
Automated Software Engineering, 11, 289–321, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Model Checking for Combined Logics
with an Application to Mobile Systems∗

MASSIMO FRANCESCHET m.franceschet@unich.it
Department of Sciences, University of Chieti-Pescara, Italy

ANGELO MONTANARI montana@dimi.uniud.it
Department of Mathematics and Computer Science, University of Udine, Italy

MAARTEN DE RIJKE mdr@science.uva.nl
Institute for Logic, Language, and Computation, University of Amsterdam, The Netherlands

Abstract. In this paper, we develop model checking procedures for three ways of combining (temporal) logics:
temporalization, independent combination, and join. We prove that they are terminating, sound, and complete, we
analyze their computational complexity, and we report on experiments with implementations. We take a close look
at mobile systems and show how the proposed combined model checking framework can be successfully applied
to the specification and verification of their properties.

Keywords: temporal logic, model checking, combined logics, mobile systems

1. Introduction

Logic combination is emerging as a relevant research topic at the intersection of mathemati-
cal logic and computer science. It essentially provides a formal account of classical notions,
such as modularity and abstraction, which are at the basis of any software development and
verification methodology. As any interesting real-world system is a complex entity, decom-
posing its descriptive and inferential requirements for design, verification, or maintenance
purposes into simpler reasoning tasks is often the only plausible way forward (Gabbay and
de Rijke, 2000). Assuming that we have methods and tools available to tackle restricted
tasks, how do we combine them to solve complex tasks? In particular, how do we combine
them in such a way that features of the components are inherited by the combination? This
question is known as the transfer problem (Blackburn and de Rijke, 1996). Whether proper-
ties transfer from the components to the combination depends on the amount of interaction
between the component logics; even in the presence of very weak forms of interaction (such
as shared symbols), transfer may fail (Finger and Gabbay, 1996; Gabbay and Shehtman,
1998; Hemaspaandra, 1994). In the absence of interaction between the component logics,
we often have transfer; such positive results are usually based on a divide and conquer
strategy: split problems into sub-problems and delegate these to the components (Fine and

∗This paper is an extended and revised version of Franceschet et al. (2000).

290 FRANCESCHET, MONTANARI AND DE RIJKE

Schurz, 1996; Kracht and Wolter, 1991). From a computational point of view, the natural
question in the setting of combining logics is: does it work? Can we re-use tools and proce-
dures in a modular fashion? So far, most of the work towards answering this question has
gone into putting together deductive engines. While there are no uniform solutions, there are
many successful instances of combined proof procedures, especially for modal and modal-
like logics; these are often based on calculi satisfying special criteria or on translating the
component logics into a background logic. In this paper we study the combination of model
checking procedures.

Our motivation for studying model checking algorithms for combined logics comes
from a concrete example: mobile reactive systems (mobile systems for short) (Cardelli,
1999; Cardelli and Gordon, 2000a, 2000b). Mobile systems are strongly distributed reactive
systems, whose behavior is subject to both temporal and spatial constraints. One of the novel
and challenging features of mobile systems is the fact that their structure is subject to change
as computations evolve. More precisely, the state of a mobile system depends on three
orthogonal components that change over time: the configuration of the distributed system
(its elements and their spatial localization), the distribution of the processes within the
system, and the state of every single process. Accordingly, the behavior of a mobile system
can be modeled in terms of the evolving combination of these three basic components. A
model checking solution for mobile systems can thus be obtained (i) by modeling them
as suitable combinations of spatial and temporal structures, possibly at different levels of
abstraction, (ii) by using combinations of temporal (and spatial) logics to specify their
properties, and (iii) by deploying combinations of model checkers for component logics.

In the following, we focus our attention on three well-known forms of logic combina-
tions, namely, temporalization, independent combination, and join. For each of them, we
provide syntax, semantics, and some examples. Furthermore, we analyze in some detail the
behaviour of mobile systems, as well as their relevant computational properties, and we
show that they can be captured in terms of the considered ways of combining structures
and logics. Next, we show how model checking procedures for combined logics can be
synthesized from suitable combinations of model checkers for simpler component logics.
We analyze the computational complexity of the resulting procedures and we report on a
number of experiments with implementations. It will turn out that, in contrast to combining
deductive engines, combinations of model checking procedures are well behaved, even in
the presence of interaction, thus supporting the general belief that modularity is easier to
achieve in model checking than in theorem proving approaches (Halpern and Vardi, 1991).
In particular, complexity upper bounds for model checking transfer from the components
to the combination.

This paper is organized as follows. In Section 2 we introduce the three ways of com-
bining logics: temporalization, independent combination, and join. In Section 3 we discuss
the application of logic combination techniques to the specification and verification of mo-
bile systems. In particular, we investigate the relationships between the ambient calculus
(one of the major tools proposed in the literature to formalize mobile systems) and the
proposed combined framework. In Section 4 we develop combined model checking proce-
dures for the three modes of combination on which we focus, and we prove that they are
terminating, sound, and complete. Section 5 contains results on computational complexity,

MODEL CHECKING FOR COMBINED LOGICS 291

while Section 6 reports on our experiments with implementations. In Section 7 we discuss
the strength and limitations of the combined approach, with a short comparison with re-
lated work. Section 8 provides an assessment of the work and it outlines further research
directions.

2. Combining logics

Various forms of logic combination have been proposed in the literature. Temporalization,
independent combination (or fusion), and join (or product) are probably the most popular
ones as well as the ones that have been studied most extensively (Fine and Schurz, 1996;
Finger and Gabbay, 1992, 1996; Gabbay et al., 2003; Gabbay and Shehtman, 1998; Kracht
and Wolter, 1991; Spaan, 1993). They have been successfully applied in several areas,
including databases (Finger, 1992, 1994; Finger and Reynolds, 2000) and artificial intelli-
gence (Baader and Ohlbach, 1995; Engelfriet, 1996; Fagin et al., 1995; Halpern and Vardi,
1989; Meyer and van der Hoek, 1995; Wolter and Zakharyaschev, 1998). In this paper, we
focus on the application of combined (temporal) logics to the specification and verification
of (mobile) reactive systems.

In this section, we introduce syntax and semantics for temporalization, independent
combination, and join. We will use the following general definition of temporal logic. The
language of temporal logic is based on a set P = {P, Q, . . .} of proposition letters and
extends that of propositional logic with a set OP = {Oi1

1 , . . . , Oin
n } of temporal operators

with arities i1, . . . in , respectively. The language of temporal logic is the smallest set of
formulas generated by the following rules:

(P1) every proposition letter P ∈ P is a formula;
(P2) if φ, ψ are formulas, then φ ∧ ψ and ¬φ are formulas;
(P3) if Oi j

j ∈ OP and φ1, . . . , φi j are formulas, then Oi j

j (φ1, . . . , φi j) is a formula.

Boolean connectives ∨ , → , and ↔ are defined as usual. Moreover, true abbreviates
P ∨ ¬P , for some fixed P ∈ P , and false stands for ¬true. A frame for temporal
logic is a pair (W,R), where W is a nonempty set of worlds, or states, and R is a set of
accessibility relations on W . We restrict ourselves to binary accessibility relations on W .
A model for temporal logic is a Kripke structure (W,R, V), where (W,R) is a frame and
V : W → 2P is a valuation function mapping states into sets of proposition letters. The
semantics of temporal logic extends that of propositional logic with clauses for the temporal
operators in OP. For n ≥ 1, formulas of n-dimensional temporal logics are evaluated at
n-dimensional tuples of points (equivalently, formulas of n-dimensional temporal logics
can be embedded in classical logics with n-ary predicates). Examples of one-dimensional
temporal logics are Propositional Linear Temporal Logic (PLTL) and Computation Tree
Logic (CTL and CTL∗) (Emerson, 1990). Given an arbitrary logic L, we use LL and KL to
denote the language and the set of models of L, respectively. We write OP(L) to denote the
set of operators of L different from Boolean ones.

Temporalization is the simplest of the three ways of combining logics that we consider;
it only allows the two component languages to interact in a very restricted way (Finger

292 FRANCESCHET, MONTANARI AND DE RIJKE

and Gabbay, 1992). Let T be a temporal logic and L be an arbitrary logic. For simplicity,
we assume L to be an extension of propositional logic. We partition the set of L-formulas
into Boolean combinations BCL and monolithic formulas MLL: α belongs to BCL if its
outermost operator is a Boolean connective; otherwise it belongs to MLL. We constrain the
set OP(T) ∩ OP(L) to be empty.

Definition 2.1 (Temporalization—Syntax). The language LT(L) of the temporalization
T(L) of L by means of T over the set of proposition letters P is obtained by replacing the
following atomic formation rule of LT:

Every proposition letter P ∈ P is a formula,

by the following rule:

Every monolithic formula α ∈ LL is a formula.

Notice that ‘by construction’ proposition letters occurring in a T(L) formula belong to LL.
A model for T(L) is a triple (W,R, g), where (W,R) is a frame for T and g : W → KL

a total function mapping worlds in W to models for L.

Definition 2.2 (Temporalization—Semantics). Given a model M = (W,R, g) and a state
w ∈ W , the semantics of the temporalized logic T(L) is obtained by replacing the following
semantic clause for proposition letters of T:

M, w |= P iff P ∈ V (w), whenever P ∈ P,

by the following clause:

M, w |= α iff g(w) |=L α, whenever α ∈ MLL.

Notice that, whenever the nested logic L is a modal or temporal logic, its formulas are
obviously evaluated with respect to a given world.

As an example, consider the temporalization of PLTL2 by means of PLTL1, where PLTL1

(resp. PLTL2) is the propositional linear temporal logic PLTL over P with the temporal
operators X (next) and U (until) renamed as X1 and U1 (resp. X2 and U2). The language of
PLTL1(PLTL2) is the smallest set of formulas generated by the following rules:

(P1) any monolithic formula in MLPLTL2 is a formula;
(P2) if p, q are formulas, then p ∧ q and ¬p are formulas;
(P3) if p, q are formulas, then X1 p and pU1q are formulas.

The formula X1X2 P is a PLTL1(PLTL2)-formula, while X2X1 P is not. We interpret both
PLTL1 and PLTL2 over P-labeled infinite sequences, that is, Kripke structures (N, <, V),

MODEL CHECKING FOR COMBINED LOGICS 293

g g g g

Figure 1. A temporalized model for PLTL(PLTL).

where N is the set of natural numbers, < is the usual ordering relation over natural numbers,
and V : N → 2P is a valuation function. A temporalized model for PLTL1(PLTL2) is a triple
(N, <, g), where g maps natural numbers into P-labeled infinite sequences. A (portion of
an) unlabeled model for PLTL1(PLTL2) is depicted in figure 1. For i ∈ {1, 2}, let |=i be the
semantic relation of PLTLi . LetM = (N, <, g) be a temporalized model for PLTL1(PLTL2)
and i ∈ N. The semantic relation of PLTL1(PLTL2), denoted |=1(2), is defined as follows:

M, i |=1(2) α iff g(i), 0 |=2 α, whenever α ∈ MLPLTL2

M, i |=1(2) φ ∧ ψ iff M, i |=1(2) φ and M, i |=1(2) ψ

M, i |=1(2) ¬φ iff it is not the case that M, i |=1(2) φ

M, i |=1(2) φU1ψ iff M, j |=1(2) ψ for some j ≥ i and
M, k |=1(2) φ for every i ≤ k < j ;

M, i |=1(2) X1ψ iff M, i + 1 |=1(2) ψ.

The independent combination of two logics puts together the expressive power of the two
component logics in an unrestricted way (Finger and Gabbay, 1996). Let T1 and T2 be
two temporal logics defined over the same set of proposition letters P , with OP(T1) ∩
OP(T2) = ∅.

Definition 2.3 (Independent combination—Syntax). The language LT1⊕T2 of the indepen-
dent combination T1 ⊕ T2 of T1 and T2 over P is obtained by taking the union of the
formation rules for T1 and T2.

294 FRANCESCHET, MONTANARI AND DE RIJKE

To define the semantics of T1 ⊕ T2, some auxiliary notions are needed. Given a binary
relation R, we denote by R∗ its transitive closure and by R−1 its converse. Let (W,R) be
a frame. A connected component (W ′,R′) of (W,R) is a frame such that (i) ∅
= W ′ ⊆ W
and R′ = {R|W ′ | R ∈ R}, (ii) (W ′,R′) is connected, i.e., for every u and v in W ′, with
u
= v, we have (u, v) ∈ (

⋃{(R ∪ R−1) | R ∈ R})∗, and (iii) (W ′,R′) is maximal, i.e.,
there is not a connected component (W ′′,R′′) with W ′ ⊂ W ′′. Notice that an isolated
point is a connected component. A model for the combined logic T1 ⊕ T2 is a 4-tuple
(W,R1,R2, V), where the connected components of (W,R1, V) are in KT1 (models for
T1), the connected components of (W,R2, V) are in KT2 (models for T2), and W is the (not
necessarily disjoint) union of the sets of worlds that constitute each connected component.
Finally, V : W → 2P is a valuation function.

Definition 2.4 (Independent combination—Semantics). The semantics of the indepen-
dently combined logic T1 ⊕ T2 is obtained by taking the union of the semantic clauses for
T1 and T2.

As an example, we consider the independent combination of PLTL1 and PLTL2 over P .
The language of PLTL1 ⊕ PLTL2 is the smallest set of formulas generated by the following
rules:

(P1) any proposition letter P ∈ P is a formula;
(P2) if p, q are formulas, then p ∧ q and ¬p are formulas;
(P3) if p, q are formulas, then X1 p, X2 p, pU1q, and pU2q are formulas.

Unlike the case of PLTL1(PLTL2), both X1X2 P and X2X1 P are PLTL1 ⊕ PLTL2-
formulas. An independently combined model for PLTL1 ⊕ PLTL2 is a quadruple (W, <1,

<2, V), where the connected components of (W, <1, V) and those of (W, <2, V) are P-
labelled infinite sequences. A (portion of an) unlabeled model for PLTL1⊕PLTL2 is depicted
in figure 2. We define two binary predicates succ1 and succ2 over W such that succ1(w, v)
if and only if w <1 v and there is no z ∈ W such that w <1 z <1 v, and similarly for
succ2(w, v). Let M = (W, <1, <2, V) be a model for PLTL1 ⊕ PLTL2 and w ∈ W . The
semantics of PLTL1 ⊕ PLTL2 is defined as follows:

M, w |= P iff P ∈ V (w), for all P ∈ P
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

M, w |= ¬φ iff it is not the case that M, w |= φ

M, w |= φU1ψ iff M, v |= ψ for some v ≥1 w and
M, z |= φ for every w ≤1 z <1 v;

M, w |= X1ψ iff M, v |= ψ and succ1(w, v);

M, w |= φU2ψ iff M, v |= ψ for some v ≥2 w and
M, z |= φ for every w ≤2 z <2 v;

M, w |= X2ψ iff M, v |= ψ and succ2(w, v).

MODEL CHECKING FOR COMBINED LOGICS 295

Figure 2. An independently combined model for PLTL ⊕ PLTL.

It is worth noting that the formula X1X2 P ↔ X2X1 P , that allows one to commute the two
successor operators, is not valid in PLTL1 ⊕ PLTL2, since, given a model M = (W, <1,

<2, V) and w ∈ W , succ2(succ1(w)) is not necessarily equal to succ1(succ2(w)). This
is the case, for instance, of the model described in figure 2.

The relationships between independent combination and temporalization deserve to be
briefly analyzed. In particular, it is worth explaining why independent combination cannot
be viewed as an arbitrary nesting of temporalizations. Let L0 = T1, L̄0 = T2 and, for
i > 0, let Li = T1(L̄ i−1) and L̄ i = T2(Li−1). Since any formula of the independent
combination T1 ⊕ T2 is a formula of a temporalized logic Li or L̄ i , for some i ≥ 0, one
can be led to think of reducing the satisfiability/model checking problems for independent
combination to the same problems for temporalization. However, such a reduction would be
incorrect. Roughly speaking, the reason is that the semantics of independent combination
and (nested) temporalization radically differ from each other. A model for independent
combination is a flat structure, that is, all the (connected) components have the same nesting
level. A formula may ‘visit’ a component, leave it for a while, and later come back. This
is not the case with temporalization. A model for temporalization is a nested structure
where different components have different nesting levels. Once a formula has ‘entered’
a component, it may only proceed forward, visiting the reached component or a nested
component of it, but it can never come back. Consider the following example. Take PLTL
over P = {P} interpreted over P-labeled finite sequences, that is, Kripke structures (I, <,

V), where I is an initial segment {0, 1, . . . , n} of the natural numbers, < is the usual
ordering relation over natural numbers, and V : I → 2P is a valuation function. Consider
the PLTL1(PLTL2(PLTL1))-formula ϕ = F1(G2G1¬P ∧ F1 P) (for any arbitrary nesting
of temporalizations T1(T2(. . . (Tn) . . .)), we constrain OP(Ti) ∩ OP(Ti+1) to be empty,
for i = 1, 2, . . . , n − 1). Such a formula is satisfiable in PLTL1(PLTL2(PLTL1)), but it

296 FRANCESCHET, MONTANARI AND DE RIJKE

is unsatisfiable in PLTL1 ⊕ PLTL2. We first build a PLTL1(PLTL2(PLTL1))-model which
satisfies ϕ. Let MP be a PLTL-model consisting of a single point labeled with letter P and
M¬P be a PLTL-model consisting of a single point labeled with no letter. Furthermore,
let M1 = ({0}, <, g1) be a PLTL(PLTL) model such that g1(0) = M¬P and M2 =
({0}, <, g2) be a PLTL(PLTL) model such that g2(0) = MP . Finally, letM = ({0, 1}, <, g)
be a PLTL(PLTL(PLTL))-model such that g(0) = M1 and g(1) = M2. It is easy to see
that M is a model of ϕ (proposition letters are interpreted over the innermost frame).
However, there is not a model for the independent combination PLTL1 ⊕ PLTL2 which
satisfies ϕ. Indeed, suppose that M, w |= ϕ, with M = (W, <1, <2, V) and w ∈ W .
It follows that there exists v such that w ≤1 v and M, v |= G2G1¬P ∧ F1 P , that is,
M, v |= G2G1¬P and M, v |= F1 P . Since M, v |= G2G1¬P , for every z such that
v ≤2 z, we have that M, z |= G1¬P . In particular, we have that M, v |= G1¬P , which
contradicts M, v |= F1 P .

Both the temporalization and the independent combination of a pair of n-dimensional tem-
poral logics are n-dimensional temporal logics. For instance, formulas of PLTL1(PLTL2) and
PLTL1⊕PLTL2 are evaluated at a single node of a model, as PLTL1 and PLTL2 formulas. The
distinctive feature of the combining method of join is that it produces higher-dimensional
temporal logics by combining lower-dimensional ones. For notational simplicity, we assume
component logics to be one-dimensional. Given two (one-dimensional) temporal logics T1

and T2, defined over the same set of proposition letters P , with OP(T1) ∩ OP(T2) = ∅,
their join is defined as follows.

Definition 2.5 (Join—Syntax). The language LT1⊗T2 of the join T1 ⊗ T2 of T1 and T2

over P is obtained by taking the union of the formation rules for T1 and T2.

Notice that the language of join coincides with that of independent combination. However,
their semantics are quite different. A model for T1 ⊗ T2 is a 5-tuple (W1,R1, W2,R2, V),
where (W1,R1) is a T1-frame, (W2,R2) is a T2-frame, and V : W1 × W2 → 2P is a
valuation mapping pairs of worlds to sets of proposition letters. In order to simplify the
definition of the truth of a T1 ⊗ T2-formula ϕ, we introduce some auxiliary notions. Given
a T1 ⊗ T2-formula ϕ = O(ϕ1, . . . , ϕn), with O ∈ OP(T1) (resp. O ∈ OP(T2)), we denote
by ϕ↑1 (resp. ϕ↑2) the T1-formula (resp. T2-formula) obtained from ϕ by replacing every
maximal subformula α ∈ MLT2 (resp. α ∈ MLT1) by a proposition letter Pα .

Definition 2.6 (Join—Semantics). The truth of a formula ϕ in a model M = (W1, R1,
W2, R2, V) at (s1, s2), with s1 ∈ W1 and s2 ∈ W2, is inductively defined as follows. If
ϕ = P , with P ∈ P , ϕ = ϕ1 ∧ ϕ2, or ϕ = ¬ϕ1, then M, s1, s2 |=T1⊗T2 ϕ is defined in the
standard way. If ϕ = O(ϕ1, . . . , ϕn), with O ∈ OP(T1) (resp. O ∈ OP(T2)), the definition
of M, s1, s2 |=T1⊗T2 ϕ is obtained from that of M, s1 |=T1 ϕ↑1 (resp. M, s2 |=T2 ϕ↑2)
by replacing each occurrence of M, x by M, x, s2 (resp. M, s1, x) and by replacing each
occurrence of the proposition letter Pα by the formula α.

Our definition of the join of logics is close to that of Finger and Gabbay (1996). In Gabbay
and Shehtman (1998), a slightly different, but equivalent, construction is proposed: the
product of modal logics.

MODEL CHECKING FOR COMBINED LOGICS 297

Figure 3. A joined model for PLTL ⊗ PLTL.

As an example, consider the join of PLTL1 and PLTL2 over P . The language of PLTL1 ⊗
PLTL2 is equal to the language of PLTL1 ⊕PLTL2. A joined model for PLTL1 ⊗PLTL2 is a
5-tuple (N, <, N, <, V). A (portion of an) unlabeled model for PLTL1 ⊗PLTL2 is depicted
in figure 3. Let M = (N, <, N, <, V) be a model for PLTL1 ⊗ PLTL2, and i, j be two
natural numbers. The semantics of PLTL1 ⊗ PLTL2 is defined as follows.

M, i, j |= P iff P ∈ V (i, j), for all P ∈ P
M, i, j |= φ ∧ ψ iff M, i, j |= φ and M, i, j |= ψ

M, i, j |= ¬φ iff it is not the case that M, i, j |= φ

M, i, j |= φU1ψ iff M, r, j |= ψ for some i ≤ r and
M, k, j |= φ for every i ≤ k < r ;

M, i, j |= X1ψ iff M, i + 1, j |= ψ ;

M, i, j |= φU2ψ iff M, i, r |= ψ for some j ≤ r and
M, i, k |= φ for every j ≤ k < r ;

M, i, j |= X2ψ iff M, i, j + 1 |= ψ ;

It is easy to prove that the formula X1X2 P ↔ X2X1 P , that allows one to commute the
two successor operators, is valid in PLTL1 ⊗ PLTL2. The grid structure of joined models is
represented in figure 3. Figure 2 shows that this is not the case with independent models.

Logic combinations are also related to what is known as the theory of institutions, intro-
duced by Burstall and Goguen in the late 1970s (Goguen and Burstall, 1992) to formally
capture the informal notion of a logical system viewed from a model-theoretic perspec-
tive. As such, the theory is primarily concerned with the general principles underlying the
development of different versions of the algebraic specification paradigm. Morphisms of
institutions are translations among logical systems, and we believe that it should be possible
to capture our three methods of combining logics within the abstract setting of the theory of
institutions, although we are not aware of any publications on this. Important related work

298 FRANCESCHET, MONTANARI AND DE RIJKE

on the interface of logic combinations and institutions is given in Sernadas et al. (1997),
where the authors work out the category-theoretic counterpart of a method of combination
that is similar to what we call join.

We conclude the section by summarizing the main transfer results given in the literature
for the combining methods introduced above. First of all, the independent combination of
two decidable normal polyadic polymodal modal logics is decidable (Wolter, 1998). The
same result holds for modal logics with the converse operator interpreted over transitive
frames (Wolter, 1995, 1996, 1997). Moreover, the properties of finite axiomatizability,
soundness, and completeness transfer through the independent combination of monomodal
logics (Fine and Schurz, 1996; Kracht and Wolter, 1991). As for one-dimensional temporal
logics, it is known that PPLTL(PPLTL) and PPLTL ⊕ PPLTL are decidable, and that they
admit a sound and complete finite axiomatization (we denote by PPLTL the extension of
Propositional Linear Temporal Logic with Past Operators) (Finger and Gabbay, 1992, 1996).
In the case of join, things get much harder. For instance, the modal logic S5 is NP-complete,
S5 ⊗ S5 (S52 for short) is NEXPTIME-complete (Marx, 1999), and S53 is undecidable (it
does not even have the finite model property) (Kurucz, 2000). Moreover, PLTL ⊗ Km is
decidable, but PLTL ⊗ PLTL is not even recursively enumerable (Wolter, 2000).

Now that we have introduced our main mathematical apparatus, and before we examine
further algorithmic aspects of combining methods, let us take a closer look at a domain
where we can put it to use.

3. An application to mobile systems

In this section, we focus our attention on mobile systems. We first present the distinctive
features of such systems and then we illustrate the main characteristics of the ambient
calculus, one of the major formal tools for modeling mobile systems. Next, we show how
the proposed combined approach can actually be used to deal with mobile systems. We
present a combined framework, pairing temporal and hybrid logics, that allows us to model
the temporal evolution of mobile system states as well as the spatial distribution of localities.
The expressive power of the proposed framework is exemplified through the formalization
of a number of meaningful properties of ambients. A simple, but paradigmatic, case study
about banks, clients, and security doors follows.

3.1. Mobile systems and mobile ambients

Roughly speaking, a mobile system is a program that exploits a wide area computational
infrastructure like the World-Wide-Web. A concrete example is the Universal Mobile
Telecommunications System (UMTS), the third generation of mobile phones that is go-
ing to replace GSM. As discussed in Cardelli (1999), the Web violates many familiar
assumptions about the behaviour of distributed systems. In particular, three phenomena that
remain largely hidden in local area network architectures become readily observable on a
wide area network:

MODEL CHECKING FOR COMBINED LOGICS 299

(i) Virtual locations. Because of the presence of potential attackers, barriers are erected
between mutually distrustful administrative domains. Therefore a program must be
aware of where it is, and of how to move and to communicate between different
domains;

(ii) Physical locations. On the planet-size structure, the speed of light becomes tangible
and induces a notion of physical locations and physical distance between locations;

(iii) Bandwidth fluctuations. A global network is susceptible to unpredictable congestion
and partitioning. Moreover, mobile devices may perceive bandwidth change as a con-
sequence of physical movement.

In addition, on a wide area network like the Web there is no practical upper bound to commu-
nication delays. In particular, failures become indistinguishable from long delays, and thus
undetectable. Failure recovery becomes indistinguishable from intermittent connectivity.

These phenomena influence the basic building blocks of computation for mobile sys-
tems, like the computational model, the programming constructs, and the kind of pro-
grams one can write, and the verification and validation processes must thus be adapted
accordingly.

In the nontrivial task of modeling mobility, the first step is to isolate the peculiar features
of mobile systems. Five features that characterize mobile systems may be identified:

• Dynamic connectivity. The communication channels are not fixed once and for all, but
they can be established and released dynamically. As a consequence, the topology, or
structure, of the system is not static and may change over time.

• Distribution. In a distributed system processes may occupy different locations and the
interaction between processes depends on their relative positions. For example, the United
States and the European Union are both enclosed by a political boundary that regulates
the movement of people and software. Within a political boundary, private companies
and public agencies and institutions may further regulate the flow of people and software
across their doors. Special permissions (like passports or certificates) are required for
people and for software in order to cross these boundaries.

• Locality. By locality we mean distribution-awareness: a process has some notion of the
location it occupies, and of the existence of different locations, in an absolute or relative
sense. If capable, it can exit its domain and enter different locations, or even dissolve a
boundary enclosing a location.

• Security. Virtual boundaries are erected to protect special domains from possible at-
tackers. These preclude the unfettered execution of possibly dangerous actions across
domains. Examples are firewalls surrounding a major company and the encryption of a
piece of data.

• Mobility. This is surely the most peculiar feature of mobile systems. In its general sense,
there are two different notions of mobility. The first, mobile computation, has to do with
virtual mobility, and concerns mobile code that moves between devices. An example of
mobile software is the execution of an applet in Java. The second, mobile computing,
has to do with physical mobility, and concerns computation that is carried out in mobile
devices. Examples of mobile hardware are a wireless laptop entering a building and a
mobile phone entering a phone cell. While mobile computation is possible over a static

300 FRANCESCHET, MONTANARI AND DE RIJKE

(although possibly flaky) network, mobile computing implies a dynamic change of the
network over time.

To see how combinations of logics can capture mobile systems, it is useful to move to a
more abstract, mathematical description of mobile systems. To this end, we take advantage
of terminology and concepts from the ambient calculus. The ambient calculus (Cardelli and
Gordon, 2000b) is a process calculus which has been developed to deal with the above-
described features of mobility in an effective way. It focuses on mobile computational
ambients (or locations), that is, on places where computations happens and that are them-
selves mobile. An ambient has the following distinctive characteristics:

• An ambient is a bounded and named place where computation happens. If we want
to move computations easily we must be able to determine what parts should move.
A boundary determines what is inside and what is outside the ambient, and therefore
determines what moves. Examples of ambients are: a web page, a single data object, a
file system, a laptop, a university, a country, a union of countries.

• Ambients can be nested within other ambients. For instance, a university is placed in a
certain country, and may contain several laptops connected to the network. The ambient
structure may be organized as a graph in which nodes are ambients and edges represent
the subambient relation. In the example of figure 4, the ambient a contains two ambients
b and c, and the latter contains the ambient d.

• Each ambient has a collection of local running processes. A local process of an ambient is
a process that is contained in an ambient, but not in any of its subambients. The top level
local processes have direct control on the ambient and, in particular, they can instruct the
ambient to move. In contrast, the local processes of a subambient have no direct control
on the parent ambient. In figure 4, process P1 is local to ambient a, P2 is local to b, P3

is local to c, and P4 is local to d .
• Each ambient may move as a whole with all its subcomponents. An ambient, instructed

by its local processes, may enter another ambient, exit the parent ambient, and open,
that is, dissolve, an ambient. In the example depicted in figure 5, top part, ambient a,
containing the local process P and the subfolder Q, enters ambient b, whose contents are
represented by R, as a consequence of the execution of its local instruction in b. The result
of the operation is that ambient a becomes a subambient of ambient b. Conversely, in the
example depicted in figure 5, middle part, ambient a exits ambient b, as a consequence

P2 P3 P4P
1

a

b c

d

b c
d

a

Figure 4. An ambient (left side) and its structure (right side).

MODEL CHECKING FOR COMBINED LOGICS 301

b

R

a
in b.P

Q

b

R

b

R

a

Q
out b.P a

a

OPEN REDUCTION

Qopen b.P

b

R

b P Q

ENTER REDUCTION

EXIT REDUCTION

P
Q

P
Q

Figure 5. The movement and dissolution reductions.

of the execution of its local instruction out b. The result of the operation is that ambient
a becomes a sibling of b. Finally, in the example depicted in figure 5, bottom part, the
local process opens ambient b, as a consequence of the execution of its local instruction
open b. The result is that the boundary of the ambient b is discarded, but its content is
spilled in the place where the ambient b used to be.

• Processes communicate through the exchange of messages. A process may output a
message, and another process may read the message, discard it, and proceed with the
acquired knowledge. Typical contents of messages are ambient names and capabilities,
that is, instructions to enter, exit, and open an ambient.

How can we use combined logics to reason about processes specified in the ambient calcu-
lus? A modal logic called ambient logic, based on the ambient calculus, has already been
devised for specifying properties of mobile computations (Cardelli and Gordon, 2000a). A
brief look at this logic will help us to identify the key ingredients of the combined logic
we are looking for. Ambient logic is a polymodal logic which features two different sets of
modalities: temporal modalities, to describe the temporal evolution of processes in the sys-
tem, and spatial modalities, to capture the spatial distribution of processes among different
locations. The combination of these modalities allows one to talk about time and space in
the same formula and to express properties like: “eventually the agent will go away”, and
“there will always be an agent called A here”.

The decidability and complexity of the model checking problem for formulas in the
ambient logic against processes in the ambient calculus have been analyzed in Cardelli and
Gordon (2000a), Charatonik et al. (2001) and Charatonik and Talbot (2001). In particular,
Cardelli and Gordon (2000a) describe a simple algorithm for model checking the fragment

302 FRANCESCHET, MONTANARI AND DE RIJKE

of the calculus devoid of replication and restriction against the fragment of the logic devoid
of composition adjunct and revelation. Charatonik et al. (2001) present a PSPACE model
checker for the above fragment and show the problem to be PSPACE-complete. Charatonik
and Talbot (2001) show that either including replication in the calculus or composition
adjunct in the logic leads to undecidability. Moreover, they extend the algorithm presented
in Charatonik et al. (2001) to include restriction in the calculus and revelation in the logic,
while preserving its PSPACE complexity.

Observe that the complexity results just mentioned are obtained by restricting the full
logical language of ambient logic to fragments that can be managed algorithmically. As we
will shortly see, with our method of combining logics we follow a different, bottom-up,
strategy.

3.2. Mobile systems, hybrid logics, and combined logics

From a technical point of view, we can isolate two main ingredients of mobility: the notion
of location and the change of spatial configurations of locations over time. In this section
we show that the notion of location can be naturally expressed in hybrid logics, and that
the evolution of spatial configurations of locations can be captured by means of a suitable
combination of temporal and hybrid logics.

Modal and temporal logics have been successfully used as specification languages in the
model checking task (Clarke and Schlingloff, 2001; Emerson, 1990; Pnueli, 1977). They
are algorithmically well-behaved and mathematically natural fragments of classical logics.
However, from a modeling point of view something crucial is missing in propositional
modal and temporal logics: they lack mechanisms for naming individual locations and
for dynamically creating new names for locations. Hybrid logics (Areces et al., 1999,
2000, 2001; Blackburn, 2000; HyLo: http://www.hylo.net) are extensions of modal logics
that support reference to locations by introducing a new type of atomic formulas, called
nominals. Syntactically, nominals behave like ordinary propositional variables, but they are
names, which are true at exactly one location in any model. Hence, if i is a nominal, the
formula i holds if and only if the current location is called i . But nominals are just the
first ingredient of hybrid logics. Hybrid languages contain the at operator @i which gives
random access to the location named by i : the formula @iφ holds if and only if φ holds at
the location named by i . They may also include the downarrow binder ↓x . which creates a
brand new name x and assigns it to the current location. The formula ↓x .φ holds if and only
if φ holds whenever the current location has been named by x . The operator @ combines
naturally with ↓: ↓ stores the current location, and @ retrieves the information stored. For
instance, the formula

↓x .♦↓y.β ∧ @x (♦y → α),

interpreted over the domain of days, states that there exists a day in the future in which
β is true and α is true from tomorrow until that future day. The model checking problem
for hybrid logics has been investigated in Franceschet and de Rijke (2003) and Franceschet
et al. (2003).

MODEL CHECKING FOR COMBINED LOGICS 303

It is easy to capture the notion of location in hybrid logic: it corresponds to its fundamental
notion of nominal. As far as model checking is concerned, nominals may not necessarily be
unique, that is, there may be different locations with the same name. For instance, names
for ambients are not assumed to be unique in the ambient calculus. In this case, the meaning
of formula @iφ is that φ is true at some location called i .

The evolution of spatial configurations of locations over time can easily be encoded in the
combined framework we described in this paper. In fact, mobile systems can be embedded
into a number of frameworks, which differ from each other in the expressive power and
in the level of interaction between spatial and temporal components. In the following, we
focus on a sample framework based on temporalization. A mobile system state describes the
structure of ambients and, for each ambient, the program state of its local process. A mobile
system state can be represented as a labeled rooted graph: a node represent an ambient and
is labeled with (i) the ambient name and (ii) the program state of its local process. The edges
represent the subambient relation. The root is the desktop ambient, that is the outermost
location. This graph is not necessarily a tree; for instance, it may happen that the same
ambient is contained in two distinct parent ambients. In such cases there is a node in the
graph with two different parents. This labeled graph may be seen as a model for hybrid
logic, where the ambient names are nominals and the local program states are sets of atomic
propositions.

A mobile system state may evolve in different ways: a local process may execute an
instruction, possibly modifying its local program state, and an ambient may decide to
move, changing the topology of the ambient structure. Finally, a local process may open
another ambient. In the latter case both the local program state and the topology of the
structure are modified. We can model this evolution by temporalizing the hybrid model
describing the mobile system state.

Formally, the operational behavior of a mobile system may be modeled by means of a
temporalized model (W, R, g, w0). The outer frame (W, R) models temporal evolution of
mobile system states, and w0 ∈ W is the initial state. For every w ∈ W , the hybrid model
g(w) is a labeled rooted graph representing the mobile system state associated with w. The
situation is depicted in figure 6, in which we label nodes with pairs like (a, s), where a
is the ambient name and s denotes the local program state. The first column of the figure
represents an enter reduction (ambient b enters into ambient c), the second column represents
an exit reduction (ambient d exits from ambient c), and the third column represents an open
reduction (a process local to ambient a opens ambient b, and the local program state of
ambient c is updated).

A temporalized logic T1(T2) can be used to specify mobile temporal requirements. Tem-
poral requirements are captured by formulas of the temporal logic T1, while spatial state-
ments are expressed by formulas of the hybrid logic T2. A model checker for T1(T2) can be
obtained by composing model checkers for the component logics T1 and T2. For instance,
let T1 be Computation Tree Logic CTL and T2 be the full hybrid logic with nominals and
the operators @ and ↓. In the latter, we use ♦ and for the existential and universal
modalities, and ♦∗ and ∗ for their reflexive and transitive closures.

In the following, we show how some meaningful properties of ambients, mixing spatial
and temporal requirements, can be encoded in the resulting temporalized logic:

304 FRANCESCHET, MONTANARI AND DE RIJKE

(c,t)(b,s)

(d,u)

(a,r)

(c,t)

(a,z)

(b,s)

(a,r)

(d,u) (b,s) (c,t) (d,u)

(a,r)

(b,s)

(d,u)

(c,w)

(a,r)

(c,t)

(d,u)

(a,r)

(c,t)(b,s)

(d,u)

Figure 6. A temporalized model for a mobile system.

• The property “eventually ambient b will exit ambient a” is captured by the formula:

EF@a
∗¬b

• The property “eventually ambient b will enter ambient a” is captured by the formula:

EF@a ♦∗b

• The property “eventually ambient a will be opened” is captured by the formula:

EF ∗ ¬a

• The property “if ambient b will enter ambient a, then eventually it will exit” is captured
by the formula:

AG(@a♦∗b → AF@a
∗ ¬b)

• The property “there will be always an ambient called a” is captured by the formula:

AG♦∗a

MODEL CHECKING FOR COMBINED LOGICS 305

• The property “eventually the desktop will be clear (meaning, eventually the desktop will
have no subambient)” is captured by the formula:

EF false

• The property “ambient a will always have at most one subambient” captured by the
formula:

AG@a(false∨ ↓ x .♦ ↓ y.@x y)

• The property “eventually there will be a shared ambient (meaning, eventually an ambient
will have two parent ambients)” is captured by the formula:

EF ↓ r.♦∗ ↓ x .@r♦∗ ↓ y.¬@x y ∧ @x♦u ∧ @y♦v ∧ @uv

It is worth point out that the properties: “a is a black hole (meaning, everything that enters
into a will not exit)” and “a is a white hole (meaning, everything that enters into a will
eventually exit)” are beyond the scope of this framework.

3.3. A security protocol

We now make things more concrete by looking at a simple, but paradigmatic, example: a
security protocol that a client has to follow to enter into a bank. The protocol is the following:

To enter the bank, a client has to go first through a security door. When inside the door,
the client has to ask for the permission to enter into the bank. The door may give or deny
the permission. In the first case, the client enters the bank and processes the transaction.
In the second case, the client may not enter the bank and is forced to exit the security door
outside the bank. To exit the bank, the client has to go through the security door again
and ask for the permission to exit. The door may give or deny the permission to exit. In
the first case, the client exits the security door outside the bank, whereas in the second
case the client remains inside the door until the permission to exit has been allowed.

We model this security protocol exploiting by the combined framework proposed in
Section 3.2. We identify three ambients: the client, the security door and the bank. We
assume that everything happens in an outermost desktop ambient, but we do not take care
of the desktop ambient. The door ambient always encloses the bank ambient, while the client
may be outside the door ambient, inside the door ambient but outside the bank ambient,
or inside the bank ambient. We use nominals C for the client, D for the security door, and
B for the bank. Moreover, we use propositions ENTER? (respectively, EXIT?) to denote
that the client asked for the permission to enter (respectively, exit) the bank, ENTER! (re-
spectively, EXIT!) to denote that the client obtained the permission to enter (respectively,
exit) the bank, NOENTER (respectively, NOEXIT) to denote that the client did not obtain

306 FRANCESCHET, MONTANARI AND DE RIJKE

6

D,EXIT!D,NOEXITD,ENTER!D,NOENTER

D,EXIT?D,ENTER?

B

D

D

C

B

BCBCBCBC

BCBC

BC

D

C

B

D

1

2

3

4 5

8 9

10

7

Figure 7. A model for the security protocol.

the permission to enter (respectively, exit) the bank. The temporalized model describing all
possible scenarios of this security protocol is depicted in figure 7.

We specify the properties describing the security protocol in the temporalized logic
CTL∗(HL), where CTL∗ is Computation Tree Logic CTL∗ and HL is the basic Hybrid Logic
containing nominals and the @ operator only (as before, we use ♦ and for the existential
and universal modalities, and ♦∗ and ∗ for their reflexive and transitive closures, in the
latter logic). First, we must specify that the client cannot enter the bank without receiving
the permission to enter. This is written as follows:

¬E(@D¬ENTER!U@B♦C)

MODEL CHECKING FOR COMBINED LOGICS 307

Moreover, the client cannot leave the security without receiving the permission to exit. This
is encoded as follows:

AG(@B♦C → ¬E(@D¬EXIT!U@D ¬C))

Furthermore, if the entrance is denied, the client has to leave the bank immediately. This is
specified as follows:

AG(@DNOENTER → AX@D ¬C)

Finally, if the exit is denied, the client has to remain inside the door until the permission to
exit has been given. This is implemented as follows:

AG(@DNOEXIT → A(G@D♦C ∨ @D♦CU@DEXIT!))

Notice that the first three formulas are in CTL, while the last formula is in CTL∗, but not
in CTL. By taking the conjunction of the above four properties one obtains a specification
that forces the client to follow the security protocol informally described above. One may
verify whether a model satisfies this specification by combining a model checker for CTL∗

and a model checker for HL and by automatically checking the specification against the
model. In particular, one may check that the model described in figure 7 actually satisfies
the above four properties.

It is worth noticing that the client, the security door, and the bank may be metaphors
for different scenarios. For instance, the client may be a program that has to interact with
a protected system (the bank), and the security door may be a firewall that allows the
interaction only to secure programs. Alternatively, the client may be a web user and the
bank may be an encrypted file. The encryption protecting the file is played by the security
door which may give or deny the encryption key to the web user.

4. Combined model checkers

In this section we define model checking procedures for temporalized, independently com-
bined, and joined logics.

We first focus on the case of temporalization. The global model checking problem for a
temporalized logic T(L) is defined as follows. Let M = (W,R, g) be a T(L)-model. We
say that M is finite if W and R are finite and, for every w ∈ W , g(w) is finite. Let M =
(W,R, g) be a finite T(L)-model and ψ be a formula in LT(L). The global model checking
problem for T(L) consists in checking whether there exists w ∈ W such thatM, w |=T(L) ψ .
We call model checker a program that solves the global model checking problem. Let ψ

be a T(L)-formula and MMLL(ψ) be the set of maximal monolithic subformulas of ψ

belonging to LL . We denote by ψ↑ the T-formula obtained from ψ by replacing every
formula α ∈ MMLL(ψ) by a new proposition letter Pα .

Let MCT and MCL be model checkers for T and L, respectively. Given an appropriate
model checking instance, these programs return true if the corresponding instance is

308 FRANCESCHET, MONTANARI AND DE RIJKE

Function MCT(L)

Input: a T(L)-model M = (W,R, g) and a formula ψ ∈ LT(L)

compute MMLL(ψ) and ψ↑

for every w ∈ W
V (w) = ∅

for every α ∈ MMLL(ψ)
for every w ∈ W

if MCL(g(w), α) = true then
V (w) = V (w) ∪ {Pα}

return MCT((W,R, V), ψ↑)

Figure 8. A model checking procedure for temporalized logics.

a “yes” instance, false otherwise. In figure 8, we present the pseudo-code of a model
checker MCT(L) for T(L) that exploits MCT and MCL. Given a model M = (W,R, g) and a
formula ψ , MCT(L) first computes the set MMLL(ψ) and the formula ψ↑. Furthermore, for
every world w ∈ W , it inizializes a suitable valuation function V to the empty set. Then, for
every maximal monolithic formula α ∈ MMLL(ψ) and every world w ∈ W , it invokes the
model checker MCL on the input consisting of the L-model g(w) and the L-formula α. If the
execution of MCL on w and α returns true, then the proposition letter Pα is added to V (w).
Finally, it calls the model checker MCT on the input consisting of the T-model (W,R, V)
and the T-formula ψ↑, and it returns the output of this invocation. The following theorem
can be easily proved.

Theorem 4.1 (Termination, soundness, and completeness). Let M = (W,R, g) be a
finite model for T(L) and ψ ∈ LT(L). If MCL and MCT are terminating, sound and complete,
then:
1. Termination: MCT(L), with input M and ψ, terminates, returning either true or false;
2. Soundness: if MCT(L) returns true on input M and ψ, then there exists w ∈ W such

that M, w |=T(L) ψ ;
3. Completeness: if MCT(L) returns false on input M and ψ, then, for every w ∈ W,

M, w
|=T(L) ψ .

We now give a general algorithm to solve the global model checking problem for the
independently combined logic T1 ⊕ T2. Let T1 and T2 be two temporal logics and M =
(W,R1,R2, V) be a model for T1 ⊕T2. We say that M is finite if W , R1, and R2 are finite,
and, for every w ∈ W , V (w) is finite. The global model checking problem for T1 ⊕ T2 is
defined exactly as for T(L). Let C1

M and C2
M be the sets of connected components of (W,R1)

and (W,R2), respectively. Since M is a model for T1 ⊕ T2, every connected component
in C1

M (resp. C2
M) is a model for T1 (resp. T2). Let Sub(ϕ) be the set of subformulas

of ϕ.

MODEL CHECKING FOR COMBINED LOGICS 309

Procedure MCT1⊕T2

Input: a T1 ⊕ T2-model M = (W,R1,R2, V) and a formula ψ ∈ LT1⊕T2

compute C1
M, C2

M, and Sub(ψ)
for every w ∈ W let V (w) = V (w)
for every i = 1, . . . , |ψ |

for every ϕ ∈ Sub(ψ) ∩ LT1⊕T2 such that |ϕ| = i
case on the form of ϕ

ϕ = P , P ∈ P: skip
ϕ = ϕ1 ∧ ϕ2: for every w ∈ W

if (ϕ1 ∈ V (w) and ϕ2 ∈ V (w)) then
V (w) = V (w) ∪ {ϕ} ; V (w) = V (w) ∪ {Pϕ}

ϕ = ¬ϕ1: for every w ∈ W
if (not ϕ1 ∈ V (w)) then

V (w) = V (w) ∪ {ϕ} ; V (w) = V (w) ∪ {Pϕ}
ϕ = O(ϕ1, . . . , ϕc), O ∈ OP(LTi), i ∈ {1, 2}
let ϕ′ = ϕ

for every j ∈ {1, . . . c} replace ϕ j in ϕ′ with Pϕ j

for every (U,S) ∈ Ci
M

for every u ∈ U let V ′(u) = V (u)
MCTi ((U,S, V ′), ϕ′)
for every u ∈ U

if ϕ′ ∈ V ′(u) then
V (u) = V (u) ∪ {ϕ} ; V (u) = V (u) ∪ {Pϕ}

Figure 9. A model checking procedure for independently combined logics.

In order to develop a model checker for T1 ⊕ T2, it is convenient to view model checkers
as procedures that receive a model (W,R, V) and a formula ψ as input, and that extend the
valuation V (which maps a state to a set of proposition letters) to a valuation V ′ mapping
states to sets of subformulas ofψ in the following way: for every subformulaϕ ofψ and every
nodew, V ′(w) containsϕ iffϕ is true atw in (W,R, V). LetMCT1 andMCT2 be model checkers
for T1 and T2, respectively. In figure 9, we present the pseudo-code of a model checker for
T1 ⊕ T2 that exploits the procedures MCT1 and MCT2 . Given a model M = (W,R1,R2, V)
and a formula ψ , the procedure MCT1⊕T2 first computes the sets of connected components
C1
M and C2

M and the set of formulas Sub(ψ). Then, it model checks formulas in Sub(ψ) in
increasing order with respect to their lengths, and accordingly it extends the valuation V .
In particular, propositional cases are easily solved, while cases of formulas ϕ ∈ Sub(ψ),
with main operator in the language of Ti , i ∈ {1, 2}, are resolved by taking advantage of
the corresponding model checker for Ti . The following can be easily proved.

Theorem 4.2 (Termination, soundness, and completeness). Let M = (W,R1,R2, V)
be a finite model for T1 ⊕ T2 and ψ ∈ LT1⊕T2 . If MCT1 and MCT2 are terminating, sound,

310 FRANCESCHET, MONTANARI AND DE RIJKE

and complete, then:
1. Termination: the procedure MCT1⊕T2 , with input M and ψ, terminates;
2. Soundness and Completeness: let V be the (extended) valuation function after termina-

tion of procedure MCT1⊕T2 , with input M and ψ . Then, for every subformula ϕ of ψ and
every world w ∈ W, ϕ ∈ V (w) if and only if M, w |=T1⊕T2 ϕ.

Finally, we give a general algorithm that solves the global model checking problem for
T1 ⊗ T2. Let T1 and T2 be temporal logics and M = (W1,R1, W2,R2, V) be a model
for T1 ⊗ T2. We say that M is finite if W1, W2, R1 and R2 are finite, and, for every
(w1, w2) ∈ W1 × W2, V ((w1, w2)) is finite. Let M = (W1,R1, W2,R2, V) be a finite
T1 ⊗ T2-model and ψ ∈ LT1⊗T2 . The global model checking problem for T1 ⊗ T2 is to
check whether there exist w1 ∈ W1 and w2 ∈ W2 such that M, w1, w2 |=T1⊗T2 ψ .

Given a T1 ⊗ T2-model M = (W1,R1, W2,R2, V), a binary relation R ∈ R1 on W1

(resp. R ∈ R2 on W2), and a world w ∈ W2 (resp. w ∈ W1), we use R̂1
w (resp. R̂2

w) to
denote the binary relation on W1 × W2 (resp. W2 × W1) such that R̂1

w((x1, y1), (x2, y2)) if
and only if R(x1, x2) and y1 = y2 = w (resp. R̂2

w((x1, y1), (x2, y2)) if and only if R(y1, y2)
and x1 = x2 = w). Moreover, let R̂1

w = {R̂1
w | R ∈ R1} and R̂2

w = {R̂2
w | R ∈ R2}.

Finally, let i = 2 if i = 1, and i = 1 if i = 2.
In figure 10, we present the pseudo-code for a model checker for T1 ⊗ T2 that exploits

model checkers MCT1 and MCT2 for the component logics T1 and T2, respectively. The
implementation is similar to that of the model checker for T1 ⊕ T2.

Theorem 4.3 (Termination, soundness, and completeness). Let M = (W1,R1, W2,

R2, V) be a finite model for T1 ⊗ T2 and ψ ∈ LT1⊗T2 . If MCT1 and MCT2 are terminating,

sound, and complete, then:
1. Termination: the procedure MCT1⊗T2 , with input M and ψ, terminates;
2. Soundness and Completeness: let V be the (extended) valuation function after termina-

tion of procedure MCT1⊗T2 , with input M and ψ . Then, for every subformula ϕ of ψ and
every pair w1, w2 ∈ W1 × W2, ϕ ∈ V ((w1, w2)) if and only if M, w1, w2 |=T1⊗T2 ϕ.

5. Computational complexity

We now turn to an analysis of the computational complexity of the model checkers proposed
in the previous section. An instance for the model checking problem has two components: a
model (W,R, V) and a formula ψ . In our analysis, we will consider three main complexity
parameters: the cardinality n of W , the sum m of the cardinalities of the relations in R, and
the length k of ψ , i.e., the number of operators and proposition letters in ψ . Given w ∈ W ,
we will heavily use the following operations on the (extended) valuation V (w): checking
whether a formula ϕ belongs to V (w), and adding a formula ϕ to V (w). Both operations
can be efficiently implemented in constant time by representing V as a 2-dimensional bit
array of size n × k (Clarke et al., 1986).

We will express the complexity of the combined model checker in terms of that of
the component model checkers. It will turn out that the complexity of the combined model
checker is the sum of two factors: the communication overhead and the model checking cost.

MODEL CHECKING FOR COMBINED LOGICS 311

Procedure MCT1⊗T2

Input: a T1 ⊗ T2-model M = (W1,R1, W2,R2, V) and a formula ψ ∈ LT1⊗T2

compute Sub(ψ)
for every w ∈ W2 compute R̂1

w; for every w ∈ W1 compute R̂2
w

for every (w1, w2) ∈ W1 × W2 let V ((w1, w2)) = V ((w1, w2))
for every i = 1, . . . , |ψ |

for every ϕ ∈ Sub(ψ) ∩ LT1⊗T2 such that |ϕ| = i
case on the form of ϕ

ϕ = P , P ∈ P: skip
ϕ = ϕ1 ∧ ϕ2: for every (w1, w2) ∈ W1 × W2

if ϕ1 ∈ V ((w1, w2)) and ϕ2 ∈ V ((w1, w2)) then
V ((w1, w2)) = V ((w1, w2)) ∪ {ϕ}
V ((w1, w2)) = V ((w1, w2)) ∪ {Pϕ}

ϕ = ¬ϕ1: for every (w1, w2) ∈ W1 × W2

if not ϕ1 ∈ V ((w1, w2)) then
V ((w1, w2)) = V ((w1, w2)) ∪ {ϕ}
V ((w1, w2)) = V ((w1, w2)) ∪ {Pϕ}

ϕ = O(ϕ1, . . . , ϕc), O ∈ OP(LTi), i ∈ {1, 2}
let ϕ′ = ϕ

for every j ∈ {1, . . . c} replace ϕ j in ϕ′ with Pϕ j

for every w ∈ Wi

if i = 1 then D = W1 × {w} else D = {w} × W2

for every (u, v) ∈ D let V ′((u, v)) = V ((u, v))
MCTi ((D, R̂i

w, V ′), ϕ′)
for every (u, v) ∈ D

if ϕ′ ∈ V ′((u, v)) then V ((u, v)) = V ((u, v)) ∪ {ϕ};
V ((u, v)) = V ((u, v)) ∪ {Pϕ}

Figure 10. A model checking procedure for joined logics.

The communication overhead is the time spent for “packing” the inputs for the components
and for “unpacking” their outputs; this represents the cost of the interaction between the
components. The model checking cost represents the cost of performing the actual model
checking of the component logics.

We first consider the case of temporalization. Let L be a logic and T a temporal logic.
We write CT(L)(·, ·, ·) (resp. CL(·, ·), CT(·, ·, ·)) for the complexity function of the model
checker MCT(L) (resp. MCL, MCT). Note that CL(·, ·) has two parameters (the size of the model
and the length of the formula).

Theorem 5.1. Let (W,R, g) be a finite T(L)-model and ψ a T(L)-formula. The complexity
of MCT(L) on input M and ψ is

O(n) · [O(k) · CL(N , O(1)) + O(1) · CL(N , O(k))] + CT(n, m, O(k)),

where n = |W |, m = ∑
R∈R |R|, k = |ψ | and N = maxw∈W |g(w)|.

312 FRANCESCHET, MONTANARI AND DE RIJKE

Proof: The set of formulas MMLL(ψ) and the formula ψ↑ can be computed in one pass
through ψ , hence in O(k).

The subsequent nested for loop costs

∑
α∈MMLL(ψ)

∑
w∈W

CL(|g(w)|, |α|) ≤ n ·
∑

α∈MMLL(ψ)

CL(N , |α|).

To bound the last sum, notice that the set MMLL(ψ) contains only subformulas of ψ and
its cardinality is O(k). Since a set of cardinality n can be partitioned either into �(n) sets
of cardinality �(1) or into �(1) sets of cardinality �(n), the above sum is

O(n) · [O(k) · CL(N , O(1)) + O(1) · CL(N , O(k))].

Finally, as the length of ψ↑ is O(k), the unique call to MCT costs CT(n, m, O(k)). Summing
up, the overall cost is

O(n) · [O(k) · CL(N , O(1)) + O(1)CL(N , O(k))] + CT(n, m, O(k)).

The communication overhead is the cost of computing the set MMLL(ψ) and the formula
ψ↑. It equals O(k) and is dominated by the model checking cost. For instance, if T is
CTL (hence CT(n, m, k) = O((n + m) · k) (Emerson, 1990)), and L is a logic such that
CL(n, k) = O(n · k), then the model checking cost is O(k · (n · N + m)), hence still linear
in the size of the model and in the length of the formula.

We now treat the independent combination of two temporal logics T1 and T2.

Theorem 5.2. Let M = (W,R1,R2, V) be a finite T1 ⊕ T2-model and ψ a T1 ⊕ T2-
formula. The complexity of MCT1⊕T2 on input M and ψ is:

O(m1 + m2 + n · k) +
2∑

i=1

(
O(k) · CTi (O(n), O(mi), O(1))

+ O(n) · CTi (O(1), O(1), O(k)) + O(1) · CTi (O(n), O(mi), O(k))
)

where n = |W |, mi = ∑
R∈Ri

|R|, for i = 1, 2, and k = |ψ |.

Proof: The set of connected components C1
M (resp. C2

M) can be computed in time O(n +
m1) (resp. O(n + m2)) by means of a depth-first visit of the graph (W,R1) (resp. (W,R2)).
The cost of computing Sub(ψ) is linear in the size of ψ , and hence it is O(k).

The cost of the second part of the computation is:
∑

ϕ∈Sub(ψ) C(ϕ), where the cost factor
C(ϕ) depends on the form of ϕ. In particular, if ϕ is a proposition letter, then C(ϕ) = O(1).
If ϕ = ϕ1 ∧ ϕ2, or ϕ = ¬ϕ1, then C(ϕ) = O(n). If i ∈ {1, 2} and ϕ = O(ϕ1, . . . , ϕc),
with O ∈ OP(LTi), then the cost C(ϕ) is computed as follows. Let Ci

M = {(U i
j , Si

j) | j =
1, . . . , ci }, ni

j and mi
j be the cardinalities of U i

j and Si
j , respectively, for j = 1, . . . , ci . The

replacement of subformulas in ϕ′ with proposition letters costs O(c) = O(|ϕ|). Moreover,
for every connected component (U i

j , Si
j) in Ci

M, the following steps are performed:

MODEL CHECKING FOR COMBINED LOGICS 313

• the valuation V ′ is computed in O(ni
j);

• the formula ϕ′ is model checked in CTi (n
i
j , mi

j , O(|ϕ|));
• the valuation V is updated in O(ni

j).

It follows that, in this case, C(ϕ) amounts to

O(|ϕ|) +
ci∑

j=1

(
O

(
ni

j

) + CTi

(
ni

j , mi
j , O(|ϕ|))).

Since Ci
M contains either �(n) connected components with �(1) nodes or �(1) connected

components with �(n) nodes, C(ϕ) is as follows:

O(|ϕ|) + O(n) + O(n) · CTi (O(1), O(1), O(|ϕ|)) + O(1)

· CTi (O(n), O(mi), O(|ϕ|)).

Moreover, since the set Sub(ψ) contains either �(k) formulas of length �(1) or �(1)
formulas of length �(k), the cost of the second part of the computation is:

O(n · k) +
2∑

i=1

(
O(k) · CTi (O(n), O(mi), O(1)) + O(n) · CTi (O(1), O(1), O(k))

+ O(1) · CTi (O(n), O(mi), O(k)
)

and, hence, the overall complexity is:

O(m1 + m2 + n · k) +
2∑

i=1

(
O(k) · CTi (O(n), O(mi), O(1))

+ O(n) · CTi (O(1), O(1), O(k)) + O(1) · CTi (O(n), O(mi), O(k))
)
.

The communication overhead is the cost of computing the connected components, of
preparing the valuation as input to the model checking procedure, and of updating the
valuations when the procedure returns. It adds up to O(m1 + m2 + n · k), which is more
significant than in the case of temporalization. By way of example, if both T1 and T2 are
CTL, and m = m1 = m2, then the communication overhead is O(m + n · k), which is
proportional to the model checking cost of O((n + m) · k). So, the overall cost of the model
checker for CTL ⊕ CTL is O((n + m) · k), which is linear in the size of the model and
in the length of the formula. If both T1 and T2 are CTL∗, then the model checking cost
is exponential in the length k of the formula, and hence it dominates the communication
overhead.

Finally, we consider the join of temporal logics T1 and T2.

314 FRANCESCHET, MONTANARI AND DE RIJKE

Theorem 5.3. LetM = (W1,R1, W2,R2, V) be a finite T1 ⊗T2-model and ψ a T1 ⊗T2-
formula. Let 1̄ = 2 and 2̄ = 1. The complexity of MCT1⊗T2 on input M and ψ is:

O(n1 · m2 + n2 · m1 + n1 · n2 · k) +
2∑

i=1

O(ni) · [
O(k) · CTi (ni , mi , O(1))

+ O(1) · CTi (ni , mi , O(k))
]
,

where ni = |Wi |, mi = ∑
R∈Ri

|R|, for i = 1, 2, and k = |ψ |.

Proof: The sets R̂1
w and R̂2

w can be computed in O(n2 · m1) and O(n1 · m2), respectively.
The cost of computing Sub(ψ) is linear in the size of ψ , hence it is O(k). The cost of the
second part of the computation is:

∑
ϕ∈Sub(ψ) C(ϕ), where the cost factor C(ϕ) depends on

the form of ϕ. In particular, if ϕ is a proposition letter, then C(ϕ) = O(1). If ϕ = ϕ1 ∧ ϕ2,
or ϕ = ¬ϕ1, then C(ϕ) = O(n1 · n2). If ϕ = O(ϕ1, . . . , ϕc), with O ∈ OP(LT1), the cost
C(ϕ) amounts to O(c) = O(|ϕ|) to replace subformulas in ϕ′ with proposition letters, plus
n2 times the sum of the following factors:

• n1 to compute V ′;
• CT1 (n1, m1, O(|ϕ|)) to model check ϕ;
• n1 to update V .

That is, C(ϕ) is

O(|ϕ|) + O(n2) · [
O(n1) + CT1 (n1, m1, O(|ϕ|))].

Similarly, if ϕ = O(ϕ1, . . . , ϕc), with O ∈ OP(LT2), the cost C(ϕ) amounts to

O(|ϕ|) + O(n1) · [
O(n2) + CT2 (n2, m2, O(|ϕ|))].

It follows that the cost of the second part of the computation is

O(n1 · n2 · k) +
2∑

i=1

O(nī) · [
O(k) · CTi (ni , mi , O(1))

+ O(1) · CTi (ni , mi , O(k))
]
,

and, hence, the overall complexity is:

O(n1 · m2 + n2 · m1 + n1 · n2 · k) +
2∑

i=1

O(nī) · [
O(k) · CTi (ni , mi , O(1))

+ O(1) · CTi (ni , mi , O(k))
]
.

MODEL CHECKING FOR COMBINED LOGICS 315

The communication overhead is the cost of computing the sets R̂1
w and R̂2

w plus the cost
of preparing and updating the valuation functions before and after the invocation of the
model checking procedure, respectively. It amounts to O(n2 · m1 + n1 · m2 + n1 · n2 · k).
For instance, if both T1 and T2 are CTL, n = n1 = n2, and m = m1 = m2, then the
communication cost is O(n · (m + n · k)), which is proportional to the model checking
cost of O(n · (n + m) · k). Hence, the overall cost of the model checker for CTL ⊗ CTL is
O(n · (n +m) ·k). If m = �(n), the cost is O(n2 ·k), hence it is linear in the size of the model
and the length of the formula, else if m = �(n2), then the complexity is O(n3 · k). As in
the case of the independent combination, if both T1 and T2 are CTL∗, the model checking
dominates the communication overhead.

6. Experimental results

In this section, we report on experimental results based on implementations of combined
model checkers for CTL(CTL) and CTL ⊕ CTL. Both of them have been built on top of a
model checker for CTL, implemented in C, and are available from http://www.science.
uva.nl/∼mdr/ACLG/Software/. Tests were carried on a Sun ULTRA II (300 MHz) with
1 Gb RAM, under Solaris 5.2.5.

First, we treat the case of temporalization of CTL by means of CTL. We tested the model
checker on “linear” and “dense” models, varying the size of the model. Let M be a model
for CTL(CTL) and ϕ a formula in the language of CTL(CTL).

In the first test, we fixed ϕ to be A1G1A2(P U2 Q), and we adopted as model M1 =
(W, R, g), where (W, R) is a complete binary tree of height h1 and, for every w ∈ W , g(w)
is a labeled complete binary tree of height h2. Hence, this model contains n = n1 · (n2 + 1)
nodes, and m = n1 ·n2 −1 edges, where n1 = 2h1+1 −1 and n2 = 2h2+1 −1. Moreover, the
trees g(w) are labeled so that every node and every edge is processed during the checking of
A2(P U2 Q). The experimental outcomes we have obtained on this instance are summarized
in Table 1, where tms represents the CPU time in milliseconds. Note that the time needed
to perform the model checking grows linearly in the size of the model.

In the second test, we checked the formula ϕ = A1G1E2(P U2 Q), and we adopted as
model M2 = (W, R, g), where (W, R) is a complete graph of n1 nodes and, for every
w ∈ W , g(w) is a complete graph of n2 nodes. Hence, this model contains n = n1 · (n2 +1)

Table 1. Trees and A1G1A2(P U2 Q).

h1 h2 No. of nodes No. of edges tms

4 4 992 960 10

5 5 4032 3968 30

6 6 16256 16128 110

7 7 65280 65024 380

8 8 261632 261120 1490

9 9 1047552 1046528 5850

316 FRANCESCHET, MONTANARI AND DE RIJKE

Table 2. Complete graphs and A1G1E2(P U2 Q).

n1 n2 No. of nodes No. of edges tms

32 32 1056 33792 20

64 64 4160 266240 110

128 128 16512 2113536 820

256 256 65792 16842752 6010

512 512 262656 134479872 47970

1024 1024 1049600 1074790400 386760

nodes, and m = n1 · (n2
2 + n1) edges. The models g(w) are labeled in an appropriate way

in order to process every node and every edge during the checking of E2(P U2 Q). The
outcomes are summarized in Table 2. Once again, the time needed to perform the model
checking grows linearly in the size of the model. Moreover, as expected, the complexity of
the model checker depends on the number of edges too. Indeed, if we compare the costs of
the above two instances for the same number of nodes, we note that checking the second
instance in harder. This is because M2 contains dense graphs, i.e., graphs in which the
number of edges is quadratic in the number of nodes, while M1 is based on linear graphs,
i.e., graphs in which the number of edges is linear in the number of nodes.

Next, we treat the case of the independent combination of CTL and CTL. We tested
the model checker on “square grid” models, varying the size of the model (and fixing the
formula) or varying the “degree of interaction” of the formula (and fixing the model). Let
M be a model for CTL ⊕ CTL and ϕ be a formula in the language of CTL ⊕ CTL.

In the first test, we fixed ϕ to be A1G1 Q ∧ A2G2 Q, and we adopted as our model
M = (W, R1, R2, V) a square grid in which the rows are the connected components of
(W, R1) and the columns are the connected components of (W, R2). We tested the model
checker on square grids with a side of size l, hence with number of nodes n = l2 and a
number of edges m = 2 · l · (l − 1). The outcomes are summarized in Table 3. Note that the
time needed to perform the model checking grows linearly in the size of the model.

In our second test, we fixed the model M to be a square grid with a side of size 256,
and hence with 65396 nodes and 130560 edges, and we changed the degree of interaction

Table 3. Square grids and A1G1 Q ∧ A2G2 Q.

l No. of nodes No. of edges tms

32 1024 1984 90

64 4096 8024 340

128 16384 32512 1400

256 65396 130560 5760

512 262144 532264 23480

1024 1048576 2095104 118980

MODEL CHECKING FOR COMBINED LOGICS 317

Table 4. Fixed square grids and alternating formulas.

r 0 3 7 11 15 19

tms 1870 2540 2970 3860 4720 5590

of the formula. Define f0 = Q, and fk+1 = Ei Xi fk , for k ≥ 0 and i ∈ {1, 2}. We call the
token Ei Xi in fk a quantifier of fk and the token Ei Xi E j X j , with i
= j , an alternation of
quantifiers of fk . We tested the model checker on f20, varying the number r of alternations
of quantifiers of f20 from 0 (no interaction at all) to 19 (maximal interaction). The outcomes
are summarized in Table 4. As expected, the greater the degree of interaction of the formula
is, the longer the response time of the model checker becomes. Indeed, the communication
overhead is higher when checking formulas with strong interaction, due to the time spent
on packing the input and unpacking the output during the switches between the main model
checker and the component’s ones.

7. Related work and discussion

Let us briefly review the methodology we have been proposing. In order to verify a re-
quirement against a (mobile) system, we first have to encode the behavior of the system
into a suitable combined model. Then, we have to express the requirement in a sufficiently
expressive combined language. Finally, we can perform combined model checking as de-
scribed in Section 4. The response time of the combined model checker depends on those of
the component model checkers, and in many concrete situations it may be quite appealing
(e.g., if we specify our requirements in a combined language whose components admit
polynomial-time model checkers, the combined model checker runs in polynomial time).

One of the main reasons for the relative ease with which we can make combinations
work is that the ways of combining that we consider require no synchronization between
the components. Although there may be interaction between the components—as we have
seen with the join—, this is only a very loose kind of interaction. This is in contrast with
modular model checking, which has been proposed as a way to address the so-called state-
explosion problem. In modular verification, the specification of a module consists of two
parts. One part describes the guaranteed behavior of the module. The other part describes the
assumed behavior of the environment with which the module is interacting; this is called the
assume-guarantee paradigm (Jones, 1983; Lamport, 1983). The level of interaction between
the module and its environment is far more intricate than the kinds of interaction we have
been discussing, and, hence, in modular model checking the computational overhead for
the combination is much more significant than in our setting (Kupferman and Vardi, 1998,
2000).

It is also worth remarking that we do not consider in this paper the nontrivial problem of
decomposing a complex system into simpler components. We simply assume that the target
system is already expressible as a combination of components according to some combining
method. We showed that in some cases, for instance in the case of mobile reactive systems,
this assumption is satisfied. However, we are aware that there are models that cannot be

318 FRANCESCHET, MONTANARI AND DE RIJKE

obtained as a composition of simpler components. For instance, not every S52-model is a
join of two models for S5. For systems whose behaviour is captured by such models, our
modular approach cannot be adopted.

We conclude this section with a short comparison between our approach to model check
mobile systems and the one developed by Cardelli et al. based on ambient calculus and
ambient logic. As for the system modeling task, we use a relational structure, while the ap-
proach by Cardelli et al. exploits algebraic expressions belonging to the ambient calculus.
To specify system properties, we use a combined logic, which embeds a spatial component
into a temporal one, while Cardelli et al. use ambient logic. As for the model checking task,
we only program the interface, which must be supplied with the model checkers for the
component logics to obtain a model checker for the combined logic, while Cardelli et al.
developed various model checkers tailored to different versions of the ambient calculus and
ambient logic. One advantage of the ambient-based approach is its high-level modeling
language, which is somehow more natural than our low-level language of labeled graphs.
However, one has to regard the graph representation as a ‘machine language’ on which
reasoning is particularly efficient. Automatic translations from high-level model represen-
tations to low-level state transition ones can be devised (Clarke et al., 1999; Manna and
Pnueli, 1992). The main advantage of our combined approach is flexibility: the final model
checker is the composition of existing ones. Only the interface is programmed; the compo-
nent blocks may be selected according to the needs of expressiveness and complexity. For
instance, a model checker for CTL(HL), where HL is the basic hybrid logic with nominals
and the @ operator runs in polynomial time. If higher expressiveness is required at the
temporal level, one may substitute CTL with CTL∗, or, whenever a higher expressive power
is needed at the spatial level, one may add the hybrid binders to the basic hybrid logic. In
such cases, the resulting model checker runs in polynomial space and exponential time,
with respect to the length of the formula. Finally, in our approach one has to take care of the
so-called state-explosion problem. Whenever the system is the concurrent composition of
several processes, the size of the representation graph grows exponentially in the number
of processes of the system. However, many techniques have been proposed to successfully
cope with the state explosion problem, including modular, on-the-fly, symbolic, symmetric,
and abstract model checking (a survey of these techniques can be found in Clarke et al.
(1999).

8. Conclusions

We have addressed the problem of model checking for combined (temporal) logics and
structures. In contrast to combined deductive engines, combinations of model checking
procedures are very well behaved, even in the presence of strong forms of interaction. In
particular, complexity upper bounds transfer from the components to the combination, and in
most cases the communication overhead is insignificant when compared to the actual model
checking cost. One of the motivations for this work was the need to develop a model checking
framework for mobile systems and corresponding logics. We have shown that this is indeed
possible, using a divide and conquer strategy: we first isolate the orthogonal ‘simple’ entities
in which a system can be decomposed. Then, we apply well-known structures and logics to

MODEL CHECKING FOR COMBINED LOGICS 319

the component entities. Finally, we compose the results in order to infer general properties
of the entire system. We feel that this divide and conquer approach can be useful to model
and analyze many other complex systems, which, inherently, are the composition of simpler
entities and where the composition itself is ‘loose’ in the sense that synchronization between
the components is not called for.

Acknowledgment

We would like to thank the reviewers for their valuable comments. Massimo Franceschet
and Angelo Montanari were supported by the MURST Project ‘Saladin’. Maarten de Ri-
jke was supported by the Netherlands Organization for Scientific Research (NWO) un-
der project numbers 220-80-001, 365-20-005, 612.000.106, 612.000.207, 612-13-001, and
612.069.006.

References

Areces, C., Blackburn, P., and Marx, M. 1999. A road-map on complexity for hybrid logics. In J. Flum and
M. Rodriguez-Artalejo, editors, Proc. of the Annual Conference of the European Association for Computer
Science Logic, vol. 1683 of LNCS, Springer, pp. 307–321.

Areces, C., Blackburn, P., and Marx, M. 2000. The computational complexity of hybrid temporal logics. Logic
Journal of the IGPL, 8(5):653–679.

Areces, C., Blackburn, P., and Marx, M. 2001. Hybrid logics: Characterization, interpolation, and complexity.
Journal of Symbolic Logic, 66(3):977–1010.

Baader, F. and Ohlbach, H. 1995. A multidimensional terminological knowledge representation language. Applied
NonClassical Logic, 5:153–197.

Blackburn, P. 2000. Representation, reasoning, and relational structures: A hybrid logic manifesto. Logic Journal
of the IGPL, 8(3):339–365.

Blackburn, P. and de Rijke, M. (eds.) 1996. Special Issue on Combining Structures, Logics, and Theories. Notre
Dame Journal of Formal Logic, 37:161–380.

Cardelli, L. 1999. Abstractions for mobile computations. In J. Vitek and C. Jensen editors, Secure Internet Pro-
gramming: Security Issues for Mobile and Distributed Objects, vol. 1603 of LNCS, Springer, pp. 51–94.

Cardelli, L. and Gordon, A.D. 2000a. Anytime, anywhere: Modal logics for mobile ambients. In Proc. of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Massachusetts, 19–
21, pp. 365–377.

Cardelli, L. and Gordon, A.D. 2000b. Mobile ambients. Theoretical Computer Science, 240(1):177–213.
Charatonik, W., Dal Zilio, S., Gordon, A.D., Mukhopadhyay, S., and Talbot, J.-M. 2001. The complexity of model

checking mobile ambients. In F. Honsell and M. Miculan, editors, Proc. of the International Conference on
Foundations of Software Science and Computation Structures, vol. 2030 of LNCS, Springer, pp. 52–167.

Charatonik, W. and Talbot, J.-M. 2001. The decidability of model checking mobile ambients. In Proc. of the 15th
Annual Conference of the European Association for Computer Science Logic, Springer, pp. 339–354.

Clarke, E., Emerson, E.A., and Sistla, A.P. 1986. Automatic verification of finite-state concurrent systems using
temporal-logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263.

Clarke, E.M., Grumberg, O., and Peled, D.A. 1999. Model Checking. Cambridge MA: The MIT Press.
Clarke, E.M. and Schlingloff, H. 2001. Model checking. In A. Robinson and A. Voronkov, editors, Handbook of

Automated Reasoning, vol. II, Elsevier Science, chap. 24, pp. 1635–1790.
Emerson, E.A. 1990. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, Vol. B, Elsevier Science Publishers B.V., pp. 995–1072.
Engelfriet, J. 1996. Minimal temporal epistemic logic. Notre Dame Journal of Formal Logic, 37:233–259.

320 FRANCESCHET, MONTANARI AND DE RIJKE

Fagin, R., Halpern, J.Y., Moses, Y., and Vardi, M.Y. 1995. Reasoning about Knowledge. Cambridge, MA: MIT
Press.

Fine, K. and Schurz, G. 1996. Transfer theorems for multimodal logics. In J. Copeland, editor, Logic and Reality:
Essays on the Legacy of Arthur Prior, Oxford, Oxford University Press, pp. 169–213.

Finger, M. 1992. Handling database updates in two-dimensional temporal logic. Journal of Applied Non-Classical
Logics, 2(2):201–224.

Finger, M. 1994. Changing the Past: Database Applications of Two-Dimensional Executable Temporal Logics.
PhD thesis, Imperial College, Department of Computing.

Finger, M. and Gabbay, D.M. 1992. Adding a temporal dimension to a logic system. Journal of Logic Language
and Information, 1:203–233.

Finger, M. and Gabbay, D.M. 1996. Combining temporal logic systems. Notre Dame Journal of Formal Logic,
37:204–232.

Finger, M. and Reynolds, M. 2000. Two-dimensional executable temporal logic for bitemporal databases. In
Advances in Temporal Logic, Kluver Academic Publishers, pp. 393–411.

Franceschet, M. and de Rijke, M. 2003. Model checking for hybrid logics. In Proceedings of the 3rd International
Workshop on Methods for Modalities (M4M), pp. 109–123.

Franceschet, M., de Rijke, M., and Schlingloff, H. 2003. Hybrid logics on linear structures: Expressivity and
complexity. In Proc. of the 10th International Symposium on Temporal Representation and Reasoning and of
the 4th International Conference on Temporal Logic (TIME-ICTL). IEEE Computer Society Press.

Franceschet, M., Montanari, A., and de Rijke, M. 2000. Model checking for combined logics. In Proc. of the 3rd
International Conference on Temporal Logic, pp. 65–73.

Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. 2003. Many-Dimensional Modal Logics: Theory and
Applications. Elsevier.

Gabbay, D.M. and de Rijke M. (eds.) 2000. Frontiers of Combining Systems 2, vol. 7 of Studies in Logic and
Computation. Research Studies Press/Wiley.

Gabbay, D.M. and Shehtman, V. 1998. Products of modal logics, part I. Logic Journal of the IGPL, 6:73–146.
Goguen, J.A. and Burstall, R.M. 1992. Institutions: Abstract model theory for specification and programming.

Journal of the ACM, 39:95–147.
Halpern, J.Y. and Vardi, M.Y. 1989. The complexity of reasoning about knowledge and time I: Lower bounds.

Journal of Computer and System Sciences, 38(1):195–237.
Halpern, J.H. and Vardi, M.Y. 1991. Model checking vs. theorem proving: A manifesto. In Proc. of the 2nd

International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann,
pp. 325–334.

Hemaspaandra, E. 1994. Complexity transfer for modal logic. In Proc. of the 9th Symposium on Logic in Computer
Science, Los Alamitos, CA., USA: pp. 164–175. IEEE Computer Society Press.

HyLo: The Hybrid Logic home page. URL: http://www.hylo.net.
Jones, C.B. 1983. Specification and design of (parallel) programs. In IFIP World Computer Congress, pp. 321–

332.
Kracht, M. and Wolter, F. 1991. Properties of independently axiomatizable bimodal logics. Journal of Symbolic

Logic, 56(4):1469–1485.
Kupferman, O. and Vardi, M.Y. 1998. Modular model checking. In Compositionality: The Significant Difference.

International Symposium, COMPOS97, volume 1536 of LNCS, Springer, pp. 381–401.
Kupferman, O. and Vardi, M.Y. 2000. An automata-theoretic approach to modular model checking. ACM Trans-

actions on Programming Languages and Systems, 22:87–128.
Kurucz, A. 2000. S53 lacks the finite model property. In Proc. of the 3rd International Conference on Temporal

Logic (ICTL).
Lamport, L. 1983. Specifying concurrent program modules. ACM Transaction on Programming Language and

Systems, 5:190–222.
Manna, Z. and Pnueli, A. 1992. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer.
Marx, M. 1999. Complexity of products of modal logics. Journal of Logic and Computation, 9:221–238.
Meyer, J. and van der Hoek, W. 1995. Epistemic Logic for AI and Computer Science. Cambridge University Press.
Pnueli, A. 1977. The temporal logic of programs. In Proceedings IEEE Symposium of Foundations of Computer

Science, pp. 46–77.

MODEL CHECKING FOR COMBINED LOGICS 321

Sernadas, A., Sernadas, C., and Caleiro, C. 1997. Synchronization of logics with mixed rules: Completeness
preservation. In M. Johnson, editor, Algebraic Methodology and Software Technology—AMAST97, vol. 1349
of LNCS, Springer, pp. 465–478.

Spaan, E. 1993. Complexity of Modal Logics. PhD thesis, Department of Mathematics and Computer Science,
University of Amsterdam.

Wolter, F. 1995. The finite model property in tense logic. The Journal of Symbolic Logic, 60(3):757–774.
Wolter, F. 1996. A counterexample in tense logic. Notre Dame Journal of Formal Logic, 37(2):167–173.
Wolter, F. 1997. Completeness and decidability of tense logics closely related to logics above K4. The Journal of

Symbolic Logic, 62(1):131–158.
Wolter, F. 1998. Fusions of modal logics revisited. In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev,

editors, Advances in Modal Logic. CSLI, Stanford, CA.
Wolter, F. 2000. The product of converse PDL and polymodal K. Journal of Logic and Computation, 10(2):223–

251.
Wolter, F. and Zakharyaschev, M. 1998. Satisfiability problem in description logics with modal operators. In

Proc. of the 6th Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann,
pp. 512–523.

