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Abstract

We investigate the complexity of the model checking problem for hybrid logics. We provide model
checking algorithms for various hybrid fragments and we prove PSPACE-completeness for hybrid
fragments including binders. We complement and motivate our complexity results with an appli-
cation of model checking in hybrid logic to the problems of query and constraint evaluation for
semistructured data.
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1. Introduction

In model checking [19] we are given a formal model and a property and we have to
check whether the model satisfies the property. The model is a labelled graph, sometimes
called Kripke structure, and the property is a formula in some logical language. We search
the graph in order to check whether the formula is true in the model. As a technique, model
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checking has very strong links to (at least) two areas in computer science: verification and
databases. In the first half of this paper, we focus on model checking algorithms for so-
called hybrid logics; in the second half, we go on to show their relevance for reasoning
about semistructured data.

Modal and temporal logics have been successfully used as specification languages in the
model checking task [20]; they are algorithmically well-behaved and mathematically nat-
ural fragments of classical logics. However, something crucial is missing in propositional
modal and temporal logics: they lack mechanisms for naming states, for accessing states by
names, and for dynamically creating new names for states. In particular, traditional modal
and temporal logics are able to express properties that satisfy the tree model property, that
is, properties that are satisfiable if, and only if, they are satisfiable in a tree-like model.
Are there extensions of modal and temporal logics violating the tree model property that
are still computationally tractable? This is where hybrid logics come in. They allow us to
refer to states in a truly modal framework, mixing features from first-order logic and modal
logic, whence the name hybrid logic [15]. In addition to ordinary propositional variables,
hybrid languages provide a type of atomic formulas called nominals. Syntactically, nom-
inals behave like propositional variables, but they have an important semantic property:
nominals are true at exactly one state in any model.

Nominals are only the first ingredient that sets hybrid languages apart from traditional
modal-like languages. Hybrid languages may also contain the at operator @i which gives
direct access to the unique state named by i: @ip holds if, and only if, p holds at the state
named by i. Moreover, hybrid languages may be extended with the downarrow binder
↓x that assigns the variable name x to the current state of evaluation. The operator @
combines naturally with ↓: ↓ stores the current state of evaluation and @ enables us to
retrieve the information stored by shifting the point of evaluation in the model. While ↓x

stores the current state in x, the binder ⇓x stores the ‘label’ of the current state in x, that is,
the set of propositions holding at the current state. Finally, the existential binder ∃x binds
the variable name x to some state in the model.

Model checking for hybrid languages has hardly been explored so far. In this paper
we address this gap. Our approach is incremental: on top of well-known model check-
ing results for Propositional Temporal Logic and Converse Propositional Dynamic Logic,
we investigate the model checking problem for these languages extended with the hybrid
machinery as well as with the universal modality A. It turns out that the addition of nom-
inals, the @ operator, and the universal modality A does not increase the complexity of
the model checker. In contrast, an arbitrary use of hybrid binders in formulas is compu-
tationally dangerous. The model checking problem for any hybrid logic that freely mixes
the hybrid binder ↓ or ⇓ with temporal operators is PSPACE-complete, while ∃ is hard
even without temporal operators. However, the model checker runs in exponential time
with respect to the nesting degree of the binders in the formula. This means that we can
still check in polynomial time long formulas, as long as the nesting degree of the hybrid
binders in the formula is bound. We summarize our complexity results in Table 1, where k

is the length of the formula, n and m are the number of nodes and the number of edges of
the graph structure, respectively, and r is the nesting degree of hybrid binders. Moreover,
F is the Future temporal operator, P is Past, U is Until and S is Since. Finally, languages of
the form HL(·) are hybrid extensions of Propositional Temporal Logic, while languages of
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Table 1
Complexity of model checking for hybrid logics

Language Complexity Language Complexity

HL(@,F,P,A) O(k · (n + m)) HLr (↓,@,F,A) O(k · (n + m) · nr )

HL(@,U,S,A) O(k · n · m) HDLr (↓,@,A) O(k · (n + m) · nr )

HDL(@,A) O(k · (n + m)) HL(∃) PSPACE-complete
HL(↓,@) O(k · n) HL(∃,@,F,A) PSPACE-complete
HL(↓,F) PSPACE-complete HLr (∃,@,F,A) O(k · (n + m) · nr+1)

HL(↓,A) PSPACE-complete HDLr (∃,@,A) O(k · (n + m) · nr+1)

HL(↓,@,F,A) PSPACE-complete

the form HDL(·) are hybrid extensions of Converse Propositional Dynamic Logic. Notice
that PSPACE-complete problems are hard with respect to expression (or formula, or query)
complexity, which is the complexity of model checking if we only consider the length of
the formula as a parameter. If data complexity (the complexity of model checking if we
only consider the size of the model as a parameter) is taken into account, all the model
checking problems summarized in the table can be solved in polynomial time.

In the second part of the paper we illustrate a general methodological point: since hy-
brid languages provide very natural modeling facilities, understanding the computational
and algorithmic properties of hybrid languages is of great potential value. The complexity-
theoretic results obtained in this paper are valuable results about hybrid logic in their own
right, but we believe they get additional value because of the fact that hybrid languages
provide such natural modeling facilities, which makes the formal results of this paper ap-
plicable in a fairly direct way. To back up these claims we apply model checking for hybrid
logics to the problems of query and constraint evaluation for semistructured data: data with
some structure but without a regular schema. We discuss a hierarchy of query languages
for semistructured data corresponding to fragments of the language Lorel [3], the query
language in the Lore system [31], which was designed for managing semistructured data.
The languages that we discuss offer regular expressions to navigate the query graph at arbi-
trary depths, as well as the possibility of comparing object identities and object values. We
embed those query languages into fragments of hybrid logics with different expressivity
and establish a close relationship between the query processing problem for semistructured
data and the global model checking problem for hybrid logics. Moreover, we describe lan-
guages to specify path constraints for semistructured data, including inclusion, inverse and
functional path constraints. Path constraints generalize relational integrity constraints for
semistructured databases and they are useful to provide a loose schema to the otherwise
unstructured database. Once again, we provide an embedding into hybrid logic, this time
of the constraint language, and we underline the close connection between path constraint
evaluation for semistructured data and model checking for hybrid logics.

The paper is organized as follows. In Section 2 we discuss related work. Section 3 intro-
duces hybrid logic. In Section 4 we provide model checkers for different hybrid languages,
analyze their computational complexity, and prove PSPACE-completeness of the model
checking problem for hybrid fragments allowing binders. Readers mostly interested in the
relation between hybrid logic and semistructured data can skip Section 4 and return to it
for details of the results used in Section 5, where we describe the application of model
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checking hybrid logic to semistructured data. We conclude the paper and outline future
work in Section 6.

2. Related work

Hybrid logic was invented by Arthur Prior, the inventor of tense logic. The germs of the
idea seem to have emerged in the 1950s, but the first detailed account is [35]. Prior called
nominals world propositions and worked with rich hybrid languages including quantifiers
∀ and ∃. The next big step was taken by Robert Bull, Prior’s student, in [16]. Bull in-
troduced a three-sorted hybrid language (propositional variables, state nominals and path
nominals) and proved a completeness result for this logic. Path nominals name branches in
tree-like models of time by being true at all and only the points of the branch. There were
no further papers on the subject till the 1980s, when hybrid logic was reinvented by a group
of Bulgarian logicians (Passy, Tinchev, Gargov, and Goranko). The locus classicus of this
work is Passy and Tinchev’s [34]; they initiated the study of binder-free systems. During
the 1990s, the emphasis has been on understanding the hybrid hierarchy in more detail.
Goranko introduced the ↓ binder [25], Blackburn and Seligman examined the interrela-
tionships between a number of binders [14]. Characterizations with respect to first-order
correspondence theory, interpolation properties, and computational complexity (of the sat-
isfiability problem) for hybrid modal logics have been studied in [11]; recent contributions
completing the picture are in [37]. The complexity of the satisfiability problem for hybrid
temporal logics with respect to different classes of frames has been investigated in [9,10,
24]. As for implementations, a resolution-based theorem prover for hybrid logic with @
and ↓ has been implemented [12]. For a comprehensive entry point to the field see the
hybrid logic home page [29].

Since the mid-1990s there has been a lot of work on the interface of computational logic
and semistructured data, making use of a wide variety of logical tools and techniques. E.g.,
[17] use simulations and morphisms, [4] concentrate on regular expressions, and [18] make
the connection with description logic. The relation between model checking and query
processing has been extensively explored for structured data; see, e.g., [27]. The relation
between model checking and query processing for semistructured data goes back at least
to [6], where it was formulated in terms of suitable modal-like logics. Quintarelli [36]
embeds a fragment of the graphical query language G-Log into CTL, and she sketches a
mapping for subsets of other semistructured query languages, like Lorel, GraphLog and
UnQL. It is worth noticing that the fragments considered in [36] do not allow queries
with joins. De Alfaro [8] proposes the use of model checking for detecting errors in the
structure and connectivity of web pages. Miklau and Suciu [32] and Gottlob et al. [26]
sketch an embedding of the forward looking fragment of XPath into CTL. Finally, Marx
[30] used PDL-like logics in order to extend the XPath core language to a language that is
expressively complete with respect to first-order logic on finite trees.

As for the relation between model checking and path constraints evaluation for semi-
structured data, Alechina et al. [7] embed forward and backward path constraints into
Converse Propositional Dynamic Logic. Calvanese et al. [18] use description logics, and
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Afanasiev et al. [5] turn to CTL and provide experimental results of the “query evaluation
as model checking” perspective.

3. Hybrid logics

Temporal logics [22] (TL, for short) may be viewed as fragments of classical logics
[13]. They extend propositional logic by adding the well-known temporal operators future
F, past P, until U and since S. Let PROP = {p,q, . . .} be a set of propositional variables.
The syntax of temporal logic is as follows:

φ := � | p | ¬φ | φ ∧ φ | Fφ | Pφ | φUφ | φSφ.

We adopt the usual Boolean shorthands. The dual of P is Hα = ¬P¬α, and the dual of F
is Gα = ¬F¬α.

Temporal logic is interpreted over Kripke structures of the form 〈M,R,V 〉, where M is
a set of states (or worlds, points, nodes), R is a binary relation on M called the accessibility
(or reachability) relation, and V is a valuation function from PROP to the powerset of
M . We assume no specific structure of time (linear, branching, . . . ). Let M be a Kripke
structure and m ∈ M . The semantics of temporal logic is given in Fig. 1.

Sometimes, TL also includes the transitive closure operators F+, P+, U+ and S+, inter-
preted over the transitive closure R+ of the accessibility relation, as well as the universal
modality A. The semantics of the universal modality is as follows: M,m |= Aφ iff for all
m it holds that M,m |= φ. The dual of the universal modality is the existential modality
Eα = ¬A¬α.

Hybrid logic (HL, for short) extends temporal logic with devices for naming states and
accessing states by names. Let NOM = {i, j, . . .} and WVAR = {x, y, . . .} be sets of nomi-
nals and state variables, respectively. HL’s syntax is:

φ := TL | i | x | @tφ | ↓x.φ | ∃x.φ,

with i ∈ NOM, x ∈ WVAR, t ∈ NOM ∪ WVAR. The operators in {@,↓,∃} are called hybrid
operators. We call WSYM = NOM∪WVAR the set of state symbols, ALET = PROP∪NOM
the set of atomic letters, and ATOM = PROP∪NOM∪WVAR the set of atoms. We use x = y

M,m |= �
M,m |= p iff m ∈ V (p), p ∈ PROP

M,m |= ¬φ iff M,m 
|= φ

M,m |= φ ∧ ψ iff M,m |= φ and M,m |= ψ

M,m |= Fφ iff ∃m′ (Rmm′ ∧M,m′ |= φ)

M,m |= Pφ iff ∃m′ (Rm′m ∧M,m′ |= φ)

M,m |= ψUφ iff ∃m′ (Rmm′ ∧M,m′ |= φ∧
∀m′′ (Rmm′′ ∧ Rm′′m′ →M,m′′ |= ψ))

M,m |= ψSφ iff ∃m′ (Rm′m ∧M,m′ |= φ∧
∀m′′ (Rm′m′′ ∧ Rm′′m →M,m′′ |= ψ))

Fig. 1. Semantics for temporal logic.
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M, g,m |= a iff m ∈ [V,g](a), a ∈ ATOM
M, g,m |= @t φ iff M, g,m′ |= φ, where [V,g](t) = {m′}, t ∈ WSYM
M, g,m |= ↓x.φ iff M, gx

m,m |= φ

M, g,m |= ∃x.φ iff there is m′ ∈ M such that M, gx
m′ ,m |= φ

Fig. 2. Semantics for hybrid logic.

for @xy and x 
= y for @x¬y. For simplicity, we omit parenthesis after the ↓. For instance,
in ↓x.p ∧ @xq , the variable x used in @xq is bound by ↓x. Hence, it should be read as
↓x.(p ∧ @xq).

Hybrid logic is interpreted over hybrid Kripke structures, i.e., Kripke structures
〈M,R,V 〉 where the valuation function V assigns singleton subsets of M to nominals
i ∈ NOM. To give meaning to the formulas, we also need the notion of assignment. An
assignment g is a mapping g : WVAR → M . Given an assignment g, we define gx

m by
gx

m(x) = m and gx
m(y) = g(y) for x 
= y. For any atom a, let [V,g](a) = {g(a)} if a is a

state variable, and V (a) otherwise.
The semantics of hybrid logic is given in Fig. 2, where M = 〈M,R,V 〉 is a hybrid

Kripke structure, m ∈ M , and g is an assignment; the semantics for Boolean and temporal
operators is as for temporal logic. In words, the at operator @t shifts evaluation to the
state named by t , where t is a nominal or a variable. The downarrow binder ↓x binds
the state variable x to the current state (where evaluation is being performed), while the
existential binder ∃x binds the state variable x to some state in the model; ↓ and ∃ do not
shift evaluation away from the current state. We use HL(O1, . . . ,On) to denote the hybrid
language with hybrid and temporal operators O1, . . . ,On.

The until operator U can be written in hybrid logic as follows: αUβ = ↓x.F(β ∧
H(Px → α)), and analogously for the since operator S. Moreover, the past operator is
Pα = ↓x.∃y.@y(Fx ∧ α). Finally, the downarrow binder ↓ is a particular case of the ex-
istential binder: ↓x.α = ∃x.(x ∧ α), while ∃ can be simulated by ↓ and E as follows:
∃x.α = ↓y.E↓x.E(y ∧ α).

In addition to the hybrid languages listed so far, we consider hybrid dynamic languages;
these will prove to be especially useful in Section 5. We consider a hybridization of con-
verse propositional dynamic logic (CPDL) [28]. CPDL adds two operators to propositional
logic, namely 〈e〉α and 〈e〉−1α, where e is a regular expression on a set of labels Σ and α

is a CPDL formula. CPDL is interpreted over Labelled Transitions Systems (LTSs), Kripke
structures in which both the nodes and the edges are labelled. The edges are labelled with
symbols in Σ . Each regular expression e on the set of edge labels Σ identifies a binary
relation Re on the set of states. The relation Re is recursively defined in terms of the struc-
ture of e. More precisely, Rl contains all the edges labelled with l, Re1.e2 = Re1 ◦ Re2 ,
Re1+e2 = Re1 ∪ Re2 , and Re∗ = (Re)

∗. A state s is reachable from a state r through the
regular expression e if (r, s) ∈ Re . Given an LTS M and a state s in M, we have that 〈e〉α
is true in M at s if there exists a state s′ reachable from s trough e such that α is true in M
at s′. Moreover, 〈e〉−1α is true in M at s if there exists a state s′ such that s is reachable
from s′ through e and α is true in M at s′.

Hybrid dynamic logic is the hybridization of CPDL. We write HDL(O1, . . . ,On) to
denote the extension of CPDL with nominals, hybrid operators and possibly the universal
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modality in O1, . . . ,On. For instance, HDL(@,↓,A) is CPDL with nominals, @, ↓ and
A operators.

We now introduce a new hybrid binder ⇓. We have separated the introduction of this
binder because it is usually not included in hybrid languages. However, ⇓ will come in
handy in Section 5. Intuitively, while ↓ stores the current state into a variable, ⇓ stores the
label (or value) of the current state, that is, the set of propositions that hold at the current
state. Let WVAR′ = {v,w, . . .} be a set of variables such that WVAR and WVAR′ are disjoint
sets. The new variables in WVAR′ serve as containers for sets of propositions. We add to
the hybrid language the formulas ⇓v.α, v, and v = w, and the new abbreviation v 
= w for
¬(v = w), where v,w ∈ WVAR′, with the following meaning. Let M = 〈M,R,V 〉 be a
hybrid Kripke structure, m ∈ M , and g an assignment extended to WVAR′; that is, g is a
mapping that associates each variable in WVAR to a state in M and each variable in WVAR′
to a subset of PROP. We denote by V −1 the function from M to the powerset of PROP such
that p ∈ V −1(m) iff m ∈ V (p). Then, M, g,m |= ⇓v.α iff M, gv

V −1(m)
,m |= α. Moreover,

M, g,m |= v iff g(v) = V −1(m) and M, g,m |= v = w iff g(v) = g(w). In words, the
binder ⇓v binds the variable v to the label of the current state, while v = w compares the
labels stored in v and w.

To put our results on model checking in perspective we briefly recall the complex-
ity/decidability results for satisfiability for the logics we consider. The basic hybrid logic
with just nominals and the @ operator is PSPACE-complete, not harder than modal logic.
However, as soon as either the past operator, or the until operator, or the universal modality
is added, the satisfiability problem becomes EXPTIME-complete. Finally, if the ↓ binder
is added, decidability of the satisfiability problem is lost.

4. Model checking for hybrid logics

We now investigate the complexity of the global model checking problem for various
hybrid languages. A hybrid Kripke structure M = 〈M,R,V 〉 is finite if M is finite. The
global model checking problem for hybrid logic is: Given a finite hybrid Kripke struc-
ture M, an assignment g, and a hybrid formula φ, is there a state m ∈ M such that
M, g,m |= φ? We distinguish between expression complexity, i.e., the complexity of the
model checking problem when the complexity parameter is the length of the formula only,
and data complexity, i.e., the complexity of the model checking problem when the com-
plexity parameter is the size of the model only.

4.1. Model checkers

We provide global model checkers for different hybrid logics and we analyze their
worst-case behavior. We start by describing a model checker called MCLITE for the lan-
guage HL(@,F,P,U,S,A). It receives a hybrid model M = 〈M,R,V 〉, an assignment
g, and a hybrid formula φ in the considered language and, after termination, every state in
the model is labelled with the subformulas of φ that hold at that state. The algorithm uses
a bottom-up strategy: it examines the subformulas of φ in increasing order of length, until
φ itself has been checked.
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Procedure MCF(M, g,α)

for w ∈ L(α) do
for v ∈ R−1(w) do

L(Fα,w) ← 1
end for

end for

Procedure MCA(M, g,α)

if L(α) = M then
for v ∈ M do

L(Aα,v) ← 1
end for

end if

Procedure MC@(M, g, t, α)
let {w} = [V,g](t)
if L(α,w) = 1 then

for v ∈ M do
L(@t α, v) ← 1

end for
end if

Procedure MCU(M, g,α,β)

for w ∈ M do
unmark(w)

end for
for w ∈ L(β) do

for v ∈ R−1(w) do
if L(α,w) = 0 then

for u ∈ R−1(v) do
mark(u)

end for
end if

end for
for v ∈ R−1(w) ∪ R−2(w) do

if marked(v) then
unmark(v)

else
L(αUβ,v) ← 1

end if
end for

end for

Fig. 3. MCLITE subprocedures.

We need some auxiliary notation. Let R be an accessibility relation; then R− is the
inverse of R: R−vu if, and only if, Ruv. For n � 1, let Rn(w) be the set of states that are
reachable from w in n R-steps, and R−n(w) be the set of states that are reachable from w

in n R−-steps. The states belonging to R1(w) are successors of w, while those belonging
to R−1(w) are predecessors of w. Given a model M = 〈M,R,V 〉, we denote by M− the
model 〈M,R−,V 〉. The length of a formula φ, denoted by |φ|, is the number of operators
(Boolean, temporal and hybrid) of φ plus the number of atoms (propositions, nominals and
variables) of φ. Let sub(φ) be the set of subformulas of φ. Notice that |sub(φ)| = O(|φ|).

The model checker MCLITE updates a table L of size |φ| × |M| whose elements are
bits. Initially, L(α,w) = 1 if, and only if, α is an atomic letter in sub(φ) such that w ∈
V (α). When MCLITE terminates, L(α,w) = 1 if, and only if, M, g,w |= α for every
α ∈ sub(φ). Given α ∈ sub(φ) and w ∈ M , we denote by L(α) the set of states v ∈ M

such that L(α,v) = 1 and by L(w) the set of formulas β ∈ sub(φ) such that L(β,w) = 1.
MCLITE uses subroutines MCF, MCU, MCA, and MC@ in order to check subformulas of
the form Fα, αUβ , Aα, and @t α, respectively. The pseudocode for these procedures is in
Fig. 3.

Proposition 4.1 (Correctness of subroutines). Let M = 〈M,R,V 〉 be a hybrid model, g

an assignment, α and β hybrid formulas, and t a state symbol. Let L be a table such
that, for every w ∈ M , L(α,w) = 1 (respectively, L(β,w) = 1) if, and only if, M,w |= α

(respectively, M,w |= β). Then,
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(1) after termination of MCF(M, g,α), for every state w ∈ M , L(Fα,w) = 1 if, and only
if, M, g,w |= Fα;

(2) after termination of MCA(M, g,α), for every state w ∈ M , L(Aα,w) = 1 if, and only
if, M, g,w |= Aα;

(3) after termination of MC@(M, g, t, α), for every w ∈ M , L(@t α,w) = 1 if, and only
if, M, g,w |= @t α; and

(4) after termination of MCU(M, g,α,β), for every w ∈ M , L(αUβ,w) = 1 if, and only
if, M, g,w |= αUβ .

Proof. The proofs for cases 1, 2, and 3 are easy. We only show the more involved case 4.
The procedure MCU works as follows. First, all nodes are set to unmarked. Then, for each
w that is labelled with β , the first inner for loop marks all the nodes u such that there
exists a node v which is not labelled with α and Ruv and Rvw. The second inner for
loop labels with αUβ the remaining unmarked nodes. The set of states labelled with αUβ

grows monotonically as computation proceeds. Indeed, a node that is not labelled with
αUβ during the iteration for some w may be labelled with αUβ during a later iteration for
some w′. Let w ∈ L(β). We claim that:

Claim 1. After termination of the main for loop dedicated to w in the procedure MCU, for
every v ∈ R−1(w) ∪ R−2(w), we have that v is labelled with αUβ if, and only if, every
successor of v that is a predecessor of w is labelled with α.

It follows that, after termination of the procedure MCU, for every v ∈ M , v is labelled
with αUβ if, and only if, every successor of v that is a predecessor of some w ∈ L(β) is
labelled with α, which means that M, v |= αUβ . To prove the left to right direction of the
claim, suppose that v is labelled with αUβ . Then, v is unmarked before the second inner
for loop. We infer that every successor of v that is a predecessor of w is labelled with α.
Indeed, suppose there exists a successor z of v such that z precedes w and z is not labelled
with α. Because of the first inner for loop, the predecessors of z are marked. Since v is a
predecessor of z, v is marked as well, which contradicts the fact that v is unmarked. For the
right to left direction, suppose every successor of v that is a predecessor of w is labelled
with α. Then, after the first inner for loop, v is unmarked. Indeed, suppose v is marked.
Then, there exists some successor z of v that is a predecessor of w and is not labelled with
α. This contradicts the fact that every successor of v that is a predecessor of w is labelled
with α. Hence, v is unmarked before entering the second inner for loop and, hence, v is
labelled with αUβ at the end of it. �

What is the complexity of the subroutines? Let M = 〈M,R,V 〉 be a finite hybrid
model, with n = |M| and m = |R|. The procedure MCF runs in O(n + m), and both MC@
and MCA run in O(n). As for MCU, for every w ∈ L(β), the procedure pays two backward
visits to the states reachable in 2 steps. Each visit costs O(m). As there are O(n) states in
L(β), MCU runs in O(n · m) time.

A model checker MCLITE for HL(@,F,P,U,S,A) can easily be programmed by tak-
ing advantage of the subroutines MCF, MCA, MC@, and MCU. MCLITE works bottom-up
checking all subformulas of the input formula in increasing length order. When a for-
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mula starting with one of @, F, U, A needs to be checked, the corresponding procedure
is invoked. Past temporal operators P and S are handled by feeding the subroutines MCF
and MCU, respectively, with the reversed model M−. Finally, Boolean connectives are
treated as usual. The correctness of MCLITE follows from the correctness of its subrou-
tines (Proposition 4.1) and the semantics of the operators P and S.

Theorem 4.2 (Correctness of MCLITE). Let M = 〈M,R,V 〉 be a hybrid model, g

an assignment, and φ a formula in HL(@,F,P,U,S,A). Then, after termination of
MCLITE(M, g,φ), we have that, for every w ∈ M and for every α ∈ sub(φ), it holds
that L(α,w) = 1 if, and only if, M, g,w |= α.

Theorem 4.3 (Complexity of MCLITE). Let M = 〈M,R,V 〉 be a hybrid model such that
n = |M| and m = |R|. Let g be an assignment, and φ a hybrid formula of length k. Then,

• if φ belongs to HL(@,F,P,U,S,A), then the model checker MCLITE(M, g,φ) ter-
minates in time O(k · n · m);

• if φ belongs to HL(@,F,P,A), then the model checker MCLITE(M, g,φ) terminates
in time O(k · (n + m)); and

• if φ belongs to HL(@,A), then the model checker MCLITE(M, g,φ) terminates in
time O(k · n).

Proof. There are |sub(φ)| = |φ| = k subformulas to check. The complexity of each check
depends on the form of the subformula ψ . If ψ is atomic, it is checked in constant time.
If its main operator is Boolean, @, or A, then it is checked in O(n). If ψ ’s main operator
is F or P, then it is checked in O(n + m). Finally, if its main operator is U or S, then ψ is
checked in O(n · m). �

We can extend MCLITE to cope with transitive closure operators F+ and U+, as well
as with their past counterparts, without increasing the asymptotic complexity. The idea is
to replace the visit to the predecessors of w with a backward depth-first visit of the nodes
that can reach w. As an alternative, one may first compute the transitive closure of the
accessibility relation, and then use the model checker MCLITE on the transitive model.

We now move to hybrid languages with binders. The efficient bottom-up strategy used
in MCLITE does not work for such languages. Why? Consider the formula G↓x.Fx. It
says that every successor of the current point is reflexive. If we try to check this formula in
a bottom-up fashion, we initially have to check the subformula x. However, at this stage,
we do not have enough information to check x, and hence we cannot label the states of the
model with x. Instead, we can proceed as follows: we first check ↓x.Fx with a procedure
yet to be developed, then we check G↓x.Fx, that is ¬F¬↓x.Fx, taking advantage of the
subprocedure MCF of MCLITE. In order to check ↓x.Fx, for each state w, we first assign
w to x, and then check Fx at w under the new assignment for x. The latter can again be
done using MCF.

The sketched strategy, which combines top-down and bottom-up reasoning, has been
implemented in a recursive model checker MCFULL for the full hybrid language HL(HO ∪
TO), where HO = {@,↓,∃}, and TO = {F,P,U,S,A}. The auxiliary procedures Check∗,
with ∗ ∈ HO∪TO, handle the cases of subformulas with main operator ∗. Whenever possi-
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Procedure CheckF(M, g,α)
MCFULL(M, g,α)
MCF(M, g,α)

Procedure Check↓(M, g, x,α)

for w ∈ M do
g(x) ← w

MCFULL(M, g,α)
if w ∈ L(α) then

L(↓x.α,w) ← 1
end if
Clear(L,x) end for

Procedure Check∃(M, g, x,α)
for v ∈ M do

g(x) ← v

MCFULL(M, g,α)
for w ∈ M do

if w ∈ L(α) then
L(∃x.α,w) ← 1

end if
end for
Clear(L,x)

end for

Fig. 4. MCFULL subprocedures.

ble, these procedures re-use the subprocedures MC∗, with ∗ ∈ {@}∪TO, of MCLITE. They
use the new subroutine Clear(L,x) to reset all the values of L(α), for any α containing
the variable x free (we assume that different binders use different variables). Boolean op-
erators are treated as usual. In Fig. 4 we show the pseudocode for CheckF, Check↓, and
Check∃. The procedures for the other operators are similar to CheckF.

Theorem 4.4 (Correctness of MCFULL). Let M = 〈M,R,V 〉 be a hybrid model, g an
assignment, and φ a hybrid formula. Then, after termination of MCFULL(M, g,φ), we
have that:

• for every w ∈ M , L(φ,w) = 1 if, and only if, M, g,w |= φ; and
• for every w ∈ M and every sentence α ∈ sub(φ), L(α,w) = 1 if, and only if,
M, g,w |= α.

Theorem 4.5 (Complexity of MCFULL). Let M = 〈M,R,V 〉 be a hybrid model such that
n = |M| and m = |R|, and g an assignment. Let φ be a hybrid formula in HL(∃,↓, S), and
let r↓ and r∃ be the nesting degree of ↓ and ∃, respectively, in φ. Let CS be the model check-
ing complexity for HL(S). Then, MCFULL(M, g,φ) terminates in time O(CS · nr↓+r∃+1) if
r∃ > 0, and in time O(CS · nr↓) if r∃ = 0. Moreover, the procedure uses polynomial space.

Proof. We have that (1) the procedure Check∗ runs in time Cα + C∗, where C∗ is the cost
of MC∗ and Cα is the cost to check α; (2) the procedure Check↓ runs in time n · Cα ; and
(3) the procedure Check∃ runs in time n · (Cα + n). Thus, the overall worst-case time
complexity is O(CS · nr↓+r∃+1) if r∃ > 0, and it is O(CS · nr↓) if r∃ = 0. Since the height
of the recursion stack for MCFULL is at most |φ|, we have that MCFULL uses polynomial
space. �

MCFULL can easily be extended to cope with formulas involving ⇓ and the comparison
of state labels. A procedure similar to Check↓ can be used to check formulas of the form
⇓v.α. The only difference is that we have to bind the variable v to the label of the current
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state, and not to the current state itself. The complexity remains the same. Moreover, the
formula v, for v ∈ WVAR′, can be verified by comparing the label of the current state and
the label stored in v, while the formula v = w, for v,w ∈ WVAR′, can be checked by
comparing the labels stored in v and w.

Furthermore, MCFULL can be viewed as a general model checker for the hybridiza-
tion of any temporal logic. Given a temporal logic T, the hybridization of T is the hybrid
logic obtained from the language of T by adding the hybrid machinery. Suppose that, for
each temporal operator O of arity k in T, we can exploit a procedure CheckO that, given
a model and k formulas α1, . . . , αk , labels each state m of the model with the formula
O(α1, . . . , αk) if, and only if, the formula is true at m. A model checker for the hybridiza-
tion of T can be synthesized from these model checking procedures following the example
of MCFULL. For instance, a model checker for HDL(@,↓,⇓,A) can be programmed by
taking advantage of a CPDL model checker. Model checking for CPDL can be done in
linear time with respect to the length of the formula and the size of the model [21]. Hence,
we have:

Theorem 4.6. Model checking for HDL(@,A) has linear time data and expression com-
plexity, while model checking for HDL(@,↓,⇓,A) has exponential time expression com-
plexity and polynomial time data complexity. In any case, the problem can be solved in
polynomial space.

4.2. Lower bounds

Can we do better than the upper bounds given in Section 4.1? Model checking for first-
order logic is PSPACE-complete. Since HL(∃,@,F) is as expressive as first-order logic
[15], model checking for HL(∃,@,F) is PSPACE-complete as well. What about fragments
of HL(∃,@,F)? The question is particularly interesting for the fragment HL(↓,@,F),
since it corresponds to the bounded fragment of the first-order correspondence language
[9]. Unfortunately, the model checking problem for HL(↓,@,F), and hence for the
bounded fragment, is still PSPACE-hard, even without @, nominals and propositions. It
is worth noticing that all the lower bounds in this section refer to expression complexity.

Theorem 4.7. Model checking for the pure nominal-free fragment of HL(↓,F) is PSPACE-
complete.

Proof. PSPACE-membership follows from Theorem 4.5. To prove PSPACE-hardness, we
embed Quantified Boolean Formulas (QBF) [33] into the model checking problem for the
pure nominal-free fragment of HL(↓,F). We proceed in two steps. We first embed QBF

Fig. 5. Embedding QBF into model checking for hybrid logics.
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τ (x) = F(x ∧ ↓y.Fy) τ(¬x) = F(x ∧ ↓y.G¬y)

τ(α1 ∧ α2) = τ (α1) ∧ τ (α2) τ (α1 ∨ α2) = τ (α1) ∨ τ (α2)

τ (∃x.α) = F↓x.F(↓y.G¬y ∧ τ (α)) τ (∀x.α) = G↓x.F(↓y.G¬y ∧ τ (α))

Fig. 6. From QBF to hybrid logic.

into the model checking problem for HL(↓,@,F). Then, we remove the @ operator and
atomic letters.

Recall that an instance of QBF has the form Ψ = Q1x1. . . .Qnxn.α(x1, . . . , xn), where
Qi ∈ {∃,∀}, and α(x1, . . . , xn) is a Boolean formula using variables x1, . . . , xn. Let NOM =
{true, false, home} and let M be the model depicted in Fig. 5, left-hand side. Let φΨ

be the HL(↓,@,F)-formula obtained from Ψ by replacing every occurrence of ∃x by
@homeF↓x, every occurrence of ∀x by @homeG↓x, every occurrence of x by @xtrue,
and every occurrence of ¬x by @xfalse. We have that Ψ is true if, and only if, M,1 |=
φΨ . We now remove @ and atomic letters. To remove @, we have to find a way to “come
back home” after F↓x has fixed the variable x. We can add to the previous model two more
edges, one from 2 to 1, and the other from 3 to 1, and use the F operator to come home.
Since we don’t have atomic letters, we have to distinguish in some structural way between
state 2 (denoting true) and state 3 (denoting false). We can add, for instance, a reflexive
edge leaving 2. The resulting frame is depicted in Fig. 5 (right-hand side). Without loss of
generality, we assume that negation in α(x1, . . . , xn) is applied only to variables. Let τ be
the translation given in Fig. 6. We leave it to the reader to check that Ψ is true if, and only
if, M,1 |= τ(Ψ ). �
Theorem 4.8. Model checking for the pure nominal-free fragment of HL(↓,F+) is
PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 4.5. To prove hardness, we em-
bed QBF into the model checking problem for the pure nominal-free fragment of
HL(↓,F+). Let Ψ = Q1x1. . . .Qnxn.α(x1, . . . , xn), where Qi ∈ {∃,∀}, and α(x1, . . . , xn)

is a Boolean formula using variables x1, . . . , xn. Let M be the unlabelled model with frame
〈{1,2}, {(1,2), (2,1)}〉. Let φΨ be the HL(↓,@,F)-formula obtained from Ψ by replacing
every occurrence of ∃x by F+↓x and every occurrence of ∀x by G+↓x. Then Ψ is true if,
and only if, M,1 |= φΨ . �
Theorem 4.9. Model checking for the pure nominal-free fragment of HL(∃) is PSPACE-
complete.

Proof. PSPACE-membership follows from Theorem 4.5. To prove hardness, we embed
QBF into the model checking problem for the pure nominal-free fragments of HL(∃).
Let Ψ = Q1x1. . . .Qnxn.α(x1, . . . , xn), where Qi ∈ {∃,∀}, and α(x1, . . . , xn) is a Boolean
formula using variables x1, . . . , xn. Ψ is a pure nominal-free formula in HL(∃). Let M
be the unlabelled model based on the frame 〈{1,2},∅〉. Then Ψ is true if, and only if,
M,1 |= Ψ . �
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Corollary 4.10. Model checking for the pure nominal-free fragment of HL(↓,A) is
PSPACE-complete.

Theorem 4.11. Model checking for HL(⇓,F) is PSPACE-complete.

Proof. The PSPACE upper bound comes from Section 4.1. To prove hardness, we embed
the model checking problem for HL(↓,F) into the same problem for HL(⇓,F). Consider
a hybrid model M = 〈M,R,V 〉 and a formula α in HL(↓,F). We construct a hybrid
model M′ = 〈M,R,V ′〉, where, for each m ∈ M , there exists a fresh nominal im with
V ′(im) = {m}. Moreover, let α′ be the formula in HL(⇓,F) that is obtained from α by
replacing each instance of ↓ by ⇓ and each instance of x by vx , where x ∈ WVAR and
vx ∈ WVAR′. Then, we have that M, g,m |= α if, and only if, M′, g,m |= α′. �
Theorem 4.12. Model checking for the pure nominal-free fragment of HDL(↓) is PSPACE-
complete.

5. Hybrid logic in action

On the previous pages we have discussed, and obtained, complexity results for model
checking a variety of hybrid logics. What’s the point? In this section we describe an appli-
cation of hybrid logic model checking to the task of evaluation of queries and constraints
on semistructured data. We will encounter a number of query and constraint formats as
well as reasoning tasks, all of which correspond to model checking in some specific hybrid
language.

5.1. Semistructured data

The growth of the World Wide Web has given us a vast, broadly accessible database.
The Extensible Markup Language (XML) [38] is a textual representation of information
that was designed to represent the hierarchical content of documents. It has been proposed
as a data model for semistructured databases since it is able to naturally represent missing
or duplicated data as well as deeply nested information [1]. As an example, Fig. 7 contains
the XML representation of a simple bibliography file. A very natural representation for
semistructured data is a labelled graph. In this paper, we will represent semistructured data
as a graph in which a node corresponds to an object and an edge corresponds to an object
attribute. Edges are labelled with attribute names, while leaf nodes are labelled with object
values (internal nodes are not labelled). The data graph corresponding to the XML example
on the left-hand side of Fig. 7 is depicted on the right-hand side of Fig. 7.

5.2. Query processing via hybrid logic model checking

It is possible to perform significant query processing on semistructured data via model
checking for hybrid languages. Quite a number of query languages for semistructured data
have been proposed in the literature. However, many of them are similar in spirit and
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Fig. 7. (Left) An XML representation of a bibliography file. (Right) A graphical representation of the same file.

sometimes even in syntax [1]. For this reason, we have chosen one of them as a model:
Lorel [3]. Lorel is the query language in the Lore system [31], which was designed for
managing semistructured data. We discuss three fragments of Lorel, that differ in their
expressive power; each will be embedded in a suitable hybrid logic. As a consequence, we
are able to process a query in Lorel by taking advantage of a model checker for hybrid
logics. Moreover, with the aid of the well-understood hybrid logic framework, it will be
easy to investigate and compare the expressive power of various fragments of the Lorel
query language.

All fragments that we consider allow regular expressions for navigating the data graph.
Some offer the possibility of comparing object identities, which allows us to implement
queries with joins. We will focus on monadic queries only: queries that return a set of ob-
jects of the database, or, equivalently, a set of nodes of the graph representation of the data-
base. The reason for this restriction is that we want to embed the query processing problem
into the global model checking problem, and the output of a global model checker is a set of
nodes. We will consider 3 increasingly large fragments of Lorel: L1

qry ⊂ L2
qry ⊂ L3

qry. The

most expressive language, L3
qry, captures a large subfragment of Lorel. Additional features

of Lorel that are not expressible in L3
qry will be discussed towards the end of the section.

Fragment 1: L1
qry We start by defining the query language L1

qry. A query in L1
qry has the

following schema Q1:

(Q1) select X

from rexp X

where X. fexp,

where rexp is a regular expression on edge labels (i.e., attribute names), and fexp is
a so-called filter expression. Intuitively, Q1 retrieves all nodes reachable from the root
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through rexp satisfying the filter fexp. The variable X is used as a container for these
nodes. We call the variable X in the ‘select’ clause of the query the focus of the query,
the condition rexp X in the ‘from’ clause of the query the selection expression, and the
condition X.fexp in the ‘where’ clause of the query the filter expression. The syntax of
filter expressions is:

fexp= true | rexp | rexp :: a | fexp and fexp | fexp or fexp |
not fexp,

where a is an object value. Given a set of nodes X, the filter X.rexp selects a node v in
X if there exists at least one reachable node from v trough rexp. The filter X.rexp::a
adds an additional constraint: it filters a node v in X if there exists at least one reachable
node from v trough rexp that is labelled with a. E.g., with reference to the example in
Fig. 7, consider the following:

select X

from biblio. book X

where X.(author :: Franceschet and date :: 2000)

This query selects all books written in 2000 such that Franceschet is one of the authors. In
our example, book o2 is retrieved. Moreover, the query

select X

from biblio._ X

where X.abstract

retrieves all entries for which an abstract has been provided: none.
The simple query language L1

qry can be embedded into hybrid dynamic logic with
only one nominal root for the data graph root and no hybrid operators. The em-
bedding τ1 is as follows. Let ω be the obvious embedding from filter expressions
to hybrid formulas: ω(true) = �, ω(rexp) = 〈rexp〉�, ω(rexp :: a) = 〈rexp〉a,
ω(fexp1 and fexp2) = ω(fexp1)∧ω(fexp2), ω(fexp1 or fexp2) = ω(fexp1)∨
ω(fexp2), and ω(not fexp) = ¬ω(fexp). To the query schema Q1 we associate the
hybrid formula τ1(Q1) = 〈rexp〉−1root ∧ ω(fexp). Notice how the selection expression
is translated ‘backward,’ while the filter expression is translated ‘forward.’

Next, we clarify the relation between query processing for semistructured data and
model checking for hybrid logic. Define the answer set of a monadic query q with re-
spect to a semistructured database D as the set of nodes retrieved by q belonging to the
data graph GD associated to D. Each node in the answer set corresponds to an element in
the corresponding XML representation of D. Moreover, given a hybrid formula α and a
hybrid model M, let the truth set of α with respect to M be the set of nodes of M at which
α is true. The following result relates the query processing problem for semistructured data
to the model checking problem for hybrid dynamic logic.

Proposition 5.1. Let q be a query in L1
qry and D a semistructured database. Then, the

answer set of q with respect to D corresponds to the truth set of τ1(q) with respect to GD .
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Moreover, since the translation τ1 goes inside a fragment of HDL(@,A), by virtue of
Theorem 4.6, we have the following corollary.

Corollary 5.2. Query processing for L1
qry has linear time data and expression complexity.

Fragment 2: L2
qry The expressive power of L1

qry can be extended by splitting the selection
expression in more than one chunk. Consider the following query that selects the authors
of all entries with title Model Checking:

select Y

from biblio._X, X.author Y

where X.title :: Model Checking
This query is not definable in L1

qry but it can be embedded into the basic hybrid dy-

namic logic as 〈author〉−1(〈bibilo._〉−1root ∧ 〈title〉Model Checking). We define
the query schema Q2 as follows:

(Q2) select Xi

from rexp1 X1,X1.rexp2 X2, . . . ,Xn−1.rexpn Xn
where fexp1, . . . ,fexpm

Each filter expression fexpj has the form X.fexp, where X is a variable and fexp in a
filter expression as in Q1. Intuitively, the schema Q2 binds the variable X1 to the nodes
reachable from the root through the regular expression rexp1, it binds the variable X2 to
the nodes reachable from a node in X1 through the regular expression rexp2, and so on.
The filter expression X.fexp filters the nodes placed in the variable X according to the
Boolean filter fexp. Finally, the nodes contained in the focus Xi are selected. A well-
formed query q is defined as follows. Let X be the focus of q , S the selection sequence of
q , F the filter sequence of q , and V the variables in S. The query q is well-formed if (i)
X ∈ V , and (ii) all variables used in the filter sequence F are in V . Let L2

qry be the query
language containing all the well-formed queries according to the schema Q2. Notice that
L1

qry ⊂ L2
qry.

We now develop an embedding τ2 of queries in L2
qry into the basic hybrid dynamic logic

with only one nominal root for the root of the data graph. Consider the query schema Q2.
For each variable Xj in Q2, let fexpj be the filter expression associated with the variable
Xj, or fexpj= true if no filter expression has been explicitly associated with Xj. We
use the following two auxiliary functions ν and ν−1 mapping a variable in Q2 into a hybrid
formula.

ν(Xj ) =
{

ω(fexpj) ∧ 〈rexpj+1〉 ν(Xj+1) if j < n,

ω(fexpj) if j = n,

ν−1(Xj ) =
{

ω(fexpj) ∧ 〈rexpj〉−1 ν−1(Xj−1) if j > 1,

ω(fexpj) ∧ 〈rexpj〉−1root if j = 1.
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Let Xi be the focus of Q2, that is, Xi is the variable in the select clause of Q2. The
translation τ2 of Q2 into hybrid logic is as follows:

τ2(Q) =
{

ν(Xi) ∧ 〈rexpi〉−1 ν−1(Xi−1) if i > 1,

ν(Xi) ∧ 〈rexpi〉−1root if i = 1.

Notice that τ2(L1
qry) = τ1(L1

qry).

Proposition 5.3. Let q be a query in L2
qry and D a semistructured database. Then, the

answer set of q with respect to D corresponds to the truth set of τ2(q) with respect to GD .

Since the codomain of the translation τ2 is a fragment of HDL(@,A), by virtue of
Theorem 4.6, we have the following corollary:

Corollary 5.4. Query processing for L2
qry has linear time data and expression complexity.

The results in Corollaries 5.2 and 5.4 do not really depend on previous results for model
checking hybrid logics, and in fact they can be obtained directly from model checking
converse PDL. Indeed, the root nominal can be simulated by a proposition letter holding at
exactly the root node. The material below does use the expressive power of hybrid logic in
an essential way.

Fragment 3: L3
qry So far, we have not used the full power of hybrid logic. In particular,

the hybrid binder ↓ has not been exploited in the query translation. Consider the following
query that selects papers with at least two authors:

select X

from biblio.paper X, X.author Y, X.author Z

where Y 
= Z

It can be embedded in hybrid logic, but we need the binder ↓:

↓x.〈biblio.paper〉−1root ∧ 〈author〉↓y.@x〈author〉↓z. y 
= z.

Moreover, the following query selects all the self-reference papers, that is, all papers whose
authors cite themselves:

select X

from biblio.paper X, X.cite Y

where X= Y

It corresponds to the hybrid formula ↓x.〈biblio.paper〉−1root∧〈cite〉↓y.x = y. The
following query retrieves all papers p such that there exists a paper q reachable from p

trough a path of cite edges that cites back to p:

select X

from biblio.paper X, X.cite. cite∗ Y
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where X= Y

This query maps to ↓x.〈biblio.paper〉−1root ∧ 〈cite.cite∗〉↓y.x = y.
We define a query schema Q3 that allows the above queries as follows:

(Q3) select Xi

from sexp1,sexp2, . . . ,sexpn

where fexp1,fexp2, . . . ,fexpm,

where each sexpj is a selection expression and each fexpj is a filter expression. A se-
lection expression is either rexp X or X.rexp Y, where rexp is a regular expression and
X and Y are variables. A filter expression is either X.fexp, or X= Y, or X 
= Y, where X
and Y are variables and fexp is a filter expression as in Q1. Not every selection sequence
is legal. For instance, X.a Y,X.b Y is not legal for two reasons. First, it does not specify the
content of X. Second, the content of Y is ambiguous. A well-formed query q is defined as
follows. Let X be the focus of q , S the selection sequence of q , F the filter sequence of q ,
and V the variables in S. We construct the edge-labelled directed graph TS with nodes in
V ∪ {/}. There is an edge (/,X) labelled with rexp if rexp X is in S, and there is an edge
(X,Y) labelled with rexp if X.rexp Y is in S. We say that S is legal if TS is a tree rooted
at /. That is, (i) each node in TS is reachable from /, (ii) the root / of TS has no predecessor
and all the other nodes in TS have exactly one predecessor. The query q is well-formed if
(i) X ∈ V , (ii) S is legal, and (iii) all the variables used in the filter sequence F are in V .
Let L3

qry be the query language containing all the well-formed queries according to the

schema Q3. Notice that L2
qry ⊂ L3

qry.

We now develop an embedding τ3 of queries in L3
qry into the hybrid dynamic logic with

nominals, @ and ↓. For the sake of simplicity, we describe the embedding with an example.
It is not difficult to reconstruct the full query translation from this example. Consider the
following abstract query q:

select Z

from a X, X.b Y, X.c Z, Z.d W

where X.e, Y.f, Z.g, W.h, Y= W

Notice that q is well-formed. The corresponding hybrid formula is as follows:

↓z.〈g〉� ∧ 〈d〉↓w.〈h〉� ∧
@z〈c〉−1↓x.〈e〉� ∧ 〈b〉↓y.〈f 〉� ∧ @x〈a〉−1root ∧
y = w

The formula has been deliberately divided into three lines. The first line constrains the
focus of the query (node Z) and its subtree (node W). The second line predicates over the
unique path from the parent of the focus to the root of the tree as well as over all the
subtrees rooted at children of nodes on this path not belonging to the path (nodes X, Y,
and /). The third line captures the identity checking constraints. This technique can be
generalized to arbitrary trees. Notice that the use of the binder ↓ is necessary to encode the
constraint that compares object identities. Indeed, if we remove the filter Y = W from the
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above query, the latter can be encoded without ↓ as follows:

〈g〉� ∧ 〈d〉〈h〉� ∧
〈c〉−1(〈e〉� ∧ 〈b〉〈f 〉� ∧ 〈a〉−1root

)

Proposition 5.5. Let q be a query in L3
qry and D a semistructured database. Then, the

answer set of q with respect to D corresponds to the truth set of τ3(q) with respect to GD .

Since the translation τ3 embeds into HDL(@,↓,⇓,A), by virtue of Theorem 4.6, we
have the following corollary (we do not know whether it is optimal):

Corollary 5.6. Query processing for L3
qry has exponential time expression complexity and

polynomial time data complexity.

Additional features of Lorel Lorel includes additional queries that are not immediately
expressible in our language. For instance, a query in Lorel may use regular expressions on
object values, as in the following:

select X

from biblio.paper X, X.title Y

where matches(“*.(D|d)ata.*”,Y)

The query selects all papers with a title containing either Data or data. Regular expres-
sions on object values can be incorporated into our model checking framework as follows.
Given a query q featuring the regular expression r and a database D, the data graph rep-
resenting D is preprocessed and all leaf nodes with a value matching r are labelled with
a fresh symbol reg_r. Moreover, each instance of matches(“*.(D|d)ata.*”,Y)
in q is replaced by Y.ε :: reg_r. The query is then translated into hybrid logic and model
checking is applied.

Lorel queries may also allow variables containing object values, instead of object identi-
fiers. Consider the following query that retrieves all papers with two different authors with
the same first name (we assume that the author element has a subelement name which
in turn has an atomic subelement first):

select X

from biblio.paper X, X.author Y, Y.name.first N,

X.author Z, Z.name.first M

where Y 
= Z, N= M

The constraint Y 
= Z compares object identities, while N = M compares object values,
since Y and Z contain internal nodes, while N and M contain leaf nodes. This query can
be implemented in hybrid logic by using the hybrid binder ⇓x that binds the current node
value to the variable x:

〈biblio.paper〉−1root ∧ ↓x.〈author〉↓y.〈name.first〉⇓n.



M. Franceschet, M. de Rijke / Journal of Applied Logic 4 (2006) 279–304 299
@x〈author〉↓z.〈name.first〉⇓m.y 
= z ∧ n = m

Finally, Lorel includes label and path variables as well. These variables can be used to
combine schema and data information. These features are beyond the expressive power of
hybrid logic with nominals for states. Path nominals, i.e., nominals interpreted over paths,
and corresponding path binders, have been introduced in hybrid logics [16]. However, at
present model checking results for hybrid logics with path nominals and path binders are
non-existent.

Constraint evaluation via hybrid model checking So far we have considered hybrid logic
model checking as a mechanism for evaluating queries in (fragments of) Lorel. We now
change tack and consider constraint evaluation for semistructured data. Recall that integrity
constraints on structured data are conditions that restrict the possible populations of the
database. They are important to maintain the integrity of data as well as for query opti-
mization [2]. Path constraints are generalizations of integrity constraints in the context of
semistructured data [1,23]. They are navigation conditions imposing conditions on nodes
at arbitrary depths in the data graph. They include functional, inclusion and inverse path
constraints [23].

Consider a semistructured database containing information about authors and publica-
tions. Each author has a list of publications and each publication has a corresponding list
of authors. An example in XML is shown in Fig. 8. Constraints such as the following are
reasonable for this type of data:

<author id = “a1”>
<name> Marx </author>
<has_written idref = “p1”/>
<has_written idref = “p2”/>
</author>
<author id = “a2”>
<name> de Rijke </author>
<has_written idref = “p1”/>
</author>
<publication id = “p1”>
<title> Hybrid Logics </title>
<code> MdeR03 </code>
<year> 2003 </year>
<written_by idref = “a1”/>
<written_by idref = “a2”/>
</publication>
<publication id = “p2”>
<title> Computational Complexity </title>
<code> M00 </code>
<year> 2000 </year>
<written_by idref = “a1”/>
</publication>
.
.
.

Fig. 8. Authors and publications in XML.
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(1) for each author a, all the publications in a’s publications list should be contained in
the database;

(2) for each publication p, all the authors in p’s authors list should be contained in the
database;

(3) for each author a and for each publication p in a’s publications list, a should be con-
tained in p’s authors list; and

(4) for each publication p and for each author a in p’s authors list, p should be contained
in a’s publications list.

The data in Fig. 8 satisfies the above constraints. We could require that the attribute code is
a key for the element publication: different publications should have different code values.
Less restrictively, we could ask that the attribute code functionally determines the authors
of a publication: any two different publications with the same code values should have the
same authors.

More generally, let r , p and q be regular expressions on attribute names. Let τ be an
attribute name and S a set of attribute names. A τ node is a node reachable through an edge
labelled with τ . We consider the following constraints:

• key constraints, denoted τ [S] → τ , saying that, for all τ nodes x and y, if x and y

agree on the values of nodes reachable through attributes in S, then x and y are the
same node;

• path functional constraints, denoted τ.p → τ.q , saying that, for all τ nodes x and y,
if x and y agree on the values of nodes reachable through p, then they should agree on
the values of nodes reachable through q as well;

• circular constraints:
– forward version, denoted p ⇒ q , saying that all nodes reachable from the root

through p are also reachable from the root through q;
– backward version, denoted p � q , saying that all nodes reachable from the root

through p can reach back to the root through q;
• lollipop constraints:

– forward version, denoted r → p ⇒ q , saying that, for each node x reachable from
the root through r it holds that all nodes that are reachable from x through p are
also reachable from x through q;

– backward version, denoted r → p � q , saying that, for each node x reachable from
the root through r it holds that all nodes that are reachable from x through p can
reach back to x through q .

Forward circular constraints are special cases of forward lollipop constraints in which r

is empty; similarly for backward constraints. Forward circular constraints are also called
inclusion path constraints, and backward lollipop constraints are sometimes referred to as
inverse path constraints [1,23]. Whenever S is a singleton {a}, the key constraint τ [{a}] →
τ corresponds to the functional constraint τ.a → τ .

Constraints (1) and (2) in our example above are forward circular constraints:
(1) is a forward circular constraint in which p = *.publication.written_by
and q = *.author, and (2) is a forward circular constraint with p = *.author.
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has_written and q = *.publication. Constraints (3) and (4) above are backward
lollipop constraints: (3) is a backward lollipop constraint with r = *. publication,
p = written_by and q = has_written, and (4) is a backward lollipop constraint
with r = *.author, p = has_written and q = written_by. The key constraint
publication[code] → publication states that the attribute code of the element
publication is a key for the element publication. Finally, publication.code →
publication.written_by.name is an example of a functional path constraint asking
that the code of the element publication determines the set of authors of the publication.

To show how such constraints can be expressed in hybrid dynamic languages, we define
a constraint language Lcon containing any Boolean combination of constraints as intro-
duced above. Formally, a constraint c in Lcon has the following syntax:

• c = atom | c ∧ c | c ∨ c | ¬c,
• atom = τ [S] → τ | τ.p → τ.q | p ⇒ q | p � q | r → p ⇒ q | r → p � q ,

where τ is an attribute name, S is a set of attribute names, and r,p, q are regular expres-
sions on attribute names.

Next we show how to express the constraints in Lcon within hybrid dynamic logic. We
define a mapping σ from the constraint language Lcon to HDL(@,↓,⇓). Let root be a
nominal for the root of the data graph. The easiest constraints to encode are the circular
ones. Their encodings do not require hybrid binders:

σ(p ⇒ q) = @root[p]〈q〉−1root

σ(p � q) = @root[p]〈q〉root

We encode lollipop constraints. Their encodings require only one nesting of the hybrid
binder ↓:

σ(r → p ⇒ q) = @root[r]↓x.[p]〈q〉−1x

σ(r → p � q) = @root[r]↓x.[p]〈q〉x
Key and functional constraints are more involved, since they involve both the comparison
of node identities and the comparison of node values. The translation of the key constraint
τ [S] → τ states that, for all different τ nodes x and y, if x and y agree on the values of
nodes reachable through attributes in S, then x and y are the same node:

σ
(
τ [S] → τ

) = A↓x.A↓y.
(
@x〈τ 〉−1� ∧ @y〈τ 〉−1 ∧ x 
= y

) →( ∧
a∈S

@x[a]⇓v1.@y〈a〉⇓w1.v1 = w1 ∧

@y[a]⇓w2.@x〈a〉⇓v2.v2 = w2

)
→ x = y

The translation of the path functional constraints τ.p → τ.q states that, for all different τ

nodes x and y, if x and y agree on the values of nodes reachable through p, they should
also agree on the values of nodes reachable through q:
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σ(τ.p → τ.q) = A↓x.A↓y.
(
@x〈τ 〉−1� ∧ @y〈τ 〉−1 ∧ x 
= y

) →(
@x[p]⇓v1.@y〈p〉⇓w1.v1 = w1 ∧

@y[p]⇓w2.@x〈p〉⇓v2.v2 = w2
) →(

@x[q]⇓v1.@y〈q〉⇓w1.v1 = w1 ∧
@y[q]⇓w2.@x〈q〉⇓v2.v2 = w2

)
We conclude the description of our translation by stipulating that σ distributes over the
Boolean operators. In σ it is convenient to replace the universal modality A with @root[∗].
Notice that in this way each translated constraint is a formula starting with @root. Given
a semistructured database D and an integrity constraint c ∈ Lcon, it is possible to check
whether D satisfies c as follows. The database D is represented as a rooted graph GD

and the constraint c is translated into the hybrid formula σ(c). Then, the formula σ(c)

is checked on GD by using a hybrid model checker (in fact, it is sufficient to check the
formula at the root of the graph). If the outcome of the model checker is the empty set of
nodes, then D does not satisfy c, otherwise it does.

Proposition 5.7. Let c be an integrity constraint in Lcon and D a semistructured database.
Then, D satisfies c if, and only if, the truth set of σ(c) with respect to GD is non-empty.

The translation σ embeds (any Boolean combination of) circular constraints into HDL(@),
lollipop constraints into the fragment of HDL(@,↓) in which ↓ is nested only once, and
key and functional constraints into the fragment of HDL(@,↓,⇓,A) in which the hybrid
binders are nested a fixed number of times. As a consequence, by virtue of Theorem 4.6,
we have the following.

Corollary 5.8.

• The constraint evaluation problem for circular constraints can be solved in linear
time both in the length of the constraint (expression complexity) and in the size of the
database (data complexity);

• The constraint evaluation problem for lollipop constraints can be solved in linear time
in the length of the constraint (expression complexity) and in quadratic time in the size
of the database (data complexity);

• The constraint evaluation problem for key and functional constraints can be solved in
linear time in the length of the constraint (expression complexity) and in polynomial
time in the size of the database (data complexity).

6. Conclusion and work for the future

We investigated the model checking problem for hybrid logics. We gave model checkers
for a large number of fragments of hybrid and hybrid dynamic logic. We obtained lower
bounds on the computational complexity of the model checking problem for hybrid logics
with binders. We found that the addition of nominals and the @ operator does not increase
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the complexity of the model checking task. In contrast, whenever hybrid binders are present
in the language, the running time of the resulting model checker is exponential in the
nesting level of the binders. We cannot do better, since we proved that the model checking
problem for hybrid logics with binders is PSPACE-complete.

We applied our findings to the problems of query and constraint evaluation for semi-
structured data. We identified significant fragments of well-known query and constraint
languages for semistructured data that can be efficiently embedded into hybrid languages.
These embeddings allowed us to solve query and constraint evaluation problems via model
checking for hybrid logics.

An implementation of the model checkers MCLITE and MCFULL proposed in this paper
is available at http://www.luigidragone.com/hlmc. The code is written in C and available
under the GNU General Public License. It can be freely used, modified and distributed in
conformity with this license.
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