
Model Checking for Combined Logics

Massimo Franceschet1 Angelo Montanari1 Maarten de Rijke2

1 Dip. di Matematica e Informatica, Università di Udine, Viadelle Scienze 206
33100 Udine, Italy. E-mail:{francesc|montana}@dimi.uniud.it

2 ILLC, University of Amsterdam, Pl. Muidergracht 24
1018 TV Amsterdam, The Netherlands. E-mail: mdr@wins.uva.nl

Abstract

We consider combined model checking procedures for the three ways of combining logics: tem-
poralizations, independent combinations, and the join. Wepresent results on computational com-
plexity and report on experiments with implementations. Wealso discuss the relevance to time
granular logics.

Key words: temporal logic, model checking, combining logics, time granularity.

1 Introduction

Concerns about modularity and the wish to join together different kinds of information have inspired
various combinations of logics. As any interesting real world system is a complex entity, decompos-
ing its descriptive and inferential requirements for design, verification, or maintenance purposes into
simpler reasoning tasks is often the only plausible way forward [9]. Assuming that we have methods
and tools available to tackle restricted tasks, how do we combine them to solve complex tasks. How
do we combine them in such a way that features of the components are inherited by the combination?
This question is known as thetransfer problem[2]. Whether properties transfer from the components
to the combination depends on the amount of interaction between the component logics; even in the
presence of very weak forms of interaction (such as shared symbols), transfer may fail [11]. In the
absence of interaction between the component logics, we often have transfer; such positive results are
usually based on adivide and conquerstrategy: split problems into sub-problems and delegate these
to the components [4, 12].

From acomputationalpoint of view, the natural question in the setting of combining logics is:
does it work? Can were-usetools and procedures in a modular fashion? So far, most of thework
towards answering this question has gone into putting together deductive engines. While there are
no uniform solutions, there are many successful instances of combined proof procedures, especially
for modal and modal-like logics [1]; these are often based oncalculi satisfying special criteria or on
translating the component logics into a background logic.

In this paper we study the combination of model checking procedures. In addition to the issues
mentioned above, the direct motivation for this work has been the need to develop model checking
procedures for granular logics [13, 14]. Such logics are able to model and reason about time at
different grain levels, for instance, at the level of seconds and of micro-seconds. Instead of developing
model checking procedures for granular logics from scratch, we want to synthesize them from existing
(non-granular) ones. In Section 7 we will see that this is indeed possible. More generally, in contrast
to combining deductive engines, combinations of model checking procedures are well behaved, even

1

in the presence of interaction; indeed, this supports the general believe that modularity is easier to
achieve in model checking than in theorem-proving approaches [10].

We start by recalling basic definitions in Section 2 and presenting three modes of combining
logics in Section 3: temporalization, independent combinations, and the join. In Section 4, we con-
sider combined model checking procedures for these three combinations. Section 5 contains results
on computational complexity, and Section 6 reports on our experiments with implementations. In
Section 7 we sketch the application of our ideas to granular logics, and we conclude in Section 8.

2 Temporal Logics

Let L be a logic system. We useLL andKL to denote the language and the set of models ofL,
respectively. The language of a temporal logicL is based on a setP of proposition letters and extends
that of propositional logic with a set oftemporal operators. We writeOP(L) to denote the set of
temporal operators ofLL.

Definition 2.1 (Syntax) The languageLSUL of Since and Until Logic(SUL) is the smallest setX of
formulas generated by the following rules: any propositionletterp ∈ P is inX; if φ, ψ are inX, then
so areφ ∧ ψ and¬φ; and ifφ, ψ are inX, then so areφSψ andφUψ.

The languageLCTL∗ of thecomputation tree logicCTL∗ has state formulas and path formulas.
State formulasare obtained as follows: any proposition letterp ∈ P is a state formula; ifφ, ψ are state
formulas, then so areφ ∧ ψ and¬φ; if φ is a path formula, thenEφ andAφ are state formulas.Path
formulasare obtained as follows: every state formula is a path formula; if φ,ψ are path formulas, then
so areφ ∧ ψ and¬φ; if φ, ψ are path formulas, then so isφUψ.

The languageLCTL of the computation tree logicCTL is the set ofstate formulasgenerated by
the rules for state formulas given before plus the followingrule for path formulas: ifφ, ψ are state
formulas, thenφUψ is a path formula.

Definition 2.2 (Semantics)A frame for a temporal logic T is a pair(W,R), whereW is a set of
worlds, or states, andR is a set ofaccessibility relationson W . We restrict ourselves tobinary
relations onW . A modelfor T is a triple(W,R, V), where(W,R) is a frame for T andV : W → 2P

is avaluation functionmapping states into sets of proposition letters.
A frame forSUL, CTL, or CTL∗ is a pairF = (W, {R}), or simply(W,R), whereW is a set of

states andR ⊆ W ×W is a binary relation onW . A pathπ in F is an infinite sequence of statess0,
s1, . . . such that, for everyi ≥ 0, R(si, si+1); we writeπ(j) for the element in thej-th position on
the pathπ.

Truth of aSUL-formulaφ in a modelM = (W,R, V) with respect to a states ∈ W is defined
as usual: forp ∈ P, M, s |=SUL p if p ∈ V (s), andM, s |=SUL φUψ iff M, t |=SUL ψ for somet
such thatRst, while M, r |=SUL φ for everyr such thatRsr andRrt; similarly, M, s |=SUL φSψ

iff M, t |=SUL ψ for somet such thatRts, whileM, r |=SUL φ for everyr such thatRtr andRrs.
As toCTL∗-formulas, state formulasψ are evaluated at a states (notation:M, s |=CTL∗ ψ); path

formulasφ are evaluated with respect to a pathπ = s0, s1, . . . and a positionj ∈ N in π (notation:
M, π, j |=CTL∗ φ). For proposition lettersp ∈ P, we putM, s |=CTL∗ p if p ∈ V (s). For any path
formulaφ, we have thatM, s |=CTL∗ Eφ if there is a pathπ starting ats such thatM, π, 0 |=CTL∗ φ;
andM, s |=CTL∗ Aφ if for every pathπ starting ats we haveM, π, 0 |=CTL∗ φ. For a state formula
ψ, we putM, π, j |=CTL∗ ψ if M, π(j) |=CTL∗ ψ. Finally, for a pair of path formulasφ andψ, we
have thatM, π, j |=CTL∗ φUψ if M, π, i |=CTL∗ ψ for somei > j andM, π, k |=CTL∗ φ for every
j < k < i (j ≤ k < i if we adopted a non-strict version ofU).

2

The truth definition forCTL-formulas (notation:|=CTL) can be obtained by restricting|=CTL∗ to
CTL-formulas.

3 Combining Logics

How do we combine logics? While many ways of combining logicshave been explored, we restrict
ourselves to only three of them: temporalization, independent combination, and the join. These three
are certainly among the most popular and the ones that have been studied most extensively [4, 12, 5, 6].

§3.1 Temporalization. This is the simplest of the three modes of combining logics that we will
consider; here, the two component languages are only allowed to interact in a very restricted way.
More specifically, letT be a temporal logic andL an arbitrary logic. For simplicity we constrainL to
be an extension of classical logic. We partition the set ofL-formulas intoboolean combinationsBCL

andmonolithic formulasMLL: α belongs toBCL if its outermost operator is a boolean connective;
otherwise it belongs toMLL. We assume thatOP(T) ∩OP(L) = ∅. Thecombined languageLT(L)

of the temporalizationT(L) of L by means ofT over the set of proposition lettersP is obtained by
replacing the atomic formation rule ofLT (i.e., every proposition letter is a formula) by the following
rule: every monolithic formulaα ∈ LL is anLT(L)-formula.

A modelfor T(L) is a triple (W,R, g), where(W,R) is a frame forT andg a total function
mapping states inW to models inKL. Given a modelM = (W,R, g) and a statew ∈ W , the
semantics of the combined logicT(L) is obtained by replacing the usual semantic clause for atomic
formulas ofLT by the following clause: for allα ∈MLL, M, w |=T(L) α if and only if g(w) |=L α.

§3.2 Independent Combination. The independent combination of two logics puts together allthe
expressive power of the two component logics in an unrestricted way; our definitions are straightfor-
ward extensions of definitions found in [4, 12, 5]. LetT1 andT2 be two temporal logics defined over
the same set of proposition lettersP, with OP(T1) ∩ OP(T2) = ∅. The fully combined language
LT1⊕T2

of the independent combinationT1 ⊕T2 overP is obtained by taking all connectives ofT1

andT2, and the union of their formation rules.
To define the semantics ofT1 ⊕ T2, we need the following notion. Given a binary relationR,

we writeR∗ for its transitive closure, andR−1 for its converse. Let(W,R) be a frame. Aconnected
component(W ′,R′) of (W,R) is a frame with (1)∅ 6= W ′ ⊆ W andR′ = {R|W ′ | R ∈ R};
and (2)(W ′,R′) is connected, i.e., for everyu andv in W ′, with u 6= v, we have(u, v) ∈ [

⋃

{(R ∪
R−1) | R ∈ R}]∗; and (3)(W ′,R′) is maximal, i.e., there is no connected component(W ′′,R′′) with
W ′ ⊂W ′′. Notice that anisolatedpoint is a connected component.

A modelfor the combined logicT1 ⊕T2 is a 4-tuple(W,R1,R2, V), where the connected com-
ponents of(W,R1, V) are inKT1

, the connected components of(W,R2, V) are frames underlying
models inKT2

, andW is the (not necessarily disjoint) union of the sets of statesthat constitute each
connected component. Finally,V : W → 2P is a valuation function. Thetruth definitionof the
combined logicT1 ⊕ T2 is obtained by taking the union of the semantic clauses forT1 andT2.

§3.3 The Join. Formulas in the language of the independent combination of two logics are evaluated
at a single node in a model. Thejoin introduces a separate dimension for each of the component
logics, and we are allowed to express relations between the two dimensions. For notational simplicity
we assume that our component logics are one-dimensional, i.e., evaluated at a single node only. Let
T1 andT2 be two temporal logics. Thejoin T1 ⊗ T2 of T1 andT2 is obtained as follows. The
languageLT1⊗T2

of the logic systemT1 ⊗T2 is the fully combined language ofT1 andT2.

3

Function MCT(L)

Input : aT(L)-modelM = (W,R, g) and a formulaψ ∈ LT(L)

computeMMLL(ψ) andabs(ψ)
for every α ∈ MMLL(ψ)

for every w ∈ W

if MCL(g(w), α) = True then
V (w) = V (w) ∪ {pα}

return MCT((W,R, V), abs(ψ))

Figure 4.1: Model checking for temporalized logics.

A model for T1 ⊗ T2 is a 5-tuple(W1,R1,W2,R2, V), where(W1,R1) is a T1-frame and
(W2,R2) is aT2-frame, andV : W1 ×W2 → 2P is a valuation mapping pairs of states to sets of
proposition letters. Truth of a formulaφ in a modelM = (W1,R1,W2,R2, V), at statess1 ∈ W1

and s2 ∈ W2, is defined as follows. Ifφ = p (p ∈ P), φ = (φ1 ∧ φ2), or φ = ¬φ1, then
M, s1, s2 |=T1⊗T2

φ is defined as usual. Ifφ = O(φ1, . . . , φn), with O ∈ OP(Ti), we define
M, s1, s2 |=T1⊗T2

φ by replacing every occurrence ofM, x in the definition ofM, si |=Ti
φ

(i ∈ {1, 2}) by M, x, s2 (if i = 1) orM, s1, x (if i = 2).
In our presentation of the join of logics, we have followed [6]; in [8] a slightly different but

equivalent construction is studied: theproductof modal logics.

4 Model Checking for Combined Logics

In this section we consider model checking procedures for each of the modes of combining logics
considered in Section 3.

§4.1 Temporalization. We first define the global model checking problem for the combined logic
T(L); then, we give a general algorithm that solves it. LetM = (W,R, g) be aT(L)-model. We say
thatM is finite if W andR are finite and, for everyw ∈ W , g(w) is finite. LetM = (W,R, g) be a
finiteT(L)-model,w ∈W a state, andψ a formula inLT(L). We focus on theglobal model checking
problemfor T(L): is there a statev ∈ W such thatM, v |=T(L) ψ? We use ‘model checker’ for a
program that solves the global model checking problem.

Letψ be aT(L)-formula andMMLL(ψ) the set ofmaximalmonolithic subformulas ofψ belong-
ing toLL; abs(ψ) denotes the formula obtained fromψ by replacing every formulaα ∈ MMLL(ψ)
by the proposition letterpα. Moreover, letMCT andMCL be model checkers forT andL, respec-
tively. Given an appropriate model checking instance, these programs returnTrue if the correspond-
ing instance is a “yes” instance,False otherwise. In Figure 4.1, we present the pseudo-code of a
model checkerMCT(L) for T(L) that exploitsMCT andMCL. Let M be a finite model forT(L) and
ψ ∈ LT(L). As a theorem, we have that ifMCL andMCT are terminating, sound and complete, then,
on inputM andψ, the functionMCT(L) terminates, returning eitherTrue or False . Moreover, if it
returnsTrue , then there existsw ∈W with M, w |=T(L) ψ; and if it returnsFalse , then, for every
w ∈W , M, w 6|=T(L) ψ.

§4.2 Independent Combination. We now give a general algorithm for solving the global model
checking problem forT1⊕T2. LetT1 andT2 be two temporal logics, and letM = (W,R1,R2, V)
be a model forT1 ⊕ T2. We say thatM is finite if W , R1, andR2 are finite, and, for everyw ∈W ,
V (w) is finite.

4

ProcedureMCT1⊕T2

Input : aT1 ⊕ T2-modelM = (W,R1,R2, V) and a formulaψ ∈ LT1⊕T2

computeC1
M, C2

M andMSub(ψ)
for every w ∈W let V (w) = V (w)
for every i = 1, . . . , |ψ|

for every φ ∈MSub(ψ) such that|φ| = i

caseon the form ofφ
φ = p, p ∈ P : skip
φ = φ1 ∧ φ2: for every w ∈ W

if (φ1 ∈ V (w) and φ2 ∈ V (w)) then
V (w) = V (w) ∪ {φ} ; V (w) = V (w) ∪ {pφ}

φ = ¬φ1: for every w ∈ W

if (not φ1 ∈ V (w)) then
V (w) = V (w) ∪ {φ} ; V (w) = V (w) ∪ {pφ}

φ = O(φ1, . . . , φc), O ∈ OP(LTi
), i ∈ {1, 2}

let Φ = {α ∈ Sub(φ) ∩MSub(ψ) | 1 < |α| < |φ|} andφ′ = φ

for every α ∈ Φ replace α in φ′ with pα

for every (U,S) ∈ Ci
M

for every u ∈ U let V ′(u) = V (u)
MCTi

((U,S, V ′), φ′)
for every u ∈ U

if φ′ ∈ V ′(u) then
V (u) = V (u) ∪ {φ} ; V (u) = V (u) ∪ {pφ}

Figure 4.2: Model checking independently combined logics.

The global model checking problem forT1 ⊕ T2 is defined just as forT(L). C1
M

andC2
M

are
the sets of connected components of(W,R1) and (W,R2), respectively. SinceM is a model for
T1 ⊕ T2, every connected component inC1

M
(C2

M
) is a model forT1 (T2). Sub(φ) is the set of

subformulas ofφ, andMSub(φ) ⊆ Sub(φ) is constructed as follows. LetS = Sub(φ) ∩ LT1⊕T2
.

Let i ∈ {1, 2}. For every formulaO(φ1, . . . , φc) in S, with O ∈ OP(LTi
) ∪ {∧,∨,¬}, if, for every

j = 1, . . . , c, φj is a proposition letter or its main operator is inOP(LTi
) ∪ {∧,∨,¬}, then delete

formulasφ1, . . . , φc from S; MSub(φ) is the setS at the end of this procedure. Note that ifφ ∈ LTi
,

thenMSub(φ) = {φ}.
Below, we view model checkers asproceduresthat receive a model(W,R, V) and a formulaψ as

input, and that extend the valuationV (which maps a state to a set of proposition letters) to a valuation
V ′ mapping states to sets ofsubformulasof ψ in the following way: for every subformulaφ of ψ
and every nodew, V ′(w) containsφ iff φ is true atw in (W,R, V). Let MCT1

andMCT2
be model

checkers forT1 andT2, respectively. In Figure 4.2, we present the pseudo-code ofa model checker
for T1 ⊕T2 that exploits the proceduresMCT1

andMCT2
. LetM = (W,R1,R2, V) be a finite model

for T1 ⊕ T2 andψ ∈ LT1⊕T2
. As a theorem, we have that ifMCT1

andMCT2
are terminating, sound,

and complete, then, on inputM andψ, the procedureMCT1⊕T2
terminates. Moreover, ifV ′ is the

(extended) valuation function returned byMCT1⊕T2
, then, for every subformulaφ of ψ and every node

w ∈W , φ ∈ V ′(w) iff M, w |=T1⊕T2
φ.

§4.3 The Join. In this section, we give a general algorithm that solves the global model checking
problem forT1 ⊗T2. LetT1 andT2 be temporal logics andM = (W1,R1,W2,R2, V) be a model
for T1 ⊗ T2. We say thatM is finite if W1, W2, R1 andR2 are finite, and, for every(w1, w2) ∈
W1 × W2, V ((w1, w2)) is finite. LetM = (W1,R1,W2,R2, V) be afinite T1 ⊗ T2-model and

5

ψ ∈ LT1⊗T2
. The global model checking problemfor T1 ⊗ T2 is to check whether there exist

w1 ∈W1 andw2 ∈W2 such thatM, w1, w2 |=T1⊗T2
ψ.

Because of space limitations we have to omit the pseudo-codefor a model checker forT1 ⊗ T2

that exploits model checkersMCT1
andMCT2

for the component logicsT1 andT2, respectively; its
code is similar to the code for the model checkerMCT1⊕T2

given in Figure 4.2. ForMCT1⊗T2
similar

termination, soundness and completeness results may be obtained as forMCT1⊕T2
.

5 Computational Complexity

We now turn to an analysis of the computational complexity ofthe model checkers proposed in the pre-
vious section. An instance for the model checking problem has two components: a model(W,R, V)
and a formulaψ. In our analysis, we will consider three main complexity parameters: the cardinality
n of W , the summ of the cardinalities of the relations inR, and the lengthk of ψ, i.e., the number of
operators and proposition letters inψ.

We will specify the complexity of the combined model checkerin terms of that of the component
model checkers. The complexity of the combined model checker is the sum of two factors: the
communication overhead and the model checking cost. Thecommunication overheadis the time
spent for “packing” the inputs for the components and for “unpacking” their outputs; this represents
the cost of the interaction between the components. Themodel checking costrepresents the cost of
performing the actual model checking of the component logics.

We first consider the case of temporalization. LetL be a logic andT a temporal logic. We write
CT(L)(·, ·, ·) (resp.CL(·, ·),CT(·, ·, ·)) for the complexity function of the model checkerMCT(L) (resp.
MCL, MCT). Note thatCL(·, ·) has two parameters (the size of the model and the length of theformula).

Theorem 5.1 Let(W,R, g) be a finiteT(L)-model andψ aT(L)-formula. The complexity ofMCT(L)

on inputM andψ is

O(n) · [k · CL(N,O(1)) + CL(N,O(k))] + CT(n,m,O(k)),

wheren = |W |,m =
∑

R∈R
|R|, k = |ψ| andN = maxw∈W |g(w)|.

The communication overhead is the cost of computing the setMMLL(ψ) and the formulaabs(ψ).
It equals toO(k) and is dominated by the model checking cost. For instance, ifT is CTL (hence
CT(n,m, k) = O((n +m) · k) [3]), andL is a logic such thatCL(n, k) = O(n · k), then the model
checking cost isO(k · (n ·N +m)), hence still linear in the size of the model and in the length of the
formula.

We now treat the independent combination of two temporal logicsT1 andT2.

Theorem 5.2 LetM = (W,R1,R2, V) be a finiteT1 ⊕ T2-model andψ a T1 ⊕ T2-formula. The
complexity ofMCT1⊕T2

on inputM andψ is:

O(m1 +m2 + n · k) +
∑2

i=1

(

O(k) · CTi
(O(n),O(mi),O(1)) +

O(n) · CTi
(O(1),O(1),O(k)) + O(1) · CTi

(O(n),O(mi),O(k))
)

,

wheren = |W |,mi =
∑

R∈Ri
|R|, for i = 1, 2, andk = |ψ|.

The communication overhead is the cost of computing the connected components, of preparing the
valuation as input to the model checking procedure, and of updating the valuations when the procedure
returns. It adds up toO(m1+m2+n·k), which is more significant than in the case of temporalization.

6

By way of example, if bothT1 andT2 are CTL, andm = m1 = m2, then the communication
overhead isO(m+ n · k), which is proportional to the model checking cost ofO((n +m) · k). So,
the overall cost of the model checker forCTL ⊕ CTL is O((n +m) · k), which is linear in the size
of the model and the length of the formula.

Finally, we briefly consider the join of temporal logicsT1 andT2. Due to space limitations we
have to omit further discussions of Theorem 5.3 below.

Theorem 5.3 LetM = (W1,R1,W2,R2, V) be a finiteT1 ⊗T2-model andψ a T1 ⊗T2-formula.
Let1 = 2 and2 = 1. The complexity ofMCT1⊗T2

on inputM andψ is:

O(n1 ·m2 + n2 ·m1 + n1 · n2 · k) +
∑2

i=1

(

O(ni) · [O(k) · CTi
(ni,mi,O(1)) + CTi

(ni,mi,O(k))]
)

,

whereni = |Wi|,mi =
∑

R∈Ri
|R|, for i = 1, 2, andk = |ψ|.

6 Experimental Results

We briefly report on experimental results based on implementations of (combined) model check-
ers forCTL(CTL) andCTL ⊕ CTL. The model checkers have been implemented in C, and are
available fromhttp://www.illc.uva.nl/˜mdr/ACLG/Software/ . Tests were carried on
a Sun ULTRA II (300MHz) with 1Gb RAM, under Solaris 5.2.5.

We tested our model checker forCTL(CTL) on ‘linear’ and ‘dense’ models. In our first test,
we usedA1G1A2(pU2q) as a fixed test formula, and we varied the modelM1 = (W,R, g), where
(W,R) is a complete binary tree of heighth1 and, for everyw ∈ W , g(w) is a labeled complete
binary tree of heighth2. The outcomes are summarized in Table 6.1(a), wheretms represents the
CPU time in milliseconds. In the second test, we checked the formulaA1G1E2(pU2q) and used
modelsM2 = (W,R, g), where(W,R) is a complete graph ofn1 nodes and, for everyw ∈ W ,
g(w) is a complete graph ofn2 nodes. The outcomes are given in Table 6.1(b). The times listed in (b)
are higher than those listed in (a) becauseM2 containsdensegraphs, whileM1 is based onlinear
graphs.

h1 h2 # nodes # edges tms

4 4 992 960 10
5 5 4032 3968 30
6 6 16256 16128 110
7 7 65280 65024 380
8 8 261632 261120 1490
9 9 10475521046528 5850

(a): trees andA1G1A2(pU2q)

n1 n2 # nodes # edges tms

32 32 1056 33792 20
64 64 4160 266240 110

128 128 16512 2113536 820
256 256 65792 16842752 6010
512 512 262656 134479872 47970

1024 1024 10496001074790400 386760

(b): complete graphs andA1G1E2(pU2q)

l # nodes # edges tms

32 1024 1984 90
64 4096 8024 340

128 16384 32512 1400
256 65396 130560 5760
512 262144 532264 23480

1024 10485762095104118980

(c): square grids

r tms

0 1870
3 2540
7 2970

11 3860
15 4720
19 5590

(d): fixed square grid

Table 6.1: Experiments with combined model checkers.

7

Next, we treated the independent combinationCTL⊕CTL. Our test models were ‘square grid’ mod-
els, where we varied either the size of the model or the ‘degree of interaction’ of the formula. In the
first test (Table 6.1(c)), we usedA1G1q ∧A2G2q as our test formula on a square grid(W,R1, R2, V)
of width l where rows are the connected components of(W,R1) and columns the connected compo-
nents of(W,R2). For the second test (Table 6.1(d)), we used a square grid of width 256. The test
formula wasf20 (wheref0 = q, andfk+1 = EiXifk, for k ≥ 0 andi ∈ {1, 2}), varying the number
r of alternations of blocks of the formEiXiEjXj (i 6= j) occurring inf20 from 0 (no interaction) to
19 (maximal interaction). Increasing the degree of interaction in the formula increased the required
computing time, thus confirming that the communication overhead is higher when checking formulas
with a high degree of interaction.

7 An Application to Time Granularity

In this section we describe the relevance of our results totemporal logics for time granularity. Tempo-
ral logics have been successfully used for modeling and analyzing the behavior of (real-time) reactive
systems. The behavior of reactive systems whose componentshave dynamic behaviors regulated
by very different time constants, e.g., days, hours, and seconds, is naturally modeled by a set of
differently-grained temporal domains. The addition of time granularity allows one to give concise
specifications of suchgranular reactive systems(GRSs). The theory of finitely-layered structures for
time granularity has been investigated in [14]. As forω-layered structures, the theories ofupward
(downward) unbounded layered structures, i.e.,ω-layered structures consisting of a finest (coarsest)
temporal domain together with an infinite number of ever coarser (ever finer) domains, respectively,
are non-elementarily decidable [13]. An expressively complete and elementarily decidable temporal
logic counterpart of the theory of downward unbounded layered structures has been proposed in [7].

The behavior of a reactive system with respect to layered structures can be described as a suitable
combinationof temporal evolutions (sequences of states over a given temporal domain) and tempo-
ral refinements (mapping of a state, within a given domain, into a finite sequence of states over a
finer temporal domain). As a consequence, both the model describing a system’s operational behav-
ior and the specification language can be obtained bycombiningsimpler models and languages, and
model checking procedures for combined logics can be used. For instance, a temporalized model
M = (W,R, g) can be used in a ‘horizontal’ and a ‘vertical’ way for model checking purposes.
Horizontally, it can be used to deal with finitely-layered, upward and downward unbounded GRSs.
Assume thatR is linear, that is, every node inW has at most oneR-successor. The ‘top’ frame(W,R)
models the granular relationships among the different components (wRv meaning that the component
associated withv is a one-step refinement of the one associated withw), while, forw ∈W , the model
g(w) captures the internal behavior of a single component.LT1(T2) is the specification language,
whereT1 (resp.T2) is a linear (resp.branching) temporal logic. ‘Horizontal’ properties, that is, for-
mulas that predicate over temporal evolutions, are easily expressible and verifiable in this framework,
but it is hard to capture ‘vertical’ properties which refer to temporal refinements. In contrast, within
the ‘vertical’ model checking framework one can deal with finitely-layered and downward unbounded
GRSs. The interpretation of the model is different then: the‘top’ frame (W,R) models the evolution
of the coarsest component of the system, while, forw ∈ W , the modelg(w) captures the behavior
of all temporal refinements ofw. Specifications can be written inLT1(T2), whereT1 andT2 are
branching temporal logics. As for expressiveness of the ‘vertical’ framework, the situation is dual to
the ‘horizontal’ case.

8

8 Conclusions

We have addressed the problem of model checking for combinedlogics and structures. In contrast
to combined deductive engines, combinations of model checking procedures are very well behaved,
even in the presence of strong forms of interaction. In particular, complexity upper bounds transfer
from the component framework to the combined one, and the introduced communication overhead is
in most cases non significant with respect to the actual modelchecking cost.

One of the motivations for this work has been the need to develop model checking frameworks
for granular reactive systems and logics. We have shown thatthis is indeed possible, using adivide
and conquerstrategy: we first isolated the orthogonal ‘simple’ entities in which a granular system
can be decomposed. Then, we applied well-known structures and logics to the component entities.
Although we only applied thisdivide and conquerapproach to granular reactive systems, because of
its generality, we feel that it can be useful to model and analyze many other complex systems, which,
inherently, are the composition of simpler entities.

Acknowledgment. Massimo Franceschet and Angelo Montanari were supported bythe MURST
Project ‘Saladin.’ Maarten de Rijke was supported by the Spinoza project ‘Logic in Action’ and
by a grant from the Netherlands Organization for Scientific Research (NWO), under project number
365-20-005.

References
[1] B. Bennett, C. Dixon, M. Fisher, E. Franconi, I. Horrocks, U. Hustadt, and M. de Rijke. Combining modal

logics. Submitted, 1999.
[2] P. Blackburn and M. de Rijke. Editors’ introduction.Notre Dame Journal of Formal Logic, 37:161–166,

1996.
[3] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using

temporal-logic specifications.ACM Trans. Programming Languages and Systems, 8(2):244–263, 1986.
[4] K. Fine and R. Schurz. Transfer theorems for multimodal logics. InProceedings Arthur Prior Memorial

Conference, 1989.
[5] M. Finger and D.M. Gabbay. Adding a temporal dimension toa logic system.Journal of Logic, Language

and Information, 1:203–233, 1992.
[6] M. Finger and D.M. Gabbay. Combining temporal logic systems.Notre Dame Journal of Formal Logic,

37:204–232, 1996.
[7] M. Franceschet and A. Montanari. Branching within time.Technical Report UD/03/2000/RR, DIMI,

Università di Udine, 2000.
[8] D. Gabbay and V. Shehtman. Products of modal logics, Part1. Logic Journal of the IGPL, 6:73–146,

1998.
[9] D.M. Gabbay and M. de Rijke, editors.Frontiers of Combining Systems 2, volume 7 ofStudies in Logic

and Computation. Research Studies Press/Wiley, 2000.
[10] J.Y. Halpern and M.Y. Vardi. Model checking vs. theoremproving: a manifesto. In:Proc. KR’91, pages

325–334, 1991.
[11] E. Hemaspaandra. Complexity transfer for modal logic.In Proc. LICS’94, pages 164–173, 1994.
[12] M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal logics.Journal of Symbolic

Logic, 56:1469–1485, 1991.
[13] A. Montanari, A. Peron, and A. Policriti. Decidable theories ofω-layered metric temporal structures.

Logic Journal of the IGPL, 7(1):79–102, 1999.
[14] A. Montanari and A. Policriti. Decidability results for metric and layered temporal logics.Notre Dame

Journal of Formal Logic, 37:260–282, 1996.

9

