
models as follows: representation-based models aim to obtain a representation for the
text in both queries and documents; interaction-based models on the other hand, aim
to capture the textual matching pattern between input texts. We follow this organizing
principle.

2.3.1 Representation-Based Models

DSSM. The Deep Structured Semantic Model [63] maps text strings to a common
semantic space with a deep neural network (DNN) that converts high-dimensional text
vectors to a dense representation. Its first layer applies a letter n-gram based word
hashing as a linear transformation to reduce the dimensionality of feature vectors and
to increase the model’s robustness against out-of-vocabulary inputs. Its final layer
computes the cosine similarity between the embedding vectors as a measure of their
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relevance. This model is trained on clickthrough data to maximize the conditional
likelihood of a clicked document given the query.

CDSSM. The Convolutional Deep Structured Semantic Model [146] extends DSSM
and adopts multiple convolution layers to obtain semantic representations for queries
and documents. Its first two layers transform the input to a representation, based on
word and letter n-grams. Next, it extracts local and global (sentence-level) contextual
features from a convolution layer followed by max-pooling, before computing the final
matching score like DSSM.

MV-LSTM. The MV-LSTM [56] captures local information to determine the impor-
tance of keywords at different positions. It leverages a Bi-LSTM to generate positional
sentence representations. Its Bi-LSTM generates two vectors that reflect the meaning
of the whole sentence from two directions when based on the specified position. The
final positional sentence representation is obtained by concatenating these vectors. MV-
LSTM produces a matching score by aggregating interaction signals between different
positional sentence representations to take into account contextualized local information
in a sentence.

ARC-I. The ARC-I [61] network employs a convolutional approach for semantic
similarity measurements. It leverages pre-trained word embeddings, and several layers
of convolutions and max-pooling to generate separate dense representations for queries
and documents. Finally, it applies an MLP to compare the resulting vectors via a
non-linear similarity function.

2.3.2 Interaction-Based Models

ARC-II. Models that defer the interaction between inputs until their individual represen-
tations “mature,” like ARC-L, run the risk of losing information that can be important for
matching, because each representation is formed without knowledge of the others [61].
ARC-II [61] addresses this problem by using interactions between query and document,
so that the network gets the opportunity to capture various matching patterns between
the input texts from the start. It learns directly from interactions rather than from
individual representations. A first convolution layer creates combinations of the inputs
via sliding windows on both sentences, so that the remaining layers can extract matching
features.

DRMM. Guo et al. [53] mention three factors in relevance matching: exact matching
signals, query term importance, and diverse matching requirements, and design the
architecture of their deep matching model (DRMM) accordingly. DRMM first builds
interactions between pairs of words from a query and a document, and subsequently
creates a fixed-length matching histogram for each query term. Next, the model employs
a feed forward network to produce a matching score, and calculates the final score by a
weighted aggregation of the scores of the query terms.

DRMMTKS. This model is a variant of DRMM provided by the MatchZoo [55] library.
It is meant for short-text matching, and replaces the matching histogram with a top-k
max pooling layer.

MatchPyramid. This convolution-based architecture views text matching as image
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recognition [120]. The model first constructs a word-by-word matching matrix by
computing pairwise word similarities. This matrix is processed by several convolutional
layers to capture the interaction patterns between words, phrases and sentences. In the
first layer, a square kernel of size k extracts a feature map from the matching matrix,
which is aggregated by max-pooling to fix the feature size. Repetitions of these layers
produce higher-level features of a pre-defined size as the final embedding.

K-NRM. The kernel-based neural ranking model employs kernels to produce soft-match
signals between words [180]. Given a query and document, it constructs a translation
matrix from word pair similarities. These similarities are based on word embeddings
that are learned jointly with the ranking model. In the next layer, kernels generate K
soft-TF ranking features by counting soft matches between pairs of words from queries
and documents at multiple levels. The model combines these soft-TF signals and feeds
them into a learning to rank layer to produce the final score.

CONV-KNRM. This model [39] is a variant of KNRM and applies a convolution to
represent n-gram embeddings of queries and documents, from which it builds transla-
tion matrices between n-grams of different lengths in a unified embedding space. Its
remaining architecture is identical to KNRM.

2.3.3 Hybrid Models

DUET. DUET is a duet of two DNN5 that combines the strengths of representation-
and interaction-based models [106]. DUET calculates the relevance between a query
and a document using local and distributed representations and for this reason, has been
classified as a hybrid model [54]. By local representation we mean properties like the
exact match position and proximity while distributed properties are synonyms, related
terms and well-formedness of content.

The local sub-network applies a one-hot encoding to each term, from which it
generates a binary matrix indicating each exact match between query and document
terms. This interaction matrix is fed into a convolution layer, and the output is passed
through two fully-connected layers, a dropout layer and another fully-connected layer,
which generates the final output. The distributed sub-network takes a character n-graph
based representation [63] of each term in the query and document.

For the distributed part, DUET first learns non-linear transformations to the character-
based input by applying a convolution layer on both queries and documents. This step
is followed by a max-pooling step, whose output is the processed by a fully-connected
layer. The matrix output for the documents is passed through another convolution layer.
It then performs the matching by the element-wise product of the two embeddings.
Next, it passes the resulting matrix from the previous step to fully-connected layers
and a dropout layer until it obtains a single score. These two sub-networks are jointly
trained as one deep neural network.

BERT. BERT is a deep bidirectional transformer architecture pre-trained on large
quantities of text [41], which has recently achieved state-of-the-art results on ad-hoc
retrieval [97, 126]. BERT encodes two meta-tokens, namely [SEP] and [CLS], and
uses text segment embeddings to simultaneously encode multiple text segments. [SEP]
and [CLS] are used for token separation and making judgments about the text pairs,

14



2.4. Experimental Setup

respectively. In the original pre-training task [CLS] is used for determining whether the
two sentences are sequential, but it can be fine-tuned for other tasks. In our experiments
we adopted BERT for classification, and to this end, a linear combination layer is added
on top of the classifier [CLS] token [97].

2.4 Experimental Setup

In this section, we introduce our research questions, and describe the two datasets we
use for the experiments. We also describe the model tuning procedures and evaluation
methodology.

Research questions. Our experimental study aims to answer RQ1 using the following
research questions:

RQ1.1 How do learning-to-match models perform in ranking for product search com-
pared to each other and to a lexical matching baseline?

We consider the following aspects while investigating RQ1.1:

* How do learning-to-match models perform for different types of query in terms of
length and popularity?

* What is the per query score difference of the best semantic model compared to
the lexical matching baseline?

e How does BERT perform on short, unstructured text from product search descrip-
tions?

By answering these questions, we want to provide insight into the usefulness of these
models in a comparable setting for product search. In product search, it is important to
know the model behavior for different types of query. For example, some e-commerce
platforms may prefer to respond as effectively as possible to popular queries even
if it yields low performance for long-tailed ones. On the other hand, some might
prefer a model that is quite robust to different aspects of queries such as length and
popularity. In the last question we want to investigate the impact of BERT pre-trained
weights on the data we collected from a product search engine, given the fact that the
documents used in pre-training BERT are well-structured sentences, but in our case, the
majority of documents (product descriptions and queries) can be considered as phrases
or combinations of keywords.

Based on the experimental results, we aim to assist data scientists in e-commerce
scenarios by focusing on two additional research questions which concern the choice of
a suitable model for e-commerce scenarios:

RQ1.2 Can we come to a general conclusion about which category of models, interaction-
based or representation-based, to prefer for the product search task?

Most e-commerce companies have a high number of searches per second; therefore,
it is important for them to be able to conduct some part of the model training offline
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Table 2.1: Basic statistics of our datasets.
CIKM 2016 Proprietary

#queries 51,888 53,474
#unique queries 26,137 40,125
#unique presented products 37,964 214,778
#clicks 36,814 63,859

for efficiency purposes. Representation-based models can generate embeddings for
documents separately from queries (offline), which is an important advantage over
interaction-based models in an online setting. This motivates a comparison of these
model classes to obtain an understanding of their (dis)advantages for e-commerce
practitioners.

Furthermore, every production deployment of machine learning has to take the cost
incurred by model training and inference into account, which often has to be traded
off against the business benefits provided by the model [90]. The time for inference
is also crucial, as the response latency of a model has a major impact on its online
performance [12]. We therefore ask the following research question:

RQ1.3 Will the choice of preferred models change when we take training time, required
computational resources, and query characteristics into account?

By targeting this question, we aim to assist e-commerce practitioners in making the
decision on which models to select as candidates for their production use cases.

Datasets. We conduct experiments on two datasets, one of which is publicly available
and the other is proprietary. The basic statistics of the two datasets are shown in
Table 2.1.

CIKM 2016. Our first dataset is the publicly released dataset from Track 2 of the
CIKM Cup 2016.! This dataset contains six months of anonymized user search logs,
including query and product description tokens, clicks, views, and purchase records on
an e-commerce search engine from January 1st, 2016 to June 1Ist, 2016. The dataset
contains additional product metadata such as product categories, description, and price.
In the original split of the data, the last query of each session is marked as a test
sample, so we do not have user interaction signals for these queries. In addition to
search sessions that come with queries, this dataset also contains browsing logs that are
query-less. We ignore this part of the data in our experiments, since we are interested in
query/document matching based on text, and we study its impact in a SERP re-ranking
task. As a consequence, since the results achieved here are only based on text matching
in query-full queries, they are not comparable to studies in which the whole dataset is
used to improve the ranking, such as [178, 190].

Proprietary dataset. Our second dataset is extracted from the search logs of a large,
popular European e-commerce platform. The main language of the dataset is Dutch.
This dataset contains sampled queries from ten days of users’ search logs. We leverage
the first nine days as training data and the last day queries as test data. For each query,

'https://competitions.codalab.org/competitions/11161
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we know the items rendered on the first result page. We only use the title for each item,
which contains a short description of the product to be consistent with the CIKM 2016
data. We label positive matches between queries and items according to observed
click-through data, and remove sessions without clicks from the dataset [70]. In the
preprocessing step, we remove punctuation marks, HTML tags, and other unknown
characters from the text. Also, we lowercase all the tokens.

Model tuning. We experiment with models from the well established MatchZoo [55]
library,? which itself is based on Keras and TensorFlow. The MatchZoo library contains
a tuning module that fine-tunes the models based on pre-defined model-specific hyper-
parameter spaces [55]. In the tuning process parameters are sampled from the hyper-
space, but this sampling is not random, the scores of past samples will have an effect on
the future selection process in a way that it yields a better score. The tuner uses Tree
of Parzen Estimators (TPE) [19] to search the hyper-space. We start tuning from the
default parameter values provided by MatchZoo, and select hyper-parameters for all
models based on a fixed validation set in 50 rounds.

For the experiments with BERT, we used the implementation from Contextualized
Embeddings for Document Ranking (CEDR)? provided by MacAvaney et al. [97]. We
employed BERT base model (12 layers) with multilingual weights as well as a (Dutch)
monolingual version called BERTje [40], which is trained on a large and diverse dataset
of 2.4 billion tokens. We conducted separate experiments with both sets of weights in
this chapter. We also added gradient clipping and warm-up steps from the HuggingFace
transformer [173] implementation to improve the performance.*

Evaluation setup. The cascade model [37] assumes that users scan items presented in
a SERP one by one, from the top of the list, and the scan will continue after observing
non-relevant items but stops after a relevant item is found. Motivated by this assumption,
we only consider the items above the last clicked product in the list as well as two items
below that. This approach additionally helps to reduce the data size while balancing
the number of positive and negative samples in our data. This principle is applied to
both datasets, and we use the same maximum number of epochs with early stopping for
training all the models. Moreover, since we labeled our proprietary data only based on
clickthrough information, we treat clicks and purchases identically for the CIKM dataset.
While we consider the items to be presented in a list, it is common for e-commerce
websites to use a grid view to display the products. In this case, users’ examination
behavior can be different from the cascade model we use in this study.

Evaluation metrics. We report NDCG at two cut-offs: 5 and 25. We decided for a
cut-off of 5 because the top items returned for a query are important to capture a user’s
attention; we choose 25 which is the maximum number of results per query in both
datasets, and it is a good estimate of the items shown on the first page of an e-commerce
website.

’https://github.com/NTMC-Community/MatchZoo
3https://github.com/Georgetown-IR-Lab/cedr
4https://github.com/huggingface/transformers
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2.5 Performance of Learning to Match Methods for
Product Search

In this section, we seek to answer the research questions mentioned in Section 2.4.
For this purpose, we study the performance of different learning-to-match models in a
comparable setting.

We first address RQ1.1: How do learning-to-match models perform in ranking
for product search compared to each other and to a lexical matching baseline? by
determining the best-performing method or group of methods in bridging the vocabulary
gap for product search.

The overall performance of the learning-to-match methods on our datasets is sum-
marized in Table 2.2. Here, we re-rank an original ranked list obtained by a lexical
matching method as first step in a two-step retrieval cascade. For the CIKM data, the
original ranking comes from BM25, so it is only based on matching between query,
and product title. For the proprietary data, we omit signals involved in the production
ranking which are not related to lexical match, so that we obtain a similar baseline as
the one we have for the public data. As a result, the ranking produced by the lexical
baseline is purely based on matches of the query and the title, which enables us to
compare the results to the BM25 baseline provided for the public dataset.

Table 2.2: Performance of MatchZoo models on both datasets in terms of NDCG at
position 5 and 25.

Model CIKM data Proprietary data
NDCG@5 @25 @5 @25
Lexical 0.148 0.343 0.314 0.474
MatchPyramid 0.152 0.347 0.287 0.454
CDSSM 0.314 0.452 N/A N/A
ARC-II 0.320 0.458 0.334 0.488
ARC-I 0.326 0.462 0.408 0.549
DRMM 0.331 0.464 0.288 0.455
DSSM 0.334 0.467 N/A N/A
KNRM 0.341 0.472 0.337 0.490
DUET 0.345 0.473 0.350 0.500
MV-LSTM 0.342 0.474 0.408 0.549
CONV-KNRM 0.347 0.476 0.349 0.498
DRMMTKS 0.347 0.477 0.345 0.498
Best-BERT N/A N/A 0.340 0.493

Results for the CIKM2016 dataset. For the CIKM dataset, all learning-to-match
models outperform the lexical match baseline. The score achieved by MatchPyramid is
almost the same as the baseline, but other models perform 112.16% to 134.46% better
than BM25 in terms of NDCG @5 for the public dataset. It is worth mentioning that,
although, the differences in scores might not be noticeable, they indicate improvement
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for many queries. In other words, the 0.001 difference between the scores achieved
by CONV-KNRM and DRMMTKS at position 25, means better NDCG for 3.22% of
test queries. DRMMTKS performs better than the baseline for 36.02% of test queries.
This confirms that semantic matching can indeed improve the matching of query/item
pairs in product search as well as more general ranking tasks, even in the absence of
well-structured sentences or long documents.

Results for the proprietary dataset. Not all semantic matching models outperform
the lexical matching baseline for the proprietary dataset. Specifically, MatchPyramid
and DRRM achieve lower results for this dataset. On average, the spread of the results
we get for this data is smaller than for the CIKM dataset. In the latter the improvement
made by the best performing model - DRMMTKS - is roughly 134.46% better in
terms of NDCG @5 compared to the lexical baseline, which implies that in this case,
semantic matching can greatly help ranking most relevant items on top of the list.
However, the corresponding improvement of our learning-to-match methods for the
proprietary dataset is not bigger than 29.93% when we take ARC-I/MV-LSTM as the
best performing semantic methods. If we compare MatchPyramid’s score as the lowest,
to ARC-I/MV-LSTM the gain is 42.16% which is still way smaller than what we see in
the public data. It should be noted that, although we report the same score for ARC-I
and MV-LSTM, they perform differently for 0.4% of test samples. Since the difference
is marginal, it is not visible in 3 decimal digits.

We attribute the lower impact of the semantic matching methods on the proprietary
dataset to the fact that almost all the items presented on the first page have a high
lexical overlap with the query. In other words, the diversity of the first page, if we
only consider contextual aspects of products (titles) as the source of diversity, is much
smaller compared to the public dataset. This implies that for the public dataset there are
more opportunities for semantic methods to prioritize some items over others. Besides,
the chronological split of our proprietary dataset makes it a more challenging case than
the public dataset.

In general, we observe that models like MV-LSTM and DRMMTKS are consistently
among the top performing methods in all experiments, which we attribute to the fact that
these models have been specifically designed for short text matching. The average length
of queries in our public dataset is 3.1 and the average length for product descriptions
is 4.8, which both are very short. Note that we could not successfully finish a run of
CDSSM and DSSM on the proprietary dataset, due to out-of-memory issues with the
respective MatchZoo implementations. We plan to address this issue in future work.

An aspect of RQI.1 is to investigate the performance of BERT-based models on
short, unstructured text from product search logs. As indicated in Table 2.2, our best
performing BERT-based model (Best-BERT) which employed “bert-base-multilingual-
uncased" pre-trained weights, and early stopped after 10 patience steps, is not among
the top-ranked models for our proprietary dataset. In Section 2.4 we mentioned that
we also considered another version of BERT named Bertje, however, since we have
English terms mixed in with the (predominantly) non-English text in product titles
and queries, multilingual weights performed better than a monolingual model. The
NDCG @25 achieved with Bertje pre-trained weights on our dataset is 0.488 while the
score achieved from multilingual weights, in the same setting, is 0.493. It is worth
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Figure 2.1: Ranking performance for varying query length. On the X-axis we see the
length of the query, and Y-axis indicated the average NDCG at position 25 per queries
of a specified length.

mentioning that to study the impact of fine-tuning on our dataset, we once applied the
model on the test data without any fine-tuning. The performance we obtained is 0.445
which implies the effectiveness of fine-tuning. We conjecture that one of the main
reasons behind this poor performance from state-of-the-art BERT is the fact that the
text it is pre-trained on is very different from the text we have in product search; more
investigations are needed to support this conjecture.

2.5.1 Performance for Different Types of Queries

Next, we drill down into the experimental results to investigate an additional aspect
of RQ1.1: How do learning-to-match models perform for different types of query in
terms of length and popularity?

Query length. Figure 2.1 depicts the ranking performance of all models under varying
query lengths. Most of the queries in our datasets contain only a single word, but there
are a few very long queries with more than 75 words in the CIKM data and smaller
queries of 17 words in our proprietary data. Note that we restrict ourselves to query
lengths up to 8 words, for which we have a sufficient number of samples in our datasets.

For the proprietary dataset (Figure 2.1b), we observe that as the query length
increases, the matching performance also increases. All models follow the same trend.
Figure 2.2 shows the average number of items presented in response to queries in both
datasets. In general, this number is larger for the CIKM data, and we can see that the
length of SERP increases by the length of queries. In our proprietary dataset, however,
longer queries result in fewer items, which is attributed to the fact that in most cases
these long queries are the exact descriptions of specific products which are already
known by the users. Since in these cases, the search engine can precisely retrieve the
intended products, users can be easily satisfied, which is visible in high scores of NDCG
for these queries. Unfortunately, we do not have access to the actual content of the
CIKM queries, so we cannot further interpret the behavior of this data.
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Figure 2.2: Average number of items presented on SERP for different lengths of queries.

For the CIKM dataset (Figure 2.1a) however, we cannot arrive at a reasonable
conclusion about the relationship between query length and performance. Since the
terms in this dataset are hashed, it is difficult for us to investigate the performance of
different methods based on the length of the query because we do not know the original
terms. When comparing different models, KNRM seems more robust to query length
compared to the other models, and CONV-KNRM also performs quite consistently for
shorter queries.

Query popularity. Figure 2.3 depicts the results based on the popularity of queries,
i.e., the number of times a query is repeated throughout our dataset. We again only
include popularity values for which we have a sufficient number of samples. The X-axis
indicates the popularity of the queries, and the Y-axis denotes the average NDCG at
position 25.

Interestingly, we observe a “valley” in the middle for both datasets. We can explain
what we see in Figure 2.3b in three steps: starting from leftmost part of the plot, it
contains less popular queries which are usually longer than the popular ones, and from
what was indicated in Figure 2.1b, we know that it is easier for the models to rank
items for these types of queries. That is why we see a relatively high performance at
this part. However, as the popularity increases the queries get shorter. The middle part
contains queries that are repeated between 10 to 15 times, we encounter some shorter
queries, which are more challenging for the models, and are not repeated often enough
for the models to pick up the patterns between the pairs of these queries with the large
number of associated items. This situation gets more difficult since based on the nature
of the original production ranking function which was employed during logging of our
proprietary data, we often see that the retrieved list for a query can vary a lot from day
to day. As we move further in Figure 2.3b toward the most popular queries which we
consider to be short, the performance improves. The reason for this observation can
be that popular queries get repeated over and over again, the lists of items presented
for them converge, and the models can learn the relationship between the pairs. As
expected, we see that the models generally perform better for more popular queries.
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Figure 2.3: The behavior of models based on query popularity. The flow is quite the
same in all cases: all models tend to perform better for more frequently seen queries.

2.5.2 Per Query Score Difference between the Best Semantic
Model and the Lexical Matching Baseline

Next, we focus on the final aspect of RQ1.1: What is the per query score difference of
the best semantic model compared to the lexical matching baseline?

Figure 2.4 shows the difference between the best performing semantic model and
the lexical match per query for each of the datasets. The best performing semantic
model for the CIKM dataset was DRMMTKS, while ARC-I and MV-LSTM performed
best for the proprietary data. The Y-axis shows the difference in NDCG at position 25
of the best performing model to the lexical baseline for all test queries. The X-axis
lists the queries in decreasing order of ANDCG such that the queries for which the
semantic model performs better are on the left and vice versa for the lexical model on
the right. Queries that benefit from semantic matching have a positive value on the
Y-axis while those that prefer lexical matching have a negative value. The plots indicate
that semantic matching improves the ranking for most of the queries. This is more
obvious in Figure 2.4a, considering that semantic matching has more influence on the
CIKM data than for the proprietary data, which is also presented in Table 2.2. Although
in Figure 2.4b this difference is not as visible, the area under the curve for the upper part
is ~1.2 times bigger than the part below the X-axis. This suggests that query-dependent
selection of matching function would be beneficial.

In the case of the CIKM data, it is hard to interpret the queries from the uppermost
and bottom points of the plot, since we do not have access to the actual content of the
queries. However, for the proprietary data, we can analyze these respective queries.
We observed that, analogous to the public dataset, there is no meaningful difference
in terms of the length and the popularity of these queries, but the words in the queries
for which semantic matching performs best are more general and commonly used
than the words, which we see in the other group. For example, among the queries
for which semantic method vastly outperforms lexical matching, we encounter queries
like “wireless earbuds”, and “lego”, which are closer to a category name than to one

22



2.5. Performance of Learning to Match Methods for Product Search

0.8 0.8

0.6 0.6

0.4 0.4

Q 02 Q0.2
3 g

Q 00 0.0
S 2

Z-02 Z-02

-0.4 -0.4

-0.6 -0.6

-0.8 -0.8

queries queries
(a) CIKM dataset (b) Proprietary dataset

Figure 2.4: Per-query paired differences between the best semantic model and lexical
baseline for models trained on each dataset and evaluated on the test sets. The Y-axis
indicates ANDCG at position 25 of ranking between best semantic model and lexical
baseline The X-axis lists the queries in the referenced dataset in decreasing order of
ANDCG such that queries for which semantic model performs better are on the left and
vice versa for the lexical model on the right.

specific product. On the other hand, we have examples like “anneke kaai,” “buzzed” and
“Stephan Vanfleteren” for queries with a higher NDCG achieved by the lexical matching
baseline, these are mostly proper nouns or specific items.

There are some queries that are repeated in both groups. In other words, we can see
sessions with the same query, while in one session lexical matching performs better, in
the other one semantic matching provides a better ranking. This is because of different
relevance judgments from different users based on personal preferences. Examples of
these queries are “star wars lego” or “perfume” of different brands. In these cases, all
the products rendered in SERP contain the exact words from query, so the only factor
that makes a user click on an items is personal preferences and possibly the position
of the product in the list. When these preferences vary from user to user there is no
discriminating signal that the semantic models can capture to prioritize one item over
the other for future queries.

When looking at per query best/worst performances of the semantic matching model
and the lexical baseline on our proprietary dataset, we see that for 62.3% of the queries
both models either perform accurately or poorly. However, in 15.9% of the cases, we
have queries for which the performance of semantic matching is high, while lexical
matching does not perform accurately. On the other hand, we see that the opposite
behavior, i.e., where the lexical matching baseline outperforms semantic matching, is
much rarer (7.9%).

Again it is interesting to look at some examples: among the queries for which
semantic method is preferred, we can see queries expressed in general terms like
“woonkamer klok,” “tractor hout” or “panty met print,” which means “living room
clock," “tractor wood," and “panty with print," respectively. These queries do not match
to any specific item, as they are more exploratory queries. Among the queries that do
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not benefit from a semantic method and prefer a lexical match, we again mostly see
queries with proper nouns, and more interestingly combinations of numbers like 77
400 700 which matches the sizes of some charging cables. For these queries, the user
exactly knows what he/she is looking for in the product catalog and we see that these
terms match to parts of titles.

2.5.3 Further Considerations

Impact of word embeddings. For some of the models, the word embeddings used
for initialization are more critical than for others. For example, DRMM creates a
similarity matrix based on the word embeddings at the beginning, and does not update
the embeddings in the training process (like MV-LSTM does, for example). In our
experiments, we have all models start with a random initialization in order to have an
identical setting for both datasets to make the results comparable. However, as a result
we encountered very poor performance for DRMM as one of the worst performing
models with NDCG scores of 0.331 and 0.288 at position 5 for the public and proprietary
data, respectively, which contrasts other studies, where it proved to be one of the
strongest models for different tasks [54, 184].

We ran an additional experiment for DRMM, ARC-I and ARC-II in order to investi-
gate the impact of the leveraged word embeddings on their performance. For training
these models we experimented with both a Word2Vec model learned from a large corpus
of general text in the same language as our proprietary data, and a Word2Vec model
learned from the text of a corresponding proprietary product catalog and our training
queries. However, we did not observe meaningful improvements over using pre-trained
embeddings.

The problem with using embeddings learned from general text is that queries and
product descriptions of our proprietary data contain both English and non-English text,
so when using only non-English embeddings the model misses plenty of words. To solve
this problem we also trained a Word2Vec model on the product catalog and training
queries. However, we found it difficult to balance the amount of product descriptions
and queries to achieve robust weights from the Word2Vec model.

2.6 Implications for E-Commerce

Experiments into position bias in e-commerce settings have shown that customers are
prejudiced towards the first few results [60]. It is customary to rank products primar-
ily based on the popularity of a product without taking semantics into account [155].
However, user studies and analyses of interaction logs reveal that customers use various
queries with subtle differences to search for the same product set that should lead to
different rankings [150]. Adding semantics, to query understanding and to product
ranking, should result in a better ranking. From the point of view of generating se-
mantically more meaningful ranked lists of products than purely ranking by popularity,
our experiments in Section 2.5 suggest that we should consider models like ARC-I,
MV-LSTM and DRMMTKS.

But effectiveness as measured in terms of NDCG is not the only criterion in selecting
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a learning-to-match model for a real world use case. As Trotman et al. [155] point
out, for product search on e-commerce platforms, efficiency is a major consideration:
both efficiency at training time and at inference time. In order to accommodate for the
special considerations in production use cases, we analyze our results in this section.
This discussion can be leveraged as a starting point for deciding which model to choose
for a real world deployment by e-commerce practitioners. We focus on the question of
which model family to choose (Section 2.6.1) and how this choice is influenced by the
trade-off between computation time and model performance (Section 2.6.2).

2.6.1 Choosing between Representation-Based Models and Inter-
action-Based Models

We now discuss RQ1.2: Can we come to a general conclusion about which category
of models, interaction-based or representation-based, to prefer for the product search
task?

The motivation for this question is as follows. Most e-commerce companies have a
high number of searches per second and are at the same time continuously expanding
their total number of products, partners, and customers. This results in a lot of new
product and interaction data per day, as well as an ever-shifting catalog of products. As
a consequence, we require a model that can be extended with new data and is able to
rank products that have not been seen with a particular query before.

Representation-based models can generate embeddings for documents separately
from queries and we can cache these embeddings for efficiency purposes. In these
models the embeddings for query and product are not dependent on each other unlike
interaction-based models where query and product are linked. This allows us to easily
compute the embeddings for all products and popular queries offline. For interaction-
based models, even if we manage to cache the representations of top items retrieved
for popular queries, in the case of new products or changed items (possible changes
in product description or other contents that we might use), we again need to compute
online which can be very time consuming.

Thus, we have a preference for representation based models. Based on the results
in Table 2.2 interaction-based models, namely DRMMTKS and CONV-KNRM are
the two best performing models for the public dataset with NDCG @25 of 0.477 and
0.476 respectively. However, the representation-based model MV-LSTM is in the
third rank with the score of 0.474, which is a marginal decrease compared to the two
interactive models. Furthermore, for our proprietary dataset the best performance
is from representation-based models, ARC-I and MV-LSTM, which is fortunate for
practitioners. In summary, we would recommend representation-based models for
production deployments in general, due to the discussed operational advantage of being
able to incorporate new query and production representations easily [54].

2.6.2 Training Cost and Inference Speed

Next, we discuss efficiency specific aspects of RQ1.3: Will the choice of preferred
models change when we take training time, required computational resources and query
characteristics into account? In the real world, resources are limited; by answering this
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question we aim to assist e-commerce practitioners with the decision which models
to select as candidates for their production use cases. Inference time is also important
since the response time of the system has a huge impact on the user experience.

We compare the training and inference time for the learning-to-match models on our
proprietary dataset. We only provide this information for our proprietary data, since it
contains raw search logs extracted from an e-commerce platform, and the chronological
split of test/train samples is a more acceptable representation of the real world use
cases. Given that we have to trade-off computation cost and ranking performance, based
on Figure 2.5, we conclude that ARC-I and Best-Bert are the strongest candidates,
since they have strong ranking performance (see Table 2.2) while having low training
and inference times. Considering ARC-I, it is really important that we could achieve
the best performance on our dataset using this model with the default values for its
hyper-parameters (Figure 2.5). This means that compared to the other models, it is
possible to obtain a sufficient performance using ARCI-I without the need to fine-tune
the model.

Memory consumption. In Section 2.5 we mentioned that we could not successfully
finish a run of CDSSM and DSSM on the proprietary dataset, due to out-of-memory
issues with the respective MatchZoo implementations. MatchZoo has specific prepro-
cessing modules for these two models that include word hashing. This preprocessing
step consumes a huge amount of memory, which makes it inapplicable of being applied
on our proprietary data. Although MatchZoo provides us with the option of not using
word hashing for the preprocessing step of the training process, for the evaluation part it
does not support the same setting. From the experiments we observed that CDSSM was
considerably slower than DSSM, but none of them can be considered proper choice for
a big dataset like ours.

It should also be noted that, although the MatchZoo implementation supports GPU
computation, we observed a very low GPU usage for all of our models during training
and evaluation time. In terms of average computational time spent on GPU non of
the models exceeds 5% GPU utilization during the whole process on any of our two
datasets. Since we checked the functionality of the implementation with a QA dataset
consisting of long documents, we can attribute this observation to the fact that our texts
are too short to engage the GPU properly. We also contacted the MatchZoo team and
they suggested to increase the batch size to a very big number to solve the issue, but
since it could cause a lower ranking performance we did not follow this advice.

2.6.3 Impact of Query Characteristics

Finally, we discuss aspects of RQ1.3 with respect to query characteristics. Query
characteristics are important for an e-commerce platform because it is important to
know which model is preferred in which case. Length of the query and query popularity
are two characteristics that differ per language and per device on the platform. The
results from Section 2.5.1 show that query length does have an influence on the model
and it could be worth investing into various models for various settings if the average
query length differs per setting. For example, from the analysis conducted, we see that
customers who access the e-commerce platform through an app use shorter queries than
customers who use a browser. E-commerce platforms could develop different models
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Figure 2.5: Ranking performance in comparison to training and inference time for
the proprietary dataset. Both ranking performances achieved from the default hyper-
parameters and the fine-tuned ones are depicted in this figure.

for different settings, although this might affect consistency to an unacceptable level.

Query popularity is the second important characteristic. Ideally, each query should
result in the best ranking for the customer. However, popular queries are searched more
often and thus these influence the revenue more than less popular queries. A model
should thus work well enough on the less popular queries and excellent on the popular
queries with a certain trade-off, so MV-LSTM seems to be a good choice. Having said
that, there exist cases where less popular queries can equally influence the revenue (e.g.,
when they are issued after a popular query in a session). This should also be taken into
consideration when selecting rankers for deployment.

2.6.4 Recommendations for Deployment

In terms of overall performance, we have seen that ARC-I provides a good balance
between, on the one hand effectiveness improvements over and above a lexical baseline
and on the other hand efficiency. Plus, the fact that it can perform well with the default
configuration is another positive point.

Next, we found that, most methods perform consistently across different query
lengths on the CIKM dataset, with the results for MV-LSTM going up as query length
increases; on the proprietary dataset, the performance of all methods consistently
increases with query length. In terms of query popularity, we see consistent performance
across different levels of popularity for all learning-to-match models on the CIKM
dataset, but on the proprietary data we seen that some learning-to-match methods clearly
benefit from increased popularity, including DUET and MV-LSTM.

Furthermore, in a side-by-side comparison of top performing learning-to-match
methods and a lexical method, we see that substantial fractions of queries are helped
by the learning-to-match method than are hurt, on both the CIKM and the proprietary
datasets, while the fraction of queries hurt is substantial. The latter suggests that query-
dependent selection of a matching function would be beneficial. Finally, we found that
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representation-based models provided the best accuracy and efficiency trade-off.

2.7 Conclusion & Future Work

In this chapter, we have established a comprehensive comparison of supervised learning-
to-match methods for product search. We have considered 12 learning-to-match meth-
ods, considering both effectiveness and efficiency in terms of training and testing costs.
Our comparison was organized around three main research questions using two datasets.

From the experiments, we find that models that have been specifically designed for
short text matching, like MV-LSTM and DRMMTKS, are among the best performing
models for both datasets. By taking efficiency and accuracy into account at the same
time, ARC-I is the preferred model at least for our proprietary data, which is a good
representation of the real-world e-commerce scenario. Moreover, the performance from
a state-of-the-art BERT-based model is mediocre, which we attribute to the fact that the
text BERT is pre-trained on is very different from the text we have in product search.
We also provide insights that help practitioners choose a well-performing method for
semantic matching in product search.

In the next chapter, we will shift our attention from query-product matching using
textual data, to another aspect of e-commerce search, i.e., inter-item dependencies in a
ranked list. we will introduce the concept of outlierness in rankings and investigate its
effects on exposure distribution and provider fairness. Accordingly, we will raise and
address RQ?2 in the following chapter.

2.8 Reflections

This study was conducted in 2019 and published in 2020. Since then, the field of IR and
consequently, semantic matching has evolved significantly. At the time of this research,
supervised deep learning-to-match methods, including BERT [41], were the dominant
approach to improve query-product matching. Our work provided insights into how
best to leverage these existing methods for the specific case of product search. However,
recent advancements in large language models (LLMs) and representation learning for
information retrieval have introduced more powerful models that can better capture
semantic relationships between a query-document pair.

More advanced large-scale pre-trained Transformer-based models for ranking tasks,
such as ColBERT [78] and T5-based models [111, 124, 192] have demonstrated superior
performance by leveraging contextualized embeddings and dense retrieval methods,
outperforming traditional supervised learning-to-match models in many applications.
Furthermore, retrieval-augmented generation (RAG) [85] approaches, which combine
ranking with generative Al, have introduced new ways to handle query-product matching.
In this new paradigm, models like MV-LSTM and DRMMTKS, which were among
the top-performing short-text matching models in our study, cannot compete with the
newer architectures that better capture contextual meaning even in short product titles
and descriptions.

Despite these advancements, some insights from our study remain relevant. The
trade-off between accuracy and efficiency, which we examined in detail, continues to
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be a critical concern. Although recently introduced Transformer-based models offer
improved text representation and potentially better ranking quality, their computational
expense remains a challenge for deployment in real-time, high-traffic e-commerce
search, even when employing techniques such as model distillation to reduce inference
cost [38]. Additionally, while these recent models can generalize better to different
domains, the observation that ranking models perform differently across datasets re-
mains an open challenge [11, 88]. While the specific models we evaluated may no
longer define the state-of-the-art, the broader lessons regarding model efficiency, dataset
variability, and domain-specific ranking challenges remain applicable and can inform
future research in e-commerce search.
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Understanding and Mitigating the Effect
of Outliers in Fair Ranking

Traditional ranking systems of the kind discussed in the previous chapter are expected
to sort items in the order of their relevance and thereby maximize their utility. In fair
ranking, utility is complemented by fairness as an optimization goal. Recent work on
fair ranking focuses on developing algorithms to optimize for fairness, given position-
based exposure. In contrast, we identify the potential of outliers in a ranking to influence
exposure and thereby negatively impact fairness. This effect is the focus of RQ2 and
will be explored in this chapter. An outlier in a list of items can alter the examination
probabilities, which can lead to different distributions of attention, compared to position-
based exposure. We formalize outlierness in a ranking, show that outliers are present in
realistic datasets, and present the results of an eye-tracking study, showing that users’
scanning order and the exposure of items are influenced by the presence of outliers. We
then introduce OMIT, a method for fair ranking in the presence of outliers. Given an
outlier detection method, OMIT improves the fair allocation of exposure by suppressing
outliers in the top-k ranking. Using an academic search dataset, we show that outlierness
optimization leads to a more fair policy that shows fewer outliers in the top-k, while
maintaining a reasonable trade-off between fairness and utility.

3.1 Introduction

The primary goal of a ranker as used in a search engine or recommendation system
is to optimize the list to satisfy the user’s needs by sorting items in their order of
relevance to the query [143]. Recently, there has been a growing concern about the
unfairness towards minority groups caused by this simplistic assumption [16, 21].
Several studies have proposed approaches to achieve fair ranking policies. The goal is
to ensure that the protected groups receive a predefined share of visibility. Exposure-
based methods [21, 103, 107, 135, 148, 149] quantify the expected amount of attention
each individual or group of items receives from users in a given ranking policy, where
attention is typically related to the position of the item and based on the observation
that users are more likely to click on items presented at higher positions [16, 72].

This chapter was published as F. Sarvi, M. Heuss, M. Aliannejadi, S. Schelter, and M. de Rijke. Under-
standing and mitigating the effect of outliers in fair ranking. In WSDM, pages 861-869, 2022.
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However, the position of the item is not the only factor that affects exposure [36].
Inter-item dependencies also play a key role [25]. For example, consider a user trying
to buy a phone. When searching on an e-commerce platform, if an item in the list is
on promotion and has a “Best Seller” badge, this can be distracting so that it gets more
attention from the user, regardless of its position in the list; the item would stand out
even more if it is the only one with this feature.

We hypothesize that inter-item dependencies have an effect on examination proba-
bility and exposure of items. We focus on the case of having an outlier in the ranking
and aim to understand and address its effect on user behavior. We hypothesize that
exposure received by an item is influenced by the existence of an outlier in the list,
and assume that this effect should be considered while allocating exposure to protected
groups in a fair ranking approach.

We define outliers as items that observably deviate from the rest. The properties
and method with which we identify outliers in a set of items depend on the task. The
properties are observable item features that can be presentational in nature or correspond
to ranking features used to produce the ranked list. E.g., in the e-commerce search
example, if only one item on a result page has a “Best Seller” tag, it is an outlier based
on this presentational feature.

In this chapter, we address the following research question:

RQ2 Do outlier items exist in search logs, and how can their effect on exposure-based
fair ranking algorithms be mitigated?

To begin, we perform an exploratory analysis on the TREC Fair Ranking dataset.
We observe that a large number of outliers exist in the rankings, where we use multiple
outlier detection techniques to identify outliers based on the papers’ citations, as they
can make an item more attractive and catchy than others.

Next, we conduct an eye tracking study, where we measure the attention that each
item on a ranked list gets through eye tracking, so as to show that users can actually
perceive outliers in rankings. We find that attention is more focused on outlier items. The
scanning order and exposure received by each item may be influenced by the existence
of outliers. Unlike other types of bias studied in search and recommendation [72, 113,
117, 169, 186], our eye-tracking study reveals that outlierness comes from inter-item
dependencies. It affects the examination propensities for items around the outlier in a
way that is less dependent on the position and based on relationships between items
presented together. However, it is translated into bolded keyword matches in the title
and abstracts, which can be calculated for each item separately, independently of its
neighbors. Attractiveness does not alter the examination model based on position bias
and only results in relatively more clicks on items when they are presented with more
bolded matched keywords [186].

While allocating fair exposure to protected items or groups in a fair ranking solution,
we should account for the effect of outliers. We propose an approach to account for
the existence of outliers in rankings without damaging the utility or fairness of the
ranking by mitigating outlierness, called OMIT. OMIT jointly optimizes (i) user utility,
(ii) item fairness, and (iii) fewer outliers in top-k positions as a convex optimization
problem that can be solved optimally through linear programming. Via its solution,
we derive a stochastic ranking policy using Birkhoff-von Neumann (BvN) decomposi-
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tion [23]. OMIT reduces the number of outliers at top-10 positions on the TREC 2020
dataset by 80.66%, while maintaining the NDCG @ 10, compared to a state-of-the-art
ranking baseline.

The main contributions of this chapter are as follows: (i) we introduce, study and
formalize the problem of outlierness in ranking and its effects on exposure distribution
and fairness; (ii) we run an extensive eye-tracking user study in two search domains to
support our hypothesis about the existence of an effect of outliers on items’ exposure;
(iii) inspired by our analysis, we propose OMIT, an efficient approach that mitigates
the outlierness effect on fairness; (iv) we compare OMIT to competitive baselines
on two TREC datasets in terms of fairness, outlierness, and utility; OMIT is able to
remove outliers while balancing utility and fairness; and (v) we make the data from
our eye-tracking study plus the code that implements our baselines and OMIT publicly
available.

3.2 Background

Exposure and utility. Consider a single query ¢, that we will often leave out for nota-
tional simplicity, for which we want to rank a set of documents D = {d;,ds,...,dn}.
Suppose we are given document utilities u € R™, where w; is a proxy for the relevance
of document d; for ¢q. Let v € RN be the attention vector, where v; denotes how much
attention a document gets at position j, and which is decreasing with the position. This
vector encodes the assumed position bias, e.g., v; = 1/log(1 + j).

We require a probabilistic ranking in the form of a doubly stochastic document-
position matrix P € [0, 1]V~ where P;; denotes the probability of putting document
d; at position j. Such a matrix can be decomposed into a convex combination of
permutation matrices, which allows us to sample a concrete ranking [148].

The exposure of a document d; under ranking P denotes the expected attention that
this document will get. Using the position based attention vector v, this can be modeled
as a function of the ranking and position bias: Exposure(d;|P) = Z;V:l P;;v;.

The expected utility U of aranking P is the sum of the documents’ utilities weighted
by the exposure given to them by P:

N N N
UP) = Zui Exposure(d;|P) = ZZU” Pjv; = u’Pv. 3.1

i=1 i=1 j=1

Without fairness considerations, a utility-maximizing ranking can be found by sorting
the documents in descending order of utility.

Group fairness. Suppose now that the documents D can be partitioned into two disjoint
sets Dy;s and Dy,.5,,, where documents in Dy; 5 belong to a historically disadvantaged
group (e.g., publications from not so well established institutes), and those in Dpy;,
belong to the privileged group (e.g., publications from well-established institutes). We
want to ensure a certain notion of fairness in the ranking. We want to avoid disparate
treatment of the different groups. We use the disparate treatment ratio [148], which
measures how unequal the exposure given to the disadvantaged group (in relation to
the corresponding utility of the disadvantaged group) is compared to the corresponding
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ratio of the privileged group, as:

dTR(Dais, Dpriv|P) =
> dieny, Exposure(dilP)/ 3y, cp,, ui G2
deE'Dpriv Exposure(dp|P)/ ZdlﬂeDP"‘i” Up

Note that dTR is 1 if the groups are treated fairly and smaller than 1 if the ranking
is unfair towards the disadvantaged group. We often encounter disparate treatment
when only optimizing for the expected utility of a ranking [16, 21, 148]. We can find a
utility maximizing ranking P that avoids disparate treatment by solving the following
optimization problem [148]:

P = argmaxpu' Pv (expected utility)

suchthat 1" P =17 (row stochasticity)
Pl1=1 (column stochasticity) (3.3)

0<P;; <1 (valid probabilities)

f ' Pv=0, (dTR constraint)

where 1 denotes a vector and f is the vector constructed to encode the avoidance of
disparate treatment, with

f; ]ldieDdis ]ldiEme'v
= —
|Dais| steDdis us  |Dprivl deeppm, up’
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where 14,¢p,,. = 1 if document d; is in the disadvantaged group and 0 otherwise (and
analogously for 14,¢p,,.,,) [148].

Degrees of outlierness. Outliers are items that deviate from the rest of the data [69].
They can be interesting observations or suspicious anomalies. Either way, they are
considered noise that can affect the statistical analysis. We describe three outlier
detection methods that we will use later in this chapter. Let x = {z1,..., 2z, |2x; € R}
be a set of values for which we want to identify outliers.

priv

Median Absolute Deviation (MAD). Although it is common practice to use Z-scores
to identify possible outliers, this can be misleading (particularly for small sample
sizes) due to the fact that the maximum Z-score is at most (n — 1)/+/n. Iglewicz and
Hoaglin [64] recommend using the modified Z-score: M; = 0.6745(x; — &)/ MAD,
where MAD is the median absolute deviation and Z is the median of z. These authors
recommend that modified Z-scores with an absolute value of greater than 3.5 be labeled
as potential outliers.

Median K-Nearest Neighbor (MedKNN). This model [10] uses the K-Nearest Neigh-
bor algorithm to define a distance-based outlier detection method. For each point z; we
have a value wy (x;) as the weight calculated from the k nearest neighbors; outliers are
the points with the largest values of w;. We use Median K-Nearest Neighbor, which
computes wy(z;) as the median distance of x; to its k neighbors. In order to find the k
nearest neighbors, the method linearizes the search space and uses Hilbert space-filling
curve for fast and efficient search; the method scales linearly in the dimensionality and
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the size of the dataset.

Copula-Based Outlier Detection (COPOD). COPOD [89] is a novel outlier detection
method based on estimating tail probabilities using empirical copula. COPOD uses
empirical cumulative distribution functions (ECDFs) to compute tail probabilities. These
tail probabilities estimate the probability of observing a point at least as extreme as x;
for each data point x;. If z; is an outlier, the probability of observing a point as extreme
as x; should be small and it means that this point has a rare occurrence. This method is
deterministic and efficient, and scalable to high dimensionality data.

3.3 Ouitliers in Ranking

A common assumption is that exposure is a function of position [21, 103, 107, 148, 167].
We argue that this assumption holds only if ranked items can be deemed similar, meaning
that no item is perceived as an outlier. Below we introduce outliers in the context of
ranking. We then determine that outliers are present in rankings in realistic datasets. We
also report on an eye-tracking study that shows that the presence of outliers in ranked
lists impacts user behavior.

A definition of outliers in ranking. For a ranked list, we define outliers as items
that stand out among the window of items that the user can see at once, drawing the
user’s attention. Outlier items often have (visible) characteristics that distinguish them
from their neighbors. E.g., consider Figure 3.1, which shows a result page for the
query “smart phone”. The result page view consists of 6 products, each presented
with characteristics such as title, image, and price. The item at position three deviates
from the other items in terms of several visual characteristics; it has more details, some
promotive tags, and bold keywords. Other features, such as more positive reviews, or
a higher price, may also influence the user’s perceived relevancy. In this example, the
third item can be considered as an outlier according to such visual characteristics.

Formally, we define outliers in ranking as follows. Consider a ranked list of N items
inD = {dy,ds,...,dn}, that has been produced in response to a query. We call an
observable characteristic of an item d in a ranked list an observable item feature. These
features can be purely presentational in nature, like the bold keywords in Figure 3.1, or
correspond to ranking features used by the search engine to produce the ranked list, e.g.,
the average user rating.

Definition 1 (Degree of outlierness). Let g be an observable item feature, and M be one
of the outlier detection methods discussed in Section 3.2. The degree of outlierness of
an item d; in the ranked list [dy, . . ., d ] is the value calculated by M for g(d;) in the
context of {g(dy),...g(dn)}, that determines how much g¢(d;) differs from the other
elements of the set. We write M(g(d;)|D))) for this value.

Definition 2 (Outliers in ranking). We say that according to M, item d; is an outlier in
the ranked list [dy, . . ., dy] for feature g, if M identifies g(d;) as an outlier in the set

Note that detecting an item as an outlier in a ranking depends on the context in which
we see the item. Throughout this chapter, we consider the full ranked list of items as
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Figure 3.1: E-commerce example used in our eye-tracking user study. A result page
with one outlier at position 3, identified by more descriptive fields, higher price, and
colored tags.

the context in which we detect outliers. In Section 3.6 we study varying sizes for the
context.

Moreover, it is possible to use multiple observable features to detect the outliers. For
example, we can consider image size as g; and price as g2, and then use any combination
of these two feature values to present item d;.

Below, when we refer to an item d being an outlier in a given ranked list, we assume
that it is clear from the context what outlier detection method M and observable item
feature g are being used.

Do outliers in ranking exist? To determine whether outliers are present in rankings
in datasets, we take a retrieval test collection, compute feature values for one of the
(potentially observable) rankings features appropriate for the collection, and determine
whether there are outliers among the top-20 documents returned for the test queries
(using ListNet as the ranker, see Section 3.5). For the experiments in Section 3.6
we use the academic search dataset provided by the TREC Fair Ranking track.' It
contains information about papers and authors extracted from the Semantic Scholar

'https://fair-trec.github.io/
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Table 3.1: Descriptive statistics of the TREC2020 Fair Ranking Track dataset.
Training Test

#queries 200 200
#unique authors 16,499 17,571
#unique papers 4,649 4,693

% of clicks in sessions 0.169 0.170

Open Corpus.? It comes with queries and relevance judgments; see Table 3.1 for some
descriptive statistics.

We used the number of citations as observable feature g for this dataset as they
can make an item more attractive than others (when reported). In the remainder of the
section, we report the analysis only on the TREC 2020 data, as we observed similar
trends in both datasets. Figure 3.2 shows the mean, maximum, and minimum of papers’
citation counts for all search sessions in the data. There is a high variance between
mean and maximum citations, which implies that the data is outlier-prone based on this
feature. We plot outlier counts for each position in the top-20. Figure 3.3 depicts the
number of relevant and non-relevant outliers detected by the outlier detection methods
introduced in Section 3.2 at different positions. The stacked bars show that in spite of
the attractiveness of outliers, most of these items are irrelevant, judging by the click
data. In total, 88.5%, 89.8%, and 90.1% of the outliers are irrelevant when MedKNN,
COPOD, and MAD are employed as the outlier detection method, respectively. The
average percentage of irrelevant documents in the top 20 positions in the dataset is
83.3%. This suggests that by pushing these items to lower positions we can improve
the degree of outlierness without jeopardizing utility.

Do users perceive outliers in the ranking? Outliers are present in realistic datasets,
but do they impact user behavior? Prior studies stress the importance of relationships
between ranked items [123], but it is unknown how an outlier in a ranking affects the
examination probability. To address this gap, we conduct an eye-tracking study. We ask
participants to interact with search engine result pages, as they normally would, and
find the items that they prefer and think are relevant. We track their eye movements via
an online webcam-based eye tracking service.?> We use two scenarios, e-commerce, and
scholarly search. We focus on a list view; in both scenarios, participants are able to
see all items in one page. For each scenario, we include two result pages, one without
an outlier item and one with (as in Figure 3.1). In the absence of outliers we expect
participants to follow the position bias examination assumption [72]; in the presence of
outliers, we expect that users’ attention is diverted towards them.

We recruit 40 university students and staff for both scenarios. In the instructions,
we describe the overall goal of the research and ask participants to read the instructions
carefully. We describe what webcam-based eye tracking is and that the eye-tracking
service will ask them for access to their webcam. We instruct participants to first read
and understand the query and then start scanning the result page as if they submitted the
query themselves.

2http://api.semanticscholar.org/corpus/
3RealEye, https://realeye.io.
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Figure 3.2: Distribution of the number of citations of top-20 papers returned for test
queries in the TREC 2020 Fair Ranking track.

T
MedKnn [ non-rel., U rel.
40 | 1
corOD Enon rel., Orel.

O non rel., Orel.

30

20

# Outliers

10

12345678 91011121314151617181920

Position
Figure 3.3: Number of outliers at each position w.r.t. different outlier detection methods,
considering the number of citations as the observable feature. Each stacked bar shows
the number of irrelevant and relevant outliers.

For reporting, we consider four eye-tracking measures based on participants’ eye
fixations: (i) fixation count (the number of fixations within an area; more fixation means
more visual attention); (ii) time spent (shows the amount of time that participants spent
on average looking at an area); (iii) Time To First Fixation (TTFF; the amount of time
that it takes participants on average to look at one area for the first time); and (iv) revisit
count (indicates how many times on average participants looked back at the area) [49].

Outliers in e-commerce. For this scenario, we mimic the Amazon Marketplace4

search result page. Figure 3.1 depicts our example ranked list with an outlier. The third
item in the list stands out from other items for different reasons, including price and

‘https://www.amazon.com
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Figure 3.4: Examples used in the eye-tracking study. (a) Heatmap for a result list
without outlier for the query “smart phone”. Items at the top of the result list receive
more attention, following the position bias assumption. (b) Heatmap for a similar result
list (the same list as in Figure 3.1) but with one outlier, at position 3. Participants exhibit
increased attention towards and around the outlier item. (c) Heatmap for a scholarly
search example, with an outlier (at position 4).

sales-related tags (e.g., being on sale), as well as other information that is available
for this item. Comparing Figure 3.4a and 3.4b, we see that in the presence of an
outlier, items at the top of the list receive less attention, contradicting the position bias
assumption.

Figure 3.5(a) reports the eye-tracking measures for the e-commerce scenario. We
highlight the outlier in each list with an asterisk. In the no-outlier condition, participants
exhibit linear behavior in terms of scanning the items. The highest number of fixations,
time spent, revisits belongs to the items on the top of the list, and it decreases as we
go down the list. TTFF demonstrates a linear behavior of the first fixation time, that
is, most of the participants started scanning the results from top to bottom. The ranked
list with an outlier exhibits very different measurements. Attention is more focused
on the outlier item. Also, we see that from the TTFF values, the average time for the
first fixation is the lowest for this item, suggesting that the scanning order and exposure
are influenced by the existence of the outlier. This is also evident by comparing the
heatmaps in Figure 3.4a and 3.4b.

Outliers in scholarly search. In the second scenario, we study the effect of out-
liers on scholarly search result pages. To this end, we mimick the result page from
PapersWithCode.’

To save space, we omit the eye fixation heatmap for the result page without outliers;
it shows the familiar F-shape. Figure 3.4c shows the eye fixation heatmap for the result
page with an outlier item; the fourth item has a different thumbnail and a large number
of GitHub stars, making this item stand out in the list. Similar to the e-commerce
scenario, the eye fixations are very different from the F-shape typical for the no-outlier

Shttps://paperswithcode.com
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(b) Eye tracking measurements for scholarly search.

Figure 3.5: Eye tracking measurements for each position, based on participants’ eye
fixations. The positions where outliers were shown are marked with an asterisk.

case. Fixations and time spent are the highest for the outlier item, suggesting that it
draws lots of attention, and contradicts the cascade examination assumption.

However, different from the e-commerce case, we do not observe as big a difference
in the TTFF values between the conditions with and without outliers, suggesting that
the order of item scans is not affected as much as in the e-commerce example.
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3.4 Mitigating Outlierness in Fair Learning to Rank

We now present a ranking algorithm for mitigating outlierness for fairness in ranking,
called OMIT, that simultaneously accounts for item fairness and outlierness effect
requirements. Based on the observations reported in the previous section we know that
outliers can influence exposure and examination order, in a way that can be considered
as a type of bias. We take a first step towards mitigating the outlierness phenomenon by
proposing a remarkably simple, yet effective solution that removes outliers from the
top positions where the distribution of exposure is most critical. Our solution aims at
decreasing outlierness in the top-k positions, while retaining the ranking’s utility and
fairness with position-based assumptions.

OMIT is based on the linear programming method described in Section 3.2. In
addition to optimizing for user utility while staying within the fairness constraints, our
goal is to reduce the number of outliers in the top-k of all rankings. OMIT has two
steps. In the first, we search for the marginal rank probability matrix that satisfies item
group fairness by solving a linear program that optimizes both for user utility and fewer
outliers in the top-k items with linear constraints for fairness. In the second, we derive
a stochastic ranking policy from the solution of the linear programming method using
the Birkhoff-von Neumann decomposition [23]; cf. also [148].

Step 1: Computing MRP matrix. Let D, = {d;, ..., dy} be aset of items that we aim
to rank for a given query ¢. Each ranking o (+|q) corresponds to some permutation matrix
P, that re-orders the elements of Dq.6 As discussed in Section 3.3, to determine which
items are outliers, we use the domain specific observable item features g(d;), . .., g(dn)
that potentially impact the user’s perception of an item. Using these characteristics as
features, one can use any outlier detection method to determine which items should
be considered outliers. The majority of outlier detection methods, including the ones
we use (Section 3.3), find outliers by calculating scores that indicate the degree of
outlierness. This results in a list of outlierness values M(g(dy)|D), ..., M(g(d,)|D),
where n < N is the size of the outlierness context that the algorithm takes into account
while detecting the outliers. We define a vector op, that contains, for each document,
the information whether it is an outlier with respect to the full ranked list:

M(g(d;)|D), ifd; is outlier in D

op ={0;}; witho; = {O (3.5)

else.

)

We use o and op interchangeably. Note that we are considering outliers in the context
of the full list, n = N, i.e., the outlier detection algorithm takes the whole ranked list as
input. We assume that items that are perceived as outliers in this context are likely to be
perceived as outliers when seen in the smaller context of the top-k items. Below, we
show that this heuristic works well in practice.

OMIT works by pushing outliers away from the top-k. Let P, be the permutation
matrix corresponding to a ranking o. The amount of outlierness that a ranking o places

SFor simplicity, we interchangeably use o(-) and o (-|g), as well as D and Dj,.
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in the top-k are equal to

k
Outlierness? (0| M) = Z(OTPa)i = o’ P,h, (3.6)
i=0
where h = (1,...,1,0,...,0) is a vector containing 1 for the first k£ positions and 0

for all positions after that. Similarly, the expected outlierness, that is placed in the top-%
by P is given by
Outlierness” (P| M) = o’ Ph. 3.7

While optimizing for user utility we can use the expected outlierness to add an objective
that will function as a regularization term, penalizing ranking policies with outliers
in the top-k. We extend the linear programming approach described in Section 3.2 to
solve:
P = argmaxpu’ Pv — o’ Ph
such that P is doubly-stochastic (3.8)
P is fair.

For item fairness, we adopt the disparate treatment constraints as described in Section 3.2.
Both terms of the optimization objective, and the constraints for fairness and finding a
doubly stochastic matrix are linear in N2 variables. Hence, the resulting linear program
can be solved efficiently using standard optimization algorithms [148].

Step 2: Constructing a stochastic ranking policy. The solution to the linear program
P is a matrix indicating the probability of showing each item at any position. To
generate actual rankings, we need to derive a stochastic ranking policy 7 from P
and sample rankings o to present to users. We follow [148] and use Birkhoff-von
Neumann decomposition to compute 7, which decomposes the doubly stochastic matrix
P into the convex sum of permutation matrices P = 6,1 P,, + --- + 0, P, , with
0<6; <1,%,6; = 1[23]. This results in at most (N — 1)? + 1 rankings o; [100],
corresponding to P,,, that are shown to the user with probability 6;, respectively.’
OMIT model summary. Algorithm 1 presents an overview of OMIT. OMIT takes
as input the initial ranking D, (optimized for utility), outlier detection method M,
outlierness context size n, and the number of top items that we aim to remove outliers k.
In line 1, op is created for a given outlier detection technique and outlierness context
size, followed by line 2 where we create the h list that takes into account the top of
the list that we aim to mitigate outlierness. In line 3, we solve the linear program that
jointly solves the fairness and outlierness problem and pass the stochastic ranking in
line 4 to the BvN decomposition algorithm. Finally, we return the output of the BvN
method as the output.

3.5 Experimental Setup

To answer RQ2, we investigate the following research questions:

"We used the implementation from https://github.com/jfinkels/birkhoff.
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Algorithm 1 Outlier mitigation for fair ranking (OMIT)

Input: Dy, M, n, k

Output: 7

Create op as Eq. (3.5) using Dy and M

h <+ (hy,...,hy,)suchthat h; = 1ifi < kelse 0

P + arg maxp u’ Pv — o? Ph such that P is doubly-stochastic and fair (Eq. (3.8))
7 <— BvN-Decomposition(P)

Return 7

BANE -

RQ2.1 How do different outlier detection methods affect OMIT’s performance in terms
of utility, fairness, and outlierness?

RQ2.2 How does our OMIT trade-off between utility, fairness, and outlierness, com-
pared to baselines?

RQ2.3 We adopt the constraints proposed in [148] (called FOE) to optimize a ranked list
for fairness and utility through linear programming, as described in Section 3.4.
Given that OMIT adds additional constraints, is the overall linear program more
effective when we treat the doubly stochastic matrix constraints as hard or soft
constraints?

RQ2.4 How does changing the context of detecting outliers affect OMIT’s outlierness
improvement and utility?

RQ2.5 How does changing k affect OMIT’s outlierness improvement and utility in the
top-k positions?

Data. We use data from the TREC Fair Ranking 2019 and 2020 track (see Section 3.3).
We make the group definitions over the two datasets consistent. As for the TREC 2019
data, we bin the original article groups into two classes. For the TREC 2020 data, we
adopt the group definitions from the original data, that is, documents are assigned to
two groups based on their authors’ h-index. Moreover, we follow the TREC setup to
generate query sequences, leading to multiple occurrences of the same query, using the
provided frequencies. Specifically, we evaluate on a query sequence of size 10, 000,
including all the queries in the evaluation data.

Evaluation metrics. We evaluate methods for fair learning to rank in the presence of
outliers in terms of utility, item fairness, and outlierness. For utility and fairness, we use
NDCG and dTR (see Eq. (3.2)), respectively, as our metrics and report their expected
values.

To measure the expected outlierness of the policy P up to position n in the ranking,
we use Outlierness” (P| M) as defined in Eq. (3.7). Similarly we define the expected
number of outliers up to position n in ranking for policy P as

#Outliers” (P| M) = of Ph, (3.9)

where o] = 1.(o7) is the binarized version of o where each outlier item is assigned
1, and all the rest are assigned 0.
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Compared methods. To evaluate OMIT, we build several baseline methods, combining
different options for each component of our model (initial ranking, fairness of exposure,
outlier mitigation):

* Initial ranking: The initial ranking of all compared methods is generated using
ListNet [29]. ListNet is a learning to rank model, optimizing for utility. We use it
in our experiments to create initial ranked lists, Dy, using the click data provided
in the training set, with 30 maximum epoch, and a validation ratio of 0.3.

* Fairness of exposure: We use two variants of FOE [148] based on hard vs. soft
doubly stochastic matrix constraints, and call them FOE* and FOES, respec-
tively.®

* Outlier mitigation: We employ two outlier mitigation techniques, namely, RO
and OMIT. RO removes all the outlier items detected by M from the ranking,
while OMIT is our proposed outlier mitigation method as described in Section 3.4.

We specify methods as combinations of the three components mentioned above. E.g.,
“ListNet + FOE! + OMIT” uses the initial ranked list produced by ListNet, applying
FOE fairness post-processing with hard constraints and the OMIT outlier mitigation
model.

3.6 Empirical Results

Effect of outlier detection method. We address RQ1.1 by changing the outlier detec-
tion method, while keeping the other parts of the model fixed. Table 3.2 reports the
results of using three different outlier detection methods in OMIT. For comparison,
we also report the results of ListNet without outlier mitigation (row a) and report the
relative improvements. All three outlier detection methods effectively reduce outlierness
compared to the baselines. COPOD achieves the best results by reducing outlierness
by 80.3% and 80.6% in terms of Outlierness@ 10 on the TREC 2019 and 2020 data, re-
spectively. In terms of dTR, COPOD outperforms MAD and MedKNN on both datasets
where it increases dTR by 21.9% on TREC 2020. We see no significant difference in
the utility achieved by the methods. Given that COPOD is parameter-free and scalable,
we prefer it over the other two methods. For the remaining experiments, we choose
COPOD as the outlier detection method.

Utility, fairness, and outlierness trade-offs. To answer RQ1.2, we turn to Table 3.2,
which shows the results for OMIT and the baseline methods in terms of utility, fairness,
and outlierness.

Although ListNet is purely optimized for utility, it does not achieve the highest
NDCQG in all cases. This suggests that optimizing for fairness and outlierness could
even improve the utility.

As shown in Figure 3.3 there is a high density of outliers among top positions that
are mostly irrelevant. Therefore, when OMIT pushes these items to lower positions,
it improves outlierness and utility measures simultaneously. Moreover, we see that

8We used the implementation from https://github.com/MilkaLichtblau/BA_Laura.
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Table 3.2: Comparing loss in fairness and utility, with gains in outlierness for different
outlier detection methods on the TREC 2019 and 2020 Fair Ranking data. Models used:
(a) ListNet and (b) ListNet + FOE® + OMIT. A values denote the percentage of
relative improvement compared to (a). * refers to statistically significant improvements
compared to (a) using a two-tailed paired t-test (p < 0.05).

NDCG 1 Fairness T # Outliers | Outlierness |

Model ~ Outl. @ @10  dTR @10 A%) @10 A(%)
COPOD 0671 0.757 0935 1260 — 0873  —

2 @  MedKNN 0671 0757 0935 0507 - 0432 -
S MAD 0671 0757 0935 0811 — 0599  —
= COPOD  0.667 0.753  0.977% 0208* 83.49 0.172* 80.29
B (b)  MedKNN 0.671 0756 0936  0.102* 79.88 0.094* 78.24
MAD 0.671 0757  0957* 0290% 6424 0.205% 65.77

COPOD 0240 0356 0790 1043 — 0755 —

§ (@  MedKNN 0240 0356 0790 0783 - 0602 -
S MAD 0240 0356 0790 1456 — 0779  —
= COPOD 0240 0366* 0.963* 0.178* 82.93 0.146* 80.66
B (b)  MedKNN 0239 0361 0740  0.160* 79.56 0.133* 77.90

MAD 0.242 0.372*  0.709 0.430* 70.46 0.202* 74.10

mitigating outlierness does not cause any significant effect on dTR, showing that OMIT
is capable of retaining position-based item fairness.

Table 3.3 shows that OMIT effectively decreases the number of outliers in top-
10 positions by at most 83.49% (and 82.93%) when used with FOE® (row g in the
table) on the TREC 2019 (and 2020) data. For the outlierness metrics, these values are
80.29% and 80.66%. Referring back to our data analysis, we observed a high density
of non-relevant outlier items at the top of the list, indicating the high possibility of user
distraction towards these non-relevant items, as suggested by our eye-tracking study.

Hard vs. soft constraint. We turn to RQ1.3 and experiment with two variants of the
FOE model, which differ in the constraint for generating a doubly stochastic matrix
(see Eq. (3.8)). This constraint is important since the BvN algorithm can guarantee
to generate valid permutations only if the input is doubly stochastic. We observed
that forcing the convex optimization to output such matrices can make the constraints
too hard to satisfy even when only optimizing for fairness and utility. Hence, the
algorithm cannot find an optimum solution for many of the queries. For example,
FOEX cannot find solutions for 47%, and 46% of the queries on TREC 2019 and
2020 data, respectively. We return the original ranking as the output when FOE#
does not find an optimum solution. To fix this problem we implemented the constraint
for doubly stochastic matrix as a soft constraint and we check for validity of the
permutation matrices generated by the decomposition algorithm. Table 3.3 demonstrates
the effectiveness of the soft variant of FOE (row g vs. f).

Effect of n. To answer RQ1.4, we examine the effect of the n parameter, which
determines the outlierness context size. We change n from 10 to 40 items while keeping
other parameters fixed, and observing the behavior of the model. This is important since
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Table 3.3: Comparing loss in fairness and utility, with gains in outlierness for COPOD
on the TREC 2019 and TREC 2020 Fair Ranking data. Models used: (a) ListNet; (b)
ListNet + FOE"; (c) ListNet + FOE?; (d) ListNet + FOE” + RO; (e) ListNet +
FOE® + RO; () ListNet + FOE® + OMIT; (g) ListNet + FOE® + OMIT. A values
denote the percentage of relative improvement compared to (a). Other conventions are
the same as in Table 3.2.

NDCG 1 Fairness T # Outliers |  Outlierness |
Model @5 @10 dTR @10 A(%) @10 A%)

(a 0671 0.757 0935 1260 - 0873 —
2 (b) 0.670 0.756 0935 1.235 - 0870 —
g (© 0.673 0.758 0945 1.225 - 0852 -
w (d 0663 0.697 0961* 1.114 11.58 0.861 1.37
E (e) 0.667 0.700  0.990* 1.072* 14.92 0.834 4.47
= () 0.672 0757 0951 1.080* 14.28 0.753* 13.74
(gy 0.667 0.753 0.977* 0.208* 83.49 0.172* 80.29
(a) 0240 0356 0.790 1.043 - 0755 -
(b) 0.237 0355 0301 1.073 - 0780 —

(c) 0.241 0357 0.766  1.046 - 0758 —

(d) 0.242 0362 0313 1.143 —-9.58 0.811 —7.41
(e) 0.242 0362 0.840* 1.148 —10.06 0.817 —8.21
() 0237 0359 0314 0.885*% 15.15 0.645* 14.56
(g) 0240 0.366* 0.963* 0.178* 82.93 0.146* 80.66

TREC 2020

the outlierness of an item depends on its context, e.g., an item can be considered as an
outlier in the top-10 items, but may not be an outlier in the top-20 items. The two left
plots in Figure 3.6 show the outlierness improvements (compared to ListNet) and utility
in terms of NDCG @ 10 for different values of n on the TREC 2019 and 2020 data. We
see that Outlierness @ 10 improves for larger values of n, suggesting that determining
outlierness of items in a bigger pool of items is more accurate and allows OMIT to
mitigate the outliers in the top-10 positions more effectively.

Effect of k. Finally, we answer RQ1.5. We study the effect of changing & when
optimizing for mitigating outlierness in top-k positions. We are interested in finding out
how utility and outlierness are influenced when optimizing for mitigating outlierness
for a longer list of top ranks ranging from 10 to 40. This mimics the cases where more
items can be shown to a user, hence outliers in longer lists can be observed by the
user. The left plots in Figure 3.6 depict the results for both datasets. We observe that
outlierness improvement drops for greater values of k since it is more challenging for
the algorithm to push all outliers to lower positions.

Figure 3.3 shows that most outliers are located at top positions, so greater values
of k do not necessarily translate to more outliers. The changes in utility scores of the
lists are marginal, with a 0.5% increase and 1.6% decrease for larger values of k for
the TREC 2019 and 2020 data, respectively. The difference in utility scores of the two
datasets is due to the fact that there are more relevant outliers in TREC 2019 than in
TREC 2020.
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(b) TREC Fair Ranking Track 2020 data.

Figure 3.6: NDCG@10 and outlierness@ 10 improvement percentage for different
values of k and different sizes of the window in which we detect the outliers.

3.7 Related Work

Bias in implicit feedback. Users’ implicit feedback, such as clicks, can be a great source
of relevance judgment that has been shown to help improve search quality [2]. These
signals may be misleading due to different types of bias, which causes the probability
of a click to differ from the probability of relevance. Recent work on discovering and
correcting for different types of bias in logged click data concerns position bias [72, 74],
presentation bias [186], selection bias [118], trust bias [2, 161], popularity bias [1], and
recency bias [33]. Inter-item dependencies affect the perceived relevance of items [36].
We introduce a phenomenon that is anchored in inter-item dependencies and may result
in biased clicks. Our work differs from previously discussed types of bias by considering
inter-item relationships. Showing items as outliers can make them more attractive to
users, influencing their perceived relevance. Presentation bias [186] concerns a related
effect; bold keywords in titles make some items appear more attractive. However, this
definition of attractiveness is independent of other items in the list. Metrikov et al.
[104] show that click-through rates can be manipulated by adding more images to top
positions next to the ad slots on the search result page; they did not study the effect
on item exposure or biased clicks. We focus on the effect of outliers, as an inter-item
dependency on the examination probability and item exposure, and introduce it as a
potential source of bias in click data.

Fair ranking. Following [188] we distinguish two ways of measuring the fairness of the

rankings. Work on probability-based fairness determines the probability that a ranking
is the result of a fair process [14, 30, 31, 51, 151, 183, 187]. Exposure-based methods

47



3. Understanding and Mitigating the Effect of Outliers in Fair Ranking

determine the expected exposure for each item in the ranking and aim to ensure that this
exposure is fairly distributed [21, 42, 103, 107, 135, 148, 149, 182]. Our work belongs
to the second category. To estimate the expected exposure of each item or group, we
need to take into account different types of bias that the user might have when observing
system output. Previous work has mainly focused on position bias [21, 148, 182]. We
emphasize the role of inter-item dependencies in the exposure that an item receives,
which can be a source of unfairness when not considered in computing the expected
exposure. We extend the re-ranking approach introduced in [148], to not only produce
fair rankings but also avoid showing outliers in the top-k. An important effort to develop
a benchmark for the evaluation of retrieval systems in terms of fairness is TREC Fair
Ranking track (see footnote 1). We expand the use of the track resources to include the
study of outliers in fair ranking.

3.8 Conclusion & Future Work

We introduced and studied a phenomenon related to fair ranking, that is, outlierness.
We analyzed data from the TREC Fair Ranking track and found a significant number
of outliers in the rankings. We hypothesized that the presence of outliers in a ranking
impacts the way users scan the result page. We confirmed this hypothesis with an
eye-tracking study in two scenarios: e-commerce and scholarly search. We proposed
OMIT, an approach to mitigate the existence and effect of outliers in a ranked list.
With OMIT, we introduced a ranking constraint based on the outlierness of items in a
ranking and combined it with fairness constraints. We formulated the problem of outlier
mitigation as a linear programming problem and produced stochastic rankings, given an
initial ranking. Using OMIT one can reduce outliers in rankings without compromising
user utility or position-based item fairness. We analyzed the effects of different outlier
detection approaches and compared their results. Our experiments also showed that
there is a trade-off between the depth of outlier detection and user utility. Now that we
have established the impact of outliers in rankings, future work on fair ranking should
consider the presence of outliers by default.

In the next chapter, we will estimate the impact of this inter-item dependency on
user examination probabilities. We will introduce outlier bias and propose a method to
estimate and account for this type of bias by answering RQ3.
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Appendices

Table 3.4: Notation used in Chapter 3.

Notation Gloss

1 ones vector

d item to be ranked

{dy,...dn} set of documents

[dy,...dN] ranked list of documents

D set of items to be ranked for a single query
D, set of items to be ranked for query ¢

Dais set of items that belong to privileged group (for a single query)
Dpriv set of items to be ranked for query ¢
DTR Disparate Treatment Ratio
Exposure(d;|P) exposure given to item group G;

f fairness vector

h vector with ones for top-k and zero else
g observable item feature

M outlier detection method

M(g(-)|D) degree of outlierness in D

o outlier vector for outlier objective

0; entries of vector o

MAD mean absolute deviation

T median of x

s ranking policy

P Marginal Rank Probability matrix (MRP)
P entries in MRP

P, permutation matrix corresponding to o

q query

o ranking

u document utilities {u; } (per item)

U expected utility

v attention vector {v; } (per position)
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On the Impact of Outlier Bias on User
Clicks

User interaction data is an important source of supervision in counterfactual learning to
rank (CLTR). Such data suffers from presentation bias. Much work in unbiased learning
to rank (ULTR) focuses on position bias, i.e., items at higher ranks are more likely to
be examined and clicked. In Chapter 3 we have shown that inter-item dependencies
also influence examination probabilities, with outlier items in a ranking as an important
example. Outliers are defined as items that observably deviate from the rest and therefore
stand out in the ranking. In this chapter we identify and introduce the bias brought about
by outlier items: users tend to click more on outlier items and their close neighbors.

To address RQ3, we first conduct a controlled experiment to study the effect of
outliers on user clicks. Next, to examine whether the findings from our controlled
experiment generalize to naturalistic situations, we explore real-world click logs from an
e-commerce platform. We show that, in both scenarios, users tend to click significantly
more on outlier items than on non-outlier items in the same rankings. We show that this
tendency holds for all positions, i.e., for any specific position, an item receives more
interactions when presented as an outlier as opposed to a non-outlier item. We conclude
from our analysis that the effect of outliers on clicks is a type of bias that should be
addressed in ULTR. We therefore propose an outlier-aware click model that accounts for
both outlier and position bias, called outlier-aware position-based model (OPBM). We
estimate click propensities based on OPBM; through extensive experiments performed
on both real-world e-commerce data and semi-synthetic data, we verify the effectiveness
of our outlier-aware click model. Our results show the superiority of OPBM against
baselines in terms of ranking performance and true relevance estimation.

4.1 Introduction

Ranking systems optimize ranking decisions to increase user satisfaction. Implicit user
feedback is an important source of supervision that reflects the preferences of actual
users. However, user interaction data (e.g., clicks) suffers from presentation bias, which
can make its naive use as training data highly misleading [73].

This chapter was published as F. Sarvi, A. Vardasbi, M. Aliannejadi, S. Schelter, and M. de Rijke. On the
impact of outlier bias on user clicks. In SIGIR, pages 18-27, 2023.
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Much work in ULTR focuses on position bias [3, 72, 74, 170], i.e., the phenomenon
that results ranked higher are more likely to be examined and, therefore, clicked by
users [72] than results ranked lower. Besides position there are several other factors that
affect users’ examination model and clicks [1, 33, 118, 138, 179]. In chapter 3 we have
shown that inter-item dependencies can influence user judgments of relevance and the
examination order of items. The existence of outlier items is a specific case of inter-item
dependencies [138]. Outliers in a ranking are defined as items that observably deviate
from the rest of the list w.r.t. item features, such that they stand out and catch users’
attention. For instance, in an e-commerce search scenario, if only one item on the page
features a “Best Seller” tag, it can be considered an outlier, because the tag differentiates
it from the rest of the items in the ranking, thereby attracting users’ attention.

Outlier bias. An outlier in a list of items can alter the examination probabilities, such
that the probability of examination is higher for the outlier item (if it exists) and its
neighboring items than the probability assigned by the position bias assumption [138].

Although outliers have been shown to affect examination probabilities [138], their
impact on user click behavior is unknown. In this chapter, we hypothesize that clicks
are biased by the existence of outliers. We refer to this phenomenon as outlier bias and
aim to understand and address this effect by answering the following research question:

RQ3 Does outlier bias exist in click data? How can we estimate its impact and correct
for this bias?

To begin, we conduct a user study where we compare the click-through rate (CTR) for
specific items in two conditions: once shown as outliers and once as non-outlier items in
the list. We find that users behave differently in relation to an item given its outlierness
condition. The CTR of a specific item is consistently higher when it is presented as an
outlier item than when it is a non-outlier item in a ranking. Next, to examine whether
these findings can be generalized to naturalistic situations we perform an analysis on
real-world search logs from Bol.com, a popular Europe-based e-commerce platform.
The results confirm the findings of our user study. In addition, we observe that, on
average, outlier items receive significantly more clicks than non-outlier items in the
same lists. Moreover, users tend to interact more with lists that contain at least one
outlier.

Outlier bias vs. context bias. We find that outlier bias affects user clicks such that
users are more likely to interact with items that are presented as outliers, as well as
their neighboring items. The closest concept to outlier bias is context bias in news-
feed recommendation [179]. In the presence of context bias CTR is lower for items
when surrounded by at least one very similar item than when they are surrounded by
non-similar items. This is different from outlier bias, which emphasizes the difference
between the outlier and the rest of the list. Moreover, observability is a key factor in
detecting outliers in ranking as defined by [138]; this is not the case in context bias.

Accounting for outliers. Based on the findings of our user study and log analysis, we
conclude that one should account for the effect of outliers when unbiasing user clicks
for ULTR. To this end, we propose a click model, based on the examination hypothesis,
called outlier-aware position-based model (OPBM), which accounts for both outlier
and position bias. OPBM assumes the probability of a click depends on (i) examination,
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(ii) relevance, and (iii) the outlier’s position (if it exists). We use regression-based
expectation maximization to estimate the click propensities based on our proposed click
model, OPBM. We verify the effectiveness of our outlier-aware model for estimating
propensities in the presence of both position bias and outlier bias. Following [6, 74, 116]
we use a semi-synthetic setup for the experiments; the true relevance labels provided in
this setup allows for evaluating the relevance estimation. Furthermore, using simulated
clicks we are able to control the severity of position bias and outlier bias. The results of
our experiments show the superiority of OPBM against baselines in terms of ranking
performance (NDCG@10) and true relevance estimation.

Main contributions. The main contributions of this chapter are: (i) we identify and
study a new type of click bias, originating from inter-item dependencies, called outlier
bias; (ii) through extensive analyses of both user study results and real-world search
logs, we confirm our hypothesis about the existence of outlier bias; (iii) to address this
effect we propose an outlier-aware click model that accounts for outlier items (if they
exist), as well as position bias; (iv) using an empirical analysis based on real-world data
and semi-synthetic experiments we show the effectiveness of our outlier-aware model
in estimating click propensities; and (v) we make the data from our user study plus the
code that implements our baselines and OPBM publicly available.

4.2 Oultliers in ranking

Outliers in ranking are items that observably stand out among the window of items that
are presented to a user at once. We use the following definitions from [138] to introduce
so-called outliers:

Definition 3 (Observable feature). An observable item feature, F, is a characteristic of
an item in a list that can be purely presentational in nature (e.g., image, title font size,
and discount tag).

Definition 4 (Degree of outlierness). Let M be any outlier detection method, and F;
an observable feature corresponding to item 4, in the context of all items in the list, C.
The degree of outlierness for item 7 is the value calculated by M for F; w.r.t. C shown
as M(F;|C). This value indicates how much the corresponding item differs from the
other elements of the set w.r.t. F.

Definition 5 (Outliers in ranking). Let M be any outlier detection method; we call item
7 in a ranked list an outlier, if M identifies it as an outlier w.r.t. an observable feature,
F, based on the degree of outlierness, and in the context of the list.

In Section 4.3.2 we describe our choices of observable features and outlier detection
method used in this chapter.

4.3 Impact of ltem Outlierness on Clicks

In Chapter 3 we show that outlier items receive more attention from users. However, it
is not known whether an item’s outlierness affects users’ clicks as well. To answer RQ3
we first answer the following research question:
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RQ3.1 Does outlier bias exist in rankings of items?

To this end we first conduct a user study to examine the outlierness effect as the only
variable factor influencing the clicks. Next, we need to examine whether the findings
of our study can be generalized to naturalistic situations. In other words, we seek to
establish ecological validity [9, 86]. To this end, in Section 4.3.2 we explore real-world
click logs to confirm our findings.

4.3.1 User Study

In this section, we present the results of our user study. Our main goal is to learn whether
the outlierness of an item affects user clicks, independent of the item’s relevance and
position.

Setup. We mimic Bol.com, a popular European online marketplace. We ask participants
to interact with search engine result pages as they normally would, and find items they
prefer and think are relevant. We focus on a list view, with 20 items on each page, and
participants are able to scroll the list to see all items. We have two queries; for each
query, we show one specific item once as an outlier and once as a regular item. We
call this specific item the farget, and these two variant presentations condition I and
condition II, respectively. In condition I the target is an outlier w.r.t. a set of observable
features, such as item category,' price, discount tag, and star rating. We aim to compare
users’ behavior between these two conditions for each query. We keep other factors
such as relevance and position bias unchanged between the conditions. To eliminate
the effect of position bias we always show the item at rank 4, and to maintain the same
degree of relevance to the query we only change the surrounding items to change the
outlierness of the target item.?

We also have a Qualtrics [128] survey. It contains the task instruction, multiple
choice questions about the instructions, queries, and links to the examples, and a few
demographic questions at the end. In the instructions, we describe the overall goal of
the research and ask participants to read the instructions carefully. We describe what it
means to interact with a result page in terms of exploring the results, scrolling the list,
and clicking on items that seem interesting. Participants can click on an item to open
the item’s detail page. In our instructions we encourage participants to click on items
they find interesting, however, clicking is not mandatory. We instruct participants to
first read and understand the query, and then scan the result page as if they submitted
the query themselves.

Participants. We recruit 40 workers, based in countries where our marketplace is active,
from the Prolific platform [125]. From the participants, 14 are female, 23 are male, and
3 listed other genders. The majority of participants (27) are between 25 and 44 years
old, with 10 participants younger and 3 older; 33 participants reported that they shop
online at least once a month.

Metrics. For reporting we consider three measures based on participants’ interactions
with rankings: (i) revisit count, which indicates how many times on average participants

INote that this feature can affect the outlierness w.r.t. the item’s image as well.
2To examine our hypothesis about an inter-item dependency, here we assume that the relevance of a
document is only dependent on the query.
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Figure 4.1: Revisit count (a) and mouse hovering time (b) for the two conditions of one
of our user study examples. The position of the target item is marked by an asterisk.
The plots show that the user engagement with the target item is higher when presented
as an outlier (condition I)

Table 4.1: CTR of the target item’s position in both examples of our user study. The
target item recieves more clicks when shown as an outlier (condition I).

condition I  condition II

Query 1 0.944 0.166
Query 2 0.880 0.091

viewed an item (due to scrolling), (ii) mouse hover time that shows the amount of
time on average participants spent on an item, and (iii) CTR for the target item in each
condition, which is our main metric in this study.

Findings. We expect to see more interactions with the target in condition I. Since
we keep other factors unchanged between the two conditions, we can attribute any
difference in user behavior to the inter-item dependencies.

Figure 4.1 depicts the revisit counts (Figure 4.1a) and mouse hovering time (Fig-
ure 4.1b) for different positions and conditions of one example. Both plots show that
the user engagement with the target item is higher when it is presented as an outlier.
We see the same pattern in the second example. On average, participants revisited the
outlier item more often and spent more time examining it. These findings are in line
with the results of the eye-tracking experiments conducted by Sarvi et al. [138], which
suggest that, on average, outlier items receive more attention from users. However, our
main goal is to study whether this increased attention leads to more clicks.

Table 4.1 reports the CTR for the target item in both examples and for the two
conditions. In both examples we see a large difference between the CTR reported for
the different conditions, suggesting that when the target item is shown as an outlier it
receives more clicks as well as more exposure.
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4.3.2 Real-world Click Logs

The findings of Section 4.3.1 confirm, in a controlled experimental setup, that an item’s
outlierness can influence users’ click behavior. However, we still need to examine
the ecological validity of this hypothesis. To this end, we present our observations of
click exploration of real-world search logs from our e-commerce platform. We are
specifically interested in exploring the data to study the existence of outlier items in
rankings and their impact on click data. Notice that we use this data only for click
analysis and parameter estimation (Section 4.5).

Data collection. We collect search query logs from 20 consecutive days. Each row of
the dataset consists of seven observable item features that are explained in Table 4.2,
along with users’ interaction signals: impressions and clicks.

Definition 6 (Impression). An impression indicates how many times an item that is
rendered by the search engine is viewed by a user. If an item is rendered in low positions,
it may not end up in a window that is visible to the user, leading to zero impressions.
On the other hand, the number of impressions can be greater than one due to scrolling.

We selected item features that are used across different categories, are observable by
users, and have been shown by previous work to be important in influencing users’
purchase decisions [4, 76]. We leave out item images from our click exploration due to
the excessive complexity they would have added to this study.

Most search engines consider diversity as a quality of search result pages [S5]. This
can have a side effect, where the returned rankings may contain outlier items. Hence,
query logs are a valuable source for studying the outliers’ effect on users’ clicking
behavior. To begin, we define two types of rankings based on the existence of outliers
as follow:

Definition 7 (Normal rankings). We call rankings that contain no outlier normal
rankings. Normal rankings can either consist of a homogeneous set of items or a diverse
set.

Definition 8 (Abnormal rankings). We define abnormal rankings to be lists that contain
at least one outlier.

Outlier detection. We examine each item for outlierness based on the features described
in Table 4.2 and in the context of all items in the list as described in Section 4.2. An
item is an outlier if it is detected as an outlier w.r.t. at least one of these features.

We use the Interquartile rule to detect the outliers, and consider the absolute differ-
ence between the feature value and the upper/lower bound as the degree of outlierness
of the corresponding item (see Section 4.2). Feature values are normalized so that we
have an outlierness degree of unit range for all observable features. We set the threshold
for the degree of outlierness to 0.5, which means we only label an item as an outlier if
the absolute difference between its score and upper/lower bound is greater than 0.5.

Post-processing. We filter out the parts of the rankings that are not viewed by the user
based on the impression signal in our data. This leaves us with the minimum ranking
size of 3. However, since by definition outlierness is meaningless in lists shorter than 4,
we removed these rankings from our dataset. We also removed pages with sponsored
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Table 4.2: Description of the observable features used to represent the items.

Feature Name Description Abbreviation
price Selling price of an item. -
promotion tag Universal red tag indicating various promo- promotion
tions, such as ‘competitive price’ and ‘select
deal’.

high discount tag ~ Two-piece red tag indicating high discount discount
for an item (different from promotion).

in/out-of-stock tag  Green tag indicating the in-stock or out-of- stock quantity
stock condition of an item.

users star rating Average user star rating of the item presented  rating
by the standard 5 stars template.

‘select’ tag Green tag indicating that the item is a select  select
item (similar to Amazon Prime).

title length Number of tokens in the item title. -

Table 4.3: Users’ interactions with the outlier and non-outlier items, averaged over all
abnormal rankings. We used Student’s t-test with p < 0.001 for statistical significance
test.

Avg. clicks  Avg. impressions Avg. CTR

Outliers 0.202* 1.381* 0.142*
Non-outliers 0.137 1.346 0.098
Total 0.149 1.352 0.106

items to avoid any potential effect from such items on our results. The remaining 10,903
abnormal rankings have an average length of 10.24 and a median of 8.0.

Effect of outliers on CTR. In the first step of our analysis, we aim to see if users
interact differently with outlier items in abnormal rankings. To this end, we look at
such rankings and compare the number of interactions outliers received on average to
non-outlier items in the same ranking. We focus on clicks as interactions.

Since normal rankings carry no information for our current analysis we only keep
abnormal rankings. Table 4.3 shows the average clicks, impressions, and CTR of outlier
and non-outlier items for abnormal rankings.3 We calculate the CTR values (i.e., the
number of clicks divided by the number of impressions of each item) per page and
report the average over all rankings. Our findings suggest that both CTR and average
clicks are significantly higher for outlier items when compared to non-outlier items on
the same page. Moreover, we see that the number of impressions is also significantly
higher for outlier items, which is in line with the finding of an eye-tracking experiment
reported in [138].

Effect of outliers per position. To make sure that the higher CTR reported in Table 4.3

3Note that the reported values in this section are calculated based on filtered subsets of search logs,
therefore, they are not representative of the true statistics of the data.
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Figure 4.2: Comparison of CTR for outlier and non-outlier items per rank. CTR is
consistently higher for outlier items.
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Figure 4.3: CTR per rank for abnormal rankings grouped by the outliers’ position. The
position of the outlier is marked with an asterisk. The values are smoothed using a
Savitzky-Golay filter. Best viewed in color.

is not caused by position bias, we look at CTR values per position. Figure 4.2 depicts
the results. Overall, CTR for all positions is higher for outlier items, showing that these
items receive more interactions than non-outlier items.

Next, to further study how outliers change users’ click behavior, we compare the
CTR of the outlier position with the positions of non-outlier items throughout the
ranking. To better depict the effect of outliers on different positions, we consider
rankings that contain exactly one outlier; we focus on the top 15 positions. It is worth
mentioning that less than 35% of the abnormal rankings in our data have more than one
outlier. We group the abnormal rankings based on the position of the outlier. Figure 4.3
illustrates the results. The black line shows CTR for normal rankings. As expected this
line follows position bias, where the probability of clicking an item decreases with its
rank.

The other lines in Figure 4.3 show the CTR for groups of rankings with one outlier
at position r € {1,...,15}. We only show the results for some of the positions for
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better visibility. We see similar patterns for other ranks. We only show the results for
groups that form at least 1% of the whole collection in terms of size. In Figure 4.3
each asterisk indicates the position of the outlier. We observe that CTR distribution is
different than the position-based assumption when there is an outlier in the ranking.
Also, for positions after 3, we observe an increase of CTR on and around the outlier
position.

Another interesting observation is that items farther away from the outlier receive
less attention proportional to their ranks compared to normal pages. Moreover, we see
that for positions after 3 CTR for outliers is higher than the CTR for the same position
in normal pages, which is in line with our findings in Figure 4.2.

Effect of different outlier types. One can argue that different types of outliers might
have different types of influence on users’ perceptions. E.g., considering price as the
observable feature, a very expensive outlier item might have a lower chance of being
purchased compared to a cheap one. We hypothesize that these two types may neutralize
each other overall in terms of statistical metrics. Hence, to examine this hypothesis, as a
first attempt, we divide the outlier items into two groups of positive and negative outliers
using common sense, informal definitions based on the observable features. E.g., in
the previous example, the expensive item is a negative outlier while the cheap one is
positive. Based on this definition, for the price feature we see that the average number
of clicks for positive and negative outliers are 0.193 and 0.147, respectively; both
are significantly higher than non-outlier items (0.125). We see the same trend among
all observable features, both for impression and click counts. Based on these results
we reject the aforementioned hypothesis and stay with our original outlier/non-outlier
division.

Further remarks. We also looked at abnormal rankings in which a specific item is
repeatedly shown in a fixed rank at least once as an outlier and once as a normal item.
We aggregate all such rankings and observe that on average items receive 0.169 clicks
in case of being an outlier, and 0.130 clicks when they are regular items in the list.
Comparing the abnormal rankings to a subset of normal rankings with a similar length
distribution (mean=10.09/10.30, median=8.0/8.0, std=4.95/5.82 for normal/abnormal
rankings), we realize that on average the number of clicks per session is higher in the
presence of outliers. More specifically, the average number of clicks is 0.139 for normal
rankings, and 0.149 for abnormal rankings, with a p < 0.001 significance.

Upshot. To sum up, from Section 4.3.1 we learn that users behave differently w.r.t. an
item given its outlierness condition (i.e., whether the item is presented as an outlier in
the ranking). The CTR of a specific item is consistently higher when it is presented as
an outlier item than that of a non-outlier item. Section 4.3.2 confirms the findings of our
user study. In addition, we observe that, on average, outlier items receive significantly
more clicks than non-outlier items on the same lists. Moreover, users tend to interact
more with lists that contain at least one outlier. This section confirms the impact from
outlier items on clicks. We refer to this effect as outlier bias. In the following section
we propose a click model that accounts for outlier bias as well as position bias.
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4 .4 Qutlier-aware Position-Based Model

Naive use of implicit feedback for learning to rank can be misleading, since it suffers
from presentation bias. Therefore, modeling the examination bias is crucial [46, 73].

Position-based model. Normally, items in higher ranks are more likely to be examined
on a page. Position bias is formally modeled through the examination hypothesis
which states that an item must be examined and perceived relevant by the user to be
clicked. A widely used click model for dealing with position bias is the position-based
model (PBM) [74, 170]. While being considered a simple solution, PBM is as effective
as more sophisticated click models [36]. PBM assumes that the rank of an item is the
only parameter that affects users’ examination of that item. Examining an item means
viewing and evaluating it before any subsequent interaction like a click.

Given an item d at rank k in response to a query ¢, the probability of clicking on d,
assuming PBM, equals:

P(C=1]q,dk)=PE=1[k)xP(R=1]d,q), 4.1

where P(E =1 | k) is the probability of user examining rank k, also called propensity,
and P(R =1 | d, q) is the probability of relevance for the pair (d, ¢). We refer to these
probabilities as 8 and 4 4, respectively.

Outlier-aware position-based model. PBM simply assumes that the only factor
influencing the propensity is the rank. In Section 4.3 we show that users are more likely
to click on outlier items, hence, we assume that propensity depends also on the existence
of outlier item(s).

It is noteworthy that, even among the outlier items we observe an inter-outlier
position bias — the higher-ranked outlier items receive more clicks.

Hence, to model these dependencies, we propose an outlier-aware position-based
model, called OPBM, that accounts for the impact of outlier items in addition to the
position as follows:

P(C=1]q,d,k,o)=P(E=1|k,0)x P(R=1]d,q), “4.2)

where o indicates the position(s) of the outlier(s) in the ranking. Note that PBM is a
special case of OPBM: for normal rankings OPBM is simplified to PBM.

We propose this model following Eq. (4.2) based on the assumption that the proba-
bility of examination at rank & depends on the position of outlier item(s), o, in addition
to k. This model has K x O parameters, where K and O are the set of all ranks and
outlier positions, respectively, which can be estimated from click data.

Propensity estimation. Here, we describe how to estimate outlier-aware position
bias from regular clicks. Based on the idea of the regression-based expectation maxi-
mization (REM) algorithm [170], we propose to estimate the parameters 6, , and v, 4
simultaneously by estimating with a regression function.

Using a standard expectation maximization (EM) algorithm we aim to find the
parameters that maximize the log-likelihood of the whole click logs. The log likelihood
of generating click logs of the form £ = (¢, ¢,d, k, 0) is:

log P(L) = Z clog 0y,07q,a + (1 — ¢)log(1 — Ok 07q.4)- 4.3)
(¢,q,d,k,0)€L
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Here, we aim to estimate the parameters 6}, , and 7y, 4 based on data points in £. In each
iteration, EM alternates between the expectation and maximization steps to compute
new estimates of the parameters. In the expectation step of iteration ¢ + 1 we calculate
the hidden variables corresponding to examination propensity (£) and true relevance
(R) based on the estimated parameters at iteration ¢:

PE=1,R=1|C=1,q,d,k,0) =1,

9t 1— t
P(E:1,R:O|C:0,q,d,k,o):M

1_92,07};@ ’
l_ot t
P(E:07R=1|C:07q,d,k,o)=%, (44
1_019,071141
1— 0% )1 -~
P(E:O,R=0|C=o,q,d,k,o)=( ko) (1~ Yg.0).
17915 ,yt
k,o 'q,d

We then calculate the marginal probabilities P(E = 1 | ¢,q,d,k,0) and P(R =
1| ¢,q,d, k) for each data point in £. We keep the estimation of ~, 4 untouched,
meaning that the learning to rank (LTR) model is trained without knowledge of the
outlier position and only the propensity estimation is affected by that. This leads to the
maximization step at iteration ¢ 4+ 1, where we update the parameters to maximize the
likelihood from Eq. (4.3) as follows:

Zc,q,d,k’,o’ ]Ik’:k,o’zo'(c+ (1 - C)P(E =1 | &) qu» kv 0))
Zc,q,d,k’,o/ ]:[k/:k;)olzo

i1 Deq ok ly=qa=d-(c+ (1 —c)P(R=1]|c,q,d k)

g,d
Zc,q’,d/,k ]Iq/:q,d’:d

t+1
ek,o -

)

4.5)

The maximization step of the EM algorithm requires multiple occurrences of pair (g, d)
where d is shown in different positions. To overcome the click sparsity problem and
possible privacy issues, we alter the maximization step at iteration ¢ 4+ 1, where we
estimate the ~, 4 parameter via regression [170]. Thus, given a feature vector x4 4
representing the pair (g, d) we fit a function f(z, ) (e.g., gradient boosted decision
tree (GBDT)) to calculate an estimate for vy, 4. So, our maximization step is to find a
regression function f(z) that maximizes Eq. (4.3) given the estimated parameters from
the expectation step. In the REM algorithm [170], this regression problem is converted
to a classification problem by sampling a binary variable indicating the relevance label
for x4 4 from the distribution P(R = 1| ¢, ¢, d, k). This results in a training set of the
form (x4 4, 74,4) With the following cross entropy objective:

> rlog(f(@) + (1 —r)log(1 — f(x)). (4.6)

z,r

Remark. An alternative choice instead of a single unbiased model would be to train
multiple LTR models as unbiased experts for different outlier positions. This alternative
has two main drawbacks. First, having experts means that each expert is trained only on
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a part of the data containing outliers at a specific position. Not only can this lead to sub-
optimal training, but it also makes it difficult to compare this model to the PBM-based
REM as a baseline. Second, having a collection of K expert models as a ranker is not
ideal in real-world scenarios. Ideally, there is a single unbiased model that can be used
without information about outliers’ positions.

4.5 Experimental Setup

Following much previous work in CLTR [6, 67, 74, 116, 161], we use a semi-synthetic
setup for our experiments, i.e., we sample queries, documents, and relevance labels
from existing LTR datasets, but simulate user clicks based on the probabilistic click
models estimated on the proprietary data.

LTR datasets that contain the true relevance labels allow us to evaluate the relevance
estimation of OPBM and other baselines, as well as their effect on ranking performance.
Furthermore, the semi-synthetic setup enables us to control the position bias and outlier
bias of the simulated clicks.

451 Data

Public LTR data. Following prior work on CLTR [74, 161, 162], we use the Yahoo!
Webscope [32] and MSLR-WEB30k [127] datasets. In both datasets, there are a
total of around 30k queries, each associated with a list of documents. The query-
document feature vectors of the Yahoo! and MSLR datasets have dimensions 501 and
131, respectively. Both datasets have graded relevance labels with 5 levels. We follow
prior work and take grades {3, 4} as relevant and grades {0, 1, 2} as non-relevant. The
training sets of the Yahoo! and MSLR datasets have 20k and 19k queries with 473k and
2.2M documents, respectively. The test sets of the Yahoo! and MSLR datasets, have
6.7k and 6k queries with 163k and 749k documents, respectively.

Proprietary data. We use the real-world click log data as described in Section 4.3.2
for the experiments and refer to it as proprietary data. We use a feature vector of size
24 containing both the relevance features and products’ observable features to present
each query-document pair. We use these features for the LTR model. We also use the
setup described in Section 4.3.2 to detect the outlier items, using the Interquartile rule,
w.r.t. the observable features (see Table 4.2). Since the rankings in this dataset have an
average length of 10.24 and a median of 8.0, we use the top-10 items in the experiments.

4.5.2 Click Simulation

We follow prior work [6, 74, 116, 161, 162] and sample 1% of the queries from each
public dataset, uniformly at random, to train an artificial production ranker. We apply
probabilistic click models on rankings produced by this production ranker to simulate
clicks for the semi-synthetic experiments. We apply our outlier-aware position-based
model with different approximations for examination probabilities. The relevances
7q,4 are based on the relevance label recorded in the datasets. Following previous
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work [74, 161] we use binary relevance:

1 if relevance_label(q, d) > 2

P(R=1]|q,d)="4a= { 4.7

0 otherwise

To simulate the outlier bias we follow two strategies as follows:

OPBMEp.,; . We use the propensities estimated by OPBM (see Section 4.4) on our
proprietary dataset. From all the abnormal rankings in our dataset, 64% contain only
one outlier. Since improving ranking for more than half of queries can lead to significant
improvement in real-world scenarios, we first address this majority case. Therefore,
with this model, we focus on rankings with one outlier. Thus, the output of OPBM is at
most a K x K matrix, corresponding to all combinations of rank and outlier position,
where K = 10 in our experiments. We use this matrix to approximate P(F = 1| k, 0).

OPBM; . Here, we assume that an outlier’s effect on the user clicks follows a Gaussian
distribution, centered at the outlier’s position.

Therefore, for each k, we compute the linear interpolation of outlier bias, and
position bias distributions, as follows:

OPBMg(g,d, k,0) = 7g.a((1 = )by + aG(p = 0,5%)), 4.8)

where G is a Gaussian distribution with p = o, simulating the outlier effect. We set
o = 1 and experiment with varying values of a. To simulate clicks for rankings with
multiple outliers, we compute the average of OPBMg for all outlier positions (O') as
follows: )
OPBM g (q,d, k,0') = o7 > OPBMg(q,d, k,i). (4.9)
i€0’
According to our proprietary data, 91% of abnormal rankings contain at most two
outliers. Therefore, in the experiments, we focus on rankings with a maximum of two
outliers.
We follow previous work [67, 74, 116, 161] to define the position bias inversely

proportional to the item’s rank as:

1
O = 1 (4.10)

We train the LTR model* on 1M simulated clicks.

4.5.3 Methods Used for Comparison

Our main goal is to introduce a new type of bias and study its impact on click propen-
sities. Hence, it suffices to compare our outlier-aware click model to baselines that
only corrects for position bias. To this end, we compare OPBM with the following
estimators:

¢ Naive is a model with no correction where each click is treated as an unbiased
relevance signal.

* PBM is the original inverse propensity scoring (IPS) estimator [74, 170] that only
corrects for position bias.

4We use allRank implementation for our LTR [123].
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Figure 4.4: Click propensities computed by OPBM g, for the top 8 ranks, per outlier
position on the proprietary data. Click propensities are higher on and around the outliers,
contradicting the position bias assumption.

454 Evaluation Metrics

To measure the ranking performance achieved by different methods we use normalized
discounted cumulative gain (NDCG). We also consider cross entropy (CE), which
measures the difference between the true relevance and unbiased relevance calculated
by the estimator; it is an indication of how accurately a model estimates the relevance,
independent of the LTR model. Since we work with binary relevance, we compute
binary CE between the corrected clicks, i.e., ¢/6y and ¢/ , for PBM and OPBM,
respectively, as predictions and the true relevance values as labels. We report the mean
value of CE instead of its summation, for better readability.

4.6 Results

In Section 4.3 we have already answered RQ3.1 about the existence of outlier bias in
ranked lists. In this section, we continue investigating RQ3 by answering the following
research questions:

RQ3.2 How does our outlier-aware model, OPBM, perform compared to the baselines?
RQ3.3 How does OPBM perform under different outlier bias severity conditions?

RQ3.4 How does OPBM generalize to cases with multiple outliers in rankings?

4.6.1 Propensity Estimation with OPBM

We answer RQ3.2 by comparing the overall performance of OPBM in propensity esti-
mation. Figure 4.4 depicts the propensities estimated by OPBM g, (see Section 4.5.2)
on the top-8 ranks where a sufficient number of outliers exist in our proprietary dataset.
We see that the propensities are highest on and around the outlier positions which is in
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Figure 4.5: Comparison of different estimators in term of NDCG@10 ((a) MSLR and
(b) Yahoo!) and CE ((c) MSLR and (d) Yahoo!) under varying levels of outlier bias.
Results are averaged over 8 runs; shaded area indicates the standard deviation.

line with our findings in Section 4.3. However, this effect is less evident in the top-3
ranks. This is expected since we observe that position bias dominates in the top-3
ranks (see Section 4.3.2), diminishing the effect of outliers. Nevertheless, the effect of
position bias decreases as the outlier appears higher in the ranking. For example, when
an outlier occurs at position 1, the propensities of the first two ranks are 0.99 and 0.62,
respectively. However, when the outlier occurs at position 7, these values reduce to 0.52
and 0.35.

Next, we report the results of the semi-synthetic experiments. We use the MSLR and
Yahoo! public LTR datasets with simulated clicks. We use the propensities calculated
by OPBMpg,; trained on our proprietary data. We compare OPBM and PBM in
terms of relevance estimation (CE) and ranking performance (NDCG@ 10). Table 4.4
summarizes the results; on both datasets OPBM performs significantly better than PBM
in terms of CE (p < 0.001), indicating that OPBM approximates click propensities
more effectively — it estimates true relevance of a (g, d) pair more accurately. Providing
an accurate estimate of true relevance is crucial in domains such as exposure-based
fair ranking [21, 107, 148], where relevance is used as an indication of an item’s
merit [21, 59, 107, 138, 148, 163], and can have a big impact on fairness estimation.
Table 4.4 also shows that OPBM significantly improves the ranking scores (NDCG@10)
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Table 4.4: Comparison of OPBM and PBM on the Yahoo! and MSLR datasets, in terms
of NDCG@10 and CE. A superscript * indicates a significant difference compared to
the second-best performing method with p < 0.001.

MSLR Yahoo!
CE|/ NDCG@10t CE| NDCG@I10t
Oracle - 0.3451 - 0.6713

Naive  0.8205 0.3065 0.9786 0.6489
PBM 0.5474 0.3165 0.6807 0.6406
OPBM 0.1732*  0.3233*  0.1916*  0.6470*

Table 4.5: Comparison of OPBM, OPBM;,,, and PBM on the Yahoo! and MSLR
datasets, with outlier bias severity of o = 0.75, and in terms of NDCG@10 and CE. A
superscript * indicates a significant difference with PBM with p < 0.001.

MSLR Yahoo!
CE|/ NDCG@101t CE| NDCG@I10t
Naive 0.5704 0.3159 0.6776 0.6564
PBM 0.3126 0.3219 0.3958 0.6497
OPBMy., 0.1374*  0.3223 0.1548* 0.6566*
OPBM 0.1283*  0.3229 0.1407*  0.6572*

over the PBM baseline, again on both datasets.

In conclusion, using OPBM leads to more accurate propensity estimations and a
more accurate approximation of the true relevance in rankings affected by outlier items.
We also observe significant improvements in ranking performance by OPBM over PBM
on the Yahoo! and MSLR datasets.

4.6.2 Effect of Outlier Bias Severity

Next, we address RQ3.3 by considering the impact of outlier bias severity on the
performance of OPBM. For the sake of simplicity, we assume that outliers have the
same effect on propensity distribution independent of their position; we use OPBMg
(see Section 4.5.2) for click simulation. The parameter o in OPBMg allows us to control
outlier bias severity. Figure 4.5 depicts the results. OPBM consistently outperforms
PBM in terms of ranking performance. The results on Yahoo! dataset (Figure 4.5b)
clearly show that the difference in ranking performance of the two models increases
with the severity of outlier bias. In the case of MSLR (Figure 4.5a) we observe more
fluctuations in OPBM’s performance. This is also visible in the high variance of Naive’s
performance in different runs; OPBM performs more robust compared than Naive and
PBM. Moreover, the results show that OPBM performs similarly to PBM at its worst,
making it a more reliable choice as a user examination model for all severity levels of
outlier bias. This is in line with our theory, which indicates that PBM is a specific case
of OPBM (see Section 4.4).

In terms of cross entropy (Figure 4.5¢ and 4.5d), OPBM consistently outperforms
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Figure 4.6: Comparison of OPBM and OPBM ., on varying sizes of queries with
multiple outliers.

PBM with a high margin. Also, the high variance in performance of PBM emphasizes
the much more robust performance of OPBM compared to PBM in relevance estimation.

In conclusion, using the OPBM estimator leads to improved ranking models com-
pared to PBM, especially when severe outlier bias exists. This finding also holds for
accurately estimating the true relevance scores (i.e., CE). In the presence of slight outlier
bias, OPBM exhibits a similar performance compared to PBM, making it a natural
choice as it proves to be reliable.

4.6.3 Generalization to Multiple Outliers

We address RQ3.4 by considering how OPBM generalizes to multiple outliers in the
ranking. For click simulation, we use Equation 4.9 with severe outlier bias (o = 0.75).
As pointed out before, our proprietary data shows that 91% of abnormal rankings
contain at most two outliers. Therefore, we report results for |O’| = 2. Here, in addition
to the single outlier rankings from the previous experiments, our semi-synthetic data
contains rankings with two outliers at positions 4 and 9. As mentioned earlier, position
bias is severe in the top-3 ranks, thus we place the first outlier in the fourth position of
the list. Then, in order to see the effect of the outliers separately, we choose the second
positions with some distance (rank 9).

To model the effect of multiple outliers, we propose two strategies: (i) According
to the original description of OPBM (see Section 4.4), we consider the condition of
having multiple outliers as a separate value for o, i.e., we separately compute the click
propensities for k£ ranks, when two outliers exist in the ranking at positions 4 and 9.
(i) We simplify the problem and only consider the first outlier position, and call it
OPBM ,.,. We compare the performance of OPBM between these two strategies
and also with PBM. Table 4.5 summarizes the results. Overall, we see that both
variations of OPBM outperform PBM in terms of NDCG@ 10 and CE. As expected,
OPBM outperform its simpler version, OPBM ;, ., w.r.t. both metrics; we see significant
improvements in CE, while the improvements over ranking performance are marginal.
We can conclude that the original version of OPBM as the exact solution performs better
for cases with multiple outliers. However, in case of data sparsity we can reduce the
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problem to the single outlier setup and still achieve higher results than PBM.

Lastly, we provide insights into how the size of the training data influences the
performance of OPBM compared to OPBM ,,.,,. We gradually increase the number of
training queries for the rankings with two outliers (positions 4 and 9), while keeping the
rest of the training set unchanged. We compare the performance in term of CE on all
rankings (overall), and only on the two outlier rankings (partial). See Figure 4.6. We see
that even with 24 rankings with two outliers, OPBM manages to learn the propensities
better than the OPBM ,.,,. However, the difference between the total performance
(Figure 4.6a) of the two models grows by the size of training samples for the two outliers
rankings, suggesting OPBM as a natural choice when a reasonable amount of training
data is available.

In conclusion, when enough samples corresponding to multiple outlier positions are
available in the training data, it is best to use OPBM with a specific o that represents the
case at hand. Otherwise, reducing these samples to the single outlier setting, by only
considering the first outlier position, still outperforms PBM.

4.7 Related Work

Outliers. An outlier is an exceptional object that deviates from the general data
distribution [166]. Outliers can affect the statistical analysis, whether they are interesting
observations or suspicious anomalies. Identifying these outlaying samples is crucial
in many fields of study [89, 166]. Numerous approaches have been proposed to detect
outliers [69, 89, 129, 134, 142, 191]. Defining and dealing with outliers is dependent on
the application domain [166]. We follow the definition of outliers in ranking from [138]:
outliers are items that stand out in the ranking w.r.t. observable item features. They study
the effect of such items on the exposure distribution through eye-tracking experiments
and further address the effect of outliers on exposure-based fairness. In contrast, in
this chapter we focus on click bias caused by this phenomenon. We are the first to
investigate the existence of outlier bias in real-world search click logs and to propose an
ULTR model to correct for outlier and position bias.

Bias in implicit feedback. Users’ implicit feedback, such as clicks, can be a valuable
source of supervision for CLTR [2]. However, the bias in click data can cause the
probability of a click to differ from the probability of relevance, which is misleading.
In recent years, different types of bias have been studied, such as position [72, 74],
presentation [186], selection [118], trust [2, 161], popularity [1], and recency bias [33].
Another factor influencing the perceived relevance of items is inter-item dependency [36,
138]. We introduce outlier bias, which is a type of inter-item dependency. As outlier
bias considers inter-item relationships it differs from the previously mentioned types of
bias. Our research suggests that users tend to interact more with outlier items such that
the examination probabilities assumed by position bias change when outlier items exist
in the ranking.

Presentation bias [186] considers a related phenomenon; items with bold keywords
in their titles appear more attractive. This differs from outlier bias by defining attractive-
ness of an item independent of its surrounding items. Moreover, adding more images
to the top positions in a search result page can influence CTR [104]. However, the
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effect of such manipulations on click bias has not been studied. The closest concept
to this research is context bias in news-feed recommendation [179]; CTR is lower for
products when surrounded by at least one very similar product than when surrounded
by non-similar products. This differs from outlier bias, which emphasizes the difference
between the outlier and the other items. Also, observability is a key factor in detecting
outliers [138], but context bias does not consider this factor. Unlike previous work, we
focus on the effect of outliers on clicks, which is observable by users and comes from
inter-item dependencies.

Unbiased learning to rank. Unbiased learning to rank approaches train an unbiased
ranking model directly with biased user feedback [7]. These approaches can be classified
into counterfactual learning to rank algorithms [6, 74, 169] and the bandit learning
algorithm [115, 165, 185]. In this chapter we are concerned with CLTR. The key
factor in CLTR algorithms is first estimating examination probabilities [6, 170] and
then using IPS [74, 169] to debias clicks. The estimations can be derived from online
result randomization [169], online interleaving [74], or intervention data harvested
from multiple rankers [3]. However,interventions can hurt user experience; Ai et al.
[6] propose a dual learning algorithm to automatically learn both ranking models
and propensities from offline data. Similarly, Wang et al. [170] use regression-based
expectation maximization to compute the likelihood of observed clicks for each query.
We build on [170] and propose an unbiased ranking model that corrects for both position
bias and outlier bias by adding a parameter that accounts for the position of outlier(s).

4.8 Conclusion

We have introduced and studied a new type of click bias, that is, outlier bias. We
conduct a user study to compare the CTR for specific items under two conditions: once
shown as outliers and once as non-outlier items in the list. We find that the CTR is
consistently higher when the item is presented as an outlier than when it is a non-outlier
item. Moreover, our analysis on real-world search logs confirms the findings of our user
study. On average, outlier items receive significantly more clicks than non-outlier items
in the same lists.

To account for this effect, we propose OPBM, a click model based on the ex-
amination hypothesis, which accounts for both outlier and position bias. We use
regression-based expectation maximization to estimate the click propensities based on
our proposed click model, OPBM. Our experiments show (i) the superiority of OPBM
against compared models in terms of ranking performance, and (ii) that true relevance
estimation outlier bias exists. We show that OPBM performs more robustly on all levels
of outlier bias severity compared to PBM. Moreover, our results show that OPBM
performs similarly to PBM in the worst case, making it a more reliable choice.

So far, we have shown that observable outliers in ranking affect user attention and
click behavior. A natural next step is to explore how different presentational features
influence the perception of outliers in e-commerce search results. This is the focus of
our final chapter, where we address RQ4.
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In two-sided marketplaces, items compete for user attention, which translates to revenue
for suppliers. Item exposure, indicated by the amount of attention items receive in a
ranking, can be influenced by factors like position bias. In Chapter 3 and 4 we have
shown that inter-item dependencies, such as outlier items in a ranking, also affect item
exposure. Outlier items are items that observably deviate from the other items in a
ranked list w.r.t. task-specific, presentational features. Understanding outlier items is
crucial for determining an item’s exposure distribution.

In this chapter, we investigate the impact of different presentational features on the
user’s perception of outlierness to answer RQ4. By modeling the problem as visual
search tasks, we compare the observability of three main features: price, star rating, and
discount tag. We found that participants perceive these features differently in terms of
attention and reaction times. Various factors, such as visual complexity (e.g., shape,
color), discriminative item features (e.g., a solitary discount tag) and value range, affect
item outlierness. These factors can be categorized into two main classes: bottom-up
and top-down. Bottom-up factors are driven by visual properties such as color, contrast,
and brightness, while top-down factors are influenced by cognitive processes such as
expectations and prior knowledge.

In addition, we deepen our analysis of user perceptions of outliers. In particular, we
focus on two key questions: (i) What is the effect of isolated bottom-up visual factors
on item outlierness in product lists? (ii)) How do top-down factors influence users’
perception of item outlierness in a realistic online shopping scenario?

We start with bottom-up factors and employ visual saliency models to evaluate their
ability to detect outlier items in product lists purely based on visual attributes. Then, to
examine top-down factors, we conduct eye-tracking experiments on the same task as our
visual search experiment: online shopping. This time, we design the task as a simulated
e-commerce environment, mimicking a popular European online shopping platform
to be more representative of real-world scenarios. Moreover, we employ eye-tracking
not only to be closer to the real-world case but also to address the accuracy problem of
reaction time in the visual search task. In our experiments, participants interact with

This chapter was published as F. Sarvi, M. Aliannejadi, S. Schelter, and M. de Rijke. Understanding
visual saliency of outlier items in product search. arXiv preprint arXiv:2503.23596, 2025.
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realistic product lists, some containing outliers w.r.t. different presentational features,
such as image, price and discount tag, at different positions.

Our experiments show the ability of visual saliency models to detect bottom-up fac-
tors, consistently highlighting areas with strong visual contrasts and attention hotspots.
While the well-known Itti & Koch model detects general visual attention patterns in an
image, a graph-based visual saliency model (GBVS) identifies visual anomalies more
effectively. However, one should be cautious about the limitations of these models.
Visual saliency models only rely on bottom-up factors, making them naive in that they
do not distinguish between separate product features or compare them against each
other.

The results of our outlier-free experiment show that despite being less visually
attractive, product descriptions captured attention the fastest, indicating the importance
of top-down factors and user knowledge of the task. Our observations in lists with visual
outliers suggest that outliers and their immediate neighbors attracted attention faster
(in terms of time to first fixation), which is in line with our findings from the visual
search task. However, in our eye-tracking experiments, we observed that outlier items
engaged users for longer durations (in terms of fixation count and time spent) compared
to non-outlier items. This effect was consistent across different outlier features (image,
price, discount tag) and various positions within the list.

5.1 Introduction

In two-sided marketplaces, items compete for attention from users, since attention
translates to revenue for suppliers. The exposure of the item is an indication of the
level of attention that each item receives from users. Effective estimation of item
exposure is crucial for challenges such as item fairness [21, 42, 103, 107, 135, 148,
149, 182] and bias in counterfactual learning to rank [2, 72, 74, 112, 118, 161]. Various
modeling assumptions have been proposed for item exposure estimation in ranking.
Widely used modeling assumptions made to estimate item exposure include inter-item
independence and definitions of exposure as a function of an item’s position in a ranking.
However, recent research has introduced different types of inter-item dependencies
that influence exposure distribution on a ranked list, such as attractiveness bias [186],
context bias [179] and outlier bias [138, 140].

Following Chapter 3 and Chapter 4 we focus on a phenomenon that accounts for
a specific type of inter-item dependency: the existence of outlier items in a ranked
list may affect the exposure that all items in the list receive. Outlier items are those
that observably deviate from the rest of the items in a ranked list w.r.t. task-specific,
presentational features. Presentational features are item features that are visible to users
when examining the result page, such as the price of a product in product search.

We have shown that the presence of outliers may result in attention being distributed
in a different way than on a list without outliers [138, 140]. For instance, on an e-
commerce search result page, adding a red-colored discount tag as a discriminative
feature to only one product can attract more attention to it irrespective of its position or
relevance to the query, thereby deviating from the exposure distribution that is estimated
only based on position-based assumptions.
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The perception and visual search communities have conducted many studies on
how the human brain can immediately identify recognizable objects like outliers in an
image and how different visual attributes (e.g., color, shape) can add to the complexity
of this task [52, 145, 154, 175]. Since presentational features can be composed of
multiple visual attributes, the relation between their use as discriminative features and
their perception by users is complex.

5.1.1 Presentational Features and Attention

To gain a better understanding of the relationship between presentational features and
user perception, we compare different presentational features of the e-commerce search
domain. We provide insights into how different presentational e-commerce features
impact users’ perception of the outlierness of an item on a search result page. Informed
by visual search studies, we design a set of crowdsourcing tasks where we compare
the observability of different presentational features. The objective of these tasks is
to find a target (i.e., outlier item) among distractors (i.e., non-outlier items), as fast as
possible. Following previous work [44, 154], we use reaction time (RT) and accuracy
in measuring the effort it takes to detect the target (outlier) among its distractors. We
consider three observable features commonly used in e-commerce, viz. price, star
rating, and discount tag. Previous work has shown the importance of these features in
influencing users’ purchase decisions [4, 76].

Our observations reveal that participants perceive different presentational features
differently in terms of their attention and reaction times. In addition, we show that the
visual complexity of a feature can make it more observable to users. For example, a
bright red background color of a discount tag makes it easier to spot than price tags that
are shown as a number with regular font size and color. These factors can be categorized
into two main classes: bottom-up and top-down. Bottom-up factors are driven by visual
properties such as color, contrast, and brightness, while top-down factors are influenced
by cognitive processes such as expectations and prior knowledge.

In Section 5.4 of this chapter, we analyze these two types of factors separately to
better understand the balance between what naturally grabs users’ attention and what
users prioritize during online shopping. To answer RQ4, we focus on two sub-questions:

RQ4.1 What is the effect of isolated bottom-up visual factors on item outlierness in
product lists?

RQ4.2 How do top-down factors influence users’ perception of item outlierness in a
realistic online shopping scenario?

5.1.2 How Different Features Contribute to the Outlierness of an
ltem

We start with visual saliency models in Section 5.4.1 to examine the extent to which
outlier products in a list can be detected based solely on bottom-up factors such as
color, shape, and contrast. Next, in Section 5.4.2 we examine the effect of top-down
factors by conducting eye-tracking experiments on the same task as our previous visual
search experiment, i.e., online shopping. This time we design the task as a simulated
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e-commerce environment mimicking a popular European online shopping platform to
be more representative of real-world scenarios.

Our experiments confirm that visual saliency models are effective in detecting
bottom-up factors, consistently emphasizing areas of the image with high visual contrast.
While the Itti & Koch model [66] captures general patterns of visual attention in an
image, the graph-based visual saliency model (GBVS) [58] is better at identifying
outlier regions of the image. However, it is important to acknowledge the limitations of
these models. Visual saliency models depend solely on bottom-up factors, which means
they cannot distinguish between different product features or assess them in relation to
each other.

Our eye-tracking experiments suggest that product descriptions captured attention
quickly, although they were less visually attractive, in lists without outliers. This finding
indicates the importance of top-down features and other factors in play such as center
bias [28, 50, 152]. In lists with outliers, our analyses show that outliers and their
immediate neighbors attracted attention faster and for longer durations compared to
distant items. This effect was consistent across different outlier features (image, price,
discount tag) and various positions within the list. We find that outlier items not only
stand out among the list, but also receive more exposure as users spend more time
examining them.

5.1.3 Main Contributions

The main contributions of this chapter are: (i) We demonstrate how different pre-
sentational features (e.g., price, star rating, discount tags) impact user perception of
outlierness in e-commerce search result pages, highlighting the key role of visual com-
plexity in attention distribution; (ii) Through experiments with visual saliency models,
we analyze the influence of bottom-up visual factors on item outlierness in product lists,
confirming the effectiveness of the graph-based visual saliency model in detecting visual
anomalies in ranked lists; (iii) Through eye-tracking experiments, we demonstrate the
impact of top-down factors on user attention, showing that these factors can override
bottom-up visual signals in online shopping scenarios; (iv) We show that outlier items
and their close neighbors in ranked lists attract more attention and receive increased
exposure (measured by engagement time), regardless of their position, due to their
distinct observable features.

5.2 Background

5.2.1 Visual Search

Visual search has been a central approach in studying visual attention for many years. It
allows researchers to turn everyday search activities, like finding a can opener in the
kitchen, into controlled experiments that can be repeated in a lab setting [177].

In a typical visual search task, individuals scan a visual field to locate a target object
among other distracting items. Researchers examine how features such as color, shape,
size, or orientation affect the speed and accuracy of finding the target [154]. One of the
key theories explaining this process is the Feature Integration Theory (FIT) introduced
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by Treisman and Gelade [154]. FIT proposes that visual search occurs in two stages:
the pre-attentive stage and the focused attention stage. In the pre-attentive stage, basic
features like color and shape are processed automatically and in parallel across the
visual field. However, in the focused attention stage, when these features need to be
combined to identify an object, the process becomes slower and requires more cognitive
effort. This theory explains why finding a single, distinctive feature (such as a red dot
among blue dots) is easier and faster than searching for an object that shares multiple
features (like a red circle among red squares). Another important concept in visual
search is the difference between the stand-out effect and conjunction search, introduced
by Wolfe [174]. When a target differs from all distractors by just one feature (such
as color), it stands out, making the search quick and independent of the number of
distractors. In contrast, when the target shares features with the distractors (for example,
finding a red circle among red squares and green circles), the search becomes slower,
and the task duration increases as the number of distractors grows. Visual search tasks
are typically assessed using RT and accuracy, which help determine how quickly and
efficiently a target can be identified among distractors [99, 108, 119, 176].

5.2.2 Visual Saliency

Visual saliency determines the perceptual selection of objects or regions that stand
out and capture attention within a visual field [66]. It influences the control of visual
attention, for example, in determining the next fixation points during visual explo-
ration [65, 164].

Two types of factors influence the visual saliency of an object in a specific context:
bottom-up and top-down factors [82]. Bottom-up factors are primary visual attributes
such as color, shape, size, and orientation. Objects that are unique with respect to such
attributes tend to attain the observer’s attention. For example, in an image mainly filled
with green colors and shapes, the sudden appearance of a different color like red often
makes people look at the red part [82, 93]. Top-down factors come from one’s goals
and what you expect to see [82]. They are based on one’s previous experience and their
knowledge of the context. For example, when searching for something specific, like a
red car, one is more likely to notice red cars first.

Saliency effects can vary across different contexts and tasks. While some bottom-up
factors like color contrast can be generalizable, top-down factors related to specific tasks
can significantly influence what stands out. What is salient in one situation may not be
in another. Researchers typically conduct specific experiments and use computational
models to understand saliency within particular contexts and tasks rather than making
broad generalizations [82].

5.2.3 Outliers in Ranking

Outliers are data points that differ significantly from the rest of the data [166]. They
can represent unusual but important findings or potential errors. In any case, they are
often seen as noise that can influence statistical analysis. Various methods have been
developed to detect outliers [45, 68, 129, 142] as it is essential to detect these anomalies
in many research fields [89, 166]. However, the definition of outlier items can vary
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across domains [166]. In this chapter, we adopt the definition of outliers in rankings
from Sarvi et al. [138] who describe outliers as items that stand out based on observable
features. Observable features are visible characteristics that distinguish outlier items
from their neighbors [138]. In this chapter, we create outlier items in rankings based on
this definition and using different product properties as observable features.

5.3 Preliminary Experiments: Visual Search

Studies in the field of visual search and cognitive science show that different visual
attributes are processed differently by the brain [153]. Inspired by these findings,
and as a first step, we aim to verify if users notice deviations in different products’
presentational features at different rates. In this section, we describe the details of our
crowdsourcing task which is formulated as a visual search experiment.

5.3.1 Crowdsourcing Experiments

We design our tasks as a visual search process [52, 145, 154, 175], where the objective is
to find a target among distractors. We focus on the domain of e-commerce search, where
the distractors are non-outlier products in a ranking, and the target is the outlier products
that differ in at least one presentational feature. We compare three presentational
features, namely, price, star rating, and discount tag. When considering a discount
tag, our task is close to a disjunctive search process known from visual search [154]
that focuses on detecting a target that differs from the distractors in terms of a unique
visual feature, e.g., the discount tag [101]. When regarding price and star rating, our
task is closer to conjunction search [154], where the distractors exhibit at least one
common feature with the target [145]. However, unlike conjunction search, in our task,
the difference between the target and the distractors is in the values of the features, not
the features themselves (e.g., the value of the product’s price). In the rest of this chapter,
we refer to the target item as outlier.

Following previous work [44, 154], we use reaction time (RT) and accuracy to
measure the effort it takes to detect the target (outlier) among its distractors. The goal of
this task is to examine and determine which presentational features are easier to detect
by the workers, i.e., the shorter the RT to find the outlier, the easier it is.

We perform our experiments using two tasks, where we build several synthetic
product search result pages and examine how each feature contributes to the outlierness
of an item, both separately and simultaneously. Below, we describe the different stages
of our two tasks.

Experimental design

In the following, we describe the details of our experimental setup.

Page examination behavior We record several signals related to participants’ page
examination behavior and their interaction data, such as mouse hovering, scrolling,

viewed items, clicks, and time spent on the task. To gain a more accurate estimate of
RT, we ask the participants to click on a Start button after reading the instructions. The
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search result page appears only after the Start button has been clicked. We compute the
task completion time from the moment the workers click the Start button.

Instructions In the instructions, we describe the overall goal of the research and the
concept of an outlier in a search result page, providing tangible examples. We ask
participants to scan and compare all items in a list and flag outliers as fast as they can.
We also ask them to fill out a questionnaire after completing the tasks.

Participants We use Amazon Mechanical Turk as the platform for our crowdsourcing
experiments, with workers based only in the U.S., with an approval rate of 95% or
greater. After quality control, we are left with 140 assignments (92 for Task I and 48 for
Task II), submitted by 80 distinct participants. From the participants, 45% are female,
53% male, and 2% listed other genders. The majority of participants (74%) are between
25 and 44 years old, with 5% younger and 21% older workers.

Post-task questionnaire We ask participants to fill out a questionnaire after com-
pleting the task. To gain more insight into workers’ backgrounds and online shopping
behavior, we instruct them to fill out questions on their demographics and familiarity
with online shopping. Moreover, to enable more effective results analysis, we ask the
workers how much each product feature influences their everyday purchase decisions.
To ensure that the workers understand the outlier definition, we ask them to answer a
question about the definition of an outlier in search.

Quality control We follow three strategies for quality control. As part of the post-task
questionnaire, we ask a multiple-choice question on the definition of outliers. All
participants managed to answer this question correctly. Also, following Kittur et al.
[80], we ask workers to justify their choice in a few keywords. We only remove the
responses of those participants who entered random tokens as justifications of their
answers. We also remove the responses of those who revisit the instructions more than
two times while performing the task, since response time is crucial in this study.

Task |

In the first task, we evaluate how fast any of the three presentational features (price, star
rating, discount tag) can be spotted on a search result page. To this end, we explicitly
describe and mention the one feature at a time to the participants and ask them to scan
the list and find up to two outlier items, only with respect to the given feature. For
instance, after providing a definition of outliers in the instruction, we mention that there
are one or two outliers in terms of different values for price in the list and that they have
to find them as fast as they can. We place one of the outliers at the top of the list and the
other at the bottom. To avoid position and randomness bias, we keep the position of the
outlier items fixed while other items are randomly placed in the list.

Wolfe [175] suggests that visual features including luminance, color, and orientation
affect the RT in a visual search task. Following this work and inspired by the experiments
in [154], we tested two variations of Task I, namely Type I and Type II, where we change
the shape, color and value of the presentational features to study different magnitudes
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of deviation of the outliers from the rest. In Type I, we use features that more strongly
discriminate between the outlier and the rest compared to Type II. For example, an
outlier w.r.t. price can be 10 or 2 times more expensive than other products. We use the
former in Type I and the latter in Type II. The same goes for star rating. Regarding the
discount tag feature, we use the suggestions by Wolfe [175] to distinguish between the
outlier items of Type I and Type II. In Type I we use a bright red color as background
with a bold white font stating that there is a special deal on the product, whereas, in
Type II, we use a light green text without any background stating a 10% discount.

Task Il

Unlike Task I, here we aim to examine the relative RT for the three features (price, star
rating, discount tag) when presented to the users simultaneously. To better compare the
three observable features, we jointly present the different combinations of these features
and analyze the behavior of the users. While describing the three target features in this
task, we do not mention to participants which features are being examined. Therefore,
the workers are supposed to go through the list, examine all items with respect to all
the features used in presenting the results, and then decide which items are outliers.
Note that there are more than three features used to describe each item, for example,
we used image, title and delivery information next to the price, discount tag and star
rating. Moreover, we indicate that the workers have to mark a maximum of three items
as outliers. Here, we also randomize the position of the outlier items while making
sure that they appear both at the top and bottom of the list. We run the task for all
combinations of at least two of the three features.

5.3.2 Results

In this section, we present the results of our crowdsourcing tasks in terms of the
performance and behavior of the workers under different experimental conditions.

Table 5.1: Worker performance metrics in terms of RT and accuracy. Average (Avg.)
and median (Med.) RT in seconds is reported for the first and second outlier (out. 1 &
out. 2).

Type RT out. 1 RT out. 2 Ace.

Avg. Med. Avg. Med.
Disc. tag  4.22 3.62 890 8.00 0.98

§ Star rating 4.81 3.41 9.67 8.14 0.97
= Price 838 550 1244 11.77 1.00
N Disc. tag  19.84 17.88 25.57 26.88 0.99
§ Star rating 1096 8.11 17.36 12.42 0.99
= Price 10.62 6.03 14.21 11.90 0.98
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Figure 5.1: Distribution of the RT for the (a) first and (b) second outliers in both
variations of Task I.

Reaction time and accuracy

Following [44, 154], we use reaction time (RT) and accuracy to measure the effort
it takes to detect the outlier among non-outlier distractors. Table 5.1 summarizes
participants’ average responses to Task I in terms of RT and accuracy. Accuracy is high
for all variations of Task I with a maximum of 1.00 for price in Type I and a minimum
of 0.97 for star rating. We conclude from the high accuracy values that the workers
grasped the concept of outlier in a ranked list and were able to accurately find them in
the list. Next, we compare the time that the workers take to spot the outliers. Table 5.1
shows that for Type I outliers participants spotted the discount tags faster than the other
two features in Task I. This is followed by star rating with a slightly higher recorded RT.
As expected, we see that on average it took participants almost twice as long to find the
price outliers. We conducted a one-way ANOVA test on RT for first outliers in Type L.
Results show that the differences are statistically significant with p-value < 0.05.

Detecting discount tags is similar to a disjunctive visual search process, which has
been shown to be easier to solve compared to conjunctive search (i.e., star rating and
price) [154]. Moreover, users favor simple options when they act under time pressure
[15], which can lead to being biased towards easy-to-detect visual features such as
discount tag. The higher RT for price can be attributed to the fact that certain visual
features, including color and shape, are processed early in the brain using pre-attentive
processes [154]. Star rating and discount tag have more visual characteristics regarding
shapes and colors, however price is more simply presented in the product descriptions.

Another related aspect is the unknown range of the price values. This is less crucial
for star rating or discount tag since the former has a range between 1 to 5 and latter is a
binary feature.

Type | vs. Type Il

Next, we compare the results of Type I and Type II outliers. Our goal is to understand
how much changing the magnitude of the deviations in terms of different features affect
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user performance. One can compare different ranges of deviations on specific features
to model the relationship between the the deviations and user performance, but we
leave this as future work and only compare two variations. The results in the upper and
lower parts of Table 5.1 suggest that the reduced magnitude of deviations in all features
leads to higher RT. Duncan and Humphreys [44] study the same effect by pointing out
that when outlier to non-outlier similarity increases, the task becomes more difficult.
Similarly, we see that RT increases for all the features, and for both the first and second
outliers.

Moreover, we see in Figure 5.1 how the RT distribution of the two outlier variants
differ for Task I. As expected, the plots show a higher RT for all features, and both
outliers. However, it is interesting to note that we observe the lowest relative effect
on the price (26.73% increase), compared to star rating (127.86%) and discount tag
(370.14%). We relate this to the visual nature of discount tag and star ratings. Reducing
the color contrast of discount tag would have a greater impact on the user’s ability to
detect it among the distractors, compared to a different price ranges, as the user still has
to carefully check the prices to detect the outlier. Regarding the accuracy, we see no
drop, suggesting that even a more subtle deviation in observable feature can be detected
by many users.

Feature combinations

Figure 5.2a shows the recall values for combinations of features, where the y-axis
indicates recall of a combination of features and the x-axis indicates the value for a
specific feature. As expected, detecting the outlier w.r.t. price is more difficult for
participants (on average, 1.3% and 7.3% lower values than for the discount tag and star
rating). In terms of RT, Figure 5.2b confirms our findings in Table 5.1, except for the
combination of discount tag and star rating, where on average participants found star
rating ~7.5 seconds faster than discount tag. Perhaps, it is because the average position
of the outlier w.r.t. discount tag is lower than the star rating (12 and 9.5, respectively).

5.4 Extended Experiments: Visual Saliency and User
Attention

In the previous section, we have investigated how individuals perceive and react to
different product features (whether outliers or not) within a list through controlled visual
search tasks. We measured participants’ RT and accuracy as they detect outliers among
regular items in ranked lists. The findings revealed that various factors, such as visual
complexity (e.g., shape, color), discriminative item features (e.g., a solitary discount
tag), and value range, affect user perception of item outlierness. These factors can be
categorized in two main classes: bottom-up and top-down. To better understand the
balance between what naturally grabs users’ attention and what users prioritize during
online shopping, in this extended study, we analyze these two types of factors separately
by answering RQ4.1 and RQ4.2.

We start with visual saliency models in Section 5.4.1 and examine the extent to
which outlier products in a list can be detected based solely on bottom-up factors such
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Figure 5.2: (a) Recall and (b) RT for combinations of observable features. Y-axis shows
the metric of the corresponding feature and x-axis shows the second feature used in the

combination.

as color, shape, and contrast. Next, in Section 5.4.2 we examine the effect of top-down
factors by conducting eye-tracking experiments on the same task as our previous visual
search experiment, i.e., online shopping. This time we design the task as a simulated
e-commerce environment mimicking a popular European online shopping platform
to be more representative of real-world scenarios. Formulating the task as a visual
search experiment is valuable for gaining initial insights into user behavior and attention
patterns, however, it has two main limitations that we aim to address in our new setup.

Representativeness of e-commerce scenarios Visual search tasks are structured and
goal-driven, where participants are explicitly instructed to fulfill a specific goal (in
our case: find the outlier item as quickly as possible). However, in real-world online
shopping, users engage in more open-ended exploration, distributing their attention
across multiple items and features without a clear target in mind. This contrast in
task characteristics can lead to variations in user behavior, making it challenging to
generalize findings from controlled visual search experiments to the real-world shopping
case. In this section, we employ a more realistic experimental design that mimics a
popular e-commerce platform in Europe.

Accuracy of RT Much previous work uses RT as a proxy to estimate user attention
in visual search tasks [99, 108, 119, 176], however, it might not always be accurate
because it relies on participants’ interpretations of our instruction. While we instructed
participants to find the outlier as fast as they could, it is not straightforward to ensure
they consistently follow this instruction. Response times can be influenced by factors
beyond attention, or individual differences, such as external environmental distractors
or lack of focus and motivation. Therefore, RT alone may not provide a precise measure
of attention.

In this extended study, we use eye-tracking as the tool for capturing and analyzing
user attention. Attention, by its nature, is an internal and subjective experience [35,
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144, 147]. Declarative methods, like surveys or self-reports, are inadequate when used
alone for measuring user attention [13]. Eye-tracking provides objective and direct
measurements of attention, making it a more reliable choice for understanding how
users engage with visual stimuli [13, 35].

5.4.1 Visual Saliency Maps

Visual saliency determines the regions that stand out and capture attention within a
visual field [66]. In our task of detecting outlier product feature in search result list, it
allows us to predict which product features are expected to attract more attention due to
their visual properties, such as color contrast, size, or pattern complexity. Visual saliency
can serve as a benchmark or baseline for comparing the inherent attention-grabbing
properties of different product features. It can also detect observable outliers purely
based on bottom-up factors. In this section we aim to answer RQ4.1. In the rest of this
section we describe the models used for this experiment and our stimuli design.

Models Visual saliency models create density maps that depict the extent to which
individual pixels grab attention relative to others (see Figure 5.9). These models can
be classified into bottom-up and data-driven. Bottom-up models are based on primary
visual attributes such as shape and color, while data-driven models are trained using eye
movement data together with some architectural assumptions inspired by bottom-up
models [82]. To answer RQ4.1 we use two well-known bottom-up models that are
often used as baseline models in the literature: Itti & Koch [66] model and graph-based
visual saliency (GBVS) [58] model. Itti et al. [66] proposed a saliency-based visual
attention model to extract visual features as computed via linear center-surrounded
operations with Gaussian pyramids for intensity, color, and orientation. The GBVS
model is an extension of the Itti & Koch model that forms graph-based activation maps
from visual features and normalizes them to highlight conspicuity. The global visual
feature extraction and graph-based activation maps enable the model to capture saliency
maps at the global level.

Stimuli description To answer RQ4.1 we captured high-resolution screenshots of
search result pages of Bol.com, a popular European e-commerce platform. Each
screenshot is preprocessed to fit the input requirements of the saliency models. We then
generated saliency maps using both models to highlight areas predicted to attract the
most visual attention.

For the analysis, we selected a subset of variants of product lists that include different
product categories, different outlier positions and outlier types:

1. alist of smartphones with an outlier image at position 3 (see Figure 5.9a),
2. alist of monitors with an outlier discount tag at position 8 (see Figure 5.9d), and
3. alist of office chairs with an outlier price at position 13 (see Figure 5.9g).

We generate the visual saliency maps for all these variants, illustrating both the full list
(see Figure 5.9) and a focused view around the outlier and its close neighboring items
(see Appendix, Figure 5.10).
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5.4.2 Eye-tracking Experiments

In this section, we describe our experimental design to answer RQ4.2 through eye-
tracking. We detail our methodology, experimental designs, and specific study goals.

Experimental design

In the following, we outline the key aspects of our experimental design.

Online shopping experience There are two critical factors influencing a customer’s
shopping experience: their goal or specific task, and product category [35].

Customer’s goals refer to the different stages of the purchasing process, such as
gathering information about products, comparing different options, and understand-
ing delivery choices [157]. In this study we focus on the Choice Task as described
by Chocarro Eguaras et al. [35]: “Visit the website and select from those offered the
product that most appeals to you based on the information provided.”

In addition, the category of the product has been recognized as a significant modera-
tor in e-commerce. Nelson [110] divides product categories into two classes: search
products and experience products. Search products are items that consumers can deter-
mine most of their attributes before purchasing. On the other hand, most attributes of
experience products are unknown to consumers before the purchase or the consumption.
In short, consumers can evaluate search products by their features, brand, or price, while
experience items need senses for their evaluation [34, 110, 171].

Previous studies suggest that user attention patterns can be different for different
product categories [81, 94, 168]. Therefore, following previous work [35, 62,79, 83, 94],
we select 5 product categories with search and experience attributes:

* experience attribute: backpacks, office chairs, running shoes; and

* search attribute: mobile phones, monitors.

We use the backpacks category also for the calibration stage and the rest for actual
analysis.

Stimuli description The stimuli in this study consist of product search result pages,
mimicked after Bol.com (see Figure 5.9). Each page contains 15 distinct products.
These products are characterized by various features, including product images, titles,
descriptions, star ratings, review counts, pricing information, and, in some cases,
discount tags. To reduce the complexity of the page we removed information about
delivery, seller, and offer from the product features.

The products on our simulated search result pages are real items from Bol.com,
chosen to match our study queries. However, they may not be exactly the same as the
platform’s search results. We made controlled modifications to certain product features
for the purpose of our research. For instance, we may have adjusted item prices or
added discount tags to items to study their effects. We provide the descriptions of these
decisions where they were applied.
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Online eye-tracking We use the RealEye. io online platform to run webcam-
based eye-tracking experiments. RealEye . io eye-tracking is based on WebGazer,
an eye tracking JavaScript library [122]. Webcam-based eye-tracking has become
popular in the eye-tracking community due to its ability to capture eye movements
in real-world settings, relatively low cost, and high speed of data acquisition [172].
Several recent studies use webcam-based eye-tracking for their perception and cognitive
experiments [26, 47, 48, 57, 109, 138]. Wisiecka et al. [172] report that they were
able to obtain comparable results from RealEye . io compared to a lab experiment in
tasks involving fixation (location-based metrics). The average accuracy for individuals
is reported as 113px; however, it is expected that the average error goes to zero in
aggregated analysis with several participants.'

Metrics and data collection In this study, area of interest (AOI) is an analytical tool
that provides eye movement metrics for user-defined areas of an image. We defined three
AOISs per product in the list that covers a product’s image (on the left), the product’s
description (in the middle) and the product’s price information (on the right) including
discount tags if any. We consider four eye-tracking measures to report our results based
on participants’ eye fixations and for any AOI [8, 49]:

1. fixation count: the number of fixations within an AOI; more fixation means more
visual attention;

2. time spent: shows the amount of time that participants spent on average looking
at an AOI;

3. time to first fixation (TTFF): the amount of time that it takes participants on
average to look at the AOI for the first time; and

4. revisit count: indicates how many times participants looked back at the AOI on
average.

To calculate these metrics, we aggregated eye movements on each AOI on the list.

Instructions Participants were instructed to interact with the presented product lists
as they typically would. While participants were not obligated to click on any items,
they were encouraged to explore the entire page thoroughly. It was emphasized that
we will ask questions regarding the content of each page after their exploration and
we only accept submissions with reasonable answers to the questionnaires. We had 6
product lists each corresponding to a unique query, and participants had 90 seconds for
exploring each single page. The first list was for calibration, so that the participants get
familiar with the format of the experiment, therefore, we recorded the results only for
the next 5 lists.

Post-task questionnaire Our questionnaire consisted of two sets. The first set was
presented after each page was shown, focusing on the page’s content, the products par-
ticipants observed, their purchase recommendations, and whether they noticed anything

'https://support.realeye.io/realeye—accuracy
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unusual or intriguing. The second set of questions was presented upon completion of
the task and covered participants’ demographics and online shopping habits.

Procedure and implementation Participants were recruited through the Prolific
platform? and, after receiving task instructions, were directed to RealEye for the eye-
tracking experiments and questionnaires.

The participants were randomly exposed to different sets of lists. Each set contains
the same queries and products, but with modifications to place outliers in different
positions. We also applied randomization within the set, to present different orders of
queries to different participants. The randomization of each set presented to participants
was systematically managed through our backend logic, while the randomization of the
order of lists within the sets is handled by the RealEye platform.

At the start of the task, each participant would initiate their session with a warm-
up step, during which they explored a list of products. The results of this warm-up
step are excluded from our subsequent analysis. Upon completion of all sessions and
questionnaires, participants received a unique code, allowing Prolific to track their
submissions.

Participants and procedure To ensure the familiarity of participants with the e-
commerce platform, we only hired participants from the Netherlands and Belgium,
where our e-commerce platform is active. To ensure data quality, we require that
workers have an approval rate of 95% or higher. After quality control procedures, we
are left with a total of 118 distinct participants. 54.2% of participants identified as
female, 45% as male, and 0.8% selected other genders. In terms of age distribution, the
majority of the participants (67.8%) were 18 to 34, 30% were 35 to 54 years old, and
the remainder were older than 54. All participants in our study used desktop computers
with a webcam, ensuring a standardized viewing experience between all participants.

Task |

Overview In the first step of our eye-tracking experiment, we investigate how users
examine product search result lists and understand the attention dynamics related to
different product features. Specifically, we explore which features are more engaging
in terms of time spent and fixation count and which ones capture attention faster in
terms of TTFF. While there are studies examining factors that influence users’ viewing
behavior on search results pages [84], to the best of our knowledge, no previous research
has focused on e-commerce.

Stimuli description As mentioned in Section 5.4.2, the product lists used in our study
were harvested directly from Bol.com. Each list contained 15 distinct products. To
maintain consistency for this step, we ensured that no outlier products were present
in the lists. To this end, we identified and replaced products that could potentially be
perceived as outliers (see Section 5.2.3). Several factors were considered during this
process, including product images (content, color, background color), prices, discount

2https://prolific.io
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tags, and user ratings. Additionally, slight adjustments to item prices are applied in
some cases to ensure they match the pricing patterns found in product lists. We used
“backpacks” and “running shoes” as the search queries for this experiment. Participants
were randomly assigned to one of these lists.

Task Il

Overview In our second eye-tracking study, we aim to investigate how outlier product
features influence the observability of products in search result lists. More specifically,
we focus on the stand-out effect of different product features when presented as outliers.
We aim to answer RQ4.2 by exploring how the presence of an outlier product feature
affects the overall attention distribution among the list and how these effects differ
among various product features.

Stimuli description We selected three product features for examination: price, image,
and discount tag.

To maintain an unbiased experimental design, we ensured that product category,
position, and relevance do not introduce any bias into the results. To achieve this, we
created unique combinations of product queries and product features, each featuring an
outlier placed at positions 3, 8, or 13 within the product list.

Each participant viewed each product query only once during the study, ensuring
diversity and preventing familiarity from affecting their attention patterns. Furthermore,
participants received lists with outliers w.r.t. each product feature only once to prevent
repetition bias and learning effects. The position of the outlier within the list was
randomly assigned from the available options to address position bias.

5.4.3 Results

Visual saliency maps

In this section, we present our observations to answer RQ4.1 using the full list view,
however, the patterns are similar for the focused view images (see Figure 5.10). For the
first list, the GBVS map highlights a very intense spot near the top where the outlier
image is located (see Figure 5.9¢). This suggests that the model is highly responsive
to the visual characteristics of the outlier, potentially due to its unique color scheme,
size, and contrast compared to surrounding items. On the other hand, the Itti & Koch
map shows a more evenly distributed pattern of saliency across the product list (see
Figure 5.9b), with less intense focus on any single point. However, there is still a
noticeable emphasis on the area around the image outlier, but less pronounced than in
the GBVS model.

In the second list, the GBVS map shows several highlighted areas, but there is a
particularly intense focus on the upper part of the list, where the initial items are located
(see Figure 5.9f). The model does not distinctly highlight the middle part where the
outlier discount tag is at position 8, suggesting that while the GBVS model is sensitive
to certain visual cues, it may not consistently emphasize elements like tags unless
they are accompanied by other strong visual contrasts. While the Itti & Koch map
displays attention points scattered more evenly across the entire list, there are visible
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highlights around the middle section, closer to where the outlier discount tag is (see
Figure 5.9¢). The highlight around the outlier discount tag in the middle of the page
might not specifically show the outlier; however, we observe that the Itti & Koch map
could better detect this local difference in the map. This can be due to its algorithmic
sensitivity to a broader range of visual features beyond mere contrast, such as layout
structure.

Lastly, in the list with the price outlier, the GBVS map shows a few distinct areas of
high saliency, with notable intensity at the bottom of the list, near where the outlier is
located (see Figure 5.91). This suggests that the GBVS model is effective in identifying
significant deviations in price among this list, while the Itti & Koch model fails to detect
this pattern (see Figure 5.9h).

In conclusion, our observations suggest that the GBVS model is particularly suited
for detecting distinct visual anomalies within a cluttered visual field, while the Itti &
Koch model offers insights into general visual attention patterns across a product list, by
highlighting the more visible parts of the image without focusing on global differences.
The GBVS model focuses on global visual features, which means it responds differently
based on the complexity and variety of elements in an image. This behavior helps
explain why the GBVS model fails to detect the bright red tag in Figure 5.9d, while
it effectively highlights the price outlier in Figure 5.9g. In the chair list, the uniform
dark colors of the product images make even small variations in price patterns more
noticeable to the model. Conversely, the diverse colors among the monitor images might
distract the model, causing it to overlook the red tag despite its visual prominence.

While the Itti & Koch and GBVS models provide valuable insights into the potential
attention-grabbing properties of various product features, they are based on theoretical
constructs and may not fully capture real-world user behavior. To address this gap, we
now turn to empirical validation through eye-tracking experiments.

Eye-tracking Task |

In this section we present our observations on how users examine a regular product
result page without any outliers.

Engagement metrics Figure 5.3a shows that TTFF is quite high across all categories,
with product description being the fastest (25,393 ms), followed by prices (35,901 ms)
and images (36,503 ms). This might indicate that the participants take a significant
amount of time before they fixate on any specific element, starting from the middle of the
page, confirming center bias [28, 50, 152]. Based on a Kruskal-Wallis test [102] there
are statistically significant differences in the TTFF across the three feature categories
(p-value < 0.05); however, the difference between TTFF on product description and
the two other features is more noticeable which could be due to the complexity of
scanning the textual information.? The average fixation count (see Figure 5.3b) is also
significantly higher (Kruskal-Wallis test, p-value < 0.05) for product description (6.55
times) compared to price (1.03 times) and image (0.94 times), suggesting that once users
engage with detailed text, they tend to revisit or focus on these areas more frequently,
potentially reflecting a deeper cognitive processing or evaluation.

3Keep in mind that we instructed users to carefully examine the products.
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Figure 5.3: (a) TTFF, (b) average fixation count , and (c) average time spent by product
feature category.
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Figure 5.4: Correlation matrix of user engagement metrics based on the eye-tracking
experiment.

Consistent with the fixation count, users spend significantly more time (Kruskal-
Wallis test, p-value < 0.05) on product description (1,939 ms) than on price (600 ms)
or image (561 ms) (see Figure 5.3c). This indicates that detailed textual information
holds user attention longer.

Moreover, we conducted a correlation analysis between different eye-tracking
metrics to see if items that capture attention faster also tend to engage users for longer.
Figure 5.4 shows the results. The fixation count and total time spent on different AOIs
demonstrated a strong correlation (r = 0.80), suggesting that areas that attract more
fixations typically engage users for longer duration. This relationship highlights the
engagement potential of product description over image or price.

Positional impact analysis To understand how the position of an item within a product
list affects user interaction, we analyzed TTFF, fixation count, and total time spent
based on the item’s position in the list. Figure 5.5a shows that TTFF tends to increase
with the position of the item in the list as expected, indicating that users examine the list
from top to bottom, and items later in the list take longer to attract the initial fixation.
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Figure 5.5: (a) average TTFF, (b) average fixation count and (c) average time spent per
position.

The number of fixations generally decreases from the start towards the middle of
the list and slightly increases towards the end (see Figure 5.5b). This pattern could be
influenced by how users scan the page, possibly scanning more quickly through middle
items after initially examining the first few items more thoroughly.

Similar to fixation count, the total time spent also decreases through the list, with
the least amount of time spent around the middle of the list (see Figure 5.5c). This
suggests less engagement with items as users move through the list.

In general, these trends indicate that position affects how users interact with items
in a product list. Items placed at the beginning of the list are likely to capture attention
faster and engage users more than those placed in the middle or bottom of the list.

Eye-tracking Task Il

To answer RQ4.2 we investigate how outlier product features impact the visibility
of products in search result lists. This section reports on the findings related to how
different features, when presented as outliers, affect visual attention across different list
positions. We answer the following questions to address RQ4.2:
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RQ4.2.1 How do outlier features in product lists influence the initial user attention?

RQ4.2.2 What is the impact of outlier features on user engagement?

RQ4.2.1 We examined how the presence of outlier features in product lists affects
initial user attention. Specifically, we focus on TTFF to understand whether products
with outlier features attract attention faster.

In previous chapters, we have shown that both outliers and their close neighbors
attract user attention faster [138]; therefore, to answer RQ4.2.1, we compare TTFF
for products with outlier features and their immediate neighbors against more distant
neighbors. Immediate neighbors are defined as the products immediately preceding
and following the outlier, while distant neighbors are those either before or after the
immediate neighbors. We analyze this setup across the outlier features (image, price,
discount tag) and different product positions (3, 8, 13).

For image outliers, Figure 5.6a shows that outliers and their immediate neighbors
at all positions generally exhibit a lower mean TTFF compared to distant neighbors,
indicating quicker attention capture (25.76s vs. 31.24s for position 3, 31.77s vs. 43.71s
for position 8 and 34.57s vs. 37.03s for position 13). Similar trends are observed with
price and discount tag features (see Figure 5.6b and Figure 5.6¢), where outliers and
their immediate neighbors consistently show lower TTFF compared to distant neighbors,
although differences were less pronounced compared to image features. A Kruskal-
Wallis test shows statistically significant differences between TTFF of the two groups
among different outlier features and positions with p-value < 0.05. Figure 5.7 details
the distribution and range of TTFF values.

Our results confirm that outlier features not only draw attention more quickly but
also potentially increase the exposure of their adjacent items. This effect is consistent
across different types of features and various positions within the list.

RQ4.2.2 To address RQ4.2.2, we analyze how outlier features influence user engage-
ment by examining metrics such as total fixation count, time spent, and revisit counts.
These metrics help us understand not just the initial attention (as explored in RQ4.2.1)
but also the sustained interest and engagement. Figure 5.8 depicts the average values
of these metrics calculated over all users for different features, outlier positions, their
immediate and more distant neighbors.

Starting with the total fixation count, we observe peaks at positions 3, 8, and 13
for image outliers, indicating significant engagement at all positions, but particularly
strong at position 8 where the average fixation count reaches ~ 2.5. This suggests that
image outliers, regardless of their position, tend to draw consistent attention, with a
focus on the middle of the list. Price outliers show similar peaks at these positions with
the highest at position 3 (= 2.75), indicating that price outliers at the start of the list
may capture slightly more attention than those later, possibly due to immediate price
evaluation when beginning the list browsing. Discount tag outliers exhibit the highest
fixation count at the start of the list (position 3 with a count of about 4), with noticeable
decreases thereafter. This highlights that discount tags catch the eye quickly, possibly
due to the initial scanning behavior of users.
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Figure 5.6: TTFF for (a) image, (b) price, and (c) discount tag outliers per position,
showing the comparison between outliers and their immediate neighbors versus their
distant neighbors.

Time spent and revisit counts, follow the same trends for different variants, empha-
sizing that outlier items and their immediate neighbors not only capture user attention
faster than other items in the list, but also receive more exposure and user engagement.

Comparison and upshot

The Itti & Koch and GBVS models predict attention hotspots using visual features like
color, contrast, and size. The Itti & Koch model provides a more evenly distributed
attention pattern, recognizing areas with notable visual differences without intense focus
on a single point. In contrast, the GBVS model highlights prominent anomalies with
strong visual contrasts, successfully identifying image, and price outliers due to their
unique visual characteristics.

However, these models fail to consistently detect outliers in the product lists. This
limitation can be attributed to the fact that the models only rely on the bottom-up factors,
which has two main implications. First, the models see the whole list as one picture.
For instance, in our experiments, the diverse colors in the monitor list distracted the
model from the red tag (see Figure 5.9f), while the uniform dark colors in the chair list
made small price variations more noticeable.
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Figure 5.7: TTFF distribution across positions and outlier features.

Second, the models ignore top-down factors such as users’ sensitivity to discounts
or tendency to compare features like discount tags across products. The models cannot
compare any specific features between different products. Observations from our
eye-tracking Task I support the top-down factors at play. Specifically, users engaged
more with the product descriptions, which, despite being less visually attractive, held
significant attention in terms of both TTFF (that can also be explained by center bias)
and sustained engagement (see Figure 5.3). This engagement with detailed information
highlights the importance of user intent, which visual saliency models do not account
for. The empirical results from our second eye-tracking experiment provide deeper
insights into user attention and engagement in the presence of outliers. The experiments
confirmed that outliers capture attention quickly, as evidenced by lower TTFF for
outliers compared to distant neighbors. Eye-tracking data also revealed that users
engaged with these outliers for longer durations, providing insights into sustained
engagement that visual saliency models fail to capture.

In conclusion, our observations suggest that visual saliency models effectively
predict initial visual attraction based on basic visual properties. They are useful for
quick assessments and designing visually appealing interfaces. However, their reliance
on bottom-up factors limits their applicability to fully understand user behavior in real-
world scenarios. In contrast, eye-tracking experiments, while more resource-intensive,
provide deeper insights into both initial attention and sustained engagement. They
capture top-down factors and reflect real-world user interactions more accurately.
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Figure 5.8: Average user engagement metrics across all users, calculated for outliers,
their immediate and distant neighbors, across different positions and outlier features.

5.5 Discussion & Conclusion

5.5.1 Research Problem and Objectives

In this study, we explored how different presentational features influence the perception
of outliers in e-commerce search results through a two-stage approach. We designed
the initial visual search experiments to explore how features such as price, star rating,
and discount tags affect users’ ability to identify outliers. These experiments provided
initial insights into the immediate observability of these features and the impact of
visual complexity on user perception.

Building on these preliminary findings, our subsequent eye-tracking experiments
aimed to validate and extend our understanding by observing user behavior in a more
realistic simulated e-commerce environment. These experiments measured actual user
attention and engagement, providing a more comprehensive view of how outlier features
capture and sustain attention in real-world-like scenarios. We also incorporated visual
saliency analysis to predict which product features would naturally attract attention
due to their visual properties. This analysis served as a benchmark to compare with
empirical eye-tracking data, allowing us to understand the interplay between bottom-up
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visual factors and top-down cognitive factors in shaping user attention during online
shopping.

5.5.2 Main Findings

Our initial visual search experiments suggest that visual complexity of a feature affects
item outlierness. The visual saliency models confirm this observation by consistently
highlighting areas with strong visual contrasts, distinct colors, and complex patterns as
attention hotspots. This is expected since these algorithms work based on bottom-up
visual factors. Moreover, Figure 5.6 shows that, averaged over all outlier positions,
TTFF is the lowest for image outliers, followed by discount tags, and the highest for
price outliers (30.70s, 35.21s, and 37.3s, respectively). Although the product lists used
in the eye-tracking experiments were different, the overall trend is in line with our
observations from visual search experiments.

Additionally, our observations emphasize that one should be cautious about the
limitations of visual saliency models in such contexts. As mentioned, visual saliency
models only rely on bottom-up factors, making them naive in that they do not distinguish
between separate product features or comparing them against each other, instead they
analyze the entire image and highlight areas that stand out based on overall visual
complexity. Therefore, in lists with colorful and complex product images, the models
might miss an obvious outlier such as a unique discount tag, while detecting a subtle
visual difference made by a higher price in a list with uniform dark colors.

Moreover, our eye-tracking Task I suggests that despite being less visually attractive,
product descriptions captured attention more quickly, indicating the importance of the
top-down factors and other factors in play like center bias. This is evident by a lower
TTFF for product descriptions in Figure 5.3a followed by more revisits and time spent
on these areas, reflecting deeper cognitive engagement (see Figures 5.3b and 5.3c).

In Task II of our eye-tracking study, we examined how outlier product features
influence visibility in search result lists. The results indicated that outliers and their
immediate neighbors attracted attention faster (in terms of TTFF) and engaged users for
longer durations (in terms of fixation count and time spent) compared to distant items.
This effect was consistent across different outlier features (image, price, discount tag)
and various positions within the list.

Overall, our findings from visual search, visual saliency models, and eye-tracking
experiments emphasize the dual role of visual and cognitive factors in shaping user
attention. Visual saliency models effectively predict initial visual attraction based
on bottom-up factors, while eye-tracking data provides comprehensive insights into
sustained engagement driven by the top-down factors. These insights can inform
the design of more effective and engaging e-commerce interfaces by optimizing the
presentation of key product features to capture and maintain user attention.
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Appendices

5.A Task Instructions

In the following, we provide the instructions that were shared with participants on the
Prolific platform for our experiments.

In this task, you’ll review some product lists on an online shopping website
(Bol.com). You’ll explore a specific category, like smartphones, shoes, or backpacks, as
if you’re planning to make a purchase.

We require access to your webcam to record your eye movements as you review
the product lists. Please be assured that we will only record eye movements on the
product list pages, and your personal or private data will not be recorded or accessed in
any way.

Please carefully examine all the products on the page. We’ll ask questions about
your observations afterward, such as:

» Describe what you saw on the list briefly, e.g., price range, item types.
» Note if you observed a specific gender focus or prominent colors.

* List any brands you noticed.

* Recommend one item for purchase and explain why.

* Mention anything that caught your attention.

Your answers can be in English or Dutch. IMPORTANT: You MUST answer the
post-task questions about the content of the lists accurately, otherwise we CANNOT
ACCEPT your submission.
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5. Understanding Visual Saliency of Outlier ltems in Product Search

(g) (h) @
Figure 5.9: Product lists and their visual saliency maps. (a), (d) and (g) show the original
list for mobile phones with an outlier image at position 3, monitors with an outlier
discount tag at position 8, and office chairs with an outlier price at position 13. (b), (e)
and (h) show the corresponding visual saliency maps using the Itti & Koch model. (c),
(f), and (i) show the maps generated by the GBVS.
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Figure 5.10: Product lists and their visual saliency maps. (a), (d) and (g) show the
original list with one outlier item and its close neighbors: for mobile phones at position
3, for monitors at position 8 and for office chairs at position 13, respectively. (b), (e)
and (h) show the visual saliency maps generated by the Itti & Koch model, while (c), (f)
and (i) are generated by the GBVS.
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Conclusions

In this thesis, we have examined several specific challenges in applying learning to
rank (LTR) models to product search. Specifically, we have covered (i) a comprehensive
evaluation of 12 supervised learning-to-match methods, offering insights for select-
ing methods that balance effectiveness and efficiency in real-world applications; and
(ii) the concept of inter-item dependencies in fair ranking, introducing “outlierness”
and examining its impact on exposure distribution and fairness, along with a method
to mitigate these effects. Subsequently, we have shifted our focus to user examination
behavior in the presence of outliers, where we (iii) have introduced a new type of click
bias, i.e., outlier bias and proposed a click model that accounts for both outlier and
position bias. Finally, we have investigated (iv) how different presentational features
impact the perception of outliers in e-commerce search, using visual saliency models
and eye-tracking experiments. In this chapter, we review our main findings and suggest
directions for future work.

6.1 Main Findings

In this section, we revisit the research questions that were posed in Chapter 1 and
summarize the most important findings.

RQ1 How do learning-to-match models perform in ranking for product search com-
pared to each other in terms of efficiency and accuracy?

Through a systematic comparison of 12 supervised learning-to-match methods, we
found that models that have been specifically designed for short text matching, such
as MV-LSTM and DRMMTKS, are consistently among the top performing methods
in all experiments; however, ARC-I is the preferred model for real world use cases,
when taking efficiency and accuracy into account at the same time. Moreover, although
the state-of-the-art BERT-based model is the fastest in both training and inference, its
performance is only mediocre compared to other models. We attribute this result to
the fact that the text BERT is pre-trained on is very different from the text we have in
product search. Lastly, we have provided insights into factors that can influence model
behavior for different types of query, such as the length of the retrieved list, and query
complexity. We have also discussed the implications of our findings for e-commerce
practitioners, with respect to choosing a well performing method.
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6. Conclusions

RQ2 Do outlier items exist in search logs, and how can their effect on exposure-based
fair ranking algorithms be mitigated?

To answer the first part of this question, we have analyzed data from the TREC Fair
Ranking track and found a significant number of outliers in the rankings. Next, to
confirm our hypothesis about the impact of outlier items on users’ scanning behavior,
we have conducted an eye-tracking study in two scenarios: e-commerce and scholarly
search. To account for the existence and effect of outliers in a ranked list we have
proposed OMIT. With OMIT, we have introduced a ranking constraint based on the
outlierness of items in a list and combined it with fairness constraints. OMIT can reduce
outliers in rankings without compromising user utility or position-based item fairness.
Through experiments on a public dataset, we have shown that outlierness optimization
leads to a fairer policy that displays fewer outliers in the top results, while maintaining
a reasonable trade-off between fairness and utility.

RQ3 Does outlier bias exist in click data? How can we estimate its impact and correct
for this bias?

We have empirically shown that, on average, outlier items receive significantly more
clicks than non-outlier items in the same lists. This tendency holds across all positions;
at any specific rank, an item receives more interactions when presented as an outlier
rather than a non-outlier item. We concluded from our analysis that the effect of outliers
on user clicks is a type of bias that distorts true relevance. Therefore, we have proposed
OPBM, an outlier-aware click model that accounts for both outlier and position bias.
We estimate click propensities based on OPBM and validate our model’s effectiveness
through extensive experiments on both real-world e-commerce data and semi-synthetic
datasets. Our results demonstrate that OPBM outperforms baseline models in ranking
performance and true relevance estimation. We have also shown that OPBM performs
similarly to PBM in the worst case, making it a more reliable choice.

RQ4 How do different presentational features shape users’ perception of outliers and
influence exposure distribution in e-commerce search results?

We have investigated the impact of different presentational features on users’ perception
of outlierness by first, modeling the problem as a visual search task. We have found that
participants perceive each presentational feature differently in terms of attention and
reaction times. To better examine the factors involved, we have categorized them into
two established groups: bottom-up and top-down. We started by analyzing the influence
of bottom-up factors through experiments with visual saliency models. We show that
graph-based visual saliency model is effective in detecting visual anomalies in ranked
lists, while the well-known Itti & Koch model detects general visual attention patterns
in an image. Next, through eye-tracking experiments, we have demonstrated the impact
of top-down factors on user attention, showing that these factors can override bottom-up
visual signals in online shopping scenarios. We have found that outlier items and their
close neighbors in ranked lists not only attract attention more quickly but also receive
significantly more exposure, as users spend more time examining them.
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6.2. Future Work

6.2 Future Work

In this thesis, we have presented several analyses and solutions for applying LTR
models effectively to product search, addressing query-product matching, unbiased
learning to rank , and fair ranking. Specifically, we have analyzed existing methods
for supervised learning-to-match to assess their applicability in real-world e-commerce
search (Chapter 2). In the next chapters, we extend current approaches by refining LTR
methods to account for inter-item dependencies (Chapters 3 and 4) and examining the
impact of different product presentational features on item outlierness (Chapter 5). In
this section, we outline limitations and suggest future directions for further development
of these topics.

6.2.1 Learning to Match

In Chapter 2 we have compared 12 learning-to-match models for product search using
two datasets: one public, hashed dataset and one private dataset from an e-commerce
platform. We observed performance differences across these datasets, which raises
questions about the generalizability of some models. Validating these observations
with additional unhashed datasets, such as [130], could help address this limitation.
Additionally, with rapid advancements in semantic matching, including the rise of large
language models and retrieval-augmented generation approaches [78, 192], replicating
our experiments with more recent models would provide further insights.

6.2.2 Outliers

Our proposed model, OMIT, for mitigating outlierness in ranked lists focuses on
removing outliers from the top-k positions. These outliers are defined in the context of
the entire list. Improving this model to mitigate outlierness across all sliding windows of
size k could be an interesting future direction. This adjustment would bring the model
closer to real-world conditions. Furthermore, in Chapter 3, we observe that most of
the outliers in our dataset are irrelevant items. Therefore, removing these outliers from
the top-k positions does not have a large negative effect on utility. Future work could
focus on improving performance in cases where outliers are relevant items, e.g., by
considering alternative methods of outlier mitigation.

In Chapter 4 we have introduced outlier bias and proposed a click model, OPBM, that
accounts for both position and outlier bias. We have discussed how OPBM generalizes
to cases with multiple outliers in rankings through experiments with semi-synthetic data.
One limitation of our work, in that chapter, is that for rankings with multiple outliers,
we have assumed that the effect of each outlier is independent of its position and the
presence of other outliers. One direction for future work, therefore, is to investigate
how multiple outliers on the same ranking affect each other and their surrounding items.
Another interesting extension of our work is to study how outlier bias can compensate
for position bias in the top-k ranks, and explore its use in different domains such as
fairness of exposure.

In the final chapter of this thesis, we have provided insights into how different
features contribute to an item’s outlierness. However, our analyses do not directly
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estimate the exposure of outlier features, which depends on various user behaviors and
platform-specific algorithms outside the scope of this study. Future work should focus on
quantifying and generalizing the impact of different visual attributes on item outlierness
to understand broader implications. For generalizability, we focused on presentational
features that are common across e-commerce platforms, but item presentation can vary
significantly among different interfaces. Additionally, our study is limited to list-view
presentations; findings may differ in grid views or other layouts. Extending these
analyses to various layouts could provide further insights. Another natural extension of
this research is to use eye-tracking data as training inputs for visual saliency models,
aiming to create models that predict attention areas specifically for e-commerce. To
our knowledge, no existing methods combine both top-down and bottom-up factors for
visual saliency prediction in e-commerce.

6.2.3 Zooming Out

In this thesis we have studied several challenges involved in applying LTR methods for
product search. These insights can serve as a foundation for addressing more domain-
specific ranking issues. For instance, recent advances in language modeling can help
address query-product matching. One of the major challenges in e-commerce search is
the scarcity of open-source, high-quality datasets [20, 121]. By using generative models,
such as large language models, researchers can create synthetic datasets that mimic the
structure and diversity of real e-commerce data [132, 133, 193], capturing the short,
unstructured, and domain-specific nature of product titles, descriptions and user queries.
This approach can also support the pre-training of transformer-based models with data
better suited to e-commerce contexts.

Additionally, future work could explore a broader range of inter-item dependencies
beyond outliers. This requires examining different types of dependencies, such as how
items influence the visibility, appeal, or perceived relevance of their neighbors within
ranked lists. Understanding these dependencies not only allows for mitigating bias in the
data but also offers opportunities to actively leverage them to achieve targeted exposure
distribution goals. For example, exposure distributions can be optimized to promote
fairness in two-sided marketplaces [24, 71], or even support sustainability goals by
prioritizing items with a shorter shelf life in grocery shopping to reduce waste [75]. By
tailoring exposure distribution according to these varied goals, inter-item dependency
modeling could contribute to more balanced and purpose-driven ranking strategies.
Furthermore, another future direction concerns investigating the potential to apply this
research in cross-domain contexts, such as media or news ranking, where both exposure
fairness and relevance are critical.

Furthermore, instead of treating ranking fairness as a post-processing step, future
work could integrate fairness constraints directly into learning-to-match models, opti-
mizing for both relevance and balanced exposure. This could be achieved through a
multi-objective ranking framework that simultaneously accounts for semantic relevance,
presentation effects, and fairness constraints.
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Summary

Ranking is at the core of information retrieval, from search engines to recommendation
systems. The objective of a ranking model is to order items based on their degree of
relevance to the user’s information need, which is often expressed by a textual query. In
product search, customers search through numerous options using brief, unstructured
phrases, and the goal is to find not only relevant but also appealing products that match
their preferences and lead to purchases. On the other side, there are the providers of the
products who expect the ranking model to fairly expose their items to customers. These
complications introduce unique characteristics that set product search apart from other
types of search.

This thesis investigates the specific challenges of applying learning to rank models
in product search and present methods to improve relevance, fairness, and effectiveness
in this setting. We start by focusing on query-product matching based on textual data,
as traditional information retrieval methods rely heavily on text to determine relevance.
It has been shown that the vocabulary gap is larger in product search, mainly due to the
limited and unstructured nature of queries and product descriptions. The vocabulary gap
refers to the difference in the language used in queries and the terms found in product
descriptions. In Chapter 2, we conduct a comprehensive evaluation of state-of-the-art
supervised learning to match models, comparing their performance in product search.
Our findings identify models that balance both accuracy and efficiency, offering practical
insights for real-world applications.

Next, in Chapters 3 and 4 we address fairness in ranking on two-sided platforms,
where the goal is to satisfy both groups of product search users at the same time.
Accurate exposure estimation is crucial to achieve this balance. To this end, we introduce
the phenomenon of outlierness in ranking as a factor that can influence the exposure-
based fair ranking algorithms. Outlier items are products that deviate from others in a
ranked list, due to distinct presentational features. We show empirically that these items
attract more user attention and can impact exposure distribution in a list. To account for
this effect, we propose OMIT, a method that reduces outlierness without compromising
user utility or fairness towards providers. In the next chapter, we investigate whether
outlier items influence user clicks. We introduce outlier bias as a new type of click bias,
and propose OPBM. OPBM is an outlier-aware click model designed to account for
both outlier and position bias. Our experiments show that in the worst case, OPBM
performs similarly to the well-known Position-based model, making it a more reliable
choice.

Finally, in Chapter 5 we explore how different presentational features influence user
attention and perception of outliers in product search results. Through visual search
and eye-tracking experiments, along with visual saliency modeling, we identify user
scanning patterns and determine the role of bottom-up and top-down factors in guiding
attention and shaping the perception of outliers.
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Samenvatting

Rangschikken staat centraal in informatievoorziening, van zoekmachines tot aanbevel-
ingssystemen. Het doel van een model om te rangschikken is om items te ordenen op
basis van hun relevantie voor de informatiebehoefte van de gebruiker, die vaak wordt
uitgedrukt in zoekopdrachten naar een tekstuele zoekvraag. Bij product doorzoeken
klanten talloze opties met korte, ongestructureerde zinnen, waarbij het doel is om
niet alleen relevante, maar ook aantrekkelijke producten te vinden die aansluiten bij
hun voorkeuren en aankopen stimuleren. Aan de andere kant zijn er de aanbieders
van producten, die verwachten dat het rangschikkingsmodel hun producten eerlijk aan
klanten presenteert. Deze complicaties brengen unieke kenmerken met zich mee die
productzoekopdrachten onderscheiden van andere vormen van zoekopdrachten.

Dit proefschrift onderzoekt de specifieke uitdagingen van het toepassen van learning
to rank modellen bij productzoekopdrachten en presenteert methoden om relevantie,
eerlijkheid en effectiviteit in deze context te verbeteren. We beginnen door ons te richten
op het matchen van zoekvragen en producten op basis van tekstuele data, aangezien
traditionele methoden voor informatievoorziening sterk athankelijk zijn van tekst om
relevantie te bepalen. Uit onderzoek blijkt dat de vocabulairekloof groter is bij product-
zoekopdrachten, voornamelijk door de beperkte en ongestructureerde aard van queries
en productbeschrijvingen. De vocabulairekloof verwijst naar het verschil in taalgebruik
tussen de zoeekvragen en de termen die voorkomen in productbeschrijvingen.

Vervolgens behandelen we in Hoofdstukken 3 en 4 eerlijkheid in ranking op twee-
zijdige platforms, waarbij het doel is beide groepen gebruikers van productzoekop-
drachten tegelijkertijd tevreden te stellen. Een nauwkeurige schatting van exposure is
cruciaal om dit evenwicht te bereiken. Daartoe introduceren we het fenomeen “out-
lierness” in ranking als een factor die invloed kan hebben op exposure-gebaseerde
eerlijke ranking-algoritmen. Outlier-producten zijn producten die afwijken van an-
dere producten in een gerangschikte lijst, door onderscheidende presentatiekenmerken.
We tonen empirisch aan dat deze items meer gebruikersaandacht trekken en de ex-
posureverdeling in een lijst kunnen beinvloeden. Om dit effect te corrigeren, stellen
we OMIT voor, een methode die outlierness vermindert zonder afbreuk te doen aan
gebruiksgemak voor de gebruiker of eerlijkheid ten opzichte van aanbieders. In het
volgende hoofdstuk onderzoeken we of outlier-items invloed hebben op gebruikerskliks.
We introduceren outlier-bias als een nieuw type klikbias en stellen OPBM voor. OPBM
is een outlier-bewust klikmodel dat rekening houdt met zowel outlier- als positie-bias.
Onze experimenten tonen aan dat OPBM in het slechtste geval vergelijkbare prestaties
levert als het bekende positie-gebaseerde model, waardoor het een betrouwbaardere
keuze is.

Ten slotte onderzoeken we in Hoofdstuk 5 hoe verschillende presentatieckenmerken
de aandacht van gebruikers en hun perceptie van outliers in productzoekresultaten bein-
vloeden. Door middel van visueel zoeken, oogbewegingsonderzoek, en het modelleren
van visuele opvallendheid identificeren we gebruikersscanpatronen en bepalen we de
rol van bottom-up en top-down factoren bij het sturen van aandacht en vormen van de
perceptie van outliers.

113



	Acknowledgements
	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	A Comparison of Supervised Learning to Match Methods for Product Search
	Introduction
	Related work
	Learning To Match Methods
	Representation-Based Models
	Interaction-Based Models
	Hybrid Models

	Experimental Setup
	Performance of Learning to Match Methods for Product Search
	Performance for Different Types of Queries
	Per Query Score Difference between the Best Semantic Model and the Lexical Matching Baseline
	Further Considerations

	Implications for E-Commerce
	Choosing between Representation-Based Models and Interaction-Based Models
	Training Cost and Inference Speed
	Impact of Query Characteristics
	Recommendations for Deployment

	Conclusion & Future Work
	Reflections

	Understanding and Mitigating the Effect of Outliers in Fair Ranking
	Introduction
	Background
	Outliers in Ranking
	Mitigating Outlierness in Fair Learning to Rank
	Experimental Setup
	Empirical Results
	Related Work
	Conclusion & Future Work

	Appendices
	On the Impact of Outlier Bias on User Clicks
	Introduction
	Outliers in ranking
	Impact of Item Outlierness on Clicks
	User Study
	Real-world Click Logs

	 Outlier-aware Position-Based Model
	Experimental Setup
	Data
	Click Simulation
	Methods Used for Comparison
	Evaluation Metrics

	Results
	Propensity Estimation with OPBM
	Effect of Outlier Bias Severity
	Generalization to Multiple Outliers

	Related Work
	Conclusion

	Understanding Visual Saliency of Outlier Items in Product Search
	Introduction
	Presentational Features and Attention
	How Different Features Contribute to the Outlierness of an Item
	Main Contributions

	Background
	Visual Search
	Visual Saliency
	Outliers in Ranking

	Preliminary Experiments: Visual Search
	Crowdsourcing Experiments
	Results

	Extended Experiments: Visual Saliency and User Attention
	Visual Saliency Maps
	Eye-tracking Experiments
	Results

	Discussion & Conclusion
	Research Problem and Objectives
	Main Findings


	Appendices
	Task Instructions

	Conclusions
	Main Findings
	Future Work
	Learning to Match
	Outliers
	Zooming Out


	Bibliography
	Summary
	Samenvatting

