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Abstract

We investigate expressivity and complexity of hybrid log-
ics on linear structures. Hybrid logics are an enrichment of
modal logics with certain first-order features which are al-
gorithmically well behaved. Therefore, they are well suited
for the specification of certain properties of computational
systems. We show that hybrid logics are more expressive
than usual modal and temporal logics on linear structures,
and exhibit a hierarchy of hybrid languages. We determine
the complexities of the satisfiability problem for these lan-
guages and define an existential fragment of hybrid logic
for which satisfiability is still NP-complete. Finally, we ex-
amine the linear time model checking problem for hybrid
logics and its complexity.

1 Introduction

Modal and temporal logics are algorithmically well-
behaved and mathematically natural fragments of classical
logics [6]. However, from the point of view of reason-
ing about graphs, something crucial is missing in the usual
propositional modal and temporal logics: they lack mech-
anisms for naming states or sets of states, and for dynami-
cally creating new names.

There is a good reason for the lack of such naming mech-
anisms in traditional modal and temporal logics: they are
only able to express properties that satisfy the tree model
property, i.e., properties that are satisfiable iff they are satis-

fiable in a tree-like model [6]. The ability to name states in a
model violates the tree model property. Now, one can view
the tree model property as a good feature for a logic, since
it usually implies nice computational behavior, and as a bad
feature, since it indicates a lack in expressivity. Are there
natural extensions of modal and temporal logics with the
naming facilities required by various modeling tasks (and
thus violating the tree model property) that are still well-
behaved from a computational point of view?

Hybrid logics provide a positive answer to the previ-
ous question. They allow reference to states in a modal
framework, and, hence, mix features from first-order logic
with features from modal logic, whence the name hybrid
logic [7]. On top of ordinary propositional variables, hybrid
languages have a type of atomic formulas called nominals.
Syntactically, nominals behave like ordinary propositional
variables, but they are names, true at exactly one state in
any model. Hybrid languages may contain the at operator
@; which gives ‘random’ access to the state named by i:
@;¢ holds iff ¢ holds at the state named by i. They may
also include the name binder | x. which assigns the variable
name x to the state of evaluation. Referencing states by @
combines naturally with naming them by |: The binder |
‘stores’ the current state, and @ ‘retrieves’ the information
stored. The existential binder Jx. binds the variable name
T to some state in the model.

In this paper we investigate the expressivity and com-
plexity of hybrid logics over linear frames (that is, irreflex-
ive, transitive and trichotomous frames), and we compare
our findings with the known results on general frames (that
is, frames with no restriction). We show that, on linear



frames, basic hybrid logic (i.e., the logic extending proposi-
tional logic with nominals, @ operator, future F and past P
temporal operators) is no more complex than propositional
logic: its satisfiability problem is indeed NP-complete. The
same complexity bounds hold over (N, <), the linear frame
of the natural numbers with the usual ordering relation.
The same logic over general structures is known to be
EXPTIME-complete [1]. Whenever the name binder | is
added, the resulting hybrid logic is as expressive as first-
order logic on linear structures, a result that fails in the
case of general structures. As a consequence, its satisfiabil-
ity problem is nonelementarily decidable. The same result
holds over (N, <). Moreover, the same logic is undecidable
on general structures [3]. If we omit the P and @ operators,
the resulting logic (hence, the hybrid logic with nominals, |
and F only) has an NP-complete satisfiability problem over
linear structures, whence over general structures it is still
undecidable [3].

We furthermore isolate a large fragment of the nonele-
mentary hybrid logic with hybrid operators @ and |, and
temporal operators F' and P (and their duals G and H). It
is characterized by the fact that the name binder | may not
occur in the scope of universal temporal operators G and H.
We show that the satisfiability problem for this fragment is
NP-complete; hence it is basically not harder than propo-
sitional logic. As a corollary, we show NP-membership of
a temporal logic equipped with a limited version of Until,
Since and Next-time temporal operators, whereas temporal
logic with either Until or Next-time is PSPACE-hard.

We finally investigate the linear time model checking
problem for hybrid logics and give some examples of prop-
erties in which the use of nominals is crucial.

2 Hybrid logics

In this section we introduce hybrid logics and give some
examples of hybrid formulas.

Definition 2.1 Let PROP = {p1, ps, ...} be a count-
able set of propositional variables, NOM = {iy,i2,...}
a countable set of nominals, and WVAR = {z1,29,...}
a countable set of state variables. We assume that PROP,
NOM and WVAR are pairwise disjoint. We call WSYM =
NOM U WVAR the set of state symbols, ALET = PROP U
NOM the set of atomic letters, and ATOM = PROP U
NOM UWVAR the set of atoms. The well-formed formulas
of the hybrid language HL(Q, |, 3, F, P, U,S) (over the
signature (PROP, NOM, WVAR)) are given by the rule

pi= L | al (p—¢)
| Fo | Po | (pU¢) | (¥S¢)
| Qo | (lzj0) | (Fzj.9)
where a € ATOM, z; € WVAR and s € WSYM.

In formulas, we will omit parenthesis whenever appropri-
ate. Furthermore, we assume all boolean operators are de-
fined as usual. U and S are the Until and Since operators,
respectively. As usual, Gy is short for =F—¢ and H for
—P—p. Moreover, we define Ep as (Py V ¢ V Fy) and
A as “E—¢p. On linear frames, E and A are the existential
and universal modality, respectively.

The notions of free and bound state variable (with re-
spect to the binding operator |) are obvious generalizations
from first-order logic. Other syntactic notions (such as sub-
stitution, and of a state symbol ¢ being substitutable for x in
) are defined like the corresponding notions in first-order
logic. We write [t/ s] for the formula obtained by replacing
all free instances of the state symbol ¢ by the state symbol
s. A sentence is a formula without free state variables. A
formula is pure if it contains no propositional variables, and
nominal-free if it contains no nominals.

Definition 2.2 A hybrid model M for the full hybrid lan-
guage is a triple M = (M, R, V') with M is a non-empty
set, R a binary relation on M, and V : ALET — Pow(M)
such that for all nominals i € NOM, V (i) is a singleton.
(We use calligraphic letters M for models, italic roman M
for their domains.) We call the elements of M states, R the
accessibility relation and V' the valuation.

An assignment g for M is a mapping g : WVAR — M.
Given an assignment g, we define g, (an x-variant of g) by
gm(x) = mand g, (y) = g(y) for x # y.

Let M = (M,R,V) be a model, m € M, and g an
assignment. For any atom a, let [V, g](a) = {g(a)} if a
is a state variable, and V (a) otherwise. The satisfaction
relation is defined as follows (we omit the clauses for the
Booleans and for the past temporal operators):

M,g,ml-a iff mel[V,gl(a) (a € ATOM)
M,gml-Fo  iff Im' (Rmm' AM,g,m' I+ )
M, g,ml-ypUp iff Im' (Rmm' AM,g,m'IF ¢

ANYm” (Rmm” A Rm"'m’ — M, g,m" I ¢))

M,g,ml-Qgp iff M,g,m |-, where

[V, g](s) = {m'} (s € WSYM)
Mg ml-lzp iff M,gt,ml-oe
M,g,mlk 3z iff Im' (M, g%, ml-p)

A formula ¢ is satisfiable if there is a model M, an assign-
ment g on M, and a state m € M such that M, g, m |- .
A formula o is valid if — is not satisfiable.

The at operator @, shifts evaluation to the state named by
s. The name binder |x. (“call it x, and ...”) binds the state
variable x to the current state, and the existential binder 3x.
(“some state is called x, and ...””) binds the state variable x to
some state in the model. Both | and 3 do not shift evaluation
away from the current state.
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Figure 1. The hybrid hierarchy on general frames (left side) and on linear frames (right side)

A model M = (M,R,V) is called linear if the re-
lation R is irreflexive (i.e., Vz(—Rxz)), transitive (i.e.,
Vayz(Rxy A Ryz — Rxz)) and trichotomous (i.e.,
Vay(Rxy V x =y V Ryzx)).

The language of hybrid logic has a great expressive
power, especially compared to its frugal syntax and perspic-
uous semantics. We give some examples of its expressive
power. On linear models, A |x.F-PPxz defines discrete-
ness, which cannot be defined in the temporal logic of future
F and past P.

Kamp’s temporal operator Until can be defined in terms
of {@, |, F} as follows:

aUp = |2.F|y.Q,(F(y A B) A G(Fy — a)).

An alternative definition using past P instead of @ is the
following:

aUB = |z.F(8 AN HPz — «)).

Similar definitions can be given for the temporal operator
Since.

The dual of the Until is called Release and denoted by
R: aRfS = =(—-aU—pf). It expresses the fact that 5 must
hold up to and including the first future state where o holds,
or indefinitely if there is no such state. The dual of Since
is called Trigger and denoted by T: aTg = —(—aS—[).
Both the Release and Trigger operators can be concisely
expressed in terms of { |, F, P}. For instance,

aRf = 2.G(B V PPz A «)).

Finally, Stavi’s extended Until and Since operators can
also be expressed in hybrid logic. For instance, Stavi’s U’
is captured as follows:

U8 = |zFHPz — a)A
—aR(a A aUT) A
lz.F(—a A BA

H(Pxz A P(Pz A —a) — ().

This operator cannot be expressed in linear temporal logic
with U and S (see [11]).

3 Expressivity and complexity on linear
frames

In this section we investigate the expressive power of hy-
brid logics on linear structures. Moreover, we study the
computational complexity of the satisfiability and model
checking problems for hybrid logics on linear frames.

3.1 Expressivity

Figure 1 summarizes how the expressive powers of the
various hybrid languages are related, both on linear (right
side) and general structures (left side). To increase readabil-
ity, we omit the HL prefix and write, e.g., 3,@,F instead of
HL(3,@,F). Arrows point from less expressive to more
expressive languages. We only prove the following expres-
sivity result:

Theorem 3.1 The languages HL(|,F,P), HL(3,Q, F),
and HL(3,@, P) are all as expressive as monadic first-
order logic over linear structures.

Proof. We proceed as follows. We first show that
HL(|,F,P), HL(3,Q,F), and HL(3, @, P) have all the
same expressive power. Then, we show that HL(|, F, P) is
as expressive as first-order logic.



Recall that on linear frames, E acts as the existential
modality, that is, E¢ is true at m iff there exists some world
m/ in the model such that ¢ is true at m’.

We prove the following embedding loop:
HL(|,F,P) = HL(3,QF) = HLFQP) =
HL(|,F,P). We show HL(|,F,P) = HL(3,Q,F).

We encode the past temporal operator P as follows:
Py = Jz(z A Jy.@,(Fz A ¢)). We encode the hy-
brid binder | as follows: |z.¢o = Jz.(z A ¢). We show
HL(3,Q,F) = HL(3, @, P). We encode the future tempo-
ral operator F as follows: Fo = Jx(z A 3y.Q,(Pz A ¢)).
We finally show HL(3,@, P) = HL(], F,P). We encode
the hybrid binder 3 as follows: 3z.¢ = |y.E|z.Q, ¢, and
we remove the @ operator as follows: @;0 = E(i A ¢).

We now show that HL(],F,P) is as expressive as
monadic first-order logic. This completes the proof of the
theorem. To be more precise, the first-order language un-
der consideration contains equality, a binary predicate R,
a unary predicate P; for each p; € PROP, and whose
constants are the elements of NOM. We first show that
HL(|,F,P) is a fragment of this first-order logic. To see
this, recall that the standard translation is an embedding of
modal logic into monadic first-order logic [6]; it can eas-
ily be extended to hybrid logics. Clearly, a hybrid model
can be regarded as a first-order model for this language and
vice versa. The translation ST from the hybrid language
HL(3, |, @, F,P) into first-order correspondence logic is
defined by mutual recursion between two functions ST,
and ST, (we only give the clauses for ST';; the ones for
ST, are completely analogous; the Boolean cases are left
out):

STI(pJ) = Pj(&?), YRS PROP
STz(ZJ) = (l‘ = ij), ij € NOM
STy (xj) = (z=u;), r; € WVAR
ST, (Fy) = Jdy(Rxy A STy(y))
ST.(Pyp) = 3Jy(Ryz A STy(p))
ST.(Qp) = (ST.(e)la/1
STe(lzj.p) = Fwj(v=1x; N STo(p))
ST,(3z;.p) = Fz;.8T4(p)

Finally we encode our first-order logic into HL(|, F, P)
as follows. Recall that Ey is defined as (Py V ¢ V Fop).

Te=y) = E(zAy)

T(Rzy) = E(z A Fy)

T(P(z)) = E(zAp)

Ta—p) = 7(a) = 7(8)

7(L1) = L

7(z.0) = |y.Elz.E(y A 7(a))

_|

The above result is more general: it holds on any class of
frames such that the existential modality E can be defined

in HL(], F, P). An interesting example is the class of tran-
sitive trees. On transitive trees, E¢ = (p V Py V PFyp).
However, the above result does not hold on the class of any
frames: on general frames, HL(|, @, F, P) is as expressive
as the bounded fragment of first-order logic, a strict sub-
fragment of first-order logic [3].

3.2 Complexity of the satisfiability problem

In [2], the authors notice that on linear frames, we can
get rid of nominals and @ as soon as we have at disposal
(strict) past and future temporal operators. Indeed, we can
simulate nominals by singleton propositions, that is propo-
sitions true at exactly one state: 7 is a singleton proposition
ifft E(¢ A H-i A G~i) holds. Moreover, @;p can be ex-
pressed as E(i A @) or A(i — ). It follows that there is
a translation of hybrid formulas in HL(@Q, F, P) into tem-
poral formulas in TL(F, P) preserving equi-satisfiability.
Moreover, they show that there is a polynomial translation
with the same features. Hence, the satisfiability problem
for HL(@Q, F, P) can be reduced to the same problem for
TL(F, P), which is known to be decidable in nondetermin-
istic polynomial time [14]. NP-hardness for HL(Q, F, P)
holds since it extends Propositional Calculus.

Theorem 3.2 The satisfiability problem for HL(Q, F, P)
on linear frames is NP-complete.

The same complexity bounds for HL(@, F,P) hold
over (N, <), the linear frame of the natural numbers with
the usual ordering relation. The proof is the same and
TL(F, P) over natural numbers is NP-complete, a recent
result proved in [13]. However, HL(Q, F, P) on general
structures has higher complexity: its satisfiability problem
is known to be EXPTIME-complete [1]. In the proof, only
one nominal is used.

If we replace future F and past P temporal operators by
Until U and Since S, respectively, the satisfiability problem
on natural numbers is harder.

Theorem 3.3 The satisfiability problem for HL(Q, U, S)
on natural numbers is PSPACE-complete.

Proof. PSPACE-hardness holds since TL(U) on natural
numbers is already PSPACE-hard [16]. Moreover, nomi-
nals and @ operator may be removed from HL(@, U, S),
as shown above, by taking advantage of past P and fu-
ture F' operators, which can be defined in terms of Until
U and Since S, respectively. It follows that the linear time
satisfiability problem for HL(@, U, S) can be embedded
into the same problem for TL(U,S), which is decidable
in PSPACE [16]. -

We do not know whether the same result works on linear
frames. In [15] the author proves that, on linear structures,



the temporal logic of Until is PSPACE-complete, and he
conjectures the same result for the temporal logic with Until
and Since. Hence, on linear frames, HL(@, U, S) is at least
PSPACE-hard. The situation on general structures is the
following: both HL(@, U) and HL(@, U, S) are complete
for EXPTIME, and the proof uses only one nominal [1]

We now consider the addition of the hybrid binder |. We
already showed that, on linear frames, HL(|, @, F, P) is
as expressive as first-order logic in the correspondence lan-
guage with free monadic predicates. Universal (and exis-
tential) monadic second order logic over linear frames is de-
cidable [12]. Furthermore, full monadic second-order logic
over natural numbers is nonelementarily decidable [8]. The
following theorem follows.

Theorem 3.4 The satisfiability problem for
HL(|,Q,F,P) on linear frames and on natural num-
bers is nonelementarily decidable.

The situation on the class of any frame is even worse: al-
ready HL (|, F) is undecidable, even without nominals and
propositions [3]. The latter neatly contrasts with the situa-
tion on linear frames: HL(|, F) is decidable in NP.

Theorem 3.5 The satisfiability problem for HL(|,F) on
linear structures is NP-complete.

Proof. We can getrid of | from HL(|, F') as follows: given
a formula |x.p, any instance of x appearing in ¢ in the
scope of an F operator evaluates to false, since a linear
structure has no loop and there are no past or @ operators
that can jump back to it. It hence may be replaced by L,
that is, by —T, without changing the meaning of the for-
mula. Moreover, any instance of x appearing in ¢ not in the
scope of an F operator evaluates to true, since it refers to the
current point of evaluation. It may be replaced by T without
changing the meaning of the formula. Finally the | binder
may be removed. The resulting is an equivalent formula
in HL(F), which is decidable in NP by Theorem 3.2. NP-
hardness holds since HL(|, F') extends Propositional Cal-
culus. —

It turns out that, on linear structures, | is a kind of bully
operator: it shows its strength only in presence of @ and P.
The reason is clear: since linear structures are acyclic, the
only way to access a variable stored by | is by using either
the @ or the P operator. Hence, the power of | is tamed
without them.

Our aim in the following is to isolate existential
fragments of HL(3,Q,F,P) and HL(|,Q,F,P) with
nice computational behaviour. The existential hy-
brid logic EHL(3,Q,F,G,P,H) is obtained from
HL(3,@,F,G,P,H) by (1) allowing formulas in nega-
tion normal form only (which means that negation in ap-
plied over atomic symbols only) (2) disallowing 3 in the

scope of universal temporal operators G and H. The lan-
guage EHL(|, @, F, G, P, H) is defined similarly. Notice
that existential hybrid logics are not closed under negation
and hence the satisfiability and validity problems for them
are not equivalent. We are able to prove the following:

Theorem 3.6 The satisfiability problem  for  both
EHL(3,@,F,G,P,.H) and EHL(],QF, G,P H)
on linear frames is NP-complete.

Proof. The lower bound is clear. We prove the up-
per bound for EHL(3,@,F,G,P,H). Since | can
be defined in terms of dJ, the upper bound holds for
EHL(|,Q,F, G, P, H) too.

We polynomially reduce the satisfiability problem
for EHL(3,Q,F,G,P,H) to the same problem for
HL(Q,F,G,P,H), which is in NP by virtue of Theo-
rem 3.2. The idea is the following: let ¢ be a formula in
HL(3,@,F,G,P,H). Since existential binders in ¢ are
not in the scope of universal temporal operators G and H,
we can move them in front of the formula and hence rewrite
@ in prenex normal form. Now it is clear that any world
variable z in ¢ can be replaced by a new nominal ¢,, and the
corresponding existential quantifier may be dropped. The
resulting formula is in HL(Q, F, G, P, H) and it is satisfi-
able if and only the original formula is satisfiable.

Let’'s work out the details. Let ¢ be a formula in
HL(3,@,F,G,P,H) and let z1,...,z, be the existen-
tially quantified variables in . We assume that z1, ..., x,
are pairwise different and that free variables of ¢ are not in
{z1,...,2,}. We can move the existential binders of ¢ in
front of the formula by applying the following equivalences,
which can be proved by using the standard translation of hy-
brid logic into first order logic.

a ATz = Fz.(a AP
aV Iz = Fz(aV P
Fdz.a = dz.Fa
Pdz.« = dz.Pa
Q,3z.a = Jr.Qya

Hence ¢ is equivalent to a formula ¢; of the form
Jdz;....3x,.a. For each x;, let i,; be a nominal not oc-
curring in . Let o be the formula obtained from ¢; by
replacing every occurrence of x; by i;,; and by dropping all
the existential binders in front of the formula. Note that ¢4
is a formula in HL(Q, F, G, P, H). We have the following:

Claim 1 ¢; is satisfiable if and only if (9 is satisfiable.

Since satisfiability for formulas in HL(Q, F, G, P, H)
can be checked in nondeterministic polynomial time (The-
orem 3.2), this claim completes the proof.

We finally prove the claim. For the left to right direc-
tion. Let M = (M, R, V) be a hybrid model, g be an as-
signment, and m be a world in M such that M, g,m I+



1. Since ¢ has the form 3z;....Jz,.q, there is a tu-
ple m1,...,m, € M" such that M, g¢',m |- «, where
g = glxi/ma,...,xzn/my). It follows that M’ g, m |-
w2, where M’ = (M, R,V’), and V' differs from V
only on the evaluation of the new nominals ., for which
V(i) = {m,).

For the right to left direction. Let M = (M, R, V') be
a hybrid model, g be an assignment, and m be a world
in M such that M,g,m I 2. Hence there is a tu-
ple my,...,m, € M", with V(i,;) = {m;}, such that
M, g',m |- a, where ¢’ = glz1/ma, ..., x,/my). It fol-
lows that M, g, m I+ Jz;....3x,.q, thatis, M, g,m IF
P1. —|

A nice corollary of Theorem 3.6 is the following. We
know that temporal logic with future and past operators ad-
mits an NP-complete satisfiability problem, and we remain
in NP if we add nominals and the @ operator. However, as
soon as we add either Until or Since temporal operators, we
jump up into PSPACE. Nevertheless, if we manage these
operators with care, we don’t leave NP.

Corollary 3.7 Let LiteLTL be
HL(Q,F,G,P,H, U,S) such that

the fragment of

1. —is applied over atomic symbols only;
2. U and S are not allowed in the scope of G and H;

3. formulas & UG and oS are such that U and S are not
allowed in c.

Then, the satisfiability problem for LiteLTL on linear
frames is NP-complete.

Proof. Recall the U and S can be defined in terms of
{],Q,F, P} as follows:

aUpg =
aSp =

|2.F|y.@,(F(y A §) A G(Fy — a))
|2.Ply.@,(P(y A B) A H(Py — a))

Hence in aUf, only « is in the scope of an universal
temporal operator. It follows that LiteLTL is a fragment
of EHL(], @, F, G, P, H), whose satisfiability problem is
in NP by Theorem 3.6. n

In the above fragment you can, for instance, write prop-
erties like “p will hold (held) exactly n times in the fu-
ture (past)”’, which are beyond the expressive power of
HL(Q, F, P). For instance, the LiteLTL-formula that fol-
lows claims that p will hold exactly 2 times in the future:

—pU(p A —pU(p A G—p))

A limited form of Next-time and Previous-time operator is
also allowed in LiteLTL (these operators make sense only

on discrete linear frames, like natural numbers). We define
the Next-time operator X¢ as L Uy and the Previous-time
operator Yy as LS. We are allowed to nest X, Y and
all the other temporal operators in the scope of X and Y.
Moreover, X and Y are allowed in the scope of existential
temporal operators F' and P and in the scope of temporal
operators U and S as soon as they appear only in the exis-
tential part of them (that is, in 3, whenever the formula is
aUpB or aSB). All the rest is prohibited. For example, we
can write the property “p will hold until ¢ will hold contin-
uously for 3 times” as

pU(g A Xg N XXgq).

Release and Trigger operators, as well as Stavi’s Until and
Since, are also allowed in LiteLTIL, as soon as we man-
age them with care. These operators can be nested only
in the scope of existential unary temporal operators and in
the scope of the existential part of Kamp’s Since and Until.
Moreover, any binary temporal operator is not allowed in
the scope of them.

It is worth remarking that, on linear frames, the tempo-
ral logic with Until is PSPACE-hard [15]. The same re-
sult holds on natural numbers [16]. Moreover, on natu-
ral numbers, the temporal logic with future and Next-time
is PSPACE-hard too [16]. A closer analysis of the latter
two results shows that both the fragments of TL(F, X) and
TL(U) in which the temporal operators are not nested are in
NP [10]. However, already TL(U)-formulas with temporal
height 2 are enough to encode QBF, and hence the resulting
fragment is PSPACE-hard. Similarly, a bounded temporal
nesting in TL(F, X) is enough to encode QBF [10]. It fol-
lows that the linear temporal logic LiteLTL lies in NP but
“very close” to PSPACE.

The reader should wonder about the practical usefulness
of decreasing a complexity bound from PSPACE to NP.
Computationally, NP is still intractable. However, prob-
lems in NP may be polynomially reduced to SAT, the popu-
lar NP-complete problem, for which many heuristic solvers
have been implemented. Problems in PSPACE, on the con-
trary, cannot be reduced to SAT, unless NP = PSPACE.
Techniques for embedding the model checking (and satisfia-
bility) problem for linear time logics into SAT are described
and implemented in [5, 9]. These techniques have been re-
cently extended to cope with past temporal operators [4].

3.3 The linear time model checking problem

Model checking is a generic term for a class of algo-
rithms which determine whether a given formula holds in a
given model or class of models. Often a Kripke structure
denotes some computational system, and paths through the
system denote computations. Hence, in linear time model



checking formulas are evaluated not on the Kripke structure
itself, but on the set of paths through it.

The hybrid Kripke structure M = (M, R, V) is total
if every state in M has at least one R-successor. In this
section we will consider only total and finite Kripke struc-
tures. A path from sy in M is an infinite state sequence
T = Sg, S1, ... such that Rs;s;;; for every ¢ > 0. We de-
note by m; the i-th state s; of m. Any path in M can be
naturally associated to a linear structure M, = (N, <, V")
such that N is the set of natural numbers, < is the usual or-
dering relation on the natural numbers and, for every ¢ > 0
and p € ALET, i € V'(p) iff m; € V(p). Notice that M is
not necessarily a hybrid structure, since, because of the un-
folding process, the same nominal may label different states
of M. The meaning of formulas of the form @;a, where
1 1s a nominal, is hence ambiguous. There are several pos-
sibilities to deal with this situation. Our choice here is to
consider nominals as additional propositions which must be
true at exactly one state of the branching structure M but
may be true at several states of the linear structure M, ob-
tained by unfolding the path m of M. The meaning of the
formula @, is then “a holds at some state labelled with 7”.
That is, M, m IF @« iff M., mIFE({ A «).

We are now ready to define the linear time model check-
ing problem for hybrid logics. We distinguish between the
existential and the universal version of the model checking
problem. The existential linear time model checking prob-
lem for hybrid logics is to determine whether a given hybrid
formula is true in some path of the model: M, m f=3 ¢ iff
M, 0 I ¢ for some path 7 starting at m in M. Moreover,
M 3 ¢ iff M, m =3 ¢ for some m € M. The univer-
sal linear time model checking problem for hybrid logics is
to determine whether a given hybrid formula is true in ev-
ery path of the model: M,m v ¢ iff M,,0 I- ¢ for
every path 7 starting at m in M. Moreover, M =y o iff
M,m v ¢ for every m € M. Notice that the universal
model checking problem is the dual of the existential one:
M, m v ¢ iff it is not the case that M, m 3 —¢.

The existential (respectively, universal) linear time
model checking problem for TL(F,P) has been re-
cently proved to be NP-complete (respectively, coNP-
complete) [13]. The following follows:

Theorem 3.8 The existential (respectively, universal) lin-
ear time model checking problem for HL(Q, F, P) is NP-
complete (respectively, coNP-complete).

Moreover, it is well-known that both the existential
and the universal linear time model checking problems for
TL(F,P,U,S) are PSPACE-complete [16]. Hence, we
have the following:

Theorem 3.9 Both the existential and universal linear
time model checking problem for HL(Q,F P U S) is
PSPACE-complete.

We conclude this section by giving some model checking
examples involving nominals. Let the nominal Start desig-
nate the unique initial state in a system modelled by M.
Then the check

M, Start =y FStart

is true iff “each computation of the system starting at the
initial state will eventually return to the initial state”. This
implies that the initial state will be visited infinitely often in
every computation of the system. Since Start is a nominal,
it is true at exactly one state in M (the initial state), but
it may be true at several states in the computation paths in
M. If Start were a proposition, instead of a nominal, then
the above check would be true iff “each computation of the
system starting at a state labelled with Srart will eventually
reach a (possibly different) state labelled with Start”. The
check
M, Start Ey G-Start

is true iff “each computation of the system starting at the
initial state will never return to the initial state”. Finally the
check

M, Start =3 (=Start)U(Start A G-Start)

is true iff “there is a computation of the system starting at
the initial state that will return to the initial state exactly
once”. These examples show that it can can be of advantage
to use nominals in specifications.

4 Conclusion

In this paper, we have analyzed the expressivity and
complexity of several variants of hybrid logic on linear
structures. There are a number of open questions for fur-
ther work. Firstly, there is the question of second order ex-
tensions of these languages, e.g., by fixpoint operators or
propositional quantifiers. Secondly, it would be interesting
to find a generic format for hybrid specifications, similar as
it is TLA (Lamport’s temporal logic of actions) for linear
temporal logic. Thirdly, we want to apply hybrid logic in
the specification of an industrial application (an electronic
funds transfer / point of sale banking system). A challenge
is to find a way to combine the specification of various spa-
tial and temporal properties such that the resulting formulas
are still tractable. An interesting project in this context is to
derive an intuitive high-level specification language which
can be mapped into the hybrid framework and allows to for-
mulate correctness properties without detailled knowledge
of the underlying logic.
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