Model Checking for Combined Logics

Massimo Franceschlet Angelo Montanarfi Maarten de Rijké

! Dip. di Matematica e Informatica, Universita di Udine, \dalle Scienze 206
33100 Udine, Italy. E-mail{francesgmontana@dimi.uniud.it
2 ILLC, University of Amsterdam, PI. Muidergracht 24
1018 TV Amsterdam, The Netherlands. E-mail: mdr@winsniva.

Abstract

We consider combined model checking procedures for the tiveg/s of combining logics: tem-
poralizations, independent combinations, and the joinpyésent results on computational com-
plexity and report on experiments with implementations. aM® discuss the relevance to time
granular logics.

Key words: temporal logic, model checking, combining logics, timergriarity.

1 Introduction

Concerns about modularity and the wish to join togetheediffit kinds of information have inspired
various combinations of logics. As any interesting realld/slystem is a complex entity, decompos-
ing its descriptive and inferential requirements for dasigerification, or maintenance purposes into
simpler reasoning tasks is often the only plausible way &wdg9]. Assuming that we have methods
and tools available to tackle restricted tasks, how do webdoenthem to solve complex tasks. How
do we combine them in such a way that features of the compsmaeatinherited by the combination?
This question is known as thensfer probleni2]. Whether properties transfer from the components
to the combination depends on the amount of interaction dtvthe component logics; even in the
presence of very weak forms of interaction (such as shamibslg), transfer may fail [11]. In the
absence of interaction between the component logics, wa bfive transfer; such positive results are
usually based on divide and conquestrategy: split problems into sub-problems and delegatseth
to the components [4, 12].

From acomputationalpoint of view, the natural question in the setting of comiiniogics is:
does it work? Can wee-usetools and procedures in a modular fashion? So far, most ofvtirk
towards answering this question has gone into putting kegedeductive engines. While there are
no uniform solutions, there are many successful instantesmbined proof procedures, especially
for modal and modal-like logics [1]; these are often basedalauli satisfying special criteria or on
translating the component logics into a background logic.

In this paper we study the combination of model checking @doces. In addition to the issues
mentioned above, the direct motivation for this work hasnbiébe need to develop model checking
procedures for granular logics [13, 14]. Such logics are @ablmodel and reason about time at
different grain levels, for instance, at the level of seadd of micro-seconds. Instead of developing
model checking procedures for granular logics from scrat@want to synthesize them from existing
(non-granular) ones. In Section 7 we will see that this igeulpossible. More generally, in contrast
to combining deductive engines, combinations of model kingcprocedures are well behaved, even

in the presence of interaction; indeed, this supports tmemgé believe that modularity is easier to
achieve in model checking than in theorem-proving apprea¢hQ].

We start by recalling basic definitions in Section 2 and priégg three modes of combining
logics in Section 3: temporalization, independent contina, and the join. In Section 4, we con-
sider combined model checking procedures for these thnedioations. Section 5 contains results
on computational complexity, and Section 6 reports on ogegments with implementations. In
Section 7 we sketch the application of our ideas to granalgics, and we conclude in Section 8.

2 Temporal Logics

Let L be a logic system. We us€y, and Ky, to denote the language and the set of model& of
respectively. The language of a temporal lohics based on a s of proposition letters and extends
that of propositional logic with a set @émporal operators We write OP (L) to denote the set of
temporal operators ofy,.

Definition 2.1 (Syntax) The languag&gyt, of Since and Until Logi¢SUL) is the smallest seX of
formulas generated by the following rules: any propositeiterp € P isin X; if ¢, ¢ are inX, then
so aregp A) and—¢; and if ¢, ¢ are in X, then so are@Sy and¢U1.

The languageC 1+ of the computation tree logi€CTL* has state formulas and path formulas.
State formulagsre obtained as follows: any proposition lefte P is a state formula; if,) are state
formulas, then so arg A ¢ and—¢; if ¢ is a path formula, thel¢ and A ¢ are state formulas?ath
formulasare obtained as follows: every state formula is a path faaritip,) are path formulas, then
so arep A 1 and—¢; if ¢, ¢ are path formulas, then soddJq.

The languageC -y, of the computation tree logi€TL is the set ofstate formulagyenerated by
the rules for state formulas given before plus the followinge for path formulas: i, ¢ are state
formulas, therpUv is a path formula.

Definition 2.2 (Semantics)A framefor a temporal logic T is a paifi¥,R), wherelV is a set of
worlds, or states andR is a set ofaccessibility relationson 1. We restrict ourselves tbinary
relations oriV’. A modelfor T is a triple(W, R, V'), where(W, R) is a frame for Tand” : W — 27

is avaluation functiormapping states into sets of proposition letters.

A frame forSUL, CTL, or CTL* is a pairF = (W, {R}), or simply (W, R), wherelV is a set of
states and® C W x W is a binary relation o/. A path= in F is an infinite sequence of statag
s1, ... such that, for every > 0, R(s;, s;+1); we write w(j) for the element in thg-th position on
the pathrr.

Truth of aSUL-formula ¢ in a modelM = (W, R, V') with respect to a state € W is defined
as usual: fop € P, M, s Esur pif p € V(s), and M, s sur, oUW iff M, t =sur, ¢ for somet
such thatRst, while M, r =gsur, ¢ for everyr such thatRsr and Rrt; similarly, M, s Esur, ¢Sv
iff M, ¢ =gyt ¢ for somet such thatRts, while M, r =gur, ¢ for everyr such thatRtr and Rrs.

As to CTL*-formulas, state formulas are evaluated at a stat€notation: M, s =crr+ ¥); path
formulas¢ are evaluated with respect to a path= s, s1, ... and a positiony € N in 7 (notation:
M, 7, j EcrLs ¢). For proposition letterp € P, we putM, s o+ p if p € V(s). For any path
formula¢, we have that\, s =cr+ E¢ if there is a pathr starting ats such thatM, 7,0 Ecrr+ ¢;
andM, s oL+ Ao if for every pathr starting ats we haveM, 7,0 =cr+ ¢. For a state formula
¥, we putM, m, j Ecrr+ ¥ if M,7(5) EctL+ ¥. Finally, for a pair of path formulag and), we
have thatM, 7, j ot oUW if M, 7,0 =crr+ ¢ for somei > j and M, m, k =+ ¢ for every
j<k<i(j<k<iifweadopted a non-strict version &f).

The truth definition folCTL-formulas (notationi=crr,) can be obtained by restrictingcry - to
CTL-formulas.

3 Combining Logics

How do we combine logics? While many ways of combining lodiase been explored, we restrict
ourselves to only three of them: temporalization, indepahd@ombination, and the join. These three
are certainly among the most popular and the ones that havestedied most extensively [4, 12, 5, 6].

§3.1 Temporalization. This is the simplest of the three modes of combining logicd the will
consider; here, the two component languages are only aldaénteract in a very restricted way.
More specifically, lefl’ be a temporal logic anH an arbitrary logic. For simplicity we constralnto

be an extension of classical logic. We partition the sdt-6érmulas intoboolean combination8C'y,
andmonolithic formulasMLy,: « belongs toBCYy, if its outermost operator is a boolean connective;
otherwise it belongs td/Ly,. We assume thaDP(T) N OP(L) = (). Thecombined languag€y,)

of thetemporalizationT (L) of L by means ofT' over the set of proposition lettef3 is obtained by
replacing the atomic formation rule dfy (i.e., every proposition letter is a formula) by the follogi
rule: every monolithic formula: € Ly, is anLyy,)-formula.

A modelfor T(L) is a triple (W, R, g), where(W,R) is a frame forT andg a total function
mapping states iV’ to models inKy,. Given a modelM = (W,R,g) and a statev € W, the
semantics of the combined lodiE(L) is obtained by replacing the usual semantic clause for atomi
formulas ofCt by the following clause: for allv € M Ly,, M, w f=p () «if and only if g(w) =1 a.

§3.2 Independent Combination. The independent combination of two logics puts togethethall
expressive power of the two component logics in an unrésttiwvay; our definitions are straightfor-
ward extensions of definitions found in [4, 12, 5]. BBf andT'; be two temporal logics defined over
the same set of proposition lettePs with OP(T1) N OP(T3) = (). Thefully combined language
Lr,eT, Of theindependent combinatiolf; & T overP is obtained by taking all connectives B
andT5, and the union of their formation rules.

To define the semantics @', & T, we need the following notion. Given a binary relatié
we write R* for its transitive closure, an&~—! for its converse. LetWV, R) be a frame. Aconnected
component W’ R') of (W,R) is a frame with (1)) # W/ C W andR’ = {R|lw | R € R};
and (2)(W’,R’) is connectedi.e., for everyu andv in W', with u # v, we have(u, v) € [J{(R U
R™Y) | R € R}]*; and (3)(W', R') is maximal i.e., there is no connected compon@it”, R") with
W’ c W”. Notice that arisolatedpoint is a connected component.

A modelfor the combined logi@'; @ Ts is a 4-tuple(W, R1, R2, V), where the connected com-
ponents of W, Ry, V) are inKr,, the connected components (¥, R,, V') are frames underlying
models inKt,, andWW is the (not necessarily disjoint) union of the sets of stétas constitute each
connected component. Finally, : W — 27 is a valuation function. The&ruth definitionof the
combined logicT; @ T is obtained by taking the union of the semantic clauseSfoandT5.

§3.3 The Join. Formulas in the language of the independent combinationmfdgics are evaluated

at a single node in a model. Thein introduces a separate dimension for each of the component
logics, and we are allowed to express relations betweemiheimensions. For notational simplicity
we assume that our component logics are one-dimensioealevaluated at a single node only. Let
T; and T, be two temporal logics. Th@in T; ® Ts of Ty andT; is obtained as follows. The
languageLr, T, Of the logic systenT; ® T is the fully combined language @f; andTs.

Function MCrpy,)
Input: aT(L)-modelM = (W, R, g) and a formula) € Ly,

compute MMLy, (¢) andabs()
for every o € MMLy, (¢))
for everyw e W
if MCL(g(w), &) = True then
V(w) = V(w) U {pa}
return MCt((W, R, V'), abs(v)))

Figure 4.1: Model checking for temporalized logics.

A modelfor T; ® T is a 5-tuple(Wy, Ry, Wa, R2, V'), where(W1,R,) is a Ty-frame and
(Wa, Rs) is aTy-frame, andV : Wy x Wo — 2% is a valuation mapping pairs of states to sets of
proposition letters. Truth of a formulain a modelM = (W1, R, W, Re, V), at statess; € W,
and sy, € Way, is defined as follows. 1) = p (p € P), ¢ = (1 A ¢2), Or ¢ = —¢y, then
M, 51,50 Er,01, ¢ is defined as usual. b = O(¢1,...,¢,), with O € OP(T;), we define
M, s1,82 FE1,0T, ¢ by replacing every occurrence o#1,x in the definition of M, s; =1, ¢
(i € {1,2}) by M, z, s9 (if i = 1) or M, 51,z (if i = 2).

In our presentation of the join of logics, we have followed; [[8] a slightly different but
equivalent construction is studied: theductof modal logics.

4 Model Checking for Combined Logics

In this section we consider model checking procedures foh & the modes of combining logics
considered in Section 3.

§4.1 Temporalization. We first define the global model checking problem for the coradilogic
T(L); then, we give a general algorithm that solves it. Mt= (17, R, g) be aT(L)-model. We say
that M is finite if W andR are finite and, for every € W, g(w) is finite. LetM = (W, R, g) be a
finite T(L)-model,w € W a state, ang a formula inL). We focus on thglobal model checking
problemfor T(L): is there a state € W such thatM, v [=y,) ¥? We use ‘model checker’ for a
program that solves the global model checking problem.

Let+ be aT(L)-formula andVIMLy,(¢) the set ofnaximalmonolithic subformulas of belong-
ing to L1; abs(¢) denotes the formula obtained framby replacing every formulas € MMLy, (¢))
by the proposition lettep,. Moreover, letMCt+ andMCy, be model checkers fdr' and L, respec-
tively. Given an appropriate model checking instance,glpsgrams returiirue if the correspond-
ing instance is a “yes” instanc€alse otherwise. In Figure 4.1, we present the pseudo-code of a
model checkelMCr (1, for T'(L) that exploitsMCt andMCy,. Let M be a finite model fofT'(L) and
Y € Ly,). As atheorem, we have thatr, andMCr are terminating, sound and complete, then,
on input M andy, the functionMCr g,y terminates, returning eithdirue or False . Moreover, if it
returnsTrue , then there existsr € W with M, w):T(L) 1; and if it returnsFalse , then, for every
we W, M,w) .

84.2 Independent Combination. We now give a general algorithm for solving the global model
checking problem foT'; @ Ts. Let'T; andT;, be two temporal logics, and lg¢t = (W, R1,R2, V)

be a model fofT'; ® T». We say thaiM is finite if W, R, andR; are finite, and, for every € W,
V(w) is finite.

ProcedureMCr, T,
Input: aT; & Te-modelM = (W, Ry, Rs, V) and aformula) € Lr, T,

computeCj, C3, and M Sub(z))
for every w e W let V(w) = V(w)
for everyi=1,...,|¢Y|
for every ¢ € M Sub(¢)) such thatp| =1
caseon the form ofg
¢ =p,p € P:skip
¢ =¢1 N ¢o: for every we W
if (01 € V(w) and ¢2 € V(w)) then
V(w) = V(w) U{g}; V(w) =V(w)U{ps}
¢ = ¢y for every w e W
if (not ¢ € V(w)) then
V(w) =V(w)U{e}; V(w) = V(w)U{py}
¢ = O(¢1; .- '7¢C>' (OIS OP(‘CTi)!Z € {L 2}
let @ = {a € Sub(p) N MSub(y)) |1 < |a| < |¢|} andg’ = ¢
for every a € ® replace a in ¢’ with p,
for every (U,S) € Ci,
for every u e Ulet V'(u) = V(u)
MCr, ((Uv S, V/)a ¢/)
for every uw e U
if ¢ € V'(u)then
V(u) =V (u) U{o};V(u) =V(u) U{ps}

Figure 4.2: Model checking independently combined logics.

The global model checking problem f@t; @ T, is defined just as for(L). C}, andC3}, are
the sets of connected components(@f, R,) and (W, R.), respectively. SinceV is a model for
T, & T, every connected component@,, (C3,) is a model forT; (T;). Sub(¢) is the set of
subformulas ofp, and MSub(¢) C Sub(¢) is constructed as follows. Let = Sub(¢) N L1, 0T,
Let: € {1,2}. For every formulaO (¢, ..., ¢.) in S, with O € OP(Lx,) U {A,V,—}, if, for every
Jj=1,...,¢, ¢; is aproposition letter or its main operator is@”(Lr,) U {A,V,—}, then delete
formulases, ..., ¢. from S; MSub(¢) is the setS at the end of this procedure. Note thabiE L,,
then MSub(¢) = {¢}.

Below, we view model checkers psocedureghat receive a modélV, R, V') and a formula) as
input, and that extend the valuati®h(which maps a state to a set of proposition letters) to a tialua
V'’ mapping states to sets sfibformulasof v in the following way: for every subformula of ¢
and every nodev, V'(w) containsg iff ¢ is true atw in (W, R, V). LetMCt, andMCt, be model
checkers fofl'; andTy, respectively. In Figure 4.2, we present the pseudo-codenaddel checker
for T'; @ Ty that exploits the proceduré€r, andMCr,. Let M = (W, R1, R, V') be a finite model
for T, & Ty andy € L1,4T,- AS a theorem, we have thatMEr, andMCr, are terminating, sound,
and complete, then, on input and+, the procedureiCt, T, terminates. Moreover, i’ is the
(extended) valuation function returned ¢, o, , then, for every subformula of ¢» and every node
weW, eV (w)iff MywET,er, ¢

§4.3 The Join. In this section, we give a general algorithm that solves thbal model checking
problem forT; @ Ts. LetT; andT be temporal logics and1 = (W1, Rq, W, R, V') be a model
for T; ® To. We say thatM is finite if W5, W5, R1 andR are finite, and, for everyw,;,wq) €

W1 x Wa, V((w1,ws)) is finite. LetM = (W1, Rq, Ws, Re, V) be afinite Ty @ Te-model and

v € Lr1,gT,. Theglobal model checking problefior Ty ® T is to check whether there exist
wy € Wy andwy € Ws such thatM, wy, we):T1®T2 .

Because of space limitations we have to omit the pseudo-fmrdemodel checker fol'; ® Ts
that exploits model checkeMCt, andMCr, for the component logic¥'; and T, respectively; its
code is similar to the code for the model checkét, 5T, given in Figure 4.2. FONCt, g, Similar
termination, soundness and completeness results may de@tas foMCt, ¢, .

5 Computational Complexity

We now turn to an analysis of the computational complexithefmodel checkers proposed in the pre-
vious section. An instance for the model checking problemth@ components: a modélV, R, V')
and a formulap. In our analysis, we will consider three main complexitygraeters: the cardinality
n of W, the summ of the cardinalities of the relations i, and the lengtft of v, i.e., the number of
operators and proposition lettersijn

We will specify the complexity of the combined model checketerms of that of the component
model checkers. The complexity of the combined model chreiskéhe sum of two factors: the
communication overhead and the model checking cost. chimemunication overheaid the time
spent for “packing” the inputs for the components and forgacking” their outputs; this represents
the cost of the interaction between the components. fmibdel checking cosepresents the cost of
performing the actual model checking of the component kgic

We first consider the case of temporalization. Ldte a logic andl' a temporal logic. We write
Cray(-,-) (resp.CL(-,), Cx (-, -, -)) for the complexity function of the model checké 1) (resp.
MCr,, MCt). Note thatCy, (-, -) has two parameters (the size of the model and the length &brimeila).

Theorem 5.1 Let(W, R, g) be afiniteT (L)-model and) a T(L)-formula. The complexity ofCy 1,
on inputM and is

O(n) - [k-CL(N,0(1)) + CL(N,O(k))] + Cr(n,m,O(k)),
wheren = [W|,m =} pr |R], k= |[¢] and N = max,ew|g(w)].

The communication overhead is the cost of computing thé/Bdf_.y,(¢) and the formulaabs(v)).
It equals toO(k) and is dominated by the model checking cost. For instancg,if CTL (hence
Cr(n,m,k) = O((n 4+ m) - k) [3]), andL is a logic such thaf’t,(n, k) = O(n - k), then the model
checking cost i€)(k - (n- N +m)), hence still linear in the size of the model and in the lengtthe
formula.

We now treat the independent combination of two temporat&igf; andT.

Theorem 5.2 Let M = (W, R1, R2, V) be afiniteT; & Te-model andy) a T1 & To-formula. The
complexity oMCr, g1, On inputM andi is:

O(my +mg+n-k)+ Z?:l (O(k) - Cr,(O(n),0O(m;),0(1)) +
O(n) - Cr,(0(1),0(1), O(k)) + O(1) - Cr,(O(n), O(m;), O(k))> ;

Wheren - ‘W‘, m@' - ZRERZ' ‘R’1 fori == 1721 andk = ’1/}‘

The communication overhead is the cost of computing the ected components, of preparing the
valuation as input to the model checking procedure, and détipg the valuations when the procedure
returns. Itadds up t®(m, +mq+n-k), which is more significant than in the case of temporalizatio

6

By way of example, if botHI'; and Ty are CTL, andm = m; = mso, then the communication
overhead igD(m + n - k), which is proportional to the model checking cost®f(n + m) - k). So,
the overall cost of the model checker 6L & CTL is O((n + m) - k), which is linear in the size
of the model and the length of the formula.

Finally, we briefly consider the join of temporal logids andT,. Due to space limitations we
have to omit further discussions of Theorem 5.3 below.

Theorem 5.3 Let M = (W7, R, Wa, Ro, V) be afiniteT; ® T2-model andy) a T ® T,-formula.
Let1 = 2 and2 = 1. The complexity afCt, T, On inputM and is:

O(n1-mo+ng-my+ny-no- k) +
71 (Omy) - [O(k) - Oy (i, mi, O(1)) + O, (i, mi, O(K))])

wheren; = [W;|, m; = 3 per, [R| fori= 1,2, andk = [¢)].

6 Experimental Results

We briefly report on experimental results based on impleatiemts of (combined) model check-
ers for CTL(CTL) andCTL @ CTL. The model checkers have been implemented in C, and are
available fromhttp://www.illc.uva.nl/"mdr/ACLG/Software/ . Tests were carried on
a Sun ULTRA Il (300MHZz) with 1Gb RAM, under Solaris 5.2.5.

We tested our model checker faITL(CTL) on ‘linear’ and ‘dense’ models. In our first test,
we usedA; G Ay (pUyq) as a fixed test formula, and we varied the mati¢] = (W, R, g), where
(W, R) is a complete binary tree of height and, for everyw € W, g(w) is a labeled complete
binary tree of heighti,. The outcomes are summarized in Table 6.1(a), whgterepresents the
CPU time in milliseconds. In the second test, we checked dhadla A; G;E2(pU2q) and used
modelsM, = (W, R, g), where(W, R) is a complete graph af; nodes and, for every € W,
g(w) is a complete graph of; nodes. The outcomes are given in Table 6.1(b). The timesllist(b)

are higher than those listed in (a) becausgle containsdensegraphs, whileM is based orinear
graphs.

hi|hz| #nodes #edges tms ni| ng| #nodes # edge tms
4] 4 992 960 10 32| 32 1056 33797 20
5[5] 4034 3968 30 64 64 416(26624(110
6| 6/ 16256 16128 110 128 128 16514 211353€ 820
7| 7 65280 65024 380 256 256 657927 16842752 6010
8| 8| 261632 261120 149(512 512 262656 134479872 47970
9| 9[10475521046528 585(102410241049600107479040D 38676(
(a): trees and\ 1 G1 A2(pU2q) (b): complete graphs andl; G1E2(pU2q)

l| #nodes #edges tms 7| tms

32| 1024 1984 90 0/1870

64 4096 8024 340 3/2540

128 16384 32513 1400 712970

256 65396 130560 576(113860

512 262144 532264 23480 15/4720

1024 1048576209510411898 195590

(c): square grids (d): fixed square grid

Table 6.1: Experiments with combined model checkers.

Next, we treated the independent combinatitiil. & CTL. Our test models were ‘square grid’ mod-
els, where we varied either the size of the model or the ‘degfénteraction’ of the formula. In the
first test (Table 6.1(c)), we useth G1g A A2 Goq as our test formula on a square gfidl, R, R2, V)

of width [where rows are the connected componentdfR;) and columns the connected compo-
nents of(1W, Ry). For the second test (Table 6.1(d)), we used a square gridddfi 256. The test
formula wasfy (Wherefy = ¢, and fx+1 = E; X, fx, for k > 0 andi € {1,2}), varying the number

r of alternations of blocks of the ford; X;E;X; (i # j) occurring infy from 0 (no interaction) to
19 (maximal interaction). Increasing the degree of intedacin the formula increased the required
computing time, thus confirming that the communication bead is higher when checking formulas
with a high degree of interaction.

7 An Application to Time Granularity

In this section we describe the relevance of our resultsrtgooral logics for time granularityTempo-
ral logics have been successfully used for modeling and/aimgl the behavior of (real-time) reactive
systems. The behavior of reactive systems whose compohamés dynamic behaviors regulated
by very different time constants, e.g., days, hours, andreds; is naturally modeled by a set of
differently-grained temporal domains. The addition ofdimgranularity allows one to give concise
specifications of sucgranular reactive systen(§&RSs). The theory of finitely-layered structures for
time granularity has been investigated in [14]. As dstayered structures, the theories ugward
(downward) unbounded layered structurés., w-layered structures consisting of a finest (coarsest)
temporal domain together with an infinite number of ever seafever finer) domains, respectively,
are non-elementarily decidable [13]. An expressively clatepand elementarily decidable temporal
logic counterpart of the theory of downward unbounded leglestructures has been proposed in [7].
The behavior of a reactive system with respect to layereattstres can be described as a suitable
combinationof temporal evolutions (sequences of states over a givepdethdomain) and tempo-
ral refinements (mapping of a state, within a given domaitg anfinite sequence of states over a
finer temporal domain). As a consequence, both the modetidiegra system’s operational behav-
ior and the specification language can be obtaineddmbiningsimpler models and languages, and
model checking procedures for combined logics can be used.inBtance, a temporalized model
M = (W,R,g) can be used in a ‘horizontal’ and a ‘vertical’ way for modekcking purposes.
Horizontally, it can be used to deal with finitely-layereghward and downward unbounded GRSs.
Assume thafR islinear, that is, every node i’ has at most on&-successor. The ‘top’ fram@V, R)
models the granular relationships among the different aorapts (v Rv meaning that the component
associated with is a one-step refinement of the one associated wjthvhile, forw € W, the model
g(w) captures the internal behavior of a single componef. (t,) is the specification language,
whereT; (resp.T-) is alinear (resp.branching temporal logic. ‘Horizontal’ properties, that is, for-
mulas that predicate over temporal evolutions, are easgyessible and verifiable in this framework,
but it is hard to capture ‘vertical’ properties which refertemporal refinements. In contrast, within
the ‘vertical’ model checking framework one can deal wititély-layered and downward unbounded
GRSs. The interpretation of the model is different then:‘thg’ frame (1, R) models the evolution
of the coarsest component of the system, whilefoe W, the modelg(w) captures the behavior
of all temporal refinements ab. Specifications can be written ifiy, (1), whereT; and T, are
branching temporal logics. As for expressiveness of theitad’ framework, the situation is dual to
the ‘horizontal’ case.

8 Conclusions

We have addressed the problem of model checking for combowids and structures. In contrast
to combined deductive engines, combinations of model dhggirocedures are very well behaved,
even in the presence of strong forms of interaction. In paldr, complexity upper bounds transfer
from the component framework to the combined one, and thedated communication overhead is
in most cases non significant with respect to the actual naidstking cost.

One of the motivations for this work has been the need to dpvelodel checking frameworks
for granular reactive systems and logics. We have shownthisats indeed possible, usingdivide
and conquerstrategy: we first isolated the orthogonal ‘simple’ engitia which a granular system
can be decomposed. Then, we applied well-known structurédagics to the component entities.
Although we only applied thigivide and conqueapproach to granular reactive systems, because of
its generality, we feel that it can be useful to model andyaaimany other complex systems, which,
inherently, are the composition of simpler entities.

Acknowledgment. Massimo Franceschet and Angelo Montanari were supportethdbyIURST
Project ‘Saladin.” Maarten de Rijke was supported by then&m project ‘Logic in Action’ and
by a grant from the Netherlands Organization for Scientigs@&arch (NWO), under project number
365-20-005.

References

[1] B. Bennett, C. Dixon, M. Fisher, E. Franconi, |. Horrockk Hustadt, and M. de Rijke. Combining modal
logics. Submittedd1999.

[2] P. Blackburn and M. de Rijke. Editors’ introductioNotre Dame Journal of Formal Logi87:161-166,
1996.

[3] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic fieaition of finite-state concurrent systems using
temporal-logic specification®dCM Trans. Programming Languages and Sysie3(®):244—263, 1986.

[4] K. Fine and R. Schurz. Transfer theorems for multimodgids. InProceedings Arthur Prior Memorial
Conference1989.

[5] M. Finger and D.M. Gabbay. Adding a temporal dimensioa togic systemJournal of Logic, Language
and Information 1:203-233, 1992.

[6] M. Finger and D.M. Gabbay. Combining temporal logic &mst. Notre Dame Journal of Formal Logic
37:204-232, 1996.

[7]1 M. Franceschet and A. Montanari. Branching within tim@echnical Report UD/03/2000/RR, DIMI,
Universita di Udine, 2000.

[8] D. Gabbay and V. Shehtman. Products of modal logics, Pattogic Journal of the IGP|6:73-146,
1998.

[9] D.M. Gabbay and M. de Rijke, editor&rontiers of Combining Systemswlume 7 ofStudies in Logic
and ComputationResearch Studies Press/Wiley, 2000.

[10] J.Y. Halpern and M.Y. Vardi. Model checking vs. theorproving: a manifesto. InProc. KR'91 pages
325-334, 1991.

[11] E. Hemaspaandra. Complexity transfer for modal logid?roc. LICS’'94 pages 164-173, 1994.

[12] M. Kracht and F. Wolter. Properties of independentlipaxatizable bimodal logicsJournal of Symbolic
Logic, 56:1469-1485, 1991.

[13] A. Montanari, A. Peron, and A. Policriti. Decidable trees of w-layered metric temporal structures.
Logic Journal of the IGPL7(1):79-102, 1999.

[14] A. Montanari and A. Policriti. Decidability results fanetric and layered temporal logicblotre Dame
Journal of Formal Logi¢37:260-282, 1996.

